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CD is the initial triangle. The additional triangle ACB is formed by adding the two

hat Al
g poj:Bt and BC and the single joint B. The triangle DCE follows by adding the two members

E and the joint E. Finally, the two members BF and EF and the joint F are added to form
lar portion CBFE. We therefore conclude that the truss in Fig. 4.9 is stable and statically

members

z{he f‘:;;iztg; Compare the construction of this truss with that of the statically indeterminate truss in
eter :

Figf ;Z,E:?iiition’ similar to Eq. (4.1), applies to space trusses; the result for a space truss having 7 members

v andj pinned joints is
FIGURE 4.7
Statical determinacy of trusses. [
EXAMPLE 4.2 o)
so that [nvestigate the determinacy and stability of the trusses shown in Fig. 4.10 under loads applied in
2 theif plane. :
B (a) In this case there are 7 members and 5 joints so that =7 and j=5. Then

and the truss is statically indeterminate. In fact any single member may be removed and the truss
would retain its stability under any loading system in its own plane.

e

> and Eq. (4.1) is satisfied and the truss is statically determinate. Also, by inspection, the truss is
Unfortunately, in some cases, Eq. (4.1) is satisfied but the truss may be statically indeterminate or a stable. : Ry Ay e 3
: s il I A ; J by fion,
mechanism. For example, the truss in Fig, 4.8 has nine members and six joints so that Eq. (4.1) is satisfied. (b) For this truss 7 =9 and F i 6 50 thaft jj 3' 2 am}il' lliqéh(éi..l) lrs ;alt;siisiei:;:han};s;wpec ion
However, clearly the left-hand half is a mechanism and the right-hand half is statically indeterminate. the outer half of the truss is statically in ete.rmmitei\sw 1ed e Sr;e ——2 e thérefore .
Theoretically, assuming that the truss members are weightless, the truss could support vertical loads applied (c) In this case m= 13 and j=9 so that 2/—3=15 and m<2j—3,
to the left- and/or right-hand vertical members; this would, of course, be an unstable condition. Any other mechanism.

form of loading would cause a collapse of the left hand half of the truss and consequently of the truss itself.
The presence of a rectangular region in a truss such as that in the truss in Fig. 4.8 does not necessarily
result in collapse. The truss in Fig. 4.9 has nine members and six joints so that Eq. (4.1) is satisfied. This does
not, as we have seen, guarantee either a stable or statically determinate truss. If, therefore, there is some doubt
we can return to the procedure of building up a truss from a single triangular unit as demonstrated in
Fig. 4.6. Then, remembering that each additional triangle is created by adding two members and one joint
and that the resulting truss is stable and statically determinate, we can examine the truss in Fig. 4.9 as follows.

F

(a) (b)

FIGURE 4.10
i .|
F
EXAMPLE 4.3
Suggest two ways in which the truss in Fig. 4.10(c) could be made stable and remain statically
- determinate.

4 i. Add members BD and ED (or BG).
FIGURE 4.8 FIGURE 4.9 ii. Add members CF and CG. —E
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4.5 Resistance of a truss to shear force and bending moment

Although the members of a truss carry only axial loads, the truss itself acts as a beam and is subjected
to shear forces and bending moments. Therefore, before we consider methods of analysis of trusses,
it will be instructive to examine the manner in which a truss resists shear forces and bending moments.

The Pratt truss shown in Fig. 4.11(a) carries a concentrated load W applied at a joint on the bottom
chord at mid-span. Using the methods described in Section 3.4, the shear force and bending moment
diagrams for the truss are constructed as shown in Fig. 4.11(b) and (c), respectively.

First we shall consider the shear force. In the bay ABCD the shear force is W/2 and is negative.
Thus at any section mm between A and B (Fig. 4.12) we see that the internal shear force is — W/2.
Since the horizontal members AB and DC are unable to resist shear forces, the internal shear force can
only be equilibrated by the vertical component of the force Fyc in the member AC. Figure 4.12 shows
the direction of the internal shear force applied at the section mm so that Fac is tensile. Then

w
FAC Cos 450 = 7

The same result applies to all the internal diagonals whether to the right or left of the mid-span point
since the shear force is constant, although reversed in sign, either side of the load. The two outer diagonals
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FIGURE 4.11
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pression since their vertical components must be in equilibrium with the vertically upward
tions. Alternatively, we arrive at the same result by considering the internal shear force at a

. st to the right of the left-hand support and just to the left of the right-hand support.

SCCn({;ndch diagonal AC was repositioned to span between D and B it would be subjected to an axial

] essive load. This situation would be undesirable since the longer a compression member, the smaller the
K uired to cause buckling (see Chapter 21). Therefore, the aim of truss design is to ensure that the forces
!oad re‘llon est members, the diagonals in this case, are predominantly tensile. So we can see now why the
e qu (Fig. 4.1(b)), whose diagonals for downward loads would be in compression, is no longer in use.
Ho‘iVC some situations the loading on a truss could be reversed so that a diagonal that is usually in tension

ulrcll be in compression. To counter this an extra diagonal inclined in the opposite direction is included
i ning, say, from D to B in Fig. 4.13). This, as we have seen, would result in the truss becoming stati-
ggrninde;erminate. However, if it is assumed that the original diagonal (AC in Fig. 4.13) has buckled
under the compressive load and therefore carries no load, the truss is once again statically determinate.

We shall now consider the manner in which a truss resists bending moments. The bending moment at a
section immediately to the left of the mid-span vertical BC in the truss in Fig, 4.11(a) is, from Fig. 4.11(c),
1.5 W and is positive, as shown in Fig. 4.13. This bending moment is equivalent to the moment resultant,
al.)out any point in their plane, of the member forces at this section. In Fig. 4.13, 'amalysis by the method
of sections (Section 4.7) gives Fpa =15 W (compression), Fpc=0.707 W (tension) a.nd Foc= 1‘0.W
(tension). Therefore at C, Fpc plus the horizontal component of Fac is equal to 1.5 .\thlch,.together with
Fap produces a couple of magnitude 1.5 WX 1 which is equal to the applied bending moment.
Alternatively, we could take moments of the internal forces about B (or C). Hence

Mg =Fpc X1+ FycX1sin45°=1.0W X1+0.707 WX 1sin45°=15W

are in com
support Foac

as before. Note that in Fig. 4.13 the moment resultant of the internal force system is equivalent to the
applied moment, i.e. it is in the same sense as the applied moment.

m
[
|
A |
45° < E
: %V Internal shear force
; Fac
A > 1y
7 : FIGURE 4.12
m Internal shear force in a truss.
A B - 1.5W__
45° P A
1m
Foc v FIGURE 4.13

D C\, o Internal bending moment in a
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FIGURE 4.14
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mid-bay point.

Now let us consider the bending moment at, say, the mid-point of the bay AB, where its magnitude is,
from Fig. 4.11(c), 1.25 W, The internal force system is shown in Fig, 4.14 in which F3a, Fac and

Fpc have the same values as before, Then, taking moments about, say, the mid-point of the top chord
member AB, we have

M =Fpc X1+ Fac X0.5sin45°=1.0 W X 1 +0.707 W X 0.5sin45° =125 W

the value of the applied moment.

From the discussion above it is clear that, in trusses, shear loads are resisted by inclined members,
while all members combine to resist bending moments. Furthermore, positive (sagging) bending
moments induce compression in upper chord members and tension in lower chord members.

Finally, note that in the truss in Fig. 4.11 the forces in the members GE, BC and HF are all zero,
as can be seen by considering the vertical equilibrium of joints E, B and F. Forces would only be
induced in these members if external loads were applied directly at the joints E, B and F. Generally,

if three coplanar members meet at a joint and two of them are collinear, the force in the third member
is zero if no external force is applied at the joint.

4.6 Method of joints

We have seen in Section 4.4 that the axial forces in the members of a simple pin-jointed triangular
structure may be found by examining the equilibrium of their connecting pins or hinges in two direc-
tions at right angles (Eq. (2.10)). This approach may be extended to plane trusses to determine the axial

forces in all their members; the method is known as the method of joints and will be illustrated by the
following example.

-
EXAMPLE 4.4

Determine the forces in the members of the Warren truss shown in Fig. 4.15; all members are 1 m long,

Generally, although not always, the support reactions must be calculated first. So, taking
moments about D for the truss in Fig. 4.15 we obtain

RyX2-2X15-1X1-3%X05=0

which gives

RA =275 kN

—_—
Resistance of a bending moment at a
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7

Ry = 275 KN T T Rp =3.25kN

FIGURE 4.15
Analysis of a Warren truss.

Then, resolving vertically

Roh =3 —1—3=0

so that

RD =3.25 kN

Note that there will be no horizontal reaction at A (D is a roller support) since no horizontal
ied. .
loafll‘shzrizftp:tep is to assign directions to the forces acting on each joint. Ir.l one approach thebtrustsh is
examined to determine whether the force in a member is tensile or compressive. For some’merrlllil ir)s wxj
is straightforward. For example, in Fig. 4.15, the vertical reaction at A, Ry, can or?ly 'be eq dfl rath
by the vertical component of the force in AB which must ther?fore act dowmzmrx:if,s,f mdl}iatmg at _le
member is in compression (a compressive force in a member will push towards a joint :vh creas a te?i;l e
force will pull away from a joint). In some cases, where several memb?rs meet at a joint, ; ngtué.e i
force in a particular member is difficult, if not impossible, to determine by inspection. Then 2;1 1rectt}110n
must be assumed which, if incorrect, will result in a negative value for the me.mber force. ;It fo (;ws at,
in the same truss, both positive and negative values may be obtainae(.i for tensile force§ and also. or 'CQarlrlx—
pressive forces, a situation leading to possible confusion. Therefore, if every member ina truTJs tl; initally
assumed to be in tension, negative values will always indicate compression and the solution will then agree
ith the sign convention adopred in Section 3.2. A '
4 We nov% assign tensile forcis to the members of the truss in Fig. 4.15 using arrows to'mdlca.te. the action
of the force in the member on the joint; then all arrows are shovim to pull away from the afd]acelixt joint. ot
The analysis, as we have seen, is based on a consideration of the cqufhbnum of each pin or hing
under the action of 4/ the forces at the joint. Thus for each pin or hinge we can write down two
€quations of equilibrium. It follows that a solution can only be obtained if t!xere are 1:1) more tt}}:an t:lvt:
unknown forces acting at the joint. In Fig. 4.15, therefore, we can only begin the analysis at the joi

i 1
RN ol s il o e e Bn Al svasnnaitheas anbnaam fareacarhilaat B there are fa
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Fag 2 kN

¥

F
o BC
A 60°
Fag
Ra = 2.75kN Far Foe
FIGURE 4.16 FIGURE 4.17
Equilibrium of forces at joint A. Equilibrium of forces at joint B.

Consider joint A. The forces acting on the pin at A are shown in the free body diagram in Fig. 4.16.

Fyp may be determined directly by resolving forces vertically.
Hence

Fjp sin 60° +2.75=0 (i)
so that
FAB = —3,18 kN

the negative sign indicating that AB is in compression as expected.
Referring again to Fig. 4.16 and resolving forces horizontally

Fup + Fag cos 60° =0 (ii)
Substituting the zegative value of Fyp in Eq. (ii) we obtain
Fxg — 3.18 cos 60° =0
which gives
Fyp=+1.59 kN

the positive sign indicating that Fyp is a tensile force.

We now inspect the truss to determine the next joint at which there are no more than two
unknown forces. At joint E there remain three unknowns since only Fzp (=F,g) has yet been deter-
mined. At joint B there are now two unknowns since Fgy (=Fxp) has been determined; we can
therefore proceed to joint B. The forces acting at B are shown in Fig. 4.17. Since Fg is now known
we can resolve forces vertically and therefore obtain Fgg directly. Thus

Fpp cos 30° + Fga cos 30° +2 =0 (iii)

Substituting the negative value of Fg, in Eq. (iii) gives

FBE =+0.87 kN

which is positive and therefore tensile.

[ i e Sl
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Resolving forces horizontally at the joint B we have
Fyc + Fgg cos 60° — Fga cos 60° =0 (iv)
Substituting the positive value of Fpp and the negative value of Fgp in Eq. (iv) gives
Fgec= —2.03kN

the negative sign indicating that the member BC is in compression. _ '

We have now calculated four of the seven unknown member forces. Thex:e are in ‘faz_:t just two
unknown forces at each of the remaining joints .C, D. and E so that, theoretically, it is immaterial
which joint we consider next. From a solution viewpoint there are th.ree forces at D_’ four at C and
five at E so that the arithmetic will be slightly simpler 1if we next conS{der D to ?btam Fl?c a.nd For
and then C to obtain Fcg. At C, Fcp could be dete‘rmmed by res'olvmg forces in the direction CE
racher than horizontally or vertically. Carrying out this procedure gives

Fpc = — 3.75 kN (compression)
Fpg =+ 1.88 kN (tension)

Fcg =+ 0.29 kN (tension)

The reader should verify these values using the method suggested above.

It may be noted that in this example we could write down 10 equations of equilibrium, two for
each of the five joints, and yet there are only seven unknown member forces. The apparently extra
three equations result from the use of overall equilibrium to calculate the support reactions. An alter-
native approach would therefore be to write down the 10 equilibrium equations which would
include the three unknown support reactions (there would be a horizontal reaction at A if horizontal
as well as vertical loads were applied) and solve the resulting 10 equations simultaneously. Overall
equilibrium could then be examined to check the accuracy of the solution. Generally, however, the
method adopted above produces a quicker solution. -

4.7 Method of sections

It will be appreciated from Section 4.5 that in many trusses the maximum member forces, particularly
in horizontal members, will occur in the central region where the applied bending moment would pos-
sibly have its maximum value. It will also be appreciated from Ex. 4.4 that the calculation of member
forces in the central region of a multibay truss such as the Pratt truss shown in Fig. 4.1(a) would be
extremely tedious since the calculation must begin at an outside support and then proceed inwards joint
by joint. This approach may be circumvented by using the method of sections.

The method is based on the premise that if a structure is in equilibrium, any portion or component
of the structure will also be in equilibrium under the action of any external forces and the internal
forces acting between the portion or component and the remainder of the structure. We shall illustrate

tha L 11 1 ~
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(o
EXAMPLE 4.5

Calculate the forces in the members CD, CF and EF in the Pratt truss shown in Fig. 4.18.
Inicially the support reactions are calculated and are readily shown to be

RA,V = 45 kN RA,H =2 kN RB =5.5kN

We now ‘cut’ the members CD, CF and EF by a section mm, thereby dividing the truss into two
separate parts. Consider the left-hand part shown in Fig. 4.19 (equally we could consider the right-
hand part). Clearly, if we actually cut the members CD, CF and EF, both the left- and right-hand
parts would collapse. However, the equilibrium of the left-hand part, say, could be maintained
by applying the forces Fcp, Fop and Fig to the cut ends of the members. Therefore, in Fig. 4.19,
the left-hand part of the truss is in equilibrium under the action of the externally applied loads, the
support reactions and the forces Fep, Fcp and Fgg which are, as in the method of joints, initially
assumed to be tensile; Eq. (2.10) are then used to calculate the three unknown forces.

Resolving vertically gives

Fepcos45° +4—-45=90 (1
so that
Fep =+ 0.71 kN
and is tensile.
m
In
2kN_ . N G
g LR A
| \\ 1m
Rap =2 kN é; Ef I F N LH
7 vy om "y 4
4 kN Foen 6 kN
Ray =45kN |= . > Ry = 55 kN

FIGURE 4.18
Calculation of member forces using the method of sections.
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RAH::ZkN(—-—-——‘ 1 L P
4 E : =
| EF
l i

Ray =4.5kN 4 kN

FIGURE 4.19
Equilibrium of a portion of a truss.
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Now taking moments about the point of intersection of Fcr and Fgr we have

FopX1+2X1+45X4—4X1=0 (ii)

so that
Fep = —16 kN

; ressive. L8
ande; :l(l);nngF is obtained by taking moments about C, thereby eliminating Fcp and Fep from the

uation. Alternatively, we could resolve forces horizontally since Fcp and Fep are now known; however,
:is approach would involve a slightly lengthier calculation. Hence

Feip X1 —45X3-2X1=0 (iii)

which gives

FEF =+ 15.5 kN

sitive sign indicating tension. )
dlelgc(:::gfatslgqs (i)—(iii)geach include just one of the unknowr} n.lember forf:es s d}at it 1;1 1rr;1r¥;at§—
rial which is calculated first. In .}omle problems, however, a preliminary examination is worthwhile to

i timum order of solution.
det;;ﬂg;ﬂﬁﬁ;f see that there are just three possible equations of equﬂibri@ so that we f:anngt solve
for more than three unknown forces. It follows that a section such as mm Wi'}lCh must divide tb(;efame
into two separate parts must also not cut through more .t/;czn three members in which the ﬁ)rc;s ;re u:al len.
For example, if we wished to determine the forces in (;D, DF, FG and FH we YVOUld} 1rst ale ate
Fep using the section mm as above and then determine Fpp, F?G and. Fry using the Zecngn n}rll.
Actually, in this particular example Fpr may be seen to be zero by inspection (see Section 4.5) but the

principle holds. o

4.8 Method of tension coefficients

An alternative form of the method of joints which is particularly useful in the analysis of space trusses
i 7 1Cients.

| t}gorg;tg::l tz{éterfégbzzeji& shown in Fig. 4.20, which connects two pinned joints A anc.i B who.se
coordinates, referred to arbitrary xy axes, are (xa, ya) and (xg, ys) respectively; the member carries a zensile
force, Tp, is of length Lap and is inclined at an angle « to the x axis. The component of Tpp parallel to
the x axis at A is given by

(x8 —xa) _ Tas
OB T AR

Tag cos = Ty (%8 — xa)

Las Las
Similarly the component of Tjp at A parallel to the y axis is

Ths (om — w2 )

Trn cin v =
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yA B (X, ¥B)

y 5 kN
TB(O, 1.5) l D15, 15  F(3.0,15)
Tas |
o
1.5
A (X, Ya) m
FIGURE 4.20
_ , — L
> X —_—
Method of tension coefficients. A0, 0) c(15.0) \E@30,0)
We now define a tension coefficient tap = Tpp/Lap so that the above components of Txg become T T
= Re =4 kN
parallel to the x axis: #ap(x5 — %4) (4.3) Py =4 by 15m 15 i

parallel to the y axis: Z4p(ys — ya) (4.4)

FIGURE 4.21
Analysis of a truss using tension coefficients (Ex. 4.6).

Equilibrium equations may be written down for each joint in turn in terms of tension coefficients and
joint coordinates referred to some convenient axis system. The solution of these equations gives #sp, etc,
whence Txp=taplap in which L, unless given, may be calculated using Pythagoras’ theorem, whence

AB = IABLAB AB 8 y & 8

Le. Ly = \/ (%3 —xa)* + Os— yA)Z. Again the initial assumption of tension in a member results in nega- tac =+2.0

tive values corresponding to compression. Note the order of suffixes in Eqs (4.3) and (4.4).

-
EXAMPLE 4.6

Determine the forces in the members of the pin-jointed truss shown in Fig. 4.21.

The support reactions are first calculated and are as shown in Fig. 4.21.

The next step is to choose an xy axis system and then insert the joint coordinates in the diagram.
In Fig. 4.21 we shall choose the support point A as the origin of axes although, in fact, any joint
would suffice; the joint coordinates are then as shown.

Again, as in the method of joints, the solution can only begin at a joint where there are no
more than two unknown member forces, in this case joints A and E. Theoretically it is immaterial
at which of these joints the analysis begins but since A is the origin of axes we shall start at A.
Note that it is unnecessary to insert arrows to indicate the directions of the member forces since
the members are assumed to be in tension and the directions of the components of the member
forces are automatically specified when written in terms of tension coefficients and joint coordi-
nates (Eqs (4.3) and (4.4)).

The equations of equilibrium at joint A are

x direction: zsp(xg — xa) + fac(ec — xa) — Ray =0 (1)
y direction: #a8(y8 — ya) + tac(yc = ya) — Rav =0 (i)

Substituting the values of Ry, Rav and the joint coordinates in Egs (i) and (i) we obtain,
from Eq. (i),

tap(0 — 0) + tAc(l.S o 0) —3—0

and from Eq. (ii)
(1.5 —0) + £,c(0—0)+1=0
so that
g = — 0.67

We see from the derivation of Eqs (4.3) and (4.4) that the units of a tension coefficient are force/
unit length, in this case kN/m. Generally, however, we shall omit the units.

We can now proceed to joint B at which, since 55 (=#5p) has been calculated, there are two
unknowns

x direction: zp(xa — xp) + 3clxc — x8) + teplxp — x3) +3 =0 (ii1)
y direction: z8a(ya — y8) + s8c(yc — y8) + DD — y8) =0 (iv)
Substituting the values of the joint coordinates and #g4 in Eqgs (iii) and (iv) we have, from Eq. (iii)
—0.67 (0 — 0) + 3c(1.5 — 0) + p(1.5— 0) +3=0
which simplifies to
1.5t8c + 1.5/3p +3 =0 \
and from Eq. (iv)
—0.67 (0—1.5) + 5c(0 — 1.5) + 3p(1.5 — 1.5) = 0

whence

tre = +0.67
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Hence, from Eq. (v)
tsp = —2.67
There are now just two unknown member forces at joint D. Hence, at D
x direction: #pp(xs — xp) + fpE(xr — xp) + fpclxc — xp) =0 (vi)
y direction: spp(y8 — yp) + tor(yr — ¥p) + toc(¥c —0) —5=0 (vii)
Substituting values of joint coordinates and the previously calculated value of #pp (=3p) in Egs (vi)
and (vii) we obuain, from Eq. (vi)
~2.67 (0= 1.5) + 1pp(3.0 — 1.5) + 1pc(1.5— 1.5) = 5=0
so that
tpE = —2.67
and from Eq. (vii)
~2.67(1.5 = 1.5) + (1.5 — 1.5) + tpc(0 — 1.5) =0
from which

e = — 3.35

The solution then proceeds to joint C to obtain #cp and fcg or to joint F to determine #c and
tpg; joint F would be preferable since fewer members meet at F than at C. Finally, the remaining
unknown tension coefficient (zgc or #gg) is found by considering the equilibrium of joint E. Then

g =+ 267, Igg = = 2.67, ke =0

which the reader should verify.
The forces in the truss members are now calculated by multiplying the tension coefficients by the
member lengths, i.e.

Txg = taglag = — 0.67 X 1.5 = — 1.0 kN (compression)
Tac=taclac=+2.0X1.5=+3.0 kN (tension)
Tyc = tsclac

in which

Loc = /G =50 + (5 — 30 = /0~ 1.5 + (15-02 =212 m
Then
Tpc =+ 0.67 X 2.12 = +1.42 kN (tension)

Note that in the calculation of member lengths it is immaterial in which order the joint coordinates
occur in the brackets since the brackets are squared. Also

Tsp = tgpLlep = —2.67 X 1.5 = —4.0 kN (compression)

s S L |
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Similarly
Tor = —4.0 kN (compression)
Toc = —5.0 kN (compression)
Trc = +5.67 kN (tension)
Trg = —4.0 kN (compression)
TEC =0
B — |

4.9 Graphical method of solution

In some instances, particularly when a rapid solution is required, the member forces in a truss may be
found using a graphical method.

The method is based upon the condition that each joint in a truss is in equilibrium so that the forces
acting at a joint may be represented in magnitude and direction by the sides of a closed polygon (see
Section 2.1). The directions of the forces must be drawn in the same directions as the corresponding mem-
bers and there must be no more than two unknown forces at a particular joint otherwise a polygon of forces

cannot be constructed. The method will be illustrated by applying it to the truss in Ex. 4.4.

-
EXAMPLE 4.7
Determine the forces in the members of the Warren truss shown in Fig. 4.22; all members are 1 m long.
It is convenient in this approach to designate forces in members in terms of the areas between them
rather than referring to the joints at their ends. Thus, in Fig. 4.22, we number the areas between all
forces, both internal and external; the reason for this will become clear when the force diagram for the
complete structure is constructed.
The support reactions were calculated in Ex. 4.4 and are shown in Fig. 4.22. We must start at a joint
where there are no more than two unknown forces, in this example either A or D; here we select A.
The force polygon for joint A is constructed by going round A in, say, a clockwise sense. We must then
go round every joint in the same sense.
First we draw a vector 12 to represent the support reaction at A of 2.75 kN to a convenient scale
(see Fig. 4.23). Note that we are moving clockwise from the region 1 to the region 2 so that the
- vector 12 is vertically upwards, the direction of the reaction at A (if we had decided to move round
‘A in an anticlockwise sense the vector would be drawn as 21 vertically upwards). The force in the
- member AB at A will be represented by a vector 26 in the direction AB or BA, depending on
whether it is tensile or compressive, while the force in the member AE at A is represented by the
Vvector 61 in the direction AE or EA depending, again, on whether it is tensile or compressive. The
~point 6 in the force polygon is therefore located by drawing a line through the point 2 parallel to
the member AB (o intersect, at 6, a line drawn through the point 1 parallel to the member AE. We
kﬁ from the force polygon thar the direction of the vector 26 is towards A so that the member AB
18 in compression while the direction of the vector 61 is away from A indicating that the
i?ier'nber AE is in tension. We now insert arrows on the members AB and AE in Fig. 4.22 to
_iﬂdlcate compression and tension, respectively.
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2.75 kN 3.25 kN
FIGURE 4.22 FIGURE 4.23

Analysis of a truss by a grap:hii:al method. Force polygon for the truss of Ex. 4.7.

We next consider joint B where there are now just two unknown member forces since we have
previously determined the force in the member AB; note that, moving clockwise round B, this force is
represented by the vector 62, which means that it is acting towards B as it must since we have already
established that AB is in compression. Rather than construct a separate force polygon for the joint B we
shall superimpose the force polygon on that constructed for joint A since the vector 26 (or 62) is common
to both; we thereby avoid repetition. Thus, through the point 2, we draw a vector 23 vertically down-
wards to represent the 2 kN load to the same scale as before. The force in the member BC is represented
by the vector 37 parallel to BC (or CB) while the force in the member BE is represented by the vector 76
drawn in the direction of BE (or EB); this locates the point 7 in the force polygon. Hence we see that the
force in BC (vector 37) acts towards B indicating compression, while the force in BE (vector 76) acts
away from B indicating tension; again, arrows are inserted in Fig. 4.2 to show the action of the forces.

Now we consider joint C where the unknown member forces are in CD and CE. The force in the
member CB at C is represented in magnitude and direction by the vector 73 in the force polygon.
From the point 3 we draw a vector 34 vertically downwards to represent the 3 kN load. The vectors 48
and 87 are then drawn parallel to the members CD and CE and represent the forces in the members
CD and CE, respectively. Thus we see that the force in CD (vector 48) acts towards C, i.e. CD is in
compression, while the force in CE (vector 87) acts away from C indicating tension; again we insert
corresponding arrows on the members in Fig, 4.22.

Finally the vector 45 is drawn vertically upwards to represent the vertical reaction (=3.25 kN) at D
and the vector 58, which must be parallel to the member DE, inserted (since the points 5 and 8 are
already located in the force polygon this is a useful check on the accuracy of construction). From the
direction of the vector 58 we deduce that the member DE is in tension.

Note that in the force polygon the vectors may be read in both directions. Thus the vector 26 repre-
sents the force in the member AB acting at A, while the vector 62 represents the force in AB acting at B.
It should also be clear why there must be consistency in the sense in which we move round each joint;
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the vector 26 represents the direction of the force at A in the member AB when we move in a
f:i : Jawise sense round A. However, if we then move in an anticlockwise sense round the joint B the vector
zgc would represent the magnitude and direction of the force in AB at B and would indicate that AB is in

rension, but clearly it is not. =

pmm—

4.10 Compound trusses

[n some situations simple trusses are connected together to form a compound truss,.ir-l which case it is
enerally not possible to calculate the forces in all the members by the method of joints even though
%he cruss is statically determinate. - .

Figure 4.24 shows a compound truss comprising two simple trusses AGC and BJC connected at t'he
apex C and by the linking bar GJ; all the joints are pinned and we shall suppose that the truss carries
l(E)ads at all its joints. We note that the truss has 27 members and 15 joints so that Eq. (4.1) is satisfied
and the truss is statically determinate. This truss is, in fact, a Fink truss (see Fig. 4.1(c)). N

Initially we would calculate the support reactions at A and B and commence a method of joints
solution at the joint A (or at the joint B) where there are no more than two un-known merr.ﬂ?er-forces.
Thus the magnitudes of Fap and Fag would be obtained. Then, by considering the. .qulllllbI'IUI'n.Of
joint D, we would calculate Fog and Fpr and then Fgr and Frg by considering the equilibrium of joint
E. At this stage, however, the analysis can proceed no further, since at each of the next joints to be con-
sidered, F and G, there are three unknown member forces: Frg, Fry and Fppy at F, :?nd FGFf Fgr and
Fgy at G. An identical situation would have arisen if the analysis had commenced in the right-hand
half of the truss at B. This difficulty is overcome by taking a section mm to cut the three members
HC, IC and GJ and using the method of sections to calculate the corresponding member forces.
Having obtained Fgj we can consider the equilibrium of joint G to calculate Fgr and Fgg. Hence Fgr
and Fry follow by considering the equilibrium of joint F; the remaining unknown member forces
follow. Note that obtaining Fg by taking the section mm allows all the member forces in the right-
hand half of the truss to be found by the method of joints.

The method of sections could be used to solve for all the member forces. First we could obtain
Fuc, Fic and Fg; by taking the section mm and then Fpy, Fpr and Fg; by taking the section nn where
Fgj is known, and so on.

B
é FIGURE 4.24
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4.11 Space trusses

The most convenient method of analysing statically determinate stable space trusses (see Eq. (4.2)) is
that of tension coefficients. In the case of space trusses, however, there are three possible equations of
equilibrium for each joint (Eq. (2.11)); the moment equations (Eq. (2.12)) are automatically satisfied
since, as in the case of plane trusses, the lines of action of all the forces in the members meeting at a
joint pass through the joint and the pin cannot transmit moments. Therefore the analysis must begin at
a joint where there are no more than three unknown forces.

The calculation of the reactions at supports in space frames can be complex. If a space frame has a
statically determinate support system, a maximum of six reaction components can exist since there are
a maximum of six equations of overall equilibrium (Egs (2.11) and (2.12)). However, for the truss to
be stable the reactions must be orientated in such a way that they can resist the components of the
forces and moments about each of the three coordinate axes. Fortunately, in many problems, it is
unnecessary to calculate support reactions since there is usually one joint at which there are no more
than three unknown member forces.

-
EXAMPLE 4.8

Calculate the forces in the members of the space truss whose elevations and plan are shown in Fig. 4.25.

In this particular problem the exact nature of the support points is not specified so that the support
reactions cannot be calculated. However, we note that at joint F there are just three unknown member
forces so that the analysis may begin at F.

1
60 kN

Xe——-—Q E, F— 40 kN

2m

2m

A(=2, —2,-4)

FIGURE 4.25
Elevations and plan of space frame of Ex. 4.8.
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The first step is to choose an axis system and an origin of axes. Any system may be chosen so
Jong as care is taken to ensure that there is agreement between the axis directions in each of the three
views. Also, any point may be chosen as the origin of axes and need not necessarily coincide with a
joint. In this problem it would appear logical to choose F, since the analysis will begin at F.
Furthermore, it will be helpful to sketch the axis directions on each of the three views as shown and
to insert the joint coordinates on the plan view (Fig. 4.25(c)).

At joint F
x direction: #ep(xp — xr) + trp(xp — %¢) + tpE(ve — xr) —40 =0 @)
y direction: #ep(yp — y¢) + frB(ys — y¢) + 5rE(E — y5) =0 (ii)
z direction: #rp(zp — 2r) + #r8(zs — 2¢) + #re(2E — 27) = 0 (iif)

Substituting the values of the joint coordinates in Eqs (i)—(iii) in turn we obtain, from Eq. (1)
tp(2 —0) + #ep(—2 — 0) + (0 — 0) — 40 =0

whence

tip — 153 —20=0 (iv)
from Eq. (ii)

tip(—2—0) + (=2~ 0) + (0 — 0) =0
which gives
tep + tpg = 0 v)
and from Eq. (iii)
tep(2 — 0) + #58(2 — 0) + £pe(—2~0) =0

so that

tep t tpp — e =0 (vi)

From Egs (v) and (vi) we see by inspection that

g =0
Now adding Egs (iv) and (v)
2tep —20=0
whence
tgp = 10
Therefore, from Eq. (v)
gy = —10

We now proceed to joint E where, since #gr = g, there are just three unknown member forces

X direrrinn- teolye — vo) 4+ tenlvm — vo) 4 toalvs — ve)+toelve — xe) =0 (vii)
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y direction: s(y8 — y8) + tec(yc —ye) + tea(ya — yE) + 5r(r — 35) —60 =10 (viii)
z direction: #ep(2p — 2g) + fec(2c — 2£) + #pa(za — 26) + f5p(zr — 25) = 0 (ix)

Substituting the values of the coordinates and #z¢ (=0) in Egs (vi)—(ix) in turn gives, from
Eq. (vii)

tep(—2 —0) + (2 — 0) + a(—2—0) =0
so that
5B — t5c T A =0 )
from Eq. (viii)
tip(—2 — 0) +tpc(— 2= 0) + pa(—2 — 0)—60=0
whence
g + tec + 154 +30=10 (xi)
and from Eq. (ix)
g2+ 2) +ipe(—4+2)+ma(-4+2)=0
which gives
tgg — 0.5%5c — 0.5%g4 =0 (Xﬁ)
Subtracting Eq. (xi) from Eq. (x) we have
—2tpc —30=0
so that
tgc = — 15
Now subtracting Eq. (xii) from Eq. (xi) (or Eq. (x)) yields
1.5¢ec + 1.550 +30=0
which gives
A= —5
Finally, from any of Eqs (x)—(xii),
fpg = — 10

The length of each of the members is now calculated, except that of EF which is given (=2 m).
Using Pythagoras’ theorem

Ls = \/Gs =) + (= 3e)” + (en—2x)’

whence

Lis = {/(-2—0) +(~2-0)* + 2—0) = 3.46 m
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Similarly
LFD £ LEC = LEA =346 m LFB =490 m
The forces in the members then follow
Trp = tpp Lpg = — 10 X 3.46 kN = —34.6 kN(compression)

Similarly

Trp = +34.6 kN (tension)

TFE =0

Tec = —51.9 kN (compression)

Tga = —17.3 kN (compression)

Tep = —49.0 kN (compression)
The solution of Egs (iv)—(vi) and (x)—(xii) in Ex. 4.8 was relatively straightforward in that many

of the coefficients of the tension coefficients could be reduced to unity. This is not always the case,

so that it is possible that the solution of three simultaneous equations must be carried out. In this
situation an elimination method, described in standard mathematical texts, may be used.
]

4.12 A computer-based approach

The calculation of the member forces in trusses generally involves, as we have seen, in the solution of a
number of simultaneous equations; clearly, the greater the number of members the greater the number
of equations. For a truss with N members and R reactions N + R equations are required for a solution
provided that the truss and the support systems are both statically determinate. However, in some cases
such as in Ex. 4.8, it is possible to solve for member forces without first calculating the support
reactions. This still could mean that there would be a large number of equations to solve so that a
more mechanical approach, such as the use of a computer, would be time and labour saving. For this
we need to express the equations in matrix form.

At the joint F in Ex. 4.8 suppose that, instead of the 40 kN load, there are external loads Xg, Y and Zp
applied in the positive directions of the respective axes. Eqs (i)—(iii) are then written as

zep(xp — x¢) + feB(xg — xp) + fep(xg — x8) + Xp =0
tsp(yp — yr) + trB(y8 — ¥8) + 55EQE —yp) T Y5 =0
tp(2p — 2r) + trB(28 — 28) + #rE(2E —28) + Zp =0

In matrix form these become

XD —Xp XB TXF XE —XF | | %D —Xr
D~y B—J JE—Jr||®m | =|—YF
2D —dp &g —&F 22— Zp IFE —Zp

or

r~ir.1 —rrm

_ [ et
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where [C] is the coordinate matrix, [7] the tension coefficient matrix and [F] the force matrix. Then

[]=[CI"'[F]

Computer programs exist which will carry out the inversion of [(] so that the tension coefficients
are easily obtained.

In the above the matrix equation only represents the equilibrium of joint F. There are, in fact,
six members in the truss so that a total of six equations are required. The additional equations are
Egs (vii)—(ix) in Ex. 4.8. Therefore, to obtain a complete solution, these equations would be incorpo-
rated giving a 6 X 6 square matrix for [C].

In practice plane and space frame programs exist which, after the relevant data have been input, give
the member forces directly. It is, however, important that the fundamentals on which these programs are
based are understood. We shall return to matrix methods later.

Ans. AG = +37.5, AB= —22.5, BG = —20.0, BC= —22.5, GC= —12.5, GH = +30.0,
HC =0, HJ = +30.0, CJ = +12.5, CD = —37.5, JD = —10.0, JK = +37.5, DK = +12.5,
DE = —45.0, EK = —70.0, FE = —45.0, FK = +75.0. All in kN.

Calculate the forces in the members of the truss shown in Fig, P.4.3.

Ans. AC= —30.0, AP = +26.0, CP = —8.7, CE= —25.0, PE= +8.7, PF = +17.3,
FE= —17.3, GE= —20.0, HE= +8.7, FH= +17.3, GH = —8.7, JG = -15.0,
HJ = +26.0, FB=0, B] = —15.0. All in kN.

P.4.3

PROBLEMS

P.4.1 Investigate the determinacy and stability of the trusses shown in Fig.P.4.1(a)—(d).
Aps.
a. Statically determinate and stable.
b. Statically determinate and stable,
¢. Statically in determinate and stable.
d. Statically determinate but unstable unless ABC is in tension.

ARK

(@) (b) ©
FIGURE P.4.1

4m

FIGURE P.4.3

7.

P.4.4 Calculate the forces in the members EF, EG, EH and FH of the truss shown in Fig. P.4.4.
[ Note that the horizontal load of 4 kN is applied at the joint C.

Ans. EF = —20.0, EG = —80.0, EH = —33.3, FH = +106.6. All in kN.

40 kN 40 kN

A <«— yC vVE G B

D F H
6x2m =
i i

FIGURE P.4.4

1.5m

P.42  Determine the forces in the members of the truss shown in Fig. P.4.2 using the method of
joints and check the forces in the members JK, JD and DE by the method of sections.

G H J K

P.45  The roof truss shown in Fig. P.4.5 is comprised entirely of equilateral triangles; the vrlind
loads of 6 kN at J and B act perpendicularly to the member JB. Calculate the forces in the
members DF, EF, EG and EK.

Ans. DF = +106.4, EF = +1.7, EG = —107.3, KE = —20.8. All in kN.

P46 The upper chord joints of the bowstring truss shown in Fig. P.4.§ lie ona parabola whose
equation has the form y = kx* referred to axes whose origin coincides with the uppermost

e % LS
intme M1 . 1 1 1 A~

8m

T

60 kN
5x6m

Ny
¥
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Gk Ans. T=13.6, BA= —8.9, CB= —9.2, DC= —4.6, ED = +7.1, EF = —5.0, FG = —0.4,
GH= —3.3, HA=—4.7, BH= +3.4, GB= +4.1, FC= —6.5, CG = +4.6, DF = +4.6.
All in kN.
36kN 36kN ¥ 36 KN 36kN P.4.8 Check your answers to problems P.4.2 and P.4.3 using a graphical method.

P.4.9 Determine the force in the member BC of the crane shown in Fig. P.4.9.
i Ans. 707 kN. (tension)

l l/GkN
C E G J

G
6kN Y
Aé; D F H ;é B 3m
/ 7/ \
L 4%x3m J E F X
! 3m
FIGURE P.4.5 ) B D
K
A 3m
v
D 7m K A c H A
\
1500 kN 2000kN |3
/ -y
A7 | b NP7 “
Vo 3 kN 2 kN ’ 3m
L 6x3m ‘I A
| ]
3m
FIGURE P.4.6
. S
P.4.7  The truss shown in Fig. P.4.7 is supported by a hinge at A and a cable at D which is inclined
at an angle of 45° to the horizontal members. Calculate the tension, 7 in the cable and hence
the forces in all the members by the method of tension coefficients. | | ] | ]
I~ 3m | 3m | 3m 3m 3m | 3m |
7
FIGURE P.4.9
B c 45N\ p

7 __AF

A 1m
0.5m
_y

0.5m tm | 1m | 1m |

P.4.10 Find the forces in the members of the space truss shown in Fig. P.4.10; suggested axes are also
shown.

Ans. OA = +24.2, OB= +11.9, OC = —40.2. All in kN.

P.4.11 Use the method of tension coefficients to calculate the forces in the m.embers of the space
truss shown in Fig. P.4.11. Note that the loads P, and P; act in a horizontal plane and
at angles of 45° to the vertical plane BAD.
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P.4.12
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Ve
gA,B
4
am
/
e

40kN | 8m
7,
_}UL__
c
9m
’ N
FIGURE P.4.10
P; = 25kN P,
P, =25kN Al Py = 25kN l
I A =P, P
4m
B ic D _v_ B, D] c
777 77 D 77
l._25m | 25m | 81
A T " 4‘—,
B A D
O— O —0 y
45° 45°
3m
P, Py
$ v
c
FIGURE P.4.11

The pin-jointed truss shown in Fig. P.4.12 is attached to a vertical wall at the points A, B, C
and D; the members BE, BF, EF and AF are in the same horizontal plane. The truss supports
vertically downward loads of 9 and 6 kN at E and F, respectively, and a horizontal load of
3 kN at E in the direction EF.

Calculate the forces in the members of the truss using the method of tension coefficients.
Ans. EF=—30 FC= —180 BR— L1720 ™ _ « ra ws C e ——

= Sl |
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3kN

3m

D 6kN

FIGURE P.4.12

i ists of six pin-jointed members. The
io. P.4.13 shows the plan of a space truss which consists o jo :
Flfmber DE is horizontal and 4 m above the horizontal plane containing A, B and C while the
E)lads applied at D and E act in a horizontal plane. Calculate the forces in the members.

Ans. AD =0, DC =0, DE = +40.0, AE =0, CE = —60.0, BE = +60.0. All in kN.

FIGURE P.4.13
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Cables

Flexible cables have been used to form structural systems for many centuries. Some of the earliest man-
made structures of any size were hanging bridges constructed from jungle vines and creepers, and span-
ning ravines and rivers. In European literature the earliest description of an iron suspension bridge was
published by Verantius in 1607, while ropes have been used in military bridging from at least 1600. In
modern times, cables formed by binding a large number of steel wires together are employed in bridge
construction where the bridge deck is suspended on hangers from the cables themselves. The cables in
turn pass over the tops of towers and are fixed to anchor blocks embedded in the ground; in this man-
ner large, clear spans are achieved. Cables are also used in cable-stayed bridges, as part of roof support

FIGURE 5.1
[gh’t\;eight cable carrying a concentrated load.

Resolving forces in a direction perpendicular to CB (thereby eliminating 7cp) we have, since

systems, for prestressing in concrete beams and for guyed structures such as pylons and television masts. a+p=45°

Structurally, cables are extremely efficient because they make the most effective use of structural Tca cos 45° — 10 cos 26.6° =0
material in that their loads are carried solely through tension. Therefore, there is no tendency for buck- _
ling to occur either from bending or from compressive axial loads (see Chapter 21). However, many of from which

the structures mentioned above are statically indeterminate to a high degree. In other situations, partic- Tca = 12.6 kN
ularly in guyed towers and cable-stayed bridges, the extension of the cables affects the internal force sys-
tem and the analysis becomes non-linear. Such considerations are outside the scope of this book so that
we shall concentrate on cables in which loads are suspended directly from the cable.

Two categories of cable arise; the first is relatively lightweight and carries a limited number of con-
centrated loads, while the second is heavier with a more uniform distribution of load. We shall also

examine, in the case of suspension bridges, the effects of different forms of cable support at the towers.

Now resolving forces horizontally (or alternatively vertically or perpendicular to CA) gives
Tcp cos 26.6° — Tca cos 18.4° =0
so that
TCB = 134 kN

Since the bending moment in the cable is everywhere zero we can take moments about B (or A)
to find the vertical component of the reaction at A, Ra v (or Ry ) directly. Then

5.1 Lightweight cables carrying concentrated loads

In the analysis of this type of cable we shall assume that the self-weight of the cable s negligible, that it Ray X5—-10X2=0 (@
can only carry tensile forces and that the extension of the cable does not affect the geometry of the sys- .
tem. We shall illustrate the method by examples. i
i Ryyv =4 kN
-EXAMPLE 5.1 Now resolving forces vertically for the complete cable ;
The cable shown in Fig. 5.1 is pinned to supports at A and B and carries a concentrated load of 10 kN Rpv + Rav —10=0 (i)
ata point C. Calculate the tension in each part of the cable and the reactions at the supports. hich gives
Since the cable is weightless the lengths AC and CB are straight. The tensions 7 and 7¢p in ol ;
the parts AC and CB, respectively, may be found by considering the equilibrium of the forces acting Rpy =6 kN

at C where, from Fig. 5.1, we see that From the horizontal equilibrium of the cable the horizontal components of the reactions at A and

P are equal, i.c. Ry 1y = Ry 1. Thus, taking moments about C for the forces to the left of C

I Rap X1 =Ry X3=0 (iii)

a=tn"'1/3=184° B=tn"'1/2=266°
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A B A B

W, W
(@ Wi (b)
FIGURE 5.2
Effect on cable geometry of load variation.

from which
Ran =12 kN(=Rp )

Note that the horizontal component of the reaction ar A, R 1, would be included in the moment
equation (Eq. (i)) if the support points A and B were on different levels, In this case Eqs (i) and (iii)
could be solved simultaneously for R, v and Ra. Note also that the tensions 7, and 75 cB could be
found from the components of the support reactions since the resultant reaction at each support, Ry at
Aand Rp at B, must be equal and opposite in direction to the tension in the cable otherwise the cable
would be subjected to shear forces, which we have assumed is not possible. Hence

Tea=Ry=/Riy + R,y = V4> +122= 126 kN

Tep =Ry = /Ry + R, = V6> +122= 134 kN

as before.

In Ex. 5.1 the geometry of the loaded cable was specified. We shall now consider the case of a
cable carrying more than one load. In the cable in Fig. 5.2(a), the loads W} and W5 at the points C
and D produce a different deflected shape to the loads W5 and W at C and D in Fig. 5.2(b). The
analysis is then affected by the change in geometry as well as the change in loading, a different situa-
tion to that in beam and truss analysis. The cable becomes, in effect, a mechanism and changes
shape to maintain its equilibrium; the analysis then becomes non-linear and therefore statically inde-
terminate. However, if the geometry of the deflected cable is partially specified, say the maximum
deflection or sag is given, the system becomes statically determinate.

|

—
EXAMPLE 5.2

Calculate the tension in each of the parts AC, CD and DB of the cable shown in Fig. 5.3.

There are different possible approaches to the solution of this problem. For example, we could inves-
tigate the equilibrium of the forces acting at the point C and resolve horizontally and vertically. We
would then obtain two equations in which the unknowns would be Teas Tep, a and . From the
geometry of the cable a = tan™'(0.5/1.5) = 18.4° so that there would be three unknowns remaining. A
third equation could be obrained by examining the moment equilibrium of the length AC of the cable
about A, where the moment is zero since the cable is flexible. The solution of these three simultaneous
equations would be rather tedious so that a simpler approach is preferable.

Tep
l10 kN

=l<
|

FIGURE 5.3
Cable of Ex. 5.2.

In Ex. 5.1 we saw that the resultant reaction at the supports is equal and oppositf: to the t.ension
i dr:e ca.ble at the supports. Therefore, by determining Ry v and Rap we can obtain 74 directly.
Ea ;

Hence, taking moments about B we have
Ryy X53—10X38—-6X1.8=0

from which
Ry =9.2kN

Since the cable is perfectly flexible the internal moment at any point is zero. Therefore, taking
moments of forces to the left of C about C gives

Rap X 05— Ry X1.5=0

‘ so that
Rap =27.6 kN

P

{ i : ion, R A
Alternatively we could have obtained Ry by using the fact that the resul‘tant reaction, Ry, at

s in line with the cable at A, i.e. Ryy/Ryp =tan a=rtan 18.4°, which gives R,, =27.6kN as

‘before. Having obtained Ry v and Ry 1y, Tea follows. Thus

Tea=Ry=\/Riy + By = V2762 +9.22

TCA =29.1 kN
~ From a consideration of the vertical equilibrium of the forces acting at C we have

Tep sin B+ Tea sinae — 10 = Tep sin B+ 29.1 sin 18.4°—10=0

Tcp sin 3= 0.815 (1)
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5.2 Heavy cables 115

jeavy cables

- all now consider the more practical case of cables having a significant self-weight.

ing equation for deflected shape

. AB shown in Fig. 5.4(a) carties a distributed load w(x) per unit of its horizontally projected

n element of the cable, whose horizontal projection is 0x, is shown, together with the forces

it, in Fig. 5.4(b). Since éx is infinitesimally small, the load intensity may be regarded as con-

the length of the element.

se that 7 is the tension in the cable at the point x and that 7'+ §7 is the tension at the point
vertical and horizontal components of T are V and H, respectively. In the absence of any
plied horizontal loads we see that

H = constant
e vertical equilibrium of the element we have
V48V —w(x)bx—V=0
the limit as 6x—0
b

dx
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5 @n 6=+ v Let dy/dx = 2- Then Eq. (5.6) may be written
H T d Let
dp _ 231/2
where y is the vertical deflection of the cable at any point referred to the x axis. Ha; 1
H | |
- d I@axranging and integrating
y v
V=t d |
i J_pz—l/z N +I%d" (5.7)
so that s
o t
~he term on the left-hand side of Eq. (5.7) is a standard integral. Thus
v _ &y " The te ;

. " sish™'p = +—2x+ G

Substituting for dV/dx from Eq. (5.1) into Eq. (5.2) we obtain the governing equation for the
deflected shape of the cable. Thus

C, is a constant of integration. Then

: Wy
42 p=sinh( +—x+ C;
H J}zl = tw(x) (5.3) ( H )

We are now in a position to investigate cables subjected to different load applications.

substituting for p (=dy/dx) we obtain
. . é}—l =sinh<+%x+ Cl)
Cable under its own weight dx i

In this case let us suppose that the weight per actual unit length of the cable is w,. Then, by referring
to Fig. 5.5, we sce that the weight per unit of the horizontally projected length of the cable, w(x), is
given by

-h, when integrated, becomes

y=+ Ecosh( +%x + C1> + G (5.8)
w(x)8x = w,6s (5.4) “
Now, in the limit as 85— 0, ds = (dx* + d)/z)”2

Whence, from Eq. (5.4)

>, is a second constant of integration.
deflected shape defined by Eq. (5.8) is known as a cazenary; the constants Cy and C, may be
ng the boundary conditions of a particular problem.

42 1/2
wl(x) = w, [1 + (ﬁ) ] (5.5)
Substituting for w(x) from Eq. (5.5) in Eq. (5.3) gives
5 2 1/2
H% = +uw, [1+ (%’C) ] (5.6)

ds

FIGURE 5.5
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Differentiating Eq. (i) with respect to x we have

ay We o "
I ~smh( +:F-{—x+ Cl) (ii)
From symmetry, the slope of the cable at mid-span is zero, i.e. dy/dx= 0 when x = L/2. Thus,
from Eq. (ii)
| 5 L
0= smh( +% - +;CI)
from which

N

G=-

o] &

Eq. (i) then becomes

yi+§w&h[ j;s(xmg)} + G (iif)

of these conémons

so that

Eq. (iii) is then written as

Equation (iv) gives the deflected shape of the cable in terms of its self-weight, its length and the
horizontal component, H, of the tension in the cable. In a particular case where, say, w,, L and H
are specified, the sag, D, of the cable is obrained directly from Eq. (iv). Alternatively if, instead of H,
the sag D is fixed, H is obtained from Eq. (iv) which then becomes a transcendental equation which
may be solved graphically.

Since H is constant the maximum tension in the cable will occur at the point where the vertical
component of the tension in the cable is greatest. In the above example this will occur at the support
points where the vertical component of the tension in the cable is equal to half its total weight. For
a cable having supports at different heights, the maximum tension will occur at the highest support
since the length of cable from its lowest point to this support is greater than that on the opposite

cable

Thjs lo
that in

actual suspension structures than the previous case.

from the second we have
2

so that

2
Equations (5.10) and (5.11) then become, respectively

Thus the cable in this case takes up a parabolic shape.

w

C1=——+H—

dy w wlL b
L g LS 12
v HY 2H 1 G2
and
W, wL h
=4 X222 _2 1
y=tg” <2H L>x (5.13)
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subjected to a uniform horizontally distributed load

ading condition is, as we shall see when we consider suspension bridges, more representative of

For the cable shown in Fig. 5.7, Eq. (5.3) becomes
d2y
[ntegrating Eq. (5.9) with respect to x we have
j—%z-l—wx-i- Cl (510)
in integrating
aga 2
Hy=+wE+C1x+C2 (5.11)

The boundary conditions are y =0 at x=0 and y =/ at x = L. The first of these gives C, = 0 while

I
H(+h) =+w= + GL

EEEEEEEEEE RN

B

side of the lowest point. Furthermore, the slope of the cable at the highest support is a maximum
(see Fig. 5.4(a)). |

H;; H
(in CB) (in CA)
NN L,

FIGURE 5.7
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5.2 Heavy cables

Equations (5.12) and (5.13) are expressed in terms of the horizontal component, H, of the tension

ich gives
in the cable, the applied load and the cable geometry. If, however, the maximum sag, D, of the cable is which 8

known, H may be eliminated as follows. L= o= bLz
The position of maximum sag coincides with the point of zero slope. Thus from Eq. (5.12) D
0 w wl b But
= _x — e p—
H 2H L Ll + Lz =L
so that
i ﬂierefOI’C
L_Hh_ | (seeFig 57) ' )
x==——= see Fig. 5. _
2wl ! & L= [ DT + 1} =7
Then the horizontal distance, L,, from the lowest point of the cable to the support at B is given by
H ‘
L2=L—L1=£+_f from which
2wl . L
Now considering the moment equilibrium of the length CB of the cable about B we have, from L= >3
Fig. 5.7 ( o F 1)
HD — wL_% =0 en, from Eq. (5.16)
> 1
LZ
so that H= w—2
L Hh\’ 2b [ Vot l]
w
D — s + T = .1
o o

Equation (5.14) is a quadratic equation in H and may be solved for a specific case using the formula.
Alternatively, // may be determined by considering the moment equilibrium of the lengths AC and
CB about A and C, respectively. Thus, for AC

= L
121

(5.17)

(5.18)

~ As in the case of the catenary the maximum tension will occur, since H = constant, at the point
shere the vertical component of the tension is greatest. Thus, in the cable of Fig. 5.7, the maximum
ension occurs at B where, as L, > L;, the vertical component of the tension (=wlL,) is greatest. Hence

2 Tnax = A/ (wly)* + H? (5.19)
HD-h-w=L=0
2 n which L, is obtained from Eq. (5.17) and H from one of Eqs (5.14), (5.16) or (5.18). At B the slope
which gives f the cable is given by
wl,% 1wl
W , - o 5.20
D=5 (5.15) a=tan (H) (5.20)
For CB alternatively, from Eq. (5.12)
wl? :
HD-——2=9 (dy) w wL b wl b
= Z) =t L-— - =t— + = (5.21)
X &),  'H 26 I 2H I
o that
o cable in which the supports are on the same horizontal level, i.e. #=0, Egs (5.12)—(5.14) and
wi? reduce, respectively, to
(5.16)
2D
Equating Eqs (5.15) and (5.16) :—1 = % ( - g) (5.22)
vl 2l
2AD-4h) 2D = 0l — Fa) (5.23)
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L2
= ”;—D (5.24)
L L\

We observe from the above that the analysis of a cable under its own weight, that is a catenary,
yields a more complex solution than that in which the load is assumed to be uniformly distributed hor-
izontally. However, if the sag in the cable is small relative to its length, this assumption gives results
that differ only slightly from the more accurate but more complex catenary approach. Therefore, in
practice, the loading is generally assumed to be uniformly distributed horizontally.

[
EXAMPLE 5.4
Determine the maximum tension and the maximum slope in the cable shown in Fig. 5.8 if it carries
a uniform horizontally distributed load of intensity 10 kN/m.
From Eq. (5.17)

200 i
s L e i

_10x110.12
2X18

The maximum tension follows from Eq. (5.19), i.e.

Then, from Eq. (5.16)

H =3367.2 kN

Tnax = \/ (10 X 110.1) + 3367.2> = 3542.6 kN

18 m

200 m

FIGURE 5.8
Suspension cable of Ex. 5.4.
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Then, from Eq. (5.20)
10X 110.1
el AT
Ex. 5.4 has been solved by direct substitution in Eqs (5.16), (5.17), (5.19) and (5.20). However,
working from first principles obviates the necessity of remembering rather unwieldy formulae; the

Jution of Ex. 5.4 would then proceed as follows:
E Taking moments about A for the portion AC of the cable we have

HX12—10Li(L;/2)=0

=18.1° at B

'!ﬁom which
H=5L%/12 @)
Now taking moments about B for the portion BC
| H X 18 — 10L5(L,/2) = 0
:

that

SO
i

H=5I5/18 (i)

Equating Eqs (i) and (i) gives
Ly =(/2/3)L, = 0.816 L,
But

: Ly + L, =200 (iin)
Substituting for L, in Eq. (iii) gives

L, =110.1 m
3 I’Then, from Eq. (ii)
H=5X110.1>/18 = 3367.2 kN

The vertical component of the support reaction at B is 10Z, = 1101 kN and the horizontal com-
nent is // = 3367.2 kN. Then

Tnax = +/(1101 + 3367.2%) = 3542.6 kN

Qmax = tan” '(1101/3367.2) = 18.1° at B
]

Suspension bridges

‘f\ Ypical arrangement for a suspension bridge is shown diagrammatically in Fig. 5.9. The bridge deck
1S suspended by hangers from the cables which pass over the tops of the towers and are secured by mas-
Sive anchor blo?ksA embedded in the ground. The advantage of this form of bridge construction is its

alhtlee. o -

[ |
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Cable Anchor cable iy, in turn, produces a bending moment, M, in the tower which is a maximum at the tower base.
Hanger e
Mr(max) = Hrhr = Tc(cos o = cos B)br (5.27)
\ i Also, the vertical compressive load, Vr, on the tower is
d | Tower Bridge deck “ b . Vr = Tc(sin o + sin () (5.28)
f ; ” In the arrangement shown in Fig. 5.10(b) the cable passes over a saddle which is supported on roll-
Anchor block ,  on the top of the tower. The saddle therefore cannot resist a horizontal force and adjusts its position
FIGURE 5.9

Diagrammatic representation of a suspension bridge. Th cos 3= T cos (5.29)

8 Ao - ¥
I 7 Ta Tc
(Anchor cable) (Suspension cable) |(Anchor cable) (Suspension cable)

For a given value of 3, Eq. (5.29) determines the necessary value of 7. Cleatly, since there is no
ant horizontal force on the top of the tower, the bending moment in the tower is everywhere
Finally, the vertical compressive load on the tower is given by

Vr=Tcsina+ Txsin G

(@ (b)

FIGURE 5.10
Idealization of cable supports.

in the UK are the suspension bridges over the rivers Humber and Severn, the Forth road bridge and
the Menai Straits bridge in which the suspension cables comprise chain links rather than tightly bound
wires. Suspension bridges are also used for much smaller spans such as pedestrian footbridges and for
light vehicular traffic over narrow rivers.

The major portion of the load carried by the cables in a suspension bridge is due to the weight of
the deck, its associated stiffening girder and the weight of the vehicles crossing the bridge. By compari-
son, the self-weight of the cables is negligible. We may assume therefore that the cables carry a uniform
horizontally distributed load and therefore take up a parabolic shape; the analysis described in the pre-
ceding section then applies.

The cables, as can be seen from Fig. 5.9, are continuous over the tops of the towers. In practice they
slide in grooves in saddles located on the tops of the towers. For convenience we shall idealize this method
of support into two forms, the actual method lying somewhere between the two. In Fig. 5.10(a) the cable
passes over a frictionless pulley, which means that the tension, T, in the anchor cable is equal to 7¢, the
tension at the tower in the suspension cable. Generally the inclination, 3, of the anchor cable is fixed and
will not be equal to the inclination, a, of the suspension cable at the tower. Therefore, there will be a
resultant horizontal force, Hr, on the top of the tower given by

Ht=Tc cos a— Ty cos (3

or, since Tp = T¢
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The maximum direct stress, 0 may is given by

o e Tmax
T nd?f4

(sec Section 7.1)

in which 4 is the cable diameter. Hence

48466.5 X 10°
g
which gives

d = 320.7 mm

The angle of inclination of the suspension cable to the horizontal at the top of the tower is
obtained using Eq. (5.20) in which L, = L/2. Hence

e wLY _ Hir 120 X 300
' 2H 2H

where H is given by Eq. (5.24). Thus

120 X 3002

5% 30 =45 000 kN

so that

120 X 300
=tan”! (—r) =21.8°
ke (2><45 ooo) :

Therefore, from Eq. (5.27), the bending moment at the base of the tower is
My = 48466.5(cos 21.8° — cos 45°) X 50
from which
Mt =536473.4 kNm
The direct load at the base of the tower is found using Eq. (5.28), i.e.
Vr = 48466.5(sin 21.8° + sin 45°)
which gives
Vr =52269.9 kN

Finally the weight, Wj, of an anchor block must resist the vertical component of the tension in
the anchor cable. Thus

Wi = Ta cos 45° = 48466.5 cos 45°
from which

Wa = 34271.0 kN.
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Again, working from first principles and taking moments about A for the portion AC of the
mble
H X30—-120X150X75=0
which gives
H = 45000 kN

The horizontal component of the tension in the cable at A is equal to / and the vertical compo-
nen is equal to 120 X150 = 18000 kN. Then the maximum tension in the cable is

Tnax = +/(45000% + 18000%) = 48466.5 kN

The cable diameter then follows as before and the angle, , the cable makes with the horizontal
at the top of the tower is given by
o = tan"'(18000/45000) = 21.8°

Since the cable passes over frictionless pulleys the tension in the anchor cable is equal to the ten-
1 in the suspension cable. The resultant horizontal force on the top of a tower is then

Resultant horizontal force = 48466.5(cos 21.8° — cos 45°)

sio

The bending moment at the base of a tower is then given by
Mt = 48466.5(cos 21.8° — cos 45°) = 536473.4 kNm
L The direct load at the base of a tower is
N Vi = 48466.5(sin 21.8° + sin 45°) = 52269.9 kN
Finally, the weight of the anchor block is given by
Wi = 48466.5 cos 45° = 34271.0 kN

. TR

PROBLEMS

P.5.1 Calculate the tension in each segment of the cable shown in Fig. P.5.1 and also the vertical
distance of the points B and E below the support points A and F.

Aps. TAB = TEF =26.9 kN, TCB = TED =25.5 kN, TCD =25.0 kN, 1.0 m.

g

1.5m

-

5 kN 5kN
2.5m 25m 25m 25m 2.5m

FIGURE P .5,
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P.5.2

P.5.3

P.5.4

P.5.5

P.5.6

CHAPTER 5 Cables

Calculate the sag at the point B in the cable shown in Fig. P.5.2 and the tension in each of itg
segments.

Ans. 0.81 m relative to A. Tag = 4.9 kN, Tpc = 4.6 kN, Tpc = 4.7 kN.

2 kN
L]
1

[* 1 >

FIGURE P.5.2

Calculate the sag, relative to A, of the points C and D in the cable shown in Fig. P.5.3.
Determine also the tension in each of its segments.

Ans. C=42m, D=3.1m, Tap = 10.98 kN, Tpc = 9.68 kN, Tcp = 9.43 kN.

FIGURE P.5.3

A cable that carries a uniform horizontally distributed load of 10 kN/m is suspended between
two points that are at the same level and 80 m apart. Determine the minimum sag that may
be allowed at mid-span if the maximum tension in the cable is limited to 1000 kN.

Ans. 8.73 m.

A suspension cable is suspended from two points 102 m apart and at the same horizontal
level. The self-weight of the cable can be considered to be equivalent to 36 N/m of horizontal
length. If the cable carries two concentrated loads each of 10 kN at 34 m and 68 m
horizontally from the left-hand support and the maximum sag in the cable is 3 m, determine
the maximum tension in the cable and the vertical distance between the concentrated loads
and the supports.

Ans. 129.5 kN, 2.96 m.
A cable of a suspension bridge has a span of 80 m, a sag of 8 m and carries a uniform

horizontally distributed load of 24 kN/m over the complete span. The cable passes over
frictionless pulleys at the top of each tower which are of the same height. If the anchor cables

P-5 -7

P.5.8

@:509

.5.10

.11
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inclination of the anchor cables to the horizontal. Calculate also the maximum tension in the
cable and the vertical force on a tower.

Ans. 21.8°% 2584.9 kN, 1919.9 kN.

A suspension cable passes over saddles supported by roller bearings on the top of two towers
120 m apart and differing in height by 2.5 m. The maximum sag in the cable is 10 m and
cach anchor cable is inclined at 55° to the horizontal. If the cable carries a uniform
horizontally distributed load of 25 kN/m and is to be made of steel having an allowable
censile stress of 240 N/ mm?, determine its minimum diameter. Calculate also the vertical load
on the tallest tower.

Ans, 218.7 mm, 8990.9 kN.

A suspension cable has a sag of 40 m and is fixed to two towers of the same height and 400 m
apart; the effective cross-sectional area of the cable is 0.08 m?. However, due to corrosion, the
effective cross-sectional area of the central half of the cable is reduced by 20%. If the stress in
the cable is limited to 500 N/mm?, calculate the maximum allowable distributed load the
cable can support. Calculate also the inclination of the cable to the horizontal at the top of
the towers.

Ans. 62.8 kN/m, 21.8°.

A suspension bridge with two main cables has a span of 250 m and a sag of 25 m. It carries a
uniform horizontally distributed load of 25 kN/m and the allowable stress in the cables is
800 N/mm?. If each anchor cable makes an angle of 45° with the towers, calculate:
a. the required cross-sectional area of the cables,
b. the load in an anchor cable and the overturning force on a tower, when

i. the cables run over a pulley device,

ii. the cables are attached to a saddle resting on rollers.

Ans. (a) 5259 mm?, (b) (i) 4207.2 kN, 931.3 kN (i) 5524.3 kN, 0.

A suspension cable passes over two towers 80 m apart and carries a load of 5 kN/m of span. If
the top of the left-hand tower is 4 m below the top of the right-hand tower and the maximum
sag in the cable is 16 m, calculate the maximum tension in the cables. Also, if the cable passes
over saddles on rollers on the tops of the towers with the anchor cable at 45° to the
horizontal, calculate the vertical thrust on the right-hand tower.

Ans. 358.3 kN, 501.5 kN.

A footbridge 2 m wide spans a 25 m wide river. The deck is supported by two cables and the
loading on the deck is 7 kIN/m?. Find the greatest and least tension in the cables and the
inclination of the cables at the towers if the dip is 3 m. If the cables pass over pulleys at the
top of each tower and the anchor cables are inclined at 60° to the horizontal calculate the
total thrust and maximum bending moment for a tower height of 7 m. Note that a single
tower supports the cables at each end of the footbridge.

Ans. 202 kN, 182 kN, 25°64/, 525 kN, 1137 kNm.



Arches

The Romans were the first to use arches as major structural elements, employing them, mainly in semicir-
cular form, in bridge and aqueduct construction and for roof supports, particularly the barrel vault. Their
choice of the semicircular shape was due to the ease with which such an arch could be set out. Generally
these arches, as we shall see, carried mainly compressive loads and were therefore constructed from stone
blocks, or voussoirs, where the joints were either dry or used weak mortar.

During the Middle Ages, Gothic arches, distinguished by their pointed apex, were used to a large
extent in the construction of the great European cathedrals. The horizontal thrust developed at the sup-
ports, or springings, and caused by the tendency of an arch to ‘flatten’ under load was frequently resisted
by flying buttresses. This type of arch was also used extensively in the 19th century.

In the 18th century masonry arches were used to support bridges over the large number of canals that
were built in that period. Many of these bridges survive to the present day and carry loads unimagined by
their designers.

Today arches are usually made of steel or of reinforced or prestressed concrete and can support both ten-
sile as well as compressive loads. They are used to support bridge decks and roofs and vary in span from a
few metres in a roof support system to several hundred metres in bridges. A fine example of a steel arch
bridge is the Sydney harbour bridge in which the deck is supported by hangers suspended from the arch
(see Fig. 1.6(a) and (b) for examples of bridge decks supported by arches).

Arches are constructed in a variety of forms. Their components may be straight or curved, but gen-
erally fall into two categories. The first, which we shall consider in this chapter, is the three-pinned
arch which is statically determinate, whereas the second, the two-pinned arch, is statically indeterminate
and will be considered in Chapter 16.

Initially we shall examine the manner in which arches carry loads.

6.1 The linear arch

There is a direct relationship between the action of a flexible cable in carrying loads and the action of
an arch. In Section 5.1 we determined the tensile forces in the segments of lightweight cables carrying
concentrated loads and saw that the geometry of a cable changed under different loading systems;
hence, for example, the two geometries of the same cable in Fig. 5.2(a) and (b).

Let us suppose that the cable in Fig. 5.2(a) is made up of three bars or links AC, CD and DB hinged
together at C and D and pinned to the supports at A and B. If the loading remains unchanged the
deflected shape of the three-link structure will be identical to that of the cable in Fig. 5.2(a) and is shown
in Fig. 6.1(a). Furthermore the tension in a link will be exactly the same as the tension in the correspond-
ing segment of the cable. Now suppose that the three-link structure of Fig. 6.1(a) is inverted as shown in
Fig. 6.1(b) and that the loads W} and W are applied as before. In this situation the forces in the links
will be identical in magnitude to those in Fig. 6.1(a) but will now be compressive as opposed to tensile;
the structure shown in Fig. 6.1(b) is patently an arch.
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The same argument can be applied to any cable and loading system so that the internal forces in an
| may be deduced by analysing a cable having exactly the same shape and carrying identical loads, a
- first realized by Robert Hooke in the 17th century. As in the example in Fig. 6.1 the internal forces
fiache arch will have the same magnitude as the corresponding cable forces but will be compressive, not
cenSIIiC-iS obvious from the above that the internal forces in the arch act along the axes of the different
onents and that the arch is therefore not subjected to internal shear forces and bending moments;
comPCh in which the internal forces are purely axial is called a linear arch. We also deduce, from
g in 5.2, that the internal forces in an arch whose shape is that of a parabola and which carries a uni-
?ecrtrll horizontally distributed load are purely axial. Further, it will now have become clear why the inter-
n(;rj members of 2 bowstring truss (Section 4.1) carrying loads of equal magnitude along its upper chord
joints carry Zer force. o
However, there is a major difference between the behaviour of the two structures in Fig. 6.1(a)
(b). A change in the values of the loads W; and W, will merely result in a change in the geome-
of the structure in Fig. 6.1(a), whereas the slightest changes in the values of W; and W, in
Fig. 6.1(b) will result in the collapse of the arch as a mechanism. In this particular case co.llapse could
be prevented by replacing the pinned joint at C (or D) by a rigid joint as shown in Fig. 6.2. The
forces in the members remain unchanged since the geometry of the structure is unchanged, but the
arch is now stable and has become a three-pinned arch which, as we shall see, is statically determinate.
If now the pinned joint at D was replaced by a rigid joint, the forces in the members would remain
the same, but the arch has become a two-pinned arch. In this case, because of the tension cable equiva-
lence, the arch is statically determinate. It is important to realize, however, that the above arguments only
apply for the set of loads W; and W, which produce the particular shape of cable shown in Fig. 6.1(a).
If the loads were repositioned or changed in magnitude, the two-pinned arch would become statically
indeterminate and would probably cease to be a linear arch so that bending moments and shear forces

and

(b)

(a) W,

FIGURE 6.1

Equivalence of cable and arch structures.

FIGURE 6.2
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would be induced. The three-pinned arch of Fig. 6.2 would also become non-linear if the loads were
repositioned or changed in magnitude.

In the above we have ignored the effect on the geometry of the arch caused by the shortening of the
members. The effect of this on the three-pinned arch is negligible since the pins can accommodate the
small changes in angle between the members which this causes. This is not the case in a two-pinned arch
or in an arch with no pins at all (in effect a portal frame) so that bending moments and shear forces are
induced. However, so long as the loads (W, and W2 in this case) remain unchanged in magnitude and
position, the corresponding stresses are ‘secondary’ and will have little effect on the axial forces.

The linear arch, in which the internal forces are purely axial, is important for the structural designer
since the linear arch shape gives the smallest stresses. If, however, the thrust line is not axial, bending stresses
are induced and these can cause tension on the inner or outer faces (the intrados and extrados) of the arch,
In a masonry arch in which the joints are either dry or made using a weak mortar, this can lead to cracking
and possible failure. Furthermore, if the thrust line lies outside the faces of the arch, instability leading to
collapse can also occur. We shall deduce in Section 9.2 that for no tension to be developed in a rectangular
cross section, the compressive force on the section must lie within the middle third of the section.

In small-span arch bridges, these factors are not of great importance since the greatest loads on the
arch come from vehicular traffic. These loads vary with the size of the vehicle and its position on the
bridge, so thar it is generally impossible for the designer to achieve a linear arch. On the other hand, in
large-span arch bridges, the self-weight of the arch forms the major portion of the load the arch has to
carry. In Section 5.2 we saw that a cable under its own weight takes up the shape of a catenary. It follows
that the ideal shape for an arch of constant thickness is an inverted catenary. However, in the analysis of
the three-pinned arch we shall assume a general case in which shear forces and bending moments, as well
as axial forces, are present.

6.2 The three-pinned arch

A three-pinned arch would be used in situations where there is a possibility of support displacement; this,
in a two-pinned arch, would induce additional stresses. In the analysis of a three-pinned arch the first
step, generally, is to determine the support reactions.

Support reactions — supports on same horizontal level

Consider the arch shown in Fig. 6.3. It carries an inclined concentrated load, W, at a given point D,
a horizontal distance # from the support point A. The equation of the shape of the arch will generally
be known so that the position of specified points on the arch, say D, can be obtained. We shall sup-
pose that the third pin is positioned at the crown, C, of the arch, although this need not necessarily
be the case; the height or 7ise of the arch is 4.

The supports at A and B are pinned but neither can be a roller support or the arch would collapse.
Therefore, in addition to the two vertical components of the reactions at A and B, there will be horizontal
components Ry gy and Rp . Thus, there are four unknown components of reaction but only three equa-
tions of overall equilibrium (Eq. (2.10)) so that an additional equation is required. This is obtained from
the fact that the third pin at C is unable to transmit bending moments although, obviously, it is able to
transmit shear forces.

Then, from the overall vertical equilibrium of the arch in Fig. 6.3, we have

RA,V = RB,V — W cosa=0 (61)

and fenmn chn Lawio oo L NS P
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[ P L2 '
i “

L/2

FIGURE 6.3
Three-pinned arch.
Rapy—Rgyy — Wsina=0 (6.2)
Now taking moments about, say, B,
RavL—W cosaL —a) — W sinahp =0 (6.3)

The internal moment at C is zero so that we can take moments about C of forces to the left or right
of C. A slightly simpler expression results by considering forces to the left of C, i.e.

RA,Vg m RA,Hb =0 (64)

Equations (6.1)—(6.4) enable the four components of reaction to be found; the normal force, shear
force and bending moment at any point in the arch follow.

. ulate the normal force, shear force and bending moment at the point X in the semicircular arch
wn in Fig. 6.4. : !

this example we can find either vertical component of reaction directly by taking moments
one of the support points. Hence, taking moments about B, say,

Ray X 12 =60 (6 cos30° + 6) — 100 (6 sin30° + 6) =0

Ray =131.0 kN
_I'msolving forces vertically
b Ray + Ray — 60— 100 =0
1 substituting for Ry v, gives
g Roy =29.0 kN

R A S iy
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100 kN

FIGURE 6.4
Three-pinned arch of Ex. 6.1.

Rav Rey

Since no horizontal loads are present, we see by inspection that
RA,H o RB L H

Finally, taking moments of forces to the right of C about C (this is a little simpler than consider-
ing forces to the left of C) we have

Rpy X6 —Rpy X6=0
from which
RB,H =29.0 kN= RA‘H

The normal force at the point X is obtained by resolving the forces to one side of X in a direction
tangential to the arch at X. Thus, considering forces to the left of X and taking tensile forces as
positive

Nx = —Rpy cos45° — Ry sin45° + 60 cos45°
so that
Nx = —70.7 kN

and is compressive.

The shear force at X is found by resolving the forces to one side of X in a direction perpendicular
to the tangent at X. We shall take a positive shear force as acting radially inwards when it is to the
left of a section. So, considering forces to the left of X

Sx = —Ray sin45° + Ray cos45° + 60 sin45°
which gives

Sx = =297 kN
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Now taking moments about X for forces to the left of X and regarding a positive moment as
using tension on the underside of the arch, we have
ca

Mx = Rav (6 — 6 cos45°) — Ra g X 65in45° — 60 (6 cos30° — 6 cos45°)
from which
MX =+ 50.0 kNm

Note that in Ex. 6.1 the sign conventions adopted for normal force, shear force and bending
moment are the same as those specified in Chapter 3.

—

support reactions — supports on different levels

In the threc—pinned arch shown in Fig. 6.5 the support at B is a known height, /g, above A. Let us sup-
A o that the equation of the shape of the arch is known so that all dimensions may be calculated. Now,

os :
fesolving forces vertically gives
Rav+Rsyv— Wecosa=0 65)
and horizontally we have
Ry — Rp — W sina =0 (6.6)

Also, taking moments about B, say,
RA’vL = RA,HbB — W cosa (L - tl) — W sina (/JD - }JB) =0 (67)

Note that, unlike the previous case, the horizontal component of the reaction at A is included in
the overall moment equation (Eq. (6.7)).

A

FIGURE 6.5

Thl’nn-ninn,\,.l =i
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Finally we can take moments of all the forces to the left or right of C about C since the internal
moment at C is zero. In this case the overall moment equation (Eq. (6.7)) includes both components, Ry,
v and Ry 11, of the support reaction at A. If we now consider moments about C of forces to the left of C,
we shall obtain a moment equation in terms of Ry and Ray. This equation, with Eq. (6.7), provides
two simultaneous equations which may be solved for Ryy and Ry . Alternatively if, when we were con-
sidering the overall moment equilibrium of the arch, we had taken moments about A, Eq. (6.7) would
have been expressed in terms of Rgy and Rpy. Then we would obtain the fourth equation by taking
moments about C of the forces to the right of C and the two simultaneous equations would be in terms
of Ry and Ry yy. Theoretically this approach is not necessary but it leads to a simpler solution. Referring
to Fig. 6.5

RA,vc = RAyH/ﬂ =0 (68)

The solution of Eqs (6.7) and (6.8) gives Ra v and Ry 1y, then Rpy and R follow from Eqgs (6.5) and
(6.6), respectively.

6.2 The three-pinned arch

137
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O
6.3 A three-pinned parabolic arch 139

w

vV V VYV VYV VYV VYV VY
C

Li2 3 Li2

ic rch carrying a uniform horizontally distributed load.

o, in the absence of any horizontal loads

Ryn=Rpn
taking moments of forces to the left of C about C,

L  wLL
Ranhb RA,\/2 24

wl?
Raw =

e origin of axes at A, the equation of the parabolic shape of the arch may be shown to be
4h
y= - )
ding moment at any point P(x,y) in the arch is given by

2
wx
Mp = RA,Vx - RA,H}’ - T

6.3 A three-pinned parabolic arch carrying a uniform
horizontally distributed load

In Section 5.2 we saw that a flexible cable carrying a uniform horizontally distributed load took up the
shape of a parabola. It follows that a three-pinned parabolic arch carrying the same loading would expe-
rience zero shear force and bending moment at all sections. We shall now investigate the bending
moment in the symmetrical three-pinned arch shown in Fig, 6.7.
The vertical components of the support reactions are, from symmetry,
wl

Ryy =Rpy = -

g for Ry and Ry 31 and for y in terms of x,

wl wl? 4h 2 wx?
My =—mx = (e =)

g this expression
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6.4 Bending moment diagram for a three-pinned arch 141

will have the same magnitude as the vertical components of the support reactions in the arch. Thus

6.4 Bending moment diagram for a three-pinned arch and Ko ding moment at any point becween A and D and a distance » from A is

J n
Consider the arch shown in Fig. 6.8; we shall suppose that the equation of the arch referred to the xy che be
axes is known. The load W is applied at a given point D(xp,yp) and the support reactions may be cal-
culated by the methods previously described. The bending moment, Mp;, at any point P;(xy) between

A and D is given by

Map = Rax = Ryyx (6.11)
Also the bending moment at any point between D and B a distance x from A is
Mpp = Rax — W(x — xp) = Rayx — W(x — xp) (6.12)
Mpy = Ry yx — Rapy (6.9) the bending moment diagram shown in Fig. 6.9(b). Comparing Eqs (6.11) and (6.12) with Eqs
d (6.10), respectively, we see that Eq. (6.9) may be written

Mpy = Map — Rapy (6.13)

ggving

and the bending moment, Mp,, at the point P,, (x%,9) between D and B is (6.9) an

Mpy = Rayx — W(x — xp) — Rpny (6.10)

Now let us consider a simply supported beam AB having the same span as the arch and carrying a load, and Eq- £:10) may be vt

W, at the same horizontal distance, xp, from the left-hand support (Fig. 6.9(a)). The vertical reactions, R, Mpy = Mpg — Rapy (6.14)

Therefore, the complete bending moment diagram for the arch may be regarded as the sum of‘ a ‘simgly
orted beam’ bending moment diagram and an ‘arch’ bending moment diagram in which the ‘arch’ dia-
Er has the same shape as the arch itself, since its ordinates are equal to a constant multiplied by y. The
e ’bending moment diagrams may be superimposed as shown in Fig. 6.10 to give the comp}ete bending
oment diagram for the arch. Note that the curve of the arch forms the baseline of the benc.img moment
,ram and that the bending moment at the crown of the arch where the third pin is located is zero.
In the above it was assumed that the mathematical equation of the curve of the arch is known.
However, in a situation where, say, only a scale drawing of the curve of the arch is available, a semigraphical

w

C
Y
Ranh
—ve AH . , .
‘Arch’ bending moment
FIGURE 6.8 " v g diagram
Determination of the bending moment diagram for a three-pinned arch. x
A B
w +ve y
J ‘Simply supported beam’ bending
|A D B' moment diagram
Ra 4 A Re (=1
Xp | E
< . | J
(@) B gl
Complete bending moment
| diagram
A B 4 A“ Actual bending B
FIGURE 6.9 moment at a section
+ve | Bending moment diagram for a simply 6.10
(b) supported beam (tension on undersurface e
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20 kN/m

FIGURE 6.11 FIGURE P.6.1

B Bending moment diagram for a three-pinned arch
A carrying two loads.

3m 2m

procedure may be adopted if the loads are vertical. The ‘arch’ bending moment at the crown C of the arch
is Rapgh as shown in Fig. 6.10. The magnitude of this bending moment may be calculated so that the scale
of the bending moment diagram is then fixed by the rise (at C) of the arch in the scale drawing. Also this
bending moment is equal in magnitude but opposite in sign to the ‘simply supported beam’ bending
moment at this point. Other values of ‘simply supported beam’ bending moment may be calculated at, say,
load positions and plotted on the complete bending moment diagram to the already determined scale. The
diagram is then completed, enabling values of bending moment to be scaled off as required.

In the arch of Fig. 6.8 a simple construction may be used to produce the complete bending
moment diagram. In this case the arch shape is drawn as in Fig. 6.10 and this, as we have seen, fixes
the scale of the bending moment diagram. Then, since the final bending moment at C is zero and is
also zero at A and B, a line drawn from A through C to meet the vertical through the point of applica-
tion of the load at E represents the ‘simply supported beam’ bending moment diagram between A and
D. The bending moment diagram is then completed by drawing the line EB.

This construction is only possible when the arch carries a single load. In the case of an arch carrying two
or more loads as in Fig. 6.11, the ‘simply supported beam’ bending moments must be calculated at D and
F and their values plotted to the same scale as the ‘arch’ bending moment diagram. Clearly the bending
moment at C remains zero.

We shall consider the statically indeterminate two-pinned arch in Chapter 16.

8am

FIGURE P.6.2

FIGURE P.6.3

PROBLEMS

P.6.1 Determine the value of the bending moment in the loaded half of the semicircular three-
pinned arch shown in Fig. P.6.1 at a horizontal distance of 5 m from the left-hand support.

Ans. 67.0 kN m (sagging).

In the three-pinned arch ACB shown in Fig. P.6.4 the portion AC has the shape of a
parabola with its origin at C, while CB is straight. The portion AC carries a uniform
horizontally distributed load of intensity 30 kN/m, while the portion CB carries a uniform
horizontally distributed load of intensity 18 kN/m. Calculate the normal force, shear force
and bending moment at the point D.

Ans. 91.2 kN (compression), 9.0 kN, 209.8 kN m (sagging).

P.6.2  Figure P.6.2 shows a three-pinned arch of radius 12 m. Calculate the normal force,
shear force and bending moment at the point D.

Ans. 144 kN (compression), 5.5 kN, 21.6 kN m (hogging). Draw normal force, shear force and bending moment diagrams for the loaded half of

the three-pinned arch shown in Fig. P.6.5.
Ans. Ngp = 26.5 kN, Npg = 19.4 kN, Ngg = Ngc =15 kN (all compression).
80 =5.3 kN, Spg = — 1.8 kN, Sgr = 2.5 kN, Spc = —7.5 kN.

P.6.3  The three-pinned arch shown in Fig. P.6.3 is parabolic in shape. If the arch carries a uniform
horizontally distributed load of intensity 40 kN/m over the part CB, calculate the bending
moment at D.
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Calculate the reactions at the supports A and D in the three-pinned arch shown in Fig. P.6.7
and obtain the bending moment diagram for the members AB and BC. In each case draw the
diagram on the tension side of the member.

Ans. Ma=Mc=0, Mg = 14.1 kNm.
“The three-pinned arch shown in Fig. P.6.8 carries loads of 60 kN and 120 kN at the points

E and D in addition to a distributed load due to its self-weight of 10 kN/m of its true length.
Calculate the bending moments at the points E and D and also at the mid-point of AC.

Am“. MD = 186'3 kNm; ME = 150-0 kNm, Mmid AC T 395 kNm,

FIGURE P.6.4

1.5m 1.5m 1.5m

110kNl10kN
CoF E  10kN

0]

_)
A
_Y

3m 3m 3m
FIGURE P.6.5

P.6.6  Calculate the components of the support reactions at A and D in the three-pinned arch shown
in Fig. P.6.6 and hence draw the bending moment diagram for the member DC; draw the
diagram on the tension side of the member. All members are 1.5 m long.

Abns. RA,V = 6.46 kN, RA,H =11.13 kN, RD,V =21.46 kN, RD,H = 3.87 kN.
Mp =0, Mc=5.81 kN m (tension on left of CD).

5kN

NV
>

URE P.6.8

60kN

60°

10 kN
30°

C
<—— 15kN




CHAPTER

Stress and Strain

We are now in a position to calculate internal force distributions in a variety of structural systems, i.e,
normal forces, shear forces and bending moments in beams and arches, axial forces in truss members,
the tensions in suspension cables and torque distributions in beams. These internal force systems are
distributed throughout the cross section of a structural member in the form of stresses. However,
although there are four basic types of internal force, there are only two types of stress: one which acts
perpendicularly to the cross section of a member and one which acts tangentially. The former is known
as a direct stress, the latter as a shear stress.

The distribution of these stresses over the cross section of a structural member depends upon the inter-
nal force system at the section and also upon the geometry of the cross section. In some cases, as we shall
see later, these distributions are complex, particularly those produced by the bending and shear of unsym-
metrical sections. We can, however, examine the nature of each of these stresses by considering simple load-
ing systems acting on structural members whose cross sections have some degree of symmetry. At the same
time we shall define the corresponding strains and investigate the relationships between the two.

7.1 Direct stress in tension and compression

The simplest form of direct stress system is that produced by an axial load. Suppose that a structural
member has a uniform T’ cross section of area 4 and is subjected to an axial tensile load, P, as shown
in Fig. 7.1(a). At any section ‘mm’ the internal force is a normal force which, from the arguments

FIGURE 7.1
Structural member with axial load.

(b)

_ [ e
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FIGURE 7.2
Internal force distribution in a beam section.

ated in Chapter 3, is equal to P (Fig. 7.1(b)). It is clear that this normal force is not resisted at
Presﬁone point on each face of the section as Fig. 7.1(b) indicates but at every point as shown in
;i;t, 7.2. We assume in fact that P is distributed uniformly over the complete face of the section so that
at any point in the cross section there is an intensity of force, i.e. stress, to which we give the symbol &

and which we define as

P
ez 1
oA (7.1)

This direct stress acts in the direction shown in Fig. 7.2 when P is tensile and in the reverse direc-
tion when P is compressive. The sign convention for direct stress is identical to that for normal force; a
censile stress is therefore positive while a compressive stress is negative. The SI unit of stress is the pascal
(Pa) where 1 Pais 1 N/m”. However this is a rather small quantity in many cases so generally we shall
use mega-pascals (MPa) where 1 MPa = 1 N/mm?.

In Fig. 7.1 the section mm is some distance from the point of application of the load. At sections
in the proximity of the applied load the distribution of direct stress will depend upon the method of
application of the load, and only in the case where the applied load is distributed uniformly over the
cross section will the direct stress be uniform over sections in this region. In other cases stress concentra-
tions arise which require specialized analysis; this topic is covered in more advanced texts on strength of
materials and stress analysis.

We shall see in Chapter 8 that it is the level of stress that governs the behaviour of structural materi-
als. For a given material, failure, or breakdown of the crystalline structure of the material under load,
occurs at a constant value of stress. For example, in the case of steel subjected to simple tension failure
begins at a stress of about 300 N/mm?, although variations occur in steels manufactured to different

specifications. This stress is independent of size or shape and may therefore be used as the basis for the

design of structures fabricated from steel. Failure stress varies considerably from material to material
and in some cases depends upon whether the material is subjected to tension or compression.
A knowledge of the failure stress of a material is essential in structural design where, generally, a

designer wishes to determine a minimum size for a structural member carrying a given load. For exam-

ple, for a member fabricated from a given material and subjected to axial load, we would use Eq. (7.1)
cither to determine a minimum area of cross section for a given load or to check the stress level in a
given member carrying a given load.

7%

dimensions of the column section if the column carries an axial load of 800 kN and the
stress of the material of the column is 400 N/mm?.
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800 kN

\?\ 28

%
% / / . FIGURE 7.3
> Column of Ex. 7.1.

From Eq. (7.1) the minimum area of the cross section is given by

Amin = g:ax = 80042;0103 = 2000 mm?’
But
Amin = 2B* = 2000 mm?
from which

B=31.6 mm

Therefore the minimum dimensions of the column cross section are 31.6 mm X 63.2 mm. In
practice these dimensions would be rounded up to 32 mm X 64 mm or, if the column were of some
standard section, the next section having a cross-sectional area greater than 2000 mm? would
be chosen. Also the column would not be designed to the limit of its failure stress but to a
working or design stress which would incorporate some safety factor (see Section 8.7).

7.2 Shear stress in shear and torsion

An externally applied shear load induces an internal shear force which is tangential to the faces of a
beam cross section. Figure 7.4(a) illustrates such a situation for a cantilever beam carrying a shear load
W at its free end. We have seen in Chapter 3 that the action of W is to cause sliding of one face of the
cross section relative to the other; W also induces internal bending moments which produce internal
direct stress systems; these are considered in a later chapter. The internal shear force § (= W) required
to maintain the vertical equilibrium of the portions of the beam is distributed over each face of the
cross section. Thus at any point in the cross section there is a tangential intensity of force which is
termed shear stress. This shear stress is not distributed uniformly over the faces of the cross section as we
shall see in Chapter 10. For the moment, however, we shall define the average shear stress over the faces
of the cross section as

(7.2)

Tay =

L
4
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S=w Internal stress

Ar—" / resultants
l
|

A,

W' applied
! -« |oad
4l
S is distributed !
over face of section ;
S=w
torque
(a) Shear load (b) Torsional load q

FIGURE 7.4
Generation of shear stresses in beam sections.

Note that the internal shear force S shown in Fig. 7.4(a) is, according to the sign convention
adopted in Chapter 3, positive. However, the applied load W would produce an internal shear force
in the opposite direction on the positive face of the section so that § would actually be negative.

A system of shear stresses is induced in a different way in the circular-section bar shown in Fig. 7.4
(b) where the internal torque (7) tends to produce a relative rotational sliding of the two faces of the
cross section. The shear stresses are tangential to concentric circular paths in the faces of the cross sec-
tion. We shall examine the shear stress due to torsion in various cross sections in Chapter 11.

7.3 Complementary shear stress

Consider the cantilever beam shown in Fig. 7.5(a). Let us suppose that the beam is of rectangular
cross section having a depth 4 and unit thickness; it carries a vertical shear load W at its free end.
The internal shear forces on the opposite faces mm and nn of an elemental length 8x of the beam are
distributed as shear stresses in some manner over each face as shown in Fig. 7.5(b). Suppose now
that we isolate a small rectangular element ABCD of depth 84 of this elemental length of beam
(Fig. 7.5(c)) and consider its equilibrium. Since the element is small, the shear stresses 7 on the faces
AD and BC may be regarded as constant. The shear force resultants of these shear stresses clearly sat-
isfy vertical equilibrium of the element but rotationally produce an anticlockwise couple. This must
be equilibrated by a clockwise couple which can only be produced by shear forces on the horizontal
faces AB and CD of the element. Let 7' be the shear stresses induced by these shear forces. The equi-
librium of the element is satisfied in both horizontal and vertical directions since the resultant force
In cither direction is zero. However, the shear forces on the faces BC and AD form a couple which
_WO\lld cause rotation of the element in an anticlockwise sense. We need, therefore, a clockwise balanc-
N8 couple and this can only be produced by shear forces on the faces AB and CD of the element

e shear stresses corresponding to these shear forces are 7' as shown. Then for rotational equilibrium
of the element about the corner D

T XExX1X8h=7XEhX1X6bx
Whichgives

[
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FIGURE 7.6
Shear strain in an element.

~f e

(C)

FIGURE 7.5
Complementary shear stress.

We see, therefore, that a shear stress acting on a given plane is always accompanied by an equal conm,-
plementary shear stress acting on planes perpendicular to the given plane and in the opposite sense.

7.4 Direct strain

Since no material is completely rigid, the application of loads produces distortion. An axial tensile load, (4 o
for example, will cause a structural member to increase in length, whereas a compressive load would \
cause it to shorten. FIGURE 7.7
Suppose that 6 is the change in length produced by either a tensile or compressive axial load. We o Cube subjected to hydrostatic pressure.

now define the direct strain, €, in the member in non-dimensional form as the change in length per
unit length of the member. Hence

6

=2 7.6 Volumetric strain due to hydrostatic pressure
Ly

A rather special case of strain which we shall find useful later occurs when a cube of material is subjected
to equal compressive stresses, 0, on all six faces as shown in Fig. 7.7. This state of stress is that which
would be experienced by the cube if it were immersed at some depth in a fluid, hence the term hydro-
static pressure. The analysis would, in fact, be equally valid if o were a tensile stress.

Suppose that the original length of each side of the cube is Lo and that 8 is the decrease in length of
ach side due to the stress. Then, defining the volumetric strain as the change in volume per unit vol-
ume, we have

€ (7.4)
where L is the length of the member in its unloaded state. Clearly & may be either a tensile (positive)
strain or a compressive (negative) strain. Equation (7.4) is applicable only when distortions are relatively -
small and can be used for values of strain up to and around 0.001, which is adequate for most struc-
tural problems. For larger values, load—displacement relationships become complex and are therefore
left for more advanced texts.

We shall see in Section 7.7 that it is convenient to measure distortion in this non-dimensional form
since there is a direct relationship between the stress in a member and the accompanying strain. The
strain in an axially loaded member therefore depends solely upon the level of stress in the member and
is independent of its length or cross-sectional geometry.

L — (-8’
L

volumetric strain =

- Expanding the bracketed term and neglecting second- and higher-order powers of § gives

. . 3L%6
volumetric strain = —
L

7.5 Shear strain

In Section 7.3 we established that shear loads applied to a structural member induce a system of shear
and complementary shear stresses on any small rectangular element. The distortion in such an element
due to these shear stresses does not involve a change in length but a change in shape as shown in
Fig. 7.6. We define the shear strain, vy, in the element as the change in angle between two originally
mutually perpendicular edges. Thus in Fig. 7.6

from which
volumetric strain = — (7.6)
0

P - - Thus we see that for this case the volumetric strain is three times the linear strain in any of the three
At = rh vadinne 7 ot 1 =
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1t is not usual to assign separate symbols to volumetric stress and strain since they may, respectively,
‘égpressed in terms of direct stress and linear strain. Thus in the case of hydrostatic pressure

on 7.6)

1.7 Stress—strain relationships

Hooke’s law and Young’s modulus

The relationship between direct stress and strain for a particular material may be determined experi-
mentally by a zensile est which is described in detail in Chapter 8. A tensile test consists basically of
applying an axial tensile load in known increments to a specimen of material of a given length and
cross-sectional area and measuring the corresponding increases in length. The stress produced by each
value of load may be calculated from Eq. (7.1) and the corresponding strain from Eq. (7.4). A stress—-
strain curve is then drawn which, for some materials, would have a shape similar to that shown in
Fig. 7.8. Stress—strain curves for other materials differ in detail but, generally, all have a linear portion
such as ab in Fig. 7.8. In this region stress is directly proportional to strain, a relationship that was dis-
covered in 1678 by Robert Hooke and which is known as Hooke’s law. It may be expressed mathemati-
cally as

o=Ee 723

where E'is the constant of proportionality. E is known as Young’s modulus or the elastic modulus of the
material and has the same units as stress. For mild steel £ is of the order of 200 kN/mm?. Equation
(7.7) may be written in alternative form as

=k (7.8)
&

For many materials £ has the same value in tension and compression.

Shear modulus

By comparison with Eq. (7.8) we can define the shear modulus or modulus of rigidisy, G, of a material
as the ratio of shear stress to shear strain; thus

G= (7.9)

=3

Volume or bulk modulus

Again, the volume modulus or bulk modulus, K, of a material is defined in a similar manner as the ratio
of volumetric stress to volumetric strain, i.e.

¥ = LB S (7.10)

volumetric strain

o (stress) A

a > FIGURE 7.8

S N VI K.\
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This value is in fact the angle that the beam makes with the horizontal, The deflection, A, due
to shear at the free end is therefore
Ay =10.001 X 500 = 0.5 mm

In practice, the solution of this particular problem would be a great deal more complex than this
since the shear stress distribution is not uniform. Deflections due to shear are investigated in
Chapter 13.

—i

7.8 Poisson effect

It is common experience that a material such as rubber suffers a reduction in cross-sectional area when
stretched under a tensile load. This effect, known as the Poisson effect, also occurs in structural materials
subjected to tensile and compressive loads, although in the latter case the cross-sectional area increases,
In the region where the stress—strain curve of a material is linear, the ratio of lateral strain to longitudi-
nal strain is a constant which is known as Poisson’s ratio and is given the symbol v. The effect is illus-
trated in Fig. 7.9.

Consider now the action of different direct stress systems acting on an elemental cube of material
(Fig. 7.10). The stresses are all tensile stresses and are given suffixes which designate their directions in
relation to the system of axes specified in Section 3.2. In Fig. 7.10(a) the direct strain, €,, in the x
direction is obtained directly from either Eq. (7.7) or Eq. (7.8) and is

Oy
Ep = f
Lateral strain
B EEE T - - ) j
1-—: — > '
SR - ' '
Tension SISTSTRRS wle S ‘
Compression FIGURE 7.9
—

Longitudinal strain

NE Aﬁa

y |
(a) z x (b) o

The Poisson effect.

y

FIGURE 7.10

The Poisson effect in a riiha Af matarial
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Due to the Poisson effect there are accompanying strains in the y and z directions given by

€y = =UEy €™ —WEx
- substituting for €, in terms of o,
or,
o oy 212
Ey = _ZIF Ey = UF ( . )

These strains are negative since they are associated with contractions as opposed to positive strains

roduced by extensions. | .
In Fig. 7.10(b) the direct stress o, has an effect on the direct strain €, as does 0, on €, Thus

Oy vy ay VO _ _VOx U0y (7.13)
. QRN = — — &‘z —_—— e .
“"EF " E 9T EFE E E
By a similar argument, the strains in the x, y and z directions for the cube of Fig. 7.10(c) are
_Ox U0y 0, _ 0y v0x v0, E_Q_Uffx_”;‘y (7.14)
“=F " F F 9" F I F "5 E I

Let us now suppose that the cube of material in Fig. 7.10(c) is subjected to a uniform stress on each
=0,=0,= in i ial directi i he same and is
face such that 0, =0,= 0, = 0. The strain in each of the axial directions is therefore the ;

from any one of Eq. (7.14)
€= %(1 —2v)

In Section 7.6 we showed that the volumetric strain in a cube of material subjected to equal stresses
on all faces is three times the linear strain. Thus in this case

3
volumetric strain = FU (1-2v) (7.15)

It would be unreasonable to suppose that the volume of a cube of material subjected to tensile stres-
ses on all faces could decrease. It follows that Eq. (7.15) cannot have a negative value. We concluc!e,
therefore, that » must always be less than 0.5. For most metals » has a value in the region of 0.3 while
for concrete v can be as low as 0.1.

Collectively E, G, K and v are known as the elastic constants of a material.

IPLE 7.4
cube of marerial is subjecced o the following direct stress system: 0, = +120 N/,
= +80 N/mm” and o,= —100 N/mm> If Young's modulus, £, is 200000 N/mm? and
ratio, v, is 0.3 calculate the direct strain in the x, y and z directions and hence the volume-
strain in the x direction is given by the first of Eqs (7.14) and is
&, =(120 — 0.3 X 80 + 0.3 X 100)/200 000 = 6.3 X 10~

ly, from the second of Eqs (7.14)

&, = (80 — 0.3 X 120 + 0.3 X 100)/200 000 = 3.7 X 10~*

B et il S Y
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and from the third of Eqs (7.14)
€, =(—100 — 0.3 X 120 — 0.3 X 80)/200 000 = —8.0 X 10™*
If Lo is the initial length of each side of the cube then the final lengths are
L,=Ly+6.3%X1074Ly = 1.00063L,
L,=Ly+3.7X1074Ly = 1.00037L,
L,=ILy— 8.0 X 107%Ly =0.9992L,
The volumetric strain in the cube is then

Vol. Strain = [Lo® — (1.000¢

63)(1.00037)(0.9992) L]/ Lo®
ie

Vol. Strain = —1.99 X 1074

1.9 Relationships between the elastic constants

There are different methods for determining the relationships between the elastic constants. The one
presented here is relatively simple in approach and does not require a knowledge of topics other than
those already covered.

In Fig. 7.11(a), ABCD is a square element of material of unit thickness and is in equilibrium under
a shear and complementary shear stress system 7. Imagine now that the element is ‘cut’ along the diago-
nal AC as shown in Fig. 7.11(b). In order to maintain the equilibrium of the triangular portion ABC it
is possible that a direct force and a shear force are required on the face AC. These forces, if they exist,
will be distributed over the face of the element in the form of direct and shear stress systems, respec-
tively. Since the element is small, these stresses may be assumed to be constant along the face AC. Let
the direct stress on AC in the direction BD be opp and the shear stress on AC be Tac. Then resolving
forces on the element in the direction BD we have

oDAC X 1 —7AB X 1 X cos 45° — TBC X 1 X cos 45° =0

T
A —T» B A ——T» B —_— B
j \\‘ |T W T 450
2 8D Tac T A AC
De—— C c D
T

(@) (b) (©)
FIGURE 7.11

Natarminatinn Af tha ralatinmabhine lhabioiaa; daon alaalio o1 4.
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Dividing through by AC
AB BC
OBD =T =08 45° + Uvekas 45°
or
oBp = T cos® 45° + T cos? 45°
from which
OBD =T (7.16)
The positive sign indicates that opp is a tensile stress. Similarly, resolving forces in the direction AC
TaAcAC X 1+ 7AB X 1 X cos 45° — 7BC X 1 X cos 45° =0
Again dividing through by AC we obtain
Tac = — T cos? 45° + T cos? 45° = 0
A similar analysis of the triangular element ABD in Fig. 7.11(c) shows that
gac= —T (7.17)
and
‘ TBD — 0

Hence we see that on planes parallel to the diagonals of the element there are direct stresses opp
(tensile) and oac (compressive) both numerically equal to 7 as shown in Fig. 7.12. It follows from
Section 7.8 that the direct strain in the direction BD is given by

OBD VOAC T
= — + =—(1+ 7.18)
€BD E I 7 ( v) (
Note that the compressive stress 0ac makes a positive contribution to the strain epp.
In Section 7.5 we defined shear strain and saw that under pure shear, only a change of shape is
involved. Thus the element ABCD of Fig. 7.11(a) distorts into the shape A’B’CD shown in Fig. 7.13.
The shear strain -y produced by the shear stress 7 is then given by

/

~v = ¢ radians = BC (7.19)

C FIGURE 7.12

[
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E

K= 30=2

(7.22)

since ¢ is a small angle. The increase in length of the diagonal DB to DB’ is approximately equal to

FB' where BF is perpendicular to DB'. Thus

. _DB-DB_FB

DB DB DB

Again, since ¢ is a small angle, BB'F ~45° 5o that
FB’ = BB’ cos 45°
Also
_ BC
cos 45°

Hence

EDB =

Therefore, from Eq. (7.19)

. ey
DB 27

Substituting for epp in Eq. (7.18) we obtain

1 T
or, since 7/ = G from Eq. (7.9)

G=—= or E=2G(1+v)

The relationship between Young’s modulus £ and bulk modulus X

(7.10) and (7.15). Thus, from Eq. (7.10)

volumetric strain =

where o is the volumetric stress. Substituting in Eq. (7.15)

Distortion due to shear in element.

_ B/B cos? 45° _1B'B
BC 2BC

is obtained directly from Egs

(7.20)
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L
EXAMPLE 7.7

A mild steel column of height 5 m is hollow and circular in cross section with an external diameter
of 400 mm and a wall thickness of 20 mm. If the column carries a compressive load of 2500 kN cal-
culate the direct stress in the column and also the shortening of the column. Take E= 200 000 N/
mm?®. If the ends of the column are then fixed so that no further axial movement is possible calculate
the total direct stress in the column when it is subjected to a temperature rise of 20 K. The coeffi-
cient of linear expansion of the material of the column is 0.00005/K and with the usual notation
L=Ly1+ al).
The cross sectional area, A, of the column is given by

A= n(400* — 360%) /4 = 23876.1 mm>
Then, from Eq. (7.1)
o =2500 X 10°/23876.1 = 104.7 N/mm?*(compression)
The direct strain in the column is obtained from either of Egs (7.7) or (7.8) and is

| e = o/E = 104.7/200 000 = 0.00052
so that the shortening, 6, of the column is, from Eq. (7.4), given by

6=10.00052 X 5 X 10° = 2.62 mm
Due to the temperature rise the column would, if not prevented, increase in height with no corre-
sponding change in stress. However, this change in height is prevented thereby causing, in effect, a
strain and an accompanying stress. Now L = Lo(1 + a7) so that the change in height due to a tem-
perature increase would be L ~ Ly which is equal to Zoa7. The strain corresponding to the suppres-

sion of this change in height is then (L — Ly)/Ly = aT. The accompanying direct stress is then, from
Eq. (7.7), given by

o =0.00005 X 20 X 200 000 = 200 N/mm?

which is compressive since the increase in height is prevented. The total stress in the column pro-
duced by the load and the temperature rise is then

o(total) = 200 + 104.7 = 304.7 N/mm?

7.10 Strain energy in simple tension or compression

An important concept in the analysis of structures is that of strain energy. The total strain energy of a
structural member may comprise the separate strain energies due to axial load, bending moment, shear
and torsion. In this section we shall concentrate on the strain energy due to tensile or compressive
loads; the strain energy produced by each of the other loading systems is considered in the relevant,
later chapters.

A structural member subjected to a gradually increasing tensile load P gradually increases in length
(Fig. 7.14(a)). The load—extension curve for the member is linear until the limit of proportionality is
exceeded, as shown in Fig. 7.14(b). The geometry of the non-linear portion of the curve depends upon
the properties of the material of the member (see Chapter 8). Clearly the load P moves through small
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e

Load P {\

L Limit of proportionality
0

Cross-sectional area, A

T A
T T Extension A
P

(@) (b)

FIGURE 7.14
I_Oad.extension curve for an axially loaded member.

nd, is stored in the member as strain energy. If the value of P is restricted so that the limit of pro-
cxwtiox;ality is not exceeded, the gradual removal of P results in the member returning to its original
E::gth and the strain energy stored in the member may be recovered in the form of work. When the
limit of proportionality is exceeded, not all of the work done by P is recoverable; some 1s.used in pro-
ducing a permanent distortion of the member (see Chapter 8), the related energy appearing largely as
hea[sluppose the structural member of Fig. 7.14(a) is gradually loaded. to some v.alue of P within the
limit of proportionality of the material of the member, the corresponding elongatlon being A. Let the
elongation corresponding to some intermediate value of load, say Py, be A; (Fig. 7.15). Then a small
increase in load of 8P; will produce a small increase, 8A;, in elongation. The incremental work done
in producing this increment in elongation may be taken as equal to the average load between P; and
P, + 8P; multiplied by 8A;. Thus

P+ (P + 6P
incremental work done = [%1)] VAN

which, neglecting second-order terms, becomes
incremental work done = P;6A,

The total work done on the member by the load P in producing the elongation A is therefore given

by

A
total work done = J Py dA; (7.24)
0
Since the load—extension relationship is linear, then
P1 =K Al (725)

where K is some constant whose value depends upon the material properties of the member.

Substituting the particular values of P and A in Eq. (7.25), we obtain
K= P
A

s that Eq. (7.25) becomes
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toad b  from which .
Ppeceemmmnnnne- ! _PL
! A=—% (7.28)
‘ In Eq. (7.28) the quantity Lo/AE determines the magnitude of the displacement produced by a
Pi+8P; fpenennnn- ! ) ; load; it is therefore known as the flexibility of the member. Conversely, by transposing Eq. (7.28)
] g]VE: 2
Py [peemwes E we see that
' AE
' ="A
' Ly
E > . which the quantity AE/L, determines the magnitude of the load required to produce a given dis-
A1 \ A Extension mlacement. The term AE/ Ly is then the stiffness of the member.
FIGURE 7.15 Substituting for A in Eq. (7.27) gives
Aq+8A

Now substituting for P; in Eq. (7.24) we have

A

total work done = J gAldAl

0

Integration of this equation yields

1
total work done = -2—PA

Alternatively, we see that the right-hand side of Eq. (7.24) represents the area under the
load—extension curve, so that again we obtain

total work done = %PA

By the law of conservation of energy, the total work done is equal to the strain energy, U, stored in
the member. Thus

1
=_-PA
2
The direct stress, 0, in the member of Fig. 7.14(a) corresponding to the load P is given by
Eq. (7.1), ie.
P
0' = —
A
Also the direct strain, €, corresponding to the elongation A is, from Eq. (7.4)
E —_ é
Ly

Furthermore, since the load—extension curve is linear, the direct stress and strain are related by
Eq. (7.7), so that

N+

_gA

Work done by a gradually applied load.

(7.27)

P,

UZAE

(7.29)

It is often convenient to express strain energy in terms of the direct stress 0. Rewriting Eq. (7.29) in

the form

1P AL,

24* E

(7.26) we obtain

o?

U=— XAL 7.30

3 0 (7.30)
in which we see that AL is the volume of the member. The strain energy per unit volume of the mem-
ber is then

o2

7

The greatest amount of strain energy per unit volume that can be stored in a member without

eding the limit of proportionality is known as the modulus of resilience and is reached when the
stress in the member is equal to the direct stress corresponding to the elastic limit of the material

of the member.

- The strain energy, U, may also be expressed in terms of the elongation, A, or the direct strain, €.

hus, substituting for P in Eq. (7.29)

EAN?
= 7.31)
U== 2 (
OF, substituting for o in Eq. (7.30)
U= % Ee? X AL (7.32)

The above expressions for strain energy also apply to structural members subjected to compressive
> since the work done by P in Fig. 7.14(a) is independent of the direction of movement of P. It fol-
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The concept of strain energy has numerous and wide ranging applications in structural analysis par-
ticularly in the solution of statically indeterminate structures. We shall examine in detail some of the
uses of strain energy later but here we shall illustrate its use by applying it to some relatively simple
structural problems.

Deflection of a simple truss

The truss shown in Fig. 7.16 carries a gradually applied load W at the joint A. Considering the vertical
equilibrium of joint A

Ppp cos 45° — W =0
so that
Pap = 1.41 W (tension)
Now resolving forces horizontally at A
Puc + Ppg cos 45° =0
which gives
Pac = — W (compression)

It is obvious from inspection that Py is a compressive force but, for consistency, we continue with
the convention adopted in Chapter 4 for solving trusses where all members are assumed, initially, to be
in tension.

The strain energy of each member is then, from Eq. (7.29)

(1.41W)? X 1.41L 1.41W2L
UAB —v =

2AE AE
WL
Uac = A
7
Cross-sectional area, A
45°
>(,L = A
C
w
‘ N FIGURE 7.16
L ;
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If the vertical deflection of A is A,, the work done by the gradually applied load, W, is

1

~WA

3 VA

Then equating the work done to the total strain energy of the truss we have

1 141W?L  WZ2L
— — +
2 Wik AE 2AF
so that
3.82WL
A, = 1F

Using strain energy to calculate deflections in this way has limitations. In Fhe above example. Ay, is,
in fact, only the vertical component of the actual deflection of the joint A since A moves hc.)rlzontall.y
a5 well as vertically. Therefore we can only find the deflection of a load 77 its own line of action by this
method. Furthermore, the method cannot be applied to structures subjected to more than one applied
load as each load would contribute to the total work done by moving through an unknown displace-
ment in its own line of action. There would, therefore, be as many unknown displacements as loads in
the work—energy equation. We shall return to examine energy methods in much greater detail in

Chapter 15.

| o
EXAMPLE 7.8
Calculate the vertical displacement of the joint C in the truss shown in Fig. 7.17. All members have
a cross sectional area of 500 mm” and a Young’s modulus of 200 000 N/mm?.
The forces in the members of the truss may be found using the method of joints and are as
follows:
Fpe =+282.8 kN, Fop = —200.0 kN, Fgp =0, Fpg = —200.0 kN,
Fpp = —282.8 kN, Fyp = +400 kN.
The lengths of BE and BC are each = 1/(1.0% + 1.0%) = 1.41 m. Then, from Eq. (7.29) the total
strain energy of the truss is given by
U = (282.8% X 1.41 + 200.0? X 1.0 + 200.0> X 1.0 + 282.8% X 1.41
+400.0° X 1.0) X 10 /2 X 500 X 200 000

‘which gives
U =2.33 X 10° Nmm.

i A B ool

: T

im
i ‘_ C
i 8 E D i
200 kN
o m FIGURE 7.17

i i i =t Trice nf Fx 7 8
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This is equal to the work done by the load as it moves through the vertical displacement, A,
Then

200 X 10°Ay /2 =2.33 X 10°
so that

AV = 23.3 mm.

—m

Composite structural members

Axially loaded composite members are of direct interest in civil engineering where concrete columns are
reinforced by steel bars and steel columns are frequently embedded in concrete as a fire precaution.

In Fig. 7.18 a concrete column of cross-sectional area Ac is reinforced by two steel bars having a
combined cross-sectional area As. The modulus of elasticity of the concrete is Ec and that of the steel
Es. A load P is transmitted to the column through a plate which we shall assume is rigid so that the
deflection of the concrete is equal to that of the steel. It follows that their respective strains are equal
since both have the same original length. Since E¢ is not equal to Es we see from Eq. (7.7) that the
compressive stresses, 0c and o, in the concrete and steel, respectively, must have different values. This
also means that unless Ac and As have particular values, the compressive loads, Pc and Ps, in the con-
crete and steel are also different. The problem is therefore statically indeterminate since we can write
down only one equilibrium equation, i.e.

Pc+Ps=P (733)

The second required equation derives from the fact that the displacements of the steel and concrete
are identical since, as noted above, they are connected by the rigid plate; this is a comparibility of dis-
placement condition. Then, from Eq. (7.28)

Pel Pl

= 7.34
AcEc  AgEs ( )
P
Rigid plate
0|lo °
Reinforcing N |
bars = 2 |
\Q RS
o o
o \\ o i
Concrete ——1 0 || o 2
| S|
column b P2l
P ool 0 2|l
o b ° " ' FIGURE 7.18
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gubstituting for Pc from Eq. (7.34) in Eq. (7.33) gives

AcEc
P +1)=P

sEs
from wthh

_ AsEs

Ps= AP+ AsFy (733

Pc follows directly from Egs (7.34) and (7.35), i.e.

AcEc

= — 7.36

Pe= 4 + AEs (7:36)

The vertical displacement, 8, of the column is obtained using either side of Eq. (7.34) and the
appropl’iate compressive load, Pc or Ps. Thus

i (7.37)
AcEc + AsEs
The direct stresses in the steel and concrete are obtained from Egs (7.35) and (7.36), thus
Eg Ec
as AcEc + AsEs = AcEc + AsEs
We could, in fact, have solved directly for the stresses by writing Eqs (7.33) and (7.34) as
ocAc + osAs =P (7.39)
and
ol o5k (7.40)
Ec Es
respectively.

[ R PO

reinforced concrete column, 5 m high, has the cross section shown in Fig. 7.19. It is reinforced by
steel bars each 20 mm in diameter and carries a load of 1000 kN. If Young’s modulus for steel
000 N/mm? and that for concrete is 15 000 N/mm?, calculate the stress in the steel and in
crete and also the shortening of the column.

I‘ ming\g’ > aia %o “

FIGURE 7.19




e Lo |
168 CHAPTER 7 Stress and Strain

The total cross-sectional area, As, of the steel reinforcement is

As=4X T X 20% = 1257 mm>

4
The cross-sectional area, Ac, of the concrete is reduced due to the presence of the steel and is
given by
Ac = 400% — 1257 = 158 743 mm”*
Equations (7.38) then give ‘

3 200 000 X 1000 X 103 ‘
158 743 X 15 000 + 1257 X 200 000
Ladks 15 000 X 1000 X 10°

“C ™ 158743 X 15 000 + 1257 X 200 000

os =76.0 N/mm?

=57 N/mm?

The deflection, , of the column is obtained using either side of Eq. (7.40). Thus

_ocl _57x5X10°

. Ec 15 000

= 1.9 mm

= |
Thermal effects

It is possible for stresses to be induced by temperature changes in composite members which are addi-
tional to those produced by applied loads. These stresses arise when the components of a composite
member have different rates of thermal expansion and contraction.

First, let us consider a member subjected to a uniform temperature rise, A7, along its length. The
member expands from its original length, Lo, to a length, Ly, given by

LT = Lo(l + OZAT)

where « is the coefficient of linear expansion of the material of the member. In the condition shown in
Fig. 7.20 the member has been allowed to expand freely so that no stresses are induced. The increase in
the length of the member is then

LT = Lo = L()OZAT

Suppose now that expansion is completely prevented so that the final length of the member after
the temperature rise is still L. The member has, in effect, been compressed by an amount Ly AT,
thereby producing a compressive strain, €, which is given by (see Eq. (7.4))

|
|

=l FIGURE 7.20
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LoaAT
e=——— =aAT (7.41)
0
The corresponding compressive stress, 0, is from Eq. (7.7)
o=EaAT (7.42)

In composite members the restriction on expansion or .contraction is usually imposed by the attach-
£ one component to another. For example, in a reinforced concrete column, the bond between
i forcing steel and the concrete prevents the free expansion or contraction of either.
P g ll1.11s(i)der the reinforced concrete column shown in Fig. 7.21(a) which is subjected to a temperature
: ZT- For simplicity we shall suppose that the reinforcement consists of a single steel bar of cross-
. nal area, As, located along the axis of the column; the actual cross-sectional area of concrete is Ac.
?(‘;Esg’s modulus and the coefficient of linear expansion of the concrete are Ec and ag, respectively,
while the corresponding values for.t%le steel are Eg and as. We shall assume 'tha.t as > ac.

Figure 7.21(b) shows the positions the concrete and steel w<.)uld attain if they were allowed to
expand freely; in this situation neither material is stressed. The displacements LoacAT and LoasAT
are obtained directly from Eq. (7.41). However, since they are attached to each other, the concrete pre-
vents the steel from expanding this full amount while the stc?el forces the concrete to expand ﬁ.lrther
than it otherwise would; their final positions are shown in Fig. 7.21(c). It can be seen .that 8¢ is t.he
eﬁ'ective elongation of the concrete which induces a direct tensile load, Pc. Similarly 85 is the effective
concraction of the steel which induces a compressive load, Ps. There is no externally applied load so
that the resultant axial load at any section of the column is zero so that

P (tension) = Ps (compression) (7.43)
Also, from Fig. 7.21(b) and (c) we see that
bc + 6s = LoyasAT — Lyac AT
or
bc +6s = LoAT(as — ac) (7.44)

Cross-sectional area, Ag

Cross-sectional A dg
area, AC LOaSAT i d¢c 0 n\' )
y - 0 0 o
A ‘\ V[ o P S °
o o o e dq o o
? 0 LoaCAT o ? o 5 o
0 o o o o o
Lo 0 O < o o S ¢
0 o o 0 °
b 0 0 S
& c: 1 Zd P J “e
2 0 0 O ° 4 o e
Y & o
(@) sy (b) 77 (©) ”

FIGURE 7.21
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From Eq. (7.28) tion (7.44) is an expression of the compatibility of displacement of the concrete and steel. Also

PcLy PsL : at the stresses could have been obtained directly by writing Eqs (7.43) and (7.44) as
bc = = (7.4 s
" Acke Ak 3 ocAc = os4s
Substituting for 8 and 85 in Eq. (7.44) we obtain
P P
Acf’:fc + S5 ; - AT(as — ac) (7.46) sk ok

_EE:— Ts =LoAT(as — ac)
Simultaneous solution of Eqs (7.43) and (7.46) gives

Pc (tension) = Ps (compression) = M (7.47)
— T
(ACEC AsEs)

or

AT(as — ac)AcEcAsEs

Pc (tension) = Ps (compression) = AcEc + AgE,
CLC SLS

(7.48)

The tensile stress, oc, in the concrete and the compressive stress, o, in the steel follow directy

from Eq. (7.48).

Pc AT(as — ac)EcAsEs
O'C = e—_—=

Ac AcEc + AsE;s
_ P _ AT(as— ac)AcEcEs (7.49)
£ As AcEc + AsEs

From Fig. 7.21(b) and (c) it can be seen that the actual elongation, §, of the column is given by
either

0=LyacAT +6c or 6= LoasAT — & (750)

Using the first of Eq. (7.50) and substituting for 8c from Eq. (7.45) then P from Eq. (7.48) we
have

AT(as — ac)AcEcAsEsLy
AcEc(AcEc + AsEs)

6= LyacAT +

which simplifies to

Fim %AT(OLCACEC + OlsAsEs)

AcEc + AsEs

Clearly when ac=as=aq, say, Pc=Ps=0, oc=05=0 and §= LoaAT as for unrestrained
expansion.
The above analysis also applies to the case, ac > s, when, as can be seen from Eqs (7.48) and
(7.49) the signs of P, Ps, o and o are reversed. Thus the load and stress in the concrete become
compressive, while those in the steel become tensile. A similar argument applies when AT specifies a
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duits are located in the mould at points where reinforcement is required, the concrete is poured

or watlllowe d to set. The reinforcing tendons are then passed through the conduits, tensioned and finally
dche d to end plates which tra{lsmit the tendon tensile load, as a compressive load, to the concrete.
: e the reinforcement in a concrete beam supporting vertical shear loads is placed closer to
che upper or the lower surface since such a loading system induces tension in one part of the
and compression in the other; clearly the reinforcement is placed in the tension zone. To demon-
basic principle, however, we shall investigate the case of a post-tensioned beam containing
axially loaded prestressing ter'1don.

ancs ose that the initial load in the prestressing tendon in the concrete beam shown in Fig. 7.22 is
¥ Inuf}fe absence of an applied load the resultant load at any section of the beam is zero so that the
i;ad in the concrete is also F but com'pr(?ssive. If now a tensile load, P, is applied to the beam, the ten-
sile load in the prestressing tendon will increase by an amount APy while the compressive load in the

oncrete will decrease by an amount APc. From a consideration of equilibrium
CO!

100(1.2 — 1.85) X 1075 X 80 000 X 300 X 200 000

o, (temp.) = 105.0 X 106

= —28.9 N/mm? (i.e. compression)
o b 100(1.2 — 1.85) X 107> X 2 X 300 X 80 000 X 200 000
e A " - 108.0 X 10°

cithes

surate the
= —57.8 N/mm? (i.e. tension)

Superimposing the sets of stresses, we obtain the final values of stress, o; and ¢, due to load and

temperature change combined. Hence |

0;=185.2 — 57.8 = 127.4 N/mm? (compression) 1

04 =74.1+28.9 = 103.0 N/mm? (compression) '

The displacements due to the load and temperature change are found using Egs (7.37) and
(7.51), respectively. Hence

100 X 103 X 4 X 103

APr + APC =P (752)

Furthermore, the total tensile load in the tendon is F+ APy while the total compressive load in the

concrete is F— APc. ]
" The tendon and concrete beam are interconnected through the end plates so that they both suffer

6 (load) = = 3.7 mm (contraction)

108.0 X 10° the same elongation, 6, due to P. Then, from Eq. (7.28)
8 (temp.) = 4 X 10% X 100 ! _ APrL _ APcL
(temp.) | : AE - Ak (7.53)
; 1.85 X 107% X 2 X 300 X 80 000 + 1.2 X 10~> X 300 X 200 000 h

where Er and Ec are Young’s modulus for the tendon and the concrete, respectively. From Eq. (7.53)

108.0 X 106 ‘ ]

ArEt

Abr= AcEc

= 6.0 mm (elongation) APc (7.54)

The final displacement of the slab involves an overall elongation of the columns Substituting in Eq. (7.52) for APy we obtain
6.0 —3.7=2.3 mm.

ArEr
AP, +1)=P
¢ <AcEc )

Initial stresses and prestressing gives

The terms initial stress and prestressing refer to structural situations in which some or all of the compo- AcEc

nents of a structure are in a state of stress before external loads are applied. In some cases, for example APc = AcEc + ArFr (7.55)
welded connections, this is an unavoidable by-product of fabrication and unless the whole connection
is stress-relieved by suitable heat treatment the initial stresses are not known with any real accuracy. On )

Concrete, Prestressing tendon,

the other hand, the initial stress in a component may be controlled as in a bolted connection; the subse-
quent applied load may or may not affect the initial stress in the bolt.

Initial stresses may be deliberately induced in a structural member so that the adverse effects of an
applied load are minimized. In this the category is the prestressing of beams fabricated from concrete
which is particularly weak in tension. An overall state of compression is induced in the concrete so that
tensile stresses due to applied loads merely reduce the level of compressive stress in the concrete rather -
than cause tension. Two methods of prestressing are employed, pre- and post-tensioning. In the former
the prestressing tendons are positioned in the mould before the concrete is poured and loaded to the
tequired level of tensile stress. After the concrete has set, the tendons are released and the tensile load in

the tandanc io teancmiread as a samnraseiis laad a tha cancsara T o snase sansianad haam awasal ruhEil

cross-sectional area, Ac cross-sectional area, At

Applied Ioad,P<—[:tl;o : ; - :o ::‘90,‘//10 f :aﬂv;i]—>
|
|

End plates

P

e s e
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Substituting now for APc in Eq. (7.54) from Eq. (7.55) gives

APT = 7ATET

AcEc + AtEt
The final loads, Pc and Pr, in the concrete and tendon, respectively, are then
AcE
Pc=F— MP (compression)
and
ArEr .
SF
Pr=F B t 4B P (tension)

The corresponding final stresses, o and o, follow directly and are given by

- Pc 1 7 AcEc P) ¢ ion)
ey S, - C I 10N
¢ Ac  Ac AcEc + ATEr OMPpIEssio
and 4
Pr 1 AtEr .
=L (FP+—"TT p
oT ity ( Aok t Ak ) (tension)

Obviously if the bracketed term in Eq. (7.59) is negative then o will be a tensile stress.
Finally the elongation, 8, of the beam due to P is obtained from either of Eq. (7.53) and is
L
=—— P
AcEc + ArEr

7.11 Plane stress

o i ___EC_..__
(7.56) e AL
FlAc=0ci= 7.9 N/ 'mm?. Rearranging Eq. (ii) we have
g e L]
(7.57) Ac + (FI)AT
g 150 X 10° e Ty % )
(7.58) oc=79— 34200 = 15 X 6 X 300 =54 N/mm” (compression)
larly, from Eq. (7.60)
(7.59) 2 or =150+
(7.60) ot =150+ i =186.8 N/mm? (tension)
75X 34200 +6 X300

175

(i)

(7.61)

1 1 Plane stress

[
EXAMPLE 7.11

Amambmofmgulummmn,120mm><30ﬂmm,1swbermnfamadbys&xhx‘

cross-sectional area of 300 mm”. If the level of pre-
stress in the tendons is 150 N/mm ,deﬁermmcthecmreapa ing compressive stress in the concrete.
If the reinforced beam is subjected to an axial tensile load of 150 kN, determine the final stress ir
the steel and in the concrete assuming that the ratio of the elastic modulus of steel to that of con-

tensile steel prestressing tendons each having a cro

crete is 15.
The cross-sectional area, Ac, of the concrete in the beam is given by

Ac =120 X 300 — 6 X 300 = 342 000 mm>

The initial compressive load in the concrete is equal to the initial tensile load in the steel; thus

o X 34 200 =150 X 6 X 300
where o¢; is the initial compressive stress in the concrete. Hence

oci =7.9 N/mm?

The final stress in the concrete and in the steel are given by Eqs (7.59) and (7.60), respectively

From Eq. (7.59)

in Figs. 7.24 and 7.25, respectively.

Ll‘

y P
7 p O ad
N,y ROt 4
<, X i
RN

FIGURE 7.23

n some situations the behaviour of a structure, or part of it, can be regarded as two-dimensional. For
ample, the stresses produced in a flat plate which is subjected to loads solely in its own plane would
orm a two-dimensional stress system; in other words, a plane stress system. These stresses would, how-
ever, produce strains perpendicular to the surfaces of the plate due to the Poisson effect (Section 7.8).

An example of a plane stress system is that produced in the walls of a thin cylindrical shell by inter-
al pressure. Figure 7.23 shows a long, thin-walled cylindrical shell subjected to an internal pressure .
s internal pressure has a dual effect; it acts on the sealed ends of the shell thereby producing a longi-
udinal direct stress in cross sections of the shell and it also tends to separate one-half of the shell from
¢ other along a diametral plane causing circumferential or hoop stresses. These two situations are
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FIGURE 7.24
& ‘
- Longitudinal stresses due to internal pressure. ' 0c l FIGURE 7.26
(b) oc Two-dimensional stress system.
t .
¢ press may be represented as a two-dimensional or plane stress system acting on a plane element of
s

ess, ¢ (Fig. 7.26(b)).
" In addition to Stresses, the internal pressure produces corresponding strains in the walls of the shell

oc , :: hich lead to a change in volume. Consider the element of Fig. 7.26(b). The longitudinal strain, €y, is,
e oc from Eq. (7 13)
d Ud\\\e“g\“ FIGURE 7.25 e = % — %
Circumferential stress due to internal pressure.
or, substituting for o1 and o from Eqs (7.62) and (7.63), respectively
Suppose that 4 is the internal diameter of the shell and ¢ the thickness of its walls. In Fig. 7.24 the o = ﬁ 1 v (7.64)
axial load on each end of the shell due to the pressure p is L™ 2E\2 '
% nd? Similarly, the circumferential strain, £c, is given by
T _ 21 (7.65)
This load is equilibrated by an internal force corresponding to the longitudinal direct stress, oy, so 5CT uE 27 ’
that
The increase in length of the shell is e1 L while the increase in circumference is ecmd. We see from
_ nd the latter expression that the increase in circumference of the shell corresponds to an increase in diame-
oLT dt = p——oro | P p : :
: . 4 er, €cd, so that the circumferential strain is equal to diametral strain (and also radial strain). The
which gives ’ : ) ;
ncrease in volume, AV, of the shell is then given by
_rd
=7 (7.62) AV = Z(@+ecd’L+el) ~ 4L

Now consider a unit length of the half shell formed by a diametral plane (Fig. 7.25). The force on

) L ; . e ich, when second-order terms are neglected, simplifies to
the shell, produced by p, in the opposite direction to the circumferential stress, oc, is given by

md?L
4
Substituting for €1 and e¢ in Eq. (7.66) from Eqs (7.64) and (7.65) we obtain

_ wd*Lpd (5
AV— 4 ;E(Z 1/)

AV =

2 X projected area of the shell in the direction of o¢ (2ec +e1) (7.66)
Therefore for equilibrium of the unit length of shell

20c X (1 X2)=pX(1Xd)

which gives

oc= L (7.63) 0 that the volumetric strain is
2t

We can now represent the state of stress at any point in the wall of the shell by considering the

stress acting on the edges of a very small element of the shell wall as shown in Fig. 7.26(a). The stresses

comprise the longitudinal stress, o1, (Eq. (7.62)) and the circumferential stress, o, (Eq. (7.63)). Since

the element ic verv emall the effect f the ciirvatiire af the chell wall fan ha naalactad on thar tha crate

AV pd (5
(rd?Lj4)  iE <Z ”) S

N The analysis of a spherical shell is somewhat simpler since only one direct stress is involved. It can
= seen from Fig. 7.27(a) and (b) that no matter which diametral plane is chosen. the tensile stress. o,
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——>q

FIGURE 7.27
Stress in a spherical shell.

in the walls of the shell is constant. Thus for the equilibrium of the hemispherical portion shown i
Fig. 7.27(b)

T d?
oXmdr=pX e
from which
_m
o= (7.68)

Again we have a two-dimensional state of stress acting on a small element of the shell wall
(Fig. 7.27(c)) but in this case the direct stresses in the two directions are equal. Also the volumetric
strain is determined in an identical manner to that for the cylindrical shell and is

3pd

(I
EXAMPLE 7.12 «‘
A thin-walled, cylindrical shell has an internal diameter of 2 m and is fabricated from plates 20 mm J
thick. Calculate the safe pressure in the shell if the tensile strength of the plates is 400 N/mm? and the 1
factor of safety is 6. Determine also the percentage increase in the volume of the shell when it is sub-
jected to this pressure. Take Young’s modulus £= 200 000 N/mm” and Poisson’s ratio » = 0.3.

The maximum tensile stress in the walls of the shell is the circumferential stress, oc, given by
Eq. (7.63). Then

400 _ px2X10°
6 2X20
from which
2= 133 N/mm?
The volumetric strain is obtained from Eq. (7.67) and is

1.33X2X10° /5 B
20 X200 000 (z °-~'3) v

G e e s B
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7.12 Plane strain

dition of plane strain occurs when all the strains in a structure, or part of a structure, are con-
a single plane. This does not necessarily coincide with a plane stress system as we noted in
7.11. Conversely, it generally requires a three-dimensional stress system to produce a condition

Thc con
ﬁned to
Section

Jane straifl. L ..
of pPra ctical examples of plane strain situations are retaining walls or dams where the ends of the wall

dam are constrained against movement and the loading is constant along its length. All cross sections
r s : s . .
0 then in the same condition so that any thin slice of the wall or dam taken perpendicularly to its
€ : o
;u' gth would only be subjected to strains in its own plane.
We shall examine more complex cases of plane stress and plane strain in Chapter 14.

PROBLEMS

p.7.1 A column 3 m high has a hollow circular cross section of external diameter 300 mm and
carries an axial load of 5000 kN. If the stress in the column is limited to 150 N/ mm? and the
shortening of the column under load must not exceed 2 mm calculate the maximum allowable
internal diameter. Take E= 200 000 N/mm?*.

Ans. 205.6 mm.

P.7.2 A steel girder is firmly attached to a wall at each end so that changes in its length are
prevented. If the girder is initially unstressed, calculate the stress induced in the girder when it
is subjected to a uniform temperature rise of 30 K. The coefficient of linear expansion of the
steel is 0.000 05/K and Young’s modulus £= 180 000 N/mm?. (Note L= Ly(1 + aT).)

Ans. 270 N/mm? (compression).

P.7.3 A column 3 m high has a solid circular cross section and carries an axial load of 10 000 kN. If
the direct stress in the column is limited to 150 N/mm? determine the minimum allowable
diameter. Calculate also the shortening of the column due to this load and the increase in its
diameter. Take £ = 200 000 N/mm? and » = 0.3.

Ans. 291.3 mm, 2.25 mm, 0.066 mm.

P.7.4 A structural member has a rectangular cross section of side 100 X 300 mm and carries an axial
tensile load of 5000 kN. Calculate the direct stress in the member, its increase in length over a
span of 5 m and the percentage change in its cross sectional area under the load, Take
E=200 000 N/mm? and v = 0.3.

Ans. 166.7 N/mm?, 4.17 mm, 0.043%.”

P.7.5 The block of material shown in Fig. P.7.5 is subjected to the stress system shown. If Young’s
modulus, E, is 200 000 N/mm? and Poisson’s ratio, v, is 0.3 calculate the percentage change
in volume in the block.

Ans. 0.049%.
P.76 A structural member, 2 m long, is found to be 1.5 mm short when positioned in a framework.

To enable the member to be fitted it is heated uniformly along its length. Determine the
necessary temperature rise. Calculate also the residual stress in the member when it cools to its

[t Yo s o
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P.7.7

P.7.8

P.7.9

P.7.10

P.7.11
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o, = 200 N/mm?

5
00 oy
50«\‘“ FIGURE P.7.5

If the member has a rectangular cross section, determine the percentage change in cross-
sectional area when the member is fixed in position and at its original temperature.

Young’s modulus £= 200 000 N/mm?, Poisson’s ratio » = 0.3 and the coefficient of linear
expansion of the material of the member is 0.000 012/K.

Ans. 62.5 K, 150 N/mm? (tension), 0.045% (reduction).

A member of a framework is required to carry an axial tensile load of 100 kN. It is proposed
that the member be comprised of two angle sections back to back in which one 18 mm
diameter hole is allowed per angle for connections. If the allowable stress is 155 N/mm?,
suggest suitable angles.

Ans. Required minimum area of cross section = 645.2 mm?2. From steel tables, two equal
angles 50 X 50 X 5 mm are satisfactory.

A vertical hanger supporting the deck of a suspension bridge is formed from a steel cable 25 m
long and having a diameter of 7.5 mm. If the density of the steel is 7850 kg/m? and the load
at the lower end of the hanger is 5 kN, determine the maximum stress in the cable and its
elongation. Young’s modulus £ = 200 000 N/mm®.

Ans. 115.1 N/mm?, 14.3 mm.

A concrete chimney 40 m high has a cross-sectional area (of concrete) of 0.15 m? and is
stayed by three groups of four cables attached to the chimney at heights of 15, 25 and

35 m respectively. If each cable is anchored to the ground at a distance of 20 m from the
base of the chimney and tensioned to a force of 15 kN, calculate the maximum stress in
the chimney and the shortening of the chimney including the effect of its own weight. The
density of concrete is 2500 kg/m> and Young’s modulus E= 20 000 N/mm?.

Ans. 1.9 N/mm?, 2.2 mm.

A column of height 4 has a rectangular cross section which tapers linearly in width from 4; at
the base of the column to 4, at the top. The breadth of the cross section is constant and equal
to 4. Determine the shortening of the column due to an axial load P.

Abns. (P}]/[ﬂE(b] - bz)]) loge(bllbz)

Determine the vertical deflection of the 20 kN load in the truss shown in Fig. P.7.11. The
cross-sectional area of the tension members is 100 mm? while that of the compression
members is 200 mm”. Young’s modulus £ = 205 000 N/mm?.
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l«— > FIGURE P.7.11

2m

FIGURE P.7.12

P.7.12 The truss shown in Fig. P.7.12 has members of cross-sectional area 1200 mm? and Young’s
modulus 205 000 N/mm?. Determine the vertical deflection of the load.
Ans. 10.3 mm.

P.7.13 Three identical bars of length L are hung in a vertical position as shown in Fig. P.7.13. A
rigid, weightless beam is attached to their lower ends and this in turn carries a load P.
Calculate the load in each bar.

Ans. P, = PI12, P, = PI3, Py =7P/12.

FIGURE P.7.13

P.7.14 A composite column is formed by placing a steel bar, 20 mm in diameter and 200 mm long,
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P.7.15

P.7.16

P.7.17

P.7.18
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25 mm, respectively. The column is then subjected to an axial load of 50 kN. If E for steel is
200 000 N/mm? and E for the alloy is 70 000 N/mm?, calculate the stress in the cylinder and i
the bar, the shortening of the column and the strain energy stored in the column.

Ans. 46.5 N/mm?> (cylinder), 132.9 N/mm? (bar), 0.13 mm, 3.3 Nm.

A timber column, 3 m high, has a rectangular cross section, 100 mm X 200 mm, and is
reinforced over its complete length by two steel plates each 200 mm wide and 10 mm thick
attached to its 200 mm wide faces. The column is designed to carry a load of 100 kN. If the
failure stress of the timber is 55 N/mm? and that of the steel is 380 N/mm?, check the design
using a factor of safety of 3 for the timber and 2 for the steel. E (timber) = 15 000 N/mm?,
E (steel) = 200 000 N/mm®.

Ans. o (timber) = 13.6 N/mm? (allowable stress = 18.3 N/mm?),
o (steel) = 181.8 N/mm? (allowable stress = 190 N/mm?).

The composite bar shown in Fig. P.7.16 is initially unstressed. If the temperature of the bar is
reduced by an amount 7 uniformly along its length, find an expression for the tensile stress
induced. The coefficients of linear expansion of steel and aluminium are a5 and

Qi per unit temperature change, respectively, while the corresponding values of Young’s
modulus are E5 and Ea.

Apns. T(OésLl + OtALz)/(LI/ES + Lz/EA).

/

Steel | Aluminium
i
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Ly ! Ly

FIGURE P.7.16

A short bar of copper, 25 mm in diameter, is enclosed centrally within a steel tube of external

diameter 36 mm and thickness 3 mm. At 0°C the ends of the bar and tube are rigidly fastened
together and the complete assembly heated to 80°C. Calculate the stress in the bar and in the

tube if E for copper is 100 000 N/mm?, E for steel is 200 000 N/mm? and the coefficients of
linear expansion of copper and steel are 0.000 01/°C and

0.000 006/°C, respectively.

Ans. o (steel) = 28.3 N/mm? (tension),
o (copper) =17.9 N/mm? (compression).

A bar of mild steel of diameter 75 mm is placed inside a hollow aluminium cylinder of
internal diameter 75 mm and external diameter 100 mm; both bar and cylinder are the same
length. The resulting composite bar is subjected to an axial compressive load of 10° N. If the
bar and cylinder contract by the same amount, calculate the stress in each.

The temperature of the compressed composite bar is then reduced by 150°C but no
change in length is permitted. Calculate the final stress in the bar and in the cylinder. Take
E (steel) = 200 000 N/mm?, E (aluminium) = 80 000 N/mm?, « (steel) = 0.000 012/°C,

a (aluminium) = 0.000 005/°C.

p.7.1
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o (aluminium) = 69.1 N/mm? (compression).
Final stress: o (steel) = 187.4 N/mm? (tension),
o (aluminium) = —9.1 N/mm?* (compression).

g Two structural members are connected together by a hinge which is formed as shown in

Fig. P.7.19. The bolt is tightened up onto the sleeve through rigid end plates until the tensile
force in the bolt is 10 kN. The distance between the head of the bolt and the nut is then
100 mm and the sleeve is 80 mm in length. If the diameter of the bolt is 15 mm and the
internal and outside diameters of the sleeve are 20 and 30 mm, respectively, calculate the final
stresses in the bolt and sleeve when an external tensile load of 5 kN is applied to the bolt.

Ans. o (bolt) =65.4 N/mm? (tension),
o (sleeve) = 16.7 N/mm?* (compression).

Rigid end plates
Sleeve 9 P

~ SSSSSSSSSSSSS
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80 mm

FIGURE P.7.19

100 mm

P.7.20 Calculate the minimum wall thickness of a cast iron water pipe having an internal diameter of

P.7.21

1 m under a head of 120 m. The limiting tensile strength of cast iron is 20 N/mm? and the
density of water is 1000 kg/m”.

Ans. 29.4 mm.

A thin-walled spherical shell is fabricated from steel plates and has to withstand an internal
pressure of 0.75 N/mm?. The internal diameter is 3 m and the joint efficiency 80%. Calculate
the thickness of plates required using a working stress of 80 N/mm?. (Note, effective thickness
of plates = 0.8 X actual thickness).

Ans. 8.8 mm.




