CHAPTER

Properties of Engineering Materials

It is now clear from the discussion in Chapter 7 that the structural designer requires a knowledge of the
behaviour of materials under different types of load before he/she can be reasonably sure of designing ,
safe and, at the same time, economic structure.

One of the most important properties of a material is its strength, by which we mean the valye of
stress at which it fractures. Equally important in many instances, particularly in elastic design, is the
stress at which yielding begins. In addition, the designer must have a knowledge of the stiffness of a
material so that he/she can prevent excessive deflections occurring that could cause damage to adjacent
structural members. Other factors that must be taken into consideration in design include the character
of the different loads. For example, it is common experience that a material, such as cast iron fractures
readily under a sharp blow whereas mild steel merely bends.

In Chapter 1 we reviewed the materials that are in common use in structural engineering; we shal|
now examine their properties in detail.

8.1 Classification of engineering materials

Engineering materials may be grouped into two distinct categories, ductile materials and brittle materj-
als, which exhibit very different properties under load. We shall define the properties of ductility and

brittleness and also some additional properties which may depend upon the applied load or which are
basic characteristics of the material.

Ductility

A material is said to be ductile if it is capable of withstanding large strains under load before fracture
occurs. These large strains are accompanied by a visible change in cross-sectional dimensions and there-
fore give warning of impending failure. Materials in this category include mild steel, aluminium and
some of its alloys, copper and polymers.

Brittleness

A britde material exhibits little deformation before fracture, the strain normally being below 5%.
Brittle materials therefore may fail suddenly without visible warning. Included in this group are con-
crete, cast iron, high-strength steel, timber and ceramics.

Elastic materials

A material is said to be elastic if deformations disappear completely on removal of the load. All known
engineering materials are, in addition, linearly elastic within certain limits of stress so that strain, within
these limits, is directly proportional to stress.
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8.2 Testing of engineering materials

The properties of engineering materials are deterr.nined mainly ny the mecha.ni(.:al testmgdof zi(cici:;me:s
machined to prescribed sizes and shapes. The testing may be static or dynailmlc. 13 nature :p i teisﬂe
the particular property being investigated. Possibly the. most common mec ach static te(:is s o o
and compressive tests which are carried out on a wide range of materials. Herrous. z:in no oo
metals are subjected to both forms of test, while compression tests are usually carried out on many
non-metallic materials, such as concrete, timber and brick, wl'flch are normally used in C(')mp'ressign.
Other static tests include bending, shear and hardness tests, while the toughness of a material, in other
words its ability to withstand shock loads, is determined by impact tests.

Tensile tests

Tensile tests are normally carried out on metallic materials and, in addition, timber. T.est pieces are
machined from a batch of material, their dimensions being specified by Codes of Practl.ce. They arj
commonly circular in cross section, although flat test pieces having rec.:tangular cross sectlon§ are use
when the batch of material is in the form of a plate. A typical test piece would have.the dimensions
specified in Fig. 8.1. Usually the diameter of a central portion of the test piece i.s fractionally less than
that of the remainder to ensure that the test piece fractures between the‘ gauge points.

Before the test begins, the mean diameter of the test piec.e is obtained by taking measu.rer:ilents at
several sections using a micrometer screw gauge. Gauge points are p'unched at the require 1glatugc::
length, the test piece is placed in the testing machine and a suitable strain measuring device, gsua y ';n
€Xtensometer, is attached to the test piece at the gauge points so that the C.XtCIISlOIl 1.s measuredoc;rerT th 'e
given gauge length. Increments of load are applied and the corresponding extensions r(eicor ed. This
Procedure continues until yield (see Section 8.3) occurs, when the extensometer is removed as a precau-
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the percentage elongation and percentage
reduction in area may be calculated. The
two parameters give a measure of the duc-
tility of the material.

A stress—strain curve is drawn (see
Figs 8.8 and 8.12), the stress normally
being calculated on the basis of the origi-
nal cross-sectional area of the test piece,
i.e. a mominal stress as opposed to an actual stress (which is based on the actual area of cross section).
For ductile materials there is a marked difference in the latter stages of the test as a considerable reduc-
tion in cross-sectional area occurs between yield and fracture. From the stress—strain curve the ultimate
stress, the yield stress and Young’s modulus, E, are obtained (see Section 7.7).

There are a number of variations on the basic tensile test described above. Some of these depend
upon the amount of additional information required and some upon the choice of equipment. Thus
there is a wide range of strain measuring devices to choose from, extending from different makes of
mechanical extensometer, e.g. Huggenberger, Lindley, Cambridge, to the electrical resistance strain
gauge. The last would normally be used on flat test pieces, one on each face to eliminate the effects of
possible bending. At the same time a strain gauge could be attached in a direction perpendicular to the
direction of loading so that lateral strains are measured. The ratio lateral strain/longitudinal strain is
Poisson’s ratio, v, (Section 7.8).

Testing machines are usually driven hydraulically. More sophisticated versions employ load cells to
record load and automatically plot load against extension or stress against strain on a pen recorder as
the test proceeds, an advantage when investigating the distinctive behaviour of mild steel at yield.

Radius, R

FIGURE 8.1
Standard cylindrical test piece.

Compression tests

A compression test is similar in operation to a tensile test, with the obvious difference that the load
transmitted to the test piece is compressive rather than tensile. This is achieved by placing the test piece
between the platens of the testing machine and reversing the direction of loading. Test pieces are nor-
mally cylindrical and are limited in length to eliminate the possibility of failure being caused by insta-
bility (Chapter 21). Again contractions are measured over a given gauge length by a suitable strain
measuring device.

Variations in test pieces occur when only the ultimate strength of the material in compression is
required. For this purpose concrete test pieces may take the form of cubes having edges approximately
10 cm long, while mild steel test pieces are still cylindrical in section but are of the order of 1 cm long.

Bending tests

Many structural members are subjected primarily to bending moments. Bending tests are therefore car-
ried out on simple beams constructed from the different materials to determine their behaviour under
this type of load.

Two forms of loading are employed the choice depending upon the type specified in Codes of
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ding system as shown in Fig. 8.2(a). Two concentrated loads are applied symmetrically to
e lbgam producing zero shear force and constant bending moment in the central span of the
:,th e(Fig,. 8.2(b) and (c)). The condition of pure bending is therefore achieved in the central span
(sic Section 9.1). . ’ . . |

The second form of loading system consists of a single concentrated load at mid-span (Fig. 8.3(a))
which produces the shear force and bending moment diagrams shown in Fig. 8.3(b) and (c).

The loads may be applied manually by hanging weights on the beam or by a testing machine.
Deflections are measured by a dial gauge placed underneath the beam. From the recorded results a
load—-deﬂection diagram is plotted.

For most ductile materials the test beams continue to deform without failure and fracture does
not occur. Thus plastic properties, e.g. the ultimate strength in bending, cannot be determined for
uch materials. In the case of brittle materials, including cast iron, timber and various plastics, failure
fioes oceur, so that plastic properties can be evaluated. For such materials the ultimate strength in bend-
ing is defined by the modulus of rupture. This is taken to be the maximum direct stress in bending,

o corresponding to the ultimate moment M, and is assumed to be related to M, by the elastic
X,

relationship
M,
Oxu = 7 Jmax (see Eq. 9.9)

Other bending tests are designed to measure the ductility of a material and involve the bending of a
bar round a pin. The angle of bending at which the bar starts to crack is then taken as an indication of

its ductility.
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Fkg tensile strength so that hardness tests may be used to determine
the properties of a finished structural member where tensile and
other tests would be impracticable. Hardness tests are also used to
investigate the effects of heat treatment, hardening and tempering

ih and of cold forming. Two types of hardness test are in common

use: indentation tests and scratch and abrasion tests.

Indentation tests may be subdivided into two classes: static and
dynamic. Of the static tests the Brinell is the most common. In
this a hardened steel ball is pressed into the material under test by
a static load acting for a fixed period of time. The load in kg
divided by the spherical area of the indentation in mm? is called
the Brinell Hardness Number (BHN). Thus in Fig. 8.5, if D is the diameter of the ball, F the load in
E ) the depth of the indentation, and 4 the diameter of the indentation, then

F
BHN = = aF

wDh 7DD~ VDT =22

In practice the hardness number of a given material is found to vary with Fand D so that for uni-
formity the test is standardized. For steel and hard materials F= 3000 kg and D = 10 mm while for
soft materials 7= 500 kg and D = 10 mm; in addition the load is usually applied for 15 s.

In the Brinell test the dimensions of the indentation are measured by means of a microscope. To
avoid this rather tedious procedure, direct reading machines have been devised of which the Rockwell is
typical. The indenting tool, again a hardened sphere, is first applied under a definite light load. This
indenting tool is then replaced by a diamond cone with a rounded point which is then applied under a
specified indentation load. The difference between the depth of the indentation under the two loads is
taken as a measure of the hardness of the material and is read directly from the scale.

A typical dynamic hardness test is performed by the Shore Scleroscope which consists of a small
hammer approximately 20 mm long and 6 mm in diameter fitted with a blunt, rounded, diamond
point. The hammer is guided by a vertical glass tube and allowed to fall freely from a height of
25 cm onto the specimen, which it indents before rebounding. A certain proportion of the energy
of the hammer is expended in forming the indentation so that the height of the rebound, which
depends upon the energy still possessed by the hammer, is taken as a measure of the hardness of
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FIGURE 8.5
Brinell hardness test.
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FIGURE 8.3
Bending test on a beam, single load.

Load Shear tests

) Two main types of shear test are used to deter-

7 Testpiece mine the shear properties of materials. One type
I/ investigates the direct or transverse shear strength

% 2
V/ 7 of a material and is used in connection with the
/ |_— Block shear strength of bolts, rivets and beams. A typical
arrangement is shown diagrammatically in

Fig. 8.4 where the test piece is clamped to a block
and the load is applied through the shear tool
Shear test. until failure occurs. In the arrangement shown the
test piece is subjected to double shear, whereas if it is extended only partially across the gap in the block
it would be subjected to single shear. In either case the average shear strength is taken as the maximum
load divided by the shear resisting area.

The other type of shear test is used to evaluate the basic shear properties of a material, such as the
shear modulus, G (Eq. (7.9)), the shear stress at yield and the ultimate shear stress. In the usual form of
test a solid circular-section test piece is placed in a torsion machine and twisted by controlled increments
of torque. The corresponding angles of twist are recorded and torque—twist diagrams plotted from
which the shear properties of the material are obtained. The method is similar to that used to determine
the tensile properties of a material from a tensile test and uses relationships derived in Chapter 11.

Shear tool

[

d
the material.

A number of tests have been devised to measure the ‘scratch hardness’ of materials. In one test, the
smallest load in grams which, when applied to a diamond point, produces a scratch visible to the naked
€ye on a polished specimen of material is called its hardness number. In other tests the magnitude of
load required to produce a definite width of scratch is taken as the measure of hardness. Abrasion
» involving the shaking over a period of time of several specimens placed in a container, measure
€ resistance to wear of some materials. In some cases there appears to be a connection between wear
and hardness number although the results show no level of consistency.

FIGURE 8.4

Impact tests

has been found thar certain materials, particularly heat-treated steels, are susceptible to failure under

loading whereas an ordinary tensile test on the same material would show no abnormality.

€t tests measure the ability of materials to withstand shock loads and provide an indication of their
i

Hardness tests
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Izod impact test.
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FIGURE 8.7
Charpy impact test.

Both tests rely on a striker or weight attached to a pendulum. The pendulum is released from a
fixed height, the weight strikes a notched test piece and the angle through which the pendulum then
swings is a measure of the toughness of the material. The arrangement for the Izod test is shown dia-
grammatically in Fig. 8.6(a). The specimen and the method of mounting are shown in detail in
Fig. 8.6(b). The Charpy test is similar in operation except that the test piece is supported in a different
manner as shown in the plan view in Fig. 8.7.

8.3 Stress—strain curves

We shall now examine in detail the properties of the different materials used in civil engineering con-
struction from the viewpoint of the results obtained from tensile and compression tests.

Low carbon steel (mild steel)

A nominal stress—strain curve for mild steel, a ductile material, is shown in Fig. 8.8. From 0 to ‘a’ the
stress—strain curve is linear, the material in this range obeying Hooke’s law. Beyond ‘@’, the limit of pro-
portionality, stress is no longer proportional to strain and the stress—strain curve continues to ‘b’, the
elastic limit, which is defined as the maximum stress that can be applied to a material without produc-
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FIGURE 8.8
Stress—strain curve for mild steel.

material is stressed beyond ‘b’ and the load then
removed, a residual strain exists at zero load. For

many materials it is impossible to detect a difference
between the limit of proportionality and the elastic
limit. From 0 to ‘b’ the material is said to be in the
FIGURE 8.9 elastic range while from b’ to fracture the material is
in the plastic range. The transition from the elastic to
the plastic range may be explained by considering the
arrangement of crystals in the material. As the load is applied, slipping occurs between the crystals
which are aligned most closely to the direction of load. As the load is increased, more and more crystals
slip with each equal load increment until appreciable strain increments are produced and the plastic
range is reached.

A further increase in stress from ‘b’ results in the mild steel reaching its upper yield point at ‘c’ fol-
lowed by a rapid fall in stress to its lower yield point at ‘d’. The existence of a lower yield point for mild
steel is a peculiarity of the tensile test wherein the movement of the ends of the test piece produced by
the testing machine does not proceed as rapidly as its plastic deformation; the load therefore decreases,
as does the stress. From ‘d” to ‘f* the strain increases at a roughly constant value of stress until szrain
hardening (see Section 8.4) again causes an increase in stress. This increase in stress continues, accompa-
nied by a large increase in strain to ‘g’, the ultimate stress, oy, of the material. At this point the test
piece begins, visibly, to ‘neck’ as shown in Fig. 8.9. The material in the test piece in the region of the
'{leck’ is almost perfectly plastic at this stage and from this point, onwards to fracture, there is a reduc-
tion in nominal stress.

For mild steel, yielding occurs at a stress of the order of 300 N/mm?. At fracture the strain (i.e. the
elongation) is of the order of 30%. The gradient of the linear portion of the stress—strain curve gives a
value for Young’s modulus in the region of 200 000 N/mm?.

The characteristics of the fracture are worthy of examination. In a cylindrical test piece the two
halves of the fractured test piece have ends which form a ‘cup and cone’ (Fig. 8.10). The actual failure

Planes in this case are inclined at approximately 45° to the axis of loading and coincide with planes of
IR chear crrece (Rartinn 1A Y Similashy i€ a Har sancils cherimean nf mild steel ic nnliched and

Neck

‘Necking' of a test piece in the plastic range.
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then stressed, a pattern of fine lines appears on the -
D G polished surface at yield. These lines, which were Stress q

first discovered by Liider in 1854, intersect approxi. out f--—-—"—"==

mately at right angles and are inclined at 45° to the 0.1% proof "%, Fracture
FIGURE 8.10 axis of the specimen, thereby coinciding with planeg " siress

of maximum shear stress. These forms of yielding
and fracture suggest that the crystalline structure of
the steel is relatively weak in shear with yielding tak
ing the form of the sliding of one crystal plane ove;

‘Cup-and-cone’ failure of a mild steel test piece.

7 Y

Deformed another rather than the tearing apart of two crysty]

test piece

planes.
The behaviour of mild steel in compression
very similar to its behaviour in tension, particularly

0 0.001 Strain &

FIGURE 8.12

in the elastic range. In the plastic range it is no =
o 1 ¥ “Pis Stress—strain curve for aluminium.

sible to obtain ultimate and fracture loads since, dye
to compression, the area of cross section increases g
the load increases producing a ‘barrelling’ effect 44
shown in Fig. 8.11. This increase in cross-sectiona]
area tends to decrease the true stress, thereby increas-
ing the load resistance. Ultimately a flat disc is pro-

N

FIGURE 8.11

‘Barrelling’ of a mild steel test piece in
compression.

FIGURE 8.13

duced. For design purposes the ultimate stresses of mild steel in tension and compression are assumed
to be the same.

The ductility of mild steel is often an advantage in that structures fabricated from mild steel do not
generally suffer an immediate and catastrophic collapse if the yield stress of a member is exceeded. The
member will deform in such a way that loads are redistributed to other adjacent members and at the
same time will exhibit signs of distress thereby giving a warning of a probable impending collapse.

Higher grades of steel have greater strengths than mild steel but are not as ductile. They also possess
the same Young’s modulus so that the higher stresses are accompanied by higher strains.

Steel structures are very susceptible to rust which forms on surfaces exposed to oxygen and moisture

‘Double-cup’ failure of an aluminium alloy test piece.

Stress
fog

Fracture

(air and rain) and this can seriously weaken a member as its cross-sectional area is eaten away.
Generally, exposed surfaces are protected by either galvanizing, in which they are given a coating of
zinc, or by painting. The latter system must be properly designed and usually involves shot blasting the
steel to remove the loose steel flakes, or millscale, produced in the hot rolling process, priming, under-
coating and painting. Cold-formed sections do not suffer from millscale so that protective treatments

Strain ¢

RE 8.14

are more easily applied. :
lress—strain curve for a brittle material.

Aluminium

Aluminium and some of its alloys are also ductile materials, although their stress—strain curves do not
have the distinct yield stress of mild steel. A typical stress—strain curve is shown in Fig. 8.12. The
points ‘a’ and ‘b’ again mark the limit of proportionality and elastic limit, respectively, but are difficult
to determine experimentally. Instead a proof stress is defined which is the stress required to produce a
given permanent strain on removal of the load. In Fig. 8.12, a line drawn parallel to the linear portion
of the stress—strain curve from a strain of 0.001 (i.e. a strain of 0.1%) intersects the stress—strain curve
at the 0.1% proof stress. For elastic design this, or the 0.2% proof stress, is taken as the working stress.

Beyond the limit of proportionality the material extends plastically, reaching its ultimate stress, Oulv
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A feature of the fracture of aluminium alloy
test pieces is the formation of a ‘double cup’ as
shown in Fig. 8.13, implying that failure was
initiated in the central portion of the test piece
while the outer surfaces remained intact. Again
considerable ‘necking’ occurs.

In compression tests on aluminium and its
ductile alloys similar difficulties are encoun-
tered to those experienced with mild steel. The
stress—strain curve is very similar in the elastic
range to that obtained in a tensile test but the
ultimate strength in compression cannot be
determined; in design its value is assumed to
coincide with that in tension.

Aluminium and its alloys can suffer a form
of corrosion particularly in the salt laden atmo-
sphere of coastal regions. The surface becomes
pitted and covered by a white furry deposit.
This can be prevented by an electrolytic process
called anodizing which covers the surface with
an inert coating. Aluminium alloys will also
corrode if they are placed in direct contact with
other metals, such as steel. To prevent this,
plastic is inserted between the possible areas of
contact.

Brittle materials

These include cast iron, high-strength steel,
concrete, timber, ceramics, glass, etc. The plas-
tic range for brittle materials extends to only
small values of strain. A typical stress—strain
curve for a brittle material under tension is
shown in Fig. 8.14. Little or no yielding occurs
and fracture takes place very shortly after the
elastic limit is reached.

The fracture of a cylindrical test piece takes

form of a single failure plane approximately perpendicular to the direction of loading with no visi-
€ ‘necking’ and an elongation of the order of 2—3%.

d In compression the stress—strain curve for a brittle material is very similar to that in tension except
1 t failure occurs at a much higher value of stress; for concrete the ratio is of the order of 10: 1. This
! ﬁ'lﬁu'ght to be due to the presence of microscopic cracks in the material, giving rise to high stress con-
ations which are more likely to have a greater effect in reducing tensile strength than compressive

T:he form of the fracture of brittle materials under compression is clear and visible. For example, a
“°n C}ﬂ'{nder cracks on a diagonal plane as shown in Fig. 8.15(a) while failure of a concrete cube is
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(a) (b) (c)

FIGURE 8.15

Failure of brittle materials.
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FIGURE 8.16

Stress—strain curve for a fibre composite.

sulphuric acid. Bricks and stone are vulnerable to repeated wetting and freezing in which water, penetrat-
ing any surface defect, can freeze causing parts of the surface to flake off or spa/l. Some protection can be
provided by masonry paints but these require frequent replacement. An alternative form of protection is a
sealant which can be sprayed onto the surface of the masonry. The disadvantage of this is that, while pre-
venting moisture penetrating the building, it also prevents water vapour from leaving, The ideal solution is
to use top quality materials, do not apply any treatment and deal with any problem as it arises.

Timber, as we noted in Chapter 1, can be protected from fungal and insect attacks by

suitable treatments.

Composites
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cress—strain curves described in the preceding discussion are those produced in tensile or

Figure 8.15(c) shows a typical failure of
a
in which the strain is applied at a negligible rate. A rapid strain application would

rectangular block of timber in compressioy,

Al dhe §

ression tests

Failure in all these cases is due primarily ¢o , com in significant changes in the apparent properties of the materials giving possible variations in yield
; o i

breakdown in shear on planes inclined to the resu’t fup to 100%.

direction of compression. seress ©

Brittle materials can suffer dcterioratio,1
in hostile environments although concrete jg
very durable and generally requires no majp_
tenance. Concrete also provides a protectiye
cover for the steel reinforcement in beams
where the amount of cover depends on the
diameter of the reinforcing bars and the
degree of exposure of the beam. In some
situations, e.g. in foundations, concrete i
prone to chemical attack from sulphates cop.
tained in groundwater although if these age
known to be present sulphate resisting
cement can be used in the concrete.

Brick and stone are durable materials and
can survive for hundreds of years as evidenced
by the many medieval churches and Jacobean
houses which still exist. There are, of course,
wide variations in durability. For example,
granite is extremely hard whereas the much
softer sandstone can be worn away over peri-
ods of time by the combined effects of wind
and rain, particularly acid rain which occurs
when sulphur dioxide, produced by the burn-

ing of fossil fuels, reacts with water to form

/ H

g.4 Strain hardening

I ess—strain curve for a material is influenced by the strain history, or the loading and unloading
- aterial, within the plastic range. For example, in Fig. 8.17 a test piece is initially stressed in ten-
‘ff fhi mond the yield stress at, ‘a’, to a value at ‘b’. The material is then unloaded to ‘c’ and reloaded
!mf;, er);ducing an increase in yield stress from the value at ‘a’ to the value at ‘d’. Subsequent unloading
@ ¢ ’I:md loading to ‘j’ increases the yield stress still further to the value at ‘h’. This increase in strength
wuglting from the loading and unloading is known as strain hardening. It can be seen from Fig. 8.17
’:ﬂ the stress—strain curve during the unloading and loading cycles forms loops (the shaded areas in
Fig. 8.17). These indicate t%lat strain energy is l‘ost during the‘ cycle, the energy be'ing dissipaFed in the
form of heat produced by internal fnctl.on. This energy loss is known. as mec/m‘mm.l {yysteres.zs and the
kops as hysteresis loops. Although the u}tlmate s‘tress is increased by strain hflrdenlng .1t 1s.not mﬂuen?ed
{0 the same extent as yield stress. The increase in strength produced by strain hardening is accompanied

by decreases in toughness and ductility.

8.5 Creep and relaxation

e have seen in Chapter 7 that a given load produces a calculable value of stress in a structural mem-
and hence a corresponding value of strain once the full value of the load is transferred to the mem-
. However, after this initial or ‘instantaneous’ stress and its corresponding value of strain have been
attained, a great number of structural materials continue to deform slowly and progressively under load
over a period of time. This behaviour is known as creep. A typical creep curve is shown in Fig. 8.18.
Some materials, such as plastics and rubber, exhibit creep at room temperatures but most structural
erials require high temperatures or long-duration loading at moderate temperatures. In some ‘soft’
etals, such as zinc and lead, creep occurs over a relatively short period of time, whereas materials such
concrete may be subject to creep over a period of years. Creep occurs in steel to a slight extent at
hormal temperatures but becomes very important at temperatures above 316°C.

Closely related to creep is relaxation. Whereas
> creep involves an increase in strain under constant
stress, relaxation is the decrease in stress experi-
enced over a period of time by a material subjected
to a constant strain.

8.6 Fatigue

Fibre composites have stress—strain characteristics which indicate that they are brittle materials
(Fig. 8.16). There is little or no plasticity and the modulus of elasticity is less than that of steel and alu-
minium alloy. However, the fibres themselves can have much higher values of strength and modulus
of elasticity than the composite. For example, carbon fibres have a tensile strength of the order
2400 N/mm” and a modulus of elasticity of 400 000 N/mm?.

Fibre composites are highly durable, require no maintenance and can be used in hostile chemical

0 c g Strain ¢

Structural members are frequently subjected to
repetitive loading over a long period of time. For
example, the members of a bridge structure suffer
variations in loading possibly thousands of times a
day as traffic moves over the bridge. In these cir-
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Secondary creep

el that can be withstood for an indefinite number of cycles. This stress is known as the endur-

Typical creep curve.

L

Location of stress

a stress lev . - .. : ;
ance limit of the material; no such limit has been found for aluminium and its alloys. Fatigue data are

- aquend}’ presented in the form of an S—# curve or stress-endurance curve as shown in Fig. 8.21.
The stress-endurance curves shown in Fig. 8.21 correspond to the average value of V at each stress
mplicude since the given stress has a wide range of values of NV; even under carefully controlled condi-
s the ratio of maximum /N to minimum /V may be as high as 10:1. Two other curves may therefore
 drawn as shown in Fig. 8.22 enveloping all, or nearly all, the experimental results; these curves are
wn as the confidence limizs. If 99.9 % of all the results lie between the curves, that is, only 1 in
00 falls outside, they represent the 99.9% confidence limits. If 99.99999% of results lie between the
urves only 1 in 107 results falls outside them and they represent the 99.99999% confidence limits.
The results from tests on a number of specimens may be represented as histograms in which the

Stress)
o

Provision of fillet

concentration minimizes stress umber of specimens failing within certain ranges R of V is plotted against V. Then, if IV,, is the aver-
concentration e value of IV at a given stress amplitude, the probability of failure occurring at V cycles is given by
FIGURE 8.19 FIGURE 8.20
—— , - - PIN) =[1/(o0y/2m)] exp(—(N = Nay)/0T"/2} 8.1)
Stress concentration location. Alternating stress in fatigue loading.

level of stress substantially below the ultimate stress for non-repetitive static loads; this phenomenon is

known as fatigue.

Fatigue cracks are most frequently initiated at sections in a structural member where changes in
geometry, e.g. holes, notches or sudden changes in section, cause stress concentrations. Designers seck t0
eliminate such areas by ensuring that rapid changes in section are as smooth as possible. Thus at re-
entrant corners, fillets are provided as shown in Fig. 8.19.

Other factors which affect the failure of a material under repetitive loading are the type of loading
(fatigue is primarily a problem with repeated tensile stresses due, probably, to the fact that microscopic
cracks can propagate more easily under tension), temperature, the material, surface finish (machine
marks are potential crack propagators), corrosion and residual stresses produced by welding.

Frequently in structural members an alternating stress, 0, is superimposed on a static or meaf
SUESS, Omean, as illustrated in Fig. 8.20. The value of o is the most important factor in determining
the number of cycles of load that produce failure. The stress, oy, that can be withstood for a specifiec

| which o is the standard deviation of the whole population of NV values. The derivation of Eq. (8.1)
pends on the histogram approaching the profile of a continuous function close to the normal distribution
it does as the interval of IV,,/R becomes smaller and the number of tests increases. The cumulative
ability, which gives the probability that a particular specimen fails at or below IV cycles, is defined as

N

P(N) = J PN AN (8.2)

Lhe probability that a specimen endures more than IV cycles is then 1 — P(V). The normal distri-
allows negative values of NV which is clearly impossible in a fatigue testing situation. Other distri-
> extreme value distributions, are more realistic and allow the existence of minimum fatigue
nces and fatigue limits.

€ aging portion of a fluctuating load cycle occurs when the stress is tensile; this causes cracks
1 and grow. Therefore, if a steady tensile stress is superimposed on a cyclic stress the maximum
stress during the cycle increases and the number of cycles to failure decreases. An approximate
d of assessing the effect of a steady mean value of stress is provided by a Goodman diagram

Ty SN
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1.0 mean stress levels to give a constant fatigue life, I

Fig. 8.23 §, is the allowable stress amplitude, Sen B
the stress amplitude required to produce fatigue at N
cycles with zero mean stress, S, is the mean Streg
and S, the ultimate tensile stress. If S, = S, any oydlic
stress causes failure while if S, =0 the allowabe
stress amplitude is S, 0. The equation of the straigh.

line portion of the diagram is

(Sa/Sa,O) = [1 - (Sm/Su)]

Experimental evidence suggests a non-linear re]y.

S, = 450[1 — (180/750)]

S, =342 N/mm’”

SalSap

S = Oy o O

(8.3)

tionship for particular materials. Equation (8.3) theq . S = (Omax + Oumin) /2 (ii)
becomes ) o
ng Eqs (i) and (if)
(8a/820) = [1 = (Sm/S)™] (8.4) S 425, =200
FIGURE 8.23 where m lies between 0.6 and 2. The relationship for
Goodman diagram the case of m =2 is known as the Gerber parabola, 342 + 2 X 180 = 20y
-
The allowable stress amplitude for a low-carbon steel is * 225 N/mm? and its ultimate tensile stre e
is 750 N/mm?®. The steel is subjected to a repeated cycle of stress in which the minimum stress | en, from Eq. ()
zero. Calcuiatee the safe range of stress based on the Qoaa:dman aﬁd Gerber prezdlctmns. . min = 351 — 342 = 9 N/mm?
For the Goodman prediction Eq. (8.3) applies in which S, o = 450 N/mm? and S,, = S,/2. Then 7

Sa = 450[1 — (S5,/2 X 750)]
from which In many practical situations the amplitude of the alternating stress varies and is frequently random
’ k 1 nature. The S—7 curve does not, therefore, apply directly and an alternative means of predicting
S, =346 N/mm’ ailure is required. Miner’s cumulative damage theory suggests that failure will occur when

For the Gerber prediction 7 =2 in Eq. (8.4). Then
S, =450[1 — (S,/2 X 750)*]

N (8.5)

e ey here 7y, 75,..., n, are the number of applications of stresses 0,1, Omean and Ny, N, .., N, are the
which simplifies to : ; umber of cycles to failure of stresses 0.1, O rmean-
82 +50008, — 2.25 X 10° =0
Solving gives 8.3
S, =415 N/mm?* steel specimen is subjected to a reversed cyclic loading in a continuous sequence of
ollows:
t =150 N/mm?
- +125 N/mm?
EXAMPLE 8.2 s at =120 N/mm?
If the steel in Ex. 8.1 is subjected to an alternating cycle of tensile stress about a mean stre: +100 N/mm?

of 180 N/mm” calculate the safe range of stress based on the Goodman prediction and also t

maximum stress values.

g is applied at the rate of 80 cycles/hour and the fatigue lives at these stress levels are
B2 2nd 2.5¢ 10°. resnecrivele. calcnlatevhe fife of the snevimen.
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Suppose that the specimen fails after P sequences of the four stages. Then, from Eq. (8.6)
(a) Tension, normal
T to faces of crack

/104 5 i %< 10%) ) X N =1
P[(200/10%) + (250/10%) + (400/1.5 X 10%) + (550/2 X 10°)] = 1 o faces of crad

which gives

P=1558

The total number of cycles in the four stages is 1400 so that for a loading rate of 80 cycles/hoy
the total number of hours to fracture is given by 3

Total hours to fracture = 35.8 X 1400/80 = 626.5

Crack front

l (b) Shear, normal to
crack front in plane
. of crack (edge
Crack propagation sliding mode)
We have noted that the fatigue life of a structural member can be severely compromised by the pres-
ence of cracks. It is useful, therefore, for a designer to be able to predict the rate at which a perceived
crack will propagate until it reaches proportions at which the member will fail.
There are three basic modes of crack growth and these are shown in Fig. 8.24.
Generally, the stress field in the region of the crack tip is described by a two-dimensional mode]
which may be used as an approximation for many practical three-dimensional loading cases. Texts on
fracture mechanics suggest that the stress system at a distance 7 (r=a) from the tip of the crack of
length 24, as shown in Fig. 8.25, can be expressed in the form

Crack front

(c) Shear, parallel to
crack front
(tearing mode)

S,, 80, Sr0 = [K /@) /21£ (6) (8.6)

in which f(f) is a different function for each of the three stresses and K is the stress concentration factor,
K is a function of the nature and magnitude of the applied stress levels and also of the crack size. The
terms (217)"/? and f{f) map the stress field in the vicinity of the crack and are the same for all cracks
under external loads that cause crack openings of the same type.

Equation (8.6) applies to all modes of crack opening with K having different values depending on
the geometry of the structure, the nature of the applied loads and the type of crack.

Experimental data show that crk growth and residual strength data are better correlated using K
than any other parameter. X may be expressed as a function of the nominal applied stress, S, and the
crack length in the form

Crack front

FIGURE 8.24
Basic modes of crack growth

ere K is a reference value of the stress concentration factor which depends on the loading. For the
iple case of a remotely loaded plate in tension

Ko = S(ra)'/? (8.10)

'Egs (8.9) and (8.7) are identical so that, for a given ratio of crack length to plate width, o is the
me in both formulations. In more complex cases, for example the in-plane bending of a plate of
dth 26 and having a central crack of length 24

Ko = (3Ma/46%)(ra) "/ (8.11)

M is the bending moment per unit thickness. Comparing Eqs (8.11) and (8.7) we see that
/40 which is the value of direct stress given by basic bending theory at a point a distance *a/2
the central axis (sec Chapter 9). However, if S is specified as the bending stress in the outer fibres
plate, that is at * 4, then S=3M/24% clearly the different specifications of S require different
of a. POn the other hand the final value of K must be independent of the form of presentation

K = S(ra)*a (8.7)

in which « is a non-dimensional coefficient usually expressed as the ratio of crack length to any conve-
nient local dimension in the plane of the component; for a crack in an infinite plate under an applied
uniform stress level, S, remote from the crack, o = 1.0. Alternatively, in cases where opposing loads, B
are applied at points close to the crack

K= Poc/(mz)l/2

in which P is the load/unit thickness. Equations (8.7) and (8.8) may be rewritten as

| ZG 7




[Eiidein - dRi
202 CHAPTER 8 Properties of Engineering Materials

g o LT

8.6 Fatigue 203

From Eq. (8.6) it can be seen that the stress concentration at a point ahead of a crack can be

od in terms of the parameter K. Failure occurs when K reaches a critical value K. This is known

312 3/2

ress
or N/mm™~.

che fracture toughness of the material and has units MN/m
as

\MPLE 8.4

. finite plate has a fracture toughness of 3300 N/mm>2. If the s et
k of 3 mm radius calculate the maximum allowable stress that could be applied around the
. of the plate. P

In chis case Eq. (8.7) applies with o= 0.64. Then,

§ =3300/[(r X 3)'/* X 0.64]
bbb L.
° § = 1680 N/mm?
FIGURE 8.25 3 : 5
Stress field in the vicinity of a crack
to ensure that the formula used and the way in which the nominal stress is defined are compatible with ! . VLE‘ 8 5

those used in the derivation of c.

A number of methods are available for determining the values of X and c. In one method the solu-
tion for a structural member subjected to more than one type of loading is obtained from available
standard solutions using superposition or, if the geometry is not covered, two or more standard solu-

eel plate of Ex. 8.4 develops an elliptical crack of length 6 mm and width 2.4 mm calcul.
ble stress that could be applied around the boundary of the plate.
case bla=1.2/3=0.4. Then o =1.12 X 1.15 = 1.164 and from Eq. (8.7)

tions may be compounded. Alternatively a finite element analysis may be used. $=13300/[(r X 3)"2 X 1.16
The coefficient « in Eq. (8.7) has, as we have noted, different values depending on the plate and 4 Lo
crack geometries. The following are values of « for some of the more common cases.
i. A semi-infinite plate having an edge crack of length 2; o = 1.12. $=931.5N/ mmz

ii. An infinite plate having an embedded circular crack or a semi-circular crack each of radius  and
lying in a plane normal to the applied stress; o = 0.64.

iii. An infinite plate having an embedded elliptical crack of axes 22 and 24 or a semi-elliptical crack of
width 24 in which the depth  is less than half the plate thickness, each lying in a plane normal to
the applied stress; o = 1.12& in which @ varies with the ratio 4/a as follows:

PLE 8.6

that the plate of Ex. 8.4 has a finite width of 50 mm and develops a central crack of length
then is the allowable stress that could be applied around the boundary of the plate?

bla 0 02 04 06 08
& 1.0 1.05 115 1.28 142

For b/la =1 the situation is identical to case (ii).
iv. A plate of finite width w having a central crack of length 24 where 2= 0.3w;

o = [sec(ma/w)]"/? = [sec(r X 3/50)]"/2 = 1.018

o = [sec(ar /w)]/2.

§=3300/[(r X 3)'/2 X 1.018]
V. For a plate of finite width w having two symmetrical edge cracks each of depth 24, Eq. (8.7)
becomes

§=1056 N/mm?
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Having obtained values of the stress concentration factor and the coefficient « fatigue propagation rateg
may be estimated. From these the life of a structure containing cracks or crack-like defects may be
determined. Alternatively the loading condition may be modified or inspection periods arranged so thy,
the crack is detected before failure. The following summarises the results detailed in specialised texts oy
fracture mechanics. '
Under constant amplitude loading the rate of crack propagation may be represented graphically by
curves described in general terms by the law

(da/dN) = f(R, AK) (8.1

in which AKis the stress concentration factor range and R = S.in/Smax- If Eq. (8.7) is used

a2 =1708% /(m X 175%) = 30.3 mm
it can be seen from Eq. (8.14) that C=40X 107" and 7= 4. Substituting the relevant
Leters in Eq. (8.17) gives
Ne = {1/[40 X 10715(175 X 7/2)4}[(1/0.1) — (1/30.3)]

i
Nt = 26919 cycles

AK = (Smax — Smin)(2)'/*cx (8.13)

The curves represented by Eq. (8.12) may be divided into three regions. The first corresponding ¢
a very slow crack growth rate (<10™° m/cycle) where the curves approach a threshold value of stregg
concentration factor AK™ corresponding to 4 X 107! m/cycle, that is, no crack growth. In the second
region (10°® =107 m/cycle) much of the crack life takes place and, for small ranges of AK
Eq. (8.12) may be represented by

-
8.7 Design methods

lﬁ Section 8.3 we examined stress—strain curves for different materials and saw that, generally, there
2re two significant values of stress: the yield stress, oy, and the ultimate stress, oy, Either of these two
es may be used as the basis of design which must ensure, of course, that a structure will adequately
orm the role for which it is constructed. In any case the maximum stress in a structure should be
below the elastic limit of the material otherwise a permanent set will result when the loads are
ied and then removed.

& Two design approaches are possible. The first, known as elastic design, uses either the yield stress (for
ile materials), or the ultimate stress (for brittle materials) and establishes a working or allowable stress
ichin the elastic range of the material by applying a suitable factor of safety whose value depends upon a
amber of considerations. These include the type of material, the type of loading (fatigue loading would
quire a larger factor of safety than static loading which is obvious from Section 8.6) and the degree of
omplexity of the structure. Therefore for materials such as steel, the working stress, o, is given by

(da/dN) = C(AK)" (8.14)

in which C and 7 depend on the material properties; over small ranges of d#/dN and AK, C and 5
remain approximately constant. The third region corresponds to crack growth rates >107° m/cycle
where instability and final failure occur.

An attempt has been made to describe the complete set of curves by the relationship

(da/dN) = C (AK)"/[(1 — BK. — AK] (8.15)

in which K is the fracture toughness of the material obtained from toughness tests. Integration of
Eq. (8.14) or (8.15) analytically or graphically gives an estimate of the crack growth life of the struc-
ture, that is the number of cycles required for a crack to grow from an initial size to an
unacceptable length or the crack growth rate for failure whichever is the design criterion. Thus, for
example, integration of Eq. (8.14) gives, for an infinite width plate for which oo = 1.0

gt (8.18)
n
ere 7 is the factor of safety, a typical value being 1.65. For a brittle material, such as concrete, the
VI = [@ /)1 = /2)] * J CUS — ST (8.16) il Do given by
’ ., = Tt (8.19)
and for which #> 2. An analytical integration may only be carried out if 7 is an integer and « is in the
form of a polynomial otherwise graphical or numerical techniques must be employed. Substituting the

vhich 7 is of the order of 2.5.
limits in Eq. (8.16) and taking /V; = 0, the number of cycles to failure is given by !

stic design has been superseded for concrete by limit state or ultimate load design and for steel by
tic design (or limit, or ultimate load design). In this approach the structure is designed with a given
or of safety against complete collapse which is assumed to occur in a concrete structure when the
€8s reaches 0 and occurs in a steel structure when the stress at one or more points reaches oy (see
1 9.10). In the design process working or actual loads are determined and then factored to give
tequired ultimate or collapse load of the structure. Knowing o, (for concrete) or oy (for steel) the
ate section may then be chosen for the structural member.
factors of safety used in ultimate load design depend upon several parameters. These may be
d into those related to the material of the member and those related to loads. Thus in the ultimate
of a reinforced concrete beam the values of o for concrete and oy for the reinforcing steel

ored by partial safety factors to give design strengths that allow for variations of workmanship or qual-
1 1 r. .1 PR | L. r .

control in manifanenn L s NI | PRI " I SN S || SE ¥~

Ne =2[(1/a&") — (1/a"22) /{C(# — 2)[(Smax — Swin)/2]"} 8.17)

-
EXAMPLE 8.7
An infinite plate contains a crack having an initial length of 0.2 mm and is subjected to a cyclic:
repeated stress range of 175 N/mm?>. If the fracture toughness of the plate is 1708 N/mm®? and th
rate of crack growth is 40 X 107 (AK)4 mm/cycle determine the number of cycles to failure.

The crack length at failure is given by Eq. (8.7) in which a=1, K=1708 N/mm®” an
§=175 N/mm?. Then :
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for the reinforcement. Note that the design strength in both cases is less than the actual strength. In add;.
tion, as stated above, design loads are obtained in which the actual loads are increased by multiplying the

latter by a partial safety factor which depends upon the type of load being considered.

As well as strength, structural members must possess sufficient stiffness, under normal working
loads, to prevent deflections being excessive and thereby damaging adjacent parts of the structure,
Another consideration related to deflection is the appearance of a structure which can be adversely
affected if large deflections cause cracking of protective and/or decorative coverings. This is particularly
critical in reinforced concrete beams where the concrete in the tension zone of the beam cracks; thjg
does not affect the strength of the beam since the tensile stresses are withstood by the reinforcement,
However, if deflections are large the crack widths will be proportionately large and the surface finjsh

and protection afforded by the concrete to the reinforcement would be impaired.

Codes of Practice limit deflections of beams either by specifying maximum span/depth ratios or by
fixing the maximum deflection in terms of the span. A typical limitation for a reinforced concrete
beam is that the total deflection of the beam should not exceed span/250. An additional proviso is that
the deflection that takes place after the construction of partitions and finishes should not exceed span/

350 or 20 mm, whichever is the lesser. A typical value for a steel beam is span/360.

It is clear that the deflections of beams under normal working loads occur within the elastic range
of the material of the beam no matter whether elastic or ultimate load theory has been used in thejr
design. Deflections of beams, therefore, are checked using elastic analysis.

8.8 Material properties

Table 8.1 lists some typical properties of the more common engineering materials.

Table 8.1

Brass
Bronze
Cast iron

Concrete

Copper
Steel (mild)

Timber
softwood

fihra)

Aluminium alloy

(medium strength)

Steel (high carbon)
Prestressing wire

hardwood
Composite (glass

27.0
82.5
87.0
72.3

22.8

80.6
77.0
77.0

6.0

70 000
103 000
103 000
103 000

21400

117000
200 000
200 000
200 000

7000
12000
20 000

40 000
41 000
45 000
41 000

41 000
79 000
79 000

Yield

(N/mm?)

290
103
138

245
250
414

o (N/mm?)
440
276
345
552
(compression)
138
(tension)
20.7
(compression)
345
410-550
690
1570

16
30
250

0.33

0.25

0.13

0.27
0.27

p.8.2.
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oROBLEMS
p.8.1-

Describe a simple tensile test and show, with the aid of sketches, how measures of the
ductility of the material of the specimen may be obtained. Sketch typical stress—strain curves
for mild steel and an aluminium alloy showing their important features.

fibar of metal 25 mm in diameter is tested on a length of 250 mm. In tension the following
results were recorded:

Table P.8.2(a)

Load (kN) 10.4 31.2 52.0 72.8
Extension (mm) 0.036 0.089 0.140 0.191

A torsion test gave the following results:

Table P.8.2(b)

Torgue (kNm) 0.051 0.152 0.2583 0.354
Angle of twist (degrees) 0.24 0.71 1.175 1.642

Represent these results in graphical form and hence determine Young’s modulus, E, the
modulus of rigidity, G, Poisson’s ratio, », and the bulk modulus, X; for the metal.
(Note: see Chapter 11 for torque—angle of twist relationship).

Ans. E~205 000 N/mm?, G~80 700 N/mm?, v~0.27, K~ 148 500 N/mm?.

. The actual stress—strain curve for a particular material is given by ¢ = Ce” where Cis a

constant. Assuming that the material suffers no change in volume during plastic deformation,
derive an expression for the nominal stress—strain curve and show that this has a maximum
value when € = #/(1 — 7).

Ans. o (nominal) = Ce”/(1 + ¢).

. A structural member is to be subjected to a series of cyclic loads which produce different

levels of alternating stress as shown below. Determine whether or not a fatigue failure is

probable.
Ans. Not probable (7,/N; + ny/ N, + --- = 0.39).

Table P.8.4

Loading Number of Cycles = Number of Cycles to Failure
1 10* 5x10%

2 10° 108

3 10° 24 %107

4 107 12 %107

A material has a fatigue limit of = 230 N/mm? and an ultimate tensile strength of 870 N/mm”.
If the safe range of stress is determined by the Goodman prediction calculate its value.
Anc 362 NT/ea 2
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A more accurate estimate for the safe range of stress for the material of P.8.5 is given by the
Gerber prediction. Calculate its value.

Ans. 432 N/mm?>.

A steel component is subjected to a reversed cyclic loading of 100 cycles/day over a period of
time in which *+ 160 N/mm? is applied for 200 cycles, = 140 N/mm? is applied for 200
cycles and = 100 N/mm? is applied for 600 cycles. If the fatigue life of the material of the
component at each of these stress levels is 10%, 10° and 2 X 10° cycles respectively, estimate
the life of the component using Miner’s law.

Ans. 400 days.

An infinite steel plate has a fracture toughness 3320 N/mm®? and contains a 4 mm long
crack. Calculate the maximum allowable design stress that could be applied around the
boundary of the plate.

Ans. 1324 N/mm?.

- Chapter 7 we saw that an a)fial load app!ied to a member produces a uniform direct stress across the
section of the member (Fig. 7.2). A different situation arises when the applied loads cause a beam
bend which, if the loads are vertical, will take up a sagging or hogging shape (Section 3.2). This
s that for loads which cause a beam to sag the upper surface of the beam must be shorter than the
surface as the upper surface becomes concave and the lower one convex; the reverse is true for
which cause hogging. The strains in the upper regions of the beam will, therefore, be different to !
in the lower regions and since we have established that stress is directly proportional to strain
(7.7)) it follows that the stress will vary through the depth of the beam.
The truth of this can be demonstrated by a simple experiment. Take a reasonably long rectangular
bber eraser and draw three or four lines on its longer faces as shown in Fig. 9.1(a); the reason for this
1| become clear a little later. Now hold the eraser between the thumb and forefinger at each end and
' ressure as shown by the direction of the arrows in Fig. 9.1(b). The eraser bends into the shape
and the lines on the side of the eraser remain straight but are now further apart at the top than
he bottom. Reference to Section 2.2 shows that a couple, or pure moment, has been applied to each
f the eraser and, in this case, has produced a hogging shape.
ace, in Fig. 9.1(b), the upper fibres have been stretched and the lower fibres compressed there will
s somewhere in between which are neither stretched nor compressed; the plane containing these
called the neutral plane.
w rotate the eraser so that its shorter sides are vertical and apply the same pressure with your fin-
. The eraser again bends but now requires much less effort. It follows that the geometry and orien-
n of a beam section must affect its bending stiffness. This is more readily demonstrated with a

A semi-infinite plate has an edge crack of length 0.4 mm. If the plate is subjected to a cyclic
repeated stress loading of 180 N/mm?, its fracture toughness is 1800 N/mm®? and the rate
of crack growth is 30 X 107" (AK)* mm/ cycle determine the crack length at failure and the
number of cycles to failure.

Ans. 25.4 mm, 7916 cycles.

A steel plate 50 mm wide is 5 mm thick and carries an in-plane bending moment. If the
plate develops an elliptical crack of length 6 mm and width 2.4 mm calculate the
maximum bending moment the plate can withstand if the fracture toughness of the steel

is 3500 N/mm>"2.
Ans. 4300 Nmm.

Convex

Concave

'8 of a rubber eraser.
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plastic ruler. When flat it requires hardly any effort to bend it but when held with its width verticy 3
becomes almost impossible to bend. What does happen is that the lower edge tends to move sideways
(for a hogging moment) but this is due to a type of instability which we shall investigate later.

cnary assumption made in determining the direct stress distribution produced by pure bending
rima

tions of the beam remain plane and normal to the longitudinal fibres of the beam

We have seen in Chapter 3 that bending moments in beams are produced by the action of cithey Plal:le crzss iszcwe i from the lines on the side of the eraser. We shall also s et dhe
pure bending moments or shear loads. Reference to problem P.3.7 also shows that two Symmetricy|| pending. Eaan;  ineatly clasic, Lo, it obeys Hooke's law, and that the material of che buam &
placed concentrated shear loads on a simply supported beam induce a state of pure bending, i.e. bend. jal of the Ce es of composite beams are considered in Chapter 12.
ing without shear, in the central portion of the beam. It is also possible, as we shall see in Section 92, 8 nogeneous: i

to produce bending moments by applying loads parallel to but offset from the centroidal axis of a
beam. Initially, however, we shall concentrate on beams subjected to pure bending moments and con.
sider the corresponding internal stress distributions.

pirect stress distribution
- Jer a length of beam (Fig. 9.4(a)) that is subjected to a pure, sagging bending moment, M, applied
Consicct cal plane; the beam cross section has a vertical axis of symmetry as shown in Fig. 9.3(b).
‘ vertclﬁn pmoment will cause the length of beam to bend in a similar manner to that shown in
b?za) si that a neutral plane will exist which is, as yet, unknown distances y, and y, from the top
t9’. ctom of the beam, respectively. Coordinates of all points in the beam are referred to axes Oxyz ‘
F S:ction 3.2) in which the origin O lies in the neutral plane of the beam. We shall now investigate ;
S behaviour of an clemental length, 8x, of the beam formed by parallel sections MIN and PGQ ‘
1 9.4(2)) and also the fibre ST of cross-sectional area 84 a distance y above the neutral plane.
ly, before bending takes place MP = IG = ST = NQ = bx.
The bending moment M causes the length of beam to bend about a cen‘tre of c%trvature C as shown
B 9.5(a). Since the element is small in length and a pure moment is applied we can take the
srved shape of the beam to be circular with a radius of curvature R measured to the neutral plane.
is 2 useful reference point since, as we have seen, strains and stresses are zero in the neutral plane.
“The previously parallel plane sections MIN and PGQ remain plane as we have demonstrated b.ut
how inclined at an angle 80 to each other. The length MP is now shorter than 8x as is ST while
is longer; IG, being in the neutral plane, is still of length 8x. Since the fibre ST has changed in

it has suffered a strain £, which is given by

9.1 Symmetrical bending

Although symmetrical bending is a special case of the bending of beams of arbitrary cross section, ywe
shall investigate the former first, so that the more complex general case may be more easily understood,

Symmetrical bending arises in beams which have either singly or doubly symmetrical cross sectiong;
examples of both types are shown in Fig. 9.2.

Suppose that a length of beam, of rectangular cross section, say, is subjected to a pure, sagging
bending moment, M, applied in a vertical plane. The length of beam will bend into the shape shown
in Fig. 9.3(a) in which the upper surface is concave and the lower convex. It can be seen that the upper
longitudinal fibres of the beam are compressed while the lower fibres are stretched. It follows that, as in
the case of the eraser, between these two extremes there are fibres that remain unchanged in length.

Thus the direct stress varies through the depth of the beam from compression in the upper fibres to
tension in the lower. Clearly the direct stress is zero for the fibres that do not change in length; we haye
called the plane containing these fibres the neutral plane. The line of intersection of the neutral plane
and any cross section of the beam is termed the neutral axis (Fig. 9.3(b)).

The problem, therefore, is to determine the variation of direct stress through the depth of the beam,
the values of the stresses and subsequently to find the corresponding beam deflection.

_ change in length (see Eq. (7.4))

original length

_(R—p)b0— 86

* dx

Axis of symmetry

|

e oy | K | S
|
|

YA
i — M M J P M SA
Double Double Single Single FIGURE 9.2 : o ! T ¥
(rectangular) (I-section) (channel section)  (T-section) Symmetrical section beams. yT _ _ ~ o y - Neytral
| o) S / z y, axis
N K Q !
M |
5 dx -
-—. Neutral | Neutral @) < i ()
axis FIGURE 9.3
, — 94
Beam subjected to a pure sagging =




o
212 CHAPTER 9 Bending of Beams

9.1 Symmetrical bending 213

c ' gid of area of the cross section. Since tht? y axis in this case i_s also an axis of symmetry, it must falso
/\ cent” uch the centroid of the cross section. Hence the origin, O, of the coordinate axes, coincides
0 > tiiocfntroid of area of the cross section. ‘ .
M R / ZE;)\ Iy, W‘d}i yation (9.2) shows that for a sagging (i.e. positive) bending moment t‘he direct stress in tbe beam
N ; (L s negative (i.e. compressive) when y is positive and positive (i.e. tensile) whex.l y is negative.
r“ g / 4—% sccﬂgonsider now the elemental strip 64 in Fig. 9.4(b); this is, in fact, the cross section of the fibre ST.
/ 0-x1

, i is above the neutral axis so that there will be a compressive force acting on its cross sectiop of
e S:,}I:ich is numerically equal to (Ey/R)6A from Eq. (9.2). Note that this force will act at all sections

:lj A the length of ST. At S this force will exert a clockwise moment (Ey/R)y0A about the neutral axis
ong

Neutral

plane Neutral e at T the force will exert an identical anticlockwise moment about the neutral axis. Considering
5 axis ‘iv-igctaend of ST we see that the moment resultant about the neutral axis of the stresses on all such
K Ox, Elbr:s must be equivalent to the applied moment M, i.e.
FIGURE 9.5 M= J E}'—2 d4
Length of beam subjected to a pure bending moment. 4 R
i.e.
R — 9)660 — R60
5 = B30~ RO - EJ # d4 (9.6)
Rbx R}
so that The term [,5* d4 is known as the second moment of area of the cross section of the beam about the
£ = — J ©.1) neutral axis and is given the symbol /. Rewriting Eq. (9.6) we have
X R .
EI
The negative sign in Eq. (9.1) indicates that fibres in the region where y is positive will shorten M= 2 (@73
when the bending moment is positive. Then, from Eq. (7.7), the direct stress o, in the fibre ST is given
o or, combining this expression with Eq. (9.2)
o,=—EL 9.2) M_E__o 9.8)
X I R
The direct or normal force on the cross section of the fibre ST is 0.0A. However, since the direct Eq. (9.8) o that
stress in the beam section is due to a pure bending moment, in other words there is no axial load, the fRetinEq. 0.8) we se
resultant normal force on the complete cross section of the beam must be zero. Then My 9.9)
0' = - — .
* I

J o, d4=0 9.3)
4 :

The direct stress, 0, at any point in the cross section of a beam is therefore directly proportional to
the distance of the point from the neutral axis and so varies linearly through the depth of the b.eam as
, for the section JK, in Fig. 9.5(b). Clearly, for a positive, or sagging, bending moment I is posi-
.. tensile, when y is negative and compressive (i.e. negative) when y is positive. Thus in Fig. 9.5(b)

where A is the area of the beam cross section.
Substituting for o, in Eq. (9.3) from Eq. (9.2) gives

E
-= d4=0 9.4 M .

R JAy & Op1 = @ (compression) 0y = % (tension) (9.10)
io;vl}::lil 1[3}(:1}: E and R are constants for a beam of a given material subjected to a given bending R e fom Eq. (9.7) that the curvature, 1/R, of the beam is given by

(9.11)

]IS

1
R

nd is therefore directly proportional to the applied bending moment and inversely proportional to the
e OT oLt 1 - 1 1 n I AT EDR o% H

JydA=0 (9.5)
A

Equation
PUSKE FR

(9.5) states

that the first moment of the area of the cross section of the beam with respect
1 . . 1 . . - " P .

1 —
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Elastic section modulus

Equation (9.10) be written in the 7 600 mm®>. This is the smallest beam section having a section modulus greater than that
quation (9.10) may be written in the form

d allows a margin for the increased load due to the self-weight of the beam. However, we
% ;ncheck that the allowable stress is not exceeded due to self-weight. The total load intensity
. by the applied load and self-weight is

28 X 9.81 y
. =105 kN/m
10 + 10 /

M M
7 Ox2 7 .12

in which the terms Z_;(=1/,) and Ze(=1ly,) are known as the elastic section moduli of the cross Seen

tion. For a beam section having the z axis as an axis of symmetry, say, y1 =y, and Z; =Z,, = Z o )
Then, numerically Hence, from Eq. (i

Ux,l =

ToAhs
Ox1 =0x2 = — (9.13) e 8
Expressing the extremes of direct stress in a beam section in this form is extremely useful in elastj Therefore from Eq. (9.13)
design where, generally, a beam of a given material is required to support a given bending Momeng. ' 46.4 X 10° X 10° =1508 N fmmz

Owm = 37 Go0

The maximum allowable stress in the material of the beam is known and a minimum required valye _
¢ allowable stress is 155 N/mm? so that the Universal Beam, 254 mm X 102 mm X 28 kg/m, is

for the section modulus, Z,, can be calculated. A suitable beam section may then be chosen from hapg.
books which list properties and dimensions, including section moduli, of standard structural shapes,

The selection of a beam cross section depends upon many factors; these include the type of loading
and construction, the material of the beam and several others. However, for a beam subjected to bend.
ing and fabricated from material that has the same failure stress in compression as in tension, it is logj.
cal to choose a doubly symmetrical beam section having its centroid (and therefore its neutral axis) 5
mid-depth. Also it can be seen from Fig. 9.5(b) that the greatest values of direct stress occur at poing
furthest from the neutral axis so that the most efficient section is one in which most of the material jg
located as far as possible from the neutral axis. Such a section is the I-section shown in Fig. 9.2.

.-
EXAMPLE 9.1
A simply supported beam, 6 m long, is required to carry a uniformly distributed load of 10 kN/
If the allowable direct stress in tension and compression is 155 N/mm?, select a suicable cross section
for the beam. .

From Fig. 3.16(d) we see that the maximum bending moment in a simply supported beam of
length L carrying a uniformly distributed load of intensity w is given by
wl?

Masc = =~ 4

ection of a beam has the dimensions shown in Fig. 9.6(a). If the beam is &ub)lzc:e@ toa
, bending moment of 100 kN m applied in a vertical plane, determine the distribution of
through the depth of the section.

1 l 78 N/mm?
‘ s - “ _20mm V
25 mm f

Therefore in this case

X 62
108‘6“‘—-“45 kN m

The required section modulus of the beam is now obtained using Eq. (9.13), thus

. ‘ T | 78 N/mm?

Mo _ 45X 105 ®)

ax,ma;x 1 5 5

Zemin = =290 323 mm®

From wbles of structural steel sections it can be seen that a Universal B istribution in beam of Ex. 9.2.

254 mm X 102 mm X 28 kg/m, has a section modulus (about a centroidal axis parallel to its flang
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« note that the maximum stresses in this example are very much greater than those in Ex. 9.2.
s due to the fact that the bulk of the material in the beam section is concentrated in the region
neutral axis where the stresses are low. The use of an I-section in this manner would therefore

ly inefficient.
cturally 1 —m

The cross section of the beam is doubly symmetrical so that the centroid, G, of the section, anq
therefore the origin of axes, coincides with the mid-point of the web. Furthermore, the bendin
moment is applied to the beam section in a vertical plane so that the z axis becomes the neutral axjg
of the beam section; we therefore need to calculate the second moment of area, 7, abouc this axis

Thus |
200 X 300° 175 X 260
T st 2300 L Al 10° mm* (see Section 9.6)

From Eq. (9.9) the distribution of direct stress, 0,, is given by (AMPLE 9.4 :
e 1oam section of Ex. 9.2 is subjected to a bending moment of 100 kN m applied in a plane par-
o, = — RO AR < y=—0.52y o ! o the longitudinal axis of the beam but inclined at 30° to the left of vertical. The sense of the
193.7 X 10° ' ng moment is clockwise when viewed from the left-hand edge of the beam section. Determine

The direct stress, therefore, varies linearly through the depth of the section from a value ribution of direct stress.

bending moment is first resolved into two components, M, in a vertical plane and M, in a
atal plane. Equation (9.9) may then be written in two forms
M, M,

Pl Ty Ux““'“j;zﬁ @

—0.52 X (+ 150) = —78 N/mm? (compression)
at the top of the beam to
—0.52 X (—150) = + 78 N/mm? (tension)

at the bottom as shown in Fig. 9.6(b). separate distributions can then be determined and superimposed. A more direct method is to

the two equations (i) to give the total direct stress at any point (y, 2) in the section. Thus

s e T (i1)

[
EXAMPLE 9.3

Now determine the distribution of direct stress in the beam of Ex. 9.2 if the bending moment is
applied in a horizontal plane and in a clockwise sense about Gy when viewed in the direction Gy.

In this case the beam will bend about the vertical y axis which therefore becomes the neutral axis
of the section. Thus Eq. (9.9) becomes

M, =100 cos 30° = 86.6 kN m
M, =100 sin 30° = 50.0 kN m } (i
in this case, a negative bending moment producing tension in the upper half of the beam
positive. Also M, produces tension in the left-hand half of the beam where z is positive;
therefore call M, a negative bending moment. Substituting the values of M, and M, from
t with the appropriate sign in Eq. (ii) together with the values of 7, and I, from Exs 9.2
obtain

Oy = — z 1)

‘[}‘ K

where /, is the second moment of area of the beam section about the y axis. Again from Section 9.6 '
> |

20 X 200° 260 X 25° il E | 86.6 X 10°  50.0 X 10°
I,=2X A =27.0X10° mm E | s b et C :
! 12 12 : 7T 1937x107 " 27.0x105° i
Hence, substituting for M and 7, in Eq. (i)
100 X 106
g = e s =3 x:04 =18
e 3.7z o 5y +1.85z v)

(v) gives the value of direct stress at any point in the cross section of the beam and may
d to determine the distribution over any desired portion. Thus on the upper edge of the
= +150 mm, 100 mm = z= —100 mm, so that the direct stress varies linearly with z.

t-hand corner of the top flange

We have not specified a sign convention for bending moments applied in a horizont
plane; clearly in this situation the sagging/hogging convention loses its meaning. However,
physical appreciation of the problem shows that the lefi-hand edges of the beam are in tensio
while the right-hand edges are in compression. Again the distribution is linear and vari€
from 3.7 X (+100) = 370 N/mm? (tension) at the lefi-hand edges of each flange (@
3.7 X (—100) = —370 N/mm? (compression) at the right-hand edges.

0, = 0.45 X (+ 150) + 1.85 X (+ 100) = + 252.5 N/mm? (tension)
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67.5 N/mm?

beam, 6 m long, is simply supported at its left-hand end and ac 1.5 m from its right-hand end. If
1o cross section of the beam is that shown in Fig. 9.8 and it carries a uniformly distributed load of
s 5 |(N/m over its full length calculate the maximum tensile and compressive stresses in the beam.
e The first step is to find the position of the centroid of area, G, of the beam section. This will lie
the vertical axis of symmetry and is a distance 7 from the top of the flange.
Taking moments of area about the top of the flange

1 (125 X 25+ 125 X 25) § = 125 X 25 X 12.5 + 125 X 25 X 87.5

252.5 N/mm? /
[ 117.5 N/mm?

67.5 N/mm?

on

which gives
7=50 mm
Since the loading is applied in the vertical plane of symmetry the direct stress distribution is given

by Eq. (9.9) in which 7 is the second moment of area of the beam cross section about the z axis.
szen: using the method described in Section 9.6

B X B
1z=312—5-1>;—%-5—+125><25><3752+%i§5—

|1
R ]
117.5 Nfmm? i\;\/ 67.5 N/mm?

/

67.5 N/mm?

+ 25 X 125 X 37.5%

Neutral axis ‘which gives
FIGURE 9.7

Direct stress distribution in beam of Ex. 9.4.

I, =13.02 X 10 mm*

It is clear from Ex. 3.9 that the maximum sagging bending moment in the beam will occur at a
At the top right-hand corner

0, = 0.45 X (+150) + 1.85 X (= 100) = — 117.5 N/mm? (compression)
The distributions of direct stress over the outer edge of each flange and along the vertical axis of

symmetry are shown in Fig. 9.7. Note that the neutral axis of the beam section does not in this case
coincide with either the z or y axes, although it still passes through the centroid of the section. Its

inclination, a, to the z axis, say, can be found by setting o, = 0 in Eq. (v). Thus ‘";5
0=0.45y + 1.85z L3
or
¥y 185
L= —4q11=
z 045 g
which gives 125mm
@ =763 7.5kN/m
Note that o may be found in general terms from Eq. (ii) by again setting 0, = 0. Hence TEEEEEEE R EEEEY
B M, _ o B C
e MH:_I, = tan & (9.14) = Ra TRB
or £ 4.5m ‘ '}{ 1.5m
|
Myl
=_r* FIGURE 9.9
tan o %,

Beam of Ex. 9.5.
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from which

RA=151§N

From Eq. (3.4) we see that the bending moment diagram will have a mathematical maximup, \

between A and B when the shear force is zero. Then
Sap=Ra —7.5x=15—-75x=0

so that Sy = 0 when x = 2 m. The maximum sagging bending moment is therefore given by

M, (max.sagging) = 15 X 2.0 — -

7.5 X 2.0%

The maximum hogging bending moment occurs at B and is given by

The maximum sagging bending moment will produce a direct compressive stress at the top of the
flange and a direct tensile stress at the base of the leg. Then, from Eq. (9.9)
15 X 106 X 50

o, (top of flange) = — 302X 105

= —57.6 N/mm?

_ 15X 10° X (— 100)
13.02 X 10°
Similarly, due to the maximum hogging bending moment

o, (base of leg) =

=+1152 N/mm’

(—8.45) X 10° X 50

LHEE e T

=+32.5 N/mm?

_ (—8.45) X 10° X (— 100)
13.02 X 10° .
Therefore the maximum tensile stress in the beam is 115.2 N/mm?2 occurring at a section 2 |
from the left-hand support and the maximum compressive stress is
64.9 N/mm?® occurring at the right-hand support.

0, (base of leg) =

=~ 64.9 N/mm?

1

:
3
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Neutral plane

Beam

Bracket

W
|
|
|
!
i

FIGURE 9.11

FIGURE 9.10 ;
Combined pending and axial load on a

column.

Combined bending and axial load on a beam section.

Consider now a length of beam having a vertical plane of symmetry and s.ubjectefi to a tensile load,
P, which is offset by positive distances ¢, and e, from the z and y axes, respectively (Fig. 9.11). It can be
P that P is equivalent to an axial load P plus bending moments Pe, and .PeZ about the z and. y axes,
k" ively. The moment Pe, is a negative or hogging bending moment while the moment Pe, induces
;:Snl:s’f;: inyt.he‘ region where z is positive; Pe, is, therefore, also regarded as a negative moment. Thus at

any point (7,2) the direct stress, o,, due to the combined force system, using Egs (7.1) and (9.9), is

P P Pe
e e Ly L LR (9.15)
Ty y T 9 3 %

9.2 Combined bending and axial load

In many practical situations beams and columns are subjected to combinations of axial loads and bend-
ing moments. For example, the column shown in Fig. 9.10 supports a beam seated on a bracket
attached to the column. The loads on the beam produce a vertical load, P, on the bracket, the load
being offset a distance ¢ from the neutral plane of the column. The action of 2 on the column is there-
fore equivalent to an axial load, P, plus a bending moment, Pe. The direct stress at any point in the

cross section of the column is therefore the algebraic sum of the direct stress due to the axial load and
shia Adenss it A e 1 1.

Equation (9.15) gives the value of 0, at any point (3,2) in the beam section for any combination of
signs of P, ¢, ¢,

LE 9.6

has the cross section shown in Fig. 9.12(a). It is subjected to a normal tensile forfe, P,

ine of action passes through the centroid of the horizontal flange. gaiculate the maximum
alue of P if the maximum direct stress is limited to = 150 N/mm~.

n. Thus, taking moments of areas about the top edge of the flange we have

(200 X 20 + 200 X 20)y = 200 X 20 X 10 + 200 X 20 X 120

7 =065 mm
nd moment of area of the section about the z axis is then obtained using the methods of
and is
_200X65° 180X 45°

20 X 155°
; ‘
5

=377%10° mm?

I
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| 200 mm o
ry " ¢
150 N/mm?
I r P J 20 mm
y A
z - —_—
G
20 mm 200 mm
—_— o e
(a) ok o Sl (0 :
79.1 Nimm?
FIGURE 9.12

Direct stress distribution in beam section of Ex. 9.5.

Since the line of action of the load intersects the y axis, ¢, in Eq. (9.15) is zero so that

ZopE2 0

Also ¢,= +55 mm so that Pe, = +55 P and Eq. (i) becomes

1 55
o P e e |
5 (800{) 37.7 X 105 )

or

o, =P(1.25X 1074 + 1.46 X 107%)

It can be seen from Eq. (ii) that o, varies linearly through the depth of the beam from a tensile
value at the top of the flange where y is positive to either a tensile or compressive value at the bot

tom of the leg depending on whether the bracketed term is positive or negative. Therefore at the top

of the flange
+150 = P[1.25 X 1074 + 1.46 X 107 X (+ 69)]
which gives the limiting value of P as 682 kN.

e

At the bottom of the leg of the section y=—155 mm so that the right-hand side of Eq. (i)}

becomes
P[1.25 X 1074 + 1.46 X 107 X (=155)] = —1.01 X 107*P

which is negative for a tensile value of P. Hence the resultant direct stress at the bottom of the leg i
compressive so that for a limiting value of 2

—150= — 1.01 X 1074P

9.2 Combined bending and axial load 223

: ' which
P =1485 kN

‘Therefore, we see that the maximum allowable value of P is 682 kN, giving the direct stress dis-
+ ycion shown in Fig. 9.12(b).

core of 2 rectangular section

[n some StrUCTures, FuCh as brick—'built chimneys and gravity dams which are fabricated from brittle
maerials, it is inadv.lsable for tension to be developed in any cross section. Clearly, from our previous
discussion, it is pOSSlbl.C for a co.mpressive load that is offset from the neutral axis of a beam section to
induce 2 resultant tensile stress in some regions of the cross section if the tensile stress due to bending
in those regions is greater than the compressive stress produced by the axial load. Therefore, we require
10 impose limits on the eccentricity of such a load so that no tensile stresses are induced.

Consider the rectangular section shown in Fig. 9.13 subjected to an eccentric compressive load, P,
appﬁe‘i parallel to the.lon.gitudix}al axis in the positive yz quadrant. Note that if P were inclined at
some angle to the longitudinal axis, then we need only consider the component of P normal to the sec-
ton since the in-plane component would induce only shear stresses. Since P is a compressive load and
therefore negative, Eq. (9.15) becomes

P Py P

O =—

Y Iz}/ 3 z (9.16)

Note that both Pe, and Pe, are positive moments according to the sign convention we have adopted.
In the region of the cross section where z and y are negative, tension will develop if

P

The limiting case arises when the direct stress is zero at the corner of the section, i.e. when z= —4/

2 and y = —d/2. Therefore, substituting these values in Eq. (9.16) we have

o=_P_Py ( d\_Peu [ b
A4 I 2) I, \ 2

, since A= bd, I, = bd’/12, L= db3112 (see Section 9.6)
0= —bd + 6be, + Gde,
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which gives from which
10
be, + de, = b | e, = A
ey €y = ? ' 4
Rearranging we obtain Thus the core of a circular section is a circle of radius R/4.
d d
6= _Zfz+ g 9.17)

PLE 9.7
inding masonry wall is 7 m high, 0.6 m thick and has a density of 2000 kg/m®. Calculate
G uniform, horizontal wind pressure that can occur without tension developing at any

the wall.
i ler a 1 m length of wall. The forces acting are the horizontal resultant, P, of the uniform
Wme,gm&wwmghn W, of the 1 m length of wall th g
y the base section is the one that experiences the greatest compressive normal load due to
t and also the greatest béndmg moment due to wind pressure.
also the most critical section since the bending moment that causes tension is a function of
- of the height of the wall, whereas t:he weight causing compression is a linear function of
t. From Fig. 9.13 it is clear that the resultant, R, of P and W must lie wzhm the central
the base section, i.e. within the middle third of the section, for there to be no tension
oped anywhere in the base cross section. The reason for this is that R may be resolved into ver-
d horizontal components at any point in its line of action. At the base of the wall the vertical

Equation (9.17) defines the line BC in Fig. 9.13 which sets the limit for the eccentricity of P frop,
both the z and y axes. It follows that P can be applied at any point in the region BCG for there to b
no tension developed anywhere in the section.

Since the section is doubly symmetrical, a similar argument applies to the regions GAB, GCD apq
GDA; the rhombus ABCD is known as the core of the section and has diagonals BD = 4/3 and AC = 43,

Core of a circular section

Bending, produced by an eccentric load P, in a circular cross section always takes place about a diame.
ter that is perpendicular to the radius on which P acts. It is therefore logical to take this diameter and
the radius on which P acts as the coordinate axes of the section (Fig. 9.14).

Suppose that P in Fig. 9.14 is a compressive load. The direct stress, 0,, at any point (3, y) is given
by Eq. (9.15) in which ¢, = 0. Hence

Op = Ly (9.18) nent is then a compressive load parallel to the vertical axis of the wall (i.c. the same situation
4 & : 913)wﬁthehmimmlmmmmzﬁashwlmwiﬂ€hhasnﬂif fect as far as tension in

s concerned. The limiting case arises when R passes through m, one of the middle third
which case the direct stress at B is zero and the moment of R (and therefore the sum of

Tension will occur in the region where z is negative if

Pez ’ ’ ents of P and W) about m is zero. Hence
3.5P=0.1W @
The limiting case occurs when o, = 0 and z= —R; hence
A g_%( 8 P=pX7XINif pisin N/m?

Now A = 7R and I,= TR /4 (see Section 9.6) so that W = 2000 X 9.81 X 0.6 X7 N

0= — 1 5. 4e,

TR TR F o
1 el |
it -

/ Section bends T ] ? m Uniform wind
about this axis k - ? pressure, p
iy < 35m
z s | E_ l
L,
] RYYw
4 I"M*{*\ T FIGURE 9.15 Tk
R - 02m Masonry wall of Ex. 9.7.
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1
U = EM o0 (9.20)

Substituting for P and Win Eq. (i) and solving for p gives
g for 86 from Eq. (9.19) in Eq. (9.20)

1M?
2 EI,

2 =3363 N/m*

of substitutin
0

U = Ox

total strain energy, U, due to bending in a beam of length L is therefore

he
9.3 Anticlastic bending 3
In the rectangular beam section shown in Fig. 9.16(a) the direct stress distribution due to a Positive
bending moment applied in a vertical plane varies from compression in the upper half of the beam ¢,
tension in the lower half (Fig. 9.16(b)). However, due to the Poisson effect (see Section 7.8) the cop,.
pressive stress produces a lateral elongation of the upper fibres of the beam section while the tengle
stress produces a lateral contraction of the lower. The section does not therefore remain rectangular by
distorts as shown in Fig. 9.16(c); the effect is known as anticlastic bending.
Anticlastic bending is of interest in the analysis of thin-walled box beams in which the cross sectiopg
are maintained by stiffening ribs. The prevention of anticlastic distortion induces local variations jp
stress distributions in the webs and covers of the box beam and also in the stiffening ribs.

2
U=J ;Z[ dx 9.21)
L z

mrical bending

Frequently in civil engineering construction beam sections do not possess any axes of symmetry.
Frcqical examples are shown in Fig. 9.17 where the angle section has legs of unequal length and the Z-
;Ygon possesses anti- or skew symmetry about a horizontal axis through its centroid, but not symme-
m We shall now develop the theory of bending for beams of arbitrary cross section.

I

Assumptions

e shall again assume, as in the case of symmetrical bending, that plane sections of the beam remain
olane after bending and that the material of the beam is homogeneous and linearly elastic.

9.4 Strain energy in bending

A positive bending moment applied to a length of beam causes the upper longitudinal fibres to be com-
pressed and the lower ones to stretch as shown in Fig. 9.5(a). The bending moment therefore does
work on the length of beam and this work is absorbed by the beam as strain energy.

Suppose that the bending moment, M, in Fig. 9.5(a) is gradually applied so that when it reaches its
final value the angle subtended at the centre of curvature by the element éx is 66. From Fig. 9.5(a) we
see that

Sign conventions and notation

Since we are now concerned with the general case of bending we may apply loading systems to a beam
n any plane. However, no matter how complex these loading systems are, they can always be resolved
nto components in planes containing the three coordinate axes of the beam. We shall use an identical

R 86 = bx stem of axes to that shown in Fig. 3.6, but our notation for loads must be extended and modified to

s . llow for the general case.
Sulsseiopring in B (377 fer Boe-abonit ~ As far as possible we shall adopt sign conventions and a notation which are consistent with those
EL ‘ hown in Fig. 3.6. Thus, in Fig. 9.18, the externally applied shear load W, is parallel to the y axis but
M= gw (9.19) ertically downwards, i.e. in the negative y direction as before; similarly we take W, to act in the nega-

ve z direction. The distributed loads w,(x) and w,(x) can be functions of x and are also applied in the
tive directions of the axes. The bending moment M, in the vertical xy plane is, as before, a sagging
positive) moment and will produce compressive direct stresses in the positive yz quadrant of the
fam section. In the same way M, is positive when it produces compressive stresses in the positive yz
ladrant of the beam section. The applied torque 7'is positive when anticlockwise when viewed in the

so that 80 is a linear function of M. It follows that the work done by the gradually applied moment M
is M 60/2 subject to the condition that the limit of proportionality is not exceeded. The strain energy,
60U, of the elemental length of beam is therefore given by

Compression

yai

I FIGURE 9.17
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y

VT wy (x)

FIGURE 9.18

Sign conventions and notation.

FIGURE 9.19

Internal force system.

direction xO and the displacements, %, v and w are positive in the positive directions of the z y and

axes, respectively.

The positive directions and senses of the internal forces acting on the positive face (see Section 3.2
of a beam section are shown in Fig. 9.19 and agree, as far as the shear force and bending moment if
the vertical xy plane are concerned, with those in Fig. 3.7. The positive internal horizontal shear fo v
S, is in the positive direction of the z axis while the internal moment M, produces compression i X

Y
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Neutral
axis

}(;z—y Area A
3A \D

FIGURE 9.20
Bending of an unsymmetrical section beam.

pirect stress distribution
L ¢ 9.20 shows the positive face of the cross section of a beam which is subjected to positive internal
ding moments M, and M, Suppose that the origin O of the y and z axes lies on the neutral axis of
he beam section; as yet the position of the neutral axis and its inclination to the z axis are unknown.
‘\We have seen in Section 9.1 that a beam bends about the neutral axis of its cross section so that the
of curvature, R, of the beam is perpendicular to the neutral axis. Therefore, by direct comparison
h Eq. (9.2) it can be seen that the direct stress, o, on the element, 84, a perpendicular distance p
tom the neutral axis, is given by

- _g? 22
oy ER 9.22)

The beam section is subjected to a pure bending moment so that the resultant direct load on the
ction is zero. Hence

Jadi=0
4

P g
—| E5 d4=0
|7z
for a beam of a given material subjected to a given bending moment
J pdd=0 9.23)
4

alitatively Eq. (9.23) states that the first moment of area of the beam section about the neutral

zero. It follows that in problems involving the pure bending of beams the neutral axis always

through the centroid of the beam section. We shall therefore choose the centroid, G, of a section
igin of axes.

om Fig. 9.20 we see that

p=zsina+ycos (9.24)
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position of the neutral axis
established that the neutral axis of a beam section passes through the centroid of area of the

hether the section has an axis of symmetry or not. The inclination o of the neutral axis to the

so that from Eq. (9.22)
Fig. 9.20 is obtained from Eq. (9.31) using the fact that the direct stress is zero at all points

We have
! ‘scCtion W)
g axis 1"
on the neutr:

E. .

0y =—— (zsina+ycos ) (9.25)
R

al axis. Then, for a point (zna, ¥na)

The moment resultants of the direct stress distribution are equivalent to M, and M, so that
0 = (ML, — M,L)zna + (M, L, — ML) yna

M,= J oydd M,=— J oyzdA  (see Section 9.1) (9~26)
A A
Substituting for o, from Eq. (9.25) in Eq. (9.26), we obtain
_Esina Ecosaf , o tha
M= Lzy U7 Ly “ ma _ (Ml — ML)

or, referring to Fig. 9.20

Esnaf , E cos o
= -+
M, z Lz dA 2 Lzy dA
M, I, — M,I,
(ML, — ML) (9.33)

In Eq. (9.27) o =
(A{{y[zy - Mz]y)

ce o is positive when yna is positive and za is negative. Again, for a beam having a cross section

JzydA=[zy J}/Zd/l=[z Jzsz=1},
4 4 4 ”
with either Oy or Oz as an axis of symmetry, I, = 0 and Eq. (9.33) reduces to

where Z, is the product second moment of area of the beam section about the z and y axes, Z, is the
second moment of area about the z axis and Z, is the second moment of area about the y axis. Equation -

tan @ =

M,I,
4 (see Eq. (9.14))
72

(9.27) may therefore be rewritten as

E sin « E cos a
M,= + I,
R Ly R
(9.28)

E sin o E cos
AJJ’z R J R ]ZJ’

9.6 Calculation of section properties

¢ will be helpful at this stage to discuss the calculation of the various section properties required in the
alysis of beams subjected to bending. Initially, however, two useful theorems are quoted.

Solving Eq. (9.28)

Esina _ M, — M1,
= (9.29) .
R L2
arallel axes theorem
Ecosa _ Mb— My, : i . .
R JA A, (9.30 onsider the beam section shown in Fig. 9.21 and suppose that the second moment of area, /g, about
¥ 1 axis through its centroid G is known. The second moment of area, /y, about a parallel axis, NN, a
stance & from the centroidal axis is then given by
(9.34)

Now substituting these expressions in Eq. (9.25)
In=Ic+AV

M,I, — M,I, M,I, — M,I, |
Oy = — ( 2 zy)z— ( 2 2 y)y 9.31)

Ll — Izi, LL,—12
In the case where the beam section has either Oz or Oy (or both) as an axis of symmetry [, =0

(see Section 9.6) and Eq. (9.31) reduces to

Cross-sectional area, A

i (9.32)
FIGURE 9.21

which is identical to Ea. (ii) in Ex. 9.4.
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ently it is useful to know the second moment of area of a rectangular section about an axis

Ay
-F}l;e‘cl:)linci des with one of its edges. Thus in Fig. 9.23, and using the parallel axes theorem
whic
/\ = pg(-8) = 2 (9.38)
7 <€ 0 % —E 2 3 ’
L//J FIGURE 9.22
Theorem of perpendicular axes.
LE 9.8 ’ ’
ne ihe mmd moments ﬁf area fzaﬂd 1} Of d}t I«semam ShGWﬁ in Pig. 9.24
Ay ml
» b

;,;; -

i," e

ty = L—

Y N N FIGURE 9.23

b ; l 1
Second moments of area of a rectangular section.

Theorem of perpendicular axes
In Fig. 9.22 the second moments of area, 7, and L, of the section about Oz and Oy are known. The

second moment of area about an axis through O perpendicular to the plane of the section (i.e. a polar FIGURE 9.24
second moment of area) is then = —— Qfmmm%m
[o = [z -+ 13, (935) qu (9\.36}

e % § ;;343
Second moments of area of standard sections s
Many sections in use in civil engineering such as those illustrated in Fig. 9.2 may be regarded as com-
prising a number of rectangular shapes. The problem of determining the properties of such sections is
simplified if the second moments of area of the rectangular components are known and use is made of
the parallel axes theorem. Thus, for the rectangular section of Fig. 9.23

d/2 374/2
lz=Jy2dA=J bﬁdy=bH
4 /2 3

—d —d/2 e
o f=21L 4 Ay
which gives 7 12 12
—Ji
3
5= % 9.36) ,
L Tt is also useful to determine the second moment of area, about a diameter, of a circular section. In
Similarly 18. 9.25 where the z and y axes pass through the centroid of the section
av A/2
1}' = — (937) Iz = [ },2 d4 = [ . 2(% cos@\ _y2 d_y (939)
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Integratlon of Eq. (9.39) is simplified if an anguly,
variable, 0, is used. Thus
/2 2
_Lay L= J d cos G(ésin 0> écos 6de
_7r/2 2 2
\\T ie.
zZ< - AL

/2
- L= d—J cos” 0 sin? 6 d6
8 —7/2
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y
y AY A Cross sectional
< > area, A

e . [/

Nl

' which gives

wd*
L=—2r (9.40) FIGURE 9:26
FIGURE 9.25 Product second moment of area.
Second moments of area of a circular Clearly from symmetry
section. wd* o= J 74
b= (9.41) #

Using the theorem of perpendicular axes, the polar
second moment of area, I, is given by

=J(Z—a)(Y—b)dA
A

nd*
L=L+1I= EDS (9.42) chich, on expanding, gives
Izy=J ZYdA—bJ ZdA—aJ YdA+abJ dA
Product second moment of ; ’ . ’ |
roduct second moment of area If Z and Y are centroidal axes then [,Z dA= [,¥ d4= 0. Hence |
The product second moment of area, I,,, of a beam section with respect to z and y axes is defined ‘
by Iz}, = [ZY + abA (944)

It can be seen from Eq. (9.44) that if either GZ or GY is an axis of symmetry, i.e. Izy= 0, then

I =J da 9.49)
i Fid ¢ I = abA (9.45)

Thus each element of area in the cross section is multiplied by the product of its coordinates and
the integration is taken over the complete area. Although second moments of area are always positive
since elements of area are multiplied by the square of one of their coordinates, it is possible for I, 1o
be negative if the section lies predominantly in the second and fourth quadrants of the axes system.
Such a situation would arise in the case of the Z-section of Fig. 9.26(a) where the product second
moment of area of each flange is clearly negative.

A special case arises when one (or both) of the coordinate axes is an axis of symmetry so that for
any element of area, 64, having the product of its coordinates positive, there is an identical element for
which the product of its coordinates is negative (Fig. 9.26(b)). ‘

Summation (i.e. integration) over the entire section of the product second moment of area of all
such pairs of elements results in a zero value for Z,

We have shown previously that the parallel axes theorem may be used to calculate second moments:
of area of beam sections comprising geometrically simple components. The theorem can be extended t©
the calculation of product second moments of area. Let us suppose that we wish to calculate the prod-
uct second moment of area, I, of the section shown in Fig. 9.26(c) about axes zy when Iy about its

Thus for a section component having an axis of symmetry that is parallel to either of the section ref-
rence axes the product second moment of area is the product of the coordinates of its centroid multi-
lied by its area.

A table of the properties of a range of beam sections is given in Appendix A.

ing the cross section shown in Fig. 9.27 is subjected to a hogging bending moment of
vertical plane. Calculate the maximum direct stress due to bending stating the point

'efthc centroid, G, of the section may be found bymmgmmm of areas about
it point. Thus

B (120 X 8 + 80 X 8)7 =120 X 8 X 4 + 80 X 8 X 48
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8mm | 4 |
TP :
7Y
G
7
= 80 mm
ELIF -
__.{ l<_ FIGURE 9.27
8 mm Beam section of Ex. 9.9.
which gives
7=21.6 mm
and
(120X 8+80X8)z=80X 8 X4+ 120X 8 X 24
giving

z=16 mm
The second moments of area referred to axes Gzy are now calculated.

_ 120X

I - +120><8><(17;42+§*—1—(§-(1+80X8><(26,.4)2
=1.09 X 10° mm*
8 X (120)° ! 80 X (8)°
LS AL 120 X 8 X (82 + 22 1:‘2(8) +80X 8 X (12)°

y 12
=1.31%10° mm*
Iy =120 X 8 X (= 8) X (+17.6) + 80 X 8 X (+ 12) X (— 26.4)
= ~0.34 X 10° mm*

Since M, = —1500 Nm and M, = 0 we have from Eq. (9.31)
1500 X 10° X (—0.34 X 10%)z + 1500 X 10% X (1.31 X 106)y
1.09 X 10° X 1.31 X 106 — (—0.34 X 10%)?

—

o
ie.

g, =039z + 15y
Note that the denominator in both the terms in Eq. (9.31) is the same.

Inspection of Eq. (i) shows that o, is a maximum at F where z=8 mm, y = —66.4 mm. Hence

Oxmax = —96.5 N/mm? (compressive)
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' Approximations for thin-walled sections

civil engineering structures frequently take the form of thin-walled cellular box beams which
Mode.m the advantages of comparatively low weight and high strength, particularly in torsion. Other
wmbmef thin-walled structure consist of ‘open’ section beams such as a plate girder which is con-
" ((1) from thin plates stiffened against instability. In addition to these there are the cold-formed sec-
5'(ruct€ hich we discussed in Chapter 1.
uon';;‘;re is no clearly defined line separating ‘thick’ and ‘thin-walled” sections; the approximations

Al P in the analysis of thin-walled sections become increasingly inaccurate the ‘thicker’ a section
o

becomCS. H

for sections

owever, as a guide, it is generally accepted that the approximations are reasonably accurate
for which the ratio

t"‘_ax<()1

Bere £ s the maximum thickness in the section and & is a typical cross-sectional dimension.

In the calculation of the properties of thin-walled sections we shall assume that the thickness, 7 of the
section is small compared with its cross-sectional dimensions so that squares and higher powers of # are
neglected. The section profile may then be represented by the mid—line‘ of its wall. Stresses are then calcu-
Jated at points on the mid-line and assumed to be constant across the thickness.

“‘;m ate the second moment of area, , of the channel section shown in Fig. 9.28(a).
The centroid of the section is located midway berween the flanges; its horizontal position is not
since only I is required. Thus

o 2\ . [20—1/2)P
Iz-2(—1—2— + bth ) +t——12—-——
‘on expanding, becomes

e ol T B Y
Izaz(ﬁ+&w’*)+ﬁ[@) (53 e )]

2 4 8
AY AY

- e . 1

h jG h
G ¥ & R
O e i

. h h
i 7 . 5 L )

T N
' b (b)

e e R el e L i
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Neglecting powers of #* and upwards we obtain I“

2h)°
e 2 —+ —._—,.(
L, =2bth" + ¢ 5

It is unnecessary for such calculations to be carried out in full since the final result may be I;
obrained almost directly by regarding the section as being represented by a single line as shown int

Fig. 9.28(b).

- _
EXAMPLE 9.11 'r[
A thin-walled beam has the cross section shown in Fig. 9.29. Determine the direct stress distriburtion
produced by a hogging bending moment A, |

The beam cross section is antisymmetrical so that its centroid is at the mid-point of the vertical
web. Furthermore, M, = 0 so that Eq. (9.31) reduces to

o Mze‘[@z i leyy (i)!
Ll ‘

Ox

But M, is a hogging bending moment and therefore negative. Eq. (i) must then be rewritten as
— MLz + M,], 1
Ox = 1;1__12 i 2 (ll}
zty zy

1
The section properties are calculated using the previously specified approximations for thin-

walled sections; thus
7a 2
3
Sy (b) LB
2 12 3

5042

Substituting these values in Eq. (ii) we obtain

0 %(6,8@ = 10.30) (il

On the top flange y = +4/2, 52 = 2= 0 and the distribution of direct stress is given by

M,
G = E(ﬁ’y.‘i?}b 10.32)
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Y

B A
— t

» G h

FIGURE 9.30 g
Distribution of direct stress in beam section of Ex. 9.11.

Gb 2 7 % (compressive)
b o=+ S.Afjffz (;te;mﬂc)
In the web —4/2 =< y= /2 and z= 0 so that Eq. (jii) reduces to
| . 6.86M,

A P
in the distribution is linear and varies from
o=+ __w___aiiﬁlz (tensile)
SR L) (compressive)
O¢C ™ 2t p

distribution in tﬁe lower flange may be deduced from antisymmetry. The complete distribu-
is as shown in Fig. 9.30.

Second moments of area of inclined and curved thin-walled sections

Thin-walled sections frequently have inclined or curved walls which complicate the calculation of sec-
tion properties. Consider the inclined thin section of Fig. 9.31. The second moment of area of an ele-
ment 8s about a horizontal axis through its centroid G is equal to tﬁsyz. Therefore the total second
Mmoment of area of the section about Gz, I, is given by

/2 a/2
L= J y*ds= J t(s sin B)* ds

—a/2 —af2
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S
5
Ay s\e/_‘
T .
al2 y r
S /

NA
®

FIGURE 9.31 FIGURE 9.32
Second moments of area of an Second moment of area of a semicircular
inclined thin-walled section. thin-walled section.
ie.
L= At sin? 8
z 12
Similarly
= At cos? B
12

The product second moment of area of the section about Gzy is
a/2 a/2
Ly = I tzy ds = J #(s cos B)(s sin () ds
—a/2 —a/2
ie.
_ 2t sin 23
24

Properties of thin-walled curved sections are found in a similar manner. Thus Z, for the semicirct
section of Fig. 9.32 is

Iy

I":J y* ds

0

Expressing y and s in terms of a single variable § simplifies the integration; hence
T
L= J #(—7 cos )*r df
0

from which
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9.7 Principal axes and principal second moments of area

In any beam section there is a set of axes, neither of which need necessarily be an axis of symmetry,

which the product second moment of area is zero. Such axes are known as principal axes and the secol

moments of area about these axes are termed principal second moments of area.
Consider the arbitrary beam section shown in Fig. 9.35. Suppose that the second moments of
I, I, and the product second moment of area, I, about arbitrary axes Ozy are known. By definition

L={yd 5=[2d 1,=[ma 04

9.7 Principal axes and principal second moments of area 243

X Y1
A I
\g{\
2V A
Y X
R A
(0]

FIGURE 9.35
Principal axes in a beam of arbitrary section.

*he corresponding second moments of area about axes Ozyy; are

wo=[A4 4o =j 2dA Ly = Lzm da 9.47)
A A

ym Fig. 9.35
z1=zcos¢ptysing y =y cosp—zsin¢
ubstituting for y; in the first of Eq. (9.47)
: Loy = j (y cos p—z sin #)* d4
y A
anding, we obtain
- Loy = cos? d)J 5 dA + sin’ ¢j z2dA — 2cos ¢ sin ¢Lzy dA
A A

gives, using Eq. (9.46)

Loy=1, cos? ¢ + L sin ¢ — Ly sin 2¢ (9.48)
il 1}’
Loy =1, cos? ¢+ I, sin ¢ — Ly sin 2¢ (9.49)
L — [y s 0
Loy = 5 Jsin 2¢ + L, cos 2¢ (9.50)

itions (9.48)—(9.50) give the second moments of area and product second.mf)ment of area
xes inclined at an angle ¢ to the x axis. In the special case where Ozyy; are principal axes, Oz,
) =0, ¢ = ¢, and Eqs (9.48) and (9.49) become

Fow—=T snc? d T &uth =F cinPh (9.51)
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Problems 245

and than by shear loads, as is very often the case in practice. The presence of shear loads induces

e e bl sna ra ef R in the cross section of a beam which, as shown by elasticity theory, cause the cross section

o) = Iy cos” ¢, + I sin” ¢, + L sin 2¢, (9.52) sh ! eff) £m into the shape of a shallow inverted ‘s’. However, shear stresses in beams, the cross sectional

sespecatvaly. Burdhenstons, Minee S = Logors =, B (9250} ghos ‘ @ € psions of which are small in relation to their length, are comparatively low in value so that the
)

o ption of plane sections remaining plane after bending may be used with reasonable accuracy.
2y

tan 2¢, = -1 (9.53)
i

The angle ¢, may be eliminated from Eqs (9.51) and (9.52) by first determining cos 2¢, and sin

9.9 Load, shear force and bending moment relationships, general case
2¢, using Eq. (9.53). Thus -

Section 3.5 We derived load, shear force and bending moment relationships for loads applied in the

i cal plane of a beam whose cross section was at least singly symmetrical. These relationships are
 marized in Eq. (3.8) and may be extended to the more general case in which loads are applied in
‘ the horizontal (x2z) and vertical (yx) planes of a beam of arbitrary cross section. Thus for loads
edina horizontal plane Eq. (3.8) become

(b, —L)/2 L,

sin2¢, =

JaG-0)2r+ 12 N (TR AYET R

cos 26, =

Rewriting Eq. (9.51) in terms of cos 2¢,, and sin 2¢, we have appli
2
L I _ My 8 _
Ly = 5(1 + cos 2¢p) + Ey(l — cos 2¢P) — L sin 2¢p 022 Ox wy(x) 9.57)
Substituting for cos 2¢, and sin 2¢, from the above we obtain . and for loads applied in a vertical plane Eq. (3.8) become
L+I 1 M, _ 05, _
L) = 5 =~ 5V ([z_jy)z + 4]zzy (9.54) a2 | e wy(x) (9.58)

In Chapter 18 we shall return to the topic of beams subjected to bending but, instead of consider-
o loads which produce stresses within the elastic range of the material of the beam, we shall investi-
sate the behaviour of beams under loads which cause collapse.

Similarly

L+1 1 |
by = =5+ 5\ e=h)’ +4L 9.55

Note that the solution of Eq. (9.53) gives two values for the inclination of the principal axes, ¢y
and ¢, + 7/2, corresponding to the axes Oz, and Oy,

The results of Eqs (9.48)—(9.55) may be represented graphically by Mohr’s circle, a powerful
method of solution for this type of problem. We shall discuss Mohr’s circle in detail in Chapter 14 in
connection with the analysis of complex stress and strain.

Principal axes may be used to provide an apparently simpler solution to the problem of unsymmetri
bending. Referring components of bending moment and section properties to principal axes having
origin at the centroid of a beam section, we see that Eq. (9.31) or Eq. (9.32) reduces to

i M) 2 - M) " 9.56
Lp) Lyp)

PROBLEMS

A girder 10 m long has the cross section shown in Fig. P.9.1(a) and is simply supported over
a span of 6 m (see Fig. P.9.1(b)). If the maximum direct stress in the girder is limited to

150 N/mm?, determine the maximum permissible uniformly distributed load that may be
applied to the girder.

Ans. 84.3 kN/m.

200 mm
| I J_ZO mm

However, it must be appreciated that before Ly, and I, can be determined Z,, /, and I, must b
known together with ¢,,. Furthermore, the coordinates (z 3) of a point in the beam section must be trans=
ferred to the principal axes as must the components, M, and M,, of bending moment. Thus unless th
position of the principal axes is obvious by inspection, the amount of computation required by the above

method is far greater than direct use of Eq. (9.31) and an arbitrary, but convenient, set of centroidal axes:

Y w kN/m

oy I EEEEXEEEEEEEERRE

300 mm g; é%
7/ 7

;"

X
(a) TZO i (b) 2m 6m

FIGURF P a 1

m

B
9.8 Effect of shear forces on the theory of bending ha

So far our analysis has been based on the assumption that plane sections remain plane after bending
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Problems 247

P.9.2 A 230 mm X 300 mm timber cantilever of rectangular cross section projects 2.5 m from wal|
and carries a load of 13 300 N at its free end. Calculate the maximum direct stress in the
beam due to bending.

Ans.9.6 N/mm?>.

I 100 mm |

}‘_ﬁ"L,I | 20mm
{15mm R

15 mm 15mm
|— —> ~

>

P.9.3 A floor carries a uniformly distributed load of 16 kN/m? and is supported by joists 300 mp,
deep and 110 mm wide; the joists in turn are simply supported over a span of 4 m. If the
maximum stress in the joists is not to exceed 7 N/mm?, determine the distance apart, centre
to centre, at which the joists must be spaced.

Ans. 0.36 m.

P.9.4 A wooden mast 15 m high tapers linearly from 250 mm diameter at the base to 100 mm a¢ 21K

the top. At what point will the mast break under a horizontal load applied at the top? If the
maximum permissible stress in the wood is 35 N/mm?, calculate the magnitude of the load
that will cause failure.

Ans. 5 m from the top, 2320 N.

270 mm

P.9.5 A main beam in a steel framed structure is 5 m long and simply supported at each end. The
beam carries two cross-beams at distances of 1.5 and 3.5 m from one end, each of which
transmits a load of 20 kN to the main beam. Design the main beam using an allowable stress
of 155 N/mm?; make adequate allowance for the effect of self-weight.

Ans. Universal Beam, 254 mm X 102 mm X 22 kg/m.

_:1 5mm { #0mm

Y
A
Y

! 250 mm 150 mm
FIGURE P.9.6 FIGURE P.9.7

P.9.6 A cantilever beam of length 2.5 m has the cross section shown in Fig. P.9.6 and carries a
vertically downward concentrated load of 25 kN at its free end. If the maximum allowable
direct stress in the beam is * 165 N/mm? calculate the maximum intensity of uniformly
distributed load the beam can carry over its complete length. What are the values of the elastic
section moduli of the beam cross section about its horizontal z axis?

Ans. 9.8 kN/m, 563835 mm>, 1000925 mm>.

] 20mm

P.9.7 A beam has the singly symmetrical cross section shown in Fig. P.9.7 and is simply supported
over a span of 2 m. If the direct stress is limited to = 155 N/mm? and it carries a distributed
load which varies in intensity from zero at the left-hand support to wy at the right-hand
support calculate the maximum allowable value of w.

Ans. 308.6 kN/m.

lzomm 10mm

P.9.8 A short column, whose cross section is shown in Fig. P.9.8 is subjected to a compressive load
P, at the centroid of one of its flanges. Find the value of P such that the maximum
compressive stress does not exceed 150 N/mm”.

Ans. 846.4 kN.

— 160 mm

300 mm

P.9.9 A compressive force, P, is applied eccentrically to a column whose cross section is shown in
Fig. P.9.9. Find the maximum eccentricity, ¢, of P if there is to be no tension anywhere in the
cross section of the column. For this value of ¢ calculate the maximum compressive stress in

the column when P = 450 kN.
Apns. 64.2 mm, 160.7 N/mm?.

I E
:!‘\*I 20 mm }‘ J|

100 mm
FIGURE P.9.8 FIRIIRF P Q Q
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P.9.10

P.9.11

P.9.12

P.9.13

CHAPTER 9 Bending of Beams

The cantilever beam shown in Fig. P.9.10(a) has the hollow cross section shown in Fig. 9.1¢
(b). If the 130 kN load is applied at the centroid of the end cross section calculate the
maximum value of compressive stress in the cross section of the beam.

Ans. 132.1 N/mm?.

200mm
20mm i

f

25mm 25mm

>

15°
~_ [ 130KN

200 mm

570mm

6m ! 100mm

50mm¢

FIGURE P.9.11
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Wall thickness

. // 0.25m on

2m Al/

(a) (b)

all sides
\ B

N

FIGURE P.9.10

A column 3 m high has the cross section shown in Fig. P.9.11 and is subjected to an axial
load of 200 kN together with a horizontal load, W, applied in the direction of the web. If the
maximum direct stress in the column is limited to 155 N/mm? calculate the maximum
allowable value of W. If the 200 kN load is moved in the direction of W to the outside edge
of a flange but remains in the vertical plane of symmetry calculate the corresponding

Wind
pressure
750 N/m?

(b)

ARARRRARE

2m

15m

maximum allowable value of W,

Ans. 20.5 kN, 12.5 kN.
150 mm

A vertical chimney built in brickwork has a uniform rectangular cross section as shown in

Y

Fig. P.9.12(a) and is built to a height of 15 m. The brickwork has a density of 2000 kg/rn3

| 10 mm

and the wind pressure is equivalent to a uniform horizontal pressure of 750 N/m? acting over
one face. Calculate the stress at each of the points A and B at the base of the chimney.

Ans. (A) 0.02 N/mm?> (compression), (B) 0.60 N/mm?> (compression).
A cantilever beam of length 2 m has the cross section shown in Fig. P.9.13. If the beam carries

a uniformly distributed load of 5 kN/m together with a compressive axial load of 100 kN
applied at its free end, calculate the maximum direct stress in the cross section of the beam.

Ans. 121.5 N/mm? (camnrescion) at the hnilt-in end and at the hatram f the lea

200 mm
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Ay
T 150

5mm I le mm |

T B ’;A——mem

H b
20mm | z-= G —> (<— 10mm
200 mm
v - ¢
5mm
f F E i 10 mm
v C—:DT
5mm l 10 mm 50mm|

FIGURE P.9.14 FIGURE P.9.15

P.9.14

P.9.15

P.9.16

The section of a thick beam has the dimensions shown in Fig. P.9.14. Calculate the section
properties I, I, and I, referred to horizontal and vertical axes through the centroid of the
section. Determine also the direct stress at the point A due to a bending moment

M, =55 Nm.

Ans. —114 N/mm? (compression).

A beam possessing the thick section shown in Fig. P.9.15 is subjected to a bending moment
of 12 kN m applied in a plane inclined at 30° to the left of vertical and in a sense such that
its components M, and M, are negative and positive, respectively. Calculate the magnitude
and position of the maximum direct stress in the beam cross section.

Ans. 156.2 N/mm? (compression) at D.

The cross section of a beam/floor slab arrangement is shown in Fig. P.9.16. The complete section
is simply supported over a span of 10 m and, in addition to its self-weight, carries a concentrated

1m N
“l

] 10.15 m

0.75m

CINIIDE DO 12

p.9-17

.9.18

9.19
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Joad of 25 kN acting vertically downwards at mid-span. If the density of concrete is 2000 kg/m?,
calculate the maximum direct stress at the point A in its cross section.

Aps. 5.4 N/mm? (tension).
A precast concrete beam has the cross section shown in Fig. P.9.17 and carries a vertically
downward uniformly distributed load of 100 kN/m over a simply supported span of 4 m.

Calculate the maximum direct stress in the cross section of the beam, indicating clearly the
point at which it acts.

Ans. —27.6 N/mm?® (compression) at B.

A v 50 mm
B
40 mm T 40 mm

500mm| —» | —»

C
I I’SOmm
F D

300 mm I1 00 mm

FIGURE P.9.17

A thin-walled, cantilever beam of unsymmetrical cross section supports shear loads at its free
end as shown in Fig. P.9.18. Calculate the value of direct stress at the extremity of the lower
flange (point A) at a section half-way along the beam if the position of the shear loads is such
that no twisting of the beam occurs.

Ans. 194.7 N/mm? (tension).

H

0 mm

-

e
100 mm 2.0mm

N

Om

3

400N P
S )
WK gomm
FIGURE P.9.18

A thin-walled cantilever with walls of constant thickness # has the cross section shown in
Fig. P.9.19. The cantilever is loaded by a vertical force P at the tip and a horizontal force 2P
at the mid-section. Determine the direct stress at the points A and B in the cross section at

the built-in end.
Ans. (A) —1.85 PL/td*. (B) 0.1 PL/itd.
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L/2 A
C D

di2 di2 FIGURE P.9.19

[n Chapter 3 we saw that externally applied shear loads produce internal shear forces and bending
n

P.9.20 A tall building has the cross section shown in Fig. P.9.20 and is subjected to horizontal wind in cross sections of a beam. The bending moments cause direct stress distributions in beam

loads which are resisted by an unsymmetrical arrangement of concrete shear walls. If the
height of the building is 60 m determine the maximum direct stress in the cross section
produced by a uniform wind pressure of 750 N/m?® acting as shown. Specify the point at
which the maximum direct stress acts and assume, for the purposes of calculation, that the
shear walls, all of thickness 200 mm, are thin.

Ans. 3.2 N/mm? at H.

oments . . i ”
m rions (Chapter 9); we shall now determine the corresponding distributions of shear stress. Initially,
sec

however, We shall examine the physical relationship between bending and shear; the mathematical rela-
ionship has already been defined in Eq. (3.8).

P Suppose that number of planks are laid one on top of the other and supported at each end as shown
in Fig. 10.1(a). Applying a central concentrated load to the planks at mid span will cause them to bend as
shown in Fig. 10.1(b). Due to bending the underside of each plank will stretch and the topside will
shorten. It follows that there must be a relative sliding between the surfaces in contact. If now the planks
are glued together they will bend as shown in Fig. 10.2. The glue has prevented the relative sliding of the
adjacent surfaces and is therefore subjected to a shear force. This means that the application of a vertical
shear load to a beam not only produces internal shear forces on cross sections of the beam but shear forces

P.9.21 A cold-formed, thin-walled beam section of constant thickness has the profile shown in
Fig. P.9.21. Calculate the position of the neutral axis and the maximum direct stress for a
bending moment of 3.5 kN m applied about the horizontal axis Gz.

Ans. a=51.9°, £101.0 N/mm?, on horizontal planes as well. In fact, we have noted this earlier in Section 7.3 where we saw that shear stres-

ses applied in one plane induce equal complementary shear stresses on perpendicular planes which is exacdly
the same situation as in the connected planks. This is important in the design of the connections between,
say, a concrete slab and the flange of a steel I-section beam where the connections, usually steel studs, are
subjected to this horizontal shear.

Shear stress distributions in beam cross sections depend upon the geometry of the beam section.

750 N/m2 We shall now determine this distribution for the general case of an unsymmetrical beam section be'for_e
AV YV Y VTV P T3y 4H o extending the theory to the simpler case of beam sections having at least one axis of symmetry. Thls is
Fom _¢_ E P the reverse of our approach in Chapter 9 for bending but, here, the development of the theory is only
) I?’m marginally more complicated for the general case.
£ K 50 mm
® C D 7] - " = - = =
am} [T ¢ i , . 10.1 Shear stress distribution in a beam of unsymmetrical section
4m |, 4m 4m 6.4 mm Consider an elemental length, 8x, of a beam of arbitrary section subjected to internal shear forces S,
and S, as shown in Fig. 10.3(a). The origin of the axes xyz coincides with the centroid G of the beam
< 16m > section. Let us suppose that the lines of action of S, and , are such that no twisting of the beam occurs
(see Section 10.4). The shear stresses induced are therefore due solely to shearing action and are not
FIGURE P.8.20 FIGURE P.9.21

contributed to by torsion.

Imagine now that a ‘slice’ of width &y is taken through the length of the element. Let 7 be the average
shear stress along the edge, &y, of the slice in a direction perpendicular to &y and in the plane of the cross
section (Fig. 10.3(b)); note that T is not necessarily the absolute value of shear stress at this position.
- We saw in Chapter 7 that shear stresses on given planes induce equal, complementary shear stresses on
Planes perpendicular to the given planes. Thus, 7 on the cross-sectional face of the slice induces shear
Stresses T on the flat longitudinal face of the slice. In addition, as we saw in Chapter 3, shear loads produce
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Complementary
shear stress, t

Direct stress

due to bending
(a) (b) L%,
ot x
FIGURE 10.1 oo
Bending of unconnected planks. (b) Average shear stress, 7
along edge by
internal bending moments which, in turn, give rise to direc
y : URE 10.3
stresses in beam cross sections. Therefore on any filameng , = . :
A4, of the slice there is a direct stress o, at the section x and i ermination of shear stress distribution in a beam of arbitrary cross section.
) x a
direct stress 0, + (00,/0x)0x at the section x + dx (Fig. 103
(b)). The slice is therefore in equilibrium in the x direction Substituting for 80../0x in Eq. (10.1) we obtain
under the combined action of the direct stress due to bendjng
and the complementary shear stress, 7. Hence 7o = Syley — Sels J 2 dA + Sely — Syl J ydd
60' IZ'I_;/—[Z%I ’ .[z.[y_lzzy A
‘rboéx—J o, d4 + J (Ux + —xéx)dA’ =0
FIGURE 10.2 : / Ox
Bending of connected planks. which, when simplified, becomes S, =S, J s Ly —S,1, J- i _
- T h@L -2 b, - 12) )7 '
Tbo == —J —x‘dA/ (101)
A ax

The slice may be taken so that the average shear stress in any chosen direction can be determined.

We shall assume (see Section 9.8) that the direct stresses produced by the bending action of shear
loads are given by the theory developed for the pure bending of beams. Therefore, for a beam of unsym-
metrical section and for coordinates referred to axes through the centroid of the section

M1, — M1, M1~ My, ,
Op=— z— y (ie. Eq.(9.31))
< LI, —I2 LL—I2

0.2 Shear stress distribution in symmetrical sections

Senerally in civil engineering we are not concerned with shear stresses in unsymmetrical sections except
ere they are of the thin-walled type (see Sections 10.4 and 10.5). “Thick’ beam sections usually pos-
ss at least one axis of symmetry and are subjected to shear loads in that direction.

Then Suppose that the beam section shown in Fig. 10.4 is subjected to a single shear load S,. Since the
bos {[(6 M, /0L, — (OM, /0x)1,, )z + [(OM, /6x)1, — (OM, /)L, ly } axis is an axis of symmetry, it follows that Z,,= 0 (Section 9.6). Therefore Eq. 10.2 reduces to
- )
O LL-I2 Fies ;’; J ydd (103)
From Egs (9.57) and (9.58) 4 052 d40
oM, oM, he negative sign arises because the average shear stress T along the base 4, of the slice 4’ is directed
e =S Fale =S, Atds by from within the slice as shown in Fig. 10.3(b). Taking the slice above Gz, as in Fig. 10.4,

that 7 is now directed downwards. Clearly a positive shear force S, produces shear stresses in the
Ve y direction, hence the negative sign.

early the important shear stresses in the beam section of Fig. 10.4 are in the direction of the load.
ﬁgd l_'he dfstribution of this shear stress throughout the depth of th? beam we therefori take th?

Gk A o

so that

o, _ { (=Sul, + S,Ip)z + (=S,I, + S,I,)y }
Ox LI —1?
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A5, represents, mathematically, the first momen of
the shaded area A’ about the z axis. We il
therefore rewrite Eq. (10.3) as

_ S,A'y

y
D, e
% l8y1 where 7 is the distance of the centroid of the
A % x area A' from the z axis. Alternatively, if the
//% % value of 7 is not easily determined, say by
P Y inspection, then [,ydA’ may be found by cal-
shearairess, culating the first moment of area about the ,
across by axis of an elemental strip of length 4, width
ok dy1 (Fig. 10.4), and integrating over the area
A'. Equation (10.3) then becomes

— S)’ i b d
T Tk L N (103

45

4

(10_4)

N

~

A

A
<

@) b > (b)

: 105
“stress distribution in a rectangular section beam.

Either of Egs. (10.4) or (10.5) may be used
to determine the distribution of vertical shegy
FIGURE 10.4 stress in a beam section possessing at least a
Shear stress distribution in a symmetrical section beam.  horizontal or vertical axis of symmetry and

subjected to a vertical shear load. The corre-
sponding expressions for the horizontal shear stress due to a horizontal load are, by direct comparison

with Eqgs (10.4) and (10.5)

bd?
istribution of vertical shear stress is therefore parabolic as shown in Fig. 10.5(b) and varies

i (f‘;f N yZ) (10.7)

S, Az O . =0aty= =dI2 to T =17, = 35/2bd at the neutral axis (y = 0) of the beam section. Note
i bol, =T bol, L by day (10.6) Toax = 1.57av, where T,,, the average vertical shear stress over the section, is given by 7., = §,/bd.

in which &y is the length of the edge of a vertical slice.

L IPLE 10.2
EXAMPLE 10.1 , the distribution of vertical shear stress in the I-section beam of Fig. 10.6(a) produced by
Determine the distribution of vertical shear stress in the beam section shown in Fig. 10.5(a) due o shear load, S,

vertical shear load .
In this example the value of 7 for the slice 4 is found easily by inspection so that we may ut
Eq. (10.4). From Fig. 10.5(a) we see that d

0, (4 S 4 o el

r from Fig. 10.6(a) that the geometry of each of the areas Af and A, formed by taking a
beam in the flange (at y = y¢) and in the web (at y = y,,), respectively, are different and
e lead to different distributions of shear stress. First we shall consider the flange. The
s rectangular so that the distribution of vertical shear stress, 74, in the flange is, by direct

S, B(D LT
e = <k %
B Tg (2 ”) (2 yf)

L. = 1. 10.8
i 21(4 ”?> Sy

Hence
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A
, r;atbase
h I(_ of flange
z < D <
Trmax
Y
B T t

(a) (b)

FIGURE 10.6 4 |
Shear stress distribution in an |-section beam.

where I is the second moment of area of the complete section about the centroidal axis Gz and js
obtained by the methods of Section 9.6.

A difficulty arises in the interpretation of Eq. (10.8) which indicates a parabolic distribution of

vertical shear stress in the flanges increasing from 7= 0 at yy= = D/2 to a value i

R 4
¢ 8_,z(DZ d*) (109)

at y¢= * d/2. However, the shear stress must also be zero at the inner surfaces ab, etc., of the flanges,
Equartion (10.8) therefore may only be taken to give an indication of the vertical shear stress distribution

in the flanges in the vicinity of the web. Clearly if the flanges are thin so that & is close in value to D then

¢ in the flanges at the extremities of the web is small, as indicated in Fig. 10.6(b).

The area 4], formed by taking a slice in the web at y =y, comprises two rectangles which nay

therefore be treated separately in determining A4’ 7 for the web.

Thus
A S S e S
o= e s — == s - —— —_ ] -
n=i oG- 9)3(E5) e )5 G )]

which simplifes to

__5 B 2 \
cogBoencsl-)

or :
S, o £

T = R [W(Dl )+ = (Z— yv{)} (10.11)

Again the distribution is parabolic and increases from

Sy B 2
= o e — S 0.12
Tw T (D*— 4% (10.12)
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A AY
7 /\
I .
¢ «— €| —>\
. Y I
le '
Iz i
| Centre line
> B = ;‘d | D i of web
1
i
1
¥ 1
1
1

(@) 3 (b)

RE 10.7
ibution of honzontat shear stress in the flanges of an I|-section beam.

. = =+ /2 to a maximum value, Ty, maw given by

£\ meia X D* — A 10.13)
Fka A {8 Ll %) 3 ( )

.y = 0. Note that the value of T, at the extremities of the web (Eq. (10.12)) is greater than the cor-
S ondi g values of 7¢ by a factor B/t The complete distribution is shown in Fig. 10.6(b). Note
) that the negative sign indicates that 7 is vertically upwards.

value of Ty, max (Eq. (10.13)) is not very much greater than that of 7, at the extremities of the
In design checks on shear stress values in I-section beams it is usual to assume that the maximum
stress in the web is equal to the shear load divided by the web area. In most cases the result is only
y different from the value given by Eq. (10.13). A typical value given in Codes of Practice for the
um allowable value of shear stress in the web of an I-section, mild steel beam is 100 N/mm?; this
licable to sections having web thicknesses not exceeding 40 mm.

e have been concerned so far in this example with the distribution of vertical shear stress. We now
the situation that arises if we take the slice across one of the flanges at z = z as shown in
8. 10.7(a). Equations (10.4) and (10.5) still apply, but in this case &y = # Thus, using Eq. (10.4)

S, (B LR, 4
T gl TR IS\ T g

iy is the distribution of horizontal shear stress in the flange. Simplifying the above equation

S,(D+d) (B
iy = - 2020 (E & zf> (10.14)
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Equation (10.14) shows that the horizontal shear stress varies linearly in the flanges from zerq, .
zr=B/2 to — S,(D+ d)BRBI, at z= 0.

We have defined a positive shear stress as being directed towards the edge &y of the slice away
from the interior of the slice, Fig. 10.3(b). Since Eq. (10.14) is always negative for the upper ﬂaﬂgey,v
Tewy in the upper flange is directed towards the edges of the flange. By a similar argument Ty i
the lower flange is directed away from the edges of the flange because y for a slice in the lower flapg.
is negative making Eq. (10.14) always positive. The distribution of horizontal shear stress in by
flanges of the beam is shown in Fig. 10.7(b). '

From Eq. (10.12) we see that the numerical value of shear stress at the extremities of the ,”-
multiplied by the web thickness is

0.033W 0.250 W

0.332

S, B B |
et E :l)'D- . o 3 b
Twhy Iz 8( ( ‘{) [z 8(D d)ZIf (1015;) ( )

The product of horizontal flange stress and flange thickness at the extremities of the web is, from
Eq. (10.14)

Ex 10.3.
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i 120 X 240° 105 X 200
il 1 12
=6.8 X 10’ mm*

Then, from Eq. (10.8), the shear stress

distribution in the flange is
2407
4
so that

¢ = — 7.4 X 107 W(120% — y7)N/mm’ (i)

W X 103
2 X 6.8 % 107

%

TE=

Then, when »=120mm, 7¢,=0 and
when 7= 100 mm, 7¢= —0.033 N/mm”.

The shear stress distribution in the web is
obrained directly from Eq. (10.11) and is

S, B
Tt = 2= (D+d) 4 10.16) W X 10° [ 120 1 (200?
k= (DS b (10.16) SR S (2402~2002)+_( | *:w)}
6.8 X 10" |8 X 15 2\ 4
Comparing Egs (10.15) and (10.16) we see that .
hich gives

Twhe = 275 & (10.19 ‘ o = —9.8X 107(339000 — 7.5 y2) (i)
The product stress X thickness gives the shear force per unit length in the walls of the section and is ‘ From Eq. (i), when »,=100mm, 7, =—0.259 WN/mm®> and when ,=0,

known as the shear flow, a particularly useful parameter when considering thin-walled sections. .= —0.332 N/mm? = Tpay. The complete distribution is shown in Fig. 10.8(b).

the above example we note that Tgyy# is the shear flow at the extremities of the web produced by
considering one half of the complete flange. From symmetry there is an equal shear flow at

~ For a limiting value of shear stress of 100 N/mm?,

extremities of the web from the other half of the flange. Equation (10.17) therefore expresses the HO=0.552%
equilibrium of the shear flows at the web/flange junctions. We shall return to a more derailed con- > that
sideration of shear flow when investigating the shear of thin-walled sections. ] ' W =301 kN.
In ‘thick’ I-section beams the horizontal flange shear stress is not of great importance since, as
can be seen from Eq. (10.17), it is of the order of half the magnitude of the vertical shear stress at In this example we have applied Eqgs (10.8) and (10.11) direcdy. However, rather fhafl attempt
the extremities of the web if #, ~#. In thin-walled I-sections (and other sections too) this horizontal » commit these lengthy formulae to memory it is generally better to work from first principles.

shear stress can produce shear distortions of sufficient magnitude to redistribute the direct stresses

due to bending, thereby seriously affecting the accuracy of the basic bending theory described in
Chapter 9. This phenomenon is known as shear lag. :

&
EXAMPLE 10.3

A steel beam has the cross section shown in Fig. 10.8(a) and carries a load of W kN in its vertical
plane of symmetry. Calculate and sketch the distribution of shear stress in the cross section of th
beam and hence determine the maximum allowable value of W if the shear stress in the beam is lim-
ited to 100 N/mm”.

The second moment of area of the beam section about the z axis is given by (see Section 9.6)

the beam inserting all principal values.

(50 X 20 + 60 X 10) 7 = 50 X

ally we need to find the position of the centroid of area, G, which will lie on the vertical axis
mmetry of the beam section. Taking moments of area about the base of the flange

20 X 10+ 60 X 10 X 50

J =25 mm

h
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10mm
Aw \,7 K
Vi
Yu yT 60 mm
Z G 27.9N/mm?
v yf;— [ “ 27.7 N/mm?
—— o . mm
220’ 5.5N/mm” FIGURE 10.9
l<__50m.fl_,’ A Shear stress distribution in
(a) (b) beam of Ex. 10.4.

The second moment of area of the beam section about Gz is then

_ 50 %20°

10 X 60°
& s +50 X 20X 15° + ——c

+ 10 X 60 X 25°

so that
I, =8.13 X 10° mm*

We now take a slice 4, in the web as shown in Fig. 10.9(a). Then, from Eq. (10.4)

T =

15X 10% X 10 1
il g —— o +
OXEI X105 00 233t m)

from which
Tw = —9.23 X 1073(55%* — 3,?) @)

From Eq. (i), when y,=55mm, 7,,=0 and when y,= —5mm, 7, = —27.7 N/mm®. The
maximum value of shear stress occurs when g, = 0 and is —27.9 N/mm”.

To find the shear stress distribution in the flange of the beam section we could consider the
inverted T-shape above the slice. However, a simpler solution is obtained by considering the part of
the flange below the slice as shown in Fig. 10.9(a). Then, from Eq. (10.4)

15 X 10% X 50

1
S (95— )05
SXEB X2 W35+

R

which simplifies to
i
7= =923 X107°(25* — ) (if)

From Eq. (i), when yr= —25mm, 7¢=0 and when y= —5mm, 7¢= —5.54 N/mm?>. The
complete distribution is shown in Fig. 10.9(b).
If the inverted T-shape above the slice in the flange had been considered as ¢’ then

Af 7=60X 10 X 25— 500 — 5)(1/2)(y¢ +5)
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<o that
A 7=15000 — 25(3> — 5)

Note that the contribution to A¢" § from the leg of the T- and from the flange have opposite
signs due to the fact that their centroids lie on opposite sides of the Gz axis.

e —i

-EXAMPLE 10.5

- —_m

Determine the distribution of vertical shear stress in a beam of circular cross section when it is sub-
jected to a shear force S, (Fig. 10.10).

The area A’ of the slice in this problem is a segment of a circle and therefore does not lend itself
to the simple treatment of the previous two examples. We shall therefore use Eq. (10.5) to determine
the distribution of vertical shear stress. Thus

Sy ~D/2
T__éolzjy by dy (10.18)
where
« D4
L= —— . (9.40
.= T (Bq.(0:40)
AS,
Ay
le b =
, la;q
A
e s 7
N TEFRSN by T
G

i)

FIGURE 10.10 ,
Distribution of shear stress in
a beam of circular cross
section.




|
264 CHAPTER 10 Shear of Beams

Integration of Eq. (10.18) is simplified if angular variables are used; thus, from Fig. 10.10

&0=2X§cos0 b=2><«§oos¢ yl=§siﬁ¢ dy1=§oos¢d¢>

Equation (10.18) then becomes

| /2
7.;___}331__]' cos® ¢ sin ¢ d¢ ‘

m D2 cos 0 Jg

Integrating we obtain

?W_WDZ(;;)S"Q 3 ,‘9 d
which gives “
T=- 165} cos® 0

But 3m D?
ek .2 SR 3
cos® 0=1—sin 9=1—(b7~2—)

Therefore

3m D? D?

The distribution of shear stress is parabolic with values of 7=0 at y= = D/2 anc
T = Tmax = — 168,/37D? at y = 0, the neutral axis of the section.

e ol

10.3 Strain energy due to shear

Consider a small rectangular element of material of side 8x, &y and thickness # subjected to a shear stress

and complementary shear stress system, 7 (Fig. 10.11(a)); 7 produces a shear strain -y in the element so
that distortion occurs as shown in Fig. 10.11(b), where displacements are relative to the side CD. The
horizontal displacement of the side AB is 7y 8y so that the shear force on the face AB moves through

this distance and therefore does work. If the

B — " A 7'84}/_ shear loads producing the shear stress are
a1 ‘>‘B ——> , gradually applied, then the work done by
" the shear force on the element and hence
4 / the strain energy stored, 8U, is given by
T
G 5 — 1
T & A 6U = A bxry by
dx oF
(@) (b)
1
FIGURE 10.11 oU = ET’yt Ox by
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Now 7= 7/G, where G is the shear modulus and # 8x 9y is the volume of the element. Hence

2
6U = 5% X volume of element

The total strain energy, U, due to shear in a structural member in which the shear stress, 7, is uni-
form is then given by
2

U= ;_G X volume of member (10.20)

10.4 Shear stress distribution in thin-walled open section beams

[n considering the shear stress distribution in thin-walled open section beams we shall make identical
assumptions regarding the calculation of section properties as were made in Section 9.6. In addition we
shall assume that shear stresses in the plane of the cross section and parallel to the tangent at any point
on the beam wall are constant across the thickness (Fig. 10.12(a)), whereas shear stresses normal to the
fangent are negligible (Fig. 10.12(b)). The validity of the latter assumption is evident when it is realized |
chat these normal shear stresses must be zero on the inner and outer surfaces of the section and that the |
walls are thin. We shall further assume that the wall thickness can vary round the section but is con- ‘
stant along the length of the member.
Figure 10.13 shows a length of a thin-walled beam of arbitrary section subjected to shear loads S,
and S, which are applied such that no twisting of the beam occurs. In addition to shear stresses, direct
stresses due to the bending action of the shear loads are present so that an element 85 X 8x of the beam
wall is in equilibrium under the stress system shown in Fig. 10.14(a). The shear stress 7 is assumed to
be positive in the positive direction of s, the distance round the profile of the section measured from an
open edge. Although we have specified that the thickness # may vary with s, this variation is small for
most thin-walled sections so that we may reasonably make the approximation that # is constant over the
length &s. As stated in Ex. 10.2 it is convenient, when considering thin-walled sections, to work in

Assumed Assumed

constant Thickness, t negligible
~ across t

2) (b)

FIGURE 10.12

Assumptions in thin-walled open
section beams.

FIGURE 10.13
Shear of a thin-walled open section
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Ty

(@)

FIGURE 10.14
Equilibrium of beam element.

terms of shear flow to which we assign the symbol g (=7%). Figure 10.14(b) shows the shear stress sys-
tem of Fig. 10.14(a) represented in terms of g. Thus for equilibrium of the element in the x direction

0o, _ 0Oq _ x
(ax + —-676::)1‘ Os — oyt bs+ (q + = 6;) Ox—gq0x=0

which gives

0q , 0o, _
a + t—a; =0 (1021

Again we assume that the direct stresses are given by Eq. (9.31). Then, substituting in Eq. (10.21)
for Oox/0x from the derivation of Eq. (10.2)

0 Sy=SL)  (Shy—S1L)
B L= BT rop
2ty 2y Y zy

Integrating this expression from s =0 (where 4 =0 on the open edge of the section) to any point -
we have

_ 54— 8L) J (S:Ly = S,1,) J

g tz ds +
L, —I2

tyds (10.22)
0 -[z[y - Izi.

0

The shear stress at any point in the beam section wall is then obtained by dividing ¢, by the wall
thickness at that point, i.e.

=2 (10.23)
2

10.4 Shear stress distribution in thin-walled open section beams
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S.C. S.C.

at sp = 0.33 4. For values of 54 <0.33 A, gap is positive and is therefore in the same direction as Sl
Furthermore, gap has a turning value berween 55 = 0 and s, = 0.33 / at a value of s given by
FIGURE 10.18

Special cases of shear centre (S.C.) position.

Sy
dsy

i.e. at 55 = 0.17 h. The corresponding value of gap is then, from Eq. (ii), gap = 0.145y/h.
In the web BC, y = +A/2—s3 where 0 <s3 =5 and z=0. Thus

=1.72h—10.2954p =0

Where a section possesses an axis of symmetry, the shear centre must lie on this axis. For cruciform, T

b angle sections of the type shown in Fig. 10.18 the shear centre is located at the intersection of the walls
| ince the resultant internal shear loads all pass through this point. In fact in any beam section in which the
walls are straight and intersect at just one point, that point is the shear centre of the section.

S, [®
g8C = 7;% L (6.86sp — 3.43 h)dsp + g3 (iii)

Note that in Eq. (iii), gpc is not zero when s3 =0 but equal to the value obtained by inserting a
s =hl2 in Eq. (i), i.e. g8 = —0.43 S/b. Integrating the first two terms on the right-hand side of
Eq. (iii) we obrain :

YAMPLE 10.7

mine the position of the shear centre of the thin-walled channel section shown in Fig. 10.19.

- shear centre S lies on the horizontal axis of symmetry at some distance zs, say, from the web.

1 arbitrary shear load, S, is applied through the shear centre, then the shear flow distribution is
by Eq. (10.22) and the moment about any point in the cross section produced by these shear

is equi'mlmt to the moment of the applied shear load about the same point; S_,, appears on

sides of the resulting equation and may therefore be eliminated to leave zg as the unknown.

¢ the channel section, G, is an axis of symmetry so that I, = 0. Equation (10.22) therefore

ies to

gsc = %(3.43% — 3.43 hsg — 0.43 /)

Equation (iv) gives a parabolic shear flow distribution in the web, symmetrical about Gz and
with a maximum value at s = h/2 equal to —1.295,/h; gap is negative at all points in the web. '

The shear flow distribution in the lower flange may be deduced from antisymmetry; the complete
distribution is shown in Fig. 10.16.

Shear centre

We have specified in the previous analysis that the lines of action of the shear loads S, and §, must not
cause twisting of the section. For this to be the case, S, and S, must pass through the shear centre of the
section. Clearly in many practical situations this is not so and torsion as well as shear is induced. These
problems may be simplified by replacing the shear loads by shear loads acting through the shear centre,
plus a pure torque, as illustrated in Fig. 10.17 for the simple case of a channel section subjected to a
vertical shear load S, applied in the line of the web. The shear stresses corresponding to the separate
loading cases are then added by superposition.

'S,
S T=
—R . .
l ZS

FIGURE 10.19 =Y
Channel section beam of Ex. 10.7.

FIGURE 10.17
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exally possible to choose an origin for s that coincides with a known value of shear flow. A closed
o 1 beam under shear is therefore singly redundant as far as the internal force system is concerned
sec(;l‘;equires an equation additional to the equilibrium equation (Eq. (10.21)). Identical assumptions
o made regarding section properties, wall thickness and shear stress distribution as were made for the
en section beam.
op The thin-walled beam of arbitrary closed section shown in Fig. 10.20 is subjected to shear loads S,
ds, applied through any point in the cross section. These shear loads produce direct and shear stres-
on any element in the beam wall identical to those shown in Fig. 10.14. The equilibrium equation

21)) is therefore applicable and is

Substituting for 7, and noting that # is constant round the section, we have

jid Gt 125.7 / -
%= T B+ 6b/h) L" i ®

The solution of this type of problem may be reduced in length by giving some thought to what
is required. We are asked, in this case, to obtain the position of the shear centre and not a complete
shear flow distribution. From symmetry it can be seen that the moments of the resultant shear forces
on the upper and lower flanges about the mid-point of the web are numerically equal and act in the
same sense. Furthermore, the moment of the web shear about the same point is zero. Therefore it is
only necessary to obtain the shear flow distribution on either the upper or lower flange for a solu-
tion. Alternatively, the choice of either flange/web junction as the moment centre leads to the same ]

an
ses
0Oq oo,
2+
Os ! Ox

Substituting for 0o,/0x from the derivation of Eq. (10.2) and integrating we obtain, in an identical

=0

conclusion. ‘ ;
On the upper flange, y = +4/2 so that from Eq. (i) we obtain i manner to that for an open section beam
8,1y — S 1, J Sy =S, [f
go= 222 s+ —J y ds + g, (10.24)
e M=l LL =12 )

A L R
9 T B ehih 1

Equating the anticlockwise moments of the internal shear forces about the mid-point of the web
to the clockwise moment of the applied shear load about the same point gives

where 4.0 i the value of shear flow at the origin of s.
It is clear from a comparison of Eqs (10.22) and (10.24) that the first two terms of the right-hand
side of Eq. (10.24) represent the shear flow distribution in an open section beam with the shear loads

»applied through its shear centre. We shall denote this ‘open section” or ‘basic’ shear flow distribution
by 4 and rewrite Eq. (10.24) as

h
Sz = = J:quid&
4 =gt gs0

We obtain gy, by supposing that the closed section beam is ‘cut’ at some convenient point, thereby
producing an ‘open section’ beam as shown in Fig. 10.21(b); we take the ‘cut’ as the origin for s. The

Substituting for g from Eq. (ii) we have

b
Sz = BJ p«ﬁ—?mwwsg% dsa shear flow distribution round this ‘open section’ beam is given by Eq. (10.22), i.e.
Sy —Sels ° S, L, — S, [*
= . = R AR ds + MJ ds
from which o LL,—12 JO & LL,— 1} Oty
5] 36% - Equation (10.22) is valid only if the shear loads produce no twist; in other words, S, and S, must
o K1+ 6b/h) be applied through the shear centre of the ‘open section’ beam. Thus by ‘cutting’ the closed section

beam to determine g, we are, in effect, transferring the line of action of S, and S, to the shear centre,

In the case of an unsymmerrical section, the coordinates (zs, y5) of the shear centre referred 5,0, of the resulting ‘open section’ beam. The implication is, therefore, that when we ‘cut’ the section

some convenient point in the cross section are obtained by first determining zs in a similar man

to that described above and then calculating ys by applying a shear load S, through the shear centr

10.5 Shear stress distribution in thin-walled closed section beams

The shear flow and shear stress distributions in a closed section, thin-walled beam are determined in &
manner similar to that described in Section 10.4 for an open section beam but with two important dif-
ferences. Firstly, the shear loads may be applied at points in the cross section other than the shear centf
so that shear and torsion occur simultaneously. We shall see that a solution may be obtained for this
case without separating the shear and torsional effects, although such an approach is %

,,,,,,, 11 1. 2 IR | o 1 . 1 © 1. e e nOl

FIGURE 10.20
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¢ unknown shear flow g, follows from either of Eqs. (10.25) or (10.26). Note that the signs of the
tributions of S, and S, on the left-hand side of Eq. (10.25) depend upon the position of their
of action relative to the moment centre. The values given in Eq. (10.25) apply only to Fig. 10.21(a)
lint <ould change for different moment centres and/or differently positioned shear loads.

10.5 Shear stress distribution in thin-walled closed section beams 273

Asy Th
A Sy . ol'nent con
Ss,O
(@ (b)

FIGURE 10.21
Determination of shear flow value at the origin for s in a closed section beam.

we must simultaneously introduce a pure torque to compensate for the transference of S, and S, We
shall show in Chapter 11 that the application of a pure torque to a closed section beam results in a cop-
stant shear flow round the walls of the beam. In this case ¢, which is effectively a constant shear flow
round the section, corresponds to the pure torque produced by the shear load transference. Clearly dif-
ferent positions of the ‘cut’ will result in different values for g, since the corresponding ‘open section’
beams have different shear centre positions.

Equating internal and external moments in Fig. 10.21(a), we have

Szno+5y§o=]{pqsds=qubds+qs,ofpds

where § denotes integration taken completely round the section. In Fig. 10.21(a) the elemental area & 4

n0=/2, gys = —0.16(S/). The shear flow in the wall 23 is then

E 10.8

re the shear ﬁqw discribution in the walls of the thin-walled closed section beam shown in
the wall thickness, # is constant throughout. "

the z axis is an axis of symmetry, I,, = 0, and since S, = 0, Eq. (10.24) reduces to

s L o ds+gip

L= (a3 /2) + 2 X 21t X 72 + [12)° /12] = 6.240°
Losen for the “cut” but the amount of

“cut” the beam section at 1. Any point may be cl

tion will be reduced if a point is chosen which coincides with the axis of symmetry. Then

gor2= = (S,/L) J: 7 sin 8 rd8

gb12 = 0.16(S, /7)[cos 01

(i)

go.12 = 0.16(S, /)(cos 6 — 1)

is given by
1 3 - T
oA=Lyt s ==&/ | s = 0165/
0
Thus
ds=2 3
frazegu B
X
or I
]{ pds=24 t 2r
]
where A is the area enclosed by the mid-line of the section wall. Hence
- X
Semo + Sy60 = f gy ds + 2440 (10.25) - 2 s
< ;
If the moment centre coincides with the lines of action of S, and S, then Eq. (10.25) reduces to FIGURE 10.23 ‘ |
d=q pop v 2l of Ex. 10.8. Shear flow distribution in beam of Ex. 10.8.

(10.26)
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|
so that ‘;
P23 = — 0.16(S, /7)1 +7) ) |
|
and when s; = 27, g, 3 = —0.48(S,/7). Then, in the wall 34

g4 = 0. 15@/173)1 £ = )y — 0.48(5,/7)

4
so that j
gb3s = =0.16(S,/7)(rs2 = 0.5 5 +37%) (i)

The remaining distribution follows from symmetry. Now taking moments about O and using

Eq. (10.26)
/2 ‘ 2r r ] ; !
0= zU s P 4B+ j oz 7 st + j go3e 27 dfz] o+ (A Do (i)
0 0 0

Substituting in Eq. (iv) for g4,12 etc from Eqs (i), (ii) and (iii) gives
90 = 0.325,/r

Adding g, to the gy, distributions of Eqs (i), (ii) and (iii) gives g

12 = 0.16(S,/)(r*cos 0 + 2) '

q23 = 0. 16(55/"3)(72 = 151
g4 = 0.16(S,/7°)(0.55 — 15, — 77) !

Note that ¢,5 changes sign at s; = . The shear flow distribution in the lower half of the secuoni

follows from symmetry and the complete distribution is shown in Fig. 10.23.

Shear centre

A complication arises in the determination of the position of the shear centre of a closed section beam
since the line of action of the arbitrary shear load (applied through the shear centre as in Ex. 10.7)
must be known before g, can be determined from either of Eqgs. (10.25) or (10.26). However, before
the position of the shear centre can be found, g,o must be obtained. Thus an alternative method of
determining g, is required. We therefore consider the rate of twist of the beam which, when the shear
loads act through the shear centre, is zero.

Consider an element, 85 X &x, of the wall of the beam subjected to a system of shear and comple-
mentary shear stresses as shown in Fig. 10.24(a). These shear stresses induce a shear strain, <, in the ele-
ment which is given by

Y=¢+ &

irrespective of whether direct stresses (due to bending action) are present or not. If the linear displace- -

ments of the sides of the element in the s and x directions are v, (i.e. a tangential displacement) and
8w, respectively, then as both 8s and &x become infinitely small
ow = Ou,
=+

A Aan

(10.27)
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Distortion

/‘\8; due to shear

FIGURE 10.24
Rate of twist in a thin-walled closed section beam.

Suppose now that the beam section is given a small angle of twist, 8, about its centre of twist, R. If
we assume that the shape of the cross section of the beam is unchanged by this rotation (i.e. it moves
as a rigid body), then from Fig. 10.24(b) it can be seen that the tangential displacement, v,, of a point
in the wall of the beam section is given by

Ve = PR9
Hence
ou, _ %
Ox PR Ox

Since we are assuming that the section rotates as a rigid body, it follows that 6 is a function of x
only so that the above equation may be written

v, _ 40
PR =i
Substituting for du/Ox in Eq. (10.27) we have
ow  do
v a PR e
Now
= =9
¥ G t
Thus
g _ Ow do
Gt Os R dx

Integrating both sides of this equation completely round the cross section of the beam, i.e. from
5= 0to s=3, (see Fig. 10.24(b))

ow de
% dS f ds+ — q ]’R
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which gives
- gs dé

— — Sf‘& + —
Gr ds [w]s—O dx 24

The axial displacement, w, must have the same value at s = 0 and s =s,. Therefore the above eXpres.
sion reduces to

o 1 g

For shear loads applied through the shear centre, df/dx = 0 so that

= é
0 e ds

which may be written

1
0= j{ a(% + ¢.0)ds

_ _ $(gv/Gr)ds
0 $ds/Gt

If G is constant then Eq. (10.29) simplifies to

goo = — L@/ S;‘;ﬁ?fd’ (10.30)
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PROBLEMS
&104 A cantilever has the inverted T-section shown in Fig. P.10.1. It carries a vertical shear load of

4 kN in a downward direction. Determine the distribution of vertical shear stress in its cross-
section.

Ans. In web: 7= 0.004(44>—)»)N/mm?, in flange: T = 0.004(26°—y*)N/mm?

— R

S
60 mm
v |
A
v 10 mm
%% 40mm :{ FIGURE P.10.1

An I-section beam having the cross-sectional dimensions shown in Fig. P.10.2 carries a
vertical shear load of 80 kN. Calculate and sketch the distribution of vertical shear stress
across the beam section and determine the percentage of the total shear load carried by the
web.

Ans. T (base of flanges) = 1.1 N/mm?2, 7 (ends of web) =11.1 N/mm?,
7 (neutral axis) = 15.77 N/mm?, 95.9%.

| ] @20 mm 1}

400 mm

|
L l ¢20 mm lr
| 150 mm : | FIGURE P.10.2

0.3 A doubly symmetrical I-section beam is reinforced by a flat plate attached to the upper flange
as shown in Fig. P.10.3. If the resulting compound beam is subjected to a vertical shear load
of 200 kN, determine the distribution of shear stress in the portion of the cross section that
extends from the top of the plate to the neutral axis. Calculate also the shear force per unit
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P.10.4

P.10.5

CHAPTER 10 Shear of Beams

length of beam resisted by the shear connection between the plate and the flange of the
I-section beam.

Apns. T (top of plate) =0
7 (bottom of plate) = 0.68 N/mm”
T (top of flange) = 1.36 N/mm?
7 (bottom of flange) = 1.78 N/mm?
T (top of web) = 14.22 N/mm?
7 (neutral axis) = 15.15 N/mm?
Shear force per unit length =272 kN/m.

400 mm

= > |
L | 40 mm
[ | 30mm A4
25mm 600 mm
— |t

| 30 mm B
I‘Mﬁ f FIGURE P.10.3

A timber beam has a rectangular cross section, 150 mm wide by 300 mm deep, and is simply
supported over a span of 4 m. The beam is subjected to a two-point loading at the quarter
span points. If the beam fails in shear when the total of the two concentrated loads is 180 kN
determine the maximum shear stress at failure.

Ans. 3 N/mm?.

A steel box girder is simply supported over a span of 5 m and is to be constructed by bolting flat
plates to the flanges of two channel sections as shown in Fig. P.10.5. If the girder is required to

Bolts

| 40mm

I
_:_l L :; 30mm

30mMm—| |(«—o

390 mm

;  30mm
; 40mm

Problems 281

support a load of 500 kN at its mid-span calculate the number of bolts required/metre length of
the beam. Take the allowable load/bolt as 150 kN and make full allowance for the self-weight of
the plates and channel sections; the density of the steel is 77 kN /m?,

Ans. 1 bolt/metre in each channel section flange.

If the maximum allowable shear stress in the box girder of P.10.5 is 100 N/mm? and the
maximum allowable direct stress due to bending is 200 N/mm? determine the maximum
concentrated mid-span load the box girder can carry and state which is the limiting case.

Ans. 1359 kN. Bending is the limiting case.”

A beam has the singly symmetrical thin-walled cross section shown in Fig. P.10.7. Each wall
of the section is flat and has the same length, 4, and thickness, # Determine the shear flow
distribution round the section due to a vertical shear load, S,, applied through the shear centre
and find the distance of the shear centre from the point C.
Ans. qap = —38,(2asp—s3 /2)/ 164° sin o

qec = —38,(3/2 + spla—s§ /24*)/16a sin o

S.C. is 5 cos /8 from C.

a SA‘/ A
S, A

B/\ﬁ
S

o C

S ) o _
D @
t
E FIGURE P.10.7

P.10.8 Calculate the shear flow distribution in the thin-walled open section shown in Fig. P.10.8

produced by a vertical shear load, S,, acting through its shear centre.
Ans. g9 = (S,/77) (cos 0 — 1).

P.10.9 A beam has the singly symmetrical, thin-walled cross section shown in Fig. P.10.9. The

thickness # of the walls is constant throughout. Show that the distance of the shear centre
from the web is given by
p? sin o cos &

=d h =d/h
. 14 6p+ 203 sin® o whete pr=d/

P.10.10 Determine the position of the shear centre of the thin-walled open section shown in

Fig. P.10.10. The thickness # is constant.

Ans. wr/3 from the junction of the two semi-circular portions.
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t

/ Narrow slit

FIGURE P.10.8

FIGURE P.10.10

Problems 283

A <
45° 2r ‘I
h r ¢ 3 .
1
\:5" r y
Z< - = -{¢ -
] /’—‘ 0.14r
2t
t ay
2 \
|
o

FIGURE P.10.9 FIGURE P.10.12 FIGURE P.10.13
Z5
T (3
-><_t 2r -
h & AN
t 2 FIGURE P.10.14
Y y! aly -
4 ..
l< >l i > P.10.14 Define the term ‘shear centre’ of a thin-walled open section and determine the position of the
! d Bd | shear centre of the thin-walled open section shown in Fig. P.10.14.

FIGURE P.10.11

Ans. 2.667 from centre of semicircular wall.

P.10.11 Figure P.10.11 shows the cross section of a thin-walled, singly symmetrical I-section beam.

Show that the distance z of the shear centre from the vertical is given by

P.10.12 Find the position of the shear centre of the thin-walled beam section shown in Fig. P.10.12.

%5 _ 3p(1-p)
d (1+12p)

where p=4d /b

Ans. 1.27 on the axis of symmetry to the left of the section.

P.10.13 Determine the horizontal distance from O of the shear centre of the thin-walled beam section
shown in Fig, P.10.13. Note that the position of the centroid of area. G. is given.

P.10.15 Determine the position of the shear centre of the cold-formed, thin-walled section shown in
Fig. P.10.15. The thickness of the section is constant throughout.

Ans. 87.5 mm above centre of semicircular wall.

%.10.16 The thin-walled channel section shown in Fig. P.10.16 has flanges that decrease linearly in
thickness from 2% at the tip to # at their junction with the web. The web has a constant
thickness 7. Determine the distribution of shear flow round the section due to a shear load S,
applied through the shear centre S. Determine also the position of the shear centre.

Apns.
qaB = — Syt0h(sa — 5%/451)/[1, gsc = — Syto(hsp — 5123 +3hd[2)/21,,

where I, = 1,/*(h + 9d)/12; 54°/(h + 94d) from mid-point of web.




