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P.10.17 Calculate the position of the shear centre of the thin-walled unsymmetrical channel section
shown in Fig. P.10.17.

Ans. 23.1 mm from web BC, 76.3 mm from flange CD.
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FIGURE P.10.17

P.10.18 The closed, thin-walled, hexagonal section shown in Fig. P.10.18 supports a shear load of
30 kN applied along one side. Determine the shear flow distribution round the section if the
walls are of constant thickness throughout.
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Ans. gap = 1.254—0.003 53 + 50
gBC = 06,\'3—0006 51% + 140
gcp = —0.6sc—0.003 5 + 140.

Remainder of distribution follows by symmetry. All shear flows in N/mm.

FIGURE P.10.18

P.10.19 A closed section, thin-walled beam has the shape of a quadrant of a circle and is subjected
to a shear load S applied tangentially to its curved side as shown in Fig. P.10.19. If the
walls are of constant thickness throughout determine the shear flow distribution round
the section.

Ans. goa = S(1.61cos0—0.81)/7  gap = S(0.575—1.14r5—0.33)/r.

FIGURE P.10.19

P.10.20 Calculate the position of the shear centre of the beam section shown in Fig. P.10.19.
Ans. 0.617 from B on OB.

P.10.21 An overhead crane runs on tracks supported by a thin-walled beam whose closed cross section
has the shape of an isosceles triangle (Fig. P.10.21). If the walls of the section are of constant

thickness throughout determine the position of its shear centre.

Ans. 0.7 m from horizontal wall.
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i Torsion of Beams

FIGURE P.10.21 Torsion in beams arises generally from the action of shear loads whose points of application do not

coincide with the shear centre of the beam section. Examples of practical situations where this occurs
are shown in Fig. 11.1 where, in Fig. 11.1(a), a concrete encased I-section steel beam supports an offset
masonry wall and in Fig. 11.1(b) a floor slab, cast integrally with its supporting reinforced concrete
beams, causes torsion of the beams as it deflects under load. Codes of Practice either imply or demand
that torsional stresses and deflections be checked and provided for in design.

The solution of torsion problems is complex particularly in the case of beams of solid section and

Aps. goa = O.ZSSA
arbitrary shape for which exact solutions do not exist. Use is then made of empirical formulae which

9aB = 0.2155—2.14 X 1042 + 250

g8c = —0.175¢c + 246 ’ are conveniently expressed in terms of correction factors based on the geometry of a particular shape
Tmax = 30.2 N/mm?2. of cross section. The simplest case involving the torsion of solid section beams (as opposed to hollow
cellular sections) is that of a circular section shaft or bar. Therefore, this case forms an instructive intro-

— duction to the more complex cases of the torsion of solid section, thin-walled open section and closed

section beams.

° om B 11.1 Torsion of solid and hollow circular section bars
m
10mm — Initially, as in the cases of bending and shear, we shall examine the physical aspects of torsion.
120° 12 R Suppose that the circular section bar shown in Fig. 11.2(a) is cut at some point along its length and
1m rm 129 thar the two parts of the bar are threaded onto a spindle along its axis. Now we draw a line ABC along
= Sg the surface of the bar parallel to its axis and apply equal and opposite torques, 7, at each end as shown
T Q Sa A in Fig. 11.2(b). The two parts of the bar will rotate relative to each other so that the line ABC becomes
stepped. For this to occur there must be a relative slippage between the two internal surfaces in contact.
~ o —;ll FIGURE P.10.22 If, now, we glue the two parts of the bar together this relative slippage is prevented. The glue, therefore,

produces an in-plane force which must, from a consideration of the equilibrium of either part of the bar,
be equal to the applied torque 7. This internal torque is distributed over each face of the cross section of
the bar in the form of torsional shear stresses whose resultant must be a pure torque. It follows that the
form of these internal shear stresses is that shown in Fig. 11.3 in which they act on a series of small elements
positioned on an internal circle of radius 7. Of course, there are an infinite number of elements on this circle
and an infinite number of circles within the cross section.

Our discussion so far applies to all cross sections of the bar. The problem is to determine the distri-
bution of shear stress and the actual twisting of the bar that the torque causes.

Figure 11.4(a) shows a circular section bar of length L subjected to equal and opposite torques, 7,
at each end. The torque at any section of the bar is therefore equal to 7 and is constant along its length.
We shall assume that cross sections remain plane during twisting, that radii remain straight during twisting
and that all normal cross sections equal distances apart suffer the same relative rotation.



—

288 CHAPTER 11 Torsion of Beams

7 - ; Reinforced concrete
................ beam

(a) (b)
FIGURE 11.1

Causes of torsion in beams.

(@)
FIGURE 11.2

Initial position

Torsion of a circular section bar.

Shear stress

FIGURE 11.3

Shear stresses prodiiced bv a miire farmn
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(a) (b)

FIGURE 11.4
Torsion of a solid circular section bar.

Consider the generator AB on the surface of the bar and parallel to its longitudinal axis. Due
to twisting, the end A is displaced to A’ so that the radius OA rotates through a small angle, 6, to OA'.
The shear strain, 7y, on the surface of the bar is then equal to the angle ABA’ in radians so that

_AA" RO
s I I
Similarly the shear strain, -, at any radius 7 is given by the angle DCD' so that

_ DD 10

L L
The shear stress, 7, at the radius 7 is related to the shear strain v by Eq. (7.9). Then

rd
L

'}/:

Ql=

or, rearranging

0
=G= 11.1
L (11.1)

~ I

Consider now any cross section of the bar as shown in Fig. 11.4(b). The shear stress, 7, on an
element 8 of an annulus of radius 7 and width 87 is tangential to the annulus, is in the plane of the cross
section and is constant round the annulus since the cross section of the bar is perfectly symmetrical (see
‘?JSO Fig. 11.3). The shear force on the element 85 of the annulus is then 7 85 &7 and its moment about

B8 Centre, O, of the section is 7 85 8r7. Summing the moments on all such elements of the annulus we
obtain the torque, 87, on the annulus, i.e.

277
6T = J T brr ds

0

Which gives
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o " FIGURE 11.5
i ( T ) T Shear and complementary shear stresseg
( ';\" at the surface of a circular section bar

subjected to torsion.

* The polar second moment of area, /, is then

J=S®-R)

The total torque on the bar is now obtained by summing the torques from each annulus in the Crogs
section. Thus

R
T=J 27T dr
0

Substituting for 7 in Eq. (11.2) from Eq. (11.1) we have

2 0
T=J 271'7'3sz7‘

0

which gives
TRt 6
T==5061
or
=762 (113)
7

where J=7nRY/2 (= 7wD%32) is defined as the polar second moment of area of the cross section (see.
Eq. (9.42)). Combining Egs (11.1) and (11.3) we have

T 0 .

Note that for a given torque acting on a given bar the shear stress is a maximum at the outer surface
of the bar. Note also that these shear stresses induce complementary shear stresses on planes parallel to
the axis of the bar but not on the actual surface (Fig. 11.5)

Torsion of a circular section hollow bar

The preceding analysis may be applied directly to a hollow bar of circular section having outer and
inner radii R, and R, respectively. Equation (11.2) then becomes

R,
T = J 2n2 7 dr
R

Substituting for 7 from Eq. (11.1) we have

from which
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11.1 Torsion of solid and hollow circular sectionrlﬁéf»

atically indeterminate circular section bars under torsion

any instances bars subjected to torsion are supported in such a way that the support reactions are
y indeterminate. These reactions must be determined, however, before values of maximum stress

of twist can be obtained.
re 11.7(a) shows a bar of uniform circular cross section firmly supported at each end and

cted to a concentrated torque at a point B along its length. From equilibrium we have

T=Ty+T¢c (11.6)

FIGURE 11.7 7 -
Torsion of a circular section bar with
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considering the compatibility of dis,

placement at B of the o
f twist at B in AB must equal the angle of twist at B in BG, i.e.

O(aB) = Op(ac)
or using Eq. (11.3)

ThLpp _ Tclpc

or G/

Ty = Tc@
L

Substituting in Eq. (11.6) for 7' A we obtain

T=TC(§£+1>

AB
which gives

Lyp
=T
< Lag + Lgc

T, = Lpc

Lap + Lpc r

The distribution of torque along the length of the bar is shown in Fig, 11.7(b). Note that if Lag>
7¢ is the maximum torque in the bar.

11.1 Torsion of solid and hollow circular section bars

295
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11.2 Strain energy due to torsion

It can be seen from Eq. (11.3) that for a bar of a given material, a given length, Z, and radius, g
the angle of twist is directly proportional to the applied torque. Therefore a torque—angle of twig
graph is linear and for a gradually applied torque takes the form shown in Fig. 11.9. The wor]
done by a gradually applied torque, 7, is equal to the area under the torque—angle of twist curye
and is given by

Work done = % 70
The corresponding strain energy stored, U, is therefore also given by
1
=-T6
2

Substituting for 7 and 6 from Eq. (11.4) in terms of the maximum shear stress, Ty on the surface
of the bar we have

U= LTmaf o Tmal

2 R % GR
or
U= %T%"‘WRZL since | = ?
Hence
2
U= Z"‘Gﬂ X volume of bar (11.9)

Alternatively, in terms of the applied torque 7 we have

T4L
T0=— (11.10)

1
V=3 2G]

Torque 4

T ___________

FIGURE 11.9
Torque—angle of twist relationship for a gradually applied

A
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7

-, EXAMPLE 11.5

" Determine the angle of twist ac the free end of the shaft shown in Fig. 11.10. Take G = 80000 N/mm”.
 From Eq. (11.10) the toral strain energy, U, in the shaft is

b _ (4X10°% X100 X32 (4 X109 X 200 X 32

r 80000 X 7 X 50* 80000 X 7 X 1004

4o that U= 36669.3 Nmm

 The total strain energy in the shaft is equal to the work done by the applied torque. Therefore

4 X 10° 0/2 = 36669.3

. o 0=0.018 rad = 1.05°

" Again, as in the case of trusses, strain energy can only be used directly when a shaft is subjected
o a single applied torque. Further, it is only possible to obtain the angle of twist at the section
 where the torque is applied.

‘ .

which gives
%
|
|

;

100 mm dia. 50 mm dia.

TJ L / T=4kNm
el

N ; FIGURE 11.10
Shaft of Ex 11.5.

11.3 Plastic torsion of circular section bars

Equation (11.4) apply only if the shear stress—shear strain curve for the material of the bar in torsion is
linear. Stresses greater than the yield shear stress, Ty, induce plasticity in the outer region of the bar and this
extends radially inwards as the torque is increased. It is assumed, in the plastic analysis of a circular section
bar subjected to torsion, that cross sections of the bar remain plane and that radii remain straight.

For a material, such as mild steel, which has a definite yield point the shear stress—shear strain curve
may be idealized in a similar manner to that for direct stress (see Fig. 18.1) as shown in Fig. 11.11. Thus,
after yield, the shear strain increases at a more or less constant value of shear stress. It follows that the shear
stress in the plastic region of a mild steel bar is constant and equal to Ty. Figure 11.12 illustrates the
various stages in the development of full plasticity in a mild steel bar of circular section. In Fig. 11.12(a)
the maximum stress at the outer surface of the bar has reached the yield stress, Ty. Equations (11.4) still
apply, therefore, so that at the outer surface of the bar

Ty

=Ty
7 R
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@omparing Egs (11.11) and (11.13) we see that

v 4

that only a one-third increase in torque is required after yielding to bring the bar to its ultimate
50 : :

load-carrying capacity. . | | |
" Since we have assumed that radii remain straight during plastic torsion, the angle of twist of the bar
~ must be equal to the angle of twist of the elastic core which may be obtaineC.l directly from Eq. (11.3)
ﬁ;ﬁs}vhich the torque is T the portion of the total torque carried by the elastic core. Thus for a bar of
fgngth L and shear modulus G,

FIGURE 11.11
kA4 Idealized shear stress—shear strain curve for a mild stm

" g= IoL - 2L (11.15)
“"' T k& \ GJ. wGrt
Y .
- or, in terms of the shear stress, Ty, at the outer surface of the elastic core
@ or,
6= TGYL (11.16)
F e
Eézfgc " Either of Eq. (11.15) or (11.16) shows that § is inversely proportional to the radius, 7., of the ela.stic
@ (b) (c) .. Clearly, when the bar becomes fully plastic, 7.— 0 and 6 becomes, theoretically, infinite. In practical
s this means that twisting continues with no increase in torque in the fully plastic state.
FIGURE 11.12 ;
Plastic torsion of a circular section bar.
or
R3
Ty = W—’TY (11.11)

2
where Ty is the torque producing yield. In Fig. 11.12(b) the torque has increased above the value Ty
that the plastic region extends inwards to a radius .. Within 7 the material remains elastic and forn

an elastic core. At this stage the total torque is the sum of the contributions from the elastic core an
the plastic zone, i.e.

TY/e
Te

T'=

R
+ J 27 rydr
Te

"

where J is the polar second moment of area of the elastic core and the contribution from the plastic
zone is derived in an identical manner to Eq. (11.2) but in which 7 = 7y = constant. Hence

Tymr: 2
T= YZ £ + g’/r'ry(R3 —rf)
which simplifies to
2R3 r
- — e 11.
I==5" (1 4R3> (

Note that for a given value of torque, Eq. (11.12) fixes the radius of the elastic core of the sectior
In stage three (Fig. 11.12(c)) the cross section of the bar is completely plastic so that 7, in Eq. (11.12)
is zero and the ultimate torque or fully plastic torque, 7p, is given by

1
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From Eq. (11.12)
32.5 X 10° = (27 X 50°/3) X 150[1 — 2 /(4 X 50)]

from which 7. = 44.1 mm
The torque resisted by the elastic core (and therefore the torque producing the twist) is then given by

T = Tvfe _ Tymr} 150 X X 44.13
S 2 2

ie. 7.=20.2 X 10° Nmm
Then, from Eq. (11.15) (or Eq. (11.16))
_ 2X20.2X10° X3 X 10
7 X 80000 X 44.14

=0.127 rad

or =73

=
EXAMPLE 11.8
A hollow circular section bar has external and internal radii, R, and R, respectively and carries
torque, 7. If the yield stress in shear of the material of the bar is 7y and the value of 7 is suffici
to cause the plastic core to penetrate to a radius, 7., (R,> 7.> R; ) derive an expression for 7,.
The total torque is, as for a solid bar, equal to the sum of the contributions from the elastic anq
plastic cores. Then ‘

Ro
T =(ryJ)/r. + J 2rt Ty dr

re

so that
T = TY?T(’e4 = Rili)/z"e b 27‘”"(&3 2 7':)/3
Simplifying

WA . Loy SRR
27 (3R‘2r’ 3" R‘)

from which, for given values of 7, 7y, R, and R, , . can be determined.
Note that Eq. (i) reduces to Eq. (11.12) for the case of a solid bar for which R = 0.

11.4 Torsion of a thin-walled closed section beam

Although the analysis of torsion problems is generally complex and in some instances relies on empifi-
cal methods for a solution, the torsion of a thin-walled beam of arbitrary closed section is relatively
straightforward.

Figure 11.13(a) shows a thin-walled closed section beam subjected to a torque, 7. The thickness,

i e 1 1 1 ~
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Torsion of @ thin-walled closed section beam.

system in the walls of the beam which consists solely of shear stresses if the applied loading com-
Str.esss any a pure torque. In some cases structural or loading discontinuities or the method of support
pi,s;uce a system of direct stresses in the walls of the beam even thc?ugh the loading consists of torsion
only. T hese effects, known as axial constraint effects, are considered in more.advanced texts.
The shear stress system on an element of the beam wall may be represented in terms of the shear ﬂ(?w, 9
(see Section 10.4) as shown in Fig. 11.13(b). Again we are assuming that.the variation of ¢ over the side &s
of the element may be neglected. For equilibrium of the element in the x direction we have

<q+ %Bs)ﬁx—q&c:O
s

0q
o (11.17)
Os

which gives

Considering equilibrium in the s direction
<q+ —g—gﬁx>83—q65=0

from which
@ =0 (11.18)
Ox
Equations (11.17) and (11.18) may only be satisfied simultaneously by a constant value of 4. We deduce,
therefore, that the application of a pure torque to a thin-walled closed section beam results in the develop-
ment of a constant shear flow in the beam wall. However, the shear stress, 7, may vary round the cross
section since we allow the wall thickness, #, to be a function of s.
The relationship between the applied torque and this constant shear flow may be derived by consider%ng
the torsional equilibrium of the section shown in Fig. 11.14. The torque produced by the shear flow acting
on the element, 85, of the beam wall is g 8 p. Hence

01, since ¢ = constant

7*—,.,[4.,4, (11.19)
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YA

FIGURE 11.14

Torque—shear flow relationship in a thin-walleq
closed section beam.

We have seen in Section 10.5 that § p ds = 24 where A is the area enclosed by the midline of the

beam wall. Hence

T =24q (11.20)

The theory of the torsion of thin-walled closed section beams is known as the Breds-Batho theory
and Eq. (11.20) is often referred to as the Bredt-Batho formula.
It follows from Eq. (11.20) that

T

= A (11.21)

T=

~ N

and that the maximum shear stress in a beam subjected to torsion will occur at the section where the
torque is a maximum and at the point in that section where the thickness is a minimum. Thus

- = Tma.x
max
ZAtmin

(11.22)

In Section 10.5 we derived an expression (Eq. (10.28)) for the rate of twist, d6/dx, in a shear-
loaded thin-walled closed section beam. Equation (10.28) also applies to the case of a closed section
beam under torsion in which the shear flow is constant if it is assumed that, as in the case of the shear-
loaded beam, cross sections remain undistorted after loading. Thus, rewriting Eq. (10.28) for the case
g, = q = constant, we have

d0 g [ds
e e el 1.2
dx ZA?{ Gt (114
Substituting for g from Eq. (11.20) we obtain
BT fd |
—_— s — —_— -24
dx 442 ] Gr (115
or, if G, the shear modulus, is constant round the section
do

T ds

11.5 Torsion of solid section beams 303

v AMPLE 11.9

rﬁxin' walled circular section beam has a diameter of 200 mm and is 2 m long; it is firmly restrained
* . rotation at each end. A concentrated torque of 30 kN m is appiic(i to the beam ac its mid-span
If the maximum shear stress in the beam is limited to 200 N/mm and the maximum angle of
0 2°, calculate the minimum thickness of the beam walls. Take G = 25000 N/mm".

" The minimum thickness of the beam corresponding to the maximum allowable shear stress of
) N/mm? is obtained directly using Eq. (11.22) in which Tinp, = 15 kNm. Thus

s X 100 4
Iy tmm*—‘ZX?erxzog

' The rate of twist along the beam is given by Eq. (11.25) in which

= 1.2 mm

#_ T wxa00
,, &
Taking the origin for x at one of the fixed ends and integrating Eq. (i) for half the length of the

m we obtain

®

T 2007 ,
f=-—= X —x+C
4 442G 5m§nx X

C, is a constant of integration. At the fixed end where x =0, 6 = 0 so that C; = 0. Hence

T _ 200w
. 44%G Lmin

-urs at the mid-s span of the beam where x= 1 m. Hence

o e maximum angle of twist oc

] 15X 10° X 200 X 7 X 1 X 10% X 180
fmin = X (7 X 2002/4)> X 25 000 X 2 X 7

The minimum allowable thickness that satisfies both conditions is therefore 2.7 mm.

=2.7mm

11.5 Torsion of solid section heams

Generally, by solid section beams, we mean beam sections in which the walls d'o not form a close('i loop

system. Examples of such sections are shown in Fig. 11.15. An obvious exception is the 1.10]._10W circular

section bar which is, however, a special case of the solid circular section bar. The predlctlox.l of stress

distributions and angles of twist produced by the torsion of such sections is complex and relies on the

St. Venant warping function or Prandtl stress function methods of solution. Both of these metl.lods are

based on the theory of elasticity which may be found in advanced texts devoted solely to this topic.
. - r 1

Fuvan - ' r ol e A€t i iha ;iecular coctinn har
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SR K the sum of the torsion constants of the components
: \‘D : Al plus a contribution from the material at the web/flange
T r’ ‘ junction. If the section were thin-walled, # <« & and
D* would be negligibly small, in which case
tw
d b | dfd
w2— + —
— A S
a / Generally, for thin-walled sections the torsion
N J‘:Tf constant J may be written as
g - 1
Rectangular Thick’ “Thick’ - 1 ,
block I-section charl';lizl T;-'ge\gggid < N J 3 Z st (11.27)
section b j

e L FIGURE 11.16 - in which s is the length and ¢ the thickness of each

Peamplos ot sl Tagem ssetions i : E11.17 component in the cross section or if # varies with s

: Torsion const ‘thick’ |-secti FIGUR —
stant for a ‘thick’ I-section beam. mdistribution due to torsion in a .
thin-walled open section beam. = _J Pds (11.28)
In all torsion problems, 3 Jection

however, it is found that the torque, 7, and the rate of twist, df/dx

related by the equation '

The shear stress distribution in a thin-walled open section beam (Fig. 11.17) may be shown to be
v related to the rate of twist by the expression
=9y (11.26)
. @ T= 2Gn5&—0 (11.29)
dx

where G is the shear modulus and J is the torsion consta i i
' nt. For a circular section bar J is the pol

;rcconc]i5 mo(r?ler;ts;)f area of thcbsectlon (see Eq. (11.3)) while for a thin-walled closed section be:)n(: ;f‘

om Eq. (11.25), is seen to al ¥ is /, i istingui (
s e e equal to 44% §(ds/2). It is J, in fact, that distinguishes one torsion
. For ‘thick’ sections of the type shown in Fi
sions of the particular section. For example,
Fig. 11.16 is given by

where 7 is the distance to any point in the section wall measured normally from its midline. The distri-
bution is therefore linear across the thickness as shown in Fig. 11.17 and is zero at the mld'hne of the
wall. An alternative expression for shear stress distribution is obtained, in terms of the applied torque,

g. 11.15 ] is obtained irically i :
ained empirically in terms of the dimen- by substiuting for d6/dx in Eq. (11.29) from Eq. (11.26). Thus

the torsion constant of the ‘thick’ I-section shown in

T=2n§ (11.30)

It is clear from either of Egs. (11.29) or (11.30) that the maximum value of shear stress occurs at
the outer surfaces of the wall when »= * /2. Hence

J=2+J +2aD!

where

=210t (1= o _ T (11.31)
' b B — —_— = e .
1 f . .
R= gdtg  The positive and negative signs in Eq. (1 1.31) indicate the direction of the shear stress in relation to

the assumed direction for s. .
The behaviour of closed and open section beams under torsional loads is similar in th'at t}.ley twist
and develop internal shear stress systems. However, the manner in which each resists torsion is differ-
ent. It is clear from the preceding discussion that a pure torque applied to a beam section produces
a closed, continuous shear stress system since the resultant of any other shear stress system wogld
generally be a shear force unless, of course, the system were self-equilibrating. In a closed section
beam this closed loop system of shear stresses is allowed to develop in a continu.ous path round the
Cross section, whereas in an open section beam it can only dev§lop j;vit’hin‘ the thlcknes§ of the walls;

1o st iha mmannar

3
a=21015+012
5] i

in which #; = #rand 2, = ¢, if 5<ty ort; =t,and 5, =t if 5> ¢,

It can be seen from the above that J1and /5,
respectively, are each equal to one-
in the case of the flanges,

which are the torsion constants of the flanges and web,

third of the product of their length and their thickness cubed multiplied,

by an empirical constant. The tarcian canceane fae ebn o 1. .

. ilaa
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Closed

section Torque

Open
section  FIGURE 11.18

Shear stress development in closed and open
section beams subjected to torsion.

in whlcl'} torsion is resisted by closed and open section beams and the reason for the com
low torsional stlffness of thin-walled open sections. Clearly the development of a closed lo
of shear stresses in an open section is restricted by the thinness of the walls.

[
EXAMPLE 11.10 eSS

The thin-walled section shown in Fig. 11.19 is symmetrical about a horizo

A ; : 4 « 19 is symmetrical about a horizontal axis through O. The

thickness # of the centre web CD is constant, while the thickness of the ocher walls va ﬂgi; et

from 7o ac points C and D to zero at the open ends A, F, G and H. Determine the torsion congrarﬁya‘

7 fosr the izctzg;l znnd also the maximum shear stress produced by a torque 7 : i
dince the thickness of the section varies round its profile grcep for-the cenial

ey 57 ArIES 01 ept for the central web, we use :

Eqgs (11.27) and (11.28) to determine the torsion constant. Thus, it e O

2a13 17 rsam)3 103 (snts\°
= $ase —F VN G L g s [ S8k
i 3 V BE(’¢)¢A+2X3L (“3a)d£3

paratively
Op system

which gives

FIGURE 11.19
Beam section of Ex. 11.10.
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FIGURE 11.20

Warping of beam sections due to torsion.

11.6 Warbing of cross sections under torsion

Although we have assumed that the shapes of closed and open beam sections remain undistorted during
corsion, they do not remain plane. Thus, for example, the cross section of a rectangular section box beam,
although remaining rectangular when twisted, warps out of its plane as shown in Fig. 11.20(a), as does the
channel section of Fig. 11.20(b). The calculation of warping displacements is covered in more advanced texts
and is clearly of importance if a beam is, say, built into a rigid foundation at one end. In such a situation the
warping is suppressed and direct tensile and compressive stresses are induced which must be investigated
in design particularly if a beam is of concrete where even low tensile stresses can cause severe cracking.

Some beam sections do not warp under torsion; these include solid (and hollow) circular section
bars and square box sections of constant thickness.

PROBLEMS
P.11.1 The solid bar of circular cross section shown in Fig. P.11.1 is subjected to a torque of
1 kN m at its free end and a torque of 3 kN m at its change of section. Calculate the
maximum shear stress in the bar and the angle of twist at its free end. G =70000 N/mm?>.

Ans. 40.7 N/mm?, 0.6°.

100 mm

/ diameter 50 mm

/ i diameter
/ L %/ 6\' 1kNm
v,

Y V,

}< 200 mm 'I‘ 400 mm gl FIGURE P.11.1

P.11.2 A hollow circular section shaft 2 m long is firmly supported at each end and has an outside
diameter of 80 mm. The shaft is subjected to a torque of 12 kN m applied at a point 1.5 m from
one end. If the shear stress in the shaft is limited to 150 N/mm? and the angle of twist to 1.5°,
calculate the maximum allowable internal diameter. The shear modulus G = 80000 N/mm’.
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P.11.3 A bar ABCD of circular cross section having

P.11.4 A bar ABCD has 2 circular cross sectio
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a diameter of 50 mm is firmly supported at each
t B and C as shown in Fig. P.11.3. Calculate the
maximum angle of twist. Take G = 70000 N/mm?,

end and carries two concentrated torques a
maximum shear stress in the bar and the

Apns. 66.2 N/mm? in CD, 2.3° at B,

p 1000Nm 1500 N'm
%
e Pm > T T T FIGURE P.11.3

—_—— e

n of 75 mm diameter over half its length and 50 mpy,
length. A torque of 1 kN m is applied at C midway
1.4. Sketch the distribution of torque along the length
shear stress and the maximum angle of twist in the by,

diameter over the remaining half of jts
between B and D as shown in Fig. P.1

of the bar and calculate the maximum
j G=70 000 N/mm?>

Ans. Tinax =23.2 N/mm? in CD, 0.38° at C,

50 mm
diameter
A B 1kNm
AT
75 mm \<
diameter ,
/ \7
c
Z
'l% | |

Tom FIGURE P.11.4

_—

P.11.5 A solid shaft has a circular cross section of diameter 150 mm and is required to transmit

P.11.6 If the solid shaft of P.11.5is re

P.11.7

power at 90 rpm. If the maximum sh
the power transmitted and the angle

Ans. 531 kW, 4.1°.

€ar stress in the shaft is limited to 85 N/mm? calculate
twist in a length of 5 m. Take G = 80000 N/mm?,

placed by a hollow shaft of the same external diameter and
having walls 30 mm thick calculate the percentage reduction in power transmitted for the

same limiting value of shear stress. Calculate alsq the percentage reduction in weight.
Ans. 12.8%, 36%.

The bar shown in Fig. P.11.7 carries a single torque of 10 kNm applied mid-way along its
length. Use strain energy to calculate the angle of twist under the applied torque and hence
the angle of twist at its free end. Take G=75000 N/mm?.

Ans. 2.9° at both points.

p.11.8

p.11.9

p.11.10

p.11.11
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50mm
10[1(Nm /
( ¥
!
N ‘ FIGURE P.11.7
I‘Wmm T 250mm

o . : c
ine the minimum diameter of a solid bar which is rcqulred2 to transmit a torque o
ine ' i |

4D(: tke;r?n if the yield stress of the material of the bar is 120 N/mm

Ans. 119.2 mm. | o
th ue on the bar of P.11.8 is increased to 45 kNm calculate the diameter of the ela
tor
Icf)re eand (tlhe angle of twist of the bar over a length of 5m.
Take G = 80000 N/mm”.
Ans. 101.4 mm, 8.5°. N | .
hollow section bar has an outside diameter of 129 mm and an 12n51(li:u(11::;nt;teer r::aximum
ﬁ'tl?e shear stress at yield in the material of the bar is 100 N/mm” ca

]] ]: P O/
. . . .
tOIque the bar can tIanSmit VVithOut yleldlng OCCurrlng. ‘If t]:lls tO[que 1S 1NCI CaSC.(l l)y 2“ (1]
i i fthe section and the g st over a
i f l an le ()f twist
determlne the outer radlus O [lle elastic core o d h

2
length of 5 m. Take G= 80000 N/mm".
Ans. 42.8 mm (by trial and error), 8.3°.

. i dine of
in-walled rectangular section box girder carries a un1for.mly (:hstrlbut(e::d1 tzlril:et::;a ing
i thm_v;’ : over the outer half of its length as shown in Fig. P.1 111b ale e e
o mnlll r stress in the walls of the box girder and also the dlSt(;lo ;Bon : g
i shea : o o
:lliignz?snllength; illustrate your answer with a sketch. Take G=70 0

= 10~% rad.
- 133.3 N/mm?. In AB, § =3.81 X
Amlnl ?1’33C 0 =1.905 X 10~2(4000x—x*/2)—0.00381 rad.

0.75m

FIGURE P.11.11

i i j ue of
P.11.12 The closed section thin-walled beam shown in Fig. P.11.12 is subjected to a torq

is 22000 N/
kKNm. For the curved wall 12 the thickness is 2 mm and the shgar mo:nucllu; 71; e
v 2 I;I(:r the walls 23, 34 and 41 the corresponding figures are 1: mm
?ll\lncité- Gt = constant). Calculate the rate of twist of the beam section.

2 An o /..
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2mm 2 i 1.6mm 3
50mm } F
— <
1.6mm 100mm
¢ —_1
o Memm 4
l 200mm ] FIGURE P.11.12

P.11.13 The thin-walled box section beam ABCD shown in Fig. P.11.13 is attached at each end to
supports which allow rotation of the ends of the beam in the longitudinal vertical plane of
symmetry but prevent rotation of the ends in vertical planes perpendicular to the longitudinal
axis of the beam. The beam is subjected to a uniform torque loading of 20 Nm/mm over the
portion BC of its span. Calculate the maximum shear stress in the cross section of the beam
and the distribution of angle of twist along its length; G=70 000 N/mm?2.

Ans. 71.4 N/mm?, 0 = 0 = 0.36°, 6 at mid-span = 0.72°.

4 mm
o ¥
[}

; >l >l 350 mm
= 6 mm 6 mm

4 mm

= “ Tm +
= 4m
m 200 mm

FIGURE P.11.13

P.11.14 Figure P.11.14 shows a thin-walled cantilever box-beam having a constant width of 50 mm
and a depth which decreases linearly from 200 mm at the built-in end to 150 mm at the free
end. If the beam is subjected to a torque of 1 kN m at its free end, plot the angle of twist of
the beam at 500 mm intervals along its length and determine the maximum shear stress in
the beam section. Take G =25 000 N/mm?.

Ans. Tie = 33.3 N/mm?>.

FIGURF P 11 14
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old-formed section shown in Fig. P.11.15 is subject?d to a torque of 5/0 NI;L Calculate
P 11'15 Ehheniaximum shear stress in the section and its rate of twist. G =25 000 N/mm~.
i e

Ans. Tmax = 220.6 N/mm?, d6/dx = 0.0044 rad/mm.
15 mm

25mm

25 mm

15 mm

i‘——""'—’l FIGURE P.11.15
25 mm‘20 mm

P 11 |6 I hc 1|Il]l-Waﬂed a[lgle section ShOWIl mn I l‘g. I .11.16 Suppo[ts Shear loads that produce both
it . . . .
l] al and torSlonal Cffects. Detcrmlnc the maximum Shear stress In the Cross section Of the
shear

angle, stating clearly the point at which it acts. ‘
Ans. 18.0 N/mm? on the inside of flange BC at 16.5 mm from point B.

C
X
2.0mm
—
60 mm
2.5mm
L 500N l
—
) A
B
2 mm T l’l 000N T
1 mm
| 80mm | FIGURE P.11.16
< >

P.11.17 Figure P.11.17 shows the cross section of a thin-walled .inwa.rdly lipped cha;nel. ThjV Egrseare
a ofgconstant thickness while the flanges increase linearly in thickness from 1.27 mm,

jr ”‘T ju_
38 mm
50 mm

2.54 mm 1.27 mm
50mm | —p je—

L——»j FIGURE P.11.17
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CHAPTER

they meet the lips, to 2.54 mm at their junctions with the web. The web has a constant
thickness of 2.54 mm and the shear modulus G is 26 700 N/mm?2. Calculate the maximy,
shear stress in the section and also its rate of twist if it is subjected to a torque of 100 Ny,

Ans. Tmax = *297.4 N/mm?, d6/dx = 0.0044 rad/mm.

composite Beams

P.11.18 The thin-walled section shown in Fig, P.11.18 is subjected to a unit torque. Calculate the
maximum shear stress in the section.

Ans. = 0.42/r#.

n civil engineering construction beams are fabricated from comparativel‘y linexp}?nsn;iereriatler—l
trength which are reinforced by small amounts of high-strength material, such as ‘ j
ials of Jov * ber beam of rectangular section may have steel plates bolted to its sides or to its top an
e tflm erA ain, concrete beams are reinforced in their weak tension zones and also, if necessary,
. e 'fn z,ones by steel-reinforcing bars. Other instances arise where steel bean.ls support
o Compreiﬂbs in wh;ch the strength of the concrete may be allowed for in the design of the
- ﬂoo(; S'an of reinforced concrete beams, and concrete and steel beams is covered .by Codes of
- Thed e51l;ges as in the case of steel beams, on ultimate load analysis. The de:ngn Of. steel-
Pracfncee;ntiml:er k;eams is not covered by a code, and we shall therefore limit the analysis of this type
inforc
:;efn[l,ec;m to an elastic approach.

Frequently 1

FIGURE P.11.18 12.1 Steel-reinforced timber beams

joi in Fig. 12.1 is reinforced by two steel plates bolted to
imber joist of breadth & and depth 4 shown in Fig ‘ ;
The'::sl ::cjl'l plate being of thickness 7 and depth d. Let us suppose that the beam is bent to a ra}cliu(lis R
o :}11is s’ection by a positive bending moment, M. Clearly, since the steel plates are firmly attal: ed. to
:lt;e sides of the timber joist, both are bent to the same radius, R. Then, from Eq. (9.7), the bending
moment, M,, carried by the timber joist is

P.11.19 Determine the maximum shear stress in the beam section shown in Fig. P.11.19 stating

clearly the point at which it occurs. Calculate also the rate of twist of the section if the shear
modulus G = 25000 N/mm?.

Ans. 70.2 N/mm? on the underside of 24 at 2 or on th

e upper surface of 32 at 2.
9.0 X 10* rad/mm.

Ed. 12.1
M, = ;Qt (12.1)
i i f f the timber section
199mm | where E, is Young’s modulus fc‘)r t.he timber and [, 1slthe second moment of area o
i‘; 7 about the centroidal axis, Gz. Similarly for the steel plates
s | 2 | 4 o .
f | -5
3mm 1kN h 1 The total bending
o5 in which I, is the combined second moment of area about Gz of the two plates.
25 somm moment is then
mm 1
e M=M+ M= E(Etlt + EJ)
g 2mm — FIGURE P.11.19

from which

1_ M (12.3)

R EJ +EI
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the second moment of area of the equivalent steel beam is

YA - chat -
7 —L+1
S 3 E
3 ;
a .. equivalent to replacing the timber joist by a steel Soist' of breadth'(E(/Es)b (Fig. 12.2(b)).
Z— = d which 1* ?he transformed sections of Fig. 12.2 apply only to the case of bending ab'out the horizontal
Note thafNote also that the depth, 4, of the beam is unchanged by eiFher transforrn'fmon.
J J axd :rgez‘direct stress due to bending in the timber joist is obtained using Eq. (9.9), i.e.
4
B My 12.5
N ot FIGURE 12.1 o =5 (12.5)
b Steel-reinforced timber beam.
From Egs (12.1) and (12.3)
i El
Equivalent timber . M. = tle
ronforcng Equielent st T EL+EL
‘plates’ S
e K3
N ———~— - or
e 2
—/\____/\,___‘/'\__
&:/f% Substituting in Eq. (12.5) from Eq. (12.6) we have
- g = D (12.7)
Pe b ] —'H“'H‘r L+ 2L
E, E, tg
= =t =y _ , .
" E E, - E ;'GURE 12.2 Equation (12.7) could in fact have been deduced directly from Eq. (9.9) since I, + (E/E)L is
quivalent beam sections.

the second moment of area of the equivalent timber beam of Fig. 12.2'Z(a)'. Si'mila'rly, by consi'dering
the equivalent steel beam of Fig. 12.2(b), we obtain the direct stress distribution in the steel, i.e.

From a comparison of Eqs (12.3) and (9.7) we see that the composite beam behaves as a homoge-

: ___M (12.8)
neous beam of bending stiffness £/ where -

El = El + E

or

formed by connecting two timber joists each 100 mm X 400 mm with a stecl o

h ;;5@0 mm pi‘iea symmetrically between them (Fig. 12.3). If the b&m is sub;amé © a

mmnmmfﬁ%)klﬂ@dmnmmdw maximum stresses in the steel and in the timber. The
ng’s modulus for steel to that of timber is 12: 1. PE N
wﬁm&mm&u@&mummﬂ&iamﬁwmm@dm Gz, are

E[=E, (4 + 554) (12.4)
E

The composite beam may therefore be treated wholly as a timber beam having a total second
moment of area

E;
L+ =1
t E
This is equivalent to replacing the steel-reinforcing plates by timber ‘plates’ each having a thickness
(EJ/E)t as shown in Fig. 12.2(a). Alternatively, the beam may be transformed into a wholly steel beam
by writing Eq. (12.4) as

I, =2 X100 X %‘g{in 1067 X 10% mm?*

< éﬁ‘iz“:‘ﬁ«a;{mﬂ)(logmm

EI=ES<EL+IS)
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d Complementary
hear stress SYStem 2, =
: \4—- _— - - S,
%6 ! —g
— | !
T ~——— d
e e 400 mm l
‘Cs—\, s s v ol s FIGURE 12.5
—VP\/ Al = Shear stresses between steel plates
= 5 and timber beam (side view of a length

'c =
b of beam).

; ‘ 2] ' FIGURE 12.3

100 mm 12'100 mm
mm Steel-reinforced timber beam of Ex. 12.1.

e , —
=

that, based on this approximation, the horizontal complementary shear stress is S,/bd and the
:;car force per unit length resisted by the timber/steel connection is S,/d. 9

—

-
EXAMPLE 12.2

— > (Es)b A timber joist 100 mm X 200 mm is remforc.ed.on its top and botrom surface; ;)y stf:e; p C:_::iis : r;:j
thick X 100 mm wide. The composite beam is simply supported over a span o b m and car
distributed load of 10 kIN/m. Determine the maximum direct stress in the timber and in the steel
tF e FIGURE 12.4 formly distr : rmi ? . s
a > ' i Pl and also the shear force per unit length transmitted by the timber/steel connection. Take E/E, ok
| 2 x e The second moments of area of the timber and steel about a horizontal axis through the centroid
E - plates attached to its top and ot
@ (B) ©) bottom surfaces. of the beam are
100 X 200> g o
respectively. Therefore, from Eq. (12.7) we have T ek 66.7 X 10° mm

50 X 106 X 200 3
Al =+72N
5 1067 X 10° + 12 X 27 X 10° i

and

I, =2X 15X 100 X 107.5* = 34.7 X 10°mm*
i e respectively. Note that the second moment of area of a steel plate about an axis through its own centroid

Oy = 50 X 10° X 150 * 64.7 N /mm> is negligibly small. The maximum bending moment in the beam occurs at mid-span and is
s = =G4, mm

T 27 X10° + 1067 X 106/12

_1ox4*

max 8

=20kN m
Consider now the steel-reinforced timber beam of Fig. 12.4(a) in which the steel plates are

attached to the top and bottom surfaces of the timber. The section may be transformed into an
equivalent timber beam (Fig. 12.4(b)) or steel beam (Fig. 12.4(c)) by the methods used for the
beam of Fig. 12.1. The direct stress distributions are then obtained from Egs (12.7) and (12.8).
There is, however, one important difference between the beam of Fig. 12.1 and that of Fig. 12.4(a).
In the latter case, when the beam is subjected to shear loads, the connection between the timber and
steel must resist horizontal complementary shear stresses as shown in Fig. 12.5. Generally, it is suffi-
ciently accurate to assume that the timber joist resists all the vertical shear and then calculate an aver-
age value of shear stress, T,,, i.c.

From Eq. (12.7)

6 ¥
i 20 X 10° X 100 63i3.4N/mm2
66.7 X 10° + 15 X 34.7 X 10

O 1, max

and from Eq. (12.8)

6
Oymax = * atome et b —— = *58.8 N/mm’
e 34.7 X 10® + 66.7 X 10%/15

The maximum shear force in the beam occurs at the supports and is equal to 10 X 4/2 =20 kN.
The average shear stress in the timber joist is then




T .
318 CHAPTER 12 Composite Beams

12.2 Reinforced concrete beams 319

. 20x10
* 100 X 200
It follows that the shear force per unit length in the timber/steel connection is 1 X 100 = 100 \
mm or 100 kN/m. Note that this value is an approximation for design purposes since, as we say
Chapter 10, the distribution of shear stress through the depth of a beam of rectangular section is

=1N/mm?

\ Neutral
axis

12.2 Reinforced concrete heams

As we have noted in Chapter 8, concrete is a brittle material which is weak in tension. It follows thag a2
beam comprised solely of concrete would have very little bending strength since the concrete in the tension
zone of the beam would crack at very low values of load. Concrete beams are therefore reinforced in their
tension zones (and sometimes in their compression zones) by steel bars embedded in the concrete,
Generally, whether the beam is precast or forms part of a slab/beam structure, the bars are positioned in 5
mould (usually fabricated from timber and called formwork) into which the concrete is poured. On setting,
the concrete shrinks and grips the steel bars; the adhesion or bond between the bars and the concrete trans.
mits bending and shear loads from the concrete to the steel.

In the design of reinforced concrete beams the elastic method has been superseded by the ultimate
load method. We shall, however, for completeness, consider both methods.

Total area of mAg
reinforcement, Ag

@) (b)

Resultant of compressive
stress in concrete

Oc/Ec O¢

ml [F=c

Neutral
B axis
n

Elastic theory

Consider the concrete beam section shown in Fig. 12.6(a). The beam is subjected to a bending
moment, M, and is reinforced in its tension zone by a number of steel bars of total cross-sectional area
A,. The centroid of the reinforcement is at a depth #; from the upper surface of the beam; ; is known
as the effective depth of the beam. The bending moment, A, produces compression in the concrete
above the neutral axis whose position is at some, as yet unknown, depth, 7, below the upper surface of
the beam. Below the neutral axis the concrete is in tension and is assumed to crack so that its contribu-
tion to the bending strength of the beam is negligible. All tensile forces are therefore resisted by the
reinforcing steel.

The reinforced concrete beam section may be conveniently analysed by the method employed in
Section 12.1 for steel-reinforced beams. The steel reinforcement is, therefore, transformed into an
equivalent area, 74, of concrete in which s, the modular ratio, is given by

Eq

m= —

E.

Resultant of tensile
stress in steel FIGURE 12.6

(c) (d) Reinforced concrete beam.

solving gives

mA Zbdl
- s -1 (12.10)
n 5 ( 1+ vy )

Note that the negative solution of Eq. (12.9) has no practical significance and is therefore ignored.
The second moment of area, I, of the transformed section is
where E; and E_ are Young’s moduli for steel and concrete, respectively. The transformed section is

shown in Fig. 12.6(b). Taking moments of areas about the neutral axis we have _ bn’

L= 5 + mAy(dy —n)* (12.11)
bn; = mAy(dy — n)

E r . . . .
and the maximum stress, o, induced in the concrete is

_Mn (12.12)
Iy

which, when rearranged, gives a quadratic equation in 7, i.e.

bn? :
T i mAsn = mAsdl =0 (129)

(o
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The stress, 0, in the steel may be deduced from the strain diagram (Fig. 12.6(c)) which is ling,
throughout the depth of the beam since the beam section is assumed to remain plane during bending
Then .

mm. If the beam is subjected to 2 bending moment of 30 kN m, calculate the stress in the con-
" e and in the steel. The modular ratio  is 15.
F The area A, of the steel reinforcement is given by

Us/Es — Uc/Ec
dl -—n n

o= — édl—n _ dl—n
s UCEC ” - ag.m n (1213)

Substituting for o, from Eq. (12.12) we obtain

(note: strains are of opposite sign) e e % 300 = G

k. The position of the neutral axis is obrained from Eq. (12.10) and is

mm(\/um_l)%sm

from which

200 15X 628.3

. Now using Eq. (12.11)

o= "2 ) (12 ’
s — 17 14) e o n <3
% L= L P 628.3(350—140.5)? = 598.5 X 10° mm*

5
5. The maximum stress in the concrete follows from Eq. (12.12), i.e.

% o
.= — —w = —7.0 N/mm?*(compression)
598.5 X 10

Frequently, instead of determining stresses in a given beam section subjected to a given applied
bending moment, we wish to calculate the moment of resistance of a beam when either the stress in the
concrete or the steel reaches a maximum allowable value. Equations (12.12) and (12.14) may be used
to solve this type of problem but an alternative and more direct method considers moments due to the
resultant loads in the concrete and steel. From the stress diagram of Fig. 12.6(d)

M= C(dl —Z)
3

M= %bn(dl —f> (12.15)

nd from Eq. (12.14)
| _15%30x10°

=227 "~ (350 — 140.5) = 157.5 N/mm?(tension)
%= Sog5 X106 O ) /

so that

3

PLE 12.4
orced concrete beam has a rectangular section of breadth 250 mm and a depth of 400 mm to
reinforcement, which consists of three 20 mm diameter bars. If the maximum allowable
in the concrete and steel are 7.0 N/mm? and 140 N/mm’, respectively, determine the
nt of resistance of the beam. The modular ratio 7 = 15.
e area, A, of steel reinforcement is

Alternatively, taking moments about the centroid of the concrete stress diagram

M=T<d1—’-’>
3

M =0, (dl - f) (12.16)

or

3

A =3% »E X 20% = 942.5 mm?

Equation (12.16) may also be used in conjunction with Eq. (12.13) to ‘design’ the area of reinforcing
steel in a beam section subjected to a given bending moment so that the stresses in the concrete and steel
attain their maximum allowable values simultaneously. Such a section is known as a critical or economi

Eq. (12.10)

section. The position of the neutral axis is obtained directly from Eq. (12.13) in which o, o, m and & _15x9425 ( \/ 1 + 2x250 X_,.___.‘im — 1] =163.5 mm
are known. The required area of steel is then determined from Eq. (12.16). B 250 / 15 X 942.5 ’ Gl 4=

he maximum bending moment that can be applied such that the permissible stress in the con-
¢ is not exceeded is given by Eq. (12.15). Thus

—
EXAMPLE 12.3
A rectangular section reinforced concrete beam has a breadth of 200 mm and is 350 mm deep o
centroid of the steel reinforcement which consists of two steel bars each having a diameter

7 163. ) it
M= :;- X 250 X 163.5(400* —%’——S-) X 1076 = 49.4 KNm
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Similarly, from Eq. (12.16) the stress in the steel limits the applied moment to

mAg.
M = 140 X 942.5 (400 i 1—6;—5—) X 107 = 45.6 kNm — ] —
; , N

The steel is therefore the limiting material and the moment of resistance of the beay . _Neutral

45.6 kN m. axis
- { ~ ]— u
mAq

EXAMPLE 12.5 ¢
A rectangular section reinforced concrete beam is required to support a bending moment of 4¢ @ .
m and is to have dimensions of breadth 250 mm and effective depth 400 mm. The maximum allgy, |
able stresses in the steel and concrete are 120 N/mm” and 6.5 N/mm?, respectively; the mody], 0dlE; 06
ratio is 15. Determine the required area of reinforcement such that the limiting stresses in the sge, ouE
and concrete are attained simulancously. - — = C; (Resultant load in steel)

Using Eq. (12.13) we have C. (Resultant load in concrete)

) (400 Neutral VY [
20=06.5X 15| — —1 S
120 =6.5 X 15( b l) axi

~ el /Es
from which #»=179.3 mm. = T = FIGURE 12.7

The required area of steel is now obtained from Eq. (12.16); hence N % . —

Maifit laaidd it tenslonisteel Reinforced concrete beam Wl'[l
A= ——"L Resu steel in tension and compression
o(di — n/3) © (d) zones.
ie.
i s o e A SY
4~ To@o—1793/) 007 mm or, rearranging
i bn?

It may be seen from Ex. 12.4 that for a beam of given cross-sectional dimensions, increases in the
area of steel reinforcement do not result in increases in the moment of resistance after a certain val
has been attained. When this stage is reached the concrete becomes the limiting material, so that addi-
tional steel reinforcement only serves to reduce the stress in the steel. However, the moment of resis-
tance of a beam of a given cross section may be increased above the value corresponding to the limiting
concrete stress by the addition of steel in the compression zone of the beam.

Figure 12.7(a) shows a concrete beam reinforced in both its tension and compression zones. The
centroid of the compression steel of area A, is at a depth 4 below the upper surface of the beam, while
the tension steel of area A, is at a depth 4. The section may again be transformed into an equivalent
concrete section as shown in Fig. 12.7(b).

However, when determining the second moment of area of the transformed section it must be
remembered that the area of concrete in the compression zone is reduced due to the presence of the
steel. Thus taking moments of areas about the neutral axis we have

bn?
— —Aun—d) + mA..(n— d) = mA.di — n)
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— T n = DAc(n— do) = mAu(dy = 7) (12.17)

It can be seen from Eq. (12.17) that multiplying A, by (m — 1) in the transformation process
rather than 7 automatically allows for the reduction in the area of concrete caused by the presence of
the compression steel. Thus the second moment of area of the transformed section is

bn?

L= (12.18)
B

+ (m - 1)Asc(n_d2)2 + mAst(dl _n)Z

The maximum stress in the concrete is then

(see Eq. (12.12))

Tec ™= —
c

The stress in the tension steel and in the compression steel are obtained from the strain diagram of

Fig, 12.7(c). Hence

Usc/Es
n— A

o./E:

£

(12.19)

(both strains have the same sign)
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so that
L= m(nn— ) . mM(’;C— ) (12.20)
and
Og = m[]cW (d1 — n) as before (12.21)

An alternative expression for the moment of resistance of the beam is derived by taking moments of
the resultant steel and concrete loads about the compressive reinforcement. Therefore from the Stregg

diagram of Fig. 12.7(d)

whence

M=, Aud — dy) - % bn (g ~ 42) (12.22)

—
EXAMPLE 12.6

A rectangular section concrete beam is 180 mm wide and has a depth of 360 mm to its tensile rein-
forcement. It is subjected to a bending moment of 45 kN m and carries additional steel reinforce-
ment in its compression zone at a depth of 40 mm from the upper surface of the beam. Determine ‘
the necessary areas of reinforcement if the stress in the concrete is limited to 8.5 N/mm? and that in
the steel to 140 N/mm?2 The modular ratio E/E, = 15.

Assuming that the stress in the tensile reinforcement and that in the concrete attain their limiting
values we can determine the position of the neutral axis using Eq. (12.13). Thus ;

e

14o=8.5x15(36~0~1) !
from which

7=171.6 mm :
Substituting this value of 7 in Eq. (12.22) we have J
45 X 10° = 1404,,(360 — 40) + ? X 180 X 171.6(}—731-i§ —40) .I
] l
which gives h

As = 954 mm?

We can now use Eq. (12.17) to determine A, or, alternatively, we could equate the load in the {

tensile steel to the combined compressive load in the concrete and compression steel. Substituting
for 7 and A, in Eq. (12.17) we have
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; ]
| I FIGURE 12.8
| Slab-reinforced concrete beam
% L o L i arrangement.
. i . :
o 1
Neutral |
axis g,
FIGURE 12.9
Sl Analysis of a reinforced concrete T-beam.
180X 1716 | (15 14 (171.6 — 40) = 15 X 954(360 — 171.6)
2 ;
i ﬁ‘om Wthh

Ay = 24.9 mm?

The stress in the compression steel may be obtained from Eq. (12.20), i.e.

= i ISM X 8.5 = —97.8 N/mm? (compression)
A 171.6 .
ractical situations reinforced concrete beams are cast intr:grauyf t\;/lltl";t fll:;;r: zos;hzi
e maf;_)’ p12 8 Cléarly, the floor slab contributes to the ove.rall strength o s e e
:il:wnrinof 1tilg’e sla.b' adjacent to a beam may be regarded as forming pa¥hof the mzzm‘;ﬁdth [res
Thea j ion of it, is in compression. The assum , B, of th
: oe, or the major portion of it, is (e antmsc i
;Il:eam Wi‘gfc bfagr:egaezc: rthan L tJhe glzta.noe berween the beam centres; in most instances B is speci
 flange can ’ 2 .
e al axis lies within the flange or coin-
. i : i is of T-beams that the neutral axis .
. . % ual i ajﬁ;f:;gﬁt;ﬁ?ﬁ: zase the beam behaves as a rectangulaf section co,nucfc:ese{z:ia::l]
;:‘lf"i cVs':tnhthBl::nclimcﬂ"ec,tive depth dy (Fig. 12.9). Therefore, the previous analysis of rectangula
of wi | effec (Fig

‘beams still applies. -

Osc

e oo i i hat the modern design of reinforced
We have previously noted in this chapter and also in Chapter Sd that tem e e
concrete structures relies on ultimate load theory. The calc.:ulate mom o v p A
tion is therefore based on the failure strength of concrete in cor;pre?lixo el ni
steel reinforcement in tension modified by suitable factors of sa e?':l yp e
(based on its 28-day cube strength) and 1.15 for steel. However,.l:u uref 2}16 et
could occur suddenly in a reinforced concrete beam, .Whereas .fau ure o b s O T
gradual. Tt ic therafare nreferahle that failure occurs in the reinforcemen
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Thus, in design, the capacity of the concrete is underestimated to ensure that the preferred form of fail
ure occurs. A further factor affecting the design stress for concrete stems from tests in which it has bee-
found that concrete subjected to compressive stress due to bending always fails before attaining 5 Cornn
pressive stress equal to the 28-day cube strength. The characteristic strength of concrete in COmpregs; 01;
is therefore taken as two-thirds of the 28-day cube strength. A typical design strength for concrege a
compression is then

a-Cll
— X 0.67=0.
s 0.67 =0.450,

where o, is the 28-day cube strength. The corresponding figure for steel is

oy _
—lTs = 0.870'Y
In the ultimate load analysis of reinforced concrete beams it is assumed that plane sections remajy

plane during bending and that there is no contribution to the bending strength of the beam from the
concrete in tension. From the first of these assumptions we deduce that the strain varies linearly
through the depth of the beam as shown in Fig. 12.10(b). However, the stress diagram in the cop.
crete is not linear but has the rectangular—parabolic shape shown in Fig. 12.10(c). Design charts jp
Codes of Practice are based on this stress distribution, but for direct calculation purposes a reasonably
accurate approximation can be made in which the rectangular—parabolic stress distribution of
Fig. 12.10(c) is replaced by an equivalent rectangular distribution as shown in Fig. 12.11(b) in which
the compressive stress in the concrete is assumed to extend down to the mid-effective depth of the
section at the maximum condition, i.e. at the ultimate moment of resistance, M, of the section.

M, is then given by
Mu =~ C% dl = 0.400'cub% d1%d1

which gives
M, =0.150,b(d;)* (12.23)
or
M, =T3dy = 0.870vA3d,
from which

M, =0.650yA4, (12.24)

b
0.450,,

N o
gt | |n
oy Neutral %
1 axis
Y
. el - ==
Total area of 0870y FIGURE 12.10

reinforcement, A

£ Stress and strain distributions in a
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S
Q

Q
c

Resultant compressive
/ load in concrete

AAAAAO

N[

dy

Resultant tensile
load in steel

@) (b)

FIGURE 12.11
Approximation of stress distribution in concrete.

i i i less than M, a rectangular stress block may be
ichever is the lesser. For applied bending moments less M, r
Whluci::; for the concrete in which the stress is 0.40, but in which the.depth of the neutral axis must
;ss calculated. For beam sections in which the applied bending moment is greater than M, compressive
e s

reinforcement is required.

kg and a breadth of 250 is sub

reinforced concrete beam having an effective depth of 600 mm and a breadth of 250 mm s st -
tora bending moment of 350 kN m. If the 28-day cube strength of the concrete is ’30 N/mm®
the yield stress in tension of steel is 400 N/mm?, determine the required area of reinforcement.
st it is necessary to check whether or not the applied moment exceeds the ultmate moment of
istance provided by the concrete. Hence, using Eq. (12.23)

, M, = 0.15 X 30 X 250 X 600 X 107° = 405 kN m
B i i greater than the applied moment, the beam section does not require compression

nrorcement. i . ) ; : . e 1 -
We now assume the stress distribution shown in Fig. 12.12 in whmh the neutml axis of thﬂ e
is ac a depth 7 below the upper surface of the section, Thus, taking moments about the tensile

orcement we have

P.’Aﬁw
3 e
v :
1 = 600 mm S e B e ,,;z
: FIGURE 12.12
L — ; Stress distribution in beam of
0.870y B 1207
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350 X 105 = 0.4 X 30 X zscm(soo 2 g)

from which

7 =243.3 mm
The lever arm is therefore equal to 600 — 243.3/2 = 478.4 Nt il :
centroid of the concrete we have ' mm. Now taking moments about the‘;

0.87 X 400 X A, X 478.4 = 350 X 10°

which gives
A =2102.3 mm?
-
-
EXAMPLE 12.8 -

A re_inforced ‘concrete beam of breadth 250 mm is required to have an effective depth as small 55
possible. Design the beam and reinforcement to support a bending moment of 350 kN m assumj
that o4, = 30 N/mm” and oy = 400 N/mm?. 3
In thu'; example the effective depth of the beam will be as small as possible when the applied
moment is equal to the ultimate moment of resistance of the beam. Then, using Eq. (12.23)

350 X 106 =0.15 X 30 X 250 X 42
which gives
4y =557.8 mm

This xi not a practical dimension since it would be extremely difficult to position the reinforcement
to such accuracy. We therefore assume &, = 558 mm. Since the section is stressed to the limit, we
see from Fig. 12.11(b) that the lever arm is

3 3
3% =7 X558 =4185 mm

Hence, from Eq. (12.24)
350 X 10® = 0.87 X 4004, X 418.5
from which
A = 2403.2 mm?

A comparison of Exs 12.7 and 12.8 shows that th ion j i i
. . : . e reduction in effective depth is onl di i
by an increase in the area of steel reinforcement. g gt s
i |

We i i
have noted that the ultimate moment of resistance of a beam section of given dimensions can

Only bC iIlCIeaSed by th dd i i . >
€ a ition Of COmpreSSlOn relnf()fcement HOWCVCI although the deslgn St
F . .
or tension reinforcement ic N Q7~ SR, o LA ]

Boid e P
designing
singl)’ T

EXAMPLE 12.9
A
I:mcn[

;I! pendin

excess moment of 650—515-6

B |

[ ey
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ossibility of the reinforcement buckling between the binders or stirrups. The method of

beam section to include compression reinforcement is simply treated as an extension of the

forced case and is best illustrated by an example.

¢ beam has a breadth of 300 mm and an effective depth to the tension reinforce-
ression reinforcement, if required, will be placed at a depth of 60 mm. If
= 410 N/mm?, design the steel reinforcement if the beam is to support a

reinforced concret
of 618 mm. Comp
30 N/mm? and oy
g moment of 650 kN m. )
" ltimate moment of resistance provided by the concrete is ob

M, = 0.15 X 30 X 300 X 618> X 107 =515.6kN m

ed moment so that compression reinforcement is required to resist the
= 134 - 4 kN m. If A,. is the area of compression reinforcement

Th tained using Eq. (12.23) and is
e

This is ICSS than the appli

134.4 X 10° = lever arm X 0.72 X 4104

1.6

134.4 X 10° = (618 — 60) X 0.72 X 4104,

which gives

A, = 815.9 mm’

The tension reinforcement, 4. is required to resist the moment of 515.6 kN m (as though the
beam were singly reinforced) plus the excess moment of 134.4 kN m. Hence

134.4 X 10°

515.6 X 10° |
(618 — 60) X 0.87 X 410

A= 055X 618 X 0.87 X 410

from which

Ay = 3793.8 mm®
—

The ultimate load analysis of reinforced concrete T-beams is simplified in a similar manner t(;1 the1 e:lastlc
analysis by assuming that the neutral axis does not lie below the 19wer sx‘lrﬁ.lce of tl.ue flange. The u ftlmatfg
moment of a T-beam therefore corresponds to a neutral axis position coincident with the lower surface o
the flange as shown in Fig. 12.13(a). M, is then the lesser of the two values given by

be (12.25)

Mu = 0.40'cuBlﬂf (d] - 5)

or
b
M, = 0.870vAs (dl - 5‘) (12.26)
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Neutral
axis

o o - ::
0.870, FIGURE 12.13

As Ultimate load analysis of a rejnf

Orceq
(a) (b) concrete T-beam.

For T-beams subjected to bending moments less than my, the neutral axis lies within the flange and
must be found before, say, the amount of tension reinforcement can be determined. Compression rein.
forcement is rarely required in T-beams due to the comparatively large areas of concrete j
compression.

. ) —
EXAMPLE 12.10
A reinforced concrete T-beam has a flange widch of 1200 mm and an effective depth of 618 mm;
the thickness of the flange is 150 mm. Determine the required area of reinforcement if the beam is
required to resist a bending moment of 500 kN m. Take o, = 30 N/mm? and oy =410 N/mm>,
M, for this beam section may be determined using Eq. (12.25), i.c.

M, = 0.4 X 30 X 1200 X 150(618 -~ ITSO) X0 =173 1N m

Since this is greater than the applied moment, we deduce that the neutral axis lies within the
flange. Then from Fig. 12.14

500 X 106 = 0.4 X 30 X 1200n(613 i g)

e 1200 mm o
I~ R 040y,

" jB D =

618 mm

—i'—--—m-———-oq T

6.87‘0’ Y
As

FIGURE 12.14 :
Reinforced concrete T-beam of Ex. 12.10.
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che solution of which gives

7=159 mm

i : essi we have
N W taking moments about the centroxd Of the compression concrete
O

; 59
500 X 10° = 0.87 X 410 X 4 (618 o 7)

which gives
Ay =2381.9 mm?

e
| man ion i in Fig. 12.15(a) is required to carry a uni-
i ; ial cross section is shown in Fig. 12.15(a q 0 2
G ﬂ?:jai):éh:? I%i)rtllchrilz. The beams supporting the s&ab are t?xemseives ﬂfnijdiufh
formlc)i’ it :lpan of 5 m. If o, = 25 N/mm? and oy = 400 N/mm? determine the required dep
orted over a s| ; Sl

of the slab and the area of steel reinforcement.

L’El Igg; 2.0m 500m

o 20m |
<

()

FIGURE 12.15 ‘
Beam/slab arrangement of Ex. 12.11.

The beam/slab arrangement may be designed as a T-beam having the cross sa::iu'onisix:vgn in
Fig 11; 15(b) The maximum bending moment occurs at the mid-span of the beam and is given by

M zMzGQSkNm (see Ex. 3.8)
Mo 3

Then, assuming that the neutral axis coincides with the base of the slab, from Eq.(12.25)

625 X 10° = 0.4 X 25 X 2 X 10°4¢(500 — ¢ /2)

which simplifies to the quadratic equation
bt — 10004 + 62500 = 0
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od of designing the cross section to resist a bending moment, A, .is to assume the lever arm to be
i et })/2 and then to determine the area of steel from the moment equation
} b+ b,
he = 67 mm M= 0,870YAS( 5 ) (12.27)
Then, from Eq.(12.26) The available compressive force in the concrete slab, 0.4 o6k, is then. checked to.ensu.re th.at 'it
ds the tensile force, 0.870vA,, in the steel. If it does not, the neu.tral' axis of. the section lies within
gl Sy - el and A; given by Eq. (12.27) will be too small. If the neutral axis hes. within the concrete slab the
i S'Cem of resistance of the beam is determined by first calculating the position of the neutral axis. Thus,
from which

IIl e . . . .
4 the compressive force in the concrete is equal to the tensile force in the steel
since

AR 0.40.,6m = 0.870vA

Then, from Fig. 12.16

71

)

M, = 0.870vA, (d =
12.3 Steel and concrete beams

If the neutral axis lies within the steel, the stress distribution shown in Fig.

eams with stress limits identical to thoge sive and tensile forces

applying in the ultimate load analysis of reinforced concrete beams; plane sections are also assumed g

remain plane.

Consider the steel and concrete beam shown j
within the concrete flange. We ignore the contrib
bending strength, so that the assumed stress distri

0.40,6h. + 2 X (0.870y)A;. = 0.870vA;

n Fig. 12.16(a) and let us suppose that the neutral axis Jies
ution of the concrete in the tension zone of the beam to jgs
bution takes the form shown in Fig. 12.16(b). A convenient

which gives 4, and hence /,.. Now taking moments

he

2

C

1; > — 2% (0.870y)As (bsc

Mu = 0.870’YJ‘15 (d =

)

(12.28)

(12.29)

12.17(b) is assumed in

hich the compressive stress in the steel above the neutral axis is the resultant of the tens'lle stress and
P ice the compressive stress. Thus, if the area of steel in compression is A, we have, equating compres-
Wi

(12.30)

(12.31)

b Lo
a < g 0.40,
0.40, y = g
] i | o g < : it »
J n D sc vy st S =, -
i 1 5 ol S e - - ”
he ok {r - / | 2 B
/ Iy ‘ Y # ™ B
] < (e -
d C i / /] - e e
. o Neutral L  (0.870y) X 2
; 870y
d Centroid of steel < steel in . eutra L
compression axis e
hg < "
[ L]
-‘—- Ag area of steel - Y _ o -
E—— ) | l <
' — - [ —J 0.870y
0.870Y
b
(a) (b) (@) (®)

FIGURE 12.16

Ultlmate load analysis of a steel and cancrata hoam masdont —oie orr

FBURE 12,17
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EXAMPLE 12.12
A concrete slab 150 mm thick is 1.8 m wide and is to be supported by a steel beam. The total depth
of the steel/concrete composite beam is limited to 562 mm. Find a suitable beam section if the com-
posite beam is required to resist a bending moment of 709 kN m. Take o, = 30 N/mm?> and
oy = 350 N/mm?.

Using Eq. (12.27)

2 X 709 X 108
0.87 X 350 X 562

The tensile force in the steel is then

= 8286 mm”>

o

0.87 X 350 X 8286 X 1073 = 2523 kN
and the compressive force in the concrete is
0.4 X 1.8 X 10% X 150 X 30 X 1073 = 3240 kN

The neutral axis therefore lies within the concrete slab so that the area of steel in tension is, in
fact, equal to A, From Steel Tables we see that a Universal Beam of nominal size
406 mm X 152 mm X 67 kg/m has an actual overall depth of 412 mm and a cross-sectional area of
8530 mm®. The position of the neutral axis of the composite beam incorporating this beam section
is obtained from Eq. (12.28); hence

0.4 X 30 X 18007, = 0.87 X 350 X 8530
which gives
7 = 120 mm
Substituting for 7, in Eq. (12.29) we obtain the moment of resistance of the composite beam
M, = 0.87 X 350 X 8530(356 ~ 60) X 107° =769 kN m

Since this is greater than the applied moment we deduce that the beam section is satisfactory.

—

EXAMPLE 12.13

If the concrete in the steel/concrete composite beam of Ex.12.12 has a reduced strength of 20 N/
mm? determine whether or not the composite beam section is still satisfactory.

The cross sectional area of the steel beam chosen from Steel Tables is 8530 mm>. The tensile
force in the steel is then

0.87 X 350 X 8530 X 1073 = 2597.4 kN
The compressive force in the concrere is
0.4X1.8X10%X 150X 20X 1073 = 2160 kN

Since this is less than the tensile force in the steel the neutral axis of the beam section lies within
the steel. Then, from Eq.(12.30)

INLAIR Gmm 8 # RSN R A
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ﬁom Whlch
A =718.2 mm?

From Steel Tables, the Universal Beam has a flange width of 153 mm and a flange thickness of
16 mm. Therefore, by inspection, the neutral axis lies within the flange of the steel beam. Then

1585 = 718.2

S0 that

b =4.7 mm
where A is the depth of the flange in compression. Then

he =4.7 + 150 = 154.7 mm
From Eq.(12.31)
M, = 0.87 X 350 X 8530 (356 — 150/2) — 2 X 0.87 X 350 X 718.2 (154.7 — 150/2)
which gives
M, = 695 kNm

This is less than the applied bending moment so that the beam section is no longer satisfactory.

PROBLEMS

P.12.1 A timber beam 200 mm wide by 300 mm deep is reinforced on its top and botto.m surf.aces
by steel plates each 12 mm thick by 200 mm wide. If the allowable stress in the timber is -
8 N/mm? and that in the steel is 110 N/mm?, find the allowable bending moment. The ratio
of the modulus of elasticity of steel to that of timber is 20.

Ans. 94.7 kN m.

P.12.2 A simply supported beam of span 3.5 m carries a uniformly distributed load of 46.5 kN/m.
The beam has the box section shown in Fig. P.12.2. Determine the required thickness of the

L’i ‘100mm |<_t

75 Ty 1
mm ——
—

Steel\ 300 mm

75 ——
mm Caeirrany
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steel plates if the allowable stresses are 124 N/mm? for the steel and 8 N/mm? for the

. . ) timbe,
The modular ratio of steel to timber is 20. 1

Ans. 17 mm.

P.12.3 A timber beam 150 mm wide by 300 mm deep is reinforced by a steel plate 150 mm wide ang
12 mm thick which is securely attached to its lower surface. Determine the percentage inCrease
in the moment of resistance of the beam produced by the steel-reinforcing plate. The allowape
stress in the timber is 12 N/mm? and in the steel, 155 N/mm?. The modular ratio is 20.

Ans. 176%.

P.12.4 A singly reinforced rectangular concrete beam of effective span 4.5 m is required to carry 5
uniformly distributed load of 16.8 kN/m. The overall depth, D, is to be twice the breadth 4y d
the centre of the steel is to be at 0.1D from the underside of the beam. Using elastic the()ry
find the dimensions of the beam and the area of steel reinforcement required if the stresses arg
limited to 8 N/mm? in the concrete and 140 N/mm? in the steel. Take 7 = 15.

Ans. D= 406.7 mm, A, = 980.6 mm>.

P.12.5 A reinforced concrete beam is of rectangular section 300 mm wide by 775 mm deep. It has
five 25 mm diameter bars as tensile reinforcement in one layer with 25 mm cover and three
25 mm diameter bars as compression reinforcement, also in one layer with 25 mm cover. Find
the moment of resistance of the section using elastic theory if the allowable stresses are 7.5 N/
mm?® and 125 N/mm? in the concrete and steel, respectively. The modular ratio is 16.

Ans. 214.5 kN m.

P.12.6 A reinforced concrete T-beam is required to carry a uniformly distributed load of 42 kN/m
on a simply supported span of 6 m. The slab is 125 mm thick, the rib is 250 mm wide and
the effective depth to the tensile reinforcement is 550 mm. The working stresses are 8.5 N/
mm? in the concrete and 140 N/mm? in the steel; the modular ratio is 15. Making a
reasonable assumption as to the position of the neutral axis find the area of steel
reinforcement required and the breadth of the compression flange.

Ans. 2655.7 mm?, 700 mm (neutral axis coincides with base of slab).

P.12.7 Repeat P.12.4 using ultimate load theory assuming 0, = 24 N/mm? and oy = 280 N/mm>
Ans. D= 307.8 mm, A, = 843 mm>.

P.12.8 Repeat P.12.5 using ultimate load theory and take o, = 22.5 N/mm?, oy =250 N/mm?>.
Ans. 222.5 kNm.

P.12.9 Repeat P.12.6 using ultimate load theory. Assume o, = 25.5 N/mm? and oy = 280 N/mm?>.

Ans. 1592 mm?, 304 mm (neutral axis coincides with base of slab).

P.12.10 A concrete slab 175 mm thick and 2 m wide is supported by, and firmly connected to, a
457 mm X 152 mm X 74 kg/m Universal Beam whose actual depth is 461.3 mm and whose
cross-sectional area is 9490 mm?. If o, = 30 N/mm? and oy =350 N/mm?, find the
moment of resistance of the resultant steel and concrete beam.

Ans. 919.5 kNm.

P.12.11 If the concrete in the composite beam in P.12.10 has a reduced strength of 15 N/mm?

determine ire racuileiom cnmnce Ot

peflection of Beams

hapters 9, 10 and 11 we investigated the strength of beams in terms of t.he stresses pr?du.ced by the
In-c an benélin shear and torsion, respectively. An associated problem is the determination of the
- f befr’ns caused by different loads for, in addition to strength, a beam must possess suffi-
deﬂCCU?nS | so that excessive deflections do not have an adverse effect on adjacent structural members.
f mﬂhmses maximum allowable deflections are specified by Codes of Practice in terms of tllle
e f ’the beam, particularly the span; typical values are quoted in Section 8.7. We a\'lso saw in
dim.cnsl‘;n; Zhat beams ,may be designed using either elastic or plastic analysis. However, since b.eam
36;1n220n's must always occur within the elastic limit of the material of a beam they are determined

erle

e o tl;l:\?er:e;l different methods of obtaining deflections in beams, the choice depending upon the
B ed. For example, the double integration {nethod gives Fhe completcf s}iapeb of a
peam whereas the moment-area method can only be used to de'termlne .the dcﬂecnon ata p;mcu ar beam

:on. The latter method, however, is also useful in the analysis of .statlcall.y 1ndeterm1.nate eams.
- ally beam deflections are caused primarily by the bending action of applied lqads: In some
‘ b hc})rwever where a beam’s cross-sectional dimensions are not small comPared with its length,
msf;anc'es;ls due to ,shear become significant and must be calculated. We shall con51df:r beam deflections
:zee:::hear in addition to those produced by bending. We shall also include deflections due to unsym-

metrical bending.

type of problem being solv

13.1 Differential equation of symmetrical bending

In Chapter 9 we developed an expression relating the curvature, 1/R, of a beam to the applied bending
moment, M, and flexural rigidity, E7, i.e.

1 M
I = = (Eq. (9.11))

For a beam of a given material and cross section, ET is constan.t so that the curvaturc;l 1; dlr;ctlyl([));z;
portional to the bending moment. We have also shown that bending moments prodatllce y s :ilén &
vary along the length of a beam, which implies that t.helcurvatflre off at}l))ee al:Ielam so varies g

; Eq. (9.11) therefore gives the curvature at a particular section o . ‘
leng(tlho’nfi?iel(?albe)am havingi vertical plane of symmetry and loadec'l such that at a sectlfonhof the kr)le;air(:
the deflection of the neutral plane, referred to arbitrary axes Oxy, is v and the slopde of the tafzigfe .
the neutral plane at this section is dv/dx (Fig. 13.1). Also, if the applied load's produce angotsllle Cém.re.
sagging, bending moment at this section, then the upper surface of the bc;am is concaveha . e g
of curvature lies above the beam as shown. For the system of axes ShOWI'l in Fig. 13.1', the sign
tion usually adopted in mathematical theory gives a positive value for this curvature, i.e.
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P \
EXAMPLE 13.2

Determine the deflection curve and the deflection of the free end of the cantilever shown i
Fig. 13.3(a).
The bending moment, M, at any section X is given by

M= —%(L-—x)z 0

Substituting for M in Eq. (13.3) and rearranging we have

dZU i w 2 w 2 4 25
Integration of Eq. (ii) yields
d.U w 2 2 .x‘3
— = | Pyl 2
Eldx . (L % — Lx 3) G
When x = 0 at the built-in end, dv/dx= 0 so that C; =0 and
dv W P
e e e Jat o ..ol
E"ldx 5 (L o0 I 3 (iii)

Integrating Eq. (iii) we have

. w zxz L®  xt :
L el L L
e 2(‘[‘ 7 3 ) ta |

and since v = 0 when x = 0, C, = 0. The deflection curve of the beam therefore has the equation

ok e 2,2 4TsB 3B ¥l
v TiE] 6L x"—4 ) (iv)
and the deflection at the free end where x= L is !
wL! b
Ugp = — 'é'E‘Y‘" (V)w
X
w
Yy v v ¥ ¥V ¥V F VY
D
7
El
@ ipst.
) p !
| .
G I = X FIGURE 13.3
\"{ _If“” Deflection of a cantilever beam cai?rying a
(b) uniformly distributed load.
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.ch is again negative and downwards. The applied loading in this case may be easily expressed in
i

w*;thematical form so that a solution can be obtained using Eq. (13.5), i.e.
m

4
.n which w = constant. Integrating Eq. (vi) we obrain
dPv
G wx + C

We note from Eq. (13.4) that
f—p Sl (ie.—S=—wx+C)
dx? ET
When x =0, $= —wL so that
Ci=wL
Alternatively we could have determined C; from the boundary condition that when x= L, §=0.

Hence
13
Ej;;n—w(x'-L) (vii)

2

Integrating Eq. (vii) gives

dx? \ 2
From Eq. (13.3) we see that
v o }\_{
&2 E
and when x= 0, M = —wl?/2 (or when x= L, M = 0) so that
wl?
“and

12 ; y
EI% =- —";’-(x2 —2Ix+12)

‘which is identical to Eq. (ii). The solution then proceeds as before.

-

'EXAMPLE 13.3 '

~ The cantilever beam shown in Fig, 13.4(a) carries a uniformly distributed load over part of its span.
" Calculate the deflection of the free end.
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s G w D
' EEEERR F
\ |
«——&— > El '
e L >
@
y |
G = > X
N jﬁF
G FIGURE 13.4
(b) Cantilever beam of Ex. 13.3.

If we assume that the cantilever is weighdless then the bending moment at all sections between D*
and F is zero. It follows that the length DF of the beam remains straight. The deflection at D can
be deduced from Eq. (v) of Ex. 13.2 and is

wa®

=~ 5 :
Similarly che slope of the cantilever at D is found by substituting x= 2 and L=z in Eq. (iii) of
Ex. 13.2; thus

5

dv =8 —_K"i "
defs 0 BEI

The deflection, v, at the free end of the cantilever is then given by

1

|

wa' wa’ l

FaeT j

which simplifies to ‘ ‘I
wa’ i

Vg = —-——2451(4[,_&) E

-
EXAMPLE 13.4 |
Determine the deflection curve and the mid-span deflection of the simply supported beam shown in
Fig. 13.5(a).

The support reactions are each wL/2 and the bending moment, M, at any section X, a distance x{i
from the left-hand support is ‘

S, i)

2 2
Substituting for M in Eq. (13.3) we obtain
v w 2 b
Bl = ol i) (ii)
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FIGURE 13.5

> X Deflection of a simply supported
beam carrying a uniformly

(b) distributed load (Ex. 13.4).

9]

Integrating we have

dv w/(l?
BV _wile XN e
L (2 3> 1

" From symmetry it is clear that at the mid-span section the gradient dv/dx = 0. Hence

3 3

2\8 24
whence
wl?
7
Therefore
d’U w3 3 3, o
Gl —de ] (1ii)
EI A (6Lx X )

Integrating again gives
Elv= -Z%(ZM —xi -0+ G

Since v=0 when x=0 (or since v=0 when x= L) it follows that C; =0 and the deflected
shape of the beam has the equation

" w : 4_ 73, i

' = (D] 3 — L (gv)
\\ o 4EI( D= o)

" The maximum deflection occurs at mid-span where x = L/2 and is

f ot Swl?
b s N

)

So far the constants of integration were determined immediately they arose. However, in so}ine
. cases a relevant boundary condition, say a value of gradient, is not obtainable. The method is then
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to rry i i
ca dlC unknown constant through the SUCCCedlng mtegration and use known Va-lues Of d ﬂ ﬂ
Cllec.

f
I
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From Symmetry the slope of the beam is zero at mid-span where x = L/2. Thus C; = —WI*/16 and

ton at two sections of the beam. Thus in the previous example Eq. (i) is integrated twice to ol
ODtajn d w
w (L3 4 i G L )
EIU:E(?_%) S (0 E E]dx 16(4x & (i)
The relevant boundary conditions are v = Integrating Eq. (iii) we have
. ) S =0atx=0and x=L. : neeg
while from the second we have Cy = —w*/24. Thus the eqxuatiO‘nj;I}e }ilrsii()f these gives o e V(4 _ o
beam is the deflected shape of g Elu= gl Lz )+ G
w = = = auatior 1 1
£ V= .z_ﬁ]_(z 7535 x) and when x= 0, v =0 so that C,=0. The e?;auon of the deflection curve is, therefore
as before. ‘ Chalrry- (45> — 3I%x) (iv)
i ¢ maximum deflection occurs at mid-span and is
Th P
— wi3
EXAMPLE 13.5 — e o T i

Figure 13.6(a) shows a simpl
. ply supported beam carryin i
Determine the deflection curve of the beam and the ma?:iminj dc:f;lecci?c:;ated Pt

The support reactions are each W/
ach W72 and th i i
Ao i s and the bendxng moment M at a section X a distance X

5% (i)
From Eq. (13.3) we have
v W
El— = —y
2 2 & (ii)
Integrating we obtain
dv  Wx?
E-Y'% ===
& 2374

x

Mlg
—_—

- =¥
NS

y

—
()
-

@ <
e

—

FIGURE 13.6
Deflection of a simply supported beam

Note that in this problem we could not use the boundary condition that v = 0 at x = L to determine
since Eq. (i) applies only for 0 = x= L/2; it follows that Egs (iii) and (iv) for slope and deflection

C
. 0= x = L/2 although the deflection curve is clearly symmetrical about mid-span. &

apply only for

———

|
EXAMPLE 13.6
The simply supported beam shown in Fig. 13.7(a) carries a co
from the lef-hand support. Determine the deflected shape of the beam,
load and the maximum deflection.
Considering the moment and force equilibrium of the beam we have
w W
R=7U-d R= —L—”

ncentrated load W at a distance 2
the deflection under the

X? ! w !Xz
A l C i B
- ] T | |
7%7_ G i | El | ,,%,/
RA=_L'_W‘(L~a)T<_——-—————>[aiI ' RB=..LW_’a
PRI, S s N
@ o Feo
v L
o FIGURE 13.7
G !v % > X Deflection of a simply
s , supported beam carrying a

\
x

(b)

carrying a concentrated load at mid-
span (Ex. 13.5).

VUmax

(b)

concentrated load not at mid-
span (Ex. 13.6).
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At a section X;, a distance x from the left-hand support where x < 4, the bending momeng j

N— RAX (i)‘
At the section X5, where x= 4 1
M=RAX~ W(X—ﬂ) (ll)?

Substituting both expressions for M in turn in Eq. (13.3) we obrain
d*v : 1
El 12 =R (x=a) (iii)j

and
9
d*v
o =R= W= (x=a) (i)
Integrating Eqs (iii) and (iv) we obtain ‘
dv x |
EI'&; :RA*E*‘*"CI (xSﬂ) (V);
dv x2 x2
E[-d—szA?—‘W(E—-—ax)*FC'l x=a) (vi)'f
i i
x3 |
E]v*RAE— +Cx+ G (x=a) (vii)
3 2
E]v=RA% --W’(% —%) HO R+ Cr n2a) (viii)

in which G, €}, G, C are arbitrary constants. In using the boundary conditions to determine -
these constans, it must be remembered that Egs (v) and (vii) apply only for 0 =x= 4 and Eqgs (vi)
and (viii) apply only for 2<x=<L. At the lefi-hand support v =0 when x=0, therefore, from |
Eq. (vii), G, =0. It is not possible to determine C}, C} and C, directly since the application of fur-
ther known boundary conditions does not isolate any of these constants. However, since v = 0 when
x= L we have, from Eq. (viii)

e L gt
— L e T o, + Vad + /
0=Ra - W( " 3 ) Cil
which, after substituting Ry = W(L — 2)/L, simplifies to
Wal? g
0= ‘31 +C|L+C, (ix)

Additional equations are obtained by considering the continuity which exists at the point of
application of the load; at this section Egs (v)—(viii) apply. Thus, from Eqs (v) and (vi)

RA%Z* +C1=RA§ ~W(522- —42) L8

13.1 Differential equation of symmetrical bending

1 ich gives
- Wa? ®
C1 & T = q

Now equating values of deflection at x = z we have, from Egs (vii) and (viii)
o

» 7 7 T :
j Ry + Ca=Rip —W(E : + Cla+ C,

:‘ which yields
Cia= _?_ + Gle+iC (xi)
Solution of the simultaneous Egs (ix), (x) and (xi) gives

(@ = —?%(a*ZL)(a-L)

Wa
C= —gz(ﬂuzﬁ)

, _ W
Gt
Equations (v)—(vii) then become respectively
EI% =— K—Z—{—Q [3x* + a(a—2L)] (x=a) (xii)
dv Wa > » (xiii)
= = (B Bl kg 2L =)
e = (3x* — 6Lx + ) (x=uz
Elv= - -“;7%;-9 [ +aa—2Dx] (x=a) (xiv)
Erv= - Te[2 =31+ (2 420~ L) (=) &

The deflection of the beam under the load is obtained by putting x = 4 into either of Eq. (xiv) or
(xv). Thus

Wat(a—L)*

VeTE T T

This is not, however, the maximum deflection of the beam. This Wi-ﬂ oceur, 1f a<LA2, ;; some
section between C and B. Its position may be found by equating dv/dx in Eq. (xiii) to zero. Hence

(xvi)

0=3x> — 6Lx + &* + 2I* (xvii)
The solution of Eq. (xvii) is then substituted in Eq. (v) and the maximum deflection follows.
For a central concentrated load 2= L/2 and
M&
Ve T T 48
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13.1 Differential equation of symmetrical bending 349

=
EXAMPLE 13.7

Determine the deflection curve of the beam AB shown in Fig. 13.8 when it carries a distributed |

The deflection v =0 at x=0 and x= L. From the first of these conditions we obtain C; =0,
while from the second

that varies linearly in intensity from zero at the lefe-hand support to g at the right-hand suppor, ‘ wy (P L
To find the support reactions we first take moments about B. Thus ] = 6L\6 20 i tak
f if \
1 : .
Ral= - woLg  which gives
S TwoL*
which gives S 3§0
Ry = i The deflection curve then has the equation
Resolution of vertical forces then gives 6 v=— 2 (355 — 10253 + 7L%%) W)
e 360EIL
Rg = ey ~ An alternative method of solution is to use Eq. (13.5) and express the applied load in mathemati-

The bending moment, A, at any section X, a distance x from A is cl form. Thus

d*v x
e B XSLE EIS— = —w=—wy> (vi)
M=FRax—3 (w“ L)"s _ el L
or Integrating we obtain
wy v %
Mzgi(ﬁx—f) Bl == tr G
Substituting for M in Eq. (13.3) we obtain ~ When x = 0 we see from Eq. (13.4) that
&Pou voL
v w e e S
BT = (e A :
. dx? 6L (L =) dx? 6
which, when integrated, becomes e
d 2 4 o woL
i, s 2 T Ui )
o 6L<L 2 4)+C‘ (i) L.
Integrating Eq. (iii) we have . Po e
. 3 \ i EIZX.E = —wy— + — '(V!l)
: wy 2 X ) b 2L 6
EIU:'G‘E(L*G*‘—ZQ)'F}C"'CZ (iv)

Load intensity at section X is wg _E-

y X|
‘ ' ~ Since the bending moment is zero at the supports we have
v ‘ - 12
it SIE 7 E—»x L EI(}-})—&O when x =0
4; T E dx?
i | ‘ Hence C; =0 and
T X N FIGURE 13.8 |
Ra < > Rs . : — d*v Wo, 3 2
e L Deflection of a simply supported Bl e o e—(x3 —I%x)
B > beam carrying a triangularly be dx? 6L
1 distributed load. fore. -
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/ 13.2 Singularity functions

deflection of the beam under the load is then

. . = he
13.2 Singularity functions 3 WLy
A comparison of Exs 13.5 and 13.6 shows that the double integration method becomes eXtremely Vg B
lengthy when even relatively small complications such as the lack of symmetry due to an offge loag
are introduced. Again the addition of a second concentrated load on the beam of Ex. 13.6 Woulg . pefore.

result in a total of six equations for slope and deflection producing six arbitrary constants. Clearly the
computation involved in determining these constants would be tedious, even though a simply SuP.‘
ported beam carrying two concentrated loads is a comparatively simple practical case. An altemat%
approach is to introduce so-called singularity or half-range functions. Such functions were first applieq
to beam deflection problems by Macauley in 1919 and hence the method is frequently known a2
Macauley’s method.

We now introduce a quantity [x — 4] and define it to be zero if (x— ) <0, i.e. <4, and o b
simply (x —4) if x>a. The quantity [x— 4] is known as a singularity or half-range function ang i
defined to have a value only when the argument is positive in which case the square brackets behave i
an identical manner to ordinary parentheses. Thus in Ex. 13.6 the bending moment at a section of the
beam furthest from the origin for x may be written as

YAMPLE 13.8 _,
ine the position and magnitude of the maximum upward and downward deflections of the
shown in Fig. 13.9. , _ e

A :onsidemriezn of the overall equilibrium of the beam gives the support reactions; thus

5= %W (upwacd) Re = EW (oentend)

; TS . (R I P v o e T P iy
Using the method of singularity functions and taking the origin of axes at the left h;ap suppo
U; s.ite down an expression for the bending moment, M, at any section ¥ betuon D and F, dhe
of the beam furthest from the origin. Thus

S R M = Ryx — Wx — a]l — Wx — 24] + 2W][x — 34] ®
This expression applies to both the regions AC and CB since W[x— 4] disappears for x< a bsticuting for M in Eq, (13.3) we have
Equations (iii) and (iv) in Ex. 13.6 then become the single equation . = > i :
d*v EI%;% = 2 W Wik dl - Wix— 24+ 2Wls ~ 34 (i)
E]@=RAJ€_W[X—{Z] X
grating Eq. (ii) and retaining the square brackets we obrain
which on integration yields ) . . .
) B = 2w — = [x—aff — —[x—24P + W[x—3dl + Ci (iii)
E[d_Usz__Y[_]2+C dx 8 2 2
& Ry A TM
" Elv= éW@?~%£x*aP’~¥&~2af 5 —?[x«ﬁa}? +Cx+ G (iv)
© W ; :
s RAE - ?[x_aP Fhxt G ich C; and C, are arbitrary constants. When x=0 (at A), v=0 and hence C,=0.

that the second, third and fourth terms on the right-hand side of Eq. (iv) disappear for x<a.
v =0 at x = 4a (F) so that, from Eq. (iv), we have

Note that the square brackets must be retained during the integration. The arbitrary constants €
and G, are found using the boundary conditions that v =0 when x=0 and x= L. From the first of
these and remembering that [x — 4)? is zero for x < 4, we have C, = 0. From the second we have

0=Yotr - Yore - Yoo+ Lo+ ac

L3
0=Ry— — Y[L—af +CGL
6 6 /1 ‘ 2W
in which Ry = WL — a)/L. l Wl ?
I BY gy D
ubstituting ror 1ves et A L ..
glorfag “El
_ Wa(l—a) >

G = (2L—a)

6L

FIGURE 13.9
— a S PR Macauley’s method for the deflection of a I

Then

Elv=— ;—Z{ - (L - a)x—” + L[x—;z]3 + a(L - ﬂ)(ZL = a)x} s&mp%y supported beam (EX 13-8)!
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which gives

5
CI = g Wﬂz
Equations (iii) and (iv) now become
b e O T SR . !

LF e Wi 3 [x—a] T[x 24]" + W[x—34] 3 W (v)

and
1 w w W 5

Elv= : Wi — ?[x—zz]z' “a —6—[x—2a]3 + —3—[x—3¢z]3 i Wax (vi) ‘

respectively.

To determine the maximum upward and downward deflections we need to know in which bays
dv/dx =0 and thereby which terms in Eq. (v) disappear when the exact positions are being located.
One method is to select a bay and determine the sign of the slope of the beam at the extremities of
the bay. A change of sign will indicate that the slope is zero within the bay.

By inspection of Fig. 13.9 it seems likely that the maximum downward deflection will occur in
BC. At B, using Eq. (v)

dv 3 he
EJE; S Wi 5 Wi
which is clearly negative. At C
dU _ > AL W s 5 2
EJa s W4 75;2 = Wa

which is positive. Therefore, the maximum downward deflection does occur in BC and its exact
position is located by equating dv/dx to zero for any section in BC. Thus, from Eq. (v)

0= -Z—sz - %[x*a]z ~§Wa2
or, simplifying,
0=x" — 8ax + 9 (vii)
Solution of Eq. (vii) gives
x=1.354

so that the maximum downward deflection is, from Eq. (vi)
1
Elv= g W (1.352)° — %(0.35.1)3 - g Wi(1.354)
i.e.

_ 054w
EI

Umax (downward) =

13.2 Singularity functions 353

In 2 similar manner it can be shown that the maximum upward deflection lies between D and F
n . . .

<= 3.42a and that its magnitude is

at

0.04 Wz
72

An alternative method of determining the position of maximum deflection is'to se-lect a possible

et dv/dx =0 for that bay and solve the resulting equation in x. If the solution gives a value of
i lies within the bay, then the selection is correct, otherwise the procedure must be repeated for
R :1 and possibly a third and a fourth bay. This method is quicker than the former if the correct
. sec'onselected initially; if not, the equation corresponding to each selected bay must be con}gletely
g:l):,elz, a procedure clearly longer than determining the sign of the slope at the extremities of

the bay- i

Umax (upward) =

—

EXAMPLE 13.9

Determine the position and magnitude of the maximum deflection in t’he. beam qf Fig. 13.10. .
Following the method of Ex. 13.8 we determine the support reactions and find the bending
moment, M, at any section X in the bay furthest from the origin of the axes. Thus
M = Rpx — i S = ()
=LRAX T W 4 3
ini i ingulari i —57/8] does not become zero until
Examining Eq. (i) we see that the singularity function [x 5. | un
x= 52/8 althgou,c; Eq. (i) is only valid for x= 3L/4. To obviate this difficulty we .extend the dlStl‘l'b-
uted load to the support D while simultaneously restoring the status quo by applying an upward dis-
cributed load of the same intensity and length as the additional .load (Fxg. 13.11).
At the section X, a distance x from A, the bending moment is now given by

w L2 w ~_3-—L~2 (-)
M=RAx~5[x—5] +-2—[ 4] i
y [X
T T | D X
L sifitic | o 7 ke
Y ¥y D

w
S
S
&
I
|
g
o
m
SWE
&

RA= —32— 32 A
A S L4 LA b e | L4 | La |
I | | l 3 g 1 !
FIGURE 13.10 FIGURE 13.11
Deflection of a beam carrying a part span uniformly Method of solution for a part span uniformly

distributed load (Ex. 13.9). distributed load.
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Equation (ii) is now valid for all sections of the beam if the singularity functions are discarded B
they become zero. Substituting Eq. (ii) into Eq. (13.3) we obtain

2 2 2
E,Q___iwlx.ﬂ{x_!i} +3€[x_§£]

de2 = 32 2 2] g 4 (ii)

Integrating Eq. (iii) gives

dv 3 w L w 3L)°

E[a—x*—-ézwlxz—g[ ‘“E‘J +'6‘_[x"z*} + G (lv)
ol wf g b T

=2 Sl 1o R "

where C) and C, are arbitrary constants. The required boundary conditions are v =0 when x= 0
and x = L. From the first of these we obtain C, = 0 while the second gives

wlf  w (DN w (I
SED e e o +._ . ‘
Tl (2) 24 (4) isle

from which
= 27wl?
G ="
Equations (iv) and (v) then become
dv_ 3 5, w[ IP, w[ 3L 27wl J
T e 6{3‘ z] 6[" 4] 2048 bl

and

2 YUl T T om” &

In this problem, the maximum deflection clearly occurs in the region BC of the beam. Thus
equating the slope to zero for BC we have

wlx? i 14 I3
E]v=z~0£"—c———£[x--1“} k. w[x_g] _ 27wl

3 w I 270 "

e Ll [x 5} 2048
which simplifies to !
x° — 1.78Lx% + 0.75xL* — 0.0461° = 0 (viii)

Solving Eq. (viii) by trial and error, we see that the slope is zero at x~0.6L. Hence from Eq. (vii) l
the maximum deflection is

_ 453 X103t

s i
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—E'Xml:E 13.10
Dctefmine the deflected shape of the beam shown in Fig. 13.12.

In this problem an external moment M is applied to the beam at B. The support reactions are

found in the normal way and are

i M,
Ry=— %ﬂ (downwards) Rc = _ig (upwards)
The bending moment at any section X between B and C is then given by
M = Rax + My (@

Equation (i) is valid only for the region BC and clearly does not comain. a singularity function
hic?i would cause M, to vanish for x < 6. We overcome this difficulty by writing
wl

M = Ryx + Myfx — b]° (Note:[x — 6]’ = 1) (ii)

Equation (i) has the same value as Eq. (i) but is now applicable to all sections of t%le beam since
_(};]0 disappears when x = b. Substituting for M from Eq. (i) in Eq. (13.3) we obtain

[x
2 e
EI %;3;- = Rax + Mo[x—b]° (iii)
Integration of Eq. (iii) yields
dv x2 g
R — + Mylx — 6] + C (iv)
E o Ry 2 olx— 6]+ G
and
3
ElvaA% + %[x—bf%-@x%- G, )

where C; and C, are arbitrary constants. The boundary conditions are v =0 when x=0 and x= L.
From the first of these we have C, = 0 while the second gives

My My 2
=———+ —[L=b]"+ CL
: el el
from which
=M erpsp
C = ~—6—£(2L 6Lb+3b%)
X
L B
AT \”% c
[ V2 :/) ]——»X
“El :
L e
L T TRC = 4“{& FIGURE 13.12
7 : 2 i Deflection of a simply supported

A
Y

beam carrying a point moment
(Ex. 13.10).

| ——
4
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The equation of the deflection curve of the beam is then

My

= faa Tavic 32 - Zi 4
U {** +3L[x— 6] — 2L — 6Lb + 36%)x}

-
EXAMPLE 13.11

Determine the vertical deflection of the point D in the beam ABCD shown in Fig. 13.13 in term
of its flexural rigidity EJ; state clearly its direction.

The support reactions Ry and R are obtained in the usual way and are —3.75 kN and 18.75
respectively. Note that Ry is a downward reaction.

The distributed load is now extended to the end D of the beam as shown in Fig. 13.14 and h

e
status quo restored by applying an equal and upward distributed load between C and D. 3
The bending moment at the section X in the bay CD a distance x from A is then given by B
5 5

M= Rpx = Sle — 1+ Sfo = 2P + Ree = 2] (i):E

Substituting for A in Eq.(13.3) we obtain '

U SO AT SEeh
EI@» = —375x — E[x — 1P+ E[x — 21" +18.75[x — 2] (ﬁ)@!
Then

Efd—‘”=—375f2#-§[x—1]3+§[ s+ B e
T s G z X 5 X 1 (UIJ“:

and ]
B 5 DRl | , |

Ju= — 375~ o e — 1"+ — - e e ) - - i)

Elv 375% 24[x 17t sl —aA+ I 2P+ Cix + G (iv)

The boundary conditions are that v =0 when x=0 and x = 2 m. From the first of these G =
and from the second

S

SRR T B e
0= w—g———ﬂ[z* 1 +2¢
which gives C, = 2.6 .
5kN/m ?X mkié
5Kkm 10kN A BYTT I T T T
L YY) Y¢ YD 1 : 7i !
) ) ! Ra = ~3.75kN El Citt 1114
: - = 18.75kN
’%:g im ! : 1m "%’ im ; i xS _;RC im . dm F5£‘*£{'
FIGURE 13.13 FIGURE 13.14

Beam of Ex. 13.11 Solution of Ex. 13.11

13.3 Moment-area method for symmetrical bending

5

E Eq. (iv) therefore becomes
: ~ 375 15

Bro= 302D ap Spoof ¢ BR0 -2 +26x ©
_H Then, at D where x=3 m
: Elup = —9.08
',‘Ol
k vp = -Z}.r08 (ie downwards)

Note that the 10 kN load does not enter directly into the moment equation’. It could be included
dding an imaginary extension of the beam past D which would Ije‘&tﬂt in an gc?dxtxonal term
t.)flao[xw— 3] in the expression for bending moment, Eq. (i). However it is clear that this term Wogld
always disappear when considering any section of the beam berween A and D so that such an
approach is unnecessary.” : 9

—

13.3 Moment-area method for symmetrical bending

The double integration method and the method of singularity functions are u'sed Wher? th.e comPlete
deflection curve of a beam is required. However, if only the deflection of a particular point is required,
the moment-area method is generally more suitable. '
Consider the curvature—moment equation (Eq. (13.3)), i.e.
v M
&2 E
Integration of this equation between any two sections, say A and B, of a beam gives

P PM (13.6)
LI JEI

d_“rzfﬂdx
de |, JaEI

92) _ (d_v> _ JB% dx (13.7)
&), \ax), W E

In qualitative terms Eq. (13.7) states that the change of slope between two sections A and B of a
beam is numerically equal to the area of the M/EI diagram between those sections. o)
We now return to Eq. (13.3) and multiply both sides by x thereby retaining the equality. Thus

or

which gives

v M (13.8)
&2 '

T . - A o1 Ceiticn A and R AFa hanm we have
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BdZU BM
JA@xdx— JAExdx (13.9)

The left-hand side of Eq. (13.9) may be integrated by parts and gives

dv B B qu B s
[’EL ) La;d’“ La“*x

dv]® s [BM
[ EL o = | e

or

Hence, inserting the limits we have

dv dv _PM dx
xB (a)B xA (E)A (v —wp) = JAE—'IX (13.10)
in which xg and x4 represent the x coordinate of each of the sections B and A, respectively, while
(dv/dx)p and (dv/dx)s are the respective slopes; vg and w, are the corresponding deflections,
The right-hand side of Eq. (13.10) represents the moment of the area of the M/ET diagram between the
sections A and B abour A.

Equations (13.7) and (13.10) may be used to determine values of slope and deflection at any sec-
tion of a beam. We note that in both equations we are concerned with the geometry of the M/ET dja.
gram. This will be identical in shape to the bending moment diagram unless there is a change of
section. Furthermore, the form of the right-hand side of both Eqs (13.7) and (13.10) allows two
alternative methods of solution. In cases where the geometry of the M/EI diagram is relatively simple,
we can employ a semi-graphical approach based on the actual geometry of the M/ET diagram,
Alternatively, in complex problems, the bending moment may be expressed as a function of x and a
completely analytical solution obtained. Both methods are illustrated in the following examples.

.
EXAMPLE 13.12

Determine the slope and deflection of the free end of the cantilever beam shown in Fig, 13.15.

\§ w
2 |
£ X B
: ~ i
% El
e
(a)
WL
El
M
— diagram
o £ % FIGURE 13.15
Moment-area method for the deflection of a

®) cantilevar (Ev 12 19\
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hoose the origin of the axes at the free end B of the cantilever. Equation (13.7) then
choo

(- 5

5 5‘.9_) mij‘idx )
7 i W

ally at this stage we decide which approach is most suitafbie; ’hn’wm’fer, b}(::hesem1~graphxcal
dGe:ael;ticYal methods are illustrated here. Using the geometry of Fig. 13.15(b) we have
and analyt

(@3 ()

@) _
(832 s ek

Ex. 13.1. Note the change in sign due to the different

We

Comes

| or, Since (dv/dx)a =0

which gives

(compare with the value given by Eq. (iii) of
origin for %).

Alternatively, since
from Eq. (i)

i i is —Wx we have
the bending moment at any section a distance x from B is —Wx >

dx B 0 EI

(@),

With the origin for x at B, Eq. (13.10) becomes

which again gives

' AM )
dv\ [dvy - *-'WmJ\w—'dx (i)
* (?&)A ""“(Ex”)g R
Since (dv/dx)4 = 0 and x3 = 0 and v5 =0, Eq. (ii) reduces to
‘M (i)
= | —xdx
Up Jo 7 .

Again we can now decide whether to proceed semifgra;;;hicafliy zr a?ﬁﬁ;fli};v381ng the former
approach and taking the moment of the area of the M/EI diagram about B,
e WI’) < I
0 EL( H )3
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which gives
3
Ug = — SE (compare with Eq. (v) of Ex. 13.1)

Alternatively we have

op L yvr 2
s (= Wx) G Wi
by Jo e L‘ﬁd"

which gives

w3
3H

vp =

as before.
Note that if the built-in end had been selected as the origin for x,

vp directly since the term xg(dv/dx)g in Eq. (i) would not have vanished. The solution for vy would
then have consisted of two parts, first the determination of (dv/dx)p and then the calculation of v,

we could not have determineg

EXAMPLE 13.13 E |

Determine the maximum deflection in the simply supported beam shown in Fig. 13.16(a).

From symmetry we deduce that the beam reactions are each wLl2; the M/EI diagram has the
geometry shown in Fig. 13.16(b).

]

w
Y V¥V ¥V ¥V V¥V V¥ g

A — i X
/ c
7777, 77
Bt T
wlL wiL
RA 2 RB 2

L L2 L2 N

()
Centroid of area of left-hand
half of MIEI diagram

8E/

(b)
FIGURE 13.16

Moment-area method for a simply supported beam carrying a uhéformty distributed load.
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1f we take the origin of axes to be at A and consider the half-span AC, Eq. (13.10) becomes
Wi

c
dv < PRSP v Ly i
* (d‘x‘)c i (a‘)A i L E” S
In chis problem (dv/dx)c =0, xa =0 and v5 = 0; hence Eq. (i) reduces to

Pl il (ii)

L/2 M
l, &

n try jagram, i i-graphical approach, and taking the
ino the geometry of the M/EI diagram, i.e. the semi-grap 4

Uselntg otf ;egarea of the M/EI diagram between A and C about A we have from Eq. (ii)

momen

S
e T e is 2

L Swl?
3841

For the completely analytical approach we express the bending moment M as a function of x;

thus

which gives

ve = (see Eq. (v) of Ex. 13.4).

wL  wx?
A
or
M= Z(Ix— )
2
Substituting for M in Eq. (i) we have
L
| (P -)dx
ve L 5 EI( )
which gives
w [Lf_ "
e s
Then
sl SwL*
YCT T 384Er

 ee—
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m— -
EXAMPLE 13.14
Figure 13.17(a) shows a cantilever beam of length L carryi
: . rying a concentrated load W at its f;

The section ‘?f the beam changes midway along its length so that the second moment of Saréee en.d,
cross section is reduced by half. Determine the deflection of the free end. ot
In this problem the bending moment and M/ET diagrams have different geometrical shap

es.

" which (dv/dx)s =0, xc = 0, up = 0. Hence

L
M
ve= | —xdx i
C L El (i1)

From the geometry of the M/EI diagram (Fig. 13.17(c)) and taking moments of areas about C

Choosing the origin of axes at C, Eq. (13.10) becomes
have
dv dv A N E oy g |
w(g), (). ~ta-wo= | Fxes | e (oYL L (—WINISE | N~ WLy I2l
4 c cEl ® c=\2m )27 "2\ 2 J26¢ " 2\ EH )232
T y which gives
e 3WI?
. % & 8EI
\%‘A A p Analytically we have
~ Y
. X < - /2 le SE M Wa2
p | Ve = e P
N\ f o - U EI]2 5
N I/ 5 0 % 12
l or
i &% . w2377 [
@ | s ve=—— [—’f—] -+ H ~
E] 3 0 | 3 4 /2
wiL Hence
Bending moment diagram e 3WL
~ve har
as before.
(b) ; )
| -—
o EXAMPLE 13.15
The cantilever beam shown in Fig. 13.18 tapers along its length so that the second moment of area
of its cross section varies linearly from its value Iy at the free end to 2/y at the built-in end.
M Determine the deflection at the free end when the cantilever carries a concentrated load W.
E diagram
T y
w
/1A
7 s
X
(c) _____d_-————w——“”"""\’o
FIGURE 13.17
Deflection of a cantilever of varyin i
g section. FIGURE 13.18
" Deflection of a cantilever of tapering section.
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13.4 Deflections due to unsymmetrical bending

365

13.4 peflections due to unsymmetrical bending

Choosing the origin of axes at the free end B we have, from Eq. (13.10)

xA(@) — X @- —(va —up) = A_Ai_ i WeﬂotEd in
A dx /4 B x E[Xx' gl is determined from Eq. (9.33). Beam deflections,
in which Z, the second m far 2 2 it . o the neutral axis.
o oment of area at any section X, is given by 'aonSupp ose that at some section of a beam, the deflection normal to the neutral axis (and therefore an
i Ig(l + f) Jbsolute deflection) is '
L ents of ¢, u and v, are given by
u=(sina v=(cosu

Also (dv/dx)s =0, x5 =0, v =0 so that Eq. (i) reduces to

L 7
i My
e L El(1+3) o

the

by direct comparison with Eq. (13.2) that

The geometry of the M/EI diagram in thi ; -
; ; : g gram in this case will be complicated i .
approach is most suitable. Therefore since M = — W, Eq. (ii) becomeih SRt ottt e R cal 1 _d%¢
' R de?
o Bl —"Kgﬁ‘_dx ituting from Eq. (13.11)
0 El(1+ %) or, subst g q
or 51na=(_12_u cosa_izg
) R &2 R &2
il W 4 2
o El, L I i We observe from the derivation of Eq. (9.31) that
Rearranging Eq. (iii) we have Esna _ ML —MI,
i k . L 12 R LL — Izzy
UB‘”—'E_“ (x“‘L)dx‘*'I —dx Ecosa _ MJI,—MI,
o Lo ol R LL-I
w 2y

which may be written in the form Therefore, from Eq. (13.13)
WL [ (£ Eti A &Pu M, — M,

Ry 7 du _ Myls — Maly

J(x Lyde+ L J -——q-.m‘.j] dx? E(lzly_lzzy)

‘UB"—"*--% [

Ehy 1o o L(1 +x/L
Hence
_ AY
Uz_mx 2 1 L Loaded .-~ T
BTN EGhE  edl +x/L)L ¢ R
so that : 2
: Unloaded
8 1 |
U = — E_ (.,5 i 20&2) : Neutral axis
i.e. I,
Z<«— !
Vg = — 0.19Wz’? \
Ely '\

Chapter 9 that a beam bends about its neutral axis whose inclination to arbitrary centroi-
therefore, are always perpendicular in direc-

¢. Then, as shown in Fig. 13.19, the centroid G is displaced to G’. The compo- ‘

The centre of curvature of the beam lies in a longitudinal plane perpendicular to the neutral axis of
beam and passing through the centroid of any section. Hence for a radius of curvature R, we sec,

(13.11)

(13.12)

(13.13)

(13.14)

FIGURE 13.19
Deflection of a beam of

o
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2
v _ ML, - M1,

® . BLL—2) (13.15)
-
EXAMPLE 13.16 .

Deterrr{inc .the horizontal and vertical components of the deflection of the free end of the cantileve
shown in Fxg. 13.20. The second moments of area of its unsymmetrical section are 7, Lyand [, !
The bending moments at any section of the beam due to the applied load W are ’

Mzz*"W(L—x), %:‘zg

Then Eq. (13.14) reduces to
Eu _ W=,
&2 " EQLL - 1) ®

Integrating with respect to x

de _ WL X
de - BLL TS (L" g C‘)

When x =0, (du/dx) =0 so that C; = 0 and

ég = Wz] vk xz
&~ E@L -\ ‘5) (i)
Integrating Eq. (ii) with respect to x
oW, hP @
LT (7 o CZ)
When x=0, # =0 so that C, = 0. Therefore
WI,
L (3L — x%) (i)

T GBI, -2
At the free end of the cantilever where x = [

WL, °

3E(L,L, - I2) (iv)

Ufe

FIGURE 13.20

Deflection of a cantilever of unsymmetrical cross
section carrying a concentrated load at its free end
(Ex. 13.16).
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The deflected shape of the beam in the xy plane is found in an identical manner from
Eq. (13.15) and is
W,

s 2_ 3
_—_—6E(Iz]y _%)(31-36 %) )

V=

from which the deflection at the free end is
77 13
WI,L i

The absolute deflection, 8, at the free end is given by
1 .o
bt = (1. +vf25)i (vii)

and its direction is at tan~ ' (#g/vg) to the vertical. . ‘
Note that if either Gz or Gy is an axis of symmetry [, = 0 and Egs. (iv) and (vi) reduce to
3

upe =0 V= — 3 L (compare with Eq. (v) of Ex. 13.1)

-—
EXAMPLE 13.17

Determine the deflection of the free end of the cantilever beam shown in Fig. 13.21. The second moments

cross section about a horizontal and vertical system of centroidal axes are L, /, and I,

f area of its
* h 3.16 except that the bending moments /M,

The method of solution is identical to that in Ex. 1
and M, are given by
M,= —w(l—x)*/2 M,=0

The values of the components of the deflection at the free end of the cantilever are

wl, L* wl,[*
Uee = = U T T o 2
BEL — 12) 8B ~ 1)

Again, if either Gz or Gy is an axis of symmetry, I, =0 and these expressions reduce to

e =0, vVE=— -é“—"g% (compare with Eq. (v) of Ex. 13.2)

FIGURE 13.21
Deflection of a cantilever of unsymmetrical cross
section carrying a uniformly distributed load

(Ex. 13.17).

 —
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T
EXAMPLE 13.18 e

Determine the VCI't.iCQJ and horizontal components of the displacement midway between the
B and-C of the. thin-walled beam shown in Fig. 13.22(a). Young’s modulus for the materi
beam is £ and its cross section is shown in Fig. 13.22(b).

The centroid of the .bcam section coincides with the centre of the web 34. The second m
of area are calculated using the methods described in Section 9.6 and are: ’

Suppol.ts
al of the '

Oments

L, =3250, I,=1674%, L =175

Since only a vertical load is applied there will onl rti i
Bl e i i A %p will only be vertical support reactions at B and al

Rc X2L+ WL=0
so that
Re = —W/2 (ie downwards)
Taking the origin for x at C the bending moments at any section between B and C are given by
M, =Rcx = — Wx/2, M, =0
Substituting these values in Eq. (13.14)

du _ (= Wx/2),

dor? E (L1, — Izyz)

Integrating with respect to x

du WL, (x2
& 2B(QLL-1,H\2 1)
and
AL gy T 4
a
y
T
a2 | Ll
#. o H
Z«T_ {6_" & 2a
a2 |
¥ 4 a 5
g > FIGURE 13.22
(b) Beam of Ex. 13.18

13.5 Deflection due to shear

When x=0, #= 0 so that C; =0. Also, when x = 2L, = 0 so that, from Eq. (i)

3
6
whiCh gives
€ =~21/5
Eq. (i) may then be written
WL, 3 n
= ) — 47%
u DEL, - [Zyz) (x x) (ii)
At the mid-point of BC, x = L so that
u (mid-point of BC) = — WAEE(LJ]@,— ]zyz)
Substituting the values of Z, etc gives
.186 WI3
u (mid-point of BC) = — Q%E;W (ie to the right)
Similarly
0.177 WI?
, A 2 A
v (mid-point of BC) ST (ie upwards)

Note that in this particular example the vertical displacement of the mid-point of BC may be
obtained directly by replacing Z,, in Eq. (ii) by Z, and making allowance for the change in sign of
the term involving M, in Eq. (13.15).

—

13.5 Deflection due to shear
So far in this chapter we have been concerned with deflections produced by the bending action of shear
loads. These shear loads however, as we saw in Chapter 10, induce shear stress distributions throughout
beam sections which in turn produce shear strains and therefore shear deflections. Generally, shear
deflections are small compared with bending deflections, but in some cases of deep beams they can be
comparable. In the following we shall use strain energy to derive an expression for the deflection due to
shear in a beam having a cross section which is at least singly symmetrical.

In Chapter 10 we showed that the strain energy U of a piece of material subjected to a uniform
shear stress 7 is given by

2
-
= — Xvol Eq. (10.20
U 56 volume (Eg. (10.20))

However, we also showed in Chapter 10 that shear stress distributions are not uniform throughout

beam sections. We therefore write Eq. (10.20) as

2
U= g % (EA\ X volume (13.16)

AN
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in which S is the applied shear force, 4 is the cross-sectional area of the beam section and B is a con.
stant which depends upon the distribution of shear stress through the beam section; 3 is known as the
form factor.

To determine [ we consider an element 4, 8y in an elemental length 8x of a beam subjected t 3
rertical shear load §, (Fig. 13.22); we shall suppose that the beam section has a vertical axis of symme_
xy. The shear stress 7 is constant across the width, 4y, of the element (see Section 10.2). The Straip
:nergy, 8U, of the element 4, 8y &x, from Eq. (10.20) is

2

..
6U = 56 X by by bx (13_17)
Therefore the total strain energy U in the elemental length of beam is given by
_x o,
= EL T by dy (13.18)
Alternatively U for the elemental length of beam is obtained using Eq. (13.16); thus
B (Y
=2 x(2) x
U °C y Abx (13.19)

Equating Eqs (13.19) and (13.18) we have
6] g}l 2 bx Jyz %
L = b4 A
Abx e I by dy

hence

AP,
e §J by dy (13.20)
) n

The shear stress distribution in a beam having a singly or doubly symmetrical cross section and sub-
cted to a vertical shear force, S,» is given by Eq. (10.4), i.c.
$,A'y
bOIz

Substituting this expression for 7 in Eq. (13.20) we obtain
A 2 (S,A7\
B= _J (7_) by dy
Sf b\ bol;

_ Ay
= 2 LI bo 4

1ich gives

(13.21)

Suppose now that §v; is the deflection due to shear in the elemental length of beam of Fig. 13.23.
1e work done by the shear force S, (assuming it to be constant over the length 8x and gradually

plied) is then

1
; S}, 61)8
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G Y1

FIGURE 13.23
Determination of form factor 8.

which is equal to the strain energy stored. Hence

2
1 B S
25},6@5 Ye (A)

v, = —g (%) bx

The total deflection due to shear in a beam of length L subjected to a vertical shear force S, is then

_ B ﬁ) (13.22)
u=g ()

which gives

: « angular cross section of breadth B and depth D and Wﬁ@;;
ertical concentrated load, W; at its free end. Determine the deflection of the free end, including d
o?ggbm&iﬂg and shear. The flexural rigidity of the cantilever is £7and its shear modulus G.

 Using Eq. (13.21) we obrain the form factor 3 for the cross section of the beam directly. Thus

'8 2L AP N14D )}2 ST
' 1B[==y)=(=+y]|dy (seeEx. 10.1)
) '~n;23{5(2 J’) 2(2 bl
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which gives
06

5

Note that the dimensions of the cross section do not feature in the expression for 3. The form
factor for any rectangular cross section is therefore 6/5 or 1.2.
Let us suppose that v; is the vertical deflection of the free end of the cantilever due to shear

Hence, from Eq. (13.22) we have
6 [“(-W
wreed ( 2D )d"

— Gm .
SGBD @
The vertical deflection due to bending of the free end of a cantilever carrying a concentrated load

has previously been determined in Ex. 13.1 and is — WZ>/3EL The total deflection, v, produced by
bending and shear is then

so that

__wr  ewL
YIS TS T SGED (i)
Rewriting Eq. (ii) we obtain
R P
Ry Sk ) (i)

For many materials (3E/10 G) is approximately unity so that the contribution of shear to the
total deflection is (D/L)* of the bending deflection. Clearly this term only becomes significant for
short, deep beams.

- g

13.6 Statically indeterminate beams

The beams we have considered so far have been supported in such a way that the support reactions
could be determined using the equations of statical equilibrium; such beams are therefore statically
determinate. However, many practical cases arise in which additional supports are provided so that there
are a greater number of unknowns than the possible number of independent equations of equilibrium;
the support systems of such beams are therefore statically indeterminate. Simple examples are shown in
Fig. 13.24 where, in Fig. 13.24(a), the cantilever does not, theoretically, require the additional support
at its free end and in Fig. 13.24(b) any one of the three supports is again, theoretically, redundant. A
beam such as that shown in Fig. 13.24(b) is known as a continuous beam since it has more than one

span and is continuous over one or more supports.

We shall now use the results of the previous work in this chapter to investigate methods of solving
statically indeterminate beam systems. Having determined the reactions, diagrams of shear force and

bending moment follow in the normal manner.

The examples given below are relatively simple cases of statically indeterminate beams. We shall

13.6 Statically indeterminate beams 373
/R /o
i L ]
, - Dy B B

(a) (b)

FIGURE 13.24

Examples of statically indeterminate beams.

Method of superposition

In Section

beams. We shall illustrate the method by examples.

3.7 we discussed the principle of superposition and saw that the combined effect of 2 num-
ber of forces on a structural system may be found by the addition of their separate effects. The principle
e . . . . . . . .
ay be applied to the determination of support reactions in relatively simple statically indeterminate
m

-
EXAMPLE 13.20 .
The cantilever AB shown in Fig. 13.25(a) carries a uniformly discribut’efi load and is provided with
an additional support at its free end. Determine the reaction at d’}e a:ddxtmnal support.

Suppose that the reaction at the support B is Rg. Using the pr.mcxple of superposition we o4 rep-
resent the combined effect of the distributed load and the reaction Rp as th‘c sum of t}.xc two loafis
acting separately as shown in Fig. 13.25(b) and (c). Also, since the veftlcgll deﬂecuon of B [l)n
Fig. 13.25(a) s zero, it follows thac the vertical downward de.flcct{on of B in Fig. 13.25(b) !Tlust e
numerically equal to the vertically upward deflection of B in Fig. 13.25(c). Therefore using the
results of Exs (13.1) and (13.2) we have

RBLa’ L WL4
3EI| |8EI

A w B i = e B

/RXEXEEEERE AYYVYYVYVYY

’ y % ; 1

3 ,
A

7

B B
1 : >
Ra =: i % Rg el L 1
(a) (b)
An B
/ /
7
El
- : >| Rg FIGURE 13.25
Propped cantilever of Ex.
() 13.20.
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whence

RB =E. —Z—wl,

I‘t is now ;.Jossible-to determine the reactions Ry and M, at the built-in end using the equati
of simple statics. Taking moments about A for the beam in Fig. 13.25(a) we have 3

wl? wl’ 3
My=—  Rpl=—  — T
5 B 2 ng 8wL

Resolving vertically
RAme—RﬁwL-—ng;: ng

In the solution of Ex. 13.20 we selected Ry as the redundancy; in fact, any on
support reactions, Ma, Rs or Rg, could have been chosen. Let usg'suppose that);l/[A ?s otiktehxf ttil r[:e
the redundant reaction. We now represent the combined loading of Fig. 13.25(a) as the sum ;‘
the separate loading systems shown in Fig. 13.26(a) and (b) and work in terms of the rotati 3
of the bteam at A due to the distributed load and the applied moment, M. Cleérly, since therox?s
nodmgatmn at the built‘—in end of a cantilever, the rotations produced separately in Fig. 13.25(:5
::ay (b g s:;:;l::n b:hggmertcally equal but opposite in direction. Using the method of Section 13.1 it

Oa(due to w) = —zgé?’_ (clockwise)
o 24ET ’
ML
Ox(due to My) = ﬁ,}— (anticlockwise)
Since
[0a(Mn)| = |6a(w)]
we have
wl?
M, =22
Gy
as before.
A et
YYYVPIviveye A B
A - ] .
EI/ 1 i L Ma N\ *
Ry le i b ? El
M L i Rap [« L >R Figure 13.26
n Alternative solution of Ex.
(b) 13.21.

=

13.6 Statically indeterminate beams 375

j

FIGURE 1327

o o LN
(a) (b)

practical examples of fixed beams.

7 i

( A YV B )
My K’ Ve
FIGURE 13.28
Ra Fs Support reactions in a fixed beam.

Built-in or fixed-end beams

In practice single-span beams may not be free to rotate about their supports but are connected to them
in 2 manner that prevents rotation. Thus a reinforced concrete beam may be cast integrally with its sup-

ports as shown in Fig. 13.27(a) or a steel

beam may be bolted at its ends to steel columns (Fig. 13.27

(b)). Clearly neither of the beams of Fig. 13.27(a) or (b) can be regarded as simply supported.
Consider the fixed beam of Fig. 13.28. Any system of vertical loads induces reactions of force and

moment, the latter arising from the constraint against rotation provided by the supports. There are

then four unknown reactions and only two possible equations of statical equilibrium; the beam is there-

fore statically indeterminate and has two
values of slope and deflection at particular

redundancies. A solution is obtained by considering known

beam sections.

o
EXAMPLE 13.21

Figure 13.29(a) shows a fixed beam carrying a central concentrated load, W. Determine the value of

the fixed-end moments, My and Mg,

Since the ends A and B of the beam are prevented from rotating, moments M, and My are
induced in the supports; these are termed fixed-end moments. From symmetry we sec that

My = My and Ry = Rg = WI2.

The beam AB in Fig. 13.29(a) may be regarded as a simply supported beam carrying a central con-
centrated load with moments M and Mg applied at the supports. The bending moment diagrams cor-
responding to these two loading cases are shown in Fig. 13.29(b) and (c) and are known as the free

bending moment diagram and the fixed-end moment diagram, respectively. Clearly the concentrated load
produces sagging (positive) bending moments, while the fixed-end moments induce hogging (negative)
bending moments. The resultant or final bending moment diagram is constructed by superimposing the
free and fixed-end moment diagrams as shown in Fig. 13.29(d).
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A B
Free bending moment diagram
+ve wL r
4
(b)
My Mg
—ve Fixed-end moment diagram
A
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My Mg
~ Ve in Resultmt bending moment
A +ve B dicigpoll

(d)
FIGURE 13.29
Bending moment diagram for a fixed beam (Ex. 13.21).
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8[\ e
e —ve

+ve

wL
8

T

FIGURE 13.30

|, memes
< it > omplete bending moment diagram for
L Li2 a7 fixed beam of Ex. 13.21.

The moment-area method is now used to determine the fixed-end moments, M, and My. From
Eg. (13.7) the change in slope between any two sections of a beam is equal to the area of the M/EI
d{agram between those sections. Therefore, the net area of the bending moment diagram of
Fig. 13.29(d) must be zero since the change of slope between the ends of the beam is zero. It follows

that the area of the free bending moment diagram is numerically equal to the area of the fixed-end
moment diagram; thus

1 WL
NEiar o
Mgt
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which gives
WL
My =My = —
8
and the resultant bending moment diagram has principal values as shown in Fig. 13.30. Note that

aximum positive bending moment is equal in magpitude to the maximum negative bending
that points of contraflexure (i.e. where the bending moment changes sign) occur at the

the m

moment and

arter-span points. |
quaHavmg determined the support reactions, the deflected shape of the beam may be found by any

of the methods described in the previous part of this chapter.

pm——

EXAMPLE 13.22 A

Determine the fixed-end moments and the fixed-end reactions for the beam shown.m Fig. 13.31(a).
The resultant bending moment diagram is shown in Fig. 13.31(b) where the line AB represents

the datum from which values of bending moment are measured. Again the net area of the re.sultant

bending moment diagram is zero since the change in slope between the ends of the beam is zero.

Hence
1 1 Wab
SO ML
2(MA M) i
which gives
2 .
My + Mg = Wab @)

7k

We require a further equation to solve for M and Ms. This we obtain using Eq. 13.10 and tak-
ing the origin for x at A; hence we have

dv dv I B M s
—) —xa|—) —@p—wva)=| Sxdx (i)
% (dx)g # (dx)A ST e
W
2/\ c l B
Ma El | G 8
R i b A RB
Ak a A
‘ L
(a)
M o D e
L Ve A_m
; Wab
& s B L FIGURE 13.31
R s Fixed beam of Ex.
(b) 1322
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13.6 Statically indeterminate beams

In Eq. (i) (dv/dx)g = (dv/dx)s = 0 and vg = vz = 0 so that

A w Bi,
g </+++++++++ )
0= | —xdx :
J WEI" (iii) Ma \\EI 7 My
nd the moment of the area of the M/EI diagram between A and B about A is zero. Since £/ is Constap, T —T
o the beam, we need only consider the bending moment diagram. Therefore from Fig. 13.31(b) ki ‘: t ’ i

L L2 1 Wab2a 1 Wab 1 (a)
ML= + (Mg — My)==L= —g——— + —p 22 -
AL (M A)23L +2é7 : (a+3b)

°E 3 e
Simplifying, we obtain “ Ne ‘“’Ve)/] & ‘
e W | ' e o v ®
VA 2MB = °L—2“(2£Z e é?) (lv) (b) :
Solving Eqs (i) and (iv) simultaneously we obtain FIGURE 13.32
= o [ s Fixed beam carrying a uniformly distributed load (Ex. 13.23).
AT Tor MET g ) so that
. . y 2
We can now use statics to obtain Ry and Rp; hence, taking moments about B ST %
RoL — My + Mg — Whb=0 From statics
Substituting for M, and My from Eq. (v) we have wL
Ry=Rp= —
_ Wat* Wb ¢
Bal=comrm kW -
hence
b [
Figs _?_2 Ga+b) EXAMPLE 13.24
s The fixed beam of Fig. 13.33 carries a uniformly distributed load over part of its span. Determine
imilarly the values of the fixed-end moments.

Consider a small element &x of the distributed load. We can use the results of Ex. 13.22 to write
down the fixed-end moments produced by this elemental load since it may be regarded, in the limit
as 6x— 0, as a concentrated load. Therefore from Eq. (v) of Ex. 13.22 we have

x(L—x)*
LZ

Z 1M B IR 17
¥ ————-—-—»m——-—«)il(—g;{ El ‘

X
RAl‘: > TRB FIGURE 13.33

b Fixed beam with part
span uniformly distributed
load (Ex. 13.24).

W2
e “zs—(ﬂ + 3b)

5MA = w bx

(AMPLE 13.23

1 ﬁx.ed beam shown in Fig. 13.32(a) carries a uniformly distributed load of intensity w.

stermine the support reactions.

From symmetry, My =Mz and Ry = Ry. Again the net area of the bending moment diagram

ust be zero since the change of slope between the ends of the beam is zero (Eq. (13.7)). Hence
2wl?

MyL=2%"
st

Iy
Y
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The total moment at A, M, due to all such elemental loads is then
S w
An=al 73¥(L—x)" dx
which gives

e,
My= = {3—(52 ~ ) SHP - )+ L -,a*)]

wh (L b
TRt (3 4)

If the load covers the complete span, 2 =0, b= [ and Eqs (i) and (ii) reduce to

2

, ! wl 3
My = Mg = ‘“'1—5* (as in Ex. 13.21.)

Similarly

.
Fixed beam with a sinking support

II.I most practical situations the ends of a fixed beam would not remain perfectly aligned indefinitel

Since the enclis of such a beam are prevented from rotating, a deflection of one end offihe be 3 mllte' ]
to the ther 1.nduces fixed-end moments as shown in Fig. 13.34(a). These are in the same - re:lmve
the. relative dlsPlacement shown produce a total anticlockwise moment equal to My + M, (S)filnsti a?) .
This moment is equilibrated by a clockwise couple formed by the force reactionsAat theBsu oet C;I}I:.
'resultant .bendmg moment diagram is shown in Fig. 13.34(b) and, as in previous examples plf:)s ;St )
Is zero since there is no change of slope between the ends of the beam and EJ F ; o
Eq. (13.7)). This condition is satisfied by My = M. * consens (68

Let us now assume an origin for x at A; Eq. (13.10) becomes

@ i dv B M
NERE R

in which (dv/dx), = (dv/dx)g =0, vs = 0 and vp = —8. Hence Eq. (i) reduces to

L
M
6 = —_—
J, 7=
Using the semi-graphical approach and taking moments of areas about A we have

5o 1LMAL  1LMy5,
22EI6 22EI6

which gives

_ GEIS .
=7 (hogging)

A

It follows that

GETS
My = —5~ (sagging)
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A
N ve 1
= Yy
A El /
7
l (Ma + Mg)
L
L |
—ve
+ve
FIGURE 13.34
Mg Fixed beam with a
(b) sinking support.

The effect of building in the ends of a beam is to increase both its strength and its stiffness. For
example, the maximum bending moment in a simply supported beam carrying a central concentrated
load Wis WL/4 but it is WL/8 if the ends are built-in. A comparison of the maximum deflections
shows a respective reduction from WI3/48ET to WI3/192EL Tt would therefore appear desirable for all
beams to have their ends built-in if possible. However, in practice this is rarely done since, as we have
seen, settlement of one of the supports induces additional bending moments in a beam. It is also clear
that such moments can be induced during erection unless the supports are perfectly aligned.
Furthermore, temperature changes can induce large stresses while live loads, which produce vibrations
and fluctuating bending moments, can have adverse effects on the fixity of the supports.

One method of eliminating these difficulties is to employ a double cantilever construction. We have
seen that points of contraflexure (i.e. zero bending moment) occur at sections along a fixed beam. Thus if
hinges were positioned at these points the bending moment diagram and deflection curve would be
unchanged but settlement of a support or temperature changes would have little or no effect on the beam.

PROBLEMS

P.13.1 The beam shown in Fig. P.13.1 is simply supported symmetrically at two points 2 m from
each end and carries a uniformly distributed load of 5 kN/m together with two concentrated
loads of 2 kN each at its free ends. Calculate the deflection at the mid-span point and at its
free ends using the method of double integration. EI = 43 X 10'2 Nmm?.

Ans. 3.6 mm (downwards), 2.0 mm (upwards).
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2 kN 2kN
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PR P By
B L

2m VI‘ 8m |‘ 2m
FIGURE P.13.1 FIGURE P.13.2

\

on AC, find the value of K which will cause the upward deflection of B to equal the
downward deflection midway between A and C.

Ans. 0.24.

P.13.3 A uniform beam is simply supported over a span of 6 m. It carries a trapezoidally distributed
load with intensity varying from 30 kN/m at the left-hand support to 90 kN/m at the right-
hand support. Find the equation of the deflection curve and hence the deflection at the mid-

span point. The second moment of area of the cross section of the beam is 120 X 10° mm?
and Young’s modulus £ = 206 000 N/mm?.

Ans. 41 mm (downwards).
P.13.4 A cantilever of length Z and having a flexural rigidity £ carries a distributed load that varies

in intensity from w per unit length at the built-in end to zero at the free end. Find the
deflection of the free end.

Ans. wL*/30EI (downwards).

P.13.5 Determine the position and magnitude of the maximum deflection of the simply supported
beam shown in Fig. P.13.5 in terms of its flexural rigidity EIL.

Ans. 38.8/E] m downwards at 2.9 m from left-hand support.

6 kN 4 kN

l I 1 kN/m
L ]
A 7
le—sle
TN 2m 2m

\
A

>le |
I

1T m FIGURE P.13.5

*.13.6 ~ Calculate the position and magnitude (in terms of £J) of the maximum deflection in the
beam shown in Fig. P.13.6.

Ans. 1309.2/EI m downwards at 13.3 m from left-hand support.

%13.7  Determine the equation of the deflection curve of the beam shown in Fig. P.13.7. The
flexural rigidity of the beam is EI.

Problems

200N

100N m C 100N/m
20k N (T io i

o | |p Al o

. A S N

| . ol |
I g ~ "im im . 2m am
|4—_T0 m ' 10m 10m 1m m
FIGURE P.13.6 FIGURE P.13.7
Apns.

12 50 50 4 925, 3 Bl
v L{_ixs_so[x_l]2+E[x—z]‘*—l—z[x 41t = 22 4P +237.5

T E 6

13.8 The beam shown in Fig. P.13.8 has its central portion reinforced so that its flexural rigidity is
- twice that of the outer portions. Use the moment-area method to determine the central

deflection.
Ans. 3WI3/256FT (downwards).

w
A El B lC El
= Jj
/
- e ol >l > FIGURE P.13.8
Tl U s U s Le

P.13.9 A simply supported beam of flexural rigidity ET carries a triangularly distributed load as
shown in Fig. P.13.9. Determine the deflection of the mid-point of the beam.

Ans. w0L4/12OEI (downwards).

wp/unit length
(o]
Y Jg
B

A

e 9 >] FIGURE P.13.9

P.13.10 The simply supported beam shown in Fig. P.13.10 has its outer regions reinforf:ed so that '
their flexural rigidity may be regarded as infinite compared with the central region. Determine

the central deflection.

-



