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Problems 385

p.13.13 The simply supported beam shown in Fig. P.13.13 supports a uniformly distributed load of
10 N/mm in the plane of its horizontal flange. The properties of its cross section referred to

——R_—_d——| r—m horizontal and vertical axes through its centroid are I, = 1.67 X 10° mm*, 1,=0.95 X 10¢
9! /' 9 mm? and I,=—0.74X 10° mm*. Determine the magnitude and direction of the deflection
El at the mid-span section of the beam. Take £ =70 000 N/mm?.
v P
’ | | | Ans. 52.3 mm at 23.9° below horizontal.
e e T FIGURE P.13.10

P.13.11 Calculate the horizontal and vertical components of the deflection at the centre of the simply
supported span AB of the thick Z-section beam shown in Fig. P.13.11. Take
E =200 000 N/mm?,

Ans. w=2.45 mm (to right), v=1.78 mm (upwards).
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| FIGURE P.13.13
| 5mm
15 mm P.13.14 A uniform cantilever of arbitrary cross section and length L has section properties I, I, and Ly

with respect to the centroidal axes shown (Fig. P.13.14). It is loaded in the vertical plane by a
tip load W. The tip of the beam is hinged to a horizontal link which constrains it to move in
the vertical direction only (provided that the actual deflections are small). Assuming that the
link is rigid and that there are no twisting effects, calculate the force in the link and the
deflection of the tip of the beam.

Ans. WILy/I, (compression if I, is positive), WL3/3EL, (downwards).

FIGURE P.13.11

P.13.12 A cantilever beam of length 5 m has the cross section shown in Fig. P.13.12. If the beam
carries a vertically downward uniformly distributed load of intensity 10 kN/m calculate the
magnitude and direction of the deflection of the free end of the beam. Young’s modulus
E=15000 N/mm”.

Ans. 4.6 mm at 24.3° to the right of vertical.

I‘# 1000 mm

¥ I 50 mm

i

FIGURE P.13.14

P.13.15 A thin-walled beam has the cross section shown in Fig. P.13.15 and is simply supported over a
span of 2 m. If the beam carries a horizontal uniformly distributed load of 10 kN/m applied in

AnnA FIGURE P.13.12
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the plane Of 1ts le > both loads beln over r.he COIllplete Span, CalCulatC tlle Illagnltude and
g g
dlICCthll Of th.e defleCtlon of the nlld’span pOlIlt. Iake E i 200000 I‘]/nlnl .

Ans. 24.4 mm at 64.8° 1o the right of vertical.

I -13-16 1& thln‘WaHed beaIIl 1s Sllnply Suppolted at eaCh Cnd alld supp()[ts a uIllf()IﬂlIy dlstl lbule
d 1
oad

of intensi ; .

Calculatsctltt};):/hie; Zl(l)rrllltt aie:ng;h in thei' plane of its lower horizontal flange (see Fig. P.13.16)
Vi o L. - §

Take £= 200 000 N/pes? crtical components of the deflection of the mid-span point,

Ans. u=—-9.1 mm, v=15.2 mm.
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"“W’l FIGURE P.13.16

P.13.17 A uniform beam i
of arbitrary unsymmetri i
e 1 ymmetrical cross section and | is built-i
::ppljriuzggesupp:ﬁted in the vertical direction at a pointa Ifllalff:vrxlfit/ha120Ln . 'bu;k_m - Thi 3
- g ,13 i ver, ows the beam to deflect freely in the horizontal d'g lts' g, Al
g: P.13.17). Determine the vertical reaction at the support v ecton

Ans. 5 W/2.

P.13.18 A cantilever of |
ength 3L has section second
o ! second moments of area /,, 7, and , i
- j::is Lt‘/yh;(z1.1ghﬁthe ce(liltroxd of its cross section. If the caj;ltileve?czerieige: . h(c);;lz -
; 1ts tree end and is pinned i ertical 2
g . pinned to a support wh i
’ :rrtlizcz?tal movement at a distance 2/ from the built—ilfl)ind vc‘:lallcc:lai::e:;ms bOt}'l Yl
reaction at the support. Show also that the horizonta’l 76 e
i reaction is zero.

Pi1210 A L. r1 . -

Problems 387

FIGURE P.13.17

downward load of 200 kN at the free end of the overhang. Calculate the deflection of the beam
midway between the supports allowing for the effects of both bending and shear. Take £'= 200000

N/mm? and G = 70000 N/mm?. What percentage of the total deflection is due to shear?

Ans. 1.03 mm upwards, 8.7%.

P.13.20 Calculate the deflection due to shear at the mid-span point of a simply supported rectangular
section beam of length L which carries a vertically downward load W at mid-span. The beam

has a cross section of breadth B and depth D; the shear modulus is G.

Ans. 3WL/10GBD (downwards).

P.13.21 Determine the deflection due to shear at the free end of a cantilever of length L and
rectangular cross section B X D which supports a uniformly distributed load of intensity w.
The shear modulus is G.
Ans. 3wl*/5GBD (downwards).

P.13.22 A cantilever of length L has a solid circular cross section of diameter D and carries a vertically
downward load W at its free end. The modulus of rigidity of the cantilever is G. Calculate the
shear stress distribution across a section of the cantilever and hence determine the deflection

due to shear at its free end.
Ans. 7= 16\V(1—4y2/D2)/37rD2, 40WL/97GD? (downwards).

P.13.23 Show that the deflection due to shear in a rectangular section beam supporting a vertical shear
load S, is 20% greater for a shear stress distribution given by the expression
S,A'y
bﬂlz

than for a distribution assumed to be uniform.
A rectangular section cantilever beam 200 mm wide by 400 mm deep and 2 m long

carries a vertically downward load of 500 kN at a distance of 1 m from its free end. Calculate
the deflection at the free end taking into account both shear and bending effects.

Take E =200 000 N/mm? and G =70 000 N/mm”.
Ans. 2.06 mm (downwards).
P.13.24 Determine the form factor B for the beam section shown in Fig. P.13.24.
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FIGURE P.13.24 FIGURE P.13.26

P.13.25 A cantilever beam of length Z has a solid circular cross section of diameter D and carries 2
vertically downward load W at its free end. Calculate the distribution of shear stress in a crogs
section of the beam and hence the form factor B. What is the deflection due to shear at the
free end of the cantilever? The shear modulus is G and note that
f_w/;/z cos® 6 df = 57/16

Ans. 3=10/9, 40WL/9wGD?.

P.13.26 The beam shown in Fig. P.13.26 is simply supported at each end and is provided with an
additional support at mid-span. If the beam carries a uniformly distributed load of intensity w
and has a flexural rigidity £/, use the principle of superposition to determine the reactions in
the supports.
Ans. 5wl/4 (central support), 3wl/8 (outside supports).

P.13.27 A built-in beam ACB of span Z carries a concentrated load W at C a distance # from A and b
from B. If the flexural rigidity of the beam is EJ, use the principle of superposition to
determine the support reactions.

Ans. Ry = W (L + 2a)/1°, Ry = WAL + 20)/11%, My = Wab?II2, My = Wb/ 12

P.13.28 A beam has a second moment of area / for the central half of its span and 7/2 for the outer
quarters. If the beam carties a central concentrated load W, find the deflection at mid-

the beam is simply supported and also the fixed-en
are built-in.

Ans. 3WI/128EI, 5WIL/48.

span if
d moments when both ends of the beam

P.13.29 A cantilever beam projects 1.5 m from its support and carries a uniformly distributed load of
16 kN/m over its whole length together with a load of 30 kN at 0.75 m from the support.
The outer end rests on a prop which compresses 0.12 mm for every kN of compressive load.
If the value of E7 for the beam is 2000 kNm?, determine the reaction in the prop.
Ans. 23.4 kN,
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14.1 Representation of stress at a point

er.
We h en that, generally, stress distributions in strElctural n.lembers vary tfhroug}z;n:; r;lelse arlr:)cnrgbthe
i th d" tress in a cantilever beam carrying a point load at its free en . the
g 11‘eCtdsthrou hout its depth. Suppose that we are interested in the stz.lte o strless 2
len'gth O_f th'e beljm arriical lari: of symmetry and on the upper surfacc.: of the beam mld—vgay C:l :lrlllited
point lying " e Vess at tll)ﬂs point on planes perpendicular to the axis of .the beam can Zl cajculated
- ’}ghe (31;§Ct;;§: stress may be imagined to be acting on two opposite sides of a very sm:
umSIelel% A%'CD' in the surface of the beam at the point (Fig. 14.1).

Element in the vertical plane of symmetry
on the upper surface of the beam

Point load

g

(@) (b)

FIGURE 14.1
Representation of stress at a point in a structural member.
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. Since tl'le clement is thin we can ignore any variation in direct stress across its thickn i
since Fhe ‘51des of the element are extremely small we can assume that o h . }llts S
opposite side BC and AD of the element and that ¢ is constant along these s?csi t ?' salllxl'c Valu_e
0 is constant across the width of the beam but the argument would apply if it etE o), e o
fore representing th‘e stress at a point in a structural member by a strfslz}s’ ste e e
in the plane of a thin, very small element; such an element is known as a }tlw n:i'acnng' o e
the stress system is a plane stress system as we saw in Section 7.11 ereimensional e
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14.2 Determination of stresses on inclined planes
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which simplifies to

0y =0, cos® § (14.1)
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FIGURE 14.2
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14.2 Determination of stresses on inclined planes 391

Resolving forces parallel to PQ
7PQ =0,QRsin 0

from Wthh
T =0, cos Osin 0

of
T= %sin 20 (14.2)

We see from Egs (14.1) and (14.2) that although the applied load induces direct stresses only on
rpendicular to the axis of the beam, both direct and shear stresses exist on planes inclined to
f the beam. Furthermore it can be seen from Eq. (14.2) that the shear stress 7 is a maximum
This explains the mode of failure of ductile materials subjected to simple tension and
other materials such as timber under compression. For example, a flat aluminium alloy test piece fails
in simple tension along a line at approximately 45° to the axis of loading as illustrated in Fig. 14.3.
This suggests that the crystal structure of the metal is relatively weak in shear and that failure takes the
form of sliding of one crystal plane over another as opposed to the tearing apart of two crystal planes.
The failure is therefore a shear failure although the test piece is in simple tension.

planes pe
the axis 0
When 0= 450.

Biaxial stress system

A more complex stress system may be produced by a loading system such as that shown in Fig. 14.4
where a thin-walled hollow cylinder is subjected to an internal pressure, p. The internal pressure induces
circumferential or hoop stresses 0,, given by Eq. (7.63), on planes parallel to the axis of the cylinder
and, in addition, longitudinal stresses, o, on planes perpendicular to the axis of the cylinder
(Eq. (7.62)). Thus any two-dimensional element of unit thickness in the wall of the cylinder and having
sides perpendicular and parallel to the axis of the cylinder supports a biaxial stress system as shown in
Fig. 14.4. In this particular case o and 0, each have constant values irrespective of the position of the

element.
Let us consider the equilibrium of a triangular portion ABC of the element as shown in Fig. 14.5.

Resolving forces in a direction perpendicular to AB we have

0.AB = 0,BC cos  + 0,AC sin 0

Shear failure

FIGURE 14.3

PR
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Internal pressure, p

FIGURE 14.4
Generation of a biaxial stress system.

gy
B B
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/6 0
0 yt—mr —0, >0,
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Uy Uy
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FIGURE 14.5
Determination of stresses on an inclined plane in a biaxial stress system.

or
__BC AC .
On = 0y g 008 0+ Iy 5 S0 0
which gives
O = 0y cos?0 + gy sin’6
Resolving forces parallel to AB
7 AB = 0,BC sin § — 0,AC cos 0
or
= BE 0—o Ac 0
T = 0Oxygsin 7 4B
which gives
Tx =0y . p
= 14.4)
T ( 3 )sm 20 (

Again we see that although the applied loads produce only direct stresses on planes perpendicular
and parallel to the axis of the cylinder, both direct and shear stresses exist on inclined planes
Furthermore, for given values of 0, and 0, (i.e. p) the shear stress 7 is 2 maximum on planes inclined
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Considering the equilibrium of the triangular element ABC in Fig. 14.7(b) and resolving forces in a

Resolving parallel to AB
esolving parallel to perpendicular to AB

direction

7 AB = 57.4 BC cos 60° — 75 AC sin 60°
i 0, AB =0, BC cos 0+ 0, ACsin 0 + 7, BCsin 6 — 7., AC cos 9

or

:viding through by AB and simplifyi btai
= 574 sin 60° c08 60° — 75 cos 60° sin 60° Dividing through by and simplifying we obtain
Ganiwhich 0 =0y cos® 0+ oy sin? 6 — Tyy sin 260 (14.5)

7= —7.6 N/mm* Now resolving forces parallel to BA
] T'h'e negative sign of 7 indicates that 7 acts in the direction AB and not, as was assumed, in the
direction BA. From Eq. (14.4) it can be scen that the maximum shear stress occurs on plane
inclined at 45° to the axis of the cylinder and is given by 3
57475 3
Tmax = ""“‘5“"‘2 = —8.8 N/mm2
Again the negative sign of T, indicates that the direction of 7,y is opposite to that assumed.

—

7 AB = 0, BCsin § — 0, AC cos 0 + 7, BC cos § — 7., ACsin §
Again dividing through by AB and simplifying we have

T= w—x;Ly)sin 26 + T,y cos 20 (14.6)

| e

EXAMPLE 14.2
A cantilever of solid, circular cross section supports a compressive load of 50 000 N applied o its
free end ar a point 1.5 mm below a horizontal diameter in the vertical plane of symmetry together
with a torque of 1200 Nm (Fig. 14.8).

Calculate the direct and shear stresses on a plane inclined at 60° to the axis of the cantilever at a
point on the lower edge of the vertical plane of symmetry.

The direct loading system is equivalent to an axial load of 50 000 N together with a bending
moment of 50 000 X 1.5=75 000 N mm in a vertical plane. Thus at any point on the lower edge

General two-dimensional case

I.f we now apply a torque to the cylinder of Fig. 14.4 in a clockwise sense when viewed from th
right-hand end, shear and complementary shear stresses are induced on the sides of the rectan ulae
element in addition to the direct stresses already present. The value of these shear stresses is give;:
by Eq. ( 11.21) since the cylinder is thin-walled. We now have a general two-dimensional stressg sys-
tem acting on the element as shown in Fig. 14.7(a). The suffixes employed in designating shzar
stress refer to the plane on which the stress acts and its direction. Thus 7,, is a shear stress acting

on a_n x plane in the y direction. Conversely T, acts on a y plane in the x c’iyirection. However, since g the verucal P lme vR e there, o dire’c’; comp i str@s& e ?O axxal e @d .bending
Txy = Tyx We label both shear and complementary shear stresses 7 w as in Fig. 14.7(b). moment)whz:l’(l ac; ?Il'l hcp lz?cs perpendicular to the axis of the beam and are given, respectively, by
Egs (7.1) and (9.9). Theretore
50 000
o (axial load) = ————— =17.7 N/mm’
. o oad) X 60/ /mm
y
o.(bending moment) = Zég?—gri =3.5 N/mm?
— 1y B m X 60° /64
B T On
(] 4 f) :
T S
Oy é—$— %‘ Oy Y >0y
T
YA c g g iame
A 60 mm diameter
Ty — o~ :
Xy
oy, Yo,
200N m
(a) (b)
FIGURE 14.7 FIGURE 14.8
50 000N Cantilever beam of Ex. 14.2.

NAamaval boean Ot
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14.3 Principal stresses 397

cem at that point. Clearly for given values of 0,, 0, and 7., in other words a given loading system,
¢h 0, and T vary with the angle 6 and will attain maximum or minimum values when do,/df = 0
and dr/df = 0. From Eq. (14.5)

do,
do

= —20, cos 0 sin 0 + 20, sin 0 cos § — 27, cos 20 =0

—(0x — g,) sin 26 — 27, cos 20 =0

27y,

tan 20 = — (14.7)

ox =0y

Two solutions, —0 and —6 —n/2, satisfy Eq. (14.7) so that there are two mutually perpendicular
lanes on which the direct stress is either a maximum or a minimum. Furthermore, by comparison of
Eqs (14.7) and (14.6) it can be seen that these planes correspond to those on which 7= 0.

The direct stresses on these planes are called principal stresses and the planes are called principal

é?lane:.
From Eq. (14.7)

2 Oy — 0O
sin 20 = — ik cos 20 = : 2}'
(0.—0) + 472 \/(0x—0)) +472
2
sin 2 (0 + %) = T

(o—a; + 4rs

l G o'y)

\J(@—a,) + 472,

on= %(1 + cos 26) + %(1 — cos 20) — T, sin 20

cos 2(0 + Zz-r) =

Rewriting Eq. (14.5) as

and substituting for {sin 20, cos 26} and {sin 2(8 + 7/2), cos 2(f + 7/2)} in turn gives

x y /

. g +’ g 1 ( )2 472 (148)
Oy +o 1 7

o = Y (0- ~_0'y)2 + 47—2 (149)

Where o7y is the maximum or major principal stress and oy is the minimum or minor principal stress; oy
is algebraically the greatest direct stress at the point while oy is algebraically the least. Note that
when o1 is compressive, i.e. negative, it is possible for oy to be numerically greater than o7

14.3 Principal stresses

Equations (14.5) and (14.6) give the direct and shear stresses on an inclined plane at a point in a str

c 1 101

o (SR, (R i TR |
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From Eq. (14.6)

d—T = (0, — 0,) cos 20 — 27,,sin 20 =10
do J 2
giving
(ox—0 )
tan 20 = ——2- (14.1
2Ty 0)
It follows that
sin 20= (o — U}')
(ox—0,)* + 42,
cos 20 = 2Ty
v/ (oy— 0},)2 +dn g
sin 2 9+E =— (0 — %)
3 (0=, + 42,
2
cs2| 0+ 7] = - Ty
% \J(0e—a)) +4r2,
Substituting these values in Eq. (14.6) gives
1
T max,min — ii‘ (Ux_o'y)z G2 47',%}, (1411)

Here, as in the case of the principal stresses, we take the maximum value as being the greater value
algebraically.
Comparing Eq. (14.11) with Egs (14.8) and (14.9) we see that

Tomax = ? (14.12)

Equations (14.11) and (14.12) give alternative expressions for the maximum shear stress acting at
the point in the plane of the given stresses. This is not necessarily the maximum shear stress in a three-
dimensional element subjected to a two-dimensional stress system, as we shall see in Section 14.10.

Since Eq. (14.10) is the negative reciprocal of Eq. (14.7), the angles given by these two equations differ
by 90° so that the planes of maximum shear stress are inclined at 45° to the principal planes.

We see now that the direct stresses, 0, 0,, and shear stresses, T, are not, in a general case, the
greatest values of direct and shear stress at the point. This fact is clearly important in designing struc-
tural members subjected to complex loading systems, as we shall see in Section 14.10. We can illus-
trate the stresses acting on the various planes at the point by considering a series of elements at the
point as shown in Fig. 14.10. Note that generally there will be a direct stress on the planes on which
Tisax BCLS.

[ gy
EXAMPLE 14.3

14.3 Principal stresses 399

Principal planes

FIGURE 14.10

_ SR |

Stresses acting on different planes
oy at a point in a structural member.

A structural member supports loads which produce, at a particular point, a direct tensile stress of
80 N/mm” and a shear stress of 45 N/mm?” on the same plane. Calculate the values and directions
of the principal stresses at the point and also the maximum shear stress, stating on which planes this
will act.

Suppose that the tensile stress of 80 N/mm? acts m the x direction. Then o, = + 80 N/mm?,
%, = 0 and 7, =45 N/mm?. Substituting these values in Eqs (14.8) and (14.9) in turn gives

/807 + 4 X 457 = 100.2 N/mm®

/80 + 4 X 45? = — 20.2 N/mm?

From Eq. (14.7)
il AR !
' an 23 = _W = 1.125
from which

0= —24°11" (corresponding to o7)
Also, the plane on which oy acts corresponds to 0 = —24°11" — 90° = —114°11".
The maximum shear stress is most easily found from Eq. (14.12) and is by
_100.2—(—20.2)

e .

=60.2 N/mm*

The maximum shear stress acts on planes at 45° to the principal planes. Thus # = —69°11" and

I
B A B00 11 Jha dhd Alimas ol Ranibeaienl s ane cEennn
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14.4 Mohr’s circle of stress

The state of stress at a point in a structural member may be conveniently represented graphically by
Mohr’s circle of stress. We have shown that the direct and shear stresses on an inclined plane are glVen
in terms of known applied stresses, by

o0 =0y cos’ 0 +o0, sin® 6 — 7, sin 26 (Eq. (14.5))
and

= (U"—;Uy)sin 20 + Tyy COS 20 (Eq. (14.6))

respectively. The positive directions of these stresses and the angle 6 are shown in Fig. 14.7. We noy,
write Eq. (14.5) in the form

oq = %(1 + cos 26) + %(1 — cos 20) — T, sin 20
or
o 1 1 i
&y, = E(Ux + o)+ E(Ux — 0,)cos 26 — T sin 20 (14.13)

Now squaring and adding Eqs (14.6) and (14.13) we obtain

~ Lot 2+2—1 - 2+2
|:0'n E(Ux Uy):| T = E(Ux Uy) Ty (14.14)

Equation (14.14) represents the equation of a circle of radius

17 2
"*_-E (0x—0y)" +47%,

and having its centre at the point (Ef—;—?—’, 0).

The circle may be constructed by locating the points Q;(0,, — T,,) and Qy(0,, +7,,) referred to axes
Ooc T as shown in Fig. 14.11. The line Q,Q; is then drawn and intersects the Oc axis at C. From Fig. 14.11
0y =

OC=OP1_CP1=0'X“ 3

TA

QZ(U yr rxy)

gy

FIGURE 14.11

14.4 Mohr's circle of stress 401

SO that

oyt o,
2

5 v o, to 3 "
Thus the point C has coordinates ( — 0) which, as we have seen, is the centre of the circle.

OoC=

Also
Oy — 0,72
Q= y/CR+ QI =/ |72 + 72,
whence
CcQ =lw/( —0,)? + 472
1 2 Ox X xy

which is the radius of the circle; the circle is then drawn as shown.
Now we set CQ’ at an angle 20 (positive clockwise) to CQy; Q' is then the point (¢,,, — 7) as dem-

onstrated below.

From Fig. 14.11 we see that

ON=0C+CN
or, since
OC = (0, *+ 0,)/2, CN=CQ’ cos(8 — 26) and CQ' = CQ,,
we have
Ox — 0y . .
o= + CQ (cos B cos 26 + sin [ sin 26)
But
_CcPy Oy~ 0Oy
CQI = 08 IB and CPl = 5
Hence
Oxt 0oy Ox — 0y .
o, = 3 + ( >cos 20 + CP; tan (3 sin 26

which, on rearranging, becomes
On =0, cos®> 0+ a, sin? 6 — Tyy sin 20

as in Eq. (14.5). Similarly it may be shown that

Q'N = — 7, cos 20 — (sz Uy)sin29= -7
as in Eq. (14.6). It must be remembered that the construction of Fig. 14.11 corresponds to the stress
system of Fig. 14.7(b); any sign reversal must be allowed for. Also the O and OT axes must be con-
structed to the same scale otherwise the circle would not be that represented by Eq (14.14).

The maximum and minimum values of the direct stress o, that is the major and minor principal
stresses o7 and oy, occur when N and Q' coincide with B and A, respectively. Thus
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i.e.
o 1 s
= - % 5 Sy/(0x=0y) + 47, (as in Eq. (14.8)
and
o1 = OC — radius of the circle
so that
e 1 .
o = g 5 % 3 (ax—g},)2 + 47',7;] (as in Eq. (14.9))

The principal planes are then given by 20 = 5(o7) and 20 = 3 + 7 (o).
The maximum and minimum values of the shear stress 7 occur when Q’ coincides with F and D 4
the lower and upper extremities of the circle. At these points 7 min are clearly equal to the radius of

the circle. Hence
1
Tmammin = * 5 [(0c—0,) + 472 (see Eq. (14.11))

The minimum value of shear stress is the algebraic minimum. The planes of maximum and minj-
mum shear stress are given by 20 = 3+ 7/2 and 26 = 8 + 37/2 and are inclined at 45° to the principa]
planes.

[ ——
EXAMPLE 14.4
Direct stresses of 160 N/mm?, tension, and 120 N/mm?, compression, are applied at a particular
point in an elastic material on two mutually perpendicular planes. The maximum principal stress in
the material is limited to 200 N/mm?, tension. Use a graphical method to find the allowable value
of shear stress at the point.

Q
(=120 N/mm?2, 112 Nimm?)

Iy o o

B
>0
04 (=200 N/mm?)

)
(%)
le]

sl R sk b FRR L e o oo

'
e
1
.
1
1
1
'

/Q, (160 Nimm2, —112 N/mm?)

FIGURE 14.12 : ! 9
Mohr's circle of stress for Ex. 14.4. '

[ )
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(@) (b) \

FIGURE 14.13
Stress trajectories in a beam.

First, axes O 7 are set up to a suitable scale. Py and P, are then located corresponding to
0= 160 N/mm” and 0, = — 120 N/mm?, respectively; the centre C of the circle is mid-way between
P, and P, (Fig. 14.12). The radius is obtained by locating B(o; = 200 N/mm?) and the circle then
drawn. The maximum allowable applied shear stress, 7, is then obtained by locaxing Q; or Q,. The
maximum shear stress at the point is equal to the radius of the circle and is 180 N/mm®.

14.5 Stress trajectories

We have shown that direct and shear stresses at a point in a beam produced, say, by bending and shear
and calculated by the methods discussed in Chapters 9 and 10, respectively, are not necessarily the
greatest values of direct and shear stress at the point. In order, therefore, to obtain a more complete pic-
ture of the distribution, magnitude and direction of the stresses in a beam we investigate the manner in
which the principal stresses vary throughout a beam.

Consider the simply supported beam of rectangular section carrying a central concentrated load as
shown in Fig. 14.13(a). Using Eqs (9.9) and (10.4) we can determine the direct and shear stresses at
any point in any section of the beam. Subsequently from Eqs (14.8), (14.9) and (14.7) we can find the
principal stresses at the point and their directions. If this procedure is followed for very many points
throughout the beam, curves, to which the principal stresses are tangential, may be drawn as shown in
Fig. 14.13(b). These curves are known as stress trajectories and form two orthogonal systems; in
Fig. 14.13(b) solid lines represent tensile principal stresses and dotted lines compressive principal stres-
ses. The two sets of curves cross each other at right angles and all curves intersect the neutral axis at
45° where the direct stress (calculated from Eq. (9.9)) is zero. At the top and bottom surfaces of the
beam where the shear stress (calculated from Eq. (10.4)) is zero the trajectories have either horizontal
or vertical tangents.

Another type of curve that may be drawn from a knowledge of the distribution of principal stress is
a stress contour. Such a curve connects points of equal principal stress.

14.6 Determination of strains on inclined planes

In Section 14.2 we investigated the two-dimensional state of stress at a point in a structural member
and determined direct and shear stresses on inclined planes; we shall now determine the accompanying
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"y
T
B
0 Txy
Oy 4——t D Ty
Txy A c
Tyy
v
Oy

(a (b)

FIGURE 14.14
Determination of strains on an inclined plane.

Figure 14.14(a) shows a two-dimensional element subjected to a complex direct and shear stress sys-
tem. The applied stresses will distort the rectangular element of Fig. 14.14(a) into the shape shown in
Fig. 14.14(b). In particular, the triangular element ABC will suffer distortion to the shape A’B'C with
corresponding changes in the length CD and the angle BDC. The strains associated with the stresses o,
o, and T, are €,, €, and 7, respectively. We shall now determine the direct strain €, in a direction
normal to the plane AB and the shear strain y produced by the shear stress acting on the plane AB.

To a first order of approximation

A'C' =AC(1 +¢,)
CB =CB(1 +¢,) (14.15)
A,B/ = AC(I =+ 6n+7r/2)

where €4 /2 is the direct strain in the direction AB. From the geometry of the triangle A'B'C’ in which
angle BC'A’ =7/2 + 7,,

(A'B'2 = (A'C')? + (C'B')2 — 2(A'C')(C'B)cos (g " ’y,g,)
or, substituting from Eq. (14.15)
(AB)*(1 +epsrp2)’ = (ACY (1 +e,)” + (CB)’(1+¢,)* + 2(AC)(CB)(1 + £,)(1 + ¢,)sin 7,

Noting that (AB)? = (AC)? + (CB)? and neglecting squares and higher powers of small quantities,

this equation may be rewritten
2(ABYepin/s = 2AC)%e, + 2(CB)%e, + 2(AC)(CB)y,,
Dividing through by 2(AB)? gives
Eninfl =6x sin® 6 + & cos® 0 + sin @ cos 07, (14.16)

The strain ¢, in the direction normal to the plane AB is found by replacing the angle 6 in
Eq. (14.16) by 6 — 7/2. Hence

£.=¢c.cos? A+ c. sinzﬂ—hsin 20 (14.17)
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Now from triangle C'D’'B’ we have
(CBY =(CD) + (DB ~ 2CD)D'B)eos(3 ~7) (14.18)
in which
C'B'=CB(1 +¢,)

C'D' =CD(l +¢,)
D'B' = DB(1 + £qtr/2)

Substituting in Eq. (14.18) for C'B/,C'D’ and D’B’ and writing cos (/2 — 7) = sin y we have

(CBY*(1+¢,)" = (CD)*(1+¢&,)* + (DB)*(1 +é€nenya)’ (14.19)
~2(CD)DB)(1 + &)1 + Eninya)sin y
Again ignoring squares and higher powers of strains and writing sin y =y, Eq. (14.19) becomes
(CBY2(1 + 2¢,) = (CD)*(1 + 2e,,) + (DB)*(1 + 2€,4/2) — 2(CD)(DB)y
From Fig. 14.14(a) we see that (CB)? = (CD)? + (DB)? and the above equation simplifies to
2(CB)’c, = 2(CD)’e, + 2(DB)*€p4r/2 — 2(CD)(DB)y
Dividing through by 2(CB)? and rearranging we obtain

En Sin* O + Ep4r/2 cOS” 0 — €,
’y =

sin 6 cos 0
Substitution of €, and &,4/, from Eqs (14.17) and (14.16) yields

Ex—Ey .
% = 3 Y gin 20 + szlcos 20 (14.20)

14.7 Principal strains

From a comparison of Eqs (14.17) and (14.20) with Eqs (14.5) and (14.6) we observe that the former
two equations may be obtained from Eqs (14.5) and (14.6) by replacing o, by €,, 0 by €, 7, by €,,
Ty by Vy/2 and T by 7/2. It follows that for each deduction made from Egs (14.5) and (14.6) con-
cerning 0, and 7 there is a corresponding deduction from Egs (14.17) and (14.20) regarding €, and
4/2. Thus at a point in a structural member there are two mutually perpendicular planes on which the
shear strain y is zero and normal to which the direct strain is the algebraic maximum or minimum
direct strain at the point. These direct strains are the principal strains at the point and are given (from a
comparison with Eqs (14.8) and (14.9)) by

ete 1 2

=" 3 /(Ex—&?y) + ’ny (14.21)
& tg 1 D

. : = /(Ex ) + %%y (14.22)

and
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Since the shear strain 1 is zero on these planes it follows that the shear stress must also be zero apq
we deduce from Section 14.3 that the directions of the principal strains and principal stresses coincide
The related planes are then determined from Eq. (14.7) or from

Ty
&y — By

tan 20 = — (14.23)

In addition the maximum shear strain at the point is given by

G)m N % m (14.24)

or
Y _ &1~ €n
(E)max 2 (14.25)
(cf. Egs (14.11) and (14.12)).
L —

EXAMPLE 14.5

At a point in a structural member the stresses on two mutually perpendicular planes are 60 N/mm
tension and 30 N/mm? compression together with a shear stress of 15 N/mm?. Calculate the princi-
pal stresses at the point, the maximum shear stress and the angle which the plane of maximum prin-
cipal stress makes with the plane on which the 60 N/mm? stress acts. Verify all your answers using a
graphical method. If Young’s modulus £ = 200000 N/mm? and Poisson’s ratio v = 0.3 calculate the
principal strains and the maximum shear strain.

We shall designate the 60 N/mm? as o,. Then, from Eq. (14.8)

_ 6030
2

2

1 2 2
o +~2-\/[(60+30) +4x 15

which gives
o1 = 62.4 N/mm?
Similarly, from Eq. (14.9)
oy = —32.4 N/mm?
Then, from Eq. (14.12)

Coe w =474 N/mm?

Alternatively, T,y could have been obtained from Eq. (14.11) using the given values of stress
although this would have involved slightly longer computation.

From Eq. (14.7)

so that

20 = —18.4° or —198.4°

14.8 Mohr’s circle of strain 407

J Tmax = 47.4 N/mm2

(~30, 15)N/mm2

> O
1 62.4 Nimm?2
Q1

//(60, ~15)Nimm2

Op

~32. AN/mm2 \ 2

FIGURE 14.15
Mohr's circle for Ex. 14.5.

giving
)= —9.2° or —99.2°
From Mohr’s circle of stress (see Fig. 14.11) it is clear that the plane on which the maximum
principal stress acts is at an angle of 9.2° to the plane on which the 60 N/mm? stress acts. For this
particular problem the solution using Mohr’s circle is shown in Fig. 14.15.
From Section 7.8
624 0X-324)

= : 2 = 3606 % 1078
200000 200000 4

€1

and

~32.4 03X624 ¥
A = ~255.6 X 10
17 500000 200000 1

and from Eq. (14.25)
(Vimax _ (360.6 +255.6)
2 2

X 1076

which gives
Viur =616.2 X 107°

14.8 Mohr's circle of strain

The argument of Section 14.7 may be applied to Mohr’s circle of stress described in Section 14.4. A
circle of strain, analogous to that shown in Fig. 14.11, may be drawn when 0, 0,, etc., are replaced by
€0 €, €tc., as specified in Section 14.7. The horizontal extremities of the circle represent the principal
strains, the radius of the circle half the maximum shear strain, and so on.

L
EXAMPLE 14.6
A structural member is loaded in such a way that at a particular point in the member a cwo-dimensional
stress system exists consisting of o, = +60 N/mm?, a,= —40 N/mm?” and T =20 N/mm?.

R TR
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. Calculate the direct strain in the x and y directions and the shear strain, 7, at the point.

. Calculate the principal strains at the point and determine the position of the principal planes.

¢. Verify your answer using a graphical method. Take £=200 000 N/mm?” and Poisson’s ratio
u =03 2

a. From Section 7.8

[~ V]

(60 + 0.3 X 40) = 360 X 10~¢

€x

200 000

e = :
200 000

(—40 — 0.3 X 60) = —290 X 10~°

The shear modulus, G, is obtained using Eq. (7.21); thus

B 200 000
G = = - — ) } 2
e e
Hence, from Eq. (7.9)
E E_ o= __...._.50 — ¢ -6
T =G T 5% 933 650 X 10

b. Now substituting in Eqs (14.21) and (14.22) for ¢,, €, and 7,, we have

81 = 10~6

:[360 —290

1 i
—— + 5/660+290) +6502]

which gives

er =495 %107

YA

Q,
(~290 x 1075, 2x 650 x 10°6)

Q1 (360 x 1078, —%x 650 X 1076)

FIGURE 14.16
Mohr’s circle of strain for Ex. 14.6.
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Similarly
en = — 425 X 107¢
From Eq. (14.23) we have

S, 650 X 1076 Ll
360 X 1075 +290 X 1076
Therefore
20 = —45° or —225°
so that

g=—~225 or — 1125

c. Axes Oe and O, are set up and the points Q;(360 X 1076, —1X 650X 107%) and
Q,(—290 X 1076, 1 X 650 X 107%) located. The centre C of the circle is the intersection of
Q;Q, and the Oe axis (Fig. 14.16). The circle is then drawn with radius equal to CQ; and the

points B(ey) and A(e) located. Finally, angle Q;CB = —26 and Q,CA = —20 7
J— =]

14.9 Experimental measurement of surface strains and stresses

Stresses at a point on the surface of a structural member may be determined by measuring the strains at
the point, usually with electrical resistance strain gauges. These consist of a short length of fine wire
sandwiched between two layers of impregnated paper, the whole being glued to the surface of the mem-
ber. The resistance of the wire changes as the wire stretches or contracts so that as the surface of the
member is strained the gauge indicates a change of resistance which is measurable on a Wheatstone
bridge.

Strain gauges measure direct strains only, but the state of stress at a point may be investigated in
terms of principal stresses by using a strain gauge ‘rosette’. This consists of three strain gauges inclined
at a given angle to each other. Typical of these is the 45° or ‘rectangular’ strain gauge rosette illustrated
in Fig. 14.17(a). An equiangular rosette has gauges inclined at 60°.

Suppose that a rosette consists of three arms, ‘@', b’ and ‘C’ inclined at angles o and [ as shown in
Fig. 14.17(b). Suppose also that 1 and ey are the principal strains at the point and that ; is inclined
at an unknown angle 6 to the arm ‘@’. Then if ,, &, and & are the measured strains in the directions

0, (0 + @) and (6 + a + B) to &1 we have, from Eq. (14.17)
€, = ¢ cos® 0 + ey sin® 0 (14.26)

in which €, has become &,, €, has become ¢y, €, has become ey and 7, is zero since the x and y direc-
tions have become principal directions. This situation is equivalent, as far as €,, €1 and ey; are con-
cerned, to the strains acting on a triangular element as shown in Fig. 14.17(c). Rewriting Eq. (14.26)
we have

€= %(l + cos 20) + %(1 — cos 20)

B e—
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|

¢
€a
£
a
/ A= 0
(a) (b) (c)
FIGURE 14.17
Electrical resistance strain gauge measurement.
or
1 1
€, = E(EI +ep) + E(EI — 1) cos 20 (14.27)
Similarly
1 1
Eh = E(EI + EH) + E(EI - EH) CoSs 2(0 + Oé) (1428)
and
1 1
Ee' ™ -2-(61 + EH) + E(EI - EH) Ccos 2(0 + o+ ,B) (1429)

Therefore if €,, €, and &, are measured in given directions, i.e. given angles @ and 3, then ¢y, ey
and 6 are the only unknowns in Eqs (14.27), (14.28) and (14.29).

Having determined the principal strains we obtain the principal stresses using relationships derived
in Section 7.8. Thus

1
g = E(UI — o)) (14.30)

and

1
En = E(O’n — v0oy) (14.31)
Solving Eqs (14.30) and (14.31) for oy and oy we have

o= (e1 + ven) (14.32)
1—12
and

L (en + vey) (14.33)

oy = € ;

n= gz e T e

For a 45° rosette =3 =45° and the principal strains may be obtained using the geometry of
Maolkv's sienla of crenin Cionmara shat sha avm 9 Al dha wanaiia ia tealload ai nasmn coilosarsia anala @ wa
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pra Qle,)

26
N M

C
6 & ‘ €| i

P(ep)

FIGURE 14.18
R(eo) Mohr’s circle of strain for a 45° strain gauge rosette.

the maximum principal strain as in Fig. 14.17(b). Then Mohr’s circle of strain is as shown in
Fig. 14.18; the shear strains 7., Vb and . do not feature in the discussion and are therefore ignored.

From Fig. 14.18

0C= 3 +e)
1
CN=¢g,—-0C= E(ea—sc)
1
QN=CM=5b—OC=sb—§(sa+5C)

The radius of the circle is CQ and

CQ =4/CN? + QN?

1 2 1 2
cQ= [5 (53_56)] + [eb—i(ea%c)]

L
V2

Hence

which simplifies to

(€a—eb)” + (ec—ev)?

cQ=

Therefore €1, which is given by
g1 = OC + radius of the circle

is

&= %(53 +ieg)+ % \/éa—sb)z +(ec—en)’ (14.34)

Also

cee = N — vadinie af the rircle
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ie.
1= 36t ) e + oy
2 7
Finally the angle 6 is given by

_ QAN _ & —(1/2), + &)
tan 20 = N m

(14.35)

ie.
2ep — a” &
tan 20 = 50 "% T & (14.36)
€1 — &
A similar approach can be adopted for a 60° rosette.
a—

EXAMPLE 14.7

tion has a diameter of 50 mm and js subj
axial load, P, A rectangular strai

lowing values of strain: €a=1000X 107, ¢, = —200 x 10~¢

Substituting the values of €a & and € in Eq. ( 14.34) we have
1076

) 1 g 5 2
= — (1000 — e + + (- + 3
£ ¥ e (1000 ) iz \/ (1000 + 200)2 + (=200 300)

which gives

[aee
= ——(700 + 1703) = 1202 x 10~
It follows from Eq. (14.35)€tfhat 2 " o

1 -6
e = —T(mo —1703) = — 502 x 10~¢

Substituring for ey and ey in Eq. (14.32) we have

0000 X 1076
i 7“10«)\3)2“(1202 —0.3X502) = 80.9 N/mm?

Similarly from Eq. (14.33)

_ 70000 X 1076
G i

. —502+0.3X1202) = — 109N 2
oy T (0.3)2 ( ) /mm

Since 7y =0 (note that the axial load produces o, only), Eqs (14.8) and (14.9) reduce to

g 1
op = 7" +E,/Uf+47~'§]

jected to a torque, 7} and
1 gauge rosette attached to the surface of the shaft recorded the fol-

and g.= —300 X 10™° where the

(®)
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and

Ox 1 2 2 (u)

respectively. Adding Eqs (i) and (ii) we obtain

oyt on=0x

Thus |
o, =80.9 — 10.9 = 70 N/mm?

Substituting for o in cither of Eq. (i) or (i1) gives

7,y = 29.7 N/mm?

For an axial load P -
; ) G )
ax~—-7ON/mm2r';§  (m/4) X 502 Sk
hat
oy P=137.4kN

u
C L and sn’lg E(}. (] 1.4) we have
Also fOI tl'l wique j u. .

2 — T e

which gives
T =0.7 kNm f
hat P could have been found directly in this case from the axial strain €,. Thus from
Note that ,
Eq. (7.8) g :
o, = Ee, =70 000 X 1000 X 107¢ =70 N/mm

as before. —.

-
EXAM?LE o ilever box beam shown in Fig. 14.19 has a bar attached to its free endl;a rthsirz?;
The thnn—wal!ed canti CCIV a distance 7 from the vertical plane of symmetry. A rectangu B
e Vem?al loafh d :)t the upper cover of the box beam in the vertical plane of sym:rfe ry
gaugzimsetteol; ft:: frzm the free end. If the readings from the three arms of the rosette are:
at a distance

-6
£, =1200%X107%, £ =200X107%, e =-360X 10
: 3 =0.3.
determine the values of Wand r. Take E= 200000 N/mm" and v
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100 mm

All walls
5 mm thick

FIGURE 14.19 :
Cantilever box beam of Ex. 14.8

From Eq. (14.34)

107 = e
LS {(1200 - 360) + \/ [2(1200 — 200)* + 2(-360 — 200)2]}

which gives

=l 4 X =6

en = —390.4 X 1076
Then, from Eq. (14.32)

o1 = 200000 15304 — 0.3 % 390.4) X 10~
Ay %

which gives
o1 = 244.7 N/mm?
Similarly, from Eq. (14.33)
on = — 4.7 N/mm?
Since, in this case, 0, = 0, Eqs. (14.8) and (14.9) reduce to
and
= 7V (2 + drg?) (ii)
Adding Egs. (i) and (ii)
o1+ oy =0, = 244.7 — 4.7 = 240 N/mm?
Substituting for o, in Eq. (i) or Eq. (ii) gives
Ty =33.9 N/mm?
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From Eq. (9.9)

W X 10° X 50

= =0.024 W
2(50 X 5 X 50% + 5 X 100°/12)

Ox

Therefore
W= 240/0_024 = 10000 N = 10 kN
From Eq. (11.21)

X
T IX50X100X5 oo
which gives
r=169.5 mm

Note, that as in Ex. 14.7, we could have obtained o, directly from the strain gauge reading, that
is, from Eq. (7.8)

o = 200000 X 1200 X 107¢ = 240 N/mm?

However, we would still require a value for either o7 or oy in order to obtain T, so that the sav-
ing in computation would not have been significant. =

14.10 Theories of elastic failure

The direct stress in a structural member subjected to simple tension or compression is directly propor-
tional to strain up to the yield point of the material (Section 7.7). It is therefore a relatively simple mat-
ter to design such a member using the direct stress at yield as the design criterion. However, as we saw
in Section 14.3, the direct and shear stresses at a point in a structural member subjected to a complex
loading system are not necessarily the maximum values at the point. In such cases it is not clear how
failure occurs, so that it is difficult to determine limiting values of load or alternatively to design a
structural member for given loads. An obvious method, perhaps, would be to use direct experiment in
which the structural member is loaded until deformations are no longer proportional to the applied
load; clearly such an approach would be both time-wasting and uneconomical. Ideally a method is
required that relates some parameter representing the applied stresses to, say, the yield stress in simple
tension which is a constant for a given material.

In Section 14.3 we saw that a complex two-dimensional stress system comprising direct and shear
stresses could be represented by a simpler system of direct stresses only, in other words, the principal
stresses. The problem is therefore simplified to some extent since the applied loads are now being repre-
sented by a system of direct stresses only. Clearly this procedure could be extended to the three-
dimensional case so that no matter how complex the loading and the resulting stress system, there
would remain at the most just three principal stresses, oy, oy and oy, as shown, for a three-
dimensional element, in Fig. 14.20.

It now remains to relate, in some manner, these principal stresses to the yield stress in simple ten-

Qif\ﬂ (M~r f\F th mﬁfPr;ﬂ]
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‘i oy

oy g

FIGURE 14.20

Reduction of a complex three-dimensional stress system.

)

Ductile materials

A number of theories of elastic failure have been proposed in the past for ductile materials but experi-
ence and experimental evidence have led to all but two being discarded.

Maximum shear stress theory

This theory is usually linked with the names of Tresca and Guest, although it is more widely associated
with the former. The theory proposes that:

Failure (i.e. yielding) will occur when the maximum shear stress in the material is equal to the maximum
shear stress at failure in simple tension.

For a two-dimensional stress system the maximum shear stress is given in terms of the principal
stresses by Eq. (14.12). For a three-dimensional case the maximum shear stress is given by
Omax — Omin

= —_ - 1 .
T max 2 (14.37)

where 0o and 0y, are the algebraic maximum and minimum principal stresses. At failure in simple
tension the yield stress oy is in fact a principal stress and since there can be no direct stress perpendicu-
lar to the axis of loading, the maximum shear stress is, therefore, from either of Egs. (14.12) or (14.37)

gy
max — o= 14
T 3 (14.38)

Thus the theory proposes that failure in a complex system will occur when

Omax — Omin gy

2 -
or
Omax — Omin = OY (1439)
Let us now examine stress systems having different relative values of oy, oy and oy First suppose
that o7 > oy >0 > 0. From Eq. (14.39) failure occurs when
01— 0y = 0y (14.40)

Second, suppose that o7 >0 >0 but oy = 0. In this case the three-dimensional stress system of

Fig. 14.20 reduces to a two-dimensional stress system but is szl acting on a three-dimensional element.
Thus Eq. (14.39) becomes

0’1_0=0'Y
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o1 =0y (14.41)

Here we see an apparent contradiction of Eq. (14.12) where the maximum shear stress in a two-
dimensional stress system is equal to half the differencs: of oy and o However, the maximum shear
stress in that case occurs in the plane of the two-dimensional e!ement, i.e. in the plfme_ of. o1 and oy In
chis case we have a three-dimensional element so that the maximum shear stress will lie in the plane of

o7 and o ) di ional
Finally, let us suppose that 07> 0, oy <0 and oy = 0. Again we have a two-dimensional stress sys-

tem acting on a three-dimensional element but now oy is a compressive stress and algebraically less

than oqr. Thus Eq. (14.39) becomes
01— 01 =0y (14.42)

Shear strain energy theory . .
This particular theory of elastic failure was established independently by von Mises, Maxwell and

Hencky but is now generally referred to as the von Mises criterion. The theory proposes that:

FEailure will occur when the shear or distortion strain energy in the material reaches the equivalent value ar
yielding in simple tension.

In 1904 Huber proposed that the total strain energy, U, of an element of materi'aI could be regarded as
comprising two separate parts: that due to change in volume and that due to change in shape. The former is
termed the volumetric strain energy, U, the latter the distortion or shear strain energy, U Thus

U=U+U (14.43)
Since it is relatively simple to determine U, and U, we obtain U by transposing Eq. (14.43). Hence
U=U-U (14.44)

Initially, however, we shall demonstrate that the deformation of an element of material may be sep-

arated into change of volume and change in shape. ' '
The principal stresses o1, o7 and o7y acting on the element of Fig. 14.20 may be written as

1 1

oy = g(UI +on+om)+ 5(201 — o — om)
1 1

oy = 5(01 +on+om)+ 5(2011 — o1 —om)
1 1

om = 5(01 + oy +om) + 5(20111 —on —o1)

or
o1=7+0]
o =7 + ok (14.45)

= 1
o = O’+0’IH
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FIGURE 14.21

Representation of principal stresses as volumetric and distortional stresses.

Thus the stress system of Fig. 14.20 may be represented as the sum of two separate stress systems as
shown in Fig. 14.21. The @ stress system is clearly equivalent to a hydrostatic or volumetric stress
which will produce a change in volume but not a change in shape. The effect of the o' stress system
may be determined as follows. Adding together Eqs (14.45) we obtain

oy +on+om=36+o0] + oy + iy

but

0= ~(o1+on+om)

so that

of + oy + o =0 (14.46)

From the stress—strain relationships of Section 7.8 we have

1 \
_ 01 v 1
& = E E(UIII + o)
1 _ ‘7111 v 1
n=7 ~ gl fom r (14.47)
1 _ 01111 v 1
€m = E E(JI + o) J

The volumetric strain €, corresponding to &, ot, o}, and ohy is equal to the sum of the linear
strains. Thus from Eqs (14.47)

(1-2v)

5v=511 +5111+511n= (‘711 +‘7111+‘711n)

which, from Eq. (14.46), gives
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It follows that o}, o} and ofj; produce no change in volume but only change in shape. We have
cherefore successfully divided the o1, oy, oy stress system into stresses (@) producing changes in vol-
ume and stresses (o) producing changes in shape. - .

In Section 7.10 we derived an expression for the strain energy, U, of 2 member subjected to a direct

stress, 0 (Eq. (7.30)), ie.

2
U=-X e X volume
E

1
2
This equation may be rewritten

U=%XOX5Xvolume

since E= 0/c. The strain energy per unit volume is then oe/2. Thus for a three-dimensional element
subjected to a stress G on each of its six faces the strain energy in one direction is

1__
~GCE
2
where  is the strain due to T in each of the three directions. The total or volumetric strain energy per

unit volume, U,, of the element is then given by

u,=3(1zz
v o\2

or, since
o o 0
g= % —21;% =Z(1-29)
U,= l(7'3—5(1 —20) (14.48)
Y27 E
But
I
o= g(UI + o + om)
so that Eq. (14.48) becomes
U, = a ;Ezy) (o1+ou+om) (14.49)

By a similar argument the total strain energy per unit volume, U, of an element subjected to stres-
ses o1, oy and oy is

1
U= %UIEI + %0’11611 + 5 omem (14.50)
where
e[ = %I - %(Un + om)
on v
€n = Z E(‘TI + om) (see Eq. (14.47)) (14.51)

' L O P e
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have

1

(1-2v)
U=z [ { +0n + ofy — 2u(o100 + oyom + o) -

GE

(o1t o1 +UIH)2}

which simplifies to

U= (16-;5”) [(o1—0on)* + (on—om)? + (om —o1)’]
per unit volume.
From Eq. (7.21)
E=2G(1+0)
Thus
U, = % [(o1=0n)* + (on—om)® + (ou —o1)’] (14.52)

The shear or distortion strain energy per unit volume at failure in sim

ple tension corresponds to
01 = 0y, O51 = O = 0. Hence from Eq (1452)

2

U (at failure in simple tension) = g—é (14.53)

According to the von Mises criterion, failure occurs when U,

given by Eq. (14.52), reaches the
value of U, given by Eq. (14.53), i.e. when

(o1—on)* + (on—om)* + (om—oy)? = 20% (14.54)

For a two-dimensional stress system in which o = 0, Eq. (14.54) becomes

0'12 + O'IZI — o101 = U’% (1455)

Design application

Codes of Practice for the use of structural steel in building use the von Mises criterion for a two-

dimensional stress system (Eq. (14.55)) in determining an equivalent allowable stress for members sub-

jected to bending and shear. Thus if o, and T.y are the direct and shear stresses, respectively, at a point

in a member subjected to bending and shear, then the principal stresses at the point are, from Eqgs

(14.8) and (14.9)

=%, 1 o
= +E oy + 4,
Oy 1 ———7—
O'H=—2 _E U§+4Tfy

Substituting these expressions in Eq. (14.55) and simplifying we obtain

oy =,/o2+ 37‘5}/ (14.56)

Substituting for &y, etc. in Eq. (14.50) and then for U, from Eq. (14.49) and U, in Eq. (14.44) we

o
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In Codes of Practice oy is termed an equivalent stress and allowable values are given for a series of
dJjfferent structural members.

Yleftjic{zfl(l4.39) and (14.54) may be plotted graphically for a two-dirr.lensior%al stress system in which
Equ— 0 and in which it is assumed that the yield stress, oy, is the same in tension and compression.
F’igure 14.22 shows the yield locus for the maximum shear stress of Tresca theory of e.lastic ilie
In the first and third quadrants, when oy and oyy have the same sign, fa'llure occurs when either o = oy
= gy (see Eq. (14.41)) depending on which principal stress attains the value oy first. For exam-
y . structural member may be subjected to loads that produce a given value of oy (<o) and varying
5, :s of oy. If the loads were increased, failure would occur when oy reached the value oy. Similarly
E fixed value of o7 and varying oy. In the second and third quadrants where o7 and oy; have oppo-
ﬁ')r ai ns, failure occurs when o1 — oy = oy or oy — 01 =0y (see Eq. (14.42)). Both these equations
- gnt, straight lines, each having a gradient of 45° and an intercept on the oyy axis of oy. Clearly all
rcprT)S'enations if o1 and oy that lie inside the locus will not cause failure, while all combinations of o
602101 on or outside the locus will. Thus the inside of the locus represents elastic conditions while the
ztsidg represents plastic conditions. Note that for the purposes of a yield locus, o1 and oy are

o1l

mte’rI‘C}lll: r:%lztr)lz'train energy (von Mises) theory for a two—dimer.lsional stress S}.rstem 218 represented by
Eq. (14.55). This equation may be shown to be t.hat .of an ellipse whose majorhan rrllllnorhaxelsliazz
inclined at 45° to the axes of o7 and oy as shown in Fig. 14.23. It may also.be s hown t a}t1 the e I;VC
passes through the six corners of the Tresca yield locus so that at these points t edt.wo ; .Torles E v
identical results. However, for other combinations of oy :.md oy the Tresca thc?ory predicts failure whe
the von Mises theory does not so that the Tresca theory is the more conservatlve.of t'he tvvfo.h "

The value of the yield loci lies in their use in experimental work on the.vahdatlon of t el ifferent
theories. Structural members fabricated from different materials may be subjected to a corml)defe r.ang(fi:
of combinations of o7 and oy each producing failure. The re.sults are then plotted on the yield loci an
the accuracy of each theory is determined for different materials.

o) o
A _ I
o) = 0y A
0,<0,0,>0 l 0,>0,0,>0 .
T oy ! S T Tresca yield locus
0 — 0| = 0y
< 0'| = UY
> 0) > 0
Oy Oy
o) = Oy —p
U|<0,0’||<0 0] — 0y = Oy _
T Oy o) > 0, o) <0
0y = Oy

FIGURE 14.22 FIGURE 14.23
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EXAMPLE 14.9
The state of stress at a pomt in a structural member is defined by a two-dimensional stress system as
follows: o,= +140 N/mm?, a,= =70 N/ mm? and T = 60N mm?. If the material of the
member has a yield stress in simple tension of 225 N/mm determine whether or not yielding has
occurred according to the Tresca and von Mises theories of elastic failure.

The first step is to determine the principal stresses o7 and oy From Eqs (14.8) and (14.9)

Lo 1 - 1 2 | 2
o= 5(140—70) + 5\/(140+70) +4 X 60

ie.
o1 =155.9 N/mm?
and
i —(140 70) — = \/(140+70);Z + 4% 602
1.6,

op = — 85.9 N/mm?

Since o7y is algebraically less than oy (=0), Eq. (14.42) applies.
Thus

o1 — oq = 241.8 N/mm2

This value is greater than oy (=225 N/mm?) so that according to the Tresca theory failure has,
in fact, occurred.
Substituting the above values of g7 and oy; in Eq. (14.55) we have

(155.9)* + (—85.9)* — (155.9)(— 85.9) = 45 075.4

The square root of this expression is 212.3 N/mm? so that according to the von Mises theory the

material has not failed.
e

.
EXAMPLE 14.10
The rectangular cross section of a thin-walled box girder (Fig. 14.24) is subjected to a bending
moment of 250 kN m and a torque of 200 kN m. If the allowable equivalent stress for the material
of the box girder is 180 N/mm?, determine whether or not the design is satisfactory using the
requirement of Eq. (14.56).

The maximum shear stress in the cross section occurs in the vertical walls of the section and is

given by Eq. (11.22), i.e.

T Do . 200X10°
i 2Atmin 2% 500X 250 X 10

The maximum stress due to bending occurs at the top and bottom of each vertical wall and is
given by Eq. (9.9), i.e.

= 80 N/mm?*
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10mm__| | 10 mm

500 mm

}12mm
i FIGURE 14.24
250 mm Box girder beam section of Ex. 14.10.

where

X 10 X 500%
I=2X12 X250 X 250% + 3-5%-599— o Shctieni 945
6

7=583.3 X 10° mm*
Thus

250 X 10° X 250
583.3 X 10°

Substituting these values in Eq. (14.56) we have

=107.1 N/mm2

\/o-g +572 = /107.12 + 3 X 807 = 175.1 N/mm’

This equivalent stress is less than the allowable value of 180 N/mm? so that the box girder section
is satisfactory. -

-
EXAMPLE 14.11
A beam of rectangular cross section 60 mm X 100 mm is subjected to an axial tensile load of
60 000 N. If the marerial of the beam fails in simple tension at a stress of 150 N/mm? determine
the maximum shear force that can be applied to the beam section in a direction parallel to its longest
side using the Tresca and von Mises theories of elastic failure.

The direct stress o, due to the axial load is uniform over the cross section of the beam and is

given by

60 000

o 60 X 100 e
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The maximum shear stress Tmay occurs at the horizontal axis of symmetry of the beam sectiop
nd is, from Eq. (10.7)

Sy

Tt 5 X % 100 @)
Thus from Eqs (14.8) and (14.9)

R O Lol
o1=— +34/10 +472 UII“‘?_E\/'102+4Tr2mx

s
(i)
It is clear from the second of Eq. (ii) that oy is negative since I /25 + T '> 5. Thus in the
[resca theory Eq. (14.42) applies and
o1 — o =2y/25+ 72 =150 N/mm>
rom which
Timax = 74.8 N/mm?
Thus from Eq. (i)
8, = 299.3 kN
Now substituting for o7 and oyy in Eq. (14.55) we have
(5+ h /25+r§m)2 + (5— V/ 25+rgm)2 3 (5 +./25+ Tgm) (5 o Tfm) = 1502
vhich gives
Tmax = 86.4 N/mm2
Again from Eq. (i)
S, =345.6 kN
.

‘ittle materials

hen subjected to tensile stresses brittle materials such as cast iron, concrete and ceramics fracture at a
lue of stress very close to the elastic limit with little or no permanent yielding on the planes of maxi-
1m shear stress. In fact the failure plane is generally flat and perpendicular to the axis of loading,
like ductile materials which have failure planes inclined at approximately 45° to the axis of loading;
the latter case failure occurs on planes of maximum shear stress (see Sections 8.3 and 14.2). This
wuld suggest, therefore, that shear stresses have no effect on the failure of brittle materials and that a
‘ect relationship exists between the principal stresses at a point in a brittle material subjected to a

mplex loading system and the failure stress in simple tension or compression. This forms the basis
B PRI ¥ | P B | re o ; [ N, | . £ 3

e e
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o) A _ T
oy = ay(T) oy = oy(T)

0-Y(T) / g > 0, o> 0

0 <001>0
<— 0 = oy(T)

g = ov(C) —>]

>

y(C) oy(T) o
= (C
[ 61 = o(T)
0 <0,01<0 0>0,0,<0
i (€N . FIGURE 14.25
oy = oy(C) o1 =0v(C) Yield locus for a brittle material.

Maximum normal stress theory
This theory, frequently attributed to Rankine, states that:

Failure occurs when one of the principal stresses reaches the value of the yield stress in simple tension or ‘
compression.

For most brittle materials the yield stress in tension is very much less than the yield stress in com-
pression, e.g. for concrete oy (compression) is approximately 20 oy (tension). Thus it is essential in any
particular problem to know which of the yield stresses is achieved first.

Suppose that a brittle material is subjected to a complex loading system which produces principal
stresses oy, oy; and oy as in Fig. 14.20. Thus for 07> oy > oy > 0 failure occurs when

or=oy (tension) (14.57)
Alternatively, for o7> 011> 0, o < 0 and 07 < oy (tension) failure occurs when
om = oy (compression) (14.58)

and so on.

A yield locus may be drawn for the two-dimensional case, as for the Tresca and von Mises theories
of failure for ductile materials, and is shown in Fig. 14.25. Note that since the failure stress in tension,
oy(T), is generally less than the failure stress in compression, oy(C), the yield locus is not symmetrically
arranged about the o7 and oy; axes. Again combinations of stress corresponding to points inside the
locus will not cause failure, whereas combinations of oy and oy; on or outside the locus will.

|
EXAMPLE 14.12

A concrete beam has a rectangular cross section 250 mm X 500 mm and is simply supported over a
span of 4 m. Determine the maximum mid-span concentrated load the beam can carry if the failure
stress in simple tension of concrete is 1.5 N/mm?. Neglect the self-weight of the beam.
If the central concentrated load is W N the maximum bending moment occurs at mid-span
and is
4W

et W Nm (see Ex. 3.7)
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The maximum direct tensile stress due to bending occurs at the soffit of the beam and is

WX 10°2< 250 X 10
= =W X9.6X107° N 2 (Eq.9.
250 X 5007 W X 9.6X 107’ N/mm” (Eq.9.9)

At this point the maximum principal stress is, from Eq. (14.8)

or=W X9.6 X107’ N/mm?
Thus from Eq. (14.57) the maximum value of W is given by
o1=W X 9.6 X 107> = gy(tension) = 1.5 N/mm?

from which W= 15.6 kN.
The maximum shear stress occurs at the horizontal axis of symmetry of the beam section over
each support and is, from Eq. (10.7)

Tmax = W X 0.6 X 107> N/mm?
Again, from Eq. (14.8), the maximum principal stress is
01 =W X 9.6 X 107> N/mm? = gy(tension) = 1.5 N/mm?
from which
W =250 kN
Thus the maximum allowable value of Wis 15.6 kN.

PROBLEMS

P.14.1 At a point in an elastic material there are two mutually perpendicular planes, one of which
carries a direct tensile stress of 50 N/mm? and a shear stress of 40 N/mm? while the other
plane is subjected to a direct compressive stress of 35 N/mm? and a complementary shear
stress of 40 N/mm?. Determine the principal stresses at the point, the position of the planes
on which they act and the position of the planes on which there is no direct stress.

Ans. 01=65.9 N/mm?, 6= —21.6° oy = —50.9 N/mm?, § = —111.6°.
No direct stress on planes at 27.1° and 117.1° to the plane on which the 50 N/mm? stress acts.

P.14.2 One of the principal stresses in a two-dimensional stress system is 139 N/mm? acting on a
plane A. On another plane B normal and shear stresses of 108 and 62 N/mm?, respectively,
act. Determine
a. the angle between the planes A and B,

b. the other principal stress,
c. the direct stress on the plane perpendicular to plane B.

/' N Araa sl N « s wTa DN am T 2.

p.14.3

p.144

P.14.5

P.14.6
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The state of stress at a point in a structural member may be represented by a two-dimensional

. . - 2 — 2 .
stress system in which o, = 100 N/mm®, 0, = —80 N/mm? and T, = 45 N/mm?. Determine
th'e dfrect stress on a plane inclined :'1t 69 tf) the positive direction of o, and also the
principal stresses. Calculate also the inclination of the principal planes to the plane on which
o, acts. Verify your answers by a graphical method.

Ans. 0, =16 N/mm? o7 = 110.6 N/mm? oy = —90.6 N/mm? § = —13.3° and —103.3°.
Determine the normal and shear stress on the plane AB shown in Fig. P.14.4 when

i. a=60° 0,=54N/mm? o,= 30 N/mm?, 7,,=5 N/mm?
fl. a=120° 0,=—60 N/mm’, 0, = —36 N/mm? 7,,=5N/mm?

Apns. (i) 0, =52.3 N/mm?, 7 =7.9 N/mm?;
(i) oy = —58.3 N/mm?, 7 =7.9 N/mm?.

:

FIGURE P.14.4

A shear stress 7, acts in a two-dimensional field in which the maximum allowable shear stress
is denoted by 7, and the major principal stress by o}. Derive, using the geometry of Mohr’s
circle of stress, expressions for the maximum values of direct stress which may be applied to
the x and y planes in terms of the parameters given.

Abns.

Oy =01 Towax T Tfmx—'rf‘y Ty =01~ Tz = Tfmx~'rfy.
In an experimental determination of principal stresses a cantilever of hollow circular cross
section is subjected to a varying bending moment and torque; the internal and external
diameters of the cantilever are 40 and 50 mm, respectively. For a given loading condition the
bending moment and torque at a particular section of the cantilever are 100 and 50 N m,
respectively. Calculate the maximum and minimum principal stresses at a point on the outer
surface of the cantilever at this section where the direct stress produced by the bending
moment is tensile. Determine also the maximum shear stress at the point and the inclination
of the principal stresses to the axis of the cantilever.

The experimental values of principal stress are estimated from readings obtained from a

45° strain gauge rosette aligned so that one of its three arms is parallel to and another
perpendicular to the axis of the cantilever. For the loading condition of zero torque and

_ [
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P.14.7

P.14.8

P.14.9

P.14.10

P.14.11
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Ans. o= 14.6 N/mm? o5y = —0.8 N/mm?
Tmax = 7.7 N/mm? 6 = —13.3° and —103.3°.

A thin-walled cylinder has an internal diameter of 1200 mm and has walls 1.2 mm thick, 1 i
subjected to an internal pressure of 0.7 N/mm” and a torque, about its longitudinal axis, of
500 kN m. Determine the principal stresses at a point in the wall of the cylinder and also the
maximum shear stress.

Ans. 466.4 N/mm?, 58.6 N/mm?, 203.9 N/mm®.

A rectangular piece of material is subjected to tensile stresses of 83 and 65 N/mm? on
mutually perpendicular faces. Find the strain in the direction of each stress and in the
direction perpendicular to both stresses. Determine also the maximum shear strain in the
plane of the stresses, the maximum shear stress and their directions. Take £= 200 000 N/mm?2
and »=0.3.

Ans. 3.18 X 107%2.01 X 1074, —2.22 X 104, ypnae = 1.17 X 1074,
Tmax = 9.0 N/mm? at 45° to the direction of the given stresses.

At a particular point in a structural member a direct tensile stress of 60 N/ mm? exists on a
plane perpendicular to the longitudinal axis of the member while a direct compressive stress of
40 N/mm® occurs on a plane parallel to this axis; in addition shear and complementary shear
stresses of 50 N/mm? act on these planes. If Young’s modulus £ is 200000 N/ mm? and
Poisson’s ratio v is 0.3 calculate the direct and shear strains on these planes and hence, using a
graphical method, determine the principal strains at the point, the maximum shear strain and
the angle the plane of maximum principal strain makes with the longitudinal axis of the
member. Finally, calculate the principal stresses at the point.

Ans. e, =3.6%X107% e, = =29 X 107% ~,,=65x 107"
er=4.95X 1074 e = —4.25 X 107 Npax = 9.2 X 1074, 67.5°
o1 = 80.8 N/mm?, o5y = —60.8 N/mm?.

The thin-walled cantilever box beam shown in Fig. P.14.10 carries a vertically downward load of
100 kN at its free end. Calculate the principal strains at the point A which lies at the edge of the
top cover of the beam at the built-in end. Take £= 200000 N/mm?* and v = 0.3.

Ans. g1=9.33 X 1074 ey = —2.87 X 107%,

100kN

10 mm

12 mm

15m 10 mm
150 mm

A cantilever beam of length 2 m has a rectangular cross section 100 mm wide and 200 mm

FIGURE P.14.10

Problems 429

distributed load of intensity w. A rectangular strain gauge rosette attached to a vertical side of
the beam at the built-in end and in the neutral plane of the beam recorded the following
values of strain: €, = 1000 X 107°, &, = 100 X 10~%, £. = —300 X 10~°. The arm ‘@’ of the
rosette is aligned with the longitudinal axis of the beam while the arm ‘¢’ is perpendicular to
the longitudinal axis.

Calculate the value of Poisson’s ratio, the principal strains at the point and hence the
values of P and w. Young’s modulus, £= 200 000 N/mm?.

Ans. P=4000 kN w = 255.3 kN/m.

P.14.12 A beam has a rectangular thin-walled box section 50 mm wide by 100 mm deep and has walls

2 mm thick. At a particular section the beam carries a bending moment M and a torque 7.
A rectangular strain gauge rosette positioned on the top horizontal wall of the beam at this
section recorded the following values of strain: £, = 1000 X 107°, e, = —200 X 107°,

£.= —300 X 10~°. If the strain gauge ‘@’ is aligned with the longitudinal axis of the beam and
the strain gauge ‘c’ is perpendicular to the longitudinal axis, calculate the values of A and T.
Take £=200 000 N/mm?” and » = 0.3.

Ans. M=3333 Nm 7= 1692 Nm.

P.14.13 The simply supported beam shown in Fig. P.14.13 carries two symmetrically placed transverse

loads, W. A rectangular strain gauge rosette positioned at the point P gave strain readings as
follows: e, = —222 X 107°, &, = —213 X 107%, .= 45 X 107°. Also the direct stress at P
due to an external axial compressive load is 7 N/mm?. Calculate the magnitude of the
transverse load. Take £= 31 000 N/mm?, v=0.2.

Ans. W =98.1 kN

Equal distances

W‘/\ w

Y 4

ljﬂb | Centroidal P

P s | axis 300mm
45 |

e

150 mm

FIGURE P.14.13

P.14.14 A cantilever beam of solid circular cross section is 1 m long and has a diameter of 100 mm.

Attached to its free end is a horizontal arm which carries a vertically downward load Wat a
distance 7 from the beam’s vertical plane of symmetry. On the beam’s upper surface, halfway
along its length and positioned in its vertical plane of symmetry, is a rectangular strain gauge
rosette which gave the following readings for particular values of Wand 7.

£,=1500 X 1075, g, = =300 X 107, &, = —450 X 10¢

«w »

where the gauges “a” and “c” are aligned with and perpendicular to the axis of the beam
respectively. Take £ = 200000 N/mm? and v = 0.3.

Ans. W=58.9 kN, =423 mm.

——————
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P.14.15 A simply supported beam has a span of 4 m, a rectangular cross section 100 mm wide by Determine the stresses that will cause failure according to the von Mises and Tresca theories

200 mm deep and carries a uniformly distributed load of intensity w N/mm over its complete
span. A rectangular strain gauge rosette positioned at mid-span on the upper surface of the beapy,
and in the vertical plane of symmetry recorded the following values of strain:

£,= —900X 1076, g, = — 200X 107%, .=+ 300X 107°

If Young’s modulus E is 200000 N/mm? calculate the value of Poisson’s ratio, the principal
stresses at the point and hence the load intensity.

Ans. v=0.33, 6y =0, oy = — 180 N/mm?, w = 60 N/mm.

P.14.16 In a tensile test on a metal specimen having a cross section 20 mm by 10 mm elastic

breakdown occurred at a load of 70 000 N.

A thin plate made from the same material is to be subjected to loading such that at a certain
point in the plate the stresses are o, = —70 N/mm?, Ty = 60 N/ mm? and ¢,. Determine the
maximum allowable values of o, using the Tresca and von Mises theories of elastic

breakdown.
Ans. 259 N/mm? (Tresca) 294 N/mm? (von Mises).

P.14.17 A beam of circular cross section is 3000 mm long and is attached at each end to supports

which allow rotation of the ends of the beam in the longitudinal vertical plane of symmetry
but prevent rotation of the ends in vertical planes perpendicular to the axis of the beam
(Fig. P.14.17). The beam supports an offset load of 40 000 N at mid-span.

If the material of the beam suffers elastic breakdown in simple tension at a stress of
145 N/mm?, calculate the minimum diameter of the beam on the basis of the Tresca and von
Mises theories of elastic failure.

Ans. 136 mm (Tresca) 135 mm (von Mises).

f: 40 000N
' d

| Y40 000N N
& 3000 mm i 1000 mm

FIGURE P.14.17

P.14.18 A cantilever of circular cross section has a diameter of 150 mm and is made from steel, which, when

subjected to simple tension suffers elastic breakdown at a stress of 150 N/mm?®,

The cantilever supports a bending moment and a torque, the latter having a value
numerically equal to twice that of the former. Calculate the maximum allowable values of the
bending moment and torque on the basis of the Tresca and von Mises theories of elastic
failure.

Ans. M=22.2 kNm T=44.4 kN m (Tresca).
M=24.9 kNm 7=49.8 kN m (von Mises).

P.14.19 A certain material has a yield stress limit in simple tension of 387 N/mm?. The yield limit in

compression can be taken to be equal to that in tension. The material is subjected to three

p.14.20

P.14.21

of elastic failure.

Ans. Tresca: o7 = 241.8 N/mm” O'H =161.2 N/mm? o1y = —145.1 N/mm?2.
von Mises: o7 = 264.0 N/mm” oy = 176.0 N/mm? oy = —158.4 N/mm>2.

A thin-walled column has a circular cross section of diameter 200 mm and thickness 5 mm. It
carries an axial load P and a torque of 20 kNm. If the material of the column fails in simple
tension at a stress of 240 N/mm” find the maximum allowable value of P using the Tresca
and von Mises theories of elastic failure.

Ans. 640 kN (Tresca), 670.6 kN (von Mises).

A thin-walled box beam has the cross section shown in Fig. P.14.21 and is simply supported over
a span of 3 m. The beam carries a concentrated torque of 10 kNm at mid-span together with a
vertical uniformly distributed load of intensity  N/mm over its complete span. If the yield stress
in simple tension of the material of the beam is 160 N/mm? find the maximum allowable value
of w using the Tresca and von Mises theories of elastic failure.

Ans. 9.7 N/mm (Tresca), 10.6 N/mm (von Mises).
+5 mm
¥ ;

4 mm—>>< >
4 mm

150 mm

Y Y

+5mm

80 mm

FIGURE P.14.21

P.14.22 The hollow cylinder shown in Fig. P.14.22 is built-in at one end and carries a vertical load of

2 kN offset a distance e from its vertical plane of symmetry. If the material of the cylinder
fails in simple tension at a stress of 150 N/ mm? calculate the maximum allowable value of
e using the Tresca and von Mises theories of elastic failure.

Awns. 0.8 m (Tresca), 0.9 m (von Mises).

P.14.23 A thin-walled cylinder of diameter 40 mm is subjected to an internal pressure of 5 N/mm®

and a torque of 100 Nm. If the material of the cylinder has a yield stress in simple tension of
150 N/mm?® determine the required wall thickness using the Tresca and von Mises theories of
elastic failure.

Ans. 0.81 mm (Tresca), 0.74 mm (von Mises).

P.14.24 A hollow cylindrical shaft has an internal diameter of 100 mm, an external diameter of

120 wawn and o samiisad en sinnoee o handine saamane and a tneane sach having a value of
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FIGURE P.14.22

20 kNm. If the equivalent stress in the shaft must not exceed 230 N/mm?2 verify that the
dimensions of the shaft are satisfactory and also determine the minimum thickness the shaft
must have for the same external diameter and loading.

Ans. 0. =188.8 N/mm? therefore dimensions are satisfactory.
Minimum thickness = 11.3 mm.

P.14.25 A column has the cross section shown in Fig. P.14.25 and carries a compressive load P
parallel to its longitudinal axis. If the failure stresses of the material of the column are 4 and
22 N/mm? in simple tension and compression, respectively, determine the maximum
allowable value of P using the maximum normal stress theory.

Ans. 634.9 kN,

|
I
F———J — 400 mm

100 mﬂ

v

FIGURE P.14.25

14.26 A cast iron pipe of external diameter 300 mm has walls 10 mm thick and is required to carry
water to a maximum of half its internal depth. If the failure stress in tension of cast iron is
138 N/mm? calculate the maximum allowable simply supported span the pipe can have. Take
the density of cast iron as 72.3 kN/m? and ignore the negligibly small shear stresses.
Ans. 27.0 m.

Virtual Work and Energy Methods

The majority of the structural problems we have encountered so far have involved structures in which the
support reactions and the internal force systems are statically determinate. These include beams, trusses,
cables and three-pinned arches and, in the case of beams, we have calculated displacements. Some statically
indeterminate structures have also been investigated. These include the composite structural members in
Section 7.10 and the circular section beams subjected to torsion and supported at each end in
Section 11.1. These relatively simple problems were solved using a combination of statical equilibrium
and compatibility of displacements. Further, in Section 13.6, a statically indeterminate propped cantilever
was analysed using the principle of superposition (Section 3.7) while the support reactions for some cases
of fixed beams were determined by combining the conditions of statical equilibrium with the moment-
area method (Section 13.3). These methods are perfectly adequate for the comparatively simple problems
to which they have been applied. However, other more powerful methods of analysis are required for
more complex structures which may possess a high degree of statical indeterminacy. These methods will,
in addition, be capable of providing rapid solutions for some statically determinate problems, particularly
those involving the calculation of displacements.

The methods fall into two categories and are based on two important concepts; the first, zhe principle
of virtual work, is the most fundamental and powerful tool available for the analysis of statically indetermi-
nate structures and has the advantage of being able to deal with conditions other than those in the elastic
range, while the second, based on s#rain energy, can provide approximate solutions of complex problems
for which exact solutions may not exist. The two methods are, in fact, equivalent in some cases since,
although the governing equations differ, the equations themselves are identical.

In modern structural analysis, computer-based techniques are widely used; these include the flexibil-
ity and stiffness methods. However, the formulation of, say, stiffness matrices for the elements of a
complex structure is based on one of the above approaches, so that a knowledge and understanding of
their application is advantageous. We shall examine the flexibility and stiffness methods in Chapter 16
and their role in computer-based analysis.

Other specialist approaches have been developed for particular problems. Examples of these are the
slope-deflection method for beams and the moment-distribution method for beams and frames; these
will also be described in Chapter 16 where we shall consider statically indeterminate structures.
Initially, however, in this chapter, we shall examine the principle of virtual work, the different energy
theorems and some of the applications of these two concepts.

15.1 Work

Before we consider the principle of virtual work in detail, it is important to clarify exactly what is meant
by work. The basic definition of work in elementary mechanics is that ‘work is done when a force moves
its point of application’. However, we shall require a more exact definition since we shall be concerned
with work done by both forces and moments and with the work done by a force when the body on which
it acts is given a displacement which is not coincident with the line of action of the force.
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Consider the force, F, acting on a particle, A, in Fig. 15.1(a). If the particle is given a displacemep,
A, by some external agency so that it moves to A’ in a direction at an angle o to the line of action of
F, the work, Wz, done by F is given by

Wr = F(A cos @) (15.1)

Wi = (F cos a)A (15.2)

Thus we see that the work done by the force, F, as the particle moves from A to A’ may be regarded a5
cither the product of F and the component of A in the direction of F (Eq. (15.1)) or as the product of
the component of F in the direction of A and A (Eq. (15.2)).

Now consider the couple (pure moment) in Fig. 15.1(b) and suppose that the couple is given 5
small rotation of @ radians. The work done by each force F is then F(a/2)6 so that the total work done,
We, by the couple is

a a

It follows that the work done, W, by the pure moment, A, acting on the bar AB in Fig. 15.1(c)
as it is given a small rotation, 0, is

Wiy = MO (15.3)

Note that in the above the force, F, and moment, M, are in position before the displacements take
place and are not the cause of them. Also, in Fig. 15.1(a), the component of A parallel to the direction
of Fis in the same direction as F; if it had been in the opposite direction the work done would have
been negative. The same argument applies to the work done by the moment, M, where we see in
Fig. 15.1(c) that the rotation, 6, is in the same sense as M. Note also that if the displacement, A, had
been perpendicular to the force, F, no work would have been done by F.

Finally it should be remembered that work is a scalar quantity since it is not associated with direc-
tion (in Fig. 15.1(a) the force F does work if the particle is moved in any direction). Thus the work
done by a series of forces is the algebraic sum of the work done by each force.

2] |
29

(@) (b) (©)
FIGURE 15.1
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15.2 Principle of virtual work

The establishment of the principle will be carried out in stages. First we shall consider a particle, then a
rigid body and finally a deformable body, which is the practical application we require when analysing
structures.

Principle of virtual work for a particle

In Fig. 15.2 a particle, A, is acted upon by a number of concurrent forces, Fi, £, ..., Fj, .. ., Fj; the resul-
tant of these forces is R. Suppose that the particle is given a small arbitrary displacement, A, to A’ in
some specified direction; A, is an imaginary or virsual displacement and is sufficiently small so that the
directions of Fy,F,, etc., are unchanged. Let 6 be the angle that the resultant, R, of the forces makes with
the direction of A, and 6y, 0,, ..., 04, ..., 0, the angles that Fj, 5, .. ., Fj, .. ., F, make with the direction
of A,, respectively. Then, from either of Egs (15.1) or (15.2) the total virtual work, W done by the
forces F as the particle moves through the virtual displacement, A,, is given by

Wr =F Ay cos 0, + F,Avy cos 0 + -+ + F,Ay cos 0 + -+ + F,Ay cos 0,
Thus

Wr = Z E. A, cos 0,
k=1

or, since A, is a fixed, although imaginary displacement
Wr=A, Y Fpcos by (15.4)
k=1

In Eq. (15.4) >}, Fi cos 0 is the sum of all the components of the forces, F, in the direction of
A,, and therefore must be equal to the component of the resultant, R, of the forces, £, in the direction

of A,, i.e.

We = A, Z F, cos 0, = AR cos Oz (15.5)
k=1
If the particle, A, is in equilibrium under the action of the forces, Fi, F, ..., Fj ..., F,, the resul-

tant, R, of the forces is zero (Chapter 2). It follows from Eq. (15.5) that the virtual work done by the
forces, F, during the virtual displacement, A,, is zero.

F2 F1 '/1R

FIGURE 15.2
Virtual work for a system of forces acting on




[ I
436 CHAPTER 15 Virtual Work and Energy Methods

We can therefore state the principle of virtual work for a particle as follows:

If a particle is in equilibrium under the action of a number of forces the total work done by the forces for 4
small arbitrary displacement of the particle is zero.

It is possible for the total work done by the forces to be zero even though the particle is not in equi.
librium if the virtual displacement is taken to be in a direction perpendicular to their resultant, R W,
cannot, therefore, state the converse of the above principle unless we specify that the total work dope
must be zero for any arbitrary displacement. Thus:

A particle is in equilibrium under the action of a system of forces if the total work done by the forces is zero
Jor any virtual displacement of the particle.

Note that in the above, A, is a purely imaginary displacement and is not related in any way to the
possible displacement of the particle under the action of the forces, . A, has been introduced purely
as a device for setting up the work—equilibrium relationship of Eq. (15.5). The forces, F, therefore
remain unchanged in magnitude and direction during this imaginary displacement; this would not be
the case if the displacement were real.

Principle of virtual work for a rigid body

Consider the rigid body shown in Fig. 15.3, which is acted upon by a system of external forces, 7,
Eyy ..., B ..., F,. These external forces will induce internal forces in the body, which may be regarded
as comprising an infinite number of particles; on adjacent particles, such as A; and A,, these internal
forces will be equal and opposite, in other words self-equilibrating. Suppose now that the rigid body is
given a small, imaginary, that is virtual, displacement, A, (or a rotation or a combination of both), in
some specified direction. The external and internal forces then do virtual work and the total virtual
work done, W, is the sum of the virtual work, W,, done by the external forces and the virtual work,
W, done by the internal forces. Thus

We=W.+ W (15.6)

Since the body is rigid, all the particles in the body move through the same displacement, A,, so
that the virtual work done on all the particles is numerically the same. However, for a pair of adjacent
particles, such as A; and A, in Fig. 15.3, the self-equilibrating forces are in opposite directions, which
means that the work done on A, is opposite in sign to the work done on A,. Thus the sum of the

Fa

Self-equilibrating internal forces

FIGURE 15.3
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yirtual work done on A; and A, is zero. The argument can be extended to the infinite number of pairs
of particles in the body from which we conclude that the internal virtual work produced by a virtual
displacement in a rigid body is zero. Equation (15.6) then reduces to

We=We. (15.7)

Since the body is rigid and the internal virtual work is therefore zero, we may regard the body as
a large particle. It follows that if the body is in equilibrium under the action of a set of forces, Fi,
Py «vv» Fo ..., F, the total virtual work done by the external forces during an arbitrary virtual
displacement of the body is zero.

The principle of virtual work is, in fact, an alternative to Eq. (2.10) for specifying the necessary con-
ditions for a system of coplanar forces to be in equilibrium. To illustrate the truth of this we shall con-
sider the calculation of the support reactions in some simple beams.

EXAMPLE 15.1
Calculate the support reactions in the cantilever beam shown in Fig. 15.4(a).

5 W
JA yB Bl l
: b
My T Byvon ; T
Ra
| L 2 L
& g |
(a (b) ()
FIGURE 15.4
Beam of Ex. 15.1.

The concentrated load, W, induces a vertical reaction, Ra, and also one of moment, My, at A.
Suppose that the beam is given a small imaginary, that is virtual, rotation, 0, 4, at A as shown in
Fig. 15.4(b). Since we are only concerned here with external forces we may regard the beam as a
rigid body so that the beam remains straight and B is displaced to B'. The vertical displacement of
B, A, p, is then given by

Ayp =6yal
or
Oa=Ap/L (i)
The total virtual work, W, done by all the forces acting on the beam is given by
We=WAp — Mpbia (i)

Note that the contribution of M, to the total virtual work is negative since the assumed direction
of M, is in the opposite sense to the virtual displacement, 6, 5. Note also that there is no linear
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movement of the beam at A so that Ry does no work. Substituting in Eq. (ii) for 6, 5 from Eq. 6}
we have

W.=WAp— MyAyp/L (ii)
Since the beam is in equilibrium, W; = 0 from the principle of virtual work. Therefore
0=WA,p—MsA,p/L
so that
My=WL

which is the result which would have been obtained from considering the moment equilibrium of
the beam about A.

Suppose now that the complete beam is given a virtual displacement, A, as shown in Fig. 15.4(c).
There is no rotation of the beam so that M, does no work. The total virtual work done is then given by

We=WA, — R4, (iv)

The contribution of R, is negative since its direction is opposite to that of A,. The beam is in
equilibrium so that W; = 0. Therefore, from Eq. (iv)

RA=W

which is the result we would have obtained by resolving forces vertically.

EXAMPLE 15.2

Calculate the support reactions in the cantilever beam shown in Fig. 15.5(a).

FRITRTTRIY

A B

Ra

FIGURE 15.5
() Beam of Ex. 15.2.

In this case we obtain a solution by simultaneously giving the beam a virtual displacement, A, 4,
at A and a virtual rotation, 0, 4, at A The total deflection at B is then A, 4 + 0, oL and at a distance
x from A is Ao +0,4x Since the beam carries a uniformly distributed load we find the virtual
work done by the load by first considering an elemental length, dx, of the load a distance x from A.
The load on the element is wbx and the vircual work done by this elemental load is given by

5W = wbx(Ayp + 0, 4%)

The total virtual work done on the beam is then
L
W, = J w(Aup + Oy ax)dx — MpO,p — RaD 5
0

which simplifies to
W, = (wL = Ra) A + [(wL?/2) = Mp)Bip =0 @)
since the beam is in equilibrium. Equation (i) is valid for all values of A, 4 and 0, 4 so that
wL — Ry =0 and (wl?/2) — My =0
Therefore
Ry = wL and My = wl?/2

which are the results that would have been obtained by resolving forces vertically and taking
moments about A. e

|
EXAMPLE 15.3

Calculate the reactions at the built-in end of the cantilever beam shown in Fig. 15.6.

o

A

5

FIGURE 15.6
Beam of Ex. 15.3.

In this example the load, W, produces reactions of vertical force, moment and torque at the built-in
end. The vertical reaction and the moment are the same as in Ex. 15.1. To determine the torque
reaction we impose a small virtual displacement, A, ¢, vertically downwards at C. This causes the
beam AB to rotate as a rigid body through an angle, 6, A, which is given by

av,AB == Av,C/d (1)

Alternatively we could have imposed a small vircual rotation, 6, g, on the beam which would
have resulted in a virtual displacement of C equal to 26, ap: clearly the two approaches produce
identical results.
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The total virtual work done on the beam is then given by Only a vertical load is applied to the beam so that only vertical reactions, Ry and Rc, are

We=WA,c— Th,43 =0 i) produced. s ot - b 1
. Ee wrisel g . - : Suppose that the beam at C is given a sm: imaginary, that is a virtual, displacement, A, ¢, in
since the beam is in equilibrium. Substituting for 6, p in Eq. (i) from Eq. (i) we have the direction of Rc as shown in Fig. 15.7(b). Since we are concerned here solely with the external
Th=Wa forces acting on the beam we may regard the beam as a rigid body. The beam therefore rotates about
s that C moves to C' and B moves to B'. From similar triangle th
which is the result that would have been obtained by considering the statical equilibrium of the beam. A b - e
Av =—— Ly C T TRy i
—m B a+bA’C LA o (@)
L The total virtual work, W;, done by all the forces acting on the beam is then given by
EXAMPLE 15.4
Calculate the support reactions in the simpl ed beam sh. oA Vo i
; upport reactions in the simply support ~ in Fig. 15.7. . e L
i o s Note that the work done by the load, W, is negative since A, g is in the opposite direction to its
i line of action. Note also that the support reaction, Ry, does no work since the beam only rotates
about A. Now substituting for A, in Eq. (ii) from Eq. (i) we have
A B c

W= ReAve =~ W3 A (i)
Since the beam is in equilibrium, W, is zero from the principal of virtual work. Hence, from Eq. (iii)

RCAV,C i W%Av,c =0

which gives

a

(a) B-= WZ

which is the result that would have been obtained from a consideration of the moment equilibrium
of the beam about A. Ry follows in a similar manner. Suppose now that instead of the single dis-
placement A, ¢ the complete beam is given a vertical virtual displacement, A, together with a vir-
tual rotation, 6., about A as shown in Fig. 15.7(c). The total virtual work, W, done by the forces
acting on the beam is now given by

W, = Ry A, — W(A, + 46,) + Rc(A, + 16,) =0 (iv)
(b)
since the beam is in equilibrium. Rearranging Eq. (iv)

(Ry + Rc — W)A, + (RcL — Wa)b, =0 )
Equation (v) is valid for all values of A, and 6, so that

Ry +Rc—W=0 RL—Wa=0

which are the equations of equilibrium we would have obtained by resolving forces vertically and
taking moments about A.
— |

FIGURE 15.7

Use of the principle of
virtual work to calculate
support reactions.

It is not being suggested here that the application of Eq. (2.10) should be abandoned in favour of
the principle of virtual work. The purpose of Exs 15.1—15.4 is to illustrate the application of a virtual

dicnlarament and the manner in which the nrincinle is nsed.

(c)
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Virtual work in a deformable hody

In structural analysis we are not generally concerned with forces acting on a rigid body. Structures anq
structural members deform under load, which means that if we assign a virtual displacement to a partic.
ular point in a structure, not all points in the structure will suffer the same virtual displacement o
would be the case if the structure were rigid. This means that the virtual work produced by the intern,]
forces is not zero as it is in the rigid body case, since the virtual work produced by the self—equilibrating
forces on adjacent particles does not cancel out. The total virtual work produced by applying a virtua]
displacement to a deformable body acted upon by a system of external forces is therefore given by
Eq. (15.6).

If the body is in equilibrium under the action of the external force system then every particle in the
body is also in equilibrium. Therefore, from the principle of virtual work, the virtual work done by the
forces acting on the particle is zero irrespective of whether the forces are external or internal. It follows
that, since the virtual work is zero for all particles in the body, it is zero for the complete body and
Eq. (15.6) becomes

We+ Wi=0 (15.8)

Note that in the above argument only the conditions of equilibrium and the concept of work are
employed. Thus Eq. (15.8) does not require the deformable body to be linearly elastic (i.e. it need not
obey Hooke’s law) so that the principle of virtual work may be applied to any body or structure that is
rigid, elastic or plastic. The principle does require that displacements, whether real or imaginary, must
be small, so that we may assume that external and internal forces are unchanged in magnitude and
direction during the displacements. In addition the virtual displacements must be compatible with the
geometry of the structure and the constraints that are applied, such as those at a support. The exception
is the situation we have in Exs 15.1—15.4 where we apply a virtual displacement at a support. This
approach is valid since we include the work done by the support reactions in the total virtual work
equation.

Work done by internal force systems

The calculation of the work done by an external force is straightforward in that it is the product of the
force and the displacement of its point of application in its own line of action (Egs (15.1), (15.2) or
(15.3)) whereas the calculation of the work done by an internal force system during a displacement is
much more complicated. In Chapter 3 we saw that no matter how complex a loading system is, it may
be simplified to a combination of up to four load types: axial load, shear force, bending moment and
torsion; these in turn produce corresponding internal force systems. We shall now consider the work
done by these internal force systems during arbitrary virtual displacements.

Axial force

Consider the elemental length, Ox, of a structural member as shown in Fig. 15.8 and suppose that it is sub-
jected to a positive internal force system comprising a normal force (i.e. axial force), IV, a shear force, S, 2
bending moment, M and a torque, 7, produced by some external loading system acting on the structure of
which the member is part. Note that the face on which the internal forces act is a negative face, see
Fig. 3.7. The stress distributions corresponding to these internal forces have been related in previous chap-
ters to an axis system whose origin coincides with the centroid of area of the cross section. We shall, in fact,
be using these stress distributions in the derivation of expressions for internal virtual work in linearly elastic
structures so that it is logical to assume the same origin of axes here; we shall also assume that the y axis is

15.2 Principle of virtual work 443

Cross-sectional
area, A

FIGURE 15.8

L Virtual work due to internal force
S system.

The direct stress, o, at any point in the cross section of the member is given by o= N/A
(Eq. (7.1)). Therefore the normal force on the element 84 at the point (3, y) is

N
— = — A
6N =0bA v 6

Suppose now that the structure is given an arbitrary virtual displacement which produces a virtual
axial strain, €,, in the element. The internal virtual work, du; n, done by the axial force on the elemen-
tal length of the member is given by

N
Sw; n = L ZdAE\,éx

which, since fA dA = A, reduces to
bw;y = Ne,bx (15.9)

In other words, the virtual work done by IV is the product of NV and the virtual axial displacement
of the element of the member. For a member of length L, the virtual work, w; n; done during the arbi-
trary virtual strain is then

wiy = J Ne,dx (15.10)
y5

For a structure comprising a number of members, the total internal virtual work, W, x; done by
axial force is the sum of the virtual work of each of the members. Thus

win = ZJ Ne,dx (15.11)
L

Note that in the derivation of Eq. (15.11) we have made no assumption regarding the material
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o er. for a linearly elastic material, i.e. one that obeys Hooke’s law (Section 7.7), we can €XPreg,
OwWever,

the virtual strain in terms of o) equivalent virtual normal force. Thus
€

&y =

NES

[ep%
E

Therefore, if we designate the actual normal force in a member by N,, Eq. (15.11) may p
expressed in the form

NadV,
win = ZJ Aﬁdx (15.12)

Shear force
The shear force, S, acting on the member section in Fig. 15.8 produces a distribution of vertical shegy
stress which, as we saw in Section 10.2, depends upon the geometry of the cross section.

since the element, 84, is infinitesimally small, we may regard the shear stress, 7, as constant over the
element. The shear force, 85, on the element is then

08=164 (15.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a virtual sheyy
strain, 7, at the element. This shear strain represents the angular rotation in a vertical plane of the ele.
ment 84 X dx relative to the longitudinal centroidal axis of the member. The vertical displacement 4¢

the section being considered is therefore Vv 8x. The internal virtual work, bw; 5, done by the shear force,
S, on the elemental length of the member is given by

(5w,-,5 =J TdA"}/v Ox
A

We saw in Section 13.5 that we could assume a uniform shear stress through the cross section of 4

beam if we allowed for the actual variation by including a form factor, 3. Thus the expression for the
internal virtual work in the member may be written

Owi g =J 5(5) ddy, éx
\4

Sw,s = 3Sy, bx (15.14)

Hence the virtual work done by the shear force during the arbitrary virtual strain in a member of
length L is

or

wig = ,BJ Sy, dx (15.15)
i

For a linearly elastic member, as in the case of axial force, we may express the virtual shear strain,
Y in terms of an equivalent virtual shear force, S,. Thus, from Section 7.7

_Tv_Sv
=Ry

so that from Eq. (15.15)

SASV
r (A

wis= [ 2 4, (15.16)
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For a structure comprising a number of linearly elastic members the total internal work, W, g, done
by the shear forces is

9.5 15.17
Wi’szsz A2 dx (15.17)

ing moment N istributi i
g}elﬂz enﬁ ing moment, M, acting on the member section in Fig. 15.8 produces a distribution of direct
e 3 >

s, 0, through the depth of the member cross section. The normal force on thf': elément, 8A, corlie‘:
o ading this stress is therefore o 84. Again we shall suppose that the structure is given a small arbi
spondl'ng:i d'l lacement which produces a virtual direct strain, €,, in the element 84 X &x. Thus the
‘il i k dlsp by the normal force acting on the element 84 is 0 84 €, dx. Hence, integrating over
V}llru::j)ln::i;e c(r)(r)l:s sthion of the member we obtain the internal virtual work, Sw; 55, done by the bend-
the

ember, i.e.
ing moment, M, on the elemental length of member,

5wiM=J O'dAEV bx (15.18)
| 4
The virtual strain, €,, in the element 84 X &x is, from Eq. (9.1), given by

8v=l

R,
where R, is the radius of curvature of the member produced by the virtual displacement. Thus, substi-
tuting for &, in Eq. (15.18), we obtain
bwipr = LGR%dA bx
or, since 0y 84 is the moment of the normal force on the element, 64, about the z axis,

) _M bx
wWim = Rv

Therefore, for a member of length Z, the internal virtual work done by an actual bending moment,
My, is given by

My

wim = s B

v i = i i i that it is
In the dCI‘i ation Of Eq (1519) no SpCClﬁC stress—strain relatlonshlp has been assumed,. SO
pp . i i i thC v1rtua.| curva-
i i l'thLllaI' case Of a hnearl ClaSth system,
Q] hcable to a non—hnear system. For thC pal : : y y - g
ture 1/R may bC CXPI‘CSSCd in terms Of an equivalent v1rtual bendmg moment, M,, using the clation
4

ship of Eq. (9.11), i.e.

ds (15.19)

1 M,
R, EI
Substituting for 1/R, in Eq. (15.19) we have
f Mndt, die (15.20)
wi ar =
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so that foragp cvaFfSing a number of members the total inter i
; nal
by ben dlng ) virtual work, W ,,, produceq

= 30 [l
’ L EI (15.29)
In Chaptt ? We used the suffix z”to denote a bendin i :
g moment in a vertical .
flnd the sseczolﬂd Moment of area of the member section about the z axis (1) lCleier]:qut t}'le z axis (Jg
in Eq. (15-21) need not be restricted to those in 2 vertical plane; the suffixes a're there);or e e‘_ldu;g Momepyg
d € omitted.

Torsion
The internal vireual work, w; 7, due to torsion in the
bar may be found in a similar manner and is given by

ZU'TZJ TAT;' dx
C ) Gl (15.22)

in whi i

o chf 1, is d'ue polar second moment of area of the cross section

; s o ‘non—‘c1rcular cross section, 1, is replaced by a torsion con
€am sections is determined empirically (Section 11.5) s

particular case of a linearly elastic circular secti
n

of the bar (see Section 11.1). Fop
tant, /, which, for many practicy

In some cases it i .
€S 1t 1S con s i ]
where, say, the actual g en:fnt to Impose a virtual rotation, 0., at some point in 4 strucural
(1 o i ; ura
(see Eq. (15.3)); physicall Lng moment is My. The internal virtual work done by M, is th menkd
 Physically this situation is equivalent to inserting a hinge at the poj A en My,
e point.

Sign of internal virtual work

So far we h : .
ave derived : .
tive in relari expressions for internal work without considering whether it i ..

relation to external virtual work. g whether it is positive or nega-

:S.uppose that the structural member, AB, in Fig, 15.9(a) is

W.=Ww
(15.23)
P A B
— 00—
Nep C P
(a)
A
P<—~O¥; B B’
t+——()----- -0 5

5, FIGURE 15.9
_ @@
) " "{ Sign of the internal virtual work
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Equation (15.23) would apply if the virtual displacement had been a contraction and not an exten-
sion, in which case the signs of the external and internal virtual work in Eq. (15.8) would have been
ceversed. Clearly the above applies equally if P is a compressive load. The above arguments may be
extended to structural members subjected to shear, bending and torsional loads, so that Eq. (15.23) is

gencrally applicable.

yvirtual work due to external force systems
So far in our discussion we have only considered the virtual work produced by externally applied con-
centrated loads. For completeness we must also consider the virtual work produced by moments, tor-

ques and distributed loads.
In Fig. 15.10 a structural member carries a distributed load, w(x), and at a particular point a con-

centrated load, W, a moment, M, and a torque, 7. Suppose that at the point a virtual displacement is
imposed that has translational components, A, and A, ,, parallel to the y and x axes, respectively, and

rotational components, 6., and @,, in the yx and zy planes, respectively.
If we consider a small element, 8x, of the member at the point, the distributed load may be

regarded as constant over the length 8x and acting, in effect, as a concentrated load w(x) dx. Thus the
virtual work, w,, done by the complete external force system is given by

we=WA,, +PA,,+M0,+T¢, + Lw(x)Av,y dx
For a structure comprising a number of load positions, the total external virtual work done is then
W, = Z [W/Av 5T PO+ MO, + T, + J w(x)Ay, dx] (15.24)
L

In Eq. (15.24) there need not be a complete set of external loads applied at every loading point so,
in fact, the summation is for the appropriate number of loads. Further, the virtual displacements in the
above are related to forces and moments applied in a vertical plane. We could, of course, have forces
and moments and components of the virtual displacement in a horizontal plane, in which case
Eq. (15.24) would be extended to include their contribution.

The internal virtual work equivalent of Eq. (15.24) for a linear system is, from Eqs (15.12),

(15.17), (15.21) and (15.22)

NaN, SaS, MpM, TAT,
= + + + + 15.2
" ZULEAd’“'BLGAd"L Eld"LG/d"MAQV MeCE
v »
TR
z
T € FIGURE 15.10
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of the structure.

Use of virtual force systems

moving through imposed vi i
displacememsgirl an)[z e :frtual displacements. However, the actual forces are not related to the v;
. e A a)lr dl.nccle, as we have seen, the magnitudes and directions of the actyal fo o
virtual work applies for 4 isp a%;n SIS S long as the displacements are small. Thus the prin o
Bgionty il nfy set of forces in equilibrium and any set of displacements, E uallp hClple X
) . : . t
gl e }f o;ces are a set of virtual forces in equilibrium and that the d(}s lai:,) o
S I i t. ere orel, instead of relating actual external and internal force sypt emf;lts y
nts, we can relate actual ex i i il s
ternal and internal d e
B e ernal displacements through vi
o rough virtual fc
N [z}vpl l}lf 2 viral (fzrgc; tsli/stem t;cl) ;hdelformable body it will induce an interngal virtual f(())rrces.
: € actual displacements; thus, j i il
in i
this case, for example, Eq. (15.10) becomes ) S el b il produced. I

Win :J Nyep dx
L

in thh N iS the lnt i > y s 1N
A% €rn \% i
X v ¢ al lrtual nofmal forCC and eA 1S the aCtual Straiﬂ. hell fOI a Hnear Systen
: T .
WhICh Ihe aClual Hltelllal 11()rmal f()rce 18 ZVA, EA == M/M, So that f()] a structure COIIlpriSiIlg a nulllb
€r

of mem i
bers the total internal virtual work due to a virtua] normal force s

which is identical to E ;
/ q. (15.12). Equati 1
virtual force systems in & simlas man% » ons (15.17), (15.21) and (15.22) may be shown to apply to

—
EXAMPLE 15.5

Determine the bendin
; g moment at th i i i
Fig. 15.11(a). # e poinc B in the simply supported beam ABC shown in
We determined the su i
Pport reactions for this particular b i

ever, we are i s ; cam in Ex. 15.4. In this exam

o t}eleref (::T:ted in thf: actual 'mternal moment, Mg, at the point of applic:tict)}rl:soixth [I)lz’dh%y
Gl e w[}:?:li ;i ;I/l;f}:lilil ddXSPdlz:cement which will relate the internal moment are l;) to' th:

xclude unl oy S
it st B R RADRE 1 k'l’lOW‘I.I external forces such as the support reacrione and
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w
A B l (0]
7
a b
L i

(@)

FIGURE 15.11
Determination of bending
moment at a point in the
beam of Ex. 15.5 using
virtual work.

(b)
beam. Therefore, if we imagine that the beam is hinged at B and that the lengths AB and BC are

rigid, a virtual displacement, A, g, at B will result in the displaced shape shown in Fig. 15.11(b).

Note that the support reactions at A and C do no work and that the internal moments in AB
and BC do no work because AB and BC are rigid links. From Fig. 15.11(b)
AV,B == 51/3 =ba (1)

Hence
la
e B
and the angle of rotation of BC relative to AB is then
cay L 2
msrams(i+ )=

Now equating the external virtual work done by W to the internal virtual work done by Mg (see

Eq. (15.23)) we have
WA, 5 = My (iii)
Substituting in Eq. (iii) for A, from Eq. (i) and for 0 from Eq. (ii) we have
Waf3 = My %ﬁ
which gives
o=

which is the result we would have obtained by calculating the moment of Rc (= Wa/L from Ex.
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P

IXAMPLE 15.6

determine the force in the member AB in the truss shown in Fig. 15.12(a).

=
e T AT
4m )l(,' w'/
(23
Bl i
i D 10kN v AvﬁI T
e iy B =D
4m
s OE L A k OE
7 W, Vi i 7
(@) (b)
FIGURE 15.12

Determination of the internal force in a member of a truss using virtual work.

We are required to calculate the force in the member AB, so that again we need to relate this
wernal force to the externally applied loads without involving the internal forces in the remaining
1embers of the truss. We therefore impose a virtual extension, A, g, at B in the member AB, such
1at B moves to B. If we assume that the remaining members are rigid, the forces in them will do
o work. Further, the triangle BCD will rotate as a rigid body about D to B'C'D as shown in
ig. 15.12(b). The horizontal displacement of C, A, is then given by

Ac = 4a
‘hile
Ag=3a
Hence
4,
ey = 3 - (@)

Equating the external virtual work done by the 30 kN load to the internal virtual work done by
1e force, Fa, in the member, AB, we have (see Eq. (15.23) and Fig. 15.9)
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30Ac = Fealy (ii)

Substituting for Ac from Eq. (i) in Eq. (ii),
4
30 X 5 Avp = Falp

Whence
Fas =+ 40 kN (i.e. Fpp is tensile)

In the above we are, in effect, assigning a positive (i.c. tensile) sign to Fga by imposing a virtual
extension on the member AB.

The actual sign of Fpy is then governed by the sign of the external virtual work. Thus, if the
30 kN load had been in the opposite direction to A the external work done would have been nega-
tive, so that Fgs would be negative and therefore compressive. This situation can be verified by
inspection. Alternatively, for the loading as shown in Fig. 15.12(a), a contraction in AB would have
implied that Fg was compressive. In this case DC would have rotated in an anticlockwise sense, Ac
would have been in the opposite direction to the 30 kN load so that the external virtual work done
would be negative, resulting in a negative value for the compressive force Fga; Fpa would therefore
be tensile as before. Note also that the 10 kN load at D does no work since D remains undisplaced.

We shall now consider problems involving the use of virtual forces. Generally we shall require the
displacement of a particular point in a structure, so that if we apply a virtual force to the structure at
the point and in the direction of the required displacement the external virtual work done will be the
product of the virtual force and the actual displacement, which may then be equated to the internal vir-
tual work produced by the internal virtual force system moving through actual displacements. Since the
choice of the virtual force is arbitrary, we may give it any convenient value; the simplest type of virtual
force is therefore a unit load and the method then becomes the unit load method.

=
EXAMPLE 15.7
Determine the vertical deflection of the free end of the cantilever beam shown in Fig. 15.13(a).

Let us suppose that the actual deflection of the cantilever at B produced by the uniformly distributed
load is v and that a vertically downward vircual unit load was applied at B before the actual deflection
took place. The external virtual work done by the unit load is, from Fig. 15.13(b), 1vg. The deflection,
Ug, is assumed to be caused by bending only, i.e. we are ignoring any deflections due to shear. The inter-
nal virtual work is given by Eq. (15.21) which, since only one member is involved, becomes

L
MM, ,
Wip = L o d )

The vircual moments, M,, are produced by a unit load so that we shall replace M, by M,. Then
L
MM, "
W

M jo El dx (i)
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2

I

A ey B

1 (Unit load)

|

|
g
T FIGURE 15.13

Deflection of the free end of a
cantilever beam using the unit
'b) load method.

At any section of the beam a distance x from the built-in end
M=~ M=-1L-%)

Substituting for M, and M, in Eq. (i) and equating the external virtual work done by the unit
ad to the internal virtual work we have

L
lug = J e (L~ dx

o 2E1
hich gives
wi kil 4 &
== (] —
T [4( %) L
» that
4
vp = -’gﬁ (as in Ex. 13.2)
Note that vg is in fact negative but the positive sign here indicates that it is in the same direction
i the unit load.
— ]
}
XAMPLE 15.8

Jetermine the rotation, i.e. the slope, of the beam ABC shown in Fig. 15.14(a) at A.

The actual rotation of the beam at A produced by the actual concentrated load, W, is 4. Let us
1ppose that a virtual unit moment is applied at A before the actual rotation takes place, as shown
1 Fio. 15.14(k). The virrnal unir moment induces virrual support reactions of R, a (=1/L) acting

A
§ :
é; ey %
2 22
w
7|

TR kl L2

(a)

Unit moment

1 FIGURE 15.14
L Determination of the
rotation of a simply
supported beam at a
support using the unit load
(b) method.

My =+ gx OSxSL/Z
My=+ -?(L—x) Lj2<x=<I

The internal vircual bending moment is
M,=1~-— %x 0=x=L

The external virtual work done is 10, (the virtual support reactions do no work as there is no ver-
tical displacement of the beam at the supports) and the internal virtual work done is given by
Eq. (15.21). Hence

10, = _Ezl_ “:/Zﬁ'zf_'x(l o %) dx + J;Z%(L~x)<l - %) dx] 0)
Simplifying Eq. (i) we have
w [ I
o [ L (i 92 e L/z (L—x)? dx} (i)
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Hence
W 2 3 - 1 &
e e
ZEIL{ 3o 3 L2
from which

2

A

16ET

which is the result that may be obtained from Eq. (iii) of Ex. 13.5.

EXAMPLE 15.9

Calculate the vertical deflection of the joint B and the horizontal movement of the support D in the
truss shown in Fig. 15.15(a). The cross-sectional area of each member is 1800 mm? and Young’s
modulus, £, for the material of the members is 200 000 N/mm?.

40 kN

) . D
A Bl c i B c 5"  FIGURE 15.15
’ 1 Deflection of a truss using
(b) © the unit load method.

The virtual force systems, i.e. unit loads, required to determine the vertical deflection of B and the
horizontal deflection of D are shown in Fig. 15.15(b) and (c), respectively. Therefore, if the actual ver-
tical deflection at B is &g, and the horizontal deflection at D is 8, the external virtual work done by
the unit loads is 18p, and 18p 1, respectively. The internal actual and virtual force systems comprise
xxial forces in all the members. These axial forces are constant along the length of each member so
that for a truss comprising 7 members, Eq. (15.12) reduces to

& Bl
Wi ¥l (D)
: ,; L4

0 which Fy; and F,; are the actual and virtual forces in the jth member which has a length L, an

vesal AE renco sasttae A X XE_L_ 5 T ™
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Since the forces £, ; are due to a unit load, we shall write Eq. (i) in the form

_ ~Fahyl o
Wiy = Z 7 (ii)

j=1

Also, in this particular example, the area of cross section, 4, and Young’s modulus, E, are the
same for all members so that it is sufficient to calculate > ", Fa;F1,;L; and then divide by EA to
obtain W’i, N-

The forces in the members, whether actual or virtual, may be calculated by the method of joints
(Section 4.6). Note that the support reactions corresponding to the three sets of applied loads (one
actual and two virtual) must be calculated before the internal force systems can be determined.
However, in Fig. 15.15(c), it is clear from inspection that Fjap= Fipc=Ficp= +1 while
the forces in all other members are zero. The calculations are presented in Table 15.1; note that posi-
tive signs indicate tension and negative signs compression.

Table 15.1
Member  L(m)  Fa(kN) Fig Fip FaFisL(kNm)  FaFyplL (kNm)
AE 5.7 -849  -094 0 +451.4 0
AB 40 +600  +067  +10  +160.8 +240.0
| EF 4.0 —800  -067 0 +160.8 0
EB 4.0 +200  +067 0 +53.6 0
BF 5.7 ~283  +047 0 ~76.2 0
BC 40 +800  +033  +10  +1056 +320.0
cD 40 +800  +033  +10  +1056 +320.0
CF 40 +100.0 0 0 0 0
DF 5.7 — 118 — 0.7 0 +301.0 0
Y =+12636 Y =+880.0

Thus equating internal and external virtual work done (Eq. (15.23)) we have

1263.6 X 10°
ey~
200 000 X 1800
whence
by =3.51 mm
and
g hsn 106
DA™ 500 000 X 1800
which gives
Opp = 2.44 mm

Both deflections are positive which indicates that the deflections are in the directions of the
applied unit loads. Note that in the above it is unnecessary to specify units for the unit load since
the unit load appears, in effect, on both sides of the virtual work equation (the internal F; forces are

Aivarder aenaareinnal va tha sinie laad)
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L
EXAMPLE 15.10

Determine the horizontal and vertical components of the deflection of the point C in the frame
shown in Fig. 15.16(a); consider the effects of bending only.

===y

The external work done is 18c, where 8¢, is the vertical component of the deflection of C.
Equating the internal and external virtual work gives

bcy =L (— W + wL)/EI (iv)

Note that the components of deflection can be either positive or negative depending on the relative
magnitudes of Wand w. A positive value indicates a deflection in the direction of the applied unit load
while a negative value indicates a deflection in the opposite direction to the applied unit load.

SYYYIiViviiye §A
A

. L
2E X< 3 2EI x‘L § 2Bl X
El L El i El| L
Wl y vy .
b L
- |

ULz

P PR
I~ "] | | g
(a) (b) ()
FIGURE 15.16
Frame of Ex. 15.10.

o
EXAMPLE 15.11 ‘

The cantilever beam AB shown in plan in Fig. 15.17 takes the form of a quadrant of a circle and is
positioned in a horizontal plane. If the beam supports a vertically downward load, W; at its free end
B and its bending and torsional stiffnesses are £/ and GJ respectively, calculate the vertical compo-
nent of the deflection of B.

Thfe components of the deflection of C may be found by applying horizontal and vertical unic
loads in turn at C as shown in Figs. 15.16(b) and (c). The internal virtual work done by this virtual

?orce system, that is unit loads acting through real displacements, is given by Eq. (15.20) in which
or AB ' ,

My=WL—(wx*/2), M,=1L(horiz), M, = — 1x (vert.)

and for BC

FIGURE 15.17
B Cantilever beam of Ex. 15.11,

To determine the vertical displacement we apply a virtual unic load at B vertically downwards (i.e
into the plane of the paper).
At a section of the beam where the radius at the section makes an angle, o, with the radius through B

My =Wy, M,=1y(horiz.), M,=0 (vert.)

Considering the horizontal component of deflection first, the total internal work done is

V5 ’ 2L
W, = L (wy?/EI) dy + L (WL = (wx’ /2)(L/2ET) dx

that is Mp=Wp=WRsina, M,=1Rsin
Wo=(W/ED) b 3Js + (L/2ED[WLx — (us /6) - R e b e e
which gives The total internal virtual work done is given by the summation of Egs. (15.20) and (15.22), that is
/2 /2
W =2L> QW — wL)/3El @ W, = (1/EI) J WR? sin* a R da + (1/GJ) J WR*(1—cos @)* R do (i)
0 0

The virtual external work done by the unit load is 18¢,p where 8¢, is the horizontal component AN ) L
of the deflection of C. Equating this to the total internal virtual work ,given by Eq. (i) gives ; Integrating Bq. () and substituring the limits gives
W, = WR{(n/4ET) + (1/G])[(3/4) - 2]} (ii)

The external work done by the unit load is 185 so that equating with Eq. (ii) gives

b = WR{(n/4EI) + (1/GD[(3n/4) — 21}

bch =20 QW — wL)/3EI (ii)

Now considering the vertical component of the deflection

—

Examples 15.5—15.11 illustrate the application of the principle of virtual work to the solution of
problems involving statically determinate linearly elastic structures. We shall now examine the alterna-
tive energy methods but we shall return to the use of virtual work in Chapter 16 when we consider stat-

2L
W= (/2D [ [We- /)] (- de

Note that for BC, M, = 0. Integrating this expression and substituting the limits

W=D (- W + wlL)/EI (iii)
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5.3 Energy methods

Ithough it is generally accepted that energy methods are not as powerful as the principle of virg,)
rotk in that they are limited to elastic analysis, they possibly find their greatest use in providing rapid
pproximate solutions of problems for which exact solutions do not exist. Also, many statically indege,.
1inate structures may be conveniently analysed using energy methods while, in addition, they are capa-
le of providing comparatively simple solutions for deflection problems which are not readily solved by
10re elementary means.

Energy methods involve the use of either the total complementary energy or the rotal potential ener,
TPE) of a structural system. Either method may be employed to solve a particular problem, although
s a general rule displacements are more easily found using complementary energy while forces are
10re easily found using potential energy.

itrain energy and complementary energy

n Section 7.10 we investigated strain energy in a linearly elastic member subjected to an axial load.
ubsequently in Sections 9.4, 10.3 and 11.2 we derived expressions for the strain energy in a linearly
lastic member subjected to bending, shear and torsional loads, respectively. We shall now examine the
a0re general case of a member that is not linearly elastic.

Figure 15.18(a) shows the jth member of a structure comprising 7 members. The member is sub-
scted to a gradually increasing load, P;, which produces a gradually increasing displacement, A. If the
nember possesses non-linear elastic characteristics, the load—deflection curve will take the form shown
n Fig. 15.18(b). Let us suppose that the final values of P; and A, are P;r and Ajp.

As the member extends (or contracts if P; is a compressive load) P; does work which, as we saw in
ection 7.10, is stored in the member as strain energy. The work done by P; as the member extends by
~small amount 84; is given by

§Wj = P64

Therefore the total work done by P, and therefore the strain energy stored in the member, as P;
ncreases from zero to P is given by

Ajp
Uj == JO ]?ldA] (1526)

vhich is clearly the area OBD under the load—deflection curve in Fig. 15.18(b). Similarly the area
DAB, which we shall denote by ¢;, above the load—deflection curve is given by

Pir
é}' = J A]dpj (1527)
0

It may be seen from Fig. 15.18(b) that the area OABD represents the work done by a constant force
>,»r moving through the displacement A, . Thus from Egs (15.26) and (15.27)

ut+c¢= P]',FA]"F (15.28)

It follows that since #; has the dimensions of work, ¢; also has the dimensions of work but otherwise
7 has no physical meaning. It can, however, be regarded as the complement of the work done by P in
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Pres
\ R
%/ j
(@
Complementary energy, C
Pi A
Pir A ( B
o
} / Strain
energy, U
g > A
0 Ar J
8? < FIGURE 15.18
: Load—deflection curve for a non-linearly elastic
(b) member.

The total strain energy, U, of the structure is the sum of the individual strain energies of the mem-
bers. Thus

U= zn:u]
=1

which becomes, when substituting for #; from Eq. (15.26)

0

n AjF
U= ZJ PdA, (15.29)
=1
Similarly, the total complementary energy, C, of the structure is given by
C=> 5
=1
whence, from Eq. (15.27)

o [

= A.AD. (15 30)
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Equation (15.29) may be written in expanded form as
Are ZAH Ajr A g
U=J PldAl-l-J Psz2+...+J I)jdAj+"'+J P, dA; (15.31)
0

0 0 0
Partially differentiating Eq. (15.31) with respect to a particular displacement, say A, gives

ou p
5, = b (15.32)

Equation (15.32) states that the partial derivative of the strain energy in an elastic structure with
espect to a displacement A, is equal to the corresponding force P; clearly U must be expressed as 5
unction of the displacements. This equation is generally known as Castigliano’s first theorem (Part ])
ifter the Italian engineer who derived and published it in 1879. One of its primary uses is in the analy-
jis of non-linearly elastic structures, which is outside the scope of this book.

Now writing Eq. (15.30) in expanded form we have

APy p P,

P p F
AZdP2+...+J Ajdpj+.‘.+J A, dp, (15.33)
0

Py p
C= j Zkldpl+_j
0

0 0

The partial derivative of Eq. (15.33) with respect to one of the loads, say P} is then

oC

J

Equation (15.34) states that the partial derivative of the complementary energy of an elastic struc-
ture with respect to an applied load, P, gives the displacement of that load in its own line of action; C
in this case is expressed as a function of the loads. Equation (15.34) is sometimes called the
Crotti— Engesser theorem after the two engineers, one Italian, one German, who derived the relationship
independently, Crotti in 1879 and Engesser in 1889.

Now consider the situation that arises when the load—deflection curve is linear, as shown in Fig. 15.19.
In this case the areas OBD and OAB are equal so that the strain and complementary energies are equal.
Thus we may replace the complementary energy, C, in Eq. (15.34) by the strain energy, U. Hence

oUu
- A (15.35)
J
Pia
P A B
&
U
) D _,  FIGURE 15.19
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Equation (15.35) states that, for a linearly elastic structure, the partial derivative of the strain energy
of a structure with respect to a load gives the displacement of the load in its own line of action. This is
generally known as Castigliano’s first theorem (Part II). Its direct use is limited in that it enables the dis-
placement at a particular point in a structure to be determined only if there is a load applied at the
point and only in the direction of the load. It could not therefore be used to solve for the required dis-
placements at B and D in the truss in Ex. 15.9.

The principle of the stationary value of the total complementary energy

Suppose that an elastic structure comprising 7 members is in equilibrium under the action of a number
of forces, Py, Py, ..., P, ..., P, which produce corresponding actual displacements, A;, A,, ..
Ap - - A, and actual internal forces, £y, £, ..., Fj ..., F,. Now let us suppose that a system of elemen-
tal virtual forces, 8Py, 8P, .. ., 8P, . . ., 8P, are imposed on the structure and act through the actual displa-

cements. The external virtual work, §W,, done by these elemental virtual forces is, from Section 15.2,

6‘”@ ==61H Z&l +‘5]b Z&z 2 +‘§]% Z&k 5 - +'5[§Zkr

i8]

or

§W. = Z AP, (15.36)
k=1

At the same time the elemental external virtual forces are in equilibrium with an elemental internal
virtual force system, 8F;, 85, ..., 8F), ..., 8F,, which moves through actual internal deformations, 9,
82 -+ 8 ..., 0, Hence the internal elemental virtual work done is

SWi=Y  56F; (15.37)

j=1

From Eq. (15.23)

ji:zﬁk51u2= Ei:@ﬁf?
k=1 j=1

so that

7

D 86F — ) AbP=0 (15.38)
j=1 k=1

Equation (15.38) may be written as

n F; r
5(2 JO §dF— > A,eP/e> =0 (15.39)
k=1

7=1

From Eq. (15.30) we see that the first term in Eq. (15.39) represents the complementary energy,
C, of the actual internal force system, while the second term represents the complementary energy, Ce,
of the external force system. C, and C, are opposite in sign since C, is the complement of the work
done by the external force system while G is the complement of the work done on the structure.

Rewriting Eq. (15.39), we have
A +0CY=0 (15.40)
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In Eq. (15.39) the displacements, Ay, and the deformations, 8, are the actual displacements and defor.
mations of the elastic structure. They therefore obey the condition of compatibility of displacement so thay
Eqgs (15.39) and (15.40) are equations of geometrical compatibility. Also Eq. (15.40) establishes the Drine.
ple of the stationary value of the total complementary energy which may be stated as:

For an elastic body in equilibrium under the action of applied forces the true internal forces (or stresses) and
reactions are those for which the total complementary energy has a stationary value.

In other words the true internal forces (or stresses) and reactions are those that satisfy the condition
of compatibility of displacement. This property of the total complementary energy of an elastic struc.
ture is particularly useful in the solution of statically indeterminate structures in which an infinite nyp,.
ber of stress distributions and reactive forces may be found to satisfy the requirements of equilibrium 50
that, as we have already seen, equilibrium conditions are insufficient for a solution.

We shall examine the application of the principle in the solution of statically indeterminate stryc.
tures in Chapter 16. Meanwhile we shall illustrate its application to the calculation of displacements i
statically determinate structures.

[ —
EXAMPLE 15.12
The calculation of deflections in a truss.
Suppose that we wish to calculate the deflection, A,, in the direction of the load, P;, and at
the joint at which P, is applied in a truss comprising 7 members and carrying a system of loads P,
Py ..., P ..., P, as shown in Fig. 15.20. From Eq. (15.39) the total complementary energy,
C, of the truss is given by k

7 F r
C= ZJ b e (i)
=1 40 k=1

é ; 3 j c % FIGURE 15.20
ol : /777 Deflection of a truss using
2 complementary energy.

From the principle of the stationary value of the total complementary energy with respect to the
load P, we have

0C &, 85 e 8
6—])2“;(5]'6—1)2 A, =0 (ii)
from which

NG E
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Note that the partial derivatives with respect to P; of the fixed loads, Py, Ps, ..., P, ..., P,
vanish.

To complete the solution we require the load—displacement characteristics of the structure. For a
non-linear system in which, say,

= b5
where & and ¢ are known, Eq. (iii) becomes
", (F\Y 0F;
; b) oP,

In Eq. (iv) F; may be obtained from basic equilibrium conditions, e.g. the method of joints,
and expressed in terms of P,; hence OF/0P, is found. The actual value of P, is then substituted in
the expression for F; and the product (E,;/b)”‘@l?/@]’z calculated for each member. Summation then

gives Ay
In the case of a linearly elastic structure §; is, from Sections 7.4 and 7.7, given by
F:
§ = —I-I.
7 'Aj 7

in which Ej, A; and L; are Young’s modulus, the area of cross section and the length of the jth mem-
ber. Substituting for §; in Eq. (iii) we obtain

_\hLog
A ;%% 0

Equation (v) could have been derived directly from Castigliano’s first theorem (Part II) which is
expressed in Eq. (15.35) since, for a linearly elastic system, the complementary and strain energies
are identical; in this case the strain energy of the jth member is fgzlj / 24;E; from Eq. (7.29). Other
aspects of the solution merit discussion.

We note that the support reactions at A and B do not appear in Eq. (i). This convenient absence
derives from the fact that the displacements, A;, A, ..., Ay ..., A, are the actual displacements
of the truss and fulfil the conditions of geometrical compatibility and boundary restraint. The com-
plementary energy of the reactions at A and B is therefore zero since both of their corresponding dis-
placements are zero.

In Eq. (v) the term OF/OP, represents the rate of change of the actual forces in the members
of the truss with P,. This may be found, as described in the non-linear case, by calculating the
forces, F, in the members in terms of P, and then differentiating these expressions with respect
to P,. Subsequently the actual value of P, would be substituted in the expressions for F; and
thus, using Eq. (v), A, obtained. This approach is rather clumsy. A simpler alternative would be
to calculate the forces, F; in the members produced by the applied loads including P,, then
remove all the loads and apply P, only as an unknown force and recalculate the forces 7 as
functions of P,; OF/OP, is then obtained by differentiating these functions.

This procedure indicates a method for calculating the displacement of a point in the truss in a
direction not coincident with the line of action of a load or, in fact, of a point such as C which car-
ries no load at all. Initially the forces F; in the members due to Py, Py, ..., Py, ..., P, are calculated.

T"\t‘cp lnade are then remaved and a dumwmn ar firtitinuc laad P annlied ar the naint :md in 1‘]"[(“_
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direction of the required displacement. A new set of forces, £}, are calculated in terms of the dummy w
load, Pr, and thus 8F/0P¢ is obtained. The required displacement, say Ac of C, is then given by 2
A y B
" F.L; OF; 7 S
AC = sl el (Vl
]‘2—; EjA; 0P ) E)I
7
The simplification may be taken a stage further. The force F; in a member due to the dummy 2
load may be expressed, since the system is linearly elastic, in terms of the dummy load as .
e O ] : i
i% et (vii) (@)
Suppose now that 2= 1, i.e. a unit load. Equation (vii) then becomes % s
e OF; 9% o S P AT SES R _L
ik apf / Ve
; . : , . : : : 7 B T
so that F;/0P;= F, , the load in the jth member due to a unit load applied at the point and in the :
direction of the required displacement. Thus, Eq. (vi) may be written as S{iﬁ;ﬁg 80
FFjL R V FIGURE 15.21
Ae = Z ; j (vili) EenRE ol Uyt Deflection of a cantilever beam
(b) using complementary energy.
in which a unit load has been applied at C in the direction of the required displacement. Note that
Eq. (viii) is identical in form to Eq. (ii) of Ex. 15.9. whence
In the above we have concentrated on members subjected to axial loads. The arguments apply in L oy
cases where structural members carry bending moments that produce rotations, shear loads that vp = J =40 (i)
cause shear deflections and torques that produce angles of twist. We shall now demonstrate the 0 OW
application of the method to structures subjected to other than axial loads. - In Eq. (ii)
ox
o=
= R
EXAMPLE 15.13 and from Eq. (9.11)
Calculate the deflection, vg, at the free end of the cantilever beam shown in Fig. 15.21(a). P ima
st

We shall assume that deflections due to shear are negligible so that vg is entirely due to bending

action in the beam. In this case the total complementary energy of the beam is, from Eq. (15.39) (here the curvature is negative since the centre of curvature is below the beam) so that

L (M M

c=J J do dM — Wy o) o

0Jo
in which A is the bending moment acting on an element, 8x, of the beam; 8x subtends a small Substituting in Eq. (ii) for 86 we have
angle, 86, at the centre of curvature of the beam. The radius of curvature of the beam at the section L Af oM
is R as shown in Fig. 15.21(b) where, for clarity, we represent the beam by its neutral plane. From Up, = = J oW (iii)
the principle of the stationary value of the total complementary energy of the beam 0 ‘
From Fig. 15.21(a) we see that
ocC oM
ow J a0 M=—W(L-x)
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Hence

oM
aw - ¢
Note: Equation (iii) could have been obtained directly from Eq. (9.21) by using Castigliano’s firg;
theorem (Part II).

Equation (iii) then becomes
L
W 2
e
UB L EI( x) dx

whence

773

WL .
U = 3—E—[— (asin Ex 13.1)

(Note that vp is downwards and therefore negative according to our sign convention.)

—il

EXAMPLE 15.14

Determine the deflection, vg, of the free end of a cantilever beam carrying a uniformly distributed
load of intensity w. The beam is represented in Fig. 15.22 by its neutral plane; the flexural rigidicy
of the beam is EL.

2

";a s gV
——/ B
El IB T FIGURE 15.22

Deflection of a cantilever beam using
= the dummy load method.

Pt

freeie e

@
<

L

For this example we use the dummy load method to determine vg since we require the deflection
at a point which does not coincide with the position of a concentrated load; thus we apply a dummy
load, Pg at B as shown. The total complementary energy, C, of the beam includes that produced by
the uniformly distributed load; thus

L oM L
C=J J d@dM”PftrB—J vw dx (i)
0Jo 0
in which v is the displacement of an elemental length, dx, of the beam at any distance x from the

built-in end. Then

8Cc 1. oM
"é'ﬁ;“Ldgé}'«;“VB‘O
so that

(- ..oM
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Note that in Eq. (i) v is an actual displacement and w an actual load, so that the last term disap-
pears when C is partially differentiated with respect to Pr. As in Ex. 15.13

| M
60 = — E(Sx
Also
M==B(l=sy~ (L~

in which P is imaginary and therefore disappears when we substitute for M in Eq. (ii). Then

oM ;
T
so that
i
o O Nt
B L o
whence
wl?
v = @7 (Seﬁ EX. 13.2)

For a linearly elastic system the bending moment, M produced by a dummy load, P may be
written as

oM

i
If Pe= 1, i.e. a unit load
oM
Mf == 5};{' 1

so that OM/OP;= M,, the bending moment due to a unit load applied at the point and in the direction
of the required deflection. Thus we could write an equation for deflection, such as Eq. (ii), in the form

n JLMAMi
ks

dx (see Eq. (ii) of Ex.15.7) (i)

in which M, is the actual bending moment at any section of the beam and M, is the bending
moment at any section of the beam due to a unit load applied at the point and in the direction of
the required deflection. Thus, in this example

My~ %(,b—x)z My=—1(L~x)

so that

e JL_“’_(L* Pdx
SELapr

1 ~ - . .o L 1. i ... 1 1. . 1 e 1
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=
IXAMPLE 15.15

Salculate the vertical displacements at the quarter and mid-span points B and C in the simply sup-
jorted beam shown in Fig. 15.23. The flexural rigidity of the beam is EL

Pgsr  Pgg w/Unit length
l P
. BN ETaEEY o

A B C A
: LA 1 4
$PorvgPort Y- i) 2 Pest3Por+ Y5

i L FIGURE 15.23

AR s Beam deflection of

Ex. 15.15.

We apply fictitious loads, Pg ¢and Pc ¢ at the quarter and mid-span points. The total complemen-
ary energy, C, of the system including the fictitious loads is then

M L
C WJ J d0 dM — PpeAp — PC,fAC i J Aw dx )
LJo 0
Hence
oC oM
—=|df — —Ag=0
OPg ¢ JL 0Py - o
ind
oC oM
s = Ld ET e Ac=0 (iii)
Assuming a linearly elastic beam Eqs. (ii) and (iii) become
1 (F oM !
Agﬂﬁqu@dx’ (1v)
ind
1 (F oM )
CTE)," oPcy
From A o B
3 1 wlL wx?
=[P4 —Pos+ i
M ( 4 PB f 2PCf ) )x )
io that
a3 oM 1
BPar A" TPy 3
From B to C
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giving
oM 1 oM 1
— ). - L A —— I -
OPg ¢ 4( #; apc,f 2x
From Cto D
, g 1 wl w >
M= ZPB,f i ’Z'PC,f T L—x)- —2—(L—x)
so that
oM 1 oM 1
TR A i waet

Substituting these values in Eqs. (iv) and (v) and remembering that Pg¢= Pc¢=0, we have,

from Eq. (iv)
oL/4 kwLx Wil & B L2 le  wx\ 1
S L [ —_—— — | =-(L-
L ( 2 2) 4 i L/’4 E 2 4(L s

1

from which
57wl?
Ao = ST
Similarly
5wl?
Ac= SeifT

which is the result obtained by the double integration method in Ex. 13.4.

L
EXAMPLE 15.16

Use the principle of the stationary value of the total complementary energy of a system to calculate
the horizontal displacement of the point C in the frame of Ex. 15.10.

Referring to Fig. 15.16 we apply a horizontal fictitious load, Pc g, at C. The total complementary
energy of the system, including the fictitious load, is given by

|,

where Acy, is the actual horizontal displacement of C. Then

ac "J oM
O0Pcg . OPcs

2L

M
J dé dM — PC,fAC,h S J Awdx"—- WACJI (l)
0

0

i AQh =0 (ii)
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Then
1 oM 1(F. oM
In AB R E o ok T E o ks ¥ (i)
M = (W + Pcg)L — (wx’/2)
so that
oM
OPct
In BC
M =(W + Pcgy
so that
oM _
oPcs

Substituting these expressions in Eq. (iii) and remembering that P = 0 we have

1 psl Fhe
Acy = w}o [WL — (wx® /2L dx + YE‘?L Wi dy (i)

Integrating Eq. (iv) and substituting the limits gives
Acy = (2L [3EDNQW — wL)
which is the solution produced in Ex. 15.10.

‘emperature effects

“he principle of the stationary value of the total complementary energy in conjunction with the unit load
nethod may be used to determine the effect of a temperature gradient through the depth of a beam.
Normally, if a structural member is subjected to a uniform temperature rise, # it will expand as
hown in Fig. 15.24. However, a variation in temperature through the depth of the member such as
he linear variation shown in Fig. 15.25(b) causes the upper fibres to expand more than the lower ones
o that bending strains, without bending stresses, are induced as shown in Fig. 15.25(a). Note that the
indersurface of the member is unstrained since the change in temperature in this region is zero.

7

s I FIGURE 15.24
Expansion of a member due to
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3x(1 + at)

47

(a) (b) ()

FIGURE 15.25
Bending of a beam due to a linear temperature gradient.

Consider an element, dx, of the member. The upper surface will increase in length to 6x(1 + o),
while the length of the lower surface remains equal to 8x as shown in Fig. 15.25(c); o is the coefficient
of linear expansion of the material of the member. Thus, from Fig. 15.25(c)

R _ _R+h
bx  Ox(1 + o)

so that
Also

whence

at bx

h

If we require the deflection, Ar.p, of the free end of the member due to the temperature rise, we
can employ the unit load method as in Ex. 15.14. Thus, by comparison with Eq. (ii) in Ex. 15.14

00 = (15.41)

L oM
Areg = | d0— 15.42
TeB Jo oP; ( )
in which, as we have seen, 0M/OP; = M, the bending moment at any section of the member produced
by a unit load acting vertically downwards at B. Now substituting for 86 in Eq. (15.42) from Eq. (15.41)
L
Arep == J M, % i (15.43)
0 h
In the case of a beam carrying actual external loads the total deflection is, from the principle of
superposition (Section 3.7), the sum of the bending, shear (unless neglected) and temperature deflec-
tions. Note that in Eq. (15.43) ¢ can vary arbitrarily along the length of the beam but only linearly

with denth Nate alen thar the temneratiire oradient chawn in Fie 15.25(h) nroduces a hogzing
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deflected shape for the member. Thus, strictly speaking, the radius of curvature, R, in the derivatiog of

Eq. (15.41) is negative (compare with Fig. 9.4) so that we must insert a minus sign in Eq. (15.43) a3
shown.

- —
EXAMPLE 15.17

Determine the deflection of the free end of the cantilever beam in Fig. 15.26 when subjected to the
temperature gradients shown.

2/

FIGURE 15.26

Deflection of a cantilever
beam having linear
Pt lengthwise and
L depthwise temperature
g e gradients.

The temperature, # at any section x of the beam is given by
st X
=5

Thus, substituting for 7 in Eq. (15.43), which applies since the variation of temperature through
the depth of the beam is identical to that in Fig. 15.25(b), and noting that M; = —1(L—x) we have

L !
Aren=— | [- 1L-0]2Z
s == | [- 1€ =15 Fads

which simplifies to

whence

— ]

Potential energy

[n the spring—mass system shown in its unstrained position in Fig. 15.27(a) the potential energy of the
mass, 72, is defined as the product of its weight and its height, 4, above some arbitrary fixed datum. In
other words, it possesses energy by virtue of its position. If the mass is allowed to move to the equilib-
rium position shown in Fig. 15.27(b) it has lost an amount of potential energy mg Ag. Thus, deflection
s associated with a loss of potential energy or, alternatively, we could say that the loss of potential
:nergy of the mass represents a negative gain in potential energy. Thus, if we define the potential energy

af thewnace ae vars i fes wedallasead sasiiiasn fo Tl 18 APLN ol o thn momem o il il o o 2R
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/
Mass, m
F ]
h h
Datum Datum N FIGURE 15.27
777 7 Z Z

Potential energy of a
(a) (b) spring—mass system.
of the datum such that 4 = 0, its actual potential energy in its deflected state in Fig. 15.27(b) is —mgh.
In the deflected state, the total energy of the spring-mass system is the sum of the potential energy of
the mass (—mgh) and the strain energy of the spring.

Applying the above argument to the elastic member in Fig. 15.18(a) and defining the ‘tozal potential
energy (TPE) of the member as the sum of the strain energy, U, of the member and the potential
energy, V; of the load, we have

D

TPE=U+V = J " PdA;—PipAjr  (see Eq. (15.24)) (15.44)
0
Thus, for a structure comprising 7 members and subjected to a system of loads, Py, Ps, ..., Pps - - 5
P,, the TPE is given by
n_ pAjF r
TPE=U+V= ZJJ PdA; = ) P (15.45)
=170 k=1

in which P; is the internal force in the jth member, A is its extension or contraction and A, is the

displacement of the load, P, in its line of action.

The principle of the stationary value of the total potential energy

Let us now consider an elastic body in equilibrium under a series of loads, Py, Py, ...y Py .., Py and
let us suppose that we impose infinitesimally small virtual displacements, 8A, 8A,, ..., 84, ..., 04,
at the points of application and in the directions of the loads. The virtual work done by the loads is
then

W, = Zpkmk (15.46)
k=1

This virtual work will be accompanied by an increment of virtual strain energy, dU, or internal vir-
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accompanying virtual strains "in the body itself. Therefore, from the principle of virtua] Work
(Eq. (15.23)) we have

oW, =6U
or
U= 6W. =0
Substituting for §W, from Eq. (15.46) we obtain

§U =Y PNy =0 (15.47)
k=1

which may be written in the form

(5<U— ZP&A,@) =0
k=1

in which we see that the second term is the potential energy, V, of the applied loads. Hence the equa-
tion becomes

SU+V)=0 (15.48)

and we see that the TPE of an elastic system has a stationary value for all small displacements if the sys-
tem is in equilibrium.

It may also be shown that if the stationary value is a minimum, the equilibrium is stable. Thjs may
be demonstrated by examining the states of equilibrium of the particle at the positions A, B and C jn
Fig. 15.28. The TPE of the particle is proportional to its height, 4, above some arbitrary datum, g4
note that a single particle does not possess strain energy, so that in this case TPE = Clearly, at each
position of the particle, the first-order variation, (U + V)/0u, is zero (indicating equilibrium) but only
at B, where the TPE is a minimum, is the equilibrium stable; at A the equilibrium is unstable while at
C the equilibrium is neutral.

The principle of the stationary value of the TPE may therefore be stated as:

The TPE of an elastic system has a stationary value for all small displacemenss when the system is in equi-
librium; further, the equilibrium is stable if the stationary value is a minimum.

Potential energy can often be used in the approximate analysis of structures in cases where an exact
analysis does not exist. We shall illustrate such an application for a simple beam in Ex. 15.18 below

TPE

{

(U + V) = f(h)

FIGURE 15.28

—> U Qtatac Af antiililhviiies ~f ~ - - a0 1
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d in Chapter 21 in the case of a buckled column; in both cases we shall suppose that the deflected
an is unknown and has to be initially assumed (this approach is called the Rdyleng—'thz method).
lf:orrrﬂa1 linearly elastic system, of course, the methods of complementary energy and potential energy are

o

identical.

EXAMPLE 15.18 e
Determine the deflection of the mid-span point of the linearly elastic, simply supported beam ABC

shown in Fig. 15.29(a).

W
i i
i Z
A c
B i N L2 &
(a)
- ;
VB FIGURE 15.29
s Approximate value for beam
(b) deflection using TPE.

We shall suppose that the deflected shape of the bea;n_is unknown. Initially, thémfbrc., we ‘shalf

assume a deflected shape that satisfies the boundary conditions for d}e beam. ‘G’enm}ﬂy, itrgtinof;net

ric or polynomial functions have been found to be the i o i whﬁrg the Ve + nc-

tion the less accurate the solution. Let us suppose that the displaced shape of the beam is given by
= vpsin = G

U= Up Sin I

in whic is the deflection at the mid-span point. From Eq. (i) we see that when xmf) and x= L,

212{ gﬁidv]t;}; ?vieicieg?z? U= Ug. anore, dv/dx= (?U'L)fu? oos (mx/L) which is zero when

x= L/2. Thus the displacement function satisfies the boundary condlncnf. of the beam.

The strain energy due to bending of the beam is given by Eq. (9.21), i.e.

e JLEA%& (i)

Also, from Eq. (13.3)
v
M = EI iz (iii)

Substituting in Eq. (iii) for v from Eq. (i), and for M in Eq. (ii) from Eq. (iii), we have
e o

L= — mZT,sxn

20 L
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which gives 1
4 Elvi
T
The TPE of the beam is then given by
I3 T EIv}
TPE=U+V = NE — Wug

Hence, from the principle of the stationary value of the TPE
AU +V) _ n*Elvg

c 575 —-W=0
whence
W12 nes WL
vp = o EI == 0.02953'%?* (lv)
The exact expression for the deflection at the mid-span point was found in Ex. 13.5 and is
wL L WI?
UR = M = 0@2083§ (V)

Comparing the exact and approximate results we see that the difference is less than 2%,
Furthermore, the approximate deflection is less than the exact deflection because, by assuming a
deflected shape, we have, in effect, forced the beam into that shape by imposing restraints; the beam
is therefore stiffer.

—m

15.4 Reciprocal theorems

There are two reciprocal theorems: one, attributed to Maxwell, is the theorem of reciprocal displacements
(often referred to as Maxwell’s reciprocal theorem) and the other, derived by Betti and Rayleigh, is the
theorem of reciprocal work. We shall see, in fact, that the former is a special case of the latter. We shall
also see that their proofs rely on the principle of superposition (Section 3.7) so that their application is
limited to linearly elastic structures.

Theorem of reciprocal displacements

In a linearly elastic body a load, P;, applied at a point 1 will produce a displacement, A, at the point
and in its own line of action given by

Ay =an P

in which @y, is a flexibility coefficient which is defined as the displacement at the point 1 in the direction
of P; produced by a unit load at the point 1 in the direction of P;. It follows that if the elastic body is
subjected to a series of loads, Py, Py, ..., P, ..., P, each of the loads will contribute to the displace-
ment of point 1. Thus the corresponding displacement, A}, at the point 1 (i.e. the total displacement
in the direction of P; produced by all the loads) is then

A —. D L. D L 1 . .D. L 1 . D
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in which 415 is the displacement at the point 1 in the direction of P; produced by a unit load at 2 in the direc-
dion of P2, and so on. The corresponding displacements at the points of application of the loads are then

A] 21111])1 + 6112])2 Fiina +ﬂ1kpk +...+ terP,
Az =a21P1 +ﬂ22P2 +ont 42/5])/3 Fiu Tt aer,.

Ay =auPy +aplP + taylPyt ...t ap, (15.49)

A, =a P+ a,Py+ ... tapPy+ ...+ a,P,

or, in matrix form

Ay an a2 ... 4 o Al Py
A, ay @y v oy o Ay P,
= | = - : (15.50)
AV g ap  ap o ae | | Pe
Ar a1 ar it Ayl vt Ay Pr

which may be written in matrix shorthand notation as
{A} =417}

Suppose now that a linearly elastic body is subjected to a gradually applied load, P, at a point 1
and then, while P; remains in position, a load P, is gradually applied at another point 2. The total
strain energy, U, of the body is equal to the external work done by the loads; thus

P, P,
U] = 71(51111)1) + 72(1122])2) + P](dlzpz) (1551)

The third term on the right-hand side of Eq. (15.51) results from the additional work done by P;
as it is displaced through a further distance #;,P; by the action of P,. If we now remove the loads and
then apply P, followed by Pj, the strain energy, Uy, is given by

P P
U= —Zz(uzsz) + 71(4111’1) + Py(a Py) (15.52)
By the principle of superposition the strain energy of the body is independent of the order in which

the loads are applied. Hence

U =0,
so that

a1y = ay (15.53)
Thus, in its simplest form, the theorem of reciprocal displacements states that:

The displacement at a point 1 in a given direction due to a unit load at a point 2 in a second direction is
equal to the displacement at the point 2 in the second direction due to a unit load at the point 1 in the
given direction.

The theorem of reciprocal displacements may also be expressed in terms of moments and rotations. Thus:

The rotation ar a point 1 due to a unit moment at a point 2 is equal to the rotation at the point 2 pro-
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Finally we have:

The rotation in radians at a point 1 due to a unit load at a point 2 is numerically equal to the displace-
ment at the point 2 in the direction of the unit load due to a unit moment at the point 1.

F —

EXAMPLE 15.19

A cantilever 800 mm long with a prop 500 mm from its built-in end deflects in accordance with the
following observations when a concentrated load of 40 kN is applied at its free end:

Distance from fixedend (mm) O 100 200 300 400 500 600 700 800
Deflection (mm) 0 03 1.4 2.5 L9 = O ~-23 48 -106

What will be the angular rotation of the beam at the prop due to a 30 kN load applied 200 mm
from the built-in end together with a 10 kN load applied 350 mm from the built-in end?

The initial deflected shape of the cantilever is plotted to a suitable scale from the above observa-
tions and is shown in Fig. 15.30(a). Thus, from Fig. 15.30(a) we see that the deflection at D due to
a 40 kN load at C is 1.4 mm. Hence the deflection at C due to a 40 kN load at D is, from the
reciprocal theorem, 1.4 mm. It follows that the deflection at C due to a 30 kN load at D is equal to
(3/4) X (1.4) = 1.05 mm. Again, from Fig. 15.30(a), the deflection at E due to a 40 kN load at C is
2.4 mm. Thus the deflection at C due to a 10 kN load at E is equal to (1/4) X (2.4) = 0.6 mm,
Therefore the total deflection at C due to a 30 kN load at D and a 10kN load at E is
1.05 + 0.6 = 1.65 mm. From Fig, 15.30(b) we see that the rotation of the beam at B is given by

0p = tan™" (‘1’355’) = tan~1(0.0055)

b 40 kN
/% )
é s

% 200 mm

350 mm
(a)

30kN 10 kN

\lc

B Og

\g\JEr_/T / FIGURE 15.30

Deflection of a proppéd cantilever
(b) using the reciprocal theorem.
or

0p = 0°19’
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EXAMPLE 15.20

An elastic member is pinned to a drawing board at its ends A and B. When a moment, A4, is applied at A,
A rotates by 04, B rotates by 0p and the centre deflects by ;. The same moment, M, applied at B rotates
B by 6c and deflects the centre through §,. Find the moment induced at A when a load, W, is applied to
the centre in the direction of the measured deflections, and A and B are restrained against rotation.

The three load conditions and the relevant displacements are shown in Fig. 15.31. Thus, from
Fig. 15.31(a) and (b) the rotation at A due to M at B is, from the reciprocal theorem, equal to the
rotation at B due to M at A.

M
s B
O 8 O _
)
C
(@
M
A ;
iy , ‘ :
e
C
(b)
m © ' “Ms  FIGURE 15.31
(c) Model analysis of a fixed beam.
Thus

Oa) = 08

It follows that the rotation at A due to Mg at B is

M; :
Or@1 = ﬁﬁﬁ (M)

where (b) and (c) refer to (b) and (¢) in Fig. 15.31.
" Also, the rotation at A due to a unit load at C is equal to the deflection at C due to a unit
moment at A. Therefore

Oz _ 61
W M
or
W .
Or@2 = 7701 (i)
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in which @a( 2 is the rotation at A due to Wat C. Finally the rotation at A due to M, at A is, from
Fig. 15.31(a) and (¢

Or3 = —9A (iii)

The total rotation at A produced by My at A, Wat C and Mg at B is, from Eqs (1), (ii) and (iii)
oA(c),l = QA(c),Z = QA(C),g = ;‘Z}EQB -+ -A—{-§1 = —A—£-9A =0 (iv)

since the end A is restrained against rotation. In a similar manner the rotation at B is given by

Mg My
o] BUGT g G+
7 Oc + 52 —0g =0 W)

Solving Egs (iv) and (v) for M, gives

M= w (S 0)
The fact that the arbitrary moment, M, does not appear in the expression for the restraining moment
at A (similarly it does not appear in Mg) produced by the load W indicates an extremely useful applica-
ton of the reciprocal theorem, namely the model analysis of statically indeterminate structures. For
example, the fixed beam of Fig. 15.31(c) could possibly be a full-scale bridge girder. It is then only neces-
sary to construct a model, say, of perspex, having the same flexural rigidity, EI, as the full-scale beam and
measure rotations and displacements produced by an arbitrary moment, M, to obtain the fixed-end
moments in the full-scale beam supporting a full-scale load. -

Theorem of reciprocal work

Let us suppose that a linearly elastic body is to be subjected to two systems of loads, P, P, ...,
Py ..., Pyand, Qy, Qo ..., Qs ..., Q,, which may be applied simultaneously or separately. Let us
also suppose that corresponding displacements are Apy, Apy, ..., Apy, ..., Ap, due to the loading
system, P, and Ag1, Ago, ... Ags -+ Agm due to the loading system, Q. Finally, let us suppose
that the loads, P, produce displacements Aj ;, Afy,, ..., A ;.. - A%, at the points of application
and in the direction of the loads, Q, while the loads, Q, produce displacements
A’P,l, A’P’z, — A'P,k, e, A’P,r at the points of application and in the directions of the loads, P

Now suppose that the loads P and Q are applied to the elastic body gradually and simultaneously.
The total work done, and hence the strain energy stored, is then given by

1 / 1 /
U1 =EPI(AP’1 + AP,I) + EPZ(AP’Z + AP,Z) = _PK(AP/e + A /e)
1 ’ 1 ’ 1 T
Fir. EP,(AP,,. - AP,r) g E QI(AQ,I + AQ,I) + EQZ(AQ’Z sk AQ,Z) (1554)

1 4 1 /
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If now we apply the P-loading system followed by the Q-loading system, the total strain energy
stOer is

1 1 1 1 1 1

U2 ZEPIAI’J +EP2AP,2 Fias +§P[eAP,]e Foes +EPrAP,r +E QlAQ,l +§Q2AQ,2
I 1 (15.55)
PP +EQiAQ’i T i ms +EQmAQ’m +P1A/p’1 +P2A}>,2 +P/eA/p,/e +... +P,A},’r

Since, by the principle of superposition, the total strain energies, U; and U,, must be the same, we

have from Egs (15.54) and (15.55)

1 1 1 1
EPIA}’,I _EPZA;)’Z T e —EP/?A}’,,@ T e _EP,.A};J
il 1 A/ - 1 A/ _— 1 A/ _ _ 1 A/
5 QA1 5@ 5 Qhqi - T3 QuBo
In other words
S PG =D Quly, (15.56)
k=1 i=1

The expression on the left-hand side of Eq. (15.56) is the sum of the products of the P loads and
their corresponding displacements produced by the Q loads. The right-hand side of Eq. (15.56) is the
sum of the products of the Q loads and their corresponding displacements produced by the P loads.
Thus the theorem of reciprocal work may be stated as:

The work done by a first loading system when moving through the corresponding displacements produced
by a second loading system is equal to the work done by the second loading system when moving through
the corresponding displacements produced by the first loading system.

Again, as in the theorem of reciprocal displacements, the loading systems may be either forces or
moments and the displacements may be deflections or rotations.

If, in the above, the P- and Q-loading systems comprise just two loads, say P; and Q,, then, from
Eq. (15.56), we see that

Pi(a12Q) = Qo(an Py)

so that

a12 = a1
as in the theorem of reciprocal displacements. Therefore, as stated initially, we see that the theorem of
réciprocal displacements is a special case of the theorem of reciprocal work.
In addition to the use of the reciprocal theorems in the model analysis of structures as described in
Ex. 15.20, they are used to establish the symmetry of, say, the stiffness matrix in the matrix analysis of
some structural systems. We shall examine this procedure in Chapter 16.

PROBLEMS

P.15.1 Use the principle of virtual work to determine the support reactions in the beam ABCD
shown in Fig. P.15.1.
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P.15.2

P.15.3

P.15.4
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FIGURE P.15.1

Find the support reactions in the beam ABC shown in Fig. P.15.2 using the principle of
virtual work.

Ans. Ry = (W+2wlL)/4 Rc = BW+ 2wl)/4.

w

w
R 2 2 T 2

B

3L/4 L/4

<€ :I:

\

FIGURE P.15.2

Determine the reactions at the built-in end of the cantilever beam ABC shown in Fig. P.15.3
using the principle of virtual work.

Ans. Ry =3W My=25WL.

y lw 2w
Z A B o
L/2 | Li2
< g FIGURE P.15.3

Find the bending moment at the three-quarter-span point in the beam shown in Fig. P.15.4.
Use the principle of virtual work.

Ans. 3wI?132.

w
YV V VY VYV V VY VY

iz ”
L L N

FIRIIRE P 1R 4

P.15.5

P.15.6

P.15.7

P.15.8

Problems 483

Calculate the forces in the members FG, GD and CD of the truss shown in Fig, P.15.5 using
the principle of virtual work. All horizontal and vertical members are 1 m long.

Ans. FG= +20 kN GD = +28.3 kN CD = —20 kN.

10 kN E F G
—T
A D
B c
Y, 20 kN
4 7 l FIGURE P.15.5

The frame shown in Fig. P.15.6 consists of a cranked beam simply supported at A and F and
reinforced by a tie bar pinned to the beam at B and E. The beam carries a uniformly
distributed load of intensity, w, over the outer parts AB and EF. Considering the effects of
bending and axial load determine the axial force in the tie bar and the bending moments at B
and C. The bending stiffness of the beam is £/ and its cross sectional area is 34 while the
corresponding values for the tie bar are £/ and A.

Apns. Force in tie bar 7= 9wIL?/8[L* + (41/4)]. M (at B) = wl? (anticlockwise),
M (at C) = (TL—wI?)/2 (clockwise).

C D
w w L
AN, B \Tiebar E B F
L L L FIGURE P.15.6

e

The flat tension spring shown in Fig. P.15.7 consists of a length of wire of circular cross
section, having a diameter, 4, and Young’s modulus, E. The spring consists of 7 open loops
each of which subtends an angle of 3m/2 radians at its centre; the length between the ends of
the spring is L. Considering bending and axial strains only calculate the stiffness of the spring.

Ans. (\J2) "ELIL{ASL* (v + 1)/n*d] + 3n—2)}.

‘I FIGURE P.15.7

Use the unit load method to calculate the vertical displacements at the quarter and mid-span
points in the beam shown in Fig. P.15.8.




