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P.15.9 Calculate the deflection of the free end C of the cantilever beam ABC shown in Fig. P.15.9

using the unit load method.
Ans. wa®(4L—a)I24E1 (downwards)
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P.15.10 Use the unit load method to calculate the deflection at the free end of the cantilever beam

ABC shown in Fig. P.15.10.
Ans. 3WIL?/8EI (downwards)
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P.15.11 Use the unit load method to find the magnitude and direction of the deflection of the joint C
in the truss shown in Fig. P.15.11. All members have a cross-sectional area of 500 mm? and a

Young’s modulus of 200 000 N/mm?.
Ans. 23.4 mm, 9.8° to left of vertical.

P.15.12 Calculate the magnitude and direction of the deflection of the joint A in the truss shown in
Fig. P.15.12. The cross-sectional area of the compression members is 1000 mm?> while that of

the tension members is 750 mm?. Young’s modulus is 200 000 N/mm?.

Ans. 30.3 mm, 10.5° to right of vertical.

P.15.13 A rigid triangular plate is suspended from a horizontal plane by three vertical wires attached to
its corners. The wires are each 1 mm diameter, 1440 mm long with a modulus of elasticity of
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deflection at the point of application of a load of 100 N placed at a point equidistant from
the three sides of the plate.

Ans. 0.33 mm.

P.15.14 The pin-jointed space truss shown in Fig. P.15.14 is pinned to supports 0, 4, 5 and 9 and is
loaded by a force P in the x direction and a force 3P in the negative y direction at the point 7.
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Find the rotation of the member 27 about the z axis due to this loading. All members have
the same cross-sectional area, 4, and Young’s modulus, E. (Hint. Calculate the deflections in
the x direction of joints 2 and 7.)

Ans. 382P/9AE.

P.15.15 The tubular steel post shown in Fig. P.15.15 carries a load of 250 N at the free end C. The

outside diameter of the tube is 100 mm and its wall thickness is 3 mm. If the modulus of
elasticity of the steel is 206 000 N/mm?, calculate the horizontal movement of C.

Ans. 53.3 mm.
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P.15.16 Figure P.15.16 shows a cantilever beam subjected to linearly varying temperature gradients

along its length and through its depth. Calculate the deflection at the free end of the beam.
Ans. 20,L*13h.
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FIGURE P.15.16

P.15.17 A cantilever beam of length L and depth 4 is subjected to a uniform temperature rise along its

length. At any section, however, the temperature increases linearly from #, on the undersurface
of the beam to #, on its upper surface. If the coefficient of linear expansion of the material of
the beam is a, calculate the deflection at its free end.

Apns. a(tz—tl)L2/2/7.

P.15.18 A simply supported beam of span L is subjected to a temperature gradient which increases

linearly from zero at the left-hand support to £ at the right-hand support. If the temperature
gradient also varies linearly through the depth, 4, of the beam and is zero on its undersurface,
calculate the deflection of the beam at its mid-span point. The coefficient of linear expansion
of the material of the beam is c.

Ans. — aty[148).

P.15.19
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Figure P.15.19 shows a frame pinned to supports at A and B. The frame centreline is a
circular arc and its section is uniform, of bending stiffness £/ and depth 4. Find the
maximum stress in the frame produced by a uniform temperature gradient through the depth,
the temperature on the outer and inner surfaces being raised and lowered by an amount 7.
The coefficient of linear expansion of the material of the frame is a. (Hint. Treat half the
frame as a curved cantilever built-in on its axis of symmetry and determine the horizontal
reaction at a support by equating the horizontal deflection produced by the temperature
gradient to the horizontal deflection produced by the reaction).

Ans. 1.29ETa.

FIGURE P.15.19

P.15.20 A simply supported beam AB of span L and uniform section carries a distributed load of

P.15.21

intensity varying from zero at A to w,/unit length at B according to the law

_2w0x(1_1c_>
YTTI 2L

per unit length. If the deflected shape of the beam is given approximately by the expression

. X 2 . 2mx
V=a sin— ~+ a; sin——
L L

evaluate the coefficients #; and #, and find the deflection of the beam at mid-span.
Ans. 2y = 2w, [* (v* + 4)/EI%’, a4y = —w,L*/16EI’, 0.00918w,L*/EL

A uniform simply supported beam, span L, carries a distributed loading which varies
according to a parabolic law across the span. The load intensity is zero at both ends of the
beam and w, at its mid-point. The loading is normal to a principal axis of the beam cross
section and the relevant flexural rigidity is £/. Assuming that the deflected shape of the beam
can be represented by the series

] . imx
V= E . a; sin —
i=1 E L

find the coefficients # and the deflection at the mid-span of the beam using only the
first term in this series.

Ans. 2= 32w L EIR (i odd), w,L*/94.4EI
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P.15.22 Calculate the deflection at the mid-span point of the beam of Ex. 15.18 by assuming a
deflected shape function of the form

. TX + . 3mx
v =1 sin — + vz sin —
L L

in which v; and v3 are unknown displacement parameters. Note:

Jj sin? (ﬁLT_x> dx = —é— J: sin (me> sin (nTWx) dx=0

Ans. 0.02078 WL/EL

P.15.23 A beam is supported at both ends and has the central half of its span reinforced such that its
flexural rigidity is 2E7; the flexural rigidity of the remaining parts of the beam is E7. The
beam has a span L and carries a vertically downward concentrated load, W, at its mid-span
point. Assuming a deflected shape function of the form

_ Aupx?
v=—7

in which vy, is the deflection at the mid-span point, determine the value of vy,

Ans. 0.00347 WL3/EL

(BL—4x) (0=x=L/2)

P.15.24 Figure P.15.24 shows two cantilevers, the end of one being vertically above the end of the
other and connected to it by a spring AB. Initially the system is unstrained. A weight, W,
placed at A causes a vertical deflection at A of §; and a vertical deflection at B of 8,. When
the spring is removed the weight Wat A causes a deflection at A of 85. Find the extension of
the spring when it is replaced and the weight, W, is transferred to B.

Ans. 62(61—62)/(63‘_81)

% : 7

B % FIGURE P.15.24

P.15.25 A beam 2.4 m long is simply supported at two points A and B which are 1.44 m apart; point
A is 0.36 m from the left-hand end of the beam and point B is 0.6 m from the right-hand
end; the value of £/ for the beam is 240 X 108 Nmm?®. Find the slope at the supports due to
load of 2 kN applied at the mid-point of AB.

Use the reciprocal theorem in conjunction with the above result to find the deflection at
the mid-point of AB due to loads of 3 kN applied at each end of the beam.

Ans. 0.011, 15.8 mm.

Analysis of Statically
Indeterminate Structures

Statically indeterminate structures occur more frequently in practice than those that are statically deter-
minate and are generally more economical in that they are stiffer and stronger. For example, a fixed
beam carrying a concentrated load at mid-span has a central displacement that is one-quarter of that of
a simply supported beam of the same span and carrying the same load, while the maximum bending
moment is reduced by half. It follows that a smaller beam section would be required in the fixed beam
case, resulting in savings in material. There are, however, disadvantages in the use of this type of beam
for, as we saw in Section 13.6, the settling of a support in a fixed beam causes bending moments that
are additional to those produced by the loads, a serious problem in areas prone to subsidence. Another
disadvantage of statically indeterminate structures is that their analysis requires the calculation of displa-
cements so that their cross-sectional dimensions are required at the outset. The design of such structures
therefore becomes a matter of trial and error, whereas the forces in the members of a statically determi-
nate structure are independent of member size. On the other hand, failure of, say, a member in a stati-
cally indeterminate frame would not necessarily be catastrophic since alternative load paths would be
available, at least temporarily. However, the failure of a member in, say, a statically determinate truss
would lead, almost certainly, to a rapid collapse.

The choice between statically determinate and statically indeterminate structures depends to a large
extent upon the purpose for which a particular structure is required. As we have seen, fixed or continu-
ous beams are adversely affected by support settlement so that the insertion of hinges at, say, points of
contraflexure would reduce the structure to a statically determinate state and eliminate the problem.
This procedure would not be practical in the construction of skeletal structures for high-rise buildings
so that these structures are statically indeterminate. Clearly, both types of structures exist in practice so
that methods of analysis are required for both statically indeterminate and statically determinate
structures.

In this chapter we shall examine methods of analysis of different forms of statically indeterminate
structures; as a preliminary we shall discuss the basis of the different methods, and investigate methods
of determining the degree of statical and kinematic indeterminacy, an essential part of the analytical
procedure.

16.1 Flexibility and stiffness methods

In Section 4.4 we briefly discussed the statical indeterminacy of trusses and established a condition, not
always applicable, for a truss to be stable and statically determinate. This condition, which related the
number of members and the number of joints, did not involve the support reactions which themselves
could be either statically determinate or indeterminate. The condition was therefore one of internal
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statical determinacy; clearly the determinacy, or otherwise, of the support reactions is one of externa]
statical determinacy.

Consider the portal frame shown in Fig. 16.1. The frame carries loads, P and W, in its own plane so
that the system is two-dimensional. Since the vertical members AB and FD of the frame are fixed at A
and F, the applied loads will generate a total of six reactions of force and moment as shown. For a two-
dimensional system there are three possible equations of statical equilibrium (Eq. (2.10)) so that the
frame is externally statically indeterminate to the #hird degree. The situation is not improved by taking a
section through one of the members since this procedure, although eliminating one of the sets of reac-
tive forces, would introduce three internal stress resultants. If, however, three of the support reactions
were known or, alternatively, if the three internal stress resultants were known, the remaining three
unknowns could be determined from the equations of statical equilibrium and the solution completed.

A different situation arises in the simple truss shown in Fig. 4.7(b) where, as we saw, the additional
diagonal results in the truss becoming internally statically indeterminate to the first degree; note that the
support reactions are statically determinate.

In the analysis of statically indeterminate structures two basic methods are employed. In one the struc-
ture is reduced to a statically determinate state by employing releases, i.e. by eliminating a sufficient number
of unknowns to enable the support reactions and/or the internal stress resultants to be found from a con-
sideration of statical equilibrium. For example, in the frame in Fig. 16.1 the number of support reactions
would be reduced to three if one of the supports was pinned and the other was a pinned roller support.
The same result would be achieved if one support remained fixed and the other support was removed
entirely. Also, in the truss in Fig. 4.7(b), removing a diagonal, vertical or horizontal member would result
in the truss becoming statically determinate. Releasing a structure in this way would produce displacements
that would not otherwise be present. These displacements may be calculated by analysing the released stati-
cally determinate structure; the force system required to eliminate them is then obtained, i.e. we are
employing a compatibility of displacement condition. This method is generally termed the flexibility ot
force method; in effect this method was used in the solution of the propped cantilever in Fig. 13.25.

The alternative procedure, known as the stiffness or displacement method is analogous to the flexibil-
ity method, the major difference being that the unknowns are the displacements at specific points in
the structure. Generally the procedure requires a structure to be divided into a number of elements for
each of which load—displacement relationships are known. Equations of equilibrium are then written
down in terms of the displacements at the element junctions and are solved for the required displace-
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Both the flexibility and stiffness methods generally result, for practical structures having a high
degree of statical indeterminacy, in a large number of simultaneous equations which are most readily
solved by computer-based techniques. However, the flexibility method requires the structure to be
reduced to a statically determinate state by inserting releases, a procedure requiring some judgement on
the part of the analyst. The stiffness method, on the other hand, requires no such judgement to be
made and is therefore particularly suitable for automatic computation.

Although the practical application of the flexibility and stiffness methods is generally computer
based, they are fundamental to ‘hand’ methods of analysis as we shall see. Before investigating these
hand methods we shall examine in greater detail the indeterminacy of structures since we shall require
the degree of indeterminacy of a structure before, in the case of the flexibility method, the appropriate
number of releases can be determined. At the same time the kinematic indeterminacy of a structure is
needed to determine the number of constraints that must be applied to render the structure kinemati-
cally determinate in the stiffness method.

16.2 Degree of statical indeterminacy

In some cases the degree of statical indeterminacy of a structure is obvious from inspection. For exam-
ple, the portal frame in Fig. 16.1 has a degree of external statical indeterminacy of 3, while the truss of
Fig. 4.7(b) has a degree of internal statical indeterminacy of 1. However, in many cases, the degree is
not obvious and in other cases the internal and external indeterminacies may not be independent so
that we need to consider the complete structure, including the support system. A more formal and
methodical approach is therefore required.

Rings

The simplest approach is to insert constraints in a structure until it becomes a series of completely stiff
rings. The statical indeterminacy of a ring is known and hence that of the completely stiff structure.
Then by inserting the number of releases required to return the completely stiff structure to its original
state, the degree of indeterminacy of the actual structure is found.

Consider the single ring shown in Fig. 16.2(a); the ring is in equilibrium in space under the action
of a number of forces that are not coplanar. If, say, the ring is cut at some point, X, the cut ends of the
ring will be displaced relative to each other as shown in Fig. 16.2(b) since, in effect, the internal forces
equilibrating the external forces have been removed. The cut ends of the ring will move relative to each
other in up to six possible ways until a new equilibrium position is found, i.e. translationally along the
% y and z axes and rotationally about the x, y and z axes, as shown in Fig. 16.2(c). The ring is now stat-
ically determinate and the internal force system at any section may be obtained from simple equilib-
rium considerations. To rejoin the ends of the ring we require forces and moments proportional to the
displacements, i.e. three forces and three moments. Therefore at any section in a complete ring sub-
jected to an arbitrary external loading system there are three internal forces and three internal moments,
none of which may be obtained by statics. A ring is then six times statically indeterminate. For a two-
dimensional system in which the forces are applied in the plane of the ring, the internal force system is
reduced to an axial force, a shear force and a2 moment, so that a two-dimensional ring is three times
statically indeterminate.

The above arguments apply to any closed loop so that a ring may be of any shape. Furthermore, a
ring may be regarded as comprising any number of members which form a closed loop and which are
joined at 7odes, a node being defined as a point at the end of a member. Examples of rings are shown
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FIGURE 16.2
Statical indeterminacy of a ring.
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FIGURE 16.3
M=1,N=1

M=3N=3 M=4N=4 M=2,N=2 Examples of rings.

number of members is equal to the number of nodes in every case. However, when a ring is cut we
introduce an additional member and two additional nodes, as shown in Fig. 16.4.

The entire structure

Since we shall require the number of rings in a structure, and since it is generally necessary to include
the support system, we must decide what constitutes the structure. For example, in Fig. 16.5 the mem-
bers AB and BC are pinned to the foundation at A and C. The foundation therefore acts as a member
of very high stiffness. In this simple illustration it is obvious that the members AB and BC, with the
foundation, form a ring if the pinned joints are replaced by rigid joints. In more complex structures we
must ensure that just sufficient of the foundation is included so that superfluous indeterminacies are
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Effect on members and nodes of cutting a ring.
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FIGURE 16.6
Determination of the entire structure.

of support are singly connected such that for any two points A and B in the foundation system there is
only one path from A to B that does not involve retracing any part of the path. For example, in
Fig. 16.6(2) and (b) there is only one path between A and B which does not involve retracing part of
the path. In Fig. 16.6(c), however, there are two possible paths from A to B, one via G and one via F
and E. Thus the support points in Fig. 16.6(a) and (b) are singly connected while those in Fig. 16.6(c)
are multiply connected. We note from the above that there may be a number of ways of singly connect-
ing the support points in a foundation system and that each support point in the entire structure is
attached to at least one foundation ‘member’. Including the foundation members increases the number
of members, but the number of nodes is unchanged.

The completely stiff structure

Having established the entire structure we now require the completely stiff structure in which there is no
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A completely stiff structure.
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FIGURE 16.8
Determination of the degree of statical indeterminacy of a structure.

(c)

completely stiff structure (Fig. 16.7(b)) corresponding to the simple truss in Fig. 16.7(a) has rigid joints
(nodes), members that are capable of resisting shear loads as well as axial loads and a single foundation
member. Note that the completely stiff structure comprises two rings, is two-dimensional and therefore
six times statically indeterminate. We shall consider how such a structure is ‘released to return it to its
original state (Fig. 16.7(a)) after considering the degree of indeterminacy of a three-dimensional system.

Degree of statical indeterminacy

Consider the frame structure shown in Fig. 16.8(a). It is three-dimensional and comprises three portal
frames that are rigidly built-in at the foundation. Its completely stiff equivalent is shown in Fig. 16.8
(b) where we observe by inspection that it consists of three rings, each of which is six times statically
indeterminate so that the completely stiff structure is 3 X6 =18 times statically indeterminate.
Although the number of rings in simple cases such as this is easily found by inspection, more complex
cases require a more methodical approach.

Suppose that the members are disconnected until the structure becomes singly connected as shown
in Fig. 16.8(c). (A singly connected structure is defined in the same way as a singly connected founda-
tion.) Each time a member is disconnected, the number of nodes increases by one, while the number of
rings is reduced by one; the number of members remains the same. The final number of nodes, N, in
the singly connected structure is therefore given by

ol L A AR AR 1 r 1 N\
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Suppose now that the members are reconnected to form the original completely stiff structure. Each
reconnection forms a ring, i.e. each time a node disappears a ring is formed so that the number of
rings, R, is equal to the number of nodes lost during the reconnection. Thus

R=N—-N

where IV is the number of nodes in the completely stiff structure. Substituting for N from the above
we have

R=M-N+1

In Fig. 16.8(b), M =10 and N=8 so that R= 3 as deduced by inspection. Therefore, since each
ring is six times statically indeterminate, the degree of statical indeterminacy, 7, of the completely stiff
structure is given by

n.=6(M—-N +1) (16.1)

For an actual entire structure, releases must be inserted to return the completely stiff structure to its

original state. Each release will reduce the statical indeterminacy by 1, so that if 7 is the total number of
releases required, the degree of statical indeterminacy, 7, of the actual structure is

ns=n—r
or, substituting for 7, from Eq. (16.1)

ns=6(M—-N+1)—r (16.2)
Note that in Fig. 16.8 no releases are required to return the completely stiff structure of Fig. 16.8
(b) to its original state in Fig. 16.8(a) so that its degree of indeterminacy is 18.

In the case of two-dimensional structures in which a ring is three times statically indeterminate,
Eq. (16.2) becomes

ng=3M—-—N+1)—r (16.3)
Trusses
A difficulty arises in determining the number of releases required to return the completely stiff equiva-
lent of a truss to its original state.

Consider the completely stiff equivalent of a plane truss shown in Fig. 16.9(a); we are not concerned
here with the indeterminacy or otherwise of the support system which is therefore omitted. In the actual
truss each member is assumed to be capable of resisting axial load only so that there are two releases for
each member, one of shear and one of moment, a total of 2M/ releases. Thus, if we insert a hinge at the end
of each member as shown in Fig. 16.9(b) we have achieved the required number, 2, of releases. However,

B c B C \ji—%
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A D A D
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FIGURE 16.9
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in this configuration, each joint would be free to rotate as a mechanism through an infinitesimally sma]]
ingle, independently of the members; the truss is then excessively pin-jointed. This situation can be pre.
vented by removing one hinge at each joint as shown, for example at joint B in Fig. 16.9(c). The member
BC then prevents rotation of the joint at B. Furthermore, the presence of a hinge at B in BA and at B in BE
-nsures that there is no moment at B in BC so that the conditions for a truss are satisfied.

From the above we see that the total number, 2M, of releases is reduced by 1 for each node. Thuys
the required number of releases in a plane truss is

r=2M — N (16.4)
so that Eq. (16.3) becomes
ns=3M—N+1)—(2M — N)

ns=M—2N+3 (16.5)

Equation (16.5) refers only to the internal indeterminacy of a truss so that the degree of indetermi-
nacy of the support system is additional. Also, returning to the simple triangular truss of Fig. 16.7(a)
we see that its degree of internal indeterminacy is, from Eq. (16.5), given by

ng=3—2X3+3=0

as expected.

A similar situation arises in a space truss where, again, each member is required to resist axial load
only so that there are 5M releases for the complete truss. This could be achieved by inserting ball joints at
the ends of each member. However, we would then be in the same kind of position as the plane truss of
Fig. 16.9(b) in that each joint would be free to rotate through infinitesimally small angles about each of
the three axes (the members in the plane truss can only rotate about one axis) so that three constraints are
required at each node, a total of 3V constraints. Therefore the number of releases is given by

r=5M —3N
so that Eq. (16.2) becomes
ng=6(M — N +1)— (5M — 3N)

ns=M—3N+6 (16.6)

For statically determinate plane trusses and space trusses, i.e. 7; =0, Egs (16.5) and (16.6), respec-
tively, become

M=2N—-3 M=3N-6 (16.7)
which are the results deduced in Section 4.4 (Eqgs (4.1) and (4.2)).

16.3 Kinematic indeterminacy

We have seen that the degree of statical indeterminacy of a structure is, in fact, the number of forces or
stress resultants which cannot be determined using the equations of statical equilibrium. Another form
of the indeterminacy of a structure is expressed in terms of its degrees of freedom; this is known as the

~ 1_
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A simple approach to calculating the kinematic indeterminacy of a structure is to sum the degrees of
freedom of th.e nodes. and then subtract those degrees of freedom that are prevented by constraints such
as support points. It is therefore important to remember that in three-dimensional structures each node
possesses 6 degrees of freedom while in plane structures each node possesses three degrees of freedom.

|
EXAMPLE 16.1

Determine the degrees of statical and kinematic indeterminacy of the beam ABC shown in
Fig. 16.10(a).

The completely stiff structure is shown in Fig. 16.10(b) where we see that M =4 and N = 3. The
number of releases, 7, required to return the completely stff structure to its original state is 5, as
indicated in Fig. 16.10(b); these comprise a2 moment release at each of the three supports and a
translational release at each of the supports B and C. Therefore, from Eq. (16.3)

n=3E—-3+1)~5=1

so that the degree of statical indeterminacy of the beam is 1.
Each of the three nodes possesses 3 degrees of freedom, a total of nine. There are four constraints
so that the degree of kinematic indeterminacy is given by

m=9—4=5
=1 =2 r=2

b)

FIGURE 16.10 s L ;
Determination of the statical and kinematic indeterminacies of the beam of Ex. 16.1.

[
EXAMPLE 16.2
Determine the degree of statical and kinematic indeterminacy of the truss shown in Fig. 16.11(a).
The completely stiff structure is shown in Fig. 16.11(b) in which we see that M =17 and N =38.
However, since the truss is pin-jointed, we can obtain the internal statical indeterminacy directly
from Eq. (16.5) in which M = 16, the actual number of truss members. Thus

(@) (b)

FIGURE 16.11
Determinacy of the truss of Ex. 16.2.
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ng=16—16+3=3

and since, as can be seen from inspection, the support system is statically determinate, the complete
structure is three times statically indeterminate.

Alternatively, considering the completely stiff structure in Fig. 16.11(b) in which M =17 apq
N=38, we can use Eq. (16.3). The number of internal releases is found from Eq. (16.4) and i
r=2X 16 — 8 = 24, There are three additional releases from the support system giving a total of 27
releases. Thus, from Eq. (16.3)

n,=3(17—-8+1)—-27=3

as before.

The kinematic indeterminacy is found as before by examining the total degrees of freedom of the
nodes and the constraints, which in this case are provided solely by the support system. There are
eight nodes each having 2 translational degrees of freedom. The rotation at a node does not result in
a stress resultant and is therefore irrelevant. There are therefore 2 degrees of freedom at a node in a
plane truss and 3 in a space truss. In this example there are then 8 X 2 =16 degrees of freedom and
three translational constraints from the support system. Thus

mo=16—3=13

£,
EXAMPLE 16.3

Calculate the degree of statical and kinematic indeterminacy of the frame shown in Fig. 16.12(a).

In the completely stff structure shown in Fig. 16.12(b), M =7 and N=6. The number of
releases, 7, required to return the completely stff structure to its original state is 3. Thus, from
Eq. (16.3)

#=3(7]—6+1)—3=3

The number of nodes is six, each having 3 degrees of freedom, a total of 18. The number of con-
straints is three so that the kinematic indeterminacy of the frame is given by

m=18—3=15

zi ;é FIGURE 16.12
2 <

Statical and kinematic indeterminacies of
(@) (b) the frame of Ex. 16.3.
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L
EXAMPLE 16.4

Determine the degree of statical and kinematic indeterminacy in the space frame shown in
Fig. 16.13(a).

In the completely stiff structure shown in Fig. 16.13(b), M =19, N=13 and r= 0. Therefore
from Eq. (16.2)

n=6(19—13+1)—0=42

There are 13 nodes each having 6 degrees of freedom, a total of 78. There are six constraints at

each of the four supports, a total of 24. Thus
=78 — 24 =54

(@) (b)

FIGURE 16.13
Space frame of Ex. 16.4.

We shall now consider different types of statically indeterminate structure and the methods that
may be used to analyse them; the methods are based on the work and energy methods described in
Chapter 15.

16.4 Statically indeterminate beams

Beams are statically indeterminate generally because of their support systems. In this category are propped
cantilevers, fixed beams and continuous beams. A propped cantilever and some fixed beams were analysed
in Section 13.6 using either the principle of superposition or moment-area methods. We shall now apply
the methods described in Chapter 15 to some examples of statically indeterminate beams.

EXAMPLE 16.5
Calculate the support reaction at B in the propped cantilever shown in Fig. 16.14.

In this example it is unnecessary to employ the procedures described in Section 16.2 to calculate
the degree of statical indeterminacy since this is obvious by inspection. Thus the removal of the ver-
tical support at B would result in a statically determinate cantilever beam so that we deduce that the
degree of statical indeterminacy is 1. Furthermore, it is immaterial whether we use the principle of
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. L | FIGURE 16.14
l Propped cantilever of Ex. 16.5.

sirtual work or complementary energy in the solution since, for linearly elastic systems, they result in
‘he same equations (see Chapter 15). First, we shall adopt the complementary energy approach.
The total complementary energy, C, of the beam is given, from Eq. (i) of Ex. 15.13, by

L (M
C=J J d6 dM — Rgup 1)
0J0
n which vg is the vertical displacement of the cantilever at B (in this case vg = 0 since the beam is
supported at B).
From the principle of the stationary value of the total complementary energy we have

oc _ ["oM y
oRs Jo e #
which, by comparison with Eq. (iii) of Ex. 15.13, becomes
LM oM
U & JO E—&_R;dx =0 (lll)

The bending moment, M, at any section of the beam is given by

M = Rg(L—x)— -’;-’(L—x)2

Hence
oM
% = [
Substituting in Eq. (iii) for M and 0M/ORy we have
oL
J {RB(L—x)Z—i‘i(L —x)3}dx==o )
0 2
rom which
3wl
S

which is the result obrained in Ex. 13.20.
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The algebra in the above solution would have been slightly simplified if we had assumed an ori-
gin for x at the end B of the beam. Equation (iv) would then become

JL (Rsz = %x3>dx= 0

0

which again gives
3wl

i

Having obtained Rp, the remaining support reactions follow from statics.

An alternative approach is to release the structure so that it becomes statically determinate by removing
the support at B (by inspection the degree of statical indeterminacy is 1 so that one release only is required
in this case) and then to calculate the vertical displacement at B due to the applied load using, say, the unit
load method which, as we have seen, is based on the principle of virtual work or, alternatively, complemen-
tary energy. We then calculate the vertical displacement at B produced by Rp acting alone, again, say, by
the unit load method. The sum of the two displacements must be zero since the beam at B is supported,
so that we obtain an equation in which Ry is the unknown.

It is not essential to select the support reaction at B as the release. We could, in fact, choose the
fixing moment at A in which case the beam would become a simply supported beam which, of
course, is statically determinate. We would then determine the moment at A required to restore the
slope of the beam at A to zero.

In the above, the released structure is frequently termed the primary structure.

Suppose that the vertical displacement at the free end of the released cantilever due to the uni-
formly distributed load is vp . Then, from Eq. (iii) of Ex. 15.14 (noting that My in that equation
has been replaced by M, here to avoid confusion with the bending moment at A)

JL M, M,
UB,o =

s e w

in which
My =2l uf i == WL )

Hence, substituting for M, and M, in Eq. (v), we have

T ;
S )
b L T i
which gives
- 2L
T
We now apply a vertically downward unit load at the B end of the cantilever from which the distrib-
uted load has been removed. The displacement, v 1, due to this unit load is then, from Eq. (v)

(vi)

v JL gk, (L — x)*dx
= T
LA e
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from which

L3
3EI
The displacement due to Rg at B is — Rgug; (Rp acts in the opposite direction to the unir load)

so that the total displacement, vg, at B due to the uniformly distributed load and Ry is, using the
principle of superposition

Up1 = (vii)

vp = Upo — Rpup1 =0 (viii)

Substituting for vg o and vp ; from Egs (vi) and (vii) we have

wl? - 3 o
8EI ' °3El
which gives
3wl
i

as before. This approach is the flexibility method described in Section 16.1 and is, in effect, identical
to the method used in Ex. 13.20.

In Eq. (viii) v is the displacement at B in the direction of Ry due to a unit load at B applied
in the direction of Rp (cither in the same or opposite directions). For a beam that has a degree of
statical indeterminacy greater than 1 there will be a series of equations of the same form as Eq. (viii)
but which will contain the displacements at a specific point produced by the redundant forces. We
shall therefore employ the flexibility coefficient ag; (k=1,2,..., r; j=1, 2,..., r) which we defined in
Section 15.4 as the displacement at a point £ in a given direction produced by a unit load at a point j
in a second direction. Thus, in the above, vp; = 2;; so that Eq. (viii) becomes

vpo — a1 Rp =0 (ix)

It is also convenient, since the flexibility coefficients are specified by numerical subscripts, to rede-
signate Rp as R;. Thus Eq. (ix) becomes

UBo — an R =0 (6]

B
EXAMPLE 16.6

Determine the support reaction at B in the propped cantilever shown in Fig. 16.15(a).

As in Ex. 16.5, the cantilever in Fig. 16.15(a) has a degree of statical indeterminacy equal to 1.
Again we shall choose the support reaction at B, Ry, as the indeterminacy; the released or primary
structure is shown in Fig. 16.15(b). Initially we require the displacement, vgg, at B due to the
applied load, W, at C. This may readily be found using the unit load method. Thus from Eq. (iii)

of Ex. 15.13
P W
o [ e

7WIL?

which gives

My
(=My)

(

A(2)

B(1)
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FIGURE 16.15
Propped cantilever of Ex. 16.6 (a).

Similarly, the displacement at B due to the unit load at B in the direction of Ry (Fig. 16.15(c)) is
ay = i— (use Eq. (vii) of Ex. 16.5)

3EI
Hence, since,
vpo — a1k =0 (i)
we have
7WIL3 I3
12EI  3E
from which
va'4
AT

Alternatively, we could select the fixing moment, My (=M,), at A as the release. The primary
structure is then the simply supported beam shown in Fig. 16.16(a) where Ry = —W/2 and
Ry = 3W/2. The rotation at A may be found by any of the methods previously described. They
include the integration of the second-order differential equation of bending (Eq. (13.3)), the
moment-area method described in Section 13.3 and the unit load method (in this case it would be a
unit moment). Thus, using the unit load method and applying a unit moment at A as shown in
Fig. 16.16(b) we have, from the principle of virtual work (see Eq. (i) of “Ex. 15.87)

A2) B(1) LA B C

A T
7/% 1/L =1/

(a) (b)
FIGURE 16.16




[
504 CHAPTER 16 Analysis of Statically Indeterminate Structures

L 3L/2
M, M, M, M,
10 o al¥ly £ al¥ly
& L g L F A (iii)
In Eq. (iii
M, = —-VZ—Vx M, = %x- 1 0=x=1)
WL
Masz—?—— M,=0 (LSxSéé)
2 2
Substituting in Eq. (iii) we have
174 L
Opo= = —~x
ko= 357 ). (Bx =
from which
WZZ
Opp= — iclockwi
a0 = 077 (anticlockwise)

The flexibility coefficient, 6,,, i.e. the rotation at A (point 2), due to a unit moment at A is

obtained from Fig. 16.16(b). Thus
L
1 2
%~LEQ—QM

/L ) .
0 = 3E5 (anticlockwise)

Therefore, since the rotation at A in the actual structure is zero

Op0 + 020M> =0

from which

or
wi: L
LR T =
12E] 3EIM2 0

which gives
W
MZ R '—4— (ClOCkWiSQ)

Considering now the statical equilibrium of the beam in Fig. 16.15(a) we have, taking moments
about A

I ;
Rl - W - Ty
so that 2 4
7WL
e
as before.
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EXAMPLE 16.7

Determine the support reactions in the three-span continuous beam ABCD shown in Fig. 16.17(a).

It is clear from inspection that the degree of statical indeterminacy of the beam is two. Therefore,
if we choose the supports at B and C as the releases, the primary structure is that shown in
Fig. 16.17(b). We therefore require the vertical displacements, vp o and vc,, at the points B and C.
These may readily be found using any of the methods previously described (unit load method,
moment-area method, Macauley’s method (Section 13.2)) and are

8.88 _9.08
e g
We now require the flexibility coefficients, 411, @12, 422 and 4,. The coefficients 41, and 4,, are
found by placing a unit load at B (point 1) as shown in Fig. 16.17(c) and then determining the displa-
cements at B and C (point 2). Similarly, the coefficients 2,5 and 4, are found by placing a unit load
at C and calculating the displacements at C and B; again, any of the methods listed above may be
used. However, from the reciprocal theorem (Section 15.4) 4y, = #; and from symmetry 211 = a2,.
Therefore it is only necessary to calculate the displacements #;; and 45, from Fig. 16.17(c). These are

0.45 0.39 ]
an =an=—pr (downwards)

Upo = (downwards)

an =dpn=

EI

The total displacements at the support points B and C are zero so that
vpo — anli —ak =0 ()
veo — @Ry —ank =0 (i1)

or, substituting the calculated values of vp g, 211, etc.,, in Egs (i) and (ii), and multiplying through
by EI

6 kN 10kN

l l C(2) 12KkN/m 16 i lmk 12 kN/m
;lt\ B(1) I EEEEL f B CY¥V¥ ¥ VD
i
i B
I

RA" ~ ?RB(“F%) ?Rc (=Ro) TRD

]0,5m10.5m 0.5m,0.5m 1.0m |

(@) (b)

" LSS 7 7

1 1
A 13(1) c(2) D A B(1) 10(2) D
B I ; |
() (d)
FIGURE 16.17
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8.88 — 0.45R; — 0.39R, = 0
9.08 — 0.39R; — 0.45R, =0

(i)

(iv)
Note that the negative signs in the terms involving R; and R; in Egs (i) and (ii) are due to the fac that

the unit loads were applied in the opposite directions to Ry and R;. Solving Egs (iii) and (iv) we obtain

Ri(=Rs) =87 kN Ry(=Rc)=12.68 kN

The remaining reactions are determined by considering the statical equilibrium of the beam apq
are

Ry =197 kN Ry =4.65 kN

—a

In Exs 16.5—16.7 we have assumed that the beam supports are not subjected to a vertical displacemen;
themselves. It is possible, as we have previously noted, that a support may sink, so that the right-hand side
of the compatibility equations, Eqs (viii), (ix) and (x) in Ex. 16.5, Eq. (ii) in Ex. 16.6 and Eqgs (i) and (i)
in Ex. 16.7, would not be zero but equal to the actual displacement of the support. In such a situation one
of the releases should coincide with the displaced support.

It is clear from Ex. 16.7 that the number of simultaneous equations of the form of Egs (i) and (i)
requiring solution is equal to the degree of statical indeterminacy of the structure. For structures posses-
sing a high degree of statical indeterminacy the solution, by hand, of a large number of simultaneous
equations is not practicable. The equations would then be expressed in matrix form and solved using a
computer-based approach. Thus for a structure having a degree of statical indeterminacy equal to 7
there would be 7 compatibility equations of the form

'UL() + ﬂllRl + 412R2 + ..o+ tZlan =0

Un,0 + ﬂanl =+ Llanz + e+ ﬂn”R” =0
or, in matrix form

V1,0 a1 412 A R

Un,0 a1 An2 e Ann Rn
Note that here 7 is 7, the degree of statical indeterminacy; the subscript ‘s has been omitted for
convenience.
Alternative methods of solution of continuous beams are the slope—deflection method described in
Section 16.9 and the iterative moment distribution method described in Section 16.10. The latter
method is capable of producing relatively rapid solutions for beams having several spans.

16.5 Statically indeterminate trusses

A truss may be internally and/or externally statically indeterminate. For a truss that is externally stati-
cally indeterminate, the support reactions may be found by the methods described in Section 16.4. For

a truss that is internally statically indeterminate the flexibility method may be employed as illustrated in
the following examples.
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EXAMPLE 16.8

Determine the forces in the members of the truss shown in Fig. 16.18(a); the cross-sectional area, A
and Young’s modulus, E, are the same for all members.

The truss in Fig. 16.18(a) is clearly externally statically determinate but, from Eq. (16.5), has a
degree of internal statical indeterminacy equal to 1 (M =6, N = 4). We therefore release the truss so
that it becomes statically determinate by ‘cutting’ one of the members, say BD, as shown in
Fig. 16.18(b). Due to the actual loads (P in this case) the cut ends of the member BD will separate
or come together, depending on whether the force in the member (before it was cut) was tensile or
compressive; we shall assume that it was tensile.

We are assuming that the truss is linearly elastic so that the relative displacement of the cut ends of
the member BD (in effect the movement of B and D away from or towards each other along the diago-
nal BD) may be found using, say, the unit load method as illustrated in Exs 15.9 and 15.12. Thus we
determine the forces F, ; in the members produced by the actual loads. We then apply equal and oppo-
site unit loads to the cut ends of the member BD as shown in Fig. 16.18(c) and calculate the forces, 7
in the members. The displacement of B relative to D, App, is then given by

>

Agp = ; _iAJésf,i (see Eq. (iii) in Ex. 15.12)
The forces, F,  are the forces in the members of the released truss due to the actual loads and are
not, therefore, the actual forces in the members of the complete truss. We shall therefore redesignate the
forces in the members of the released truss as Fp;. The expression for App then becomes

“ FyjiF1 ;L .
Agrs= 4,74 @)
$-fun

In the actual structure this displacement is prevented by the force, Xgp, in the redundant member
BD. If, therefore, we calculate the displacement, app, in the direction of BD produced by a unit
value of Xgp, the displacement due to Xpp will be Xgpapp. Clearly, from compatibility

App + Xgpapp =0 (ii)
B ¢ B g c P B c
Ko 1
Cut S
; o
e D A \D A D
: / = G2 # , 77 7 i
(@ (6) ©

FIGURE 16.18
Analysis of a statically indeterminate truss.
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Table 16.1

Member L; (m) Fo,i Fi,; Fo,jFy,iL; FiiL Fai

AB L 0 = 0 0.5L +0.40p
BC L 0 071 0 0.5L +0.40p
cD L ~p ~0.7] 0.71PL 0.5L -0.60P
BD 1.41L — 1.0 i 1.41L —0.56P
AC 1.41L 1.41P 1.0 2.0PL 1.41L +0.85p
AD L 0 0,71 0 0.5L +0.40p

n=271PL T =482

from which Xgp is found. Again, as in the case of statically indeterminate beams, ap is a ﬂexibility
coefficient. Having determined Xgp, the actual forces in the members of the complete truss may be
calculated by, say, the method of joints or the method of sections.

In Eq. (ii), app is the displacement of the released truss in the direction of BD produced by a
unit load. Thus, in using the unit load method to calculate this displacement, the actual member
forces (Fy,) and the member forces produced by the unit load (F;, ;) are the same. Therefore, from

Eq. (i)

- J 7
agp = ; AE (111)
The solution is completed in Table 16.1.
From Table 16.1
e TN _ 4.82L
BD IE D = %
Substituting these values in Eq. (i) we have
2.71PL 4820 _
AE BT AE

from which
Xgp = —0.56P (i.c. compression)

The actual forces, F, j» in the members of the complete truss of Fig. 16.18(a) are now calculated
using the method of joints and are listed in the final column of Table 16.1.

We note in the above that App is positive, which means that Agp is in the direction of the unit
loads, i.e. B approaches D and the diagonal BD in the released structure decreases in length.
Therefore in the complete structure the member BD, which prevents this shortening, must be in
compression as shown; also #gp will always be positive since it contains the term F{ .. Finally, we
note that the cut member BD is included in the calculation of the displacements in the released
structure since its deformation, under a unit load, contributes to zpp. -
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EXAMPLE 16.9

Calculate the forces in the members of the truss shown in Fig. 16.19(a). All members have the same
cross sectional area, 4, and Young’s modulus, E.

By inspection we see that the truss is both internally and externally statically indeterminare since
it would remain stable and in equilibrium if one of the diagonals, AD or BD, and the support at C
were removed; the degree of indeterminacy is therefore 2. Unlike the truss in Fig. 16.18, we could
not remove 47y member since, if BC or CD were removed, the outer half of the truss would become
a mechanism while the portion ABDE would remain statically indeterminate. Therefore we select
AD and the support at C as the releases, giving the statically determinate truss shown in Fig. 16.19
(b); we shall designate the force in the member AD as X; and the vertical reaction at C as R;.

In this case we shall have two compatibility conditions, one for the diagonal AD and one for the sup-
port at C. We therefore need to investigate three loading cases: one in which the actual loads are applied
to the released statically determinate truss in Fig. 16.19(b), a second in which unit loads are applied
to the cut member AD (Fig. 16.19(c)) and a third in which a unit load is applied at C in the direction
of R, (Fig. 16.19(d)). By comparison with the previous example, the compatibility conditions are

10kN 10 kN
/B yB
A : /
X
1m
) C
D % D c
K
L 1m _L im |
Py - 1
(a) (b)
B
1
1
c
D T
1
(c) (d)

FIGURE 16.19

OR e N WbVl im0 Y2 OY

_ [t o A



Table 16.2

Member

Fay

F1j(Xy)
F1j(Ra)L;

%
(R2)L;

2
F3;

(X1)L;

Fojf1;
(R2L;
05

Fy,5 (X4) Fi; (R2) FojFy
(x1)l-1

Foij

L;

0.67
—4.45
3.15
0.12

4.28
—5.4

1.41

4.0
2.81
1.0
10

—20.0

2.0 =7
~1.41

=071

0.0

1

AB

0

1.41

BC
CD

1.0
1.0

=07

0.5

SO

1.41
1.41

08

1.0

1.0

-0.71

1.41
1.41

AD

2.81

~28.11

1.41 —-20.0
0

—14.14

BE

—3.03

BD

=27

¥ =432

o)

r=11.62

= ~48.11

-27.1
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App + a1 Xy + 2128 =0 )
ve +anXi +ank =0 (i1)

in which Axp and vc are, respectively, the change in length of the diagonal AD and the vertical dis-
placement of C due to the actual loads acting on the released truss, while a1y, 41, etc., are flexibility
coefficients, which we have previously defined (see Ex. 16.7). The calculations are similar to those
carried out in Ex. 16.8 and are shown in Table 16.2.

From Table 16.2

(i.e. AD increases in length)

_ R iFf X)L - —27.1
e e e

=

- - F()JF{J'(RZ)L_; S 48.11 : s ;
Yo = ; o iy (i.e. C displaced downwards)
S FOOL 452

"“:; AE AE

L BB 116
ol J !
By

=k

a4 = ay = gwﬂ'j(&fg(&ﬂj i %
Substituting in Eqs (i) and (ii) and muldplying through by AE we have
—27.1 +432X +2.7R, =0 (iii)
—48.11 +2.7X; +11.62R, =0 (iv)
Solving Eqs (iii) and (iv) we obtain
X =428kN R, =3.15kN

The actual forces, F, j in the members of the complete truss are now calculated by the method of
joints and are listed in the final column of Table 16.2. .

Self-straining trusses

Statically indeterminate trusses, unlike the statically determinate type, may be subjected to self-straining
in which internal forces are present before external loads are applied. Such a situation may be caused by
a local temperature change or by an initial lack of fit of a member. In cases such as these, the term on
the right-hand side of the compatibility equations, Eq. (ii) in Ex. 16.8 and Eqs (i) and (ii) in Ex. 16.9,

would not be zero.
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e
EXAMPLE 16.10
The truss shown in Fig. 16.20(a) is unstressed when the temperature of each member is the same,
but due to local conditions the temperature in the member BC is increased by 30°C. If the cross-
cectional area of each member is 200 mm? and the coefficient of linear expansion of the members is
7% 107%/°C, calculate the resulting forces in the members; Young’s modulus £= 200 000 N/mm?,
Due to the temperature rise, the increase in length of the member BC is 3 X 10° X

30 X 7 X 107° = 0.63 mm. The truss has a degree of internal statical indeterminacy equal to 1 (by
inspection). We therefore release the truss by cutting the member BC, which has cxpcriet'lced the tem-
perature rise, as shown in Fig. 16.20(b); we shall suppose that the force in BC is Xj. Since there are
no external loads on the truss, Agc is zero and the compatibility condition becomes

411X = — 0.63 mm (1)
in which, as before
L
= oy
i ; AE

Note that the extension of BC is negative since it is opposite in direction to X;. The solution is
now completed in Table 16.3. Hence

A B

3m

(a) (b) (©)

FIGURE 16.20 ‘ ’
Self-straining due to a temperature change.

| Table 16.3
Member Li{mm) Fy,; F3 L Faj(N)
AB 4000 1.33 71111 —700
BC 3000 1.0 3000.0 —525
CD 4000 1.33 2 —700
DA 3000 1.0 3000.0 —525
AC 5000 =i6T 13 888.9 875
DB 5000 —1.67 13 888.9 875
¥ =48 000.0
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48 000

=———— =12X10"°
200 X 200 000

11
Thus, from Eq. (i)
XKi=—525 N

The forces, F, j, in the members of the complete truss are given in the final column of Table 16.3.

An alternative approach to the solution of statically indeterminate trusses, both self-straining and
otherwise, is to use the principle of the stationary value of the total complementary energy.
Thus, for the truss of Ex. 16.8, the total complementary energy, C, is, from Eq. (15.39), given by

n F;
C= ijéde}—PAc
=1 ~0

in which Ac is the displacement of the joint C in the direction of P. Let us suppose that the member
BD is short by an amount Agp (i.e. the lack of fit of BD), then

n (B
Cc= E J 5de]"'“PAC_X1)\BD
j=1 0

From the principle of the stationary value of the total complementary energy we have

oC oF; B
. Z;éja—Xl —sp =0 (16.8)
=

Assuming that the truss is linearly elastic, Eq. (16.8) may be written

0C _ I~FELjoF,
% L AB T (16.9)

or since, for linearly elastic systems, the complementary energy, C, and the strain energy, U, are
interchangeable,

ou " F,L; OF;
e = ——~— = A\gp (16.10)
3%, LA 0%,

Equation (16.10) expresses mathematically what is generally referred to as Castigliano’s second theo-
rem which states that

For a linearly elastic structure the partial differential coefficient of the total strain energy of the structure
with respect to the force in a redundant member is equal to the initial lack of fit of that member.

The application of complementary energy to the solution of statically indeterminate trusses is very
similar to the method illustrated in Exs 16.8—16.10. For example, the solution of Ex. 16.8 would pro-
ceed as follows.

Again we select BD as the redundant member and suppose that the force in BD is X;. The forces,
F,j, in the complete truss are calculated in terms of P and Xj, and hence 0F, 0% obtained for each
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lfable 16.4
Member Lj Faj aFa‘,-/é’X1 FaJLj (6FaJIaX1)
\B L —0.71X —0.71 051X
3C L —-0.71X%4 -0.71 0.5LX4
D L —-P—=0.71X; -0.71 (0.71P + 0.5X4)L
DA L -0.71X; -0.71 0.5L.X4
AC 1.41L 1.41P + X4 1.0 (P +1.41Xy)L
3D 1.41L Xi 1.0 1.41X4L
N =271PL + 4.82X,L

>mplete truss. Equation (16.9) (or (16.10)) in which Agp =0 then gives X in terms of P. The solu-
on is illustrated in Table 16.4. Thus from Eq. (16.9)

1
25 Q71PL+ 482GL) =0

'om which
X = —0.56P

s before.

Of the two approaches illustrated by the two solutions of Ex. 16.8, it can be seen that the use of the
rinciple of the stationary value of the total complementary energy results in a slightly more algebrai-
ally clumsy solution. This will be even more the case when the degree of indeterminacy of a structure

greater than 1 and the forces F,; are expressed in terms of the applied loads and all the redundant
srces. There will, of course, be as many equations of the form of Eq. (16.9) as there are redundancies.

6.6 Braced beams

ome structures consist of beams that are stiffened by trusses in which the beam portion of the struc-
ire is capable of resisting shear forces and bending moments in addition to axial forces. Generally,
owever, displacements produced by shear forces are negligibly small and may be ignored. Therefore,
1 such structures we shall assume that the members of the truss portion of the structure resist axial
»rces only while the beam portion resists bending moments and axial forces; in some cases the axial
»rces in the beam are also ignored since their effect, due to the larger area of cross section, is small.

¥,
EXAMPLE 16.11

The beam ABC shown in Fig. 16.21(a) is simply supported and stiffened by a truss whose members
are capable of resisting axial forces only The beam has a cross-sectional area of 6000 mm” and a sec-
ond moment of area of 7.2 X 10° mm®. If the cross-sectional area of the members of the truss is
400 mm?, calculate the forces in the members of the truss and the maximum value of the bending
moment in the beam. Young’s modulus, Z, is the same for all members.

We observe that if the beam were capable of resisting axial forces only, the structure would be a
relatively simple statically determinate truss. However, the beam, in addition to axial forces, resists
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12kN

(a) (b) (©)

FIGURE 16.21
Braced beam of Ex. 16.11.

bending moments (we are ignoring the effect of shear) so that the structure is statically indeterminate
with a degree of indeterminacy equal to 1, the bending moment at any section of the beam.
Therefore we require just one release to produce a statically determinate structure; it does not neces-
sarily have to be the bending moment in the beam, so we shall choose the truss member ED as
shown in Fig. 16.21(b) since this will produce benefits from symmetry when we consider the unit
load application in Fig. 16.21(c).

In this example displacements are produced by the bending of the beam as well as by the axial
forces in the beam and truss members. Thus, in the released structure of Fig. 16.21(b), the relative
displacement, Agp, of the cut ends of the member ED is, from the unit load method (see Eq. (iii)
of Ex. 15.13 and Exs 16.8—16.10), given by

MyM, 2L FoiFi L
Agp =J Ly Y LT @)

in which M, is the bending moment at any section of the beam ABC in the released structure.
Further, the flexibility coefficient, 411, of the member ED is given by

MZ
an =J

In Egs (i) and (ii) the length, L; is constant, as is Young’s modulus, E. These may therefore be
omitted in the calculation of the summation terms in Table 16.5.

Examination of Table 16.5 shows that the displacement, Agp, in the released structure is due
solely to the bending of the beam, i.e. the second term on the right-hand side of Eq. (i) is zero; this
could have been deduced by inspection of the released structure. Also the contribution to displace-
ment of the axial forces in the beam may be seen, from the first two terms in the penultimate col-
umn of Table 16.5, to be negligibly small.

The contribution to Agp of the bending of the beam will now be calculated. Thus from Fig. 16.21(b)

My=9x (0=x=0.5m)
My=9x—12(x—05)=6—3x (0.5=x=2.0m)
M =—087x (0=x=1.0m)

(if)




[ .
516 CHAPTER 16 Analysis of Statically Indeterminate Structures

16.7 Portal frames 517

12kN
Table 16.5 A l B c
Member A; (mm?) Fo,; (kN) Fy; Fo,jF1,;/A; F2,/A; F.;(kN) ]
| AB 6000 0 -05 0 417 % 107° —2.01 T T T
' -5
BC L 4 e el el Ra =9 — 4.02 005 30° Rg = 2 X 4.02 cos 30° Rg = 3 — 4.02 cos 30°
CD 400 0 1.0 0 25x%x10 4.02 = 552 kN = 6.96 kN = —0.48 kN
ED 400 0 1.0 0 2.5 5610°° 4.02
BD 400 0 S 0 25107 ~4.02 (@
EB 400 0 -10 0 25%x107° -4.02 0.48kNm
AE 400 0 iy SR 25x107° 4.02 :
=0 £ =00126 A o c
g B
Substituting from M, and M, in Eq. (i) we have i
MoM,
fABC EI dx
; . > 0 FIGURE 16.22
=t [~j 9% 0.87x% dx — J (6 — 3x)0.87x dx + J (6 — 3x)(0.87x — 1.74)dx , Geaim Bending moment distribution
ETL Jo 05 10 ® in the beam of Ex. 16.11.
maid K i o X, =40181N or X =4.02LkN
J MoMy D 0.33 X 10° i The axial forces in the beam and truss may now be calculated using the method of joints and are
asc  EI E given in the final column of Table 16.5. The forces acting on the beam in the complete structure
Similarly are shown in Fig. 16.22(a) together with the bending moment diagram in Fig. 16.22(b), from which
we see that the maximum bending moment in the beam is 2.76 kN m.
MZ 1 1.0 : 2.0 .
J —de= J 0.87%x* dx + J (0.87x—1.74)* dx
asc E1 EI [)o 10
16.7 Portal frames
oL The flexibility method may be applied to the analysis of portal frames although, as we shall see, in all

but simple cases the degree of statical indeterminacy is high so that the number of compatibility equa-
tions requiring solution becomes too large for hand computation.

Consider the portal frame shown in Fig. 16.23(a). From Section 16.2 we see that the frame, together
with its foundation, form a single two-dimensional ring and is therefore three times statically indetermi-
nate. Therefore we require 3 releases to obtain the statically determinate primary structure. These may be
obtained by removing the foundation at the foot of one of the vertical legs as shown in Fig. 16.23(b); we

M? 0.083 X 10°
J LR s
anc EI EI

m/N
The compatibility condition gives
AED +anXi = 0

so that l —_—

_033X10°  0.083X10°

X, =0
E E ‘

%WW 7777 T 2
X4 FIGURE 16.23
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hen have two releases of force and one of moment and the primary structure is, in effect, a cranked canti-
ever. In this example there would be three compatibility equations requiring solution, two of translatiop,
ind one of rotation. Clearly, for a plane, two-bay portal frame we would have six compatibility equationg
o that the solution would then become laborious; further additions to the frame would make a hang
nethod of solution impracticable. Furthermore, as we shall see in Section 16.10, the moment distributioy
nethod produces a rapid solution for frames although it should be noted that using this method requireg
hat the sway of the frame, that is its lateral movement, is considered separately whereas, in the ﬂex1b111ty
nethod, sway is automatically included.

I, —
EXAMPLE 16.12

Determine the distribution of bending moment in the frame ABCD shown in Fig. 16.24(a); the flex-
ural rigidity of all the members of the frame is EI. Comparison with Fig. 16.23(a) shows that the
frame has a degree of statical indeterminacy equal to 2 since the vertical leg CD is pinned to the
foundation at D. We therefore require just 2 releases of reaction, as shown in Fig. 16.24(b), to obtain
the statically determinate primary structure. For frames of this type it is usual to neglect the displace-
ments produced by axial force and to assume that they are caused solely by bending.

The point D in the primary structure will suffer vertical and horizontal displacements, Apy and
Ap, . Thus if we designate the redundant reactions as Ry, and R,, the equations of compatibility are

Apy +anR +apk, =0 (1)
Apy + a3 R + ank, =0 (ii)

in which the flexibility coefficients have their usual meaning. Again, as in the preceding examples,
we employ the unit load method to calculate the displacements and flexibility coefficients. Thus

'y MoM, v
Apy = ZL 7

in which M y is the bending moment at any point in the frame due to a unit load applied vertically
at D.

4 kN/m 4 kN/m
Byvyyvyye, Byvyvevye o B c
Y ] 10k 10kN
3m X3 e EI -f1
A D A D A D 1
3.5m 1
i :
(@) (b) ©

FIGURE 16.24
Portal frame of Ex. 16.12.
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Siﬂlilally
MM H l
AD,H E J OErl’

and

M? MMy
“‘ZI 1de ap = ZJ Z;Ide a1 = an = ZJL—HI‘;TE—dx

We shall now write down expressions for bending moment in the members of the frame; we shall
designate a bending moment as positive when it causes tension on the outside of the frame. Thus in

DC
M()”O MI,V:-‘O Ml,[—]="”1x;

In CB
My = 4x23~§- = 2x§ Miyv= 1x Myyg=-3

In BA

M@ =4 X 35 X1.75+ 103('3 i 245 + 103(5 MI,V = —35 Ml,H bz "1(3 _X;‘;)
Hence

1 , 489.8
ADV_E[J (— 2X3)dxz j —(245+1(}x3)35dx3]———1—57—
1 [ 241.0
Apn = 7 U;) — 6x§)dx2 - JO —(24.5 + 10x3)(3 — xg)dx3] = o
1 3.3 . 51 0
ﬂn—ﬁj xfdx2+J35 dxsy i
1 3.5 49 5
m= U T iy + L 3% dw, + J (B-x) dxs] N7
1 i 34.1
apy = day = —E*-i [J 3x2 dxz + J 3 5(3 Xg)dxg,j' E[
Substituting for Apy, Apm, 411, etc., in Eqs (i) and (i) we obtain
489.8 51.0 34.1
e AlE b i
and
241.0 34.1 49.5 ;
S Al e i

Solving Egs (iii) and (iv) we have
Ry =11.8 kN R2=_3.3kN

The hendinoe mament diasram is then drawn as shown in Fie. 16.25.
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6.98kNm / il e

7.0kNm

FIGURE 16.25
; Bending moment diagram for the frame of
A D Ex. 16.12 (diagram drawn on tension side of
13.2kNm members).

It can be seen that the amount of computation for even the relatively simple frame of Ex. 16.12
is quite considerable. Generally, therefore, as stated previously, the moment distribution method or
a computer-based analysis would be employed.

' —in

16.8 Two-pinned arches

In Chapter 6 we saw that a three-pinned arch is statically determinate due to the presence of the third
pin or hinge at which the internal bending moment is zero; in effect the presence of the third pin pro-
vides a release. Therefore a two-pinned arch such as that shown in Fig. 16.26(a) has a degree of statical
indeterminacy equal to 1. This is also obvious from inspection since, as in the three-pinned arch, there
are two reactions at each of the supports.

The analysis of two-pinned arches, i.e. the determination of the support reactions, may be carried
out using the flexibility method; again, as in the case of portal frames, it is usual to ignore the effect of
axial force on displacements and to assume that they are caused by bending action only.

(b) ()

FIGIIRF 1R 2R

16.8 Two-pinned arches 521

The arch in Fig. 16.26(a) has a profile whose equation may be expressed in terms of the reference
axes x and y. The second moment of area of the cross section of the arch is 7 and we shall designate the
distance round the profile from A as s.

Initially we choose a release, say the horizontal reaction, R, at B, to obtain the statically determinate
primary structure shown in Fig. 16.26(b). We then employ the unit load method to determine the hor-
izontal displacement, Apyy, of B in the primary structure and the flexibility coefficient, #;,. Then,
from compatibility

Ay —anR =0 (16.11)

in which the term containing R, is negative since R; is opposite in direction to the unit load (see
Fig. 16.26(c)).

Then, with the usual notation

MoM,
Apy = J ds (16.12)
BH Profile El

in which M, depends upon the applied loading and M; = 1y (a moment is positive if it produces ten-
sion on the undersurface of the arch). Also

M} J s
= — = — ds 16.13
“au JProﬁlc ET d Profile EI ( )
Substituting for M, in Eq. (16.12) and then for Agp and 4y, in Eq. (16.11) we obtain
Rl = jProﬁle(M;)y/EI) ds (1614)
J'Proﬁle(y /EI) ds

[,
EXAMPLE 16.13
Determine the support reactions in the semicircular two-pinned arch shown in Fig. 16.27(a). The
flexural rigidity, EI, of the arch is constant throughout. ‘ :
Again we shall choose the horizontal reaction at the support B as the release so that Rg n (=Ry)
is given directly by Eq. (16.14) in which M; and s are functions of x and y. The computation will
therefore be simplified if we use an angular coordinate system so that, from the primary structure
shown in Fig. 16.27(b)

My= Ry (5+5 cos ) = 2 (5+5 cos O ()

in which Rjy is the vertical reaction at B in the primary structure. From Fig. 16.27(b) in which,
from symmetry, Ryy = R} y, we have Ry, =50 kN. Substituting for Ry in Eq. (i) we obtain
Mo =125 sin” § (ii)
Also y=5sin 0 and ds=5 df, so that from Eq. (16.14) we have

I; 125 §in2 6 5sin 65 do
Jy 25 sin® 65 d6

R =
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10 kN/m

IREEEERER

Ran—>

(a)

10 kN/m

FEFRENEEY

(b) (c)
FIGURE 16.27
Semicircular arch of Ex. 16.13.

or )
L [Tsin? 0.0 (iii)
which gives

R =212 kN(=Rp )

The remaining reactions follow from a consideration of the statical equilibrium of the arch and
are

RA,H =21.2 kN R’A,V = Rg,v =50 kN

The integrals in Eq. (iii) of Ex. 16.13 are relatively straightforward to evaluate; the numerator
may be found by integration by parts, while the denominator is found by replacing sin® 6 by
(1= cos 2.,9)12. Furthermore, in an arch having a semicircular profile, A2, y and ds are simply
exp;ressed’ in terms of an angular coordinate system. However, in a twmpinncd‘ arch having a para-
bohc proﬁle. tl'?is approach cannot be used and complex integrals result. Such cases may be simpli-
ﬁed by specifying that the second moment of area of the cross section of the arch varies round the
profile; one such variation is known as the secant assumnrion and ic decrribed halowr |
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dy

FIGURE 16.28
dx Elemental length of arch.

secant assumption
In Eq. (16.14) the term ds// appears. If this term could be replaced by a term that is a function of

cither x or 7, the solution would be simplified.
Consider the elemental length, 8s, of the arch shown in Fig. 16.28 and its projections, &x and 9y, on

the x and y axes. From the elemental triangle

8x = 8 cos 0
or, in the limit as 8s—0
ds= de = dx sec 0
cos 6
Thus
é _ dxsect
I I

Let us suppose that / varies round the profile of the arch such that 7= 1, sec § where I, is the sec-
ond moment of area at the crown of the arch (i.e. where § = 0). Then

ds  dxsecf dx

I I secH [—0

Thus substituting in Eq. (16.14) for ds// we have

R = fProﬁle(Moy/EIO)dx
J.Proﬁle(yz /E]())dx
or
Myy dx
Ry = J}’igy— (16.15)
Jorofie® 4%
-

EXAMPLE 16.14
Determine the support reactions in the parabolic arch shown in Fig. 16.29 assuming that the second
moment of area of the cross section of the arch varies in accordance with the secant assumption.

The equation of the arch may be shown to be

= —(Lx— %) ()




[
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FIGURE 16.30

L Parabolic arch carrying a part-span
uniformly distributed load.

The remaining support reactions follow from a consideration of the statical equilibrium of the arch.
If, in Ex. 16.14, we had expressed the load position in terms of the span of the arch, say 2= kL,
Eq. (iv) in Ex. 16.14 becomes

R = %(H%—zkf’) (16.16)

Therefore, for a series of concentrated loads positioned at distances 1L, kL, k3L, etc., from A, the
reaction, Ry, may be calculated for each load acting separately using Eq. (16.16) and the total reaction
due to all the loads obtained by superposition.

The result expressed in Eq. (16.16) may be used to determine the reaction, Ry, due to a part-span
uniformly distributed load. Consider the arch shown in Fig. 16.30. The arch profile is parabolic and its
second moment of area varies as the secant assumption. An elemental length, 8x, of the load produces a
load w 8x on the arch. Thus, since 8x is very small, we may regard this load as a concentrated load.
This will then produce an increment, 8R;, in the horizontal support reaction which, from Eq. (16.16),
is given by

L
8R, = Ewiix—(/e + £ —28%)
8 b
in which %= x/L. Therefore, substituting for # in the expression for 8R; and then integrating over the

length of the load we obtain
CSwL(? (x| Xt 263
Ri= SbJ <Z+L4 L3>

X1

which gives

_ Swl [xz © Xt ]xz

\= % 2zt SE D),

For a uniformly distributed load covering the complete span, i.e. x; =0, x, = L, we have

CswL(I? I I\ _ wl?
8h

'T8p \2L  SIF 2D

The hendine mament at anv point (x. v) in the arch is then
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. wl wx? wl? [4h
M: —_— —_——— = —-—
272 8h [ﬁ(l‘x—xz)J
ie.
M=k, _wl el
2 2 2 2

Therefore, for a parabolic two-pinned arch carrying a uniformity distributed load i
span, the bending moment in the arch s everywhere peained for
pinned arch in Chapter 6.

Although the secant assumption appears to be an artificial sim
arches it would not, in fact, produce a great variation in second mo
arches. The assumption would therefore provide reasonably accurat

complete
zero; the same result was obtained for the three.

plification in the solution of paraboljc
ment of area in, say, large-span shallgy,
e solutions for some practical cases

Tied arches

i;lss}i)me c.alsels: .thelgosrilz(ot)lte;l Stg)port reactions are replaced by a tie which connects the ends of the arch
own 1n *ig. 16.31(a). In this case we select the axial force, X.. j i i
' n thi » X1, in the tie as the release. The pri
structure is then as shown in Fig. 16.31(b) with the tie cut. The unjt load method, Fig 16e 3? lrzz:l)la'
, Fig. 16. , is

rimary structure. This displacement

will receive contributions from the bending of the arch and the axial force in the tie. Thus, with th,
. > (S

usual notation

M L
AB,H = J ‘OMI ds + J FOFlde
Profile

and El o AE
M2 L FZL
a; = j —Id_f —+ J 1‘

Profile £/ o AE =

The compatibility condition is then

App + a1 Xy =0

Segmental arches

A segmental arch is one comprising segments havin

: : g different curvatures or different equation. ib-
ng their profiles. The analysis of such arches is bes ; ol

t carried out using a computer-based approach such

(©

IGURE 16.31

olution for a tied two-pinned arch.
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as the stiffness method in which the stiffness of an individual segment may be found by determining
the force—displacement relationships using an energy approach. Such considerations are, however, out-
side the scope of this book.

16.9 Slope—deflection method

An essential part of the computer-based stiffness method of analysis and also of the moment distribu-
tion method is the slope—deflection relationships for beam elements. In these, the shear forces and
moments at the ends of a beam element are related to the end displacements and rotations. In addition
these relationships provide a method of solution for the determination of end moments in statically
indeterminate beams and frames; this method is known as the slope—deflection method.

Consider the beam, AB, of length L, shown in Fig. 16.32. The beam has a flexural rigidity £7 and
is subjected to moments, Map and Mpa, and shear forces, Spp and Spa, at its ends. The shear forces
and moments produce displacements v and vp and rotations 64 and g as shown. Here we are con-
cerned with moments at the ends of a beam. The usual sagging/hogging sign convention is therefore
insufficient to describe these moments since a clockwise moment at the left-hand end of a beam cou-
pled with an anticlockwise moment at the right-hand end would induce a positive bending moment at
all sections of the beam. We shall therefore adopt a sign convention such that the moment at a point is
positive when it is applied in a clockwise sense and negative when in an anticlockwise sense; thus in
Fig. 16.32 both moments Myp and Mg are positive. We shall see in the solution of a particular prob-
lem how these end moments are interpreted in terms of the bending moment distribution along the
length of a beam. In the analysis we shall ignore axial force effects since these would have a negligible
effect in the equation for moment equilibrium. Also, the moments My and Mpa are independent of
each other but the shear forces, which in the absence of lateral loads are equal and opposite, depend
upon the end moments.

From Eq. (13.3) and Fig. 16.32

2
El jx—f =M, AB + SABx

Note that the actual displacements of the beam are small so that

y Sga
\ = _) s
B A7
BA
Mg »\ El
/< — A A =
v
v —> X :

FIGURE 16.32




I
28 CHAPTER 16 Analysis of Statically Indeterminate Structures

Sap(x/cos 0) &~ Spp x

Then
dv x?
El— = Mpp-+ S ——+C
e AB AB 1
ad
x? X
EIU:MAB3'+SABE+Clx+C2
7hen
d
x=0 £=9A v=1a

(16.17)

(16.18)

Therefore, from Eq. (16.17) C; = EIfs and from Eq. (16.18), C, = Elus. Equations (16.17) and

16.18) then, respectively, become
dv %2
El— = Mppx + Sap— + EI
” 3 - Masx + Sap Oa

xz x3
E[U=MA137 +SABE +E10AX+E]’UA

Also, at x = L, du/dx = 0y and v = vg. Thus, from Eqs (16.19) and (16.20) we have

LZ
EIGB = MABL + SAB TEIHA

ad
I? I3
E]’UB =MA137 + SABZ +E]9AL +E]UA
Solving Eqs (16.21) and (16.22) for Map and Sp gives
2E[
MAB = |:29A + 0]3 + — (UA = ’UB)]
1d
6EI 2
Sag = F [QA + 0 + Z(UA - UB):|

Now, from the moment equilibrium of the beam about B, we have

MBA + SABL'i‘MAB =0

Mpp = —SppL — Mag

Substituting for Sap and Myp in this expression from Eqs (16.24) and (16.23) we obtain

2ET
MBA == L 293 + GA + - (’UA = ’UB)

(16.19)

(16.20)

(16.21)

16.22)

(16.23)

(16.24)

(16.25)
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Further, Since Sgp = — Sap (from the vertical equilibrium of the element)
GEI
Spa = — N Or+0s+ = (UA —vp) (16.26)

Equations (16.23)—(16.26) are usually written in the form
GEI 4ET GEI 2EI )

Mp=—pga- T gm "
12ET GEI 12E7 6GEI
Sw=T ot et o
_ GBI 2E, | GEI 4EI (1627
M=~ T T T
_ 12E 6EI 0 12ET 6E] 0
SBA————L3 UA_F A+—L3 UB—FB

/

Equation (16.27) are known as the slope—deflection equations and establish force—displacement
relationships for the beam as opposed to the displacement—force relationships of the flexibility method.
The coefficients that pre-multiply the components of displacement in Eq. (16.27) are known as stiffness
coefficients.

The beam in Fig. 16.32 is not subject to lateral loads. Clearly, in practical cases, unless we are inter-
ested solely in the effect of a sinking support, lateral loads will be present. These will cause additional
moments and shear forces at the ends of the beam. Equations (16.23)—(16.26) may then be written as

Mpg = _2H [29,\ +60g+ = (UA — vg)] + MAB (16.28)
Sag = 651 {QA +6g+ = (’UA - uB)} + St (16.29)
Myp = — sz [293 +0p+ = (uA - UB)] + Mg, (16.30)
Spa = — B [9A +0g+ = (UA UB)] 5 (16.31)

in which Mf;, and ME, are the moments at the ends of the beam caused by the applied loads and cor-
respond to 05 = 95 =0 and vs =vp =0, i.e. they are fixed-end moments (FEMs). Similarly the shear
forces Sty and SE, correspond to the fixed-end case.

-

EXAMPLE 16.15
Find the support reactions in the three-span continuous beam shown in Fig. 16.33.

The beam in Fig. 16.33 is the beam that was solved using the flexibility method in Ex. 16.7, so
that this example provides a comparison between the two methods.

Initially we consider the beam as comprising three separate fixed beams AB, BC and CD and cal-
culate the values of the FEMs, Miy, ME,, M., etc. Thus, using the results of Exs 13.22 and
13.24 and remembering that clockwise moments are positive and anticlockwise moments negative
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6 kN 10 kN 12 kKN/m

A l B i it L1 40
o 5 ’
v / ’ / L
05m | 05m | 05m | 0.5m 1.0m FIGURE 16.33
f‘ i | } Continuous beam of Ex. 16.15.

6X1.0
M=~ §A~——--~§—~——-0.75kNm

10X 1.0
M§Cm~M£B*~~—--§——~—nm125kNm

12 X 1.0°
M£D~~Mgc~~——12 =—1.0kNm

In the beam of Fig. 16.33 the vertical displacements at all the supports are zero, i.e. U, Ug, Uc
ad vp are zero. Therefore, from Eqs (16.28) and (16.30) we have

Mg =~ %{(MA +6g) —0.75 6)
Map = — %%(203 +64)—0.75 (ii)
Mpc = ~ %%(26B +0c)—1.25 (ii)
Mcp = — zl—i{(zec +65)+1.25 (iv)
Mep =~ %{(zec +6p) - 1.0 ®)
Myc= — 31%{(299 +6c)+1.0 (vi)

From the equilibrium of moments at the supports
Muyg =0 My + Mgc=0 Mcg + Mcp =0 Mpc=0

Substituting for Mg, etc., from Eqs ()—(vi) in these expressions we obtain

4EI05 + 2EI03 +0.75=0 (vii)
2EI0, + 8EIg + 2EI0c + 0.5 =0 (viii)
2EI0s + 8EI0c + 2EI0p — 0.25=0 (ix)
4EI0p + 2E[0c — 1.0 =0 )

The solution of Eqs (vii)—(x) gives
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A B> <B c> <c :
RT RT 1.15 1.15RT RT 1.4 1.4RT Fj

FIGURE 16.34 V :
Moments and reactions at the ends of the spans of the continuous beam of Ex. 16.15.

Substituting these values in Egs (i) —(vi) gives
Mpg=0 Mpy =115 Mpc=—1.15 Mep=14 Mcp=—-14 Mpc=0

The end moments acting on the three spans of the beam are now shown in Fig. 16.34. They pro-
duce reactions Rap, Rpa, etc., at the supports; thus

1.1
Ryp = —Rpa = "‘“1—05 = —1.15 kN

Rpc=—Rp=———"=-025kN

4
Rep = —Rpc = %*6 = 1.40 kN

Therefore, due to the end moments only, the support reactions are
RA,M = =115 kN RB,M =1.15-0.25=0.9 kN,
Rem =025+ 1.4=1.65kN Rpm = —1.4kN

In addition to these reactions there are the reactions due to the actual loading, which may be
obtained by analysing each span as a simply supported beam (the effects of the end moments have
been calculated above). In this example these reactions may be obtained by inspection. Thus

Rys=30kN Rgs=3.0+50=80kN Rcs=50+6.0=11.0kN
Rps =6.0kN
The final reactions at the supports are then
Ra=Ram+Ras= —1.15+3.0=185kN
Rp=Rpy +Rps=09+80=89kN
Re=Roym + Res = 1.65 + 11.0 = 12.65 kN
Ro=Rom+Rps= —14+60=46kN
Alternatively, we could have obrtained these reactions by the slightly lengthier procedure of substi-

tuting for 0, Op, etc., in Eqs (16.29) and (16.31). Thus, e.g.

GEI
Sag = RBs = -,—2*(91\ +0g) +3.0 (va=1wvp=0)
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115KNm 1.40kNm
—ve —ve

A D

+ve B +ve C W

0.88 kNm
FIGURE 16.35
0.76 m
0.93kNm Bending moment diagram for the
1.23kNm beam of Ex. 16.15.

Comparing the above solution with that of Ex. 16.7 we see that there are small discrepancies;
these are caused by rounding-off errors.

Having obrtained the support reactions, the bending moment distribution (reverting to the sag-
sing (positive) and hogging (negative) sign convention) is obtained in the usual way and is shown in
fig. 16.35.

—m

k
EXAMPLE 16.16

Determine the end moments in the members of the portal frame shown in Fig. 16.36; the second
noment of area of the vertical members is 2.5/ while that of the horizontal members is 7

In this particular problem the approach is very similar to that for the continuous beam of Ex.
16.15. However, due to the unsymmetrical geometry of the frame and also to the application of the
L0 kN load, the frame will sway such that there will be horizontal displacements, vp and vc, at B
ind C in the members BA and CD. Since we are ignoring displacements produced by axial forces
hen vp = ve = vy, say. We would, in fact, have a similar situation in a continuous beam if one or
nore of the supports experienced settlement. Also we note that the rotation, 04, at A must be zero
iince the end A of the member AB is fixed.

Initially, as in Ex. 16.15, we calculate the FEMs in the members of the frame, again using the
esults of Exs 13.22 and 13.24. The effect of the cantilever CE may be included by replacing it by its
:nd moment, thereby reducing the number of equations to be solved. Thus, from Fig. 16.36 we have

3kN/m
BYY ¥V V VY YVVY VY,

\ ) Go
5m / /

v 10kN
i et 2.5/ —
bl ——2.5/

Y A 4D

B
- 20m »le 6M FIGURE 16.36
Portal frame of Ex. 16.16.

X 2
M£E= 2 G = —54 kN m
X
ME ==t = =20 s N
3X20% R
M§C= —Mcg = — B =—100kNm Mqp=My:=0
Now, from Eqgs (16.28) and (16.30)
2 X 2.5EI 3 .
MAB P T (9}3 i*(;‘l)}) 12.5 (1}
2 X 2.5EI ' 3 o
MBA g ““-1—6—** (20}3 e ﬁvl) i 125 (u)

In Eqs (i) and (ii) we are assuming that the displacement, vy, is to the right. Furthermore
2EI

Myc = — **2-6*(2913 + 6c) — 100 (iii)
Mcg = — %%I*(Z@c + 6g) + 100 (iv)

X 2.5E \ ;

Mcp = — 2——2—:—5—‘5—1 (2,9(; +6p + %’U}) )
2 X 2.5E1 5 1

MDC == ——‘iﬁs—— (ZHD st BC i E?A) (Vl)

From the equilibrium of the member end moments at the joints
Mg +Mpc =0 Mcp+ Mcp—54=0 Mpc=0

Substituting in the equilibrium equations for Mg, My, etc., from Eqs (i)—(vi) we obtain

1.25E16g + 0.1EI0c — 0.15EIv; +87.5=0 (vii)
1.2EI6c + 0.1E10g + 0.5EI6c + 0.15EIv; —46=0 (viii)
EIfp + 0.5EI0c + 0.15Elv; =0 (ix)

Since there are four unknown displacements we require a further equation for a solution. This
may be obtained by considering the overall horizontal equilibrium of the frame. Thus
Sag +Spc —10=0
in which, from Eq. (16.29)

_ 6X2.5E]

12 X 2.5E]
SRR

10°

9}3 T )
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where the last term on the right-hand side is S}\:B (=+5 kN), the contribution of the 10 kN hoyi.
zontal load to Spp. Also

6 X 2.5EI 12X 2.5E]
ST e e
1z %ot ) 103

Hence, substituting for Sxg and Spc in the equilibrium equations, we have
EI6y + EIOp + EI0c — 0.4EIv, —33.3=0 (%)
Solving Egs (vii)—(x) we obtain
Elfg = —101.5 Elfc=+732 Elp=-98 Elv,=-178.6
Substituting these values in Eqs (i)—(vi) yields

Mpp=115kNm Mpy=872kNm Msc=—87.2 kNm
Mcp=955kNm Mcp= —41.5kN m
Mpc=0 Mcg=-54kNm

Spc — vy

6.10 Moment distribution

xamples 16.15 and 16.16 show that the greater the complexity of a structure, the greater the
amber of unknowns and therefore the greater the number of simultancous equations requiring solu-
on; hand methods of analysis then become extremely tedious if not impracticable so that alternatives
e desirable. One obvious alternative is to employ computer-based techniques but another, quite pow-
ful hand method is an iterative procedure known as the moment distribution method. The method was
:rived by Professor Hardy Cross and presented in a paper to the ASCE in 1932.

rinciple
onsider the three-span continuous beam shown in Fig. 16.37(a). The beam carries loads that, as we
we previously seen, will cause rotations, 0, 0, 6c and Op at the supports as shown in Fig. 16.37(b). In
g. 16.37(b), 0 and Oc are positive (corresponding to positive moments) and 6 and fp, are negative.
Suppose that the beam is clamped at the supports before the loads are applied, thereby
eventing these rotations. Each span then becomes a fixed beam with moments at each end, i.e.
iIMs. Using the same notation as in the slope—deflection method these moments are
Q;FB,MlgA,MgC,MgB,MgD and Mgc. If we now release the beam at the support B, say, the resultant
oment at B, M§A + Mgc’ will cause rotation of the beam at B until equilibrium is restored;
&+ ME_ is the out of balance moment at B. Note that, at this stage, the rotation of the beam at B #s
it 0. By allowing the beam to rotate to an equilibrium position at B we are, in effect, applying a bal-
wcing moment at B equal to — (Mf, + ML). Part of this balancing moment will cause rotation in
e span BA and part will cause rotation in the span BC. In other words the balancing moment at B
s been distributed into the spans BA and BC, the relative amounts depending upon the stifffsess, or
e resistance to rotation, of BA and BC. This procedure will affect the FEMs at A and C so that they
il no longer be equal to Mg, and ME;. We shall see later how they are modified.
."We now clamp the beam at B in its new equilibrium position and release the beam at, say, C. This
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A B_—= c D
Wi
Oa B Oc oo FIGURE 16.37
Principle of the moment distribution
(b) method.

position at C. The FEM at D will then be modified and there will now be an out of balance moment
at B. The beam is now clamped at C and released in turn at A and D, thereby modifying the moments
at B and C.

The beam is now in a position in which it is clamped at each support but in which it has rotated at
the supports through angles that are not yet equal to 6, g, Oc and Op. Clearly the out of balance
moment at each support will not be as great as it was initially since some rotation has taken place; the
beam is now therefore closer to the equilibrium state of Fig. 16.37(b). The release/clamping procedure
is repeated until the difference between the angle of rotation at each support and the equilibrium
state of Fig. 16.37(b) is negligibly small. Fortunately this occurs after relatively few release/clamping
operations.

In applying the moment distribution method we shall require the FEMs in the different members
of a beam or frame. We shall also need to determine the distribution of the balancing moment at a sup-
port into the adjacent spans and also the fraction of the distributed moment which is carried over to
each adjacent support.

The sign convention we shall adopt for the FEMs is identical to that for the end moments in the
slope—deflection method; thus clockwise moments are positive, anticlockwise are negative.

Fixed-end moments

We shall require values of FEMs for a variety of loading cases. It will be useful, therefore, to list them
for the more common loading cases; others may be found using the moment-area method described in
Section 13.3. Included in Table 16.6 are the results for the fixed beams analysed in Section 13.7.

Stiffness coefficient

A moment applied at a point on a beam causes a rotation of the beam at that point, the angle of rota-
tion being directly proportional to the applied moment (see Eq. (9.19)). Thus for a beam AB and a
moment Mg, applied at the end B

MBA == KABOB (1632)
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‘able 16.6
ocal case Mg FIGURE 16.38
Determination of DF.
\ {W B E -
:i k 8 in which Ky (=Kga) is the rotational stiffness of the beam AB. The value of Kup depends, as we shall
' L2 L2 see, upon the support conditions at the ends of the beam. Note that, from Fig. 16.32 a positive My
l | creases Op. *
de B
lW N _ Wab? +Wazb
A B \ 2 e Distribution factor
Suppose that in Fig. 16.38 the out of balance moment at the support B in the beam ABC to be distrib-
_a | b pp g pp
i T uted into the spans BA and BC is My = (Mf, + M) at the first release. Let M & be the fraction of
> Mg to be distributed into BA and M be the fraction of M to be distributed into BC. Suppose also
that the angle of rotation at B due to Mg is 0. Then, from Eq. (16.32)
A w BN _w? WL
YVYVYVYVVYVY 12 q2 My, = _KBAGI (16.33)
BA B
= L = and
M, = — Kpct; 16.34
w N w Lzbz— 2_2Lb3 5 wb® /L b BC BCYB ( )
A  EEEER] B\ ZEE( a’) §( —a’) +L—2(§—Z> but
1pd _ A4
] + 30t -aY) My + My + Myp =0
l b
™ i =! Note that M}y, and Mp. are fractions of the balancing moment while Mg is the out of balance
N moment. Substituting in this equation for My, and My from Egs (16.33) and (16.34) !
Mo . Mob . Moa —0,(Ksa + Kac) = — M
A . B +L_2(23 b) +L_2(2b - a) B( BA BC) B
: P so that
a J. b Mg
i L™ 0= —— 16.
a g B Kpa + Kac (16.35)
Substituting in Eqs (16.33) and (16.34) for 6 from Eq. (16.35) we have
A . ekl 6 g q p B q i
" 7 —— B 5 L2 L2 M., =—3A (Mg M= —2 (M 16.36
El N T BAT o4 KBC( B) BT Rt KBC( B) (16.36)
e L ] The terms Kpa/(Kpa + Knc) and Kpc/(Kpa + Kpc) are the distribution factors (DFs) at the
| support B.
0 3Eld
% BE\ o = . . .
r & R 7 Stiffness coefficients and carry over factors
L L N We shall now derive values of stiffness coefficient (K) and carry over factor (COF) for a number of sup-
I port and loading conditions. These will be of use in the solution of a variety of problems. For this pur-
pose we use the slope—deflection equations, Eqs (16.28) and (16.30). Thus for a span AB of a beam
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2EI [ 3
MAB =— T -26A + gB + Z(’UA —_ ’UB)_
and
2EI [ ]
MBAz—— 293+9A+é(’UA'—UB)
L | L |

In some problems we shall be interested in the displacement of one end of a beam span relative
the other, i.e. the effect of a sinking support. Thus for, say vy =0 and vg = 6 (the final two load cages
in Table 16.6) the above equations become

2ET 3
MAB = — —L— <29A + HB =3 25) (1637)

and

2ET 3
Mpp = —— <295 + 05— 25) (16.38)

Rearranging Eqs (16.37) and (16.38) we have

3 L
20n +6p — z5 = = EEIZMAB (16.39)
and
3 L
293 + OA - Z(S == EMBA (1640)

Equations (16.39) and (16.40) may be expressed in terms of various combinations of 0, 85 and 6.
Thus subtracting Eq. (16.39) from Eq. (16.40) and rearranging we obtain

L
Op —0p=— E(MBA — Mag) (16.41)
Multiplying Eq. (16.39) by 2 and subtracting from Eq. (16.40) gives

S a= =L M — 201,
7 " ba @( BA /AB) (16.42)

Now eliminating 4 between Eqs (16.39) and (16.40) we have

O — d = — L 2Mpp — M, 4

B~ 7 6E1( BA AB) (16.43)
We shall now use Eqs (16.41)—(16.43) to determine stiffness coefficients and COFs for a variety of

support and loading conditions at A and B.

CASE 1: A FIXED, B SIMPLY SUPPORTED, MOMENT Mg, APPLIED AT B

This is the situation arising when a beam has been released at a support (B) and we require the stiffness coefficient

of the span BA so that we can determine the DF; we also require the fraction of the moment, Mga, Which is carried
over to the sunnort at A In thic cace A. = 8 = 0 en that fram Fa (1R A\
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1
Mpg = 3 Mg

Therefore one-half of the applied moment, Mga, is carried over to A so that the COF=1/2. Now from

Eqg. (16.43) we have
gy (2MBA J@)

so that 6l 2
4E]
Mpa = — TOB
from which (see Eq. (16.32))
4E]
Ken = (= Kng)

L

CASE 2: A SIMPLY SUPPORTED, B SIMPLY SUPPORTED, MOMENT Mg, APPLIED AT B

This situation arises when we release the beam at an internal support (B) and the adjacent support (A) is an
outside support which is pinned and therefore free to rotate. In this case the moment, Mga, does not affect the
moment at A, which is always zero; there is, therefore, no carry over from B to A.

From Eq. (16.43)

L
0 = —EZMBA (Mag =0)
which gives
3El
Men=——108
so that

3El
Ken = T(= Kng)

CASE 3: A AND B SIMPLY SUPPORTED, EQUAL MOMENTS Mga AND — My APPLIED AT
B AND A
This case is of use in a symmetrical beam that is symmetrically loaded and would apply to the central span.
Thus identical operations will be carried out at each end of the central span so that there will be no carry over
of moment from B to A or A to B. Also fg = —0, so that from Eq. (16.41)

2El

Mga = — THB

and

2EI
Kea = T( = Kns)

CASE 4: A AND B SIMPLY SUPPORTED, THE BEAM ANTISYMMETRICALLY LOADED
SUCH THAT MBA = MAB

This case uses the antisymmetry of the beam and loading in the same way that Case 3 uses symmetry. There is
therefore no carry over of moment from B to A or A to B and 6 = 0g. Therefore, from Eq. (16.43)
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6E/
Mgp = — TQB

so that
6E/
Kea = T(: Kap)

We are now in a position to apply the moment distribution method to beams and frames. Note that the syc.-
cessive releasing and clamping of supports is, in effect, carried out simultaneously in the analysis.
First we shall consider continuous beams.

Continuous beams

EXAMPLE 16.17

Determine the support reactions in the continuous beam ABCD shown in Fig. 16.39; its flexural
rigidicy £7 is constant throughout.

Initially we calculate the FEMs for each of the three spans using the results presented in
Table 16.6. Thus

8 X 32
M= — M, =~ 123 = — 6.0 kNm
S22 N 202
Mgcz—MgB:—w—a-———*n———-——-—' = —7 67 kNm
12 8
8 X 22
MEy =M. =— = = —2.67 kNm

In this particular example certain features should be noted. Firstly, the support at A is a fixed
support so that it will not be released and clamped in turn. In other words, the moment at A will
always be balanced (by the fixed support) but will be continually modified as the beam at B is
released and clamped. Secondly, the support at D is an outside pinned support so that the final
moment at D must be zero. We can therefore reduce the amount of computation by balancing
the beam at D initially and then leaving the support at D pinned so that there will be no carry
over of moment from C to D in the subsequent moment distribution. However, the stiffness coef-
ficient of CD must be modified to allow for this since the span CD will then correspond to Case 2

20 kN
8 kN/m

Y Y Y YYYYVYYYYYVYVYY

A ( %B %C
El 7 o

. 3m i DR W .S S Wl FIGURE 16.39
| l | Beam of Ex. 16.17.

Loy

:\U
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as the beam is released at C and is free to rotate at D. Thus Kcp = Kpc = 3E//L. All other spans cor-
respond to Case 1 where, as we release the beam at a support, that support is a pinned support while
the beam art the adjacent support is fixed. Therefore, for the spans AB and BC, the stiffness coeffi-
cients are 4EI/L and the COFs are equal to 1/2.

The DFs are obtained from Eq. (16.36). Thus

Kpa 4E1/3

DF = == _— .
BAT Kon + Ksc  4EI/3 +4EI)2
e Kpc W 4E] / 2 =
C Koat+ Kac AEI/3+4EIJ2 .
s e e \

Fog* Koy, AETI2 3B . ¢

Kcp iy 3B/ e
Kcg + Kcp  4EI[2 +3EI/2

DFcp = 0.43 Ao
Note that the sum of the DFs at a support must always be equal to unity since they represent the
fraction of the out of balance moment which is distributed into the spans meeting at that support.
The solution is now completed as shown in Table 16.7.

Note that there is a rapid convergence in the moment distribution. As a general rule it is suffi-
cient to stop the procedure when the distributed moments are of the order of 2% of the original
FEMs. In the table the last moment at C in CD is —0.02 which is 0.75% of the original FEM,
while the last moment at B in BC is +0.05 which is 0.65% of the original FEM. We could, there-
fore, have stopped the procedure at least one step earlier and still have retained sufficient accuracy.

The final reactions at the supports are now calculated from the final support moments and
the reactions corresponding to the actual loads, i.e. the free reactions; these are calculated as
though each span were simply supported. The procedure is identical to that in Ex. 16.15.

Table 16.7

A B c D
DFs L 0.4 06 0.57 0.43 1.0
FEMs —-6.0 +6.0 —7.67 +7.67 —2.67 +2.67
Balance D —2.67
Carry over e
Balance +0.67 +1.0 ~2.09 ~1.58
Carry over 10344 —1.05 €% 105
Balance +042  +088 —0.29 —0.21
Carry over +0.21 <« —015 = +0.32
Balance +0.06 +0.09 —018 014
Carry over +003< —0.09 <X 10.05
Balance +0.04 +0.05 ~0.03 ~0.02
Final moments —5.42 +7.19 ~7.19 +5.95 -5.95 0
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Tahle 16.8

A B C D
Free reactions 112.0 12.01 118.0 18.01 18.0 8.07
Final moment reactions 10.6 0.61 10.6 06] 12.98 298|
Total reactions (kN) 1114 1267 118.6 it 110.98 5.021

For example, in Table 16.8 the final moment reactions in AB form a couple to balance the clock.
wise moment of 7.19—542=177kN m acting on AB. Thus at A the reaction is 1.77/
3.0 =0.6 kN acting downwards while at B in AB the reaction is 0.6 kN acting upwards. The
remaining final moment reactions are calculated in the same way.

Finally the complete reactions at each of the supports are

RA =11.4 kN RE =12.6+18.6=31.2 kN
Rc=17.4+1098=28.38 kN Rp=5.02 kN

EXAMPLE 16.18

Calculate the support reactions in the beam shown in Fig. 16.40; the flexural rigidity, £, of the
beam is constant throughout.

This example differs slightly from Ex. 16.17 in that there is no fixed support and there is a canti-
lever overhang at the right-hand end of the beam. We therefore treat the support at A in exactly the
same way as the support at D in the previous example. The effect of the cantilever overhang may
be treated in a similar manner since we know that the final value of moment at D is
—5X 4= —20kN m. We therefore calculate the FEMs MgE (=—20 kN m) and Mlg(:’ balance
the beam at D, carry over to C and then leave the beam at D balanced and pinned; again the stiff-
ness coefficient, Kpc, is modified to allow for this (Case 2).

The FEMs are again calculated using the appropriate results from Table 16.6. Thus

12kN 7KN  7kN 22kN (total) SkN

A 1 Bll%%hH%D‘

I ; E

L?m L 7m J44m_|‘4m>!:4m=ll: 12m ‘l44m‘

F-

FIGURE 16.40
Beam of Ex. 16.18.

L A2X14

My =—M, = =—21kNm
. TX4XE  TXEX4
MII;C: —Mng - T — 5 = —18.67 kN m
22X 12
MEy = — M= — 5 = " 22kNm

MSE=—5><4= —20 kN m
The DFs are calculated as follows

16.10 Moment distribution

943

K 3El/14
DFpy= ——2 = / =0.39
Kpp + Kpc  3EL/14 +4EI/12
Hence
DFgec =1 -—0.39 = 0.61
K 4FET/12
DFcg = = / =057
Kcg + Kep 4E[/12+3E[/12
Hence
DFCD =1-0.57=043
The solution is completed as follows:
A B c D E
DFs 1 0.39 0.61 0.57 0.43 1.0 0 -
FEMs —21.0 +21.0 — 18.67 + 18.67 —22.0 +22.0 -20.0 O
Balance AandD +21.0 =20
Carry over X4105 —1.0%
Balance =510 —7.83 + 247 +1.86
Carry over +1.242X_392
Balance —0.48 -0.76 +2.23 +1.69
Carry over +1.122<_0.38
Balance —-0.44 —-0.68 +0.22 +0.16
Carry over +0.11 2K 0.34
Balance -0.04 - 0.07 +0.19 +0.15
Final moments 0 +2554 —-2554 +19.14 —19.14 +20.0 -20.0 O

The support reactions are now calculated in an identical manner to that in Ex. 16.17 and are

Ry=4.18kN Rz=1535kN Rc=174kN Rp=16.0 kN
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EXAMPLE 16.19
Calculate the reactions at the supports in the beam ABCD shown in Fig. 16.41. The flexural rigidicy
of the beam is constant throughout.

The beam in Fig. 16.41 is symmetrically supported and loaded about its centre line; we may
therefore use this symmetry to reduce the amount of computation.

In the centre span, BC, MII;C = — MgB and will remain so during the distribution. This situation
corresponds to Case 3, so that if we reduce the stiffness (Kpc) of BC to 2E//L there will be no carry
over of moment from B to C (or C to B) and we can consider just half the beam. The outside
pinned support at A is treated in exactly the same way as the outside pinned supports in Exs 16.17
and 16.18.

The FEMs are

Xt
Mfy= - My = =222 == 15kNm
40 X 5
MBC—-—M&:—* 3 = — 25 kN m
The DFs are
Kga 3EI/6
DFpp = = = 0.71
AB ™ Kea + Koc  3EI/6+2EI]10
Hence
DFpc=1-0.71=0.29
The solution is completed as follows:
A B
DFs 1 0.71 0.29
FEMs —-15.0 +15.0 -25.0
Balance A +15.0
Carry over ™75
Balance B +1.78 +0.72
Final moments 0 +24.28 —24.28

Note that we only need to balance the beam at B once. The use of symmetry therefore leads o a
significant reduction in the amount of compuration.

40 kN

5 kN/m l 5 kN/m
i B &
A - D
( JA)
o 7777, &l 7o 7
6m | Bm ' &m | 6m FIGURE 16.41
i | I Symmetrical beam of Ex. 16.19.
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The support reactions are now calculated as in Ex. 16.17 and are

Ry =Rp =10.95 kN, Rg=Rc=39.05kN.

[
EXAMPLE 16.20

Calculate the end moments at the supports in the beam shown in Fig. 16.42 if the support at B is
subjected to a settlement of 12 mm. Furthermore, the second moment of area of the cross section of
the beam is 9 X 10° mm? in the span AB and 12 X 10° mm* in the span BC; Young’s modulus, £,
is 200 000 N/mm”®.

In this example the FEMs produced by the applied loads are modified by additional moments
produced by the sinking support. Thus, using Table 16.6

_6X5%  6X200000X9X10°X12 _

M, = —17.7 kN
- 12 (5 X 10%)> X 10° .
6X5%  6X200000X9X10°X12
MEy =+ et GRS £ 5
12 (5X10%)” X 10

Since the support at C is an outside pinned support, the effect on the FEMs in BC of the settle-
ment of B is reduced (see the last case in Table 16.6). Thus

40X 6 | 3X200000X12X10°X12 _

ME. = — o =—27.6
BC 8 (6 X 10°) X 10° & s
X
ME, =+ 408 6 =+ 30.0 kNm
The DFs are
b Kea  _ (4E X 9 X 10%/5 055
PAT Koa + Koc  (4E X9 X 109/5+ BE X 12X 109/6
Hence
DFBC =1-0.55=0.45
40kN
6 kN/m l

|
N A % B Q c
% 2
3m ‘I FIGURE 16.42
| Beam of Ex. 16.20.

5m J‘ 3m

<€ '|

L
-



|
6 CHAPTER 16 Analysis of Statically Indeterminate Structures

A B c
DFs - 0.55 0.45 1.0
FEMs = L —27.6 +30.0
Balance C ” ~30.0
Carry over s -15.0%
Balance B +19.41 +15.89
Carry over +9~.71/

Final moments —7.99 '+26‘71” “—“—26‘71 0

Note that in this example balancing the beam at B has a significant effect on the fixing moment
t A; we therefore complete the distribution after a carry over to A.
-

5.11 Portal frames

rtal frames fall into two distinct categories. In the first the frames, such as that shown in Fig. 16.43
, are symmetrical in geometry and symmetrically loaded, while in the second (Fig. 16.43(b)) the
mes are unsymmetrical due either to their geometry, the loading or a combination of both. The dis-
cements in the symmetrical frame of Fig. 16.43(a) are such that the joints at B and C remain in
iir original positions (we are ignoring axial and shear displacements and we assume that the joints
nain rigid so that the angle between adjacent members at a joint is unchanged by the loading). In
: unsymmetrical frame there are additional displacements due to side sway or sway as it is called.
is sway causes additional moments at the ends of the members which must be allowed for in the
lysis.

Initially we shall consider frames in which there is no sway. The analysis is then virtually identical
that for continuous beams with only, in some cases, the added complication of more than two mem-
's meeting at a joint.

b S - T ] -\
! \ / I‘\

Displaced_\,' ' i J e

shape : H 1 J isplace
\ /I I,’ / shape
A\ ‘b 3 777
77 777777 77

(a) (b)

URE 16.43

nmatrinal AnA dimacimaaa bl el o £
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EXAMPLE 16.21
Obuain the bending moment diagram for the frame shown in Fig. 16.44; the flexural rigidity E7 is
the same for all members.
In this example the frame is unsymmetrical but sway is prevented by the member BC which is
fixed at C. Also, the member DA is fixed at D while the member EB is pinned at E.
The FEM:s are calculated using the results of Table 16.6 and are

M1€D=MSA=0 M§E=M]§B=0
12X4X8% 12X4Xx4° _

A —32

ME, ME, 7 2 32 kN m
1X 16 e

Mgcm_MgB**— 2 =—213kNm

Since the vertical member EB is pinned at E, the final moment at E is zero. We may therefore
treat E as an outside pinned support, balance E initially and reduce the stiffness coefficient, Kig, as
before. However, there is no FEM at E so that the question of balancing E initially does not arise.
The DFs are now calculated

e e VIR
DFaD = o+ K 4EIJ12+4EIJ12 O
Hence
DFas=1-0.5=0.5
i o ' 4E1/12 Ltz
BA " Kon + Koc + Ksz  AEIJ12 +4EIJ16 + 3EIJ12
s | Kac A 4EI/16 Sh
BC T Kea + Koc + Kep 4E[J12+4E[]16 +3EIJ/12
Hence
DFBE=1“0.4“0.3=0.3
12kN 12kN
l l 1 kN/m 7
A By yyYyVYVYY [C
4
12m

FIGURE 16.44
Beam of Ex. 16.21.
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The solution is now completed below.

Joint D A B C
Member DA AD AB BA BE BC cB

DFs - 0.5 0.5 0.4 0.3 0.3 -
FEMs g.. B —2p0 | 4320 O ~218  +213
Balance A and B +160  +160 -43  -32 -32

Carry over +8.0 =2.15 +8.0 =1.6
Balance +108  +108 -32 24 =24

Carry over +0.54 4.0 +0.54 =l
Balance +08 408 -022 016 016
Carry over +0.4 0,11 = +04 ’ —-0.08
Balance +0.05 +0.06 =016 -0.12 -0.12

Final moments  +894 +17.93 ~17.9% +3308 -588 -p7.18 +1B42 O

—i

The bending moment diagram is shown in Fig. 16.45 and is drawn on the tension side of each
member. The bending moment distributions in the members AB and BC are determined by superim-
posing the fixing moment diagram on the free bending moment diagram, i.e. the bending moment dia-
gram obtained by supposing that AB and BC are simply supported.

We shall now consider frames that are subject to sway. For example, the frame shown in Fig. 16.46
(a), although symmetrical itself, is unsymmetrically loaded and will therefore sway. Let us suppose that
the final end moments in the members of the frame are Myp, Mpa, Mpc, etc. Since we are assuming a
linearly elastic system we may calculate the end moments produced by the applied loads assuming that
the frame does not sway, then calculate the end moments due solely to sway and superimpose the two
cases. Thus

Myp =M + M5y Maa = My + Mg,

and so on, in which M}y is the end moment at A in the member AB due to the applied loads, assum-
ing that sway is prevented, while M}y is the end moment at A in the member AB produced by sway
only, and so on for Mp,, Mpc, etc.

33.08

17.93 \27\'18 18.42
A \ /I
17.93
5.88 c

N/ B

FIGURE 16.45

Bending moment diagram for the frame of Ex.
16.21 (bending moments (kN m) drawn on
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ho,

. Ak ok

) &
~TA MBA ~TA MCD
h
6V
~TA Mpp ~TAMpcy
777777 Ron 7
A

R,
AH A D

6y

BV

’

D
(a) (b)

FIGURE 16.46
Calculation of sway effect in a portal frame.

We shall now use the principle of virtual work (Section 15.2) to establish a relationship between the
final end moments in the member and the applied loads. Thus we impose a small virtual displacement
on the frame comprising a rotation, 6,, of the members AB and DC as shown in Fig. 16.46(b). This
displacement should not be confused with the sway of the frame which may, or may not, have the same
form depending on the loads that are applied. In Fig. 16.46(b) the members are rotating as rigid links
so that the internal moments in the members do no work. Therefore the total virtual work comprises
external virtual work only (the end moments Mpp, Mgy, etc. are externally applied moments as far as
each frame member is concerned) so that, from the principle of virtual work

Mpg0, + Mpp0, + Mcp6, + Mpch, + Phoy =0
Hence

Mpg + Myp + Mcp + Mpc +Ph=0 (16.44)

Note that, in this case, the member BC does not rotate so that the end moments Mpc and Mcp do
no virtual work. Now substituting for Map, Mpa, etc. in Eq. (16.44) we have

MY + M3, + MRS + My, + MES + M3, + MJ2 + M3 +Ph=0 (16.45)

in which the no-sway end moments, My, etc., are found in an identical manner to those in the frame
of Ex. 16.21.

Let us now impose an arbitrary sway on the frame; this can be of any convenient magnitude. The
arbitrary sway and moments, M25, MES, etc., are calculated using the moment distribution method in
the usual way except that the FEMs will be caused solely by the displacement of one end of a member
relative to the other. Since the system is linear the member end moments will be directly proportional
to the sway so that the end moments corresponding to the actual sway will be directly proportional to
the end moments produced by the arbitrary sway. Thus, My, = kM2, M3, = kM3, etc. in which £ is
a constant. Substituting in Eq. (16.45) for MgB,MgA, etc. we obtain

MRS + MY + MES + MES + k(M3 + My + M2 + ML)+ Ph=0 (16.46)
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Substituting the calculated values of A Qg,Mﬁg, etc. in Eq. (16.46) gives k. The actual sway
roments My, etc., follow as do the final end moments, Map( = M}:{SS + MﬁB, etc).

An alternative method of establishing Eq. (16.44) is to consider the equilibrium of the members AR
ad DC. Thus, from Fig. 16.46(a) in which we consider the moment equilibrium of the member AR
sout B we have

RA,H/J - MAB - MBA =0

‘hich gives
R = Mpg + Mpa
AH= T
Similarly, by considering the moment equilibrium of DC about C
R s = Mpc + Mcp
DH= —

Now, from the horizontal equilibrium of the frame
RA,H + RD,H +P=0
) that, substituting for Rs 1y and Rp i we obtain

MAB +MBA +MDC +MCD +Ph=0
hich is Eq. (16.44).

[
EXAMPLE 16.22

Obtain the bending moment diagram for the portal frame shown in Fig. 16.47(a). The flexural
rigidity of the horizontal member BC is 2E/ while that of the vertical members AB and CD
is EL

First we shall determine the end moments in the members assuming that the frame does not
sway. The corresponding FEMs are found using the results in Table 16.6 and are as follows:

4 kN

5 5
PR g e
2E] 4 2E1 |
El El | 10m El El
A e A D

(@) (b)

FIGURE 16.47
Portal frame of Ex. 16.22.
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My =Mz, =0 My =Mpc =0

M§c=_——4xis>; 1 g9kNm
MEB=+4L;2—2§—ZE+4.44kNm |
The DFs are
e KBAIiB'AKBC " 3EH / 104fZ;02EI i1 Wl
Hence

DFpc =1—0.43=10.57

From the symmetry of the frame, DFcp = 0.57 and DFcp = 0.43.

The no-sway moments are determined in the table overleaf. We now assume that the frame sways
by an arbitrary amount, 8, as shown in Fig. 16.47(b). Since we are ignoring the effect of axial strains,
the horizontal movements of B and C are both 6. The FEMs corresponding to this sway are then
(see Table 16.6)

My = Mgy = _%§ = Mpc = Mgy
Mie=ME =0
Suppose that § = 100 X 10*/6EL Then
My = ML, = M) =ME,=—100kN m (a convenient)

The DFs for the members are the same as those in the no-sway case since they are functions of the
member stiffness. We now obtain the member end moments corresponding to the arbitrary sway.

No-sway case

A B c D
DFs i 043 057 057 043  —
FEMs e 0 -889 +4.44 0 0
Balance 382 FE07 N 253 =191
Carry over +1.91% -1.26#81253 ™_0.95
Balance +0.54 an 72 ~1.44 _—_l_Qg
Carry over 1027* -0.722%+0.36 X055
Balance 031 4041 -021 -0.15 ;
Carry over 154 -niifapgl \-0.08
Balance +0.05 +0.06 -0.12 -0.09
Carry over +0.03% -0.06#%+0.03 "N_0.05
Balance +0.03 +0.03 -002 -0.01
Final moments (M\S)  +2.36 +4.75 —4.75 +3.25 -3.25 -163
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Sway case
A B c D

DFs S 043 057 057 043 -
FEMs -100 -100 O 0 ~100  ~-100
Balance +43 457 +57 +43
Carry over +21.5% +28.5%%+28.5 X015
Balance -123 =162 =—162 -123
Carry over -62 * =81 X—B.l \—6.2
Balance +3.5 +46  +4.6 +35
Caryover +1.8 ¥ +2.3 %X 423 Xi18
Balance —1.0 -1.3 —1.3 -1.0

Final arbitrary sway moments (M) -82.9 -66.8 +66.8 +66.8 —66.8 —82.9

Comparing the frames shown in Figs 16.47 and 16.46 we see that they are virtually identical. We
may therefore use Eq. (16.46) directly. Thus, substituting for the no-sway and arbitrary-sway end
moments we have

236 +4.75—3.25—1.63 + k(—82.9—66.8—82.9)+2X10=0
which gives
k=10.074
The actual sway moments are then
My = kM =0.074 X (— 82.9)= — 6.14 kN m
Similarly
M3, =—494KNm M5.=494kNm M =494kNm
MEy=—494kNm M5.=—-614kNm
Thus the final end moments are
Mpp = Mg + Mz =2.36— 6.14 = — 3.78 kNm

8.19

B 019 | / B

FIGURE 16.48

Bending moment diagram for the portal
frame of Ex. 16.22. Bending moments
(kNm) drawn on tension side of members.

3.78
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Similarly

Mpa=—0.19kNm Mpc=—0.19 kN m Mcg = 8.19 kN m
Mcp=—819kNm Mpc=-—777kNm

The bending moment diagram is shown in Fig. 16.48 and is drawn on the tension side of the

mbers.
me € ’

-
EXAMPLE 16.23

Calculate the end moments in the members of the frame shown in Fig. 16.49. All members have the

same flexural rigidity, £1; note that the member CD is pinned to the foundation at D.
Initially, the FEMs produced by the applied loads are calculated. Thus, from Table 16.6

: 40 X6
Mjy == Mgy =——2—=—30kNm
20 X 6
Mfc=-Ml=——7—=—60kNm
MEp = Mpe =0

The DFs are calculated as before. Note that the length of the member
CD= V6’ +45°=7.5m.

o 4EI/6

= - = =),
DFe = o Koo 4EI/6 + 4EI/6 :
Hence
DFgc=1=-0.5=0.5
Kes 4EI/6 ,
Dfa = o %o dH G+ 3E75
20 kN/m
e L bbb e
T B
3m
~ 40kN
.._r‘......... e 4
3m
v A D
WAL VA
6m dbw FIGURE 16.49
i i i Frame of Ex. 16.23.
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Therefore
DFcp =1 —0.625 =0.375

No-sway case

A B c D
DFs - 0.5 0.5 0.625 0.375 1.0
FEMs -30.0 +30.0 -60.0 +60.0 0 0
Balance 150 W-in 0 =875 =225

Carry over +7.54 -1884%X,75

Balance +9.4 +9.4 —4.7 -2.8

Carry over +4.7 “ —2.4 K+4.7

Balance 412 e =) s

Carry over ; +06% —1.5% 2106

Balance +0.75 +0.75 -0.38 =022

Final moments(M"®) —17.2 +56.35 -56.35 +27.32 -27.32 0

Unlike the frame in Ex. 16.22 the frame itself in this case is unsymmetrical. Therefore the geome-
try of the frame, after an imposed arbitrary sway, will not have the simple form shown in Fig. 16.47
(b). Furthermore, since the member CD is inclined, an arbitrary sway will cause a displacement of
the joint C relative to the joint B. This also means that in the application of the principle of virtual
work a virtual rotation of the member AB will result in a rotation of the member BC, so that the
end moments Mpc and Mcp will do work; Eq. (16.46) cannot, therefore, be used in its existing
form. In this situation we can make use of the geometry of the frame after an arbitrary virtual dis-
placement to deduce the relative displacements of the joints produced by an imposed arbitrary sway;
the FEMs due to the arbitrary sway may then be calculated.

Figure 16.50 shows the displaced shape of the frame after a rotation, 6, of the member AB. This
diagram will serve, as stated above, to deduce the FEMs due to sway and also to establish a virtual

FIGURE 16.50

Arbitrary sway and virtual displacement geometry of
framna ~f Cv 12 22
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work equation similar to Eq. (16.46). It is helpful, when calculating the rotations of the different
members, to employ an instantaneous centre, I. This is the point about which the triangle IBC
rotates as a rigid body to IB'C’; thus all sides of the triangle rotate through the same angle which,
since BI =8 m (obtained from similar triangles AID and BIC), is 30/4. The relative displacements

of the joints are then as shown. )
The FEMs due to the arbitrary sway are, from Table 16.6 and Fig. 16.50

GEI(66
My = Mgy = — 6(2 ) - — EIf
M- =ME =~ %—5—@ =+0.75E10
Mg, = — il Eé(;sg) = —0.4E10

If we impose an arbitrary sway such that £16 = 100 we have
My =M:, =—100kNm My =ME=+75kNm Mi,=-40kNm

Now using the principle of virtual work and referring to Fig. 16.50 we have

— 30 — 30
Mpg0 + Myp0 + Mpcl S + Mcg i
+ Mcpf + 40 %’ +20%6 —;59 =0
Sway case

A B c D
DFs - 0.5 0.5 0.625 0.375 1.0
FEMs -100 —100 +/5 +75 —40 0
Balance Fl28 125 =218 i3
Carry over +634 ~10.9°%16.3
Balance +5.45 +5.45 =39 —-2.4
Carry over +2,.72‘/ = 1.95A+2.72
Balance —-0.97 =097 b -1.02
Carry over +O.49‘/ —O.85‘x*+0.49
Balance +0.43 +0.43 —0:31° " ~0.18

Final arbitrary sway moments(M*®) -90.49 -80.65 +80.65 +56.7 —56.7

Hence
4(Mpp + Mg + Mcp) — 3(Mpc + Mcp) — 600 =0 ®
Now replacing Myg, etc., by Mas + £MAS, etc., Eq (i) becomes
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4MF + MES + MES) — 3(MYS + MES) + AWM + MLS + ML)
— 3(MEE + MA)] — 600 =0
Substituting the values of MRy and My, etc., we have
4(—17.2 +56.35 — 27.32) — 3(— 56.35 + 27.32)
+ k[4(— 90.49 — 80.65 — 56.7) — 3(80.65 + 56.7)] — 600 =0

from which k= —0.352. The final end moments are calculated from Map = M}y — 0.352)8,

etc., and are given below.

No-sway moments —17.2 +56.4 ‘

Sway moments +31.9 +284 [ .0 +20.0 O
Final moments +14.7 +848 -848 +7.3 ~7.3 0

The methods described in this chapter are hand methods of analysis although they are fundamental,
particularly the slope—deflection method, to the computer-based matrix methods of analysis which are

described in Chapter 17.

PROBLEMS

P.16.1 Determine the degrees of static and kinematic indeterminacy in the plane structures shown in

Fig. P.16.1.

Ans. (@) n,=3, m. =6, b) n,=1, mc=2, (c) n,=2, mc=4, (d) n,=6, m.= 15, (¢) n,=2,

nk=7.

m Tle

(@) (b) (©

7 24 iz
() (€)
FIGURF P 16 1

ﬁ
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P.16.2 Determine the degrees of static and kinematic indeterminacy in the space frames shown in

Fig. P.16.2.
Ans. (a) ny=06, m. = 24, (b) n,=42, m.= 36, (c) n,=18, n,=06.

v

(©

(a)
FIGURE P.16.2

P.16.3 Calculate the support reactions in the beam shown in Fig. P.16.3 using a flexibility method.
Ans. Ry =3.3 kN Ry =14.7 kN Rc = 4.0 kN M, = 2.2 kNm (hogging).

12 kN 10kN
N A B l c
\ |
‘
N
El %—/ W%
y 16m | o8m =!: 12m :!: 0.8m =! FIGURE P.16.3

P.16.4 Determine the support reactions in the beam shown in Fig. P.16.4 using a flexibility method.
Ans. Ry =3.5kN Ry =9.0 kN Rc=3.5kN M, = —7 kN m (hogging) Mc = —19 kN m

(hogging).
0.75 kN/m 7 kN .
EERER, l \
N ) N
' N

%
>
w
\i
m
o

12m

A
A
b
A
\

FIGURE P.16.4
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P.16.5 Use a flexibility method to determine the support reactions in the beam shown in Fig. P.16.5 P.16.8

The flexural rigidity E7 of the beam is constant throughout.
Ans. Ra=43kN Rg=15.0 kN R-=17.8 kN Rp = 15.9 kN.

12kN 7kN 7kN 5kN

l 22 kN (total)
B l l CJ I I I I lD v E

A
[
7797/ o /é 7 /éé 77@7
74
-

4m‘|44m‘ 4m‘|‘
T

12m J‘4 m_

FIGURE P.16.5

_—

P.16.6 Calculate the forces in the members of the truss shown in Fig. P.16.6. The members AC and
BD are 30 mm? in cross section, all the other members are 20 mm? in cross section. The
members AD, BC and DC are each 800 mm long; £= 200 000 N/mm?,

Ans. AC=482NBC=87.6NBD=—-1.8NCD=21NAD=1.1N.

Uiz e
A

B

60°
P.16.9

C l D
100 N FIGURE P.16.6

2.16.7 Calculate the forces in the members of the truss shown in Fig. P.16.7. The cross-sectional area
of all horizontal members is 200 mm?, that of the vertical members is 100 mm? while that of
the diagonals is 300 mm?; £ is constant throughout.

Ans. AB=FD = —29.2 kN BC=CD = —29.2 kN AG = GF = 20.8 kN
BG=DG=41.3kN AC=FC= —29.4 kN CG =41.6 kN.

B C D

2m

4 V100 kN ¢

FIGURE P.16.7
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Calculate the forces in the members of the truss shown in Fig. P.16.8 and the vertical and
horizontal components of the reactions at the supports; all members of the truss have the
same cross-sectional properties.
Abwns. RA,V =67.52 kN RA,H =70.06 kN = RF,H RF,V =32.48 kN

AB = —32.48 kN AD = —78.31 kN BC = —64.98 kN BD = 72.65 kN

CD = —100.0 kN CE = —64.98 kN DE = 72.65 kN DF = —70.06 kN

EF = —32.49 kN.
100 kN

y B

25m

5m

‘4 5m ‘.‘ 5m
'|‘ '| FIGURE P.16.8

The plane truss shown in Fig. P.16.9(a) has one member (24) which is loosely attached

at joint 2 so that relative movement between the end of the member and the joint may occur
when the framework is loaded. This movement is 2 maximum of 0.25 mm and takes place
only in the direction 24. Figure P.16.9(b) shows joint 2 in detail when the framework is
unloaded. Find the value of P at which the member 24 just becomes an effective part of the
truss and also the loads in all the members when P =10 kN. All members have a cross-
sectional area of 300 mm?” and a Young’s modulus of 70 000 N/mm”.

Ans. P=2.95kN 12 =248 kN 23 = 1.86 kN 34 = 2.48 kN 41 = —5.64 kN 13 = 9.4 kN
42 = —3.1kN.

450 mm

600 mm

(£} (h)
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P.16.10 Figure P.16.10 shows a plane truss pinned to a rigid foundation. All members have the same
Young’s modulus of 70 000 N/mm? and the same cross-sectional area, A, except the membey
12 whose cross-sectional area is 1.414A4.
Under some systems of loading, member 14 carries a tensile stress of 0.7 N/mm?,
Calculate the change in temperature which, if applied to member 14 only, would reduce the
stress in that member to zero. The coefficient of linear expansion o = 24 X 107%° C.

Ans. 5.5°.
]
T
12a
2
3a
3 4 I
s
4a 52 | FIGURE P.16.10

P.16.11 The truss shown in Fig. P.16.11 is pinned to a foundation at the points A and B and is
supported on rollers at G; all members of the truss have the same axial rigidity
EA=2X10°N.

Calculate the forces in all the members of the truss produced by a settlement of 15 mm at
the support at G.
Ans. GF =1073.9 kN GH = —536.9 kN FH = —1073.9 kN
FD =1073.9 kN JH= —1610.8 kN HD = 1073.9 kN
DC =2147.7 kN C] =1073.9 kN JA = —2684.6 kN
AC= —1073.9 kN JD = —1073.9 kN BC = 3221.6 kN.

% B C D F
N
60° 60°
G
/.

L Im ] 1m _L im FIGIRE P 1R 11
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P.16.12 Determine the degree of statical indeterminacy of the plane pin-jointed frame shown in
Fig. P.16.12 and calculate the forces in the members produced by the vertical load, W, All
members have the same length L and axial rigidity AE. Determine also the lack of fit required
in the member 45 to reduce the force in the member 41 to zero.
Ans. 14= —0.81 W, 24 = —0.92W, 25 = +0.23W, 53 = +0.35W, 45 = —0.23W,
46 = —0.58W, 56 = +0.58W, 67 = +0.58W, 47 = —1.15W.
1.73 WLIAE.

3 2 1
587 A 7o) FIGURE P.16.12

P.16.13 Determine the degree of statical indeterminacy of the portal frame shown in Fig. P.16.13 and
use the unit load method to determine the reactions at the pinned support at D. All members
have the same flexural rigidity £7. Calculate also the bending moments at A, B and C.

Ans. 11.8 kN (vertical, upwards), 3.3 kN (horizontal to the left).
13.2 kNm at A (anticlockwise), 6.98 kNm at B (clockwise), 9.9 kNm at C

(anticlockwise).
4KkN/m
_ B Hrlr@lr{/lr¢¢¢l C . 10kN
El
- El El —
3m
——A7777 7>9/7D
< 35m -] FIGURE P.16.13

P.16.14 The cross-sectional area of the braced beam shown in Fig. P.16.14 is 44 and its second
moment of area for bending is A2°/16. All other members have the same cross-sectional area,
A, and Young’s modulus is £ for all members. Find, in terms of w, A4, 2 and E, the vertical
displacement of the point D under the loading shown.

Ans. 30 232 wa*I3AE.
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5 1.5w
wa X
,H¢¢¢¢H$l<§
7 D (e] ] O,
C B A
3a
\
/
E F G
I 4a P 4a P 4a |
B 1<t 1<t g FIGURE P.16.14

2.16.15 Determine the force in the vertical member BD (the king post) in the trussed beam ABC
shown in Fig. P.16.15. The cross-sectional area of the king post is 2000 mm?, that of the
beam is 5000 mm? while that of the members AD and DC of the truss is 200 mm?; the
second moment of area of the beam is 4.2 X 10° mm* and Young’s modulus, £, is the same
for all members.

Ans. 91.6 kN.

l 100 kN
A B C
|

R —5—

A
7777 7577
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2m J‘ 2m
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FIGURE P.16.15

*.16.16 Determine the distribution of bending moment in the frame shown in Fig. P.16.16.
Ans. My =7 wI*/45 Mc = 8 wL?/45. Parabolic distribution on AB, linear on BC and CD.

w B C
El
2E 2E1 L
A D
7 2l

2L/3 FIGURE P.16.16
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P.16.17 Use the flexibility method to determine the end moments in the members of the portal frame
shown in Fig. P.16.17. The flexural rigidity of the horizontal member BC is 2E7 while that of
the vertical members AB and CD is EL

Awns. MAB = _363 kNm MBA = _MBC = —0.07 kNm MCB = —MCD = 8.28 kNm
Mpc = —8.02 kN m M (at vert. load) = 10.62 kN m (sagging).

4KN \
2N ——> D ¢ —
2EI 1
El El 10m
A D y
7 J 7%
5m 10m
< " > FIGURE P.16.17

P.16.18 Calculate the end moments in the members of the frame shown in Fig. P.16.18 using the
flexibility method; all members have the same flexural rigidity, E1.

Anx. MAB = 148 kNm MBA = —MBC = 848 kNm MCB = _MCD = 70 kNm MDC =0.

20 kN/m

o,
3m
A 40KN

o Bl
3m

3 A D

7, 7500
» 6m o L =! FIGURE P.16.18

P.16.19 The two-pinned circular arch shown in Fig. P.16.19 carries a uniformly distributed load of
15 kN/m over the half-span AC. Calculate the support reactions and the bending moment at

the crown C.
Aunn D —2A TN D =11 ALNR. ..=PRP . ..=177 LN M~=2ALNm
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15 kN/m

LYV VVoye

s} o /'
60 0
~ -7 R=35m
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FIGURE P.16.19

.16.20 The two-pinned parabolic arch shown in Fig. P.16.20 has a second moment of area, 7, that
varies such that /= I, sec 6 where ], is the second moment of area at the crown of the arch and
0 is the slope of the tangent at any point. Calculate the horizontal thrust at the arch supports
and determine the bending moment in the arch at the loading points and at the crown.

Ans. Rayy = Rp = 169.8 kN Mp =472 kN m Mc= —9.4 kNm.

50 kN 50 kN

10m 10m 10m

FIGURE P.16.20

16.21 Show that, for a two-pinned parabolic arch carrying a uniformly distributed load over its
complete span and in which the second moment of area of the cross section varies as the
secant assumption, the bending moment is everywhere zero.

16.22 The symmetrical two-pinned arch shown in Fig. P.16.22 comprises two segments each having
a radius of 8 m. Calculate the horizontal reactions at the supports and the bending moment at
the crown; the section properties are uniform throughout.

Ans. 20.4 kN, 58.7 kNm.

16.23 A two-pinned parabolic arch has its supports on the same horizontal level, a span of 40 m, a
rise of 5 m and carries a vertical concentrated load of 10 kN acting at a point 10 m from the
left-hand support. If the second moment of area of the arch cross section is governed by the
secant rule calculate the horizontal thrust at the supports. With an origin of axes at the left-
hand support the equation of the arch is

y=4h(Lx— x°)/L? where b is the rise of the arch and L its span. Calculate also the
maximum bending moment in the arch.

Aeas 11 A INT 292 A 1TAT
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100kN

A

C
O O
TINSTT TINGTT FIGURE P.16.22

P.16.24 A semi-circular two-pinned arch has a radius of 5 m and carries a uniformly distributed load
of intensity 10 kN/m over its complete span. If the flexural rigidity E7 of the arch is constant
and the supports are on the same horizontal level calculate the support reactions.

Ans. 21.2 kN (horizontal), 50.0 kN (vertical).

P.16.25 The arch shown in Fig. P.16.25 is parabolic, the equation of its profile being y = 0.05x
(40 — x). If the second moment of area of the cross section of the arch is governed by the secant
rule calculate the reactions at the supports and the bending moment at the crown.

Abns. RA,H = RB,H =3.15 kN. RA,V= 11.6 kN, RB,V= 3.4 kN, MC =19 kNm.

15kN c

10 20
i‘ m < m g FIGURE P.16.25

P.16.26 A two-pinned semi-circular arch of constant cross section and radius R carries a central load
W and has a flexural rigidity EL If the coefficient of linear expansion of the material of the
arch is o find the temperature change for there to be no horizontal reaction at the supports.

Ans. —WRI4E]o.
P.16.27 Use the slope—deflection method to solve P.16.3 and P.16.4.

P.16.28 Use the slope—deflection method to determine the member end moments in the portal frame
of Ex. 16.22.

P.16.29 Use the slope-deflection method to calculate the end moments in the beam shown in
Fig. P.16.29; the flexural rigidity of the beam is EL. If the beam is now subjected to a downward
displacement of 5 mm at the support B calculate the additional end moments this will produce.

o, —_— A AT 2 r ar Z 11 1AT ar N
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20 kN/m 5 kN
EEENREE]
|
A BB s
| 20m | 15m | 15m |
| | g FIGURE P.16.29

2.16.30 Calculate the support reactions in the continuous beam shown in Fig. P.16.30 using the

moment distribution method; the flexural rigidity, £, of the beam is constant throughout.

Problems 567

P.16.32 In the beam ABC shown in Fig. P.16.32 the support at B settles by 10 mm when the loads
are applied. If the second moment of area of the spans AB and BC are 83.4 X 10° mm* and
125.1 X 10° mm?, respectively, and Young’s modulus, E,of the material of the beam is
207000 N/mm?, calculate the support reactions using the moment distribution method.

Ans. Rc=28.6 kN Ry = 15.8 kN R, = 30.5 kN M, = 53.9 kNm.

6.25 kN/m

BY ¥V v v ¥

150 kN

W/,

Ans. Ry =2.7 kN Ry = 10.6 kN R =3.7 kN M, = —1.7 kNm.

ANNNNNN

7kN
0.75 kN/m l
Yy v v V 8 c
\
A éé El é%
Z 4
12m 12m 5m

A
\

IGURE P.16.30

| 12m
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1kN

+16.31 Calculate the support reactions in the beam shown in Fig. P.16.31 using the moment
distribution method; the flexural rigidity, E7, of the beam is constant throughout.

Apns. RC =28.2kN RD =17.0kN RE =48 kN ME = 1.6 kNm.

1.0m

50 kN
l 10kN m

|  1o0m

5 Y

. osm | osm | 1.0m

GURE P.16.31

25m | 4m
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FIGURE P.16.32

P.16.33 Calculate the end moments in the members of the frame shown in Fig. P.16.33 using the
moment distribution method. The flexural rigidity of the members AB, BC and BD are
2EI3EI and EI, respectively, and the support system is such that sway is prevented.

Apns. MAB = MCB =0 MBA =30 kNm MBC = —36 kNm, MBD =6 kNm MDB =3 kNm.

8kN 8kN 8kN
A B C

16m

FIGURE P.16.33

P.16.34 The frame shown in Fig. P.16.34 is pinned to the foundation at A and D and has members
whose flexural rigidity is £1. Use the moment distribution method to calculate the moments
in the members and draw the bending moment diagram.

Apns. MA=MD =0 MB =11.9 kNm MC =63.2 kNm.

50 kN
B o]
A
3m
o
25 kN
3m
A D
_L le) )
W2 S
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P.16.35 Use the moment distribution method to calculate the bending moments at the joints in th
frame shown in Fig. P.16.35 and draw the bending moment diagram. 1

Auns. MAB = MDC =0 MBA =12.7 kNm = _MBC MCB = —13.9 kNm = _MCD'

B C _10kN
2El 4m
D
A V22
am FIGURE P.16.35

2.16.36 The frame shown in Fig. P.16.36 has rigid joints at B, C and D and is pinned to its
foundation at A and G. The joint D is prevented from moving horizontally by the member
DF which is pinned to a support at F. The flexural rigidity of the members AB and BC is 27
while that of all other members is £7.
Use the moment distribution method to calculate the end moments in the members.

Awns. MBA = _MBC =2.6 kNm MCB = _MCD =67.7 kNm MDC = —53.5 kNm
MDF =26.7 kNm MDG =26.7 kNm.

3E/
5m 2El
74
5m

14 kKN/m
40kN_B>V Y Y V¥ ¥ ¥© _
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El 3m
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Yl Yz —
6m |, 3m J
> g FIGURE P.16.36

"16.37 Thev p'ortal frame shown in Fig. P.16.37 is rigidly built in to its foundations at A and D while
the joints B and C are rigid. Use the moment distribution method to calculate the bending
moments at A, B, C and D and sketch the bending moment diagram.

Ans. A=26.22 kNm, B =7.63 kNm, C = 50.7 kNm, D = 41.66 kNm.
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P.16.38 The frame shown in Fig. P.16.38 is pinned to the foundation at A and D and has rigid joints
at B and C. Use the moment distribution method to calculate the bending moments at B and

C and sketch the bending moment diagram.
Ans. B=16.5 kNm, C =102.4 kNm.

60 kN 60 kN
B (¢
it
2E/
15 El ~ 3m
4m| KN/m[~El
D
T
y A
< 2m < 2m < 2m | FIGURE P.16.38

P.16.39 The frame shown in Fig. P.16.39 is pinned to supports at A and E. Sidesway of the frame is
prevented by a cross-brace BD which may be assumed to have zero bending stiffness but
infinite axial stiffness. Use the moment distribution method to calculate the bending moments
at the joints, the force in the member BD and the vertical and horizontal reactions at A and
E. Also sketch the bending moment diagram for the frame and its displaced shape.

36kN/m
B3I III ¥ C
; ~ 25kN
& 2EI 2El
48KN/M >
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3El
4m 3E/
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Ans. My =115 kNm, Mc =170 kNm, Mp (in DC) = 178 kNm,
Mp (in DA) = 316 kNm, Mp, (in DE) = 138 kNm.
Force in BD = 93.1 kN.
Rap1 =109.5 kN to right, Ry v = 331.2 kN upwards
Rp 11 = 34.5 kN to left, Rg v = 340.8 kN upwards.

Matrix Methods of Analysis

P.16.40 A steel-framed extension is to be attached to an existing building by a pinned support D a5
shown in Fig. P.16.40; the frame is also pinned to foundations at E and F. Use the moment
distribution method to determine the bending moments at the joints of the frame produced b
the idealised wind loading shown. The relative second moments of area of the members of they
frame are as shown. Sketch the bending moment diagram for the frame and its displaced shape
Ans. My =15.5 kNm, M (in BA) = 2.5 kNm, M (in BF) = 41.8 kN, '

Mg (in BC) = 39.4 kNm, M- =23.3 kNm.

c D
A
31

21 3m

The methods described in Chapter 16 are basically methods of analysis which are suitable for use with
a hand calculator. They also provide an insight into the physical behaviour of structures under different
Joading conditions and it is this fundamental knowledge which enables the structural engineer to design
structures which are capable of fulfilling their required purpose. However, the more complex a structure
the lengthier, and more tedious, hand methods of analysis become and the more the approximations
which have to be made. It was this situation which led, in the late 1940s and early 1950s, to the devel-
opment of matrix methods of analysis and, at the same time, to the emergence of high-speed, electronic,
digital computers. Conveniently, matrix methods are ideally suited to expressing structural theory in a
form suitable for numerical solution by computer.

The modern digital computer is capable of storing vast amounts of data and producing solutions
for highly complex structural problems almost instantaneously. There is a wide range of program
packages available which cover static and dynamic problems in all types of structure from skeletal to

40kN A

31/

21 2/ . o ’
3m continuum. Unfortunately these packages are not foolproof and so it is essential for the structural engi-

neer to be able to select the appropriate package and to check the validity of the results; without a
knowledge of fundamental theory this is impossible.

In Section 16.1 we discussed the flexibility and stiffness methods of analysis of statically indetermi-
nate structures and saw that the flexibility method involves releasing the structure, determining the dis-
placements in the released structure and then finding the forces required to fulfil the compatibility of
displacement condition in the complete structure. The method was applied to statically indeterminate
beams, trusses, braced beams, portal frames and two-pinned arches in Sections 16.4—16.8. It is clear
from the analysis of these types of structure that the greater the degree of indeterminacy the higher the
number of simultaneous equations requiring solution; for large numbers of equations a computer

6m 6m

> FIGURE P.16.40

approach then becomes necessary. Furthermore, the flexibility method requires judgements to be made
in terms of the release selected, so that a more automatic procedure is desirable so long, of course, as
the fundamental behaviour of the structure is understood.

In Section 16.9 we examined the slope—deflection method for the solution of statically indeterminate
beams and frames; the slope—deflection equations also form the basis of the moment—distribution
method described in Section 16.10. These equations are, in fact, force—displacement relationships as
opposed to the displacement—force relationships of the flexibility method. The slope—deflection and
moment—distribution methods are therefore stiffness or displacement methods.

The stiffness method basically requires that a structure, which has a degree of kinematic indeterminacy
equal to 7y, is initially rendered determinate by imposing a system of 7, constraints. Thus, for example, in
the slope—deflection analysis of a continuous beam (e.g. Ex. 16.15) the beam is initially fixed at each sup-
port and the fixed-end moments calculated. This generally gives rise to an unbalanced system of forces at
each node. Then by allowing displacements to occur at each node we obtain a series of force—displacement
states (Eqs ()—(vi) in Ex. 16.15). The 7 equilibrium conditions at the nodes are then expressed in terms
of the displacements, giving 7 equations (Egs (vii)—(x) in Ex. 16.15), the solution of which gives the true
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values of the displacements at the nodes. The internal stress resultants follow from the
force—displacement relationships for each member of the structure (Eqs ()—(vi) in Ex. 16 15) g
complete solution is then the sum of the determinate solution and the set of 7, indeterminate S'yste ey
Again, as in the flexibility method, we see that the greater the degree of indeterminacy (kinems' .
this case) the greater the number of equations requiring solution, so that a computer-based 2 Tatlc ;-
1ecessary when the degree of indeterminacy is high. Generally this requires that the force—displl)aoaCh 1
eelationships in a structure are expressed in matrix form. We therefore need toP ecell?e-nt
orce—displacement relationships for structural members and to examine the way in which these iStZ' 1¥Sh
1al force—displacement relationships are combined to produce a force—displacement relationshi I} 3
;omplete structure. Initially we shall investigate members that are subjected to axial force only. PR

17.1 Axially loaded members

;onsider the axially loaded member, AB, shown in Fig. 17.1(a) and suppose that it is subjected to axja]
orces, F, and Fg, and that the corresponding displacements are wy and wg; the member has a cro

cmtlonal area, A, and Young’s modulus, E. An elemental length, &x, of the member is subjected Sts !
orces and displacements as shown in Fig. 17.1(b) so that its change in length from its unloaded state X
v+ éw — w = bw. Thus, from Eq. (7.4), the strain, ¢, in the element is given by 1

e dw
dx
Further, from Eq. (7.8)
F dw
=g
A dx
o that
F
d = o—_—
w= = dx
Therefore the axial displacement at the section a distance x from A is given by
*F
w= JO A_E dx
thich gives
F
wA—Ex + G
Fawp A
Bl I — jB Fg, wg Fw F+8F w+ sw
X 3x
d
i | ———
- 1
(a) (b)
GURE 17.1
vialls Inadad mamhae
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in which C} is a constant of integration. When x =0, w = wa so that C; = w, and the expression for w
may be written as

F
wp = Ex"'wA (17.1)
In the absence of any loads applied between A and B, F=Fg = — Fj and Eq. (17.1) may be written as
B
w= A—z,x-l-wA (17.2)
Thus, when x = L, w = wg so that from Eq. (17.2)
e
wg = A_Z"L + wp

or

AE
= T(WB — wp) (17.3)

Furthermore, since Fg = — F, we have, from Eq. (17.3)
AE
—Fy= A (wp — wa)
or

F= = (= wn) (17.4)

Equations (17.3) and (17.4) may be expressed in matrix form as follows

(A= w{n)

F,l _4AE| 1 -1 w,
(2140 ia)

Equation (17.5) may be written in the general form
{F} = [Kasl{w} (17.6)

in which {F} and {w} are generalized force and displacement matrices and [Kjg] is the stiffness matrix of
the member AB.

Suppose now that we have two axially loaded members, AB and BC, in line and connected at their
common node B as shown in Fig. 17.2.

In Fig. 17.2 the force, Fg, comprises two components: Fgap due to the change in length of AB,
and Fp pc due to the change in length of BC. Thus, using the results of Eqgs (17.3) and (17.4)

or

AspE
AssE, ApcE
Fg=Fgap + Fepc = A;_;ADAB (wp — wa) + —B}Cn—PBE(wB — wc) (17.8)
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A C
Fa ‘F'
A Wa c: We

Lag J‘ Lgc J node

.

FIGURE 17.2
Two axially loaded members in line.

I

_ AscErc
= — . (wc—wp) (17.9)

in which Aag, Eap and Lap are the cross-sectional area, Young’s modulus and length of the member
AB; similarly for the member BC. The term AE/L is a measure of the stiffness of a member, this we
shall designate by £. Thus, Eqs (17.7)—(17.9) become

Fa = kap(wa — wp) (17.10)
Fg = — kapwa + (kap + ksc)wp — kpcwc (17.11)
Fc = kpc(we — ws) (17.12)
Equations (17.10)—(17.12) are expressed in matrix form as
FA kAB _kAB 0 wa
Fy o= | —kap kap+hksc —ksc|q ws (17.13)
Fc 0 —ksc kyc wc

Note that in Eq. (17.13) the stiffness matrix is a symmetric matrix of order 3 X 3, which, as can be
seen, connects #hree nodal forces to zhree nodal displacements. Also, in Eq. (17.5), the stiffness matrix is
a 2 X 2 matrix connecting fwo nodal forces to fwo nodal displacements. We deduce, therefore, that a
stiffness matrix for a structure in which 7 nodal forces relate to 7 nodal displacements will be a sym-
metric matrix of the order 7 X .

In more general terms the matrix in Eq. (17.13) may be written in the form

kiy ko ks
[K]= |kn Fkyp ko3 (17.14)
k31 sy k33

in which the element 4y, relates the force at node 1 to the displacement at node 1, ,, relates the force at
node 1 to the displacement at node 2, and so on. Now, for the member connecting nodes 1 and 2

-kll kll-
b =
Bal= | b k|

and for the member connecting nodes 2 and 3

/622 k23
k =
[ 23] i k32 /633 |

Therefore we may assemble a stiffness matrix for a complete structure, not by the procedure used in

PR I O T hal larmr 4N fam e AN 1
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inserting them into the overall stiffness matrix such as that in Eq. (17.14). The element k,, appears in both
[K12] and [K>3] and will therefore receive contributions from both matrices. Hence, from Eq. (17.5)

_ | kap  —kas
[KAB] |:_kAB kAB:I

and

el S, ]

Inserting these matrices into Eq. (17.14) we obtain

N —kap 0
[Kapcl= | —kas ka +ksc —kac
0 —knc kac

as before. We see that only the 4,, term (linking the force at node 2(B) to the displacement at node 2)
receives contributions from both members AB and BC. This results from the fact that node 2(B) is
directly connected to both nodes 1(A) and 3(C) while nodes 1 and 3 are connected directly to node 2.
Nodes 1 and 3 are not directly connected so that the terms 43 and #43; are both zero, i.e. they are not
affected by each other’s displacement.

To summarize, the formation of the stiffness matrix for a complete structure is carried out as fol-
lows: terms of the form £;; on the main diagonal consist of the sum of the stiffnesses of all the structural
elements meeting at node 7 while the off-diagonal terms of the form £;; consist of the sum of the stiff-
nesses of all the elements connecting node 7 to node ;.

Equation (17.13) may be solved for a specific case in which certain boundary conditions are specified.
Thus, for example, the member AB may be fixed at A and loads F5 and Fc applied. Then wa = 0 and Fy
is a reaction force. Inversion of the resulting matrix enables wg and wc to be found.

In a practical situation a member subjected to an axial load could be part of a truss which would com-
prise several members set at various angles to one another. Therefore, to assemble a stiffness matrix for a
complete structure, we need to refer axial forces and displacements to a common, or global, axis system.

Consider the member shown in Fig. 17.3. It is inclined at an angle 6 to a global axis system
denoted by xy. The member connects node 7 to node j, and has member or local axes %, 3. Thus nodal
forces and displacements referred to local axes are written as F, , etc., so that, by comparison with

Eq. (17.5), we see that
]_:x.z' _ AE| 1 -1 w;
(-7l l{e) 733

where the member stiffness matrix is written as [K ;].

y Fy‘i
—
¥ ! i > _
: J/:(W
————— >
J Fx,j
Fx,i——-—-> >

! X FIGURE 17.3
' :' Local and global axes systems for an axially
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In Fig. 17.3 external forces F,; and F,; j are applied to 7 and j. It should be noted that
% and F,; do not exist since the member can only support axial forces. However, F,; and F, ; have
:omponents Fy;, F,; and Fyj, F,; respectively, so that whereas only two force components appear for
he member in local coordinates, four components are present when global coordinates are yseq.
[herefore, if we are to transfer from local to global coordinates, Eq. (17.15) must be expanded to an

yrder consistent with the use of global coordinates. Thus

F.; 10 1 0] (@
Fg,\_4E| 0 0 0 0|])wu
F.; L|-10 1 0|)m (17.16)

Expansion of Eq. (17.16) shows that the basic relationship between Fy;, F,; and ;, w; as defined
n Eq. (17.15) is unchanged.

From Fig. 17.3 we see that
i=F.icos+F,;sinf
F,;sinf+ F,; cos 0

"l 3(’1-11

ind
FXJ-=FXJ- cos 0 + F, ; sin 0

Fyy= —Fsin @+ F,; eos @

Writing A for cos 6 and i for sin 6 we express the above equations in matrix form as

Fx,i A M 0 0 F, Xt
F 1 ' A 0 0 i
_-y’l = s
o 00 A ul\E (17.17)
Fyj 0 0 —u ALKy
»r, in abbreviated form
{F}=[T1{F} (17.18)

where [7] is known as the transformation matrix. A similar relationship exists between the sets of nodal
lisplacements. Thus

{6} =[T1{8} (17.19)

n which {6} and {6} are generalized displacements referred to the local and global axes, respectively.
Substituting now for {F} and {6} in Eq. (17.16) from Eqs (17.18) and (17.19) we have

[TIF} = [K 4TS}
Hence
{Fy=[TIK I T]{6} (17.20)
It may be shown that the inverse of the transformation matrix is its transpose, i.e.

rr—11 —rmT
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Thus we rewrite Eq. (17.20) as

{F} = [T]"[K ;I T1{6} (17.21)

The nodal force system referred to the global axes, {£}, is related to the corresponding nodal displa-
cements by

{F} = [K;]{6} (17.22)

in which [Kj] is the member stiffness matrix referred to global coordinates. Comparison of Egs (17.21)
and (17.22) shows that

(K} = [TT'[K I T]
Substituting for [7] from Eq. (17.17) and [F,J] from Eq. (17.16) we obtain
2\ A =X =
L I N T T
[K;] = T -x - v M (17.23)
et A VA T

Evaluating A (=cos ) and p (=sin 6) for each member and substituting in Eq. (17.23) we obtain
the stiffness matrix, referred to global axes, for each member of the framework.

B
EXAMPLE 17.1

Determine the horizontal and vertical components of the deflection of node 2 and the forces in the
members of the truss shown in Fig. 17.4. The product AE is constant for all members.

;T”

FIGURE 17.4
Truss of Ex. 17.1.

We see from Fig. 17.4 that the nodes 1 and 3 are pinned to the foundation and are therefore not
displaced. Hence, referring to the glohal coordinate system shown,

=vy=w3=v;=0

The external forces are applied at node 2 such that £, =0, F,, = —W; the nodal forces at 1
and 3 are then unknown reactions.

The first step in the solution is to assemble the stiffness matrix for the complete framework by
writing down the member stiffness matrices referred to the global axes using Eq. (17.23). The direc-
tion cosines \ and y take different values for each of the three members; therefore, remembering
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that the angle 6 is measured anticlockwise from the positive direction of the x axis we have the
following:

Member 0 (deg) bN 7
12 0 1 0
13 90 (¢ 1
23 135 -0.707 0.707
The member stiffness matrices are therefore
TG0 0 0 O 0
AE G 00 00 AE | 0 1RO
K PSS il
0 0 0 0 0. =10 1

05 ~-05 =05 0.5
AELoan gl ige :
T4 1-05. 05 85 —05 @
a7 SuR LS s

The complete stiffness matrix is now assembled using the method suggested in the discussion of
Eq. (17.14). The matrix will be a 6 X 6 matrix since there are six nodal forces connected to six nodal
displacements; thus

{ 3\

i

SR SR 0 0 0 w =0
Fy g 0 0 1 v =0

J B2\ _4E|-1 0 1354 —0354 —0354 0354 w, (i)
E,, L| 0 0 —035 035 035 —0354 )
E.; 0 0 -—035 0354 0354 =—0354||ws=0

£y ) 0 -1 035 -035 -0354 1354 (v3=0

If we now delete rows and columns in the stiffness matrix corresponding to zero displacements,
we obtain the unknown nodal displacements w, and v, in terms of the applied loads F,, (=0) and

F,, (= =W). Thus
Eo\ _AE[ 1354 —0354]f w, i
Fy» I |-0354  0354|\ v -
Inverting Eq. (iii) gives
wy o _L_ 1 1 Fx,z (IV)
v, [T AE|1 3.828|\ Fp
from which
7 —~WL
wy = E(Fx,Z + Fa )= T
Vi —3.828 WL
Vg = E(Fx’z = 38285%2) S T

17.1 Axially loaded members
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The reactions at nodes 1 and 3 are now obtained by substituting for w, and v, from Eq. (iv)

into Eq. (ii). Hence

E‘c,l =] 0

Fial_| o 0 i E.,
Es [ |—0354 0354|[1 3.828]] B
Fy3 0.354 —0.354

giving

s e e e

F1=0
Fx,S =F31,2 =
Bs=W

s 0 0 K %52
0 1|52
0

The internal forces in the members may be found from the axial displacements of the nodes.

Thus, for a member #, the internal force F; is given by
i —L“ (w; —w;)
But

wj = Aw; + p
w; = dw; + pv;

Hence

E] — ;= /\(w] == w;) + N(Uj v

Substituting in Eq. (v) and rewriting in matrix form,
AE W, w
By s hesel{

Thus, for the members of the framework

v;)

—WL L
AE AL .
Fp,= .2_[1 0] ~3.828WL ; = —W (compression)
AE
AE 0~0 . i ]
Fip = - {0 1 ] { 0—0 } = 0 (obvious from inspection)
el
AE AE ]
Iy = WAV [ =0y 07 0.707] : 3 828WL ( = 1.414W (tension)
AE

\2

(vi)
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The matrix method of solution for the statically determinate truss of Ex. 17.1 is completely genera]
and therefore applicable to any structural problem. We observe from the solution that the questiop of
statical determinacy of the truss did not arise. Statically indeterminate trusses are therefore solved iy o
identical manner with the stiffness matrix for each redundant member being included in the compleg
stiffness matrix as described above. Clearly, the greater the number of members the greater the sjze oef
the stiffness matrix, so that a computer-based approach is essential.

The procedure for the matrix analysis of space trusses is similar to that for plane trusses. The main djg.
ference lies in the transformation of the mEmber stiffness matrices from local to global coordinates since, o
we see from Fig. 17.5, axial nodal forces F,; and F, j have each, now, three global components 7, ; 7 .
F,;and F,; F,; F, respectively. The member stiffness matrix referred to global coordinates is thereforey(,)}
the order 6 X 6 so that [K;] of Eq. (17.15) must be expanded to the same order to allow for this. Hence

w; U; ; 'u_/] 6j ﬁj

1 0 0 -1 0 O

4| 0 0 0 0 0 0
Wi;‘]=7 000 000 (17.24)

-1 0 0 1 0 0

0 0 O 0 0 O

0 0 O 0 0 O

In Fig. 17.5 the member 7j is of length L, cross-sectional area A and modulus of elasticity E. Global
and local coordinate systems are designated as for the two-dimensional case. Further, we suppose that

0.z = angle between x and ¥

0.5 = angle between x and ¥
07 = angle between z and y

Therefore, nodal forces referred to the two systems of axes are related as follows

F.=F, cos 0,z + F, cos 05+ F, cos Oz
Fy = I, cosiflz+ F, eos b+ F, co% Gz (17.25)
F,=F, cos 0z + F, cos 05 + F, cos 05

v

/)T,W

]

FIGURE 17.5
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Writing
Az=cosbz N=cosly Xz=cosby;
pz =cos Oz pz =cos Oy iz = cos Oz (17.26)
vg=coslOz Vy=cosly vz=cosl;

we may express Eq. (17.25) for nodes 7 and j in matrix form as

F M pe vi 0 0 07 (FE.
Ey i\y p; vz 0 0 0 ?’i
F 2,0 _ Z z Vz 0 0 0 i
Fyj 0 0 0 X pm vi|)Ey (17.27)
Ey, 0 0 0 X Ky Vs B
Faj 0 0 0 X pz vs] (Fy

or in abbreviated form

{F}=[T)(F}
The derivation of [K}] for a member of a space frame proceeds on identical lines to that for the
plane frame member. Thus, as before

(K] =TT K1 [T]
Substituting for [7] and [Fl]] from Egs (17.27) and (17.24) gives

)‘:—25 AE/'IIJ—C )‘EVE - )\;2[ — AxMx - A}I/;
A I e R o
Azl Vs Vi S VS VR Vs
K.l== X% X% x XY X X7 X x 28
K] L| =X —dem —dr XN Aafy vz (17.28)
S R R TR 7 D T S B %
vz —pgvz  — U2 AsVz pslz V2

All the suffixes in Eq. (17.28) are X so that we may rewrite the equation in simpler form, namely

[ X2 : SYM |
Aot :
Av v v
%] = ATE ........................... T—— (17.29)
S S VD VD
R I T VD VR e
| - - =2 oy v

where X\, i and v are the direction cosines between the x, y, z and ¥ axes, respectively.
The complete stiffness matrix for a space frame is assembled from the member stiffness matrices in
a similar manner to that for the plane frame and the solution completed as before.

17.2 Stiffness matrix for a uniform beam

Our discussion so far has been restricted to structures comprising members capable of resisting axial
= -~ - - .- - « . e . . 1. o1 1 1
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M;, 6;
>
\\[f x

FIGURE 17.6

Forces and moments on a beam element

F,pv;
i Vi Fy,j:

Y

esist shear and bending forces, in addition to axial loads.
niform beam and consider the solution of rigid jointed
r beam elements as they are sometimes called.

Figure 17.6 shows a uniform beam 7 of fl igidi
‘ y of flexural rigidity £7 and length L subjected to nodal f;
»i» £y; and nodal moments A M; in the xy plane. The beam suffers nodal displacements and (r)(r)(t:zf

ons v, v; » 0, i i i i
ons v, v an.d 0, 9/ We do not include axial forces here since their effects have already been d
ined in our investigation of trusses. =

The stiffness matrix [K,;] may b i i i
627, Not dar s j) may be written down directly from the beam slope—deflection equations

17.6 07 and 6; are opposite in sign to @4 and 6y in Fig. 16.32. Then
M= G_EI 4ET 6EI 4EI

We shall now derive the stiffness matrix for 4
frameworks formed by an assembly of beamg

EUT Tt Gyt b (17.28)
d
_ _GEI  2E[  GEl 4l
ITT Ut Tt Tyt g (17.29)
Also
_ _ _ 12E1 GEI 12ET GEI
F=F,;=— + 22,
| 2 . e + 72 0; + Y + L—29j (17.30)
pressing Eqs (17.28), (17.29) and (17.30) in matrix form yields
F 12/ —6/1* —12/I —6/2] [ w
M; | _ gr| 6/ 4/L 6/1* 2/L 6;
By —12/B 6/ 123 ez | )y, (17,50
M; ~6/ 2 2/L 6/1? 4/L 0;
ich is of the form

(£} = [Ki]{6}
;re [K] is the stiffness matrix for the beam.

It is possible to write Eq. (17.31) in an alternative form such that the elements of [

abers. Thus K] are pure
5, 12 =6 -12 —6]( v
ML\ _E|-6 4 6 2]|)e6r
5 pl-12 6 12 6|y
M;/L -6 2 6 4 0L

17.2 Stiffness matrix for a uniform beam 583

This form of Eq. (17.31) is particularly useful in numerical calculations for an assemblage of beams in
which EI/L? is constant.

Equation (17.31) is derived for a beam whose axis is aligned with the x axis so that the stiffness
matrix defined by Eq. (17.31) is actually [K ;] the stiffness matrix referred to a local coordinate system.
If the beam is positioned in the xy plane with its axis arbitrarily inclined to the x axis then the x and y
axes form a global coordinate system and it becomes necessary to transform Eq. (17.31) to allow for
this. The procedure is similar to that for the truss member of Section 17.1 in that [7,]] must be
expanded to allow for the fact that nodal displacements %, and wj, which are irrelevant for the beam
in local coordinates, have components w;, v; and w;, v; in global coordinates. Thus

w; v; 0; w; vj 0
0 0 0 0 0 0
0 12/I* —6/I* 0 —12/I> —6/I*
[K;)=£1|0 —6/I> 4/L 0 6/I*)  2/L (17.32)
0 0 0 0 0 0
0 -12/I* e6/I* 0 12/I* 6/I?
0 —6/I> 2/L 0 6/[* 4L

We may deduce the transformation matrix [7] from Eq. (17.17) if we remember that although w
and v transform in exactly the same way as in the case of a truss member the rotations 6 remain the
same in either local or global coordinates.

Hence
A x 0 0 00
— A0 0 0 0
o 01 0 o0 o0
1= lg & 5 & L0 (17.33)
0 00 —u XA O
0O 0 0 0 01
where X and p have previously been defined. Thus since
(K51 = [TT'[K4IT]
we have, from Eqgs (17.32) and (17.33)
12p? /13 SYM
—122u/13  12X*/I3
2 — 2
&) =Er| /L SxIE 4L (17.34)

—12u%/13  120p/L2  —6p/I*  12up%/13
120u/2  —12X3/13  6X\/[* —12Mu/[® 12X*/I13
6/ I? —6\/I? 2/L 6/ I? 6A\/L*  4)\/L

Again the stiffness matrix for the complete structure is assembled from the member stiffness matri-
ces, the boundary conditions are applied and the resulting set of equations solved for the unknown
nodal displacements and forces.

The internal shear forces and bending moments in a beam may be obtained in terms of the calcu-
lated nodal displacements. Thus, for a beam ioining nodes 7 and 7 we shall have obtained the unknown




