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values of v; 0; and v}, 0. The nodal forces F,; and M; are then obtained from Eq. (17.31) if the beam
is aligned with the x ax1$ Hence

12 6
E}',izE[ —U;__Q_E'U_'ga

I3 27 37 2 7 ‘
( (17.35)
6 4 6
M;=EI LZ’U,+ 0+sz]+ 0

J

Similar expressions are obtained for the forces at node j. From Fig. 17.6 we see that the shear force
S, and bending moment M in the beam are given by

S =B
M=F,x+M, } (17.36)
Substituting Eq. (17.35) into Eq. (17.36) and expressing in matrix form yields
12 _ 6 12 _6 "
{ i } =EI o o o - y (17.37)
M Ex_g _ix.}.é —1—2—x+£ _£x+3 Y .
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The matrix analysis of the beam in Fig. 17.6 is based on the condition that no external forces are
ipplied between the nodes. Obviously in a practical case a beam supports a variety of loads along its
ength and therefore such beams must be idealized into a number of beam-elements for which the above
sondition holds. The idealization is accomplished by merely specifying nodes at points along the beam
such that any element lying between adjacent nodes carries, at the most, a uniform shear and a linearly
sarying bending moment. For example, the beam of Fig. 17.7 would be idealized into beam-elements
l—2, 2—3 and 3—4 for which the unknown nodal displacements are v,, 6,, 63, v and 6
”Ul = 01 = U3 = O).

Beams supporting distributed loads require special treatment in that the distributed load is replaced by
 series of statically equivalent point loads at a selected number of nodes. Clearly the greater the number
f nodes chosen, the more accurate but more complicated and therefore time consuming will be the analy-
is. Figure 17.8 shows a typical idealization of a beam supporting a uniformly distributed load. The
nethod of idealization may be found in specialist texts on matrix analysis.

Many simple beam problems may be idealized into a combination of two beam-elements and three
10des. A few examples of such beams are shown in Fig. 17.9. If we therefore assemble a stiffness matrix
or the general case of a two beam-element system we may use it to solve a variety of problems simply
vy inserting the appropriate loading and support conditions. Consider the assemblage of two
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FIGURE 17.8

Idealization of a beam supporting a uniformly distributed load.
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FIGURE 17.9
|dealization of beams into beam-elements.
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FIGURE 17.10
Assemblage of two beam-elements.

beam-elements shown in Fig. 17.10. The stiffness matrices for the beam-elements 1—2 and 2—3 are
obtained from Eq. (17.31); thus

V1 0, () 0,
12/13 —6/L2 — 12412 —6/L27 1
kll klZ
[Ki2] = EL —6/I? 4/L, 6/L2 3L, (17.38)
—~12/7 6/L2 12/13 6/12
k21 k22
| | —6/22 2L, 6/12 AN
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It should be noted that the solution has been obtained by inverting two 2 X 2 matrices rather
than the 4 X4 matrix of Eq. (ii). This simplification has been brought about by the fact thy,
M, = M, = 0.

The internal shear forces and bending moments can now be found using Eq. (17.37). For the
beam-element 1—2 we have

; 12 6 12 Gy He
57512 =E[(E’U1 en 91 £ zg‘i»’g == ﬁez)

2
or
2 1M
etk e
2= 3W 3T
and
i 12 6 6 AY U g g G 2
Mlz—EJ -_Lgx—zi 'U}+ ‘”ZEJC‘FZ 91‘]’ "‘—L-gx"l‘z—z‘ Uz‘f“ "*Zz‘x"}‘z 92

which reduces to

2 M
M=l -l
s (3W 3L)"

7.3 Finite element method for continuum structures

1 the previous sections we have discussed the matrix method of solution of structures composed of ele-
ients connected only at nodal points. For skeletal structures consisting of arrangements of beams these
odal points fall naturally at joints and at positions of concentrated loading. Continuum structures, such
i flat plates, aircraft skins, shells, etc., do not possess such natural subdivisions and must therefore be
tificially idealized into a number of elements before matrix methods can be used. These finite elements,
i they are known, may be two- or three-dimensional but the most commonly used are two-dimensional
iangular and quadrilateral shaped elements. The idealization may be carried out in any number of dif-
rent ways depending on such factors as the type of problem, the accuracy of the solution required and
1e time and money available. For example, a coarse idealization involving a small number of large ele-
ients would provide a comparatively rapid but very approximate solution while a fine idealization of
nall elements would produce more accurate results but would take longer and consequently cost more.
requently, graded meshes are used in which small elements are placed in regions where high stress con-
:ntrations are expected, e.g. around cut-outs and loading points. The principle is illustrated in
ig. 17.12 where a graded system of triangular elements is used to examine the stress concentration
-ound a circular hole in a flat plate.

Although the elements are connected at an infinite number of points around their boundaries it is
ssumed that they are only interconnected at their corners or nodes. Thus, compatibility of displace-
1ent is only ensured at the nodal points. However, in the finite element method a displacement pat-
rn is chosen for each element which may satisfy some, if not all, of the compatibility requirements
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FIGURE 17.12

Finite element idealization of a flat plate with a central hole.

Since we are employing matrix methods of solution we are concerned initially with the determina-
tion of nodal forces and displacements. Thus, the system of loads on the structure must be replaced by
an equivalent system of nodal forces. Where these loads are concentrated the elements are chosen such
that a node occurs at the point of application of the load. In the case of distributed loads, equivalent
nodal concentrated loads must be calculated.

The solution procedure is identical in outline to that described in the previous sections for skeletal
structures; the differences lie in the idealization of the structure into finite elements and the calculation
of the stiffness matrix for each element. The latter procedure, which in general terms is applicable to all
finite elements, may be specified in a number of distinct steps. We shall illustrate the method by estab-
lishing the stiffness matrix for the simple one-dimensional beam-element of Fig. 17.6 for which we
have already derived the stiffness matrix using slope—deflection.

Stiffness matrix for a heam-element

The first step is to choose a suitable coordinate and node numbering system for the element and define
its nodal displacement vector {§°} and nodal load vector {F°}. Use is made here of the superscript e to
denote element vectors since, in general, a finite element possesses more than two nodes. Again we are
not concerned with axial or shear displacements so that for the beam-element of Fig. 17.6 we have

E

v; i
0; M,
()= 00 F={ g
vj By
b; M;

Since each of these vectors contains four terms the element stiffness matrix [K°] will be of order
4 X 4,

In the second step we select a displacement function which uniquely defines the displacement of all
points in the beam-element in terms of the nodal displacements. This displacement function may be
taken as a polynomial which must include four arbitrary constants corresponding to the four nodal
degrees of freedom of the element. Thus

v(x) =y + apx + ox® + g’ (17.41)

Equation (17.41) is of the same form as that derived from elementary bending theory for a beam

17.3 Finite element method for continuum structures !
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[¢3]

{U(x)}=[1 x x? x3] 32
3

o7

or in abbreviated form as

e} =F@l{a)

| . (17.42

The rotation 6 at any section of the beam-element is given by 0u/dx; therefore )

0=, + 2a3x + 3a,x* (17.43)

From Egs (17.41) and (17.43) we can write d i -
s own ex; f i

and v, 6;at x=0 and x= L, respectively. Hence Frssioms dorie midel splroemons =9
Ui = o
9,' =y

Ui=ar +opLl + azL? + ayl? (17.44)

0] =Qy + 20[3L + 3a4L2

Writing Eq. (17.44) in matrix form gives

v; 1 0 0 0 o
;1 _|0 1 0 o @
Yy 1 L 2 B a (17.45)
6; 0 1 2L 32| |

{6} =[4] {a} (17.46)

The third step follows directly f; i
e thi y from Eqs (17.45) and (17.42) in that we ex ress the displ
ny point in the beam-element in terms of the nodal displacements. Using Eq.p(l7.s46)cwelsc[:bat:i3:1n e

- = ]
Substituting in Eq. (17.42) gives = U
{v()} = [F()[47"1{6%) (17.48)
=ik s . v . !
here [A™'] is obtained by inverting [4] in Eq. (17.45) and may be shown to be given by

1 0 0 0
wi=| 0 1 0 0

=3/2 2L 32 1L U7

2/ 2 -3 112

In step four we relate the strain {e(®)} at an i i
: y point x in the element to the displ
nce to the nodal dls_placements {6. Since we are concerned here with bendin, e
ty represent the strain by the curvature 8*0/6x%. Hence from Eq. (17.41)
v 5
7 = 205 T 6ayx (17.50)

g deformations only we
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or in matrix form

aq
ey=[0 0 2 6x] z; (17.51)
o
which we write as
{e} =[CKo} (17.52)
Substituting for {a} in Eq. (17.52) from Eq. (17.47) we have
{e} = [CIIA™1{6°} (17.53)

Step five relates the internal stresses in the element to the strain {€} and hence, using Eq. (17.53),
to the nodal displacements {6°}. In our beam-element the stress distribution at any section depends
entirely on the value of the bending moment M at that section. Thus we may represent a ‘state of stress’
{o} at any section by the bending moment A, which, from simple beam theory, is given by

v
M= —EI P
or
{o} = [El){e} (17.54)
which we write as
{o} = [Dl{e} (17.55)

The matrix [D] in Eq. (17.55) is the ‘elasticity’ matrix relating ‘stress’ and ‘strain’. In this case [D]
consists of a single term, the flexural rigidity ET of the beam. Generally, however, [D] is of a higher
order. If we now substitute for {€} in Eq. (17.55) from Eq. (17.53) we obtain the ‘stress’ in terms of
the nodal displacements, i.e.

{0} = [DIICIIA™"]{5°} (17.56)

The element stiffness matrix is finally obtained in step six in which we replace the internal ‘stresses’
{o} by a statically equivalent nodal load system {F<}, thereby relating nodal loads to nodal displacements
(from Eq. (17.56)) and defining the element stiffness matrix [K°]. This is achieved by employing the
principle of the stationary value of the total potential energy of the beam (see Section 15.3) which com-
prises the internal strain energy U and the potential energy V of the nodal loads. Thus

U+v=3| (@) dvo) ~ 15T (1757)

vol

Substituting in Eq. (17.57) for {€} from Eq. (17.53) and {o} from Eq. (17.56) we have
U+ V=3 | e T DICIA e oD ~ (57 (17.58)

The total potential energy of the beam has a stationary value with respect to the nodal displace-
ments {6%"; hence, from Eq. (17.58)

WD [ I DICIA™ 15 disob — (7 =0 (17.59)
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hence
{F} = U 1[C']T[I‘l—I]T[D][Cr][f‘l_l] d(VOD] {6°} (17.60)
- writing [CI[A™Y] as [B] we obtain
()= || (e dood | 9 (1761
om which the element stiffness matrix is clearly
(= ||_arrons) o | (7.6
From Eqgs (17.49) and (17.51) we have
1 0 0 0
0 1 0 0

[Fl=[Cha71=(0 0 2 61| yp o a2 -1z

2/13  1/1*  —2/1* 1/I?

r 6 12x 7]
T
4,6
N L I
[B] = 6 12x (17.63)
72
2 6x
_— + —_
L 12
Hence
[ 6 " 12x 7
r I3
_é N 6x
. L L I? _£+_1_2_x_ _4+6x 6 12x 2 6x
[K]= L 6 12 [£1] 12 I3 L' IZ Iz I3 L Iz dx
z I3
2 6x
d——s + —
L I?
hich gives

12 —6L -12 —6L
o EL|—6L 41> 6L 2I°
KI1=F -2 ¢ 12 6L Hres

—6L 2I? 6L 472
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Equation (17.64) is identical to the stiffness matrix (see Eq. (17.31)) for the uniform beam of
Fig. 17.6.

Finally, in step seven, we relate the internal ‘stresses’, {c}, in the element to the nodal displacements
{6%. In fact, this has been achieved to some extent in Eq. (17.56), namely

{0} = [DICIA™"1{5°}
or, from the above
{0} =[D][B]{6°} (17.65)
Equation (17.65) is usually written

{o} =[HN{6} (17.66)
in which [H] = [D][B] is the stress—displacement matrix. For this particular beam-element [D] = E/
and [B] is defined in Eq. (17.63). Thus

6 12 4 6 2 6
[H]:E] _ﬁ E 2 Fx _Z + ﬁx ﬁ - Fx _Z + ﬁx (1767)

Stiffness matrix for a triangular finite element

Triangular finite elements are used in the solution of plane stress and plane strain problems. Their
advantage over other shaped elements lies in their ability to represent irregular shapes and boundaries
with relative simplicity.

In the derivation of the stiffness matrix we shall adopt the step by step procedure of the previous exam-
ple. Initially, therefore, we choose a suitable coordinate and node numbering system for the element and
define its nodal displacement and nodal force vectors. Figure 17.13 shows a triangular element referred to
axes Oxy and having nodes 7, ; and # lettered anticlockwise. It may be shown that the inverse of the [A]
matrix for a triangular element contains terms giving the actual area of the element; this area is positive if
the above node lettering or numbering system is adopted. The element is to be used for plane elasticity pro-
blems and has therefore two degrees of freedom per node, giving a total of six degrees of freedom for the ele-
ment, which will result in a 6 X 6 element stiffness matrix [K°]. The nodal forces and displacements are
shown and the complete displacement and force vectors are

Fy ko Vi

> FuWk F,;

FIGURE 17.13
Triangular element for plane elasticity
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Wi Fx,i

v; Fj,’l-

. E .

{6y=¢ 4 (Fy={ "%
W Fx,k

Uk Fok

We now select a displacement function which must satisfy the boundary conditions of the elemen,
- the condition that each node possesses two degrees of freedom. Generally, for computational pur-
ses, a polynomial is preferable to, say, a trigonometric series since the terms in a polynomial can b,
culated much more rapidly by a digital computer. Furthermore, the total number of degrees of free.
m is six, so that only six coefficients in the polynomial can be obtained. Suppose that the displace-
:nt function is

w(x,y) = a1 + apx + azy } -

U(X,}/) =4t asx + agy

The constant terms, o; and ay, are required to represent any in-plane rigid body motion, i,
tion without strain, while the linear terms enable states of constant strain to be specified;
- (17.69) ensures compatibility of displacement along the edges of adjacent clements. Writing
. (17.69) in matrix form gives

aq
(0%)
we) | _[1 x 3y 0 0 0]) s
{v(x,y)} [0 001 x y|)as (17.70)
Qs
a6
Comparing Eq. (17.70) with Eq. (17.42) we see that it is of the form
w(x,y) _
{v(x,y)} [FCeplied (17.71)

Substituting values of displacement and coordinates at each node in Eq. (17.71) we have, for node ;

wi | _ |1 % 5% 0 0 0
{’U,’ } - [0 0 0 1 X; _y,:,{a}

Similar expressions are obtained for nodes j and £ so that for the complete element we obtain

w; I % 9 0 0 0 a
V; 0 o0 0 1 Xi )i (6%}
wib=lg % 00 0fa 17.72)
v; 0 0 0 1 X Y o4
W I % % 0 0 0 os
Uk 00 0 1 x n ag

“rom Eq. (17.68) and by comparison with Eqs (17.45) and (17.46) we see that Eq. (17.72) takes
form

{6°} = [Al{a}
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Hence (step 3) we obtain
{a} =[A){6°} (compare with Eq. (17.47))

The inversion of [A4], defined in Eq. (17.72), may be achieved algebraically as illustrated in Ex.
17.3. Alternatively, the inversion may be carried out numerically for a particular element by computer.
Substituting for {a} from the above into Eq. (17.71) gives

{ w(x,y) } = [f(x,y)][A_l] {6°} (compare with Eq. (17.48)) (17.73)
v(x, )
The strains in the element are
Ex
{e} = €y (1774)
Vay
Direct and shear strains may be defined in the form

_ Ow Ov Ow + ov (17.75)

“a% 9Ty W5
Substituting for w and v in Eq. (17.75) from Eq. (17.69) gives

Ex =y

6}, = Q4

Yy = Q3 + 05

or in matrix form

aq

01000022
{ey=10 0 0 0 0 1 az (17.76)

0010100[5

(673

which is of the form
{€} =[Cl{a} (see Eps (17.51) and (17.52))
Substituting for {a} (=[A7'1{§%}) we obtain
{e} = [CNIA™"1{6°} (compare with Eq. (17.53))
or
{e} = [BI{5°} (see Eq. (17.63))
where [C] is defined in Eq. (17.76).

In step five we relate the internal stresses {0} to the strain {€} and hence, using step four, to the
nodal displacements {6}. For plane stress problems

Oy
{o}= { ay } (17:77)
T
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d
Oy U0,
£y = — — —
E E
_ 0y _ vox
5T F E (see Chapter 7)
Ty 2(1+0v)
YT G T T E ™
7
Thus, in matrix form
B 1 —w 0 1(o.
1
{e}=9 & ¢ = 7| 1 0 Iy (17.78)
Vs 0 0 20+2)] |7y
It may be shown that
o 1 v 0
{U}_{Ux}_ E {v1 0 {Zx} e
= y = T 'y 79
1—-22|10 0 —(1-
Ty |
ich has the form of Eq. (17.55), i.e.
{o} = [Dl{e}

Substituting for {€} in terms of the nodal displacements {6} we obtain
{0} = [DI[BI{6°} (see Eq. (17.56))

In the case of plane strain the elasticity matrix [D] takes a different form to that defined in
. (17.79). For this type of problem

T v
* E E E
oy woy v,
By ot e —
E E E
o, vo, VO,
I el N ) B
E E E
Ty 21+
WIGT T
Eliminating o, and solving for o,, 0, and T, gives
- ” -
1 0
1=%
o v €
* E(1—v) 1 0 y
o= gy p=—-——" _|1—
v {Ty } G—oi-20 |77 y Sl
4 5 d (1-20) | Mo
2(1 —v)
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which again takes the form
{o} =[Dl{e}

Step six, in which the internal stresses {0} are replaced by the statically equivalent nodal forces {#<}
proceeds, in an identical manner to that described for the beam-element. Thus

[F]= U l[13]T[D][B] d(vol)} {6

as in Eq. (17.61), whence

[fFUJWmm«Mﬂ

In this expression [B] = [C1[A™"] where [A] is defined in Eq. (17.72) and [C] in Eq. (17.76). The
elasticity matrix [D] is defined in Eq. (17.79) for plane stress problems or in Eq. (17.80) for plane
strain problems. We note that the [C], [A] (therefore [B]) and [D] matrices contain only constant terms
and may therefore be taken outside the integration in the expression for [K°], leaving only fd(vol)
which is simply the area, 4, of the triangle times its thickness z Thus

[K] = [[B]"[DI[BJA/] (17.81)
Finally the element stresses follow from Eq. (17.66), i.e.

{o} = [H]{6°}
where [H] = [D][B] and [D] and [B] have previously been defined. It is usually found convenient to
plot the stresses at the centroid of the element.

Of all the finite elements in use the triangular element is probably the most versatile. It may be
used to solve a variety of problems ranging from two-dimensional flat plate structures to three-
dimensional folded plates and shells. For three-dimensional applications the element stiffness matrix
[K?] is transformed from an in-plane xy coordinate system to a three-dimensional system of global coor-
dinates by the use of a transformation matrix similar to those developed for the matrix analysis of skele-
tal structures. In addition to the above, triangular elements may be adapted for use in plate flexure
problems and for the analysis of bodies of revolution.

[
EXAMPLE 17.3
A constant strain triangular element has corners 1(0, 0), 2(4, 0) and 3(2, 2) referred to a Cartesian
Oxy axes system and is 1 unit thick. If the elasticity matrix [D] has elements Dy; =Dy =4,
Dy, = D3y = b, D;3= Dy3 = D3, = D3, =0 and D33 = ¢, derive the stiffness matrix for the element.
From Eq. (17.69)

w = oy + y(0) + a3(0)
ie.

w) = 0y

wy = oy + a(4) + a3(0)
ie

wy = ay 4, (i)

—.
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FIGURE 17.14

> Quadrilateral element subjected to nodal
X in-plane forces and displacements.

w(x,y) = a1 + apx + azy + auxy } (17.83
v, y) = s + agx + a7y + agxy -83)
The constant terms, ; and as, are required, as before, to represent the in-plane rigid body motion
the element while the two pairs of linear terms enable states of constant strain to be represented
oughout the element. Further, the inclusion of the xy terms results in both the w(x,) and v(xy) dis-
cements having the same algebraic form so that the element behaves in exactly the same way in the x
ection as it does in the y direction.

Writing Eq. (17.83) in matrix form gives

(o )
Q3
Qs
wy) | _ |1 x y » 0 0 0 0]) oyl
{v(x,y)} [o 000 1 x5 af)os( (17.84)
(e73
2%
L Q8 )
{ w(x,y) } = Fee ey (17.85)
v(x, y)
Now substituting the coordinates and values of displacement at each node we obtain
'w,-‘ Fl Xi Vi XiYi 0 0 0 0- (6\41‘
v; 0 0 O 0 1 x 3 xp [s%)
wj I % 5 %3 0 0 0 0 Qa3
vj=00001:g}796,~31,~ Qy4
<w1,> 1 % gy = 0 0 0 O <o¢5,> (1758
Vg 0 0 O 0 T oxe e e [o %5
wy 1 x yw x» 0 0 0 O ay

which is of the form

Then
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{6} = [4l{}

{a} =[47'1{6%}

(17.87)

The inversion of [A] is illustrated in Ex. 17.4 but, as in the case of the triangular element, is most
casily carried out by means of a computer. The remaining analysis is identical to that for the triangular
element except that the {e}—{c} relationship (see Eq. (17.76)) becomes

01 0y 0000
{ey}=10 0 0 0 0 0 1 x
0 01 x 01 0 y

ral

(&%)
Qa3
(071
s
(073
a7

\ 8

\

3 (17.88)
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New elements and new applications of the finite element method are still being developed, some of
hich lie outside the field of structural analysis. These fields include soil mechanics, heat transfer, fluig
nd seepage flow, magnetism and electricity.

'roblems

P.17.1 The truss shown in Fig. P.17.1 has members of cross sectional area 60 mm? and Young’s
modulus 210000 N/mm?. Obtain the stiffness matrix for the truss and hence calculate the
horizontal and vertical displacements at node 2.

Ans. 15.19 mm (to the right), 3.98 mm (downwards).

2 50kN

3 45°

5
3
/

| FIGURE P.17.1

>.17.2 Figure P.17.2 shows a square symmetrical pin-jointed truss 1234, pinned to rigid supports at
2 and 4 and loaded with a vertical load at 1. The axial rigidity A is the same for all

members.

n FIGURF P 17 2

Problems 605

Use the stiffness method to find the displacements at nodes 1 and 3 and hence solve for
all the internal member forces and support reactions.
Ans. vy = —PL/J2AE wvs= —0.293PL/AE Fi;="PI2=Fy4
Fys = —0.207P=Fy Fi3=0293P F,,=—F,4=0207P
1;_;,,2 = 1;3,,4 = P/2.

P.17.3 Use the stiffness method to find the ratio /P for which the displacement of node 4 of the
plane pin-jointed frame shown loaded in Fig. P.17.3 is zero, and for that case give the
displacements of nodes 2 and 3.

All members have equal axial rigidity EA.

Ans. HIP=0.449 v, = —4Pl(9 +2+/3) AE v3= —GPl(9 + 2/3)AE.
P

3

FIGURE P.17.3

P.17.4 Form the matrices required to solve completely the plane truss shown in Fig. P.17.4 and
determine the force in member 24. All members have equal axial rigidity.

Ans. F,5=0.

I 4
! I " p FIGURE P.17.4

P.17.5 The symmetrical plane rigid jointed frame 1234567, shown in Fig. P.17.5, is fixed to rigid
supports at 1 and 5 and supported by rollers inclined at 45° to the horizontal at nodes 3 and 7. It

[ T I B | 1 RRSUUIS Ji PRI R AP
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(s i |
Problems 607

3 7 Table P.17.6(i) TeplgPTZ800
! 450 450 ’ Node X y z | ok ARy o R SR iy ‘
2/ o | [NeEss FOCTRRNERITRY SRR
w/unit length ‘/_—2 2 2 8 o | |Member Al Bending  Torsional
1o ! —— 7 L 0.8L 0 23 - El -
2 4 6 L 37 - - GJ=0.8E
9 L 0
P 29 EA=6v25 - =
/
P.17.7 Given that the force—displacement (stiffness) relationship for the beam element shown in
1/% »75 . O Fig. P.17.7(a) may be expressed in the following form:
TR I VIR N
5 5 5 - FIGURE P.17.5 ,
span 26. Assuming the same flexural rigidity E7 for all members, set up the stiffness equations
which, when solved, give the nodal displacements of the frame.
Explain how the member forces can be obtained. M. 8 My, 6,
1, 04 .

17.6 The frame shown in Fig. P.17.6 has the planes xz and yz as planes of symmetry. The nodal
coordinates of one quarter of the frame are given in Table P.17.6(i).

Fy,1, V4 Fy,2' Vo
(@
1 2/ 2 l} 3 2] 4

(b)

FIGURE P.17.6

In this structure the deformation of each member is due to a single effect, this being axial,
bending or torsional. The mode of deformation of each member is given in Table P.17.6(ii),
together with the relevant rigidity.

Use the direct stiffness method to find all the displacements and hence calculate the forces in all
the members. For member 123 plot the shear force and bending moment diagrams.

Briefly outline the sequence of operations in a typical computer program suitable for
linear frame analysis.

Ans. Fog= Fyg = ﬁP/ 6 (tension) Mz= —M, = PL/9 (hogging)
M, =2PL/9 (sagging) F,3=—F,,="PI3.

Twisting moment in 37. PL/I8 (anticlackwice)

FIGIIRF P.17.7
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F,, 12 -6 -12 -6 v
ML\ _El |-6 4 6 2| oL
E, (3 |-12 6 12 6 vy
M,/L -6 2 6 4 0,L

17.8

17.9

obtain the force—displacement (stiffness) relationship for the variable section beam
(Fig. P.17.7(b)), composed of elements 12, 23 and 34.

Such a beam is loaded and supported symmetrically as shown in Fig. P.17.7(c). Both ends
are rigidly fixed and the ties FB, CH have a cross-sectional area #; and the ties EB, CG a cross-
sectional area #,. Calculate the deflections under the loads, the forces in the ties and all other
information necessary for sketching the bending moment and shear force diagrams for the beam,

Neglect axial effects in the beam. The ties are made from the same material as the beam.
Ans. vy =vc = —5SPL*/144E] Oy = —0c = PL*[24El Fyp=2P/3

Fae=+/2PI3 F,s=PI3 M= —PL/4.

The symmetrical rigid jointed grillage shown in Fig. P.17.8 is encastré at 6, 7, 8 and 9 and
rests on simple supports at 1, 2, 4 and 5. It is loaded with a vertical point load P at 3.

Use the stiffness method to find the displacements of the structure and hence calculate
the support reactions and the forces in all the members. Plot the bending moment diagram
for 123. All members have the same section properties and G/ = 0.8EI
Ans. By =F, 5= —P/16

Fyp=F,4=9P/16
My, = Mys = —Pl/16 (hogging)
Moz = Myz = — Pl/12 (hogging)

Twisting moment in 62, 82, 74 and 94 is P//96.

FIGURE P.17.8

It is required to formulate the stiffness of a triangular element 123 with coordinates (0, 0)
(4, 0) and (0, a) respectively, to be used for ‘plane stress’ problems.

a. Form the [B] matrix.
b. Obtain the stiffness matrix [K°].

P.17.10

P.17.11

P.17.12

P.17.13

P.17.14

Problems 609

It is required to form the stiffness matrix of a triangular element 123 for use in stress analysis
problems. The coordinates of the element are (1, 1), (2, 1) and (2, 2) respectively.

a. Assume a suitable displacement field explaining the reasons for your choice.

b. Form the [B] matrix.

. Form the matrix which gives, when multiplied by the element nodal displacements, the
stresses in the element. Assume a general [D] matrix.

It is required to form the stiffness matrix for a rectangular element of side 242 X 24 and
thickness # for use in ‘plane stress’ problems.

a. Assume a suitable displacement field.
b. Form the [C] matrix.
¢. Obtain [ [CT'[D][C] dV.

Note that the stiffness matrix may be expressed as

(K] =7 U

0.

l[C]T[D][C] dV] [47]

A square element 1234, whose corners have coordinates x, y (in m) of (=1, —1), (1, —1), (1, 1)
and (— 1, 1), respectively, was used in a plane stress finite element analysis. The following nodal
displacements (mm) were obtained:

w1 =01 w,=0.3 ws =0.6 ws=0.1
V4= 0.1 Up = 0.3 U3z = 0.7 Vg4 = 0.5

If Young’s modulus E =200 000 N/mm? and Poisson’s ratio v = 0.3, calculate the
stresses at the centre of the element.

Ans. ,,=51.65 N/mm?, 0, = 55.49 N/mm?, 7,,, = 13.46 N/mm”.

A triangular element with corners 1, 2 and 3, whose x, y coordinates in metres are (2.0, 3.0),
(3.0, 3.0) and (2.5, 4.0), respectively, was used in a plane stress finite element analysis. The
following nodal displacements (mm) were obtained.

w; =004 v;=008 w,=0.10 v;=0.12 w;=020 v;=0.18

Calculate the stresses in the element if Young’s modulus is 200 000 N/ mm? and Poisson’s
ratio is 0.3.

Ans. 0,= 25.4 N/mm? gy =285 N/mm? Ta= 13:1 N/mm?.

A rectangular element 1234 has corners whose x, y coordinates in metres are, respectively,
(=2, =1), (2, —1), (2, 1) and (=2, 1). The element was used in a plane stress finite element
analysis and the following displacements (mm) were obtained.

1 2 3 4
w 0.001 00038 -0003 00
v —0004  —0.002 0.001  0.001
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If the stiffness of the element was derived assuming a linear variation of displacements,
. 2 . g
Young’s modulus is 200 000 N/mm* and Poisson’s ratio is 0.3, calculate the stresses at the
centre of the element.

Ans. 0,=104.4 N/mm® 0,=431.3 N/mm® 7,,= —115.4 N/mm?.
17.15 Derive the stiffness matrix of a constant strain, triangular finite element 123 of thickness #
and coordinates (0, 0), (2, 0) and (0, 3), respectively, to be used for plane stress problems.
The elements of the elasticity matrix [D] are as follows.
Dyu=Dyp=a Dip=b Di3=Dy;3=0 Dyp=c
where 4, b and ¢ are material constants.
Apns. See Solutions Manual.
17.16 A constant strain triangular element has corners 1(0,0), 2(4,0) and 3(2,2) and is 1 unit thick.

If the elasticity matrix [D] has elements Dy; = Doy =2, D1y = Dy = b,
Dy3=D,3=Ds3; = D3, =0 and D33 = ¢, derive the stiffness matrix for the element.

Abns.
atc
b+ ¢ atc
1| —a+c —b+c¢ a+c

K= -

(K] 41 b—c¢ a—c —b—c¢ a+tc
—2¢ —2¢ —2¢ 2¢  4c
=26 —2a 2b —2a 0 4a

17.17 The following interpolation formula is suggested as a displacement function for deriving the
stiffness matrix of a plane stress rectangular element of uniform thickness # shown in Fig P.17.17

0= 25 (@ =6 =) + (a2 =) + (0 + b + s + (a = )b + )]

Form the strain matrix and obtain the stiffness coefficients K7; and K7, in terms of the material
constants ¢, 4 and e where, in the elasticity matrix [D], Dy, = Dy =¢, Dy, =d, D33 =r¢ and
Dl 3= D23 =0.

Ans. Ky1=tl4c+ e)/6, K, =td+ e)l4

\ Y

2b=4 > X

I‘

Plastic Analysis of Beams
and Frames

So far our analysis of the behaviour of structures has assumed that whether the structures are statically
determinate or indeterminate the loads on them cause stresses which lie within the elastic limit. Design,
based on this elastic behaviour, ensures that the greatest stress in a structure does not exceed the yield
stress divided by an appropriate factor of safety.

An alternative approach is based on plastic analysis in which the loads required to cause the structure
to collapse are calculated. The reasoning behind this method is that, in most steel structures, particularly
redundant ones, the loads required to cause the structure to collapse are somewhat larger than the ones
which cause yielding. Design, based on this method, calculates the loading required to cause complete
collapse and then ensures that this load is greater than the applied loading; the ratio of collapse load to
the maximum applied load is called the load factor. Generally, plastic, or ultimate load design, results in
more economical structures.

In this chapter we shall investigate the mechanisms of plastic collapse and determine collapse loads
for a variety of beams and frames.

18.1 Theorems of plastic analysis

Plastic analysis is governed by three fundamental theorems which are valid for elasto-plastic structures
in which the displacements are small such that the geometry of the displaced structure does not affect
the applied loading system.

The uniqueness theorem

The following conditions must be satisfied simultaneously by a structure in its collapsed state:

The equilibrium condition states that the bending moments must be in equilibrium with the applied
loads.

The yield condition states that the bending moment at any point in the structure must not exceed
the plastic moment at that point.

The mechanism condition states that sufficient plastic hinges must have formed so that all, or part
of, the structure is a mechanism.

The lower bound, or safe, theorem

If a distribution of moments can be found which satisfies the above equilibrium and yield conditions
the structure is either safe or just on the point of collapse.

CHAPTER
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» upper bound, or unsafe, theorem

loading is found which causes a collapse mechanism to form then the loading must be equal to or
ter than the actual collapse load.

Senerally, in plastic analysis, the upper bound theorem is used. Possible collapse mechanisms are
1lated and the corresponding collapse loads calculated. From the upper bound theorem we know
all mechanisms must give a value of collapse load which is greater than or equal to the true collapse
. so that the critical mechanism is the one giving the lowest load. It is possible that a mechanism,
:h would give a lower value of collapse load, has been missed. A check must therefore be carried
by applying the lower bound theorem.

.2 Plastic analysis of heams

erally plastic behaviour is complex and is governed by the form of the stress—strain curve in tension
compression of the material of the beam. Fortunately mild steel beams, which are used extensively
ivil engineering construction, possess structural properties that lend themselves to a relatively simple
ysis of plastic bending.

We have seen in Section 8.3, Fig. 8.8, that mild steel obeys Hooke’s law up to a sharply defined
1 stress and then undergoes large strains during yielding until strain hardening causes an increase in
s. For the purpose of plastic analysis we shall neglect the upper and lower yield points and idealize
stress—strain curve as shown in Fig. 18.1. We shall also neglect the effects of strain hardening, but
e this provides an increase in strength of the steel it is on the safe side to do so. Finally we shall
me that both Young’s modulus, £, and the yield stress, oy, have the same values in tension and
ppression, and that plane sections remain plane after bending. The last assumption may be shown
:rimentally to be very nearly true.

stic bending of beams having a singly symmetrical cross section

s is the most general case we shall discuss since the plastic bending of beams of arbitrary section is
iplex and is still being researched.

Consider the length of beam shown in Fig. 18.2(a) subjected to a positive bending moment, M,
possessing the singly symmetrical cross section shown in Fig. 18.2(b). If M is sufficiently small the
th of beam will bend elastically, producing at any section mm, the linear direct stress distribution
‘ig. 18.2(c) where the stress, o, at a distance y from the neutral axis of the beam is given by

g
A

oy {___
(Tension)

&y

&y

- - -| oy (Compression) FIGURE 18.1

18.2 Plastic analysis of beams 613

Elastic
_neutral Z

Y y
A

M m Section mm

axis

(0]
N\
T

<
N A
i

iz
L
N
>y

(@) (b) ©
FIGURE 18.2

Direct stress due to bending in a singly symmetrical section beam.
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FIGURE 18.3
Yielding of a beam section due to bending.

Eq. (9.9). In this situation the elastic neutral axis of the beam section passes through the centroid of
area of the section (Eq. (9.5)).

Suppose now that M is increased. A stage will be reached where the maximum direct stress in the
section, i.e. at the point furthest from the elastic neutral axis, is equal to the yield stress, oy (Fig. 18.3
(b)). The corresponding value of M is called the yield moment, My, and is given by Eq. (9.9); thus

YN o] (18.1)
N

If the bending moment is further increased, the strain at the extremity y; of the section increases
and exceeds the yield strain, ey. However, due to plastic yielding the stress remains constant and equal
to oy as shown in the idealized stress—strain curve of Fig. 18.1. At some further value of M the stress
at the lower extremity of the section also reaches the yield stress, oy (Fig. 18.3(c)). Subsequent increases
in bending moment cause the regions of plasticity at the extremities of the beam section to extend
inwards, producing a situation similar to that shown in Fig. 18.3(d); at this stage the central portion or
‘core’ of the beam section remains elastic while the outer portions are plastic. Finally, with further
increases in bending moment the elastic core is reduced to a negligible size and the beam section is
more or less completely plastic. Then, for all practical purposes the beam has reached its ultimate
moment resisting capacity; the value of bending moment at this stage is known as the plastic moment,
Mp, of the beam. The stress distribution corresponding to this moment may be idealized into two rect-
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The problem now, therefore, is to determine the plastic moment, Mp. First, however, we must
vestigate the position of the neutral axis of the beam section when the latter is in its fully plastic stage,
ne of the conditions used in establishing that the elastic neutral axis coincides with the centroid of 5
:am section was that stress is directly proportional to strain (Eq. (9.2)). It is clear that this is no longer
e case for the stress distributions of Figs 18.3(c), (d) and (e). In Fig. 18.3(e) the beam section abovye
¢ plastic neutral axis is subjected to a uniform compressive stress, o'y, while below the neutral axis the
‘ess is tensile and also equal to oy. Suppose that the area of the beam section below the plastic neutrs]
is is Ay, and that above, 4, (Fig. 18.4(a)). Since Mp is a pure bending moment the total direct load
1 the beam section must be zero. Thus from Fig, 18.4

UyAl = UyAz
that

A1 =4, (182)
1erefore if the total cross-sectional area of the beam section is 4
A

d we see that the plastic neutral axis divides the beam section into two equal areas. Clearly for doubly
nmetrical sections or for singly symmetrical sections in which the plane of the bending moment is
rpendicular to the axis of symmetry, the elastic and plastic neutral axes coincide.

The plastic moment, Mp, can now be found by taking moments of the resultants of the tensile and
mpressive stresses about the neutral axis. These stress resultants act at the centroids C; and C, of the
:as A; and A5, respectively. Thus from Fig. 18.4

Mp = UyAlyl + UyAzyz
using Eq. (18.3)

A
My =0y = Gy +7,) (18.4)

Ty

Area, A,

Plastic neutral
7 axis
Y2

A
A

Area, A,

oy

(@) (b)
URE 18.4
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Equation (18.4) may be written in a similar form to Eq. (9.13); thus

Mp = O'sz (18.5)
where
Z = A_._(712+72) (18.6)

Zp is known as the plastic modulus of the cross section. Note that the elastic modulus, Z, ha:s two
values for a beam of singly symmetrical cross section (Eq. (9.12)) whereas the plastic modulus is single-
valued.

Shape factor
The ratio of the plastic moment of a beam to its yield moment is known as the shape factor, f Thus

== = (18.7)

where Zp is given by Eq. (18.6) and Z, is the minimum elastic section modulus, 7/y;. It can be seen
from Eq. (18.7) that fis solely a function of the geometry of the beam cross section.
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At yield, when M is equal to the yield moment, My
_ M
El
The moment—curvature relationship for a beam in the linear elastic range may therefore be expressed
in non-dimensional form by combining Eqs (18.8) and (18.9), i.e.
Mk
- =_ (18.10
My  ky )
This relationship is represented by the linear portion of the moment—curvature diagram shown in
Fig. 18.7. When the bending moment is greater than My part of the beam becomes fully plastic and the
moment—curvature relationship is non-linear. As the plastic region in the beam section extends inwards
towards the neutral axis the curve becomes flatter as rapid increases in curvature are produced by small
increases in moment. Finally, the moment—curvature curve approaches the horizontal line M = Mp as an
asymptote when, theoretically, the curvature is infinite at the collapse load. From Eq. (18.7) we see that
when M = Mp, the ratio M/My = f, the shape factor. Clearly the equation of the non-linear portion of
the moment—curvature diagram depends upon the particular cross section being considered.
Suppose a beam of rectangular cross section is subjected to a bending moment which produces fully
plastic zones in the outer portions of the section (Fig. 18.8(a)); the depth of the elastic core is d.. The
total bending moment, M, corresponding to the stress distribution of Fig. 18.8(b) is given by

(18.9)

1 1(d 4 oy ,d.2d,
M=20vb=(d—d)=|=+ =) +2—b—===
ovby ! c)2(2 2) 27232
M/MY A
flooooooot M=Mp ... ‘
1| M= My
E FIGURE 18.7
Abk/ky
1 Moment—curvature diagram for a beam.
Fully plastic
zone
ay
& //A
d % Elastic and

oment—curvature relationships plastic neutral axis

om Eq. (9.8) we see that the curvature £ of a beam subjected to elastic bending is given by
1 M

RTE (18.8)

‘ L0

| oy FIGURE 18.8
b | Plastic bending of a rectangular-section

b=
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_bedz _dez _MY _dez
M=— (3 =)= |- = (18.11)

te that when &, = 4, M= My and when d. =0, M = 3My/2 = Mp as derived in Ex. 18.1.
The curvature of the beam at the section shown may be found using Eq. (9.2) and applying it to 5
nt on the outer edge of the elastic core. Thus

ich simplifies to

de
= E—
YTEIR
1 _ 2oy
k= R A (18.12)
: curvature of the beam at yield is obtained from Eq. (18.9), i.e.
_ My 20y
/ey—ﬁ— 7 (18.13)
mbining Eqs (18.12) and (18.13) we obtain
ﬁ = i (18.14
k4 o
itituting for d/d in Eq. (18.11) from Eq. (18.14) we have
M="YX(3_ %Y
(- 4)
hat
k 1
(18.15)

b /3- 20 My

ation (18.15) gives the moment—curvature relationship for a rectangular section beam for
=M= Mp, i.. for the non-linear portion of the moment—curvature diagram of Fig. 18.7 for the
icular case of a rectangular section beam. Corresponding relationships for beams of different section
found in a similar manner.

We have seen that for bending moments in the range My <M = Mp a beam section comprises fully
tic regions and a central elastic core. Thus yielding occurs in the plastic regions with no increase in stress
‘reas in the elastic core increases in deformation are accompanied by increases in stress. The deformation
he beam is therefore controlled by the elastic core, a state sometimes termed consained plastic flow. As M
roaches Mp the moment—curvature diagram is asymprotic to the line M = Mjp so that large increases in
»rmation occur without any increase in moment, a condition known as unrestricted plastic flow.

In Eq. (iii) of Ex. 18.1 we have seen that, for a rectangular section beam, the ratio of the plastic
ment to the yield moment is 1.5:1, that is

2
My = = Mp

18.2 Plastic analysis of beams 621 l

Then, substituting for My in Eq. (18.15) and rearranging we obtain

1 (k)
=|1—-=|—) |M
M {1 (%) } ;
For a range of values of ky/k we can obtain the applied moment in terms of the plastic moment as
shown in Table 18.1.

Therefore we see that when the applied moment is approaching 99% of the plastic moment the
beam curvature is only five times greater than that at the onset of yield.

Plastic hinges

The presence of unrestricted plastic flow at a section of a beam leads us to the concept of the formation
of plastic hinges in beams and other structures.

Consider the simply supported beam shown in Fig. 18.9(a); the beam carries a concentrated load,
W, at mid-span. The bending moment diagram (Fig. 18.9(b)) is triangular in shape with a maximum
moment equal to WZ/4. If W is increased in value until WZ/4 = Mp, the mid-span section of the beam
will be fully plastic with regions of plasticity extending towards the supports as the bending moment
decreases; no plasticity occurs in beam sections for which the bending moment is less than My. Clearly,
unrestricted plastic flow now occurs at the mid-span section where large increases in deformation take
place with no increase in load. The beam therefore behaves as two rigid beams connected by a plastic

Table 18.1
kiky 1 2 3 4 5
M/Mp 0.667 0.917 0.963 0.979 0.987
w
l Region of plasticity
7 ' 1 4
w . A p W
2 } ; : 2
@ : :
i ) H [
' My
. y ; Mp
\
FIGURE 18.9
" L 7 Formation of a plastic hinge in a simply
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ge which allows them to rotate relative to each other. The value of W given by W= 4Mp/L is the ¢o/.
se load for the beam.

The length, Lp, of the plastic region of the beam may be found using the fact that at each section
inding the region the bending moment is equal to My. Thus

W (L-Lp
MY‘?( 2 )

sstituting for W(=4M/L) we obtain

M,
My = TP‘(L—LP)

L=1(1-M
P A

LP=L<1 —%) (18.16)

a rectangular section beam f= 1.5 (see Ex. 18.1), giving Lp = L/3. For the I-section beam of Ex,
2, f=1.14 and Lp = 0.12L so that the plastic region in this case is much smaller than that of a rect-
ular section beam; this is generally true for I-section beams.

It is clear from the above that plastic hinges form at sections of maximum bending moment.

n which

from Eq. (18.7)

istic analysis of beams

can now use the concept of plastic hinges to determine the collapse or ultimate load of beams in
ns of their individual yield moment, Mp, which may be found for a particular beam section using
(18.5).
For the case of the simply supported beam of Fig. 18.9 we have seen that the formation of a single plastic
ge is sufficient to produce failure; this is true for all statically determinate systems. Having located the posi-
1 of the plastic hinge, at which the moment is equal to Mp, the collapse load is found from simple statics.
1s for the beam of Fig. 18.9, taking moments about the mid-span section, we have

Wol
2 2
Wy = 4]24P (as deduced before)

:re Wy is the ultimate value of the load W.

(AMPLE 18.4

etermine the ultimate load for a simply supported, rectangular section beam, breadth 4, depth 4,
ving a span L and subjected to a uniformly distributed load of intensity .

18.2 Plastic analysis of beams 623

The maximum bending moment occurs at mid-span and is equal to wI?/8 (see Section 3.4). The
plastic hinge therefore forms at mid-span when this bending moment is equal to Mp, the corre-
sponding ultimate load intensity being wy. Thus

LZ
i = Mp 6)
8
From Ex. 18.1, Eq. (ii)
bd?
e
P = Oy 4
so that
_ 8Mp _ 20vbd*
L N

where oy is the yield stress of the material of the beam.

[
EXAMPLE 18.5

The simply supported beam ABC shown in Fig. 18.10(a) has a cantilever overhang and supports
loads of 4W and W. Determine the value of W at collapse in terms of the plastic moment, Mp, of
the beam.

The bending moment diagram for the beam is constructed using the method of Section 3.4 and
is shown in Fig. 18.10(b). Clearly as W is increased a plastic hinge will form first ac D, the point of
application of the 4W load. Thus, at collapse

3
- Wul = M
3 Wl P
aw w
A l B y
k e 1

(a)
wL
2
—Ve
+ve
§%V_L FIGURE 18.10
(b) Beam of Ex. 18.5.
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so that

_ 4Mp
ol

where Wy is the value of W that causes collapse.

—m

The formation of a plastic hinge in a statically determinate beam produces large, increasing deforma-
ons which ultimately result in failure with no increase in load. In this condition the beam behaves a5
mechanism with different lengths of beam rotating relative to each other about the plastic hinge. The
tms failure mechanism or collapse mechanism are often used to describe this state.

In a statically indeterminate system the formation of a single plastic hinge does not necessarily mean
llapse. Consider the propped cantilever shown in Fig. 18.11(a). The bending moment dia
 drawn after the reaction at C has been determined by any suitable method of anal
determinate beams (see Chapter 16) and is shown in Fig. 18.11(b).

As the value of W is increased a plastic hinge will form first at A where the bending moment is
satest. However, this does not mean that the beam will collapse. Instead it behaves as a statically
terminate beam with a point load at B and a moment Mp at A. Further increases in W eventually
wlt in the formation of a second plastic hinge at B (Fig. 18.11(c)) when the bending moment at B
wches the value Mp. The beam now behaves as a mechanism and failure occurs with no further
rrease in load. The bending moment diagram for the beam is now as shown in Fig. 18.11(d)
ues of bending moment of —Mp at A and Mp at B. Comparing the bending moment diagram ar
lapse with that corresponding to the elastic deformation of the beam (Fig. 18.11(b)) we see that a
listribution of bending moment has occurred. This is generally the case in statically indeterminate
tems whereas in statically determinate systems the bending moment diagrams in the elastic range
1 at collapse have identical shapes (see Figs. 18.9(b) and 18.10(b)). In the beam of Fig. 18.11 the
stic bending moment diagram has a maximum at A. After the formation of the plastic hinge at A

bending moment remains constant while the bending moment at B increases until the second
stic hinge forms. Thus this redistribution of moments tends to increase the ultimate strength of
ically indeterminate structures since failure at one section leads to other portions of the structure
porting additional load.

Having located the positions of the plastic hinges and using the fact that the moment at these

ges is Mp, we may determine the ultimate load, W4, by statics. Therefore taking moments about A
have

gram may
ysis of statically

with

L
Mp = WUE — RcL (18.17)

re Rc is the vertical reaction at the support C. Now considering the equilibrium of the length BC
>btain

L
RCE =Mp (1818)

linating Rc from Eqs (18.17) and (18.18) gives
Wy = % (18.19)
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Elastic bending moment diagram
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/ W, Collapse mechanism
A v : c
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Mp
Bending moment diagram at collapse
-ve
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Mp
(d)

FIGURE 18.11

Plastic hinges in a propped cantilever.

Note that in this particular problem it is unnecessary to determine .th.e elastic ber.1d1n§ momer}t (lha;gircazl :ﬁ
solve for the ultimate load which is obtained using statics alone. Tbls is a convenient feature (l) plas e
ysis and leads to a much simpler solution of statically indeterminate structures t};an an e aSt}llca:a s?nk_.
Furthermore, the magnitude of the ultimate load is not affected by structu.rai) llm[;;:r ectloxtlgestélcastic i
ing support, whereas the same kind of imperfection would hav.e.an appreciable e ecthc?nh pnp
iour of a structure. Note also that the principle of superposition (Se.cmon 3.7), wl llc P
linearly elastic behaviour of a structure,h d(;les ;:OI hc()ild for plals.tlz anal);sills;lshzhfeaicrt f;}:lzl pvjlt:; %(/ iour o' ¢
upon the order in which the loads are applied as w : : :
Ztsrsllllcrzrtll:?nd;i?tliisanzlysis that all loads are applied simultaneously and that the ratio of the loads remains
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An alternative and powerful method of analysis uses the principle of virtual work (see Section 15.2),
ch states that for a structure that is in equilibrium and which is given a small virtual displacement)
sum of the work done by the internal forces is equal to the work done by the external forces.
Consider the propped cantilever of Fig. 18.11(a); its collapse mechanism is shown in Fig. 18.11(c).
the instant of collapse the cantilever is in equilibrium with plastic hinges at A and B where the
ments are each Mp as shown in Fig. 18.11(d). Suppose that AB is given a small rotation, 6. From
metry, BC also rotates through an angle 0 as shown in Fig. 18.12; the vertical displacement of B is
10L/2. The external forces on the cantilever which do work during the virtual displacement are com-
ed solely of Wiy since the vertical reactions at A and C are not displaced. The internal forces which do
k consist of the plastic moments, Mp, at A and B and which resist rotation. Hence

L
WUHE = (Mp),0 + (Mp)g20 (see Section 15.1)

n which Wy; = 6Mbp/L as before.

We have seen that the plastic hinges form at beam sections where the bending moment diagram
ins a peak value. It follows that for beams carrying a series of point loads, plastic hinges are located
he load positions. However, in some instances several collapse mechanisms are possible, each giving
srent values of ultimate load. For example, if the propped cantilever of Fig. 18.11(a) supports two
1t loads as shown in Fig. 18.13(a), three possible collapse mechanisms are possible (Fig. 18.13
-d). Each possible collapse mechanism should be analysed and the lowest ultimate load selected.

The beams we have considered so far have carried concentrated loads only so that the positions of
plastic hinges, and therefore the form of the collapse mechanisms, are easily determined. This is not
case when distributed loads are involved.

L2 L2 (d)
RE 18.12 FIGURE 18.13
lal displacements in propped cantilever of Possible collapse mechanisms in a propped cantilever
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EXAMPLE 18.6

The propped cantilever AB shown in Fig. 18.14(a) carries a uniformly distributed load of intensity w.
If the plastic moment of the cantilever is Mp calculate the minimum value of w required to cause
collapse.

Peak values of bending moment occur at A and at some point between A and B so that plastic
hinges will form at A and at a point C a distance x, say, from A; the collapse mechanism is then as
shown in Fig. 18.14(b) where the rotations of AC and CB are § and ¢ respectively. Then, the verti-
cal deflection of C is given by

6=0x=Pp(L —x) )

so that
x

bt 0)

The total load on AC is wx and its centroid (at x/2 from A) will be displaced a vertical distance
8/2. The total load on CB is w(L — x) and its centroid will suffer the same vertical displacement
/2. Then, from the principle of virtual work

wxf;. +w(L——x)§ = My + Mp(6 + )

Note that the beam at B is free to rotate so that there is no plastic hinge at B. Substituting for 6
from Eq. (i) and ¢ from Eq. (ii) we obtain

wL%’f =Mp0+Mp(9+0 4 )

=
or
wLQf=M0(2+ % )
2 ¥ L«
Rearranging
_—;_Z_A_f‘i(u_x) (iif)
tx L%
z w
23 3 Vv v by
Z B
ZNn
Z
L L J
[ |
()

FIGURE 18.14
Collanse mechanism for a nronned cantilever.
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-2 minimum value of w, (dw/dx) = 0. Then

éz _ 2Mp ) = Q= D) s
d« L x2(L—x)?

reduces to
X —4Lx+2[*=0
g gives
x = 0.586L (the positive root is ignored)
:n substituting for x in Eq. (iii)

11.66Mp
I2
can now use the lower bound theorem to check that we have obtained the critical mechanism

ereby the critical load. The internal moment at A at collapse is hogging and equal to M.
taking moments about A

w (at collapse) =

LZ
RBL WD) ey e Mp
2
gives
4.83M,
RB = 7 -
ilarly, taking moments about B gives
i 6.83Mp
/5

amation of Ry and Ry gives 11.66Mp/L = wL so that vertical equilibrium is satisfied. Further,
ering moments of forces to the right of C about C we have

0.4141%
2

MC = RB(0.414L) —w

stituting for Rg and w from the above gives Mc = Mp. The same result is obtained by consid-
noments about C of forces to the left of C. The load therefore satisfies both vertical and
at equilibrium.

: bending moment at any distance x;, say, from B is given by

)
M=R5x1~w%

dm
— =Rg—wx; =0

dxy

a maximum occurs when x; = Rp/w. Substituting for R, x; and w in the expression for M

x ar 1 1 L

18.2 Plastic analysis of beams 629 I

Plastic design of beams

It is now clear that the essential difference between the plastic and elastic methods of design is that the
former produces a structure having a more or less uniform factor of safety against collapse of all its com-
ponents, whereas the latter produces a uniform factor of safety against yielding. The former method in
fact gives an indication of the true factor of safety against collapse of the structure which may occur at
loads only marginally greater than the yield load, depending on the cross sections used. For example, a
rectangular section mild steel beam has an ultimate strength 50% greater than its yield strength (see Ex.
18.1), whereas for an I-section beam the margin is in the range 10—20% (see Ex. 18.2). It is also clear
that each method of design will produce a different section for a given structural component. This dis-
tinction may be more readily understood by referring to the redistribution of bending moment produced
by the plastic collapse of a statically indeterminate beam.

Two approaches to the plastic design of beams are indicated by the previous analysis. The most
direct method would calculate the working loads, determine the required strength of the beam by the
application of a suitable load factor, obtain by a suitable analysis the required plastic moment in terms
of the ultimate load and finally, knowing the yield stress of the material of the beam, determine the
required plastic section modulus. An appropriate beam section is then selected from a handbook of
structural sections. The alternative method would assume a beam section, calculate the plastic moment
of the section and hence the ultimate load for the beam. This value of ultimate load is then compared
with the working loads to determine the actual load factor, which would then be checked against the
prescribed value.

=
EXAMPLE 18.7

The propped cantilever of Fig. 18.11(a) is 10 m long and is required to carry a load of 100 kNN at
mid-span. If the yield stress of mild steel is 300 N/mm?, suggest a suitable section using a load factor

against failure of 1.5.
The required ultimate load of the beam is 1.5 X 100 = 150 kN. Then from Eq. (18.19) the
required plastic moment Mp is given by

150X 10

Mp 3 =250 kN m
From Eq. (18.5) the minimum plastic modulus of the beam section is
250 X 106
Zp = 7 s = 833333 mm’

Referring to an appropriate handbook we see that a Universal Beam, 406 mm X 140 mm X 46 kg/m,
has a plastic modulus of 886.3 cm®. This section therefore possesses the required ultimate strength and
includes a margin to allow for its self-weight. Note that unless some allowance has been made for self-

weight in the estimate of the working loads the design should be rechecked to include this effect. -

Effect of axial load on plastic moment

We shall investigate the effect of axial load on plastic moment with particular reference to an I-section
beam, one of the most common structural shapes, which is subjected to a positive bending moment
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Plastic neutral axis
due to bending
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due to bending
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URE 18.15
nbined bending and axial compression.

If the beam section were subjected to its plastic moment only, the stress distribution shown in
. 18.15(b) would result. However, the presence of the axial load causes additional stresses which can-
, obviously, be greater than oy Thus the region of the beam section supporting compressive stresses
ncreased in area while the region subjected to tensile stresses is decreased in area. Clearly some of the
npressive stresses are due to bending and some due to axial load so that the modified stress distribu-
1is as shown in Fig. 18.15(c).

Since the beam section is doubly symmetrical it is reasonable to assume that the area supporting the
apressive stress due to bending is equal to the area supporting the tensile stress due to bending, both
1s being symmetrically arranged about the original plastic neutral axis. Thus from Fig. 18.15(d) the
uced plastic moment, Mp R is given by

Mpr =oy(Zp — Z,) (18.20)

ere Z, is the plastic section modulus for the area on which the axial load is assumed to act. From

(18.6)

Za=2ﬂ_tw(f+f)=ﬂ2tw

2 \2 2
)
P =2at, 0y
‘hat
P
a —
2ty0y

sstituting for Z,, in Eq. (18.20) and then for 4, we obtain

Mpr =0y (Zp = > 7\ (18.21)

18.3 Plastic analysis of frames 631

Let o, be the mean axial stress due to P taken over the complete area, A, of the beam section. Then
P=o0,A
Substituting for P in Eq. (18.21)
Mpr = oy <ZP = %%) (18.22)
Thus the reduced plastic section modulus may be expressed in the form
Zor = Zp — Kn? (18.23)

where K is a constant that depends upon the geometry of the beam section and 7 is the ratio of the
mean axial stress to the yield stress of the material of the beam.

Equations (18.22) and (18.23) are applicable as long as the neutral axis lies in the web of the beam
section. In the rare case when this is not so, reference should be made to advanced texts on structural
steel design. In addition the design of beams carrying compressive loads is influenced by considerations
of local and overall instability, as we shall see in Chapter 21.

[
EXAMPLE 18.8

If the propped cantilever of Ex. 18.7 is subjected to an axial load of 150 kN in addition to the
100 kN load at mid-span determine whether or not the selected Universal Beam is still adequate.

From Steel Tables the cross sectional area of the beam is 58.9 cm® and its web thickness is
6.9 mm. The mean axial stress is then

_ 150 % 10°
58.9 X 10?

Then, from Eqs. (18.22) and (18.23) the reduced plastic section modulus is given by
(897 . 255

4% (6.9/10) ~ 300%

=25.5 N/mm’

Oa

Zpr = 886.3 —

which gives
ZP,R =877.2 cm3

The required plastic modulus of the beam section is 833.3 cm? so that the beam section is still
adequate.

—i

18.3 Plastic analysis of frames

The plastic analysis of frames is carried out in a very similar manner to that for beams in that possible col-
lapse mechanisms are identified and the principle of virtual work used to determine the collapse loads. A
complication does arise, however, in that frames, even though two-dimensional, can possess collapse
mechanisms which involve both beam and sway mechanisms since, as we saw in Section 16.10 in the
moment distribution analysis of portal frames, sway is produced by any asymmetry of the loading or frame.
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-
EXAMPLE 18.9 4|

Determine the value of the load W required to cause collapse of the frame shown in Fig. 18.16(a) if
- 18.16(a) i

the plastic moment of all i
ol ent of all members of the frame is 200 kN m. Calculate also the s

W € note that the ﬁ'ame and 1()adlng are unsylnllletrlc&] SO that § Way occurs. Ihe bendln
moment dlaglaln iOI dle fl‘ame lakes dle fOIIll Sll()\NIl in Ilg- 18-1 b SO that thele are dllee p()SSl )l(f
C()Hapse lllCClla]l.SlllS as Sh()Wn I.]l Fig. 18.17 6( )

In Fi ;
n Fig. 18.17(a) the horizontal member BCD has collapsed with plastic hinges forming ac B, C

and D; this is termed a beam mechanism. In Fig. 18.17(b) the frame has sw:

ol : ‘ ayed with hinge: i
at A, B, D and E; this, for obvious reasons, is called a sway mechanism. Figy 18.17(c) ‘Sr}‘lgoe‘i’::(;":mg
218 om-

PR ol
t ;:em mechanism which incorporates both the beam and sway mechanisms. However, in th;

i, ;ments at B due © the vertical load at C and the horizontal load at B oppose ,each olt; -

¢ moment at B will be the smallest of the five peak moments and plastic hinges will for: s

at

upport reactions a¢

lw
‘TF‘W . - [\

Cc

o R

Nea

777
2m 2m

(a)
FIGURE 18.16
Portal frame of Ex. 18.9.

(b)

B o’

20
c
A
=
a)
IGURE 18.17

*ollapse mechanisms for the frame of Ex. 18.9.
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the other locations. We say, therefore, that there is a hinge cancellation at B; the angle ABC then
remains a right angle. We shall now examine each mechanism in turn to determine the value of W
required to cause collapse. We shall designate the plastic moment of the frame as Mp.

Beam mechanism
Suppose that BC is given a small rotation 0. Since CD = CB then CD also rotates through the angle

0 and the relative angle between CD and the extension of BC is 2. Then, from the principle of vir-
tual work
W20 = Mp0 + Mp26 + Mpb (@)

which gives

W = ZMP
In the virtual work equation 20 is the vertical distance through which W moves and the first, second
and third terms on the right hand side represent the internal work done by the plastic moments at
B, C and D respectively.
Sway mechanism
The vertical member AB is given a small rotation 6, ED then rotates through 26. Again, from the
principle of virtual work

W40 = Mpg + Mpg -+ Mng =+ Mp29 (11)
1.€.
3
W = EMP
Combined mechanism

Since, now, there is no plastic hinge at B there is no plastic moment at B. Then, the principle of vir-
tual work gives
W46 + W20 = Mp0 + Mp20 + Mp30 + Mp20 (iii)

from which

4
= _ M,
3 P

We could have obtained Eq. (iii) directly by adding Eqs (i) and (ii) and anticipating the hinge can-
cellation at B. Eq. (i) would then be written

W26 = {Mpg} i Mp29 + Mpg (1V)

where the term in curly brackets is the internal work done by the plastic moment at B. Similarly

Eq. (ii) would be written
W40 = Mpe i {Mpg} =t Mp20 e Mp26 (V)

Adding Eqs (iv) and (v) and dropping the term in curly brackets gives
W66 = 8Mp0

ac hefare
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From Egs (i), (ii) and (iii) we see that the critical mechanism is the combined mechanism and

1e lowest value of Wis 4M4p/3 so that

W= 4 X 200
3
<
W =266.7 kN

igun.': 18.18 shows the support reactions corresponding to the collapse mode. The internal moment
D is Mp (D is a plastic hinge) so that, taking moments about D for the forces acting on the mem-

er ED
RE,H X2=Mp =200 kN m
» that
Rep = 100 kN
esolving horizontally

RA,H +266.7 —100=0

om which
RA,H = —166.7 kN (tO the k:ft)
aking moments about A
RE‘VX4+RE’HX2—266.7X2_266‘7X4:0
hich gives
Ry =350.1 kN
W = 266.7 kN
W=2667kN B l D
O
Cc
2m
im E
Y Rew
Reyv
—  5A
Rau
l FIGURE 18.18
Rayv 2m 2m Support reactions at collapse in
| the frame of Ex. 18.9.

Finally, resolving vertically
RA,V = RE,V —266.7=0

Ryv = —83.4 kN (downwards)

In the portal frame of Ex. 18.9 ecach member has the same plastic moment Mp. In cases where the
members have different plastic moments a slightly different approach is necessary. =

-
EXAMPLE 18.10

In the portal frame of Ex. 18.9 the plastic moment of the member BCD is 2Mp. Calculate the criti-
cal value of the load W.

Since the vertical members are the weaker members plastic hinges will form at B in AB and at D
in ED as shown, for all three possible collapse mechanisms, in Fig. 18.19. This has implications for
the virtual work equation because in Fig. 18.19(a) the plastic moment at B and D is Mp while that
at C is 2Mp. The virtual work equation then becomes

W20 = Mp0 + 2Mp20 + Mp0
which gives
W =3Mp
For the sway mechanism
W46 = Mp0 + Mp0 + Mp26 + Mp20

so that

(@)
FIGURE 18.19

Collapse mechanisms for the frame of Ex. 18.10.
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«d for the combined mechanism
W40 + W20 = Mp0 + 2Mp20 + Mp36 + Mp20

»m which

W = 2 MP
5
Here we see that the minimum value of W which would cause collapse is 3Mp/2 and that the
ray mechanism is the critical mechanism.
We shall now examine a portal frame having a pitched roof in which the determination of displa-

ments is more complicated.

KAMPLE 18.11

ae portal frame shown in Fig. 18.20(2) has members which have the same plastic moment A5,
etermine the minimum value of the load W required to cause collapse if the collapse mechanism is
at shown in Fig. 18.20(b).

In Exs 18.9 and 18.10 the displacements of the joints of the frame were relatively simple to deter-
ine since all the members were perpendicular to each other. For a pitched roof frame the calcula-
»n is more difficult; one method is to use the concept of 7nstantaneous centres.

In Fig. 18.21 the member BC is given a small rotation . Since 0 is small C can be assumed to
ove at right angles to BC to C'. Similarly the member DE rotates about E so that D moves hori-
ntally to D’. Further, since C moves at right angles to BC and D moves at right angles to DE it
llows that CD rotates abour the instantaneous centre, I, which is the point of intersection of BC
id ED produced; the lines IC and ID then rotate through the same angle ¢.

From the triangles BCC’ and ICC’

CC' =BCO=1Cop
w
A
s 2m
: i
5m
A E \
77777 BT T
5m | 5m "

(a) (b)
FIGURE 18.20
Collapse mechanism for the frame of Ex. 18.11.

b |
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FIGURE 18.21

Method of instantaneous centres for
the frame of Ex. 18.11.

so that

BC
= Tffg

¢ ]
From the triangles EDD’ and IDD/
DD’ = EDa = ID¢
Therefore
ID,_IDBC,

Otz-FB¢—EBE (ll)

Now we drop a perpendicular from C to meet the horizontal through B and D at F. Then, from
the similar triangles BCF and BID

from which ID = 2CF = 4 m. Then, from Eq. (ii)

4
e
e

Finally, the vertical displacement of C to C' is B (=56).
The equation of virtual work is then

W50 = Mp0 + Mp(B + ) + Mp(¢ + ) + Mpar
Substituting for ¢ and « in terms of 6 from the above gives

W =1.12Mp
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(@) (b)
GURE 18.22
ossible collapse mechanisms for the frame of Ex. 18.11 with 5way.

e failure mechanism shown in Fig. 18.20(b) does not involve sway. If, however, a horizontal load
‘e applied at B, say, then sway would occur and other possible failure mechanisms would have to
investigated; two such mechanisms are shown in Fig. 18.22. Note that in Fig. 18.22(a) there is a
ge cancellation at C and in Fig. 18.22(b) there is a hinge cancellation at B. In determining the
lapse loads of such frames the method of instantaneous centres still applies. L

.oads applied to frames are not always concentrated and may be distributed along one or more
ibers. To illustrate the method of analysis of such frames we shall consider the relatively simple
e of Ex. 18.12.

AMPLE 18.12

¢ portal frame shown in Fig. 18.23(a) carries a uniformly distributed load of total value 4 W across

horizontal member BD in addition to a horizontal concentrated load of W at B. If the plastic
ment of the member BD is 2Mp while that of the vertical columns is Mp determine the critical
1e of the load W.

Total = 4W
5 :
| 2L
l
(a) (b)
GURE 18.23

‘ame carrying a uniformly distributed load.

Problems 639 :I

Since the columns are the weaker members plastic hinges will form at B in AB and at D in DE.
However, as in Ex. 18.9, we can assume a hinge cancellation at B so that the collapse mechanism is that
shown in Fig. 18.23(b). There will be a further hinge at C in BD where the bending moment is a maxi-
mum, a distance x, say, from B. The problem then is to determine the value of x.

Referring to Fig. 18.23(b) the principle of virtual work gives

2 4W x
> = W
Mp0 + Mo + My 0 +2Mp | 5 | 0= WLO+ =756
4W 2 &
+__ Py
57 CLTA T e

which simplifies to
(217 + 3Lx — 2x?) 0
100 — 7%
This will be a2 maximum when dMp/dx = 0. Then, differentiating the above and equating to zero
gives

MP=W

4o* — 40Lx + 3417 =0
the solution of which is
x=0.94L
Substituting in Eq. (i) gives
Mp =0.376WL
If it is assumed that the hinge in BD is midway along its length then the virtual work equation is
Mp6 + Mp0 + Mp20 + 2Mp20 = WLO + 2 X %%@
from which
Mp =0.375WL
which differs from the accurately calculated value by 0.27%.

PROBLEMS

P.18.1 Determine the plastic moment and shape factor of a beam of solid circular cross section
having a radius 7 and yield stress oy.

Ans. Mp=1.330y7, f=1.69.
P.18.2 Determine the plastic moment and shape factor for a thin-walled box girder whose cross

section has a breadth 4, depth 4 and a constant wall thickness #. Calculate ffor 4 = 200 mm,
4 =300 mm.

Ane. Mo = avtd(2b + 2. F=1.17.
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B.3 A beam having the cross section shown in Fig. P.18.3 is fabricated from mild steel which has a

yield stress of 300 N/ mm?. Determine the plastic moment of the section and its shape factor.
Ans. 256.5 kN m, 1.52.

75 mm
— v

L | ]
$1Smm
15 mm
300 mm
15 mm
v
[ ] /
< g GURE P.18.3
[ 250 mm =1 FIGURE P.18.

8.4 A cantilever beam of length 6 m has an additional support at a distance of 2 m from its free

end as shown in Fig. P.18.4. Determine the minimum value of W at which collapse occurs if
the section of the beam is identical to that of Fig. P.18.3. State clearly the form of the
collapse mechanism corresponding to this ultimate load.

Ans. 128.3 kN, plastic hinge at C.

lzw w
7 By c \

A

‘I‘ >|4

2m 'I 2m T 2m

FIGURE P.18.4

A beam of length L is rigidly built-in at each end and carries a uniformly distributed load of
intensity w along its complete span. Determine the ultimate strength of the beam in terms of
the plastic moment, Mp, of its cross section.

Ans. 16Mp/L*.

A simply supported beam has a cantilever overhang and supports loads as shown in
Fig. P.18.6. Determine the collapse load of the beam, stating the position of the
corresponding plastic hinge.

Ans. 2Mp/L, plastic hinge at D.

Determine the ultimate strength of the propped cantilever shown in Fig. P.18.7 and specify
the corresponding collapse mechanism.

A.. V7 — LRAA IT 1 o 1 A 1.

P.18.8

P.18.9

Problems 641

L/3 L/3 L/3 L/2 FIGURE P.18.6
e W lW
A B C D
L/3 L/3 L/3 FIGURE P.18.7

The working loads, W, on the propped cantilever of Fig. P.18.7 are each 150 kN and its span
is 6 m. If the yield stress of mild steel is 300 N/ mm?, suggest a suitable section for the beam
using a load factor of 1.75 against collapse.

Ans. Universal Beam, 406 mm X 152 mm X 67 kg/m.

If the propped cantilever of Fig. P.18.7 is subjected to an axial load of 200 kN in addition to
the two concentrated loads of 150 kN determine whether or not the beam section chosen in
P.18.8 remains satisfactory.

Ans. Marginally satisfactory with no allowance for self-weight therefore use a UB
406 X 152 X 74 kg/m.

P.18.10 The members of a steel portal frame have the relative plastic moments shown in Fig. P.18.10.

Calculate the required value of M for the ultimate loads shown.

A
4

Ans. 36.2 kN m.
30kN 30kN
25kN B l C l D B =
2Mm
M M 4m
A F v
7777777 4
| 3m _ 3m 3m |
I‘ 3t 1

>

FIGURE P.18.10
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11 The frame shown in Fig. P.18.11 is pinned to its foundation and has relative plastic moments P.18.13 The steel frame shown in Fig. P.18.13 collapses under the loading shown. Calculate the value
of resistance as shown. If M has the value 108 kN m calculate the value of W that will just of the plastic moment parameter M if the relative plastic moments of resistance of the
cause the frame to collapse. members are as shown. Calculate also the support reactions at collapse.
Ans. 60 kN. Ans. M =56 kN m. Vertical: 32 kN at A, 48 kN at D. Horizontal: 13.3 kN at A, 33.3 kN at D.
w w
0.75W B l C l D E 40 kN 40 kN
Yy > oM K
20kN B E F C
7 2M E B
4m
6m M i » 6m
77/7757% -y
D v
v A ) 7
B 3m 1 3m 1 3m R [ L 3m | 3m | 3m 3m ], 3m |
EP.18.11 ‘ FIGURE P.18.13
12 Fig. P.18.12 shows a portal frame which is pinned to its foundation and which carries vertical P.18.14 The pitched roof portal frame shown in Fig. P.18.14 has columns with a plastic moment of
and horizontal loads as shown. If the relative values of the plastic moments of resistance are ‘ resistance equal to M and rafters which have a plastic moment of resistance equal to 1.3M.
those given determine the relationship between the load Wand the plastic moment parameter Calculate the smallest value of M that can be used so that the frame will not collapse under
M. Calculate also the foundation reactions at collapse. the given loading.
Ans. W= 0.3M. Horizontal: 0.44W at A, 0.56W at G. Vertical: 0.89 Wat A, 2.11Wat G. ‘ Ans. M= 24 kKN m.
w w w \
‘ 30kN
w B C D E F CY -
7 an 7 |
3m
M 6m 1.3M 1.3M -
10 kN
9m 2M : B D
G v
Z
y

3m 3m 3m 3m

A
707

‘ M M 5m
' A
- D77

|
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Problems 645

P.18.17 If the vertical load W applied to the frame of Fig. 18.16(a) is increased to 4W, is uniformly
distributed along the member BD and the horizontal concentrated load W remains in position
at B determine the value of W required to cause collapse. Assume that the plastic hinge in BD
still occurs at C, the mid-point of BD.

Ans. Mp = W (both the sway and combined mechanisms produce the same value).

.8.15 The frame shown in Fig. P.18.15 is pinned to the foundation at D and to a wall at A. The
plastic moment of resistance of the column CD is 200 kN m while that of the rafters AB and
BC is 240 kN m. For the loading shown calculate the value of P at which collapse will take

place.

Ans. P=106.3 kN.

P.18.18 Repeat P.18.17 but consider the more accurate positioning of the plastic hinge in BD.
Comment on the result obtained.

Apns. Mp=1.125W (combined mechanism). See Solutions Manual for comment.

3m 3m

JRE P.18.15

8.16 The steel portal frame shown in Fig. P.18.16 is pinned to its foundations at A and E and the
plastic moment of resistance of all the members of the frame is the same. If the frame is on
the point of collapse under the loading shown calculate the actual plastic moment of
resistance. Sketch the bending moment diagram of the frame at the onset of collapse giving
the value of the bending moment at each joint.

Ans. Mp =47.83 kN m. My =27.15 kN m. Mc=21.57 kN m, Mp = 47.83 kN m.

30kN &
3m

3m

B D
N —— _y
5m

A E
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FICIIRF P 1R 1R



CHAPTER

eld Line Analysis of Slabs

theory presented in this chapter extends the ultimate load analysis of structures, begun in
pter 18 for beams and frames, to reinforced concrete slabs.
structural engineers, before the development of ultimate load analysis, designed reinforced concrete
i using elastic plate theory. This approach, however, gives no indication of the ultimate load-
ring capacity of a slab and further analysis had to be carried out to determine this condition.
rnatively, designers would use standard tables of bending moment distributions in orthogonal plates
different support conditions. These standard tables were presented, for reinforced concrete slabs,
lodes of Practice but were restricted to rectangular slabs which, fortunately, predominate in rein-
:d concrete construction. However, for non-rectangular slabs and slabs with openings, these
s cannot be used so that other methods are required. The method presented here, yield line theory,
developed in the early 1960s by the Danish engineer, K.W. Johansen.

1 Yield line theory

e are two approaches to the calculation of the ultimate load-carrying capacity of a reinforced con-

slab involving yield line theory. One is an energy method which uses the principle of virtual work
the other, an equilibrium method, studies the equilibrium of the various parts of the slab formed
e yield lines; we shall restrict the analysis to the use of the principle of virtual work since this was
ed in Chapter 18 to the calculation of collapse loads of beams and frames.

d lines

b is assumed to collapse at its ultimate load through a system of nearly straight lines which are
1 yield lines. These yield lines divide the slab into a number of panels and this pattern of yield lines
panels is termed the collapse mechanism; a typical collapse mechanism for a simply supported
ngular slab carrying a uniformly distributed load is shown in Fig. 19.1(a).

he panels formed by the supports and yield lines are assumed to be plane (at fracture elastic defor-
»ns are small compared with plastic deformations and are ignored) and therefore must possess a
tetric compatibility; the section AA in Fig. 19.1(b) shows a cross section of the collapsed slab. It is
er assumed that the bending moment along all yield lines is constant and equal to the value corre-
ding to the yielding of the steel reinforcement. Also, the panels rotate about axes along the sup-
d edges and, in a slab supported on columns, the axes of rotation pass through the columns, see
19.2(b). Finally, the yield lines on the sides of two adjacent panels pass through the point of inter-
n of their axes of rotation. Examples of yield line patterns are shown in Fig. 19.2. Note the con-
ons for the representation of different support conditions.

1 the collapse mechanisms of Figs 19.1(a) and 19.2(b) the supports are simple supports so that the
s free to rotate along its supported edges. In Fig. 19.2(a) the left-hand edge of the slab is built in
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Yield line

\

Simple _—7
support
¢ Section AA
Panel A

(a) (b)
FIGURE 19.1
Collapse mechanism for a rectangular slab.

Simple supports
% ‘—‘/—,'/7
=T ) /
HIpE ‘\/Free
/support // oo
Axes of
rotation O<—_
A / % Column
Built-in — y 4
support l / ;
Free l '/ Axes of rotation
edge &

(a) (b)

FIGURE 19.2

Collapse mechanisms and diagrammatic representation of support conditions.

and not free to rotate. At collapse, therefore, a yield line will develop along this e.dge as sho.wn. Alon.g
this yield line the bending moment will be hogging, i.e. negative, and the reinforcmg steel .w1ll be posi-
tioned in the upper region of the slab; where the bending moment is sagging the reinforcing steel will

be positioned in the lower region.

Ultimate moment along a yield line

Figure 19.3(a) shows a portion of a slab reinforced in two directions at right angles; tklle u.ltu;llatef
moments of resistance of the reinforcement are 72, per unit width of slab and s, per unit w1c.lt o

T N X S
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Yield line

I acos «

Slab

Reinforcement
(a) (b)
RE 19.3
rmination of the ultimate moment along a yield line.

gular element formed by a length 2 of the yield line and the reinforcement as shown in Fig. 19.3(b).

1, from the moment equilibrium of the element in the direction of #,, we have

mua = mia cos acos @) + mya sin afsin @)

Mg = mycos’a + mysina (19.1)
Jow, from the moment equilibrium of the element in the direction of 7,
mwa = mya cos a(sin ) — mya sin afcos )

at
(m — my)

my = —Z—Sin 2o (19.2)

Jote that for an isotropic slab, which is one equally reinforced in two perpendicular directions,

: my = m, say, so that

mo=m m =0 (19.3)

rnal virtual work due to an ultimate moment

re 19.4 shows part of a slab and its axis of rotation. Let us suppose that at some point in the slab
+is a known yield line inclined at an angle o to the axis of rotation; the ultimate moment is 7 per
length along the yield line. Let us further suppose that the slab is given a small virtual rotation 6.
virtual work done by the ultimate moment is then given by

VW (m) = (mL)(cos 0)0 = m(L cos o) (19.4)
Ve see, therefore, from Eq. (19.4), that the internal virtual work done by an ultimate moment

3a yield line 1s the value of the moment multiplied by the angle of rotation of the slab and the

~o
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s of

-\0“
(o=

FIGURE 19.4

Determination of the work done by an
ultimate moment.

Usually, rather than give a panel of a slab a virtual rotation, it is simpler to give a point on a yield
line a unit virtual displacement. If, in Fig. 19.4 for example, the point A is given a unit virtual displace-

ment then
1
b

where & is the perpendicular distance of A from the axis of rotation. Clearly the displacement of B due
to 6 would be greater than unity.

Virtual work due to an applied load

For a slab subjected to a distributed load of intensity w(x, y) the virtual work done by the load corre-
sponding to the virtual rotation of the slab panels is given by

VW (w) = “wu dx dy (19.5)

where # is the virtual displacement at any point (%, ).

Conveniently, many applied loads on slabs are uniformly distributed so that we may calculate the
total load on a slab panel and then determine the displacement of its centroid in terms of the given vir-
tual displacement; the virtual work done by the load is then the product of the two and the total virtual
work is the sum of the virtual works from each panel.

Having obtained the virtual work corresponding to the internal ultimate moments and the virtual
work due to the applied load then the principle of virtual work gives

VW(w) = VW (m) (19.6)

which gives the ultimate load applied to the slab in terms of its ultimate moment of resistance. This means,
in fact, that we can calculate the required moment of resistance for a slab which supports a given load or,
alternatively, we can obtain the maximum load that can be applied to a slab having a known moment of
resistance. In the former case the given, or working, load is multiplied by a load factor to obtain an ultimate
load while in the latter case the ultimate load is divided by the load factor.

The yield line pattern assumed for the collapse mechanism in a slab may not, of course, be the true
pattern so that, as for the plastic analysis of beams and frames, the virtual work equation (Eq. (19.6))
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refore, for a given ultimate load (actual load Xload factor), the calculated required ultimate
nent of resistance is either correct or less than it should be. In other words, the solution is either
ect or unsafe so that the virtual work approach gives an upper bound on the carrying capacity of
slab. Generally, in design, two or more yield line patterns are assumed and the maximum value of
ultimate moment of resistance obtained.

(AMPLE 19.1

1e slab shown in Fig. 19.5 is isotropically reinforced and is required to carry an ultimate design
id of 12 kN/m?. If the ultimate moment of resistance of the reinforcement is 7 per unit width of
b in the direction shown, calculate the value of  for the given yield line pattern.

We note that the slab is simply supported on three sides and is free on the other. Suppose that
2 junction c of the yield lines is given a unit virtual displacement.

Then
1 1
9 e = = e
a = =y =fo= o
The internal virtual work is therefore given by
VW(m)ZmX4l+2mX4—;— ()
%

The first term on the right-hand side of Eq. (i) is the work done by the ultimate moment on the
igonal yield lines ac and bc on the boundary of panel A and is obtained as follows. We have seen
it, for an isotropic slab, the ultimate moment along an inclined yield line is equal to the moment

4m

e
\ / a &08
4
<> |m
m
B
. A4 A - d
Cc
\ 4 b fgc
7 g

X FIGURE 19.5
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of resistance of the reinforcement irrespective of the inclination of the reinforcement to the yield
line (Eq. (19.3)). Further, the work done by the ultimate moment on an inclined yield line is the
product of the moment, the projection of the yield line on the axis of rotation and the angle of
rotation of the panel (Eq. (19.4)). The second term on the right-hand side of Eq. (i) represents
the work done by the ultimate moment on the diagonal and horizontal yield lines bordering each
of the panels B and C; from symmetry the contribution of both panels will be the same. From the
above argument and considering panel B

1 1 1
VW (m)g = mx(—z-) + m(4 — x)(i) =4 m<§>
Similarly for panel C.

Equation (i) simplifies to
1 I
VW (m) = 4 m(; + 1) (ii)

The work done by the applied load is most easily found by dividing each of the panels B and C
into a rectangle and a triangle, panel A is a triangle. Then

1 i 1 1
VW(w)=l2{%X4xX§+2|:~2—xX2X~3—+(4—-x)><2><—2—}} (iii)

In Eq. (iii) the displacement of the centroids of the triangles in panels A, B and C is 1/3 while
the displacement of the centroids of the rectangular portions of panels B and C is 1/2. Eq. (iii) sim-
plifies to

VW(w) = 96 — 8x (iv)
Equating Eqgs (ii) and (iv)

4m<-1~ +1> = 05 - B
X%

from which
12x — &%
m—Z( - ) o)
For a maximum, (dm/dx) = 0, i.e.
S (1 +x)(12 = 2x) — (12x — x?)
(1+x)?

which reduces to
W +2x—12=0
from which

x = 2.6 m (the negative root is ignored)

Then, from Eq. (v)
m=13.6 kNm/m
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'n some cases the relationship between the ultimate moment 7 and the dimension x is complex so
the determination of the maximum value of m by differentiation is tedious. A simpler approach
1d be to adopt a trial and error method in which a series of values of x are chosen and then 7 plot-
against x.

n the above we have calculated the internal virtual work produced by an ultimate moment of resis-
e which acts along a yield line (Fig. 19.4). This situation would occur if the direction of the rein-
:ment was perpendicular to the direction of the yield line or if the reinforcement was isotropic (see
(19.3)). A more complicated case arises when a band of reinforcement is inclined at an angle to a
| line and the slab is not isotropic.

Consider the part of a slab shown in Fig. 19.6 in which the yield line AB is of length L and is
ned at an angle « to the axis of rotation. Suppose also that the direction of the reinforcement  is
1 angle B to the normal to the yield line.

[hen, if the point B is given a unit virtual displacement perpendicular to the plane of the slab the
e of rotation 6 is given by

6:

S~ =

te & is the perpendicular distance of B from the axis of rotation. Further, the rotation 8, of the slab
plane parallel to the reinforcement is given by

1
0, =~
r

te 7 is the distance of B from the axis of rotation in a direction parallel to the reinforcement.
‘rom the above

b
6, =6- (19.7)

Axis
of rotation

RE 19.6
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Also, from triangle BCD

é = cos(a + )
,
Then, from Eq. (19.7)
0, =0 cos(a+ () (19.8)
Now, from Eq. (19.1) in which, in this case, 72, = m, my; =0 and a=p
Mg =m cos’f3 (19.9)
and
m
= (—})si 19.10
me (2)sm 203 ( )

The internal virtual work due to the rotation 6 is given by
VW (m) = (maL)(cos )0 — (m.L)(sin )0 (19.11)

where the component of (7,L) perpendicular to the axis of rotation opposes the component of (m,L).
Substituting in Eq. (19.11) for m, and 7, from Eqs (19.9) and (19.10), respectively we have

VW (m) = (mLcosB)(cos @) — [(g) Lsinzﬁ] (si )0
which simplifies to
VW () = m(L cos B)f(cos 3 cos a — sin 3 sin a)
ot
VW (m) = m(L cos )0 cos(ax + ) (19.12)
Substituting for 6 cos (o + f) from Eq. (19.8) gives
VW (m) = m(L cos B)6; (19.13)

In Eq. (19.13) the term L cos (3 is the projection BF of the yield line AB on a line perpendicular to
the direction of the reinforcement. Equation (19.13) may be written as

VW (m) = m(L cos ,8)% (19.14)

where, as we have seen, 7 is the radius of rotation of the slab in a plane parallel to the direction of the
reinforcement.

-

EXAMPLE 19.2
Determine the required moment parameter 7 for the slab shown in Fig. 19.7 for an ultimate load
of 10 kN/m?; the relative values of the reinforcement are as shown.

Note that in Fig. 19.7 the reinforcement of 1.2 m resists a hogging bending moment at the built-
in edge of the slab and is shown dotted.

The first step is to choose a yield line pattern. We shall assume the collapse mechanism shown in
Fig. 19.8; in practice a number of different patterns might be selected and investigated. Note that
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4m a
> there will be a yield line ad along the built-in edge. Suppose, now, that we impose a unit virtual djs-
placement on the yield line at f; e will suffer the same virtual displacement since ef and ab are paral-
- lel. The angle of rotation of the panel B (and C) is then 1/2. Panel A rotates about the line ad and
its angle of rotation is 1/ge where ge is the perpendicular distance of ad from e. From the dimen-
sions given ad = 4.5 m and ge = he cos ¢ = (1 + x)(4/4.5) = 0.89(1 + x).
o em The slab is not isotropic so that we shall employ the result of Eq. (19.14) to determine the inter-
nal virtual work due to the ultimate moments in the different parts of the slab. Therefore, for each
A yield line we need to determine its projection on a line perpendicular to the reinforcement and the
1.0m corresponding radius of rotation. We shall adopt a methodical approach.
(1) Panel A
* Reinforcement 1.2 m
The axis of rotation is the line ad and since the reinforcement is perpendicular to the yield
) line ad the projected length is ad = 4.5 m. The radius of rotation is ge = 0.89(1 + x). The vir-
i tual work is then
i em . FIGURE 19.7 1 :
Slab of Ex. 19.2. o R [ﬁm} ®
* Reinforcement 0.5 m
The sum of the projected length of the yield lines de and ea parallel to the reinforcement
is 4 m and the radius of rotation is he = 1 + x. The virtual work is then
B 4m ) i U :
Dm T (ii)
j
4 * Reinforcement 1.0 m
[ @;b The projection of the yield line de in a direction parallel to the reinforcement is
i e dk =2 + x and the corresponding radius of rotation is ¢j = he/tan ¢ = 2(1 + ).
tation for — ; - : : . . S
panel A /’ ! For the yield line ea the projected length is na = x and its radius of rotation is the same
{ as that of the yield line de, i.e. 2(1 + x). However, since the centre of rotation is at j the dis-
T P x placement of the reinforcement crossing the yield line ea is less than its displacement as it
| crosses the yield line de. At de, therefore, the reinforcement will be sagging while at ea it will
L 0.5 ;i . . - . . 8 -
t < 05m Pl be hoggmg. The co?tnbunons to the virtual work at these two points will therefore be of
; 11 i opposite sign. The virtual work is then
| 102 +x)—%] 10m
) f v = : (111)
y 2(1 +x) (=)
(2) Panel B
2m * Reinforcement 1.0 m
We note that the 0.5 m reinforcement is parallel to the axis of rotation and does not,
’ therefore, contribute to the virtual work in this panel. The projection of the yield lines ae
i and ef is 4 m and the radius of rotation is 2 m. The virtual work is then
4 :
FIGURE 19.8 1.0 m X 3 =20m (iv)
Yield line pattern for the slab of

* Reinfarcement 1.0 m
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The situation in panel C is identical to that in panel B except that the projection of the
yield lines de and ef is 6 m. The virtual work is then

3.0 m W)

Adding the results of Egs (i)—(v) we obtain the total internal virtual work, i.e.

14.07 +
07 Sx) i)

VW(’”):( 1w

The external virtual work may be found by dividing the slab into rectangles enpf and
ekqf and triangles ane, ekd and ade. Since the displacement of e is unity the displacement of
each of the centroids of the rectangles will be 1/2 and the displacement of each of the cen-
troids of the triangles will be 1/3. The total virtual work due to the applied load is then
given by

VW (w) = 10 [2(4 —x) (%) + @ @) +22+%) (%) (%) +4.5%0.89(1 + x) G) G)]

which simplifies to
VW (w) = 10(9.33 — 0.67x) (vii)
Equating internal and external virtual works, Eqs (vi) and (vii), we have

10(1 + %)(9.33 — 0.67x)
14.07 + 5x

(viii)

The value of x corresponding to the maximum value of 7 may be found by differentiat-
ing Eq. (viii) with respect to x and equating to zero. Alternatively, a series of trial values of x
may be substituted in Eq. (vii) and the maximum value of 7 obtained. Using the former
approach gives x=2.71 m from which

m=10.9 kNm/m
-

(AMPLE 19.3

e slab shown in Fig. 19.9(a) has an opening at the corner A to allow the passage of a hoist. The
b is built in on the sides AB, BC and AD and is simply supported on the side DC. The relative
lues of the moments of resistance per unit width for hogging and sagging bending at relevant posi-
ns in the slab are shown in Fig. 19.9(b). For the typical yield line pattern shown in Fig. 19.9(a)
lculate ;he value of the moment parameter 2 if the slab has to carry an ultimate design load of
kN/m*.

The ratatione of the different narrs of the slab are shown in Fie. 19.10.

19.1 Yield line theory 657

2.5m ; -
0.5m
D

[*—X—{C FIGURE 19.9

(a) (b) Slab of Ex. 19.3

=
E

11.5

/ FIGURE 19.10
1/2.5 Rotations for slab of Ex. 19.4
The work absorbed by the different parts of the slab is as follows.

A:(m+m)X6X(1/2.5)=48m

B: mX7.5X(1/2.5)=3m
C:(m+05m)X2.5X(1/1.5)=2.5m
D:(m+0.5m)X5X(1/x)=75m/x

The total work absorbed is therefore 72[10.3 + (7.5/x)]
The total work done by the load is:
12[25 X 1.5 X (1/3) +5Xx X (1/3) + (6 —x) X 5X(1/2)] =195~ 10«
Equating the work absorbed by the slab to the work done by the load gives
o Y95k — 1047
10.3x+ 7.5
Differentiating Eq. (i) and equating to zero gives
'  +1.456 x — 14.199 =0
the solution of which is
w—o.llm
Substituting this value in Eq. (i) gives

m=12.9 kNm/m
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2 Discussion

method presented here for the analysis of reinforced concrete slabs gives, as we have seen, upper
d values for the collapse loads of slabs. However, in relatively simple cases of slab geometry and
ag, the yield line method can be used as a design method since the fracture pattern can be
ned with reasonable accuracy. Also, in practice the actual collapse load of a slab may be above the
ated value because of secondary effects such as the kinking of the reinforcing steel in the vicinity
: fracture line and the effect of horizontal edge restraints which induce high compressive forces in
lane of the slab with a consequent increase in load capacity.

n alternative to yield line theory is the strip method proposed by A. Hillerborg at Stockholm in
. This method is a direct design procedure as opposed to yield line theory which is analytical and
‘ore will not be investigated here.

IBLEMS

1 Determine, for the slab shown in Fig. P.19.1, the required moment parameter # if the design
ultimate load is 14 kN/m>.

Ans. 24.31 kNm/m.

0.6m
‘. et

45°

10m

Y

A

EE P.19.1

2 The reinforced concrete slab shown in Fig. P.19.2(a) is designed to have an ultimate load
capacity of 10 kN/m? across its complete area. Determine the required value of the moment
parameter 7 given that the yield line pattern is as shown.

If an opening is introduced as shown in Fig. P.19.2(b) determine the corresponding
required value of the moment parameter 7.

Ans. 32.37 kNm/m, 35.27 kNm/m.
3 In the slab shown in Fig. P.19.3 Area 1 carries an ultimate load of intensity 12 kN/m? while

Area 2 carries an ultimate load of intensity 8 kN/m?. Determine the value of the moment
parameter 7 assuming the yield line pattern shown.

Problems 659

(a) (b)

/ 7,
/ 06 A /
.6m
455 <> ¢1 .0m 3m &m
Y
A
4m 4m
" Y
; >
L 10m N ” 7m 3m
I >l <t > >|
FIGURE P.19.2
7 A
5m
Y
P 7m . 3m
D '|‘ ~ FIGURE P.19.3

P.19.4

P.19.5

P.19.6

Calculate the intensity of uniformly distributed load that would cause the reinforced concrete
slab shown in Fig. P.19.4 to collapse given the yield line pattern shown.

Ans. 15.45 kN/m?.

The reinforced concrete slab shown in Fig. P.19.5 is to be designed to carry an ultimate load
of 15 kN/m?. The distribution of reinforcement is to be such that the ultimate moments of
resistance per unit width of slab for sagging bending are isotropic and of value 7 while the
ultimate moment of resistance per unit width at continuous edges is 1.2 m. For the yield line
pattern shown derive the general work equation and estimate the value of 7 by using trial
values of x=2.0, 2.5 and 3.0 m.

Ans. 9.70 kNm/m.

The reinforced concrete slab shown in Fig. P.19.6 is reinforced such that the sagging
moments of resistance are isotropic and of value 1.0 7 while the hogging moment of
resistance at all built-in edges is 1.4 m. Estimate the required value of the moment parameter
m if the ultimate design load intensity is 20 kN/m>.
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20 kNm/m
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The reinforced concrete slab shown in Fig. P.19.7(a) is simply supported on the sides AB and
DC and is built in on the sides AC and BC. The layout of reinforcement is such that the
sagging moments of resistance about the x and y axes are 1.0 7 and 0.4 m per unit width
respectively while the hogging moment of resistance about the y direction at the built in edges
is 0.6 7 per unit widch. If the design ultimate load is 14 kN/m” determine the required
moment parameter 7 of the resistance of the slab. By consideration of the secondary yield line

S |
Problems 661

- 25m
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FIGURE P.19.7

P.19.8

(a) (b)

moment of resistance from the built in edges so that the ultimate load for this pattern is also
14 kN/m?. Assume that inclined yield lines make an angle of 45° with the x and y axes.

Ans. m=24.31 kNm/m. L =1.875 m.

The reinforced concrete slab shown in Fig. P.19.8 is simply supported on the sides AB, BC,
CD and AD and is continuous over the beam EF which is simply supported at E and F. The
slab has isotropic sagging moments of resistance 7 per unit width and a hogging moment of
resistance 1.5 7 per unit width over the beam EF. If the slab is subjected to an ultimate load
of 15 kN/m” determine, by consideration of the two yield line patterns shown, the ultimate
moment of resistance of the slab and the ultimate moment of resistance of the beam EF.



