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9 The reinforced concrete slab shown in Fig. P.19.9 is simply supported on all its outer edges
and has an additional wall support internally along the line aa over which the slab is
continuous. The ultimate moments of resistance for sagging bending are isotropic and of
value 7 per unit width while the ultimate moments for hogging bending are also isotropic
and of value 1.2 m per unit width. If the design ultimate load is 14 kN/m? over the whole
slab area and the yield line pattern is as shown find the value of the moment parameter .

Ans. 22.05 kNm/m.

FIGURE P.19.9

Influence Lines 2 O

The structures we have considered so far have been subjected to loading systems that were stationary, i.
e. the loads remained in a fixed position in relation to the structure. In many practical situations, how-
ever, structures carry loads that vary continuously. For example, a building supports a system of station-
ary loads which consist of its self-weight, the weight of any permanent fixtures (such as partitions,
machinery, etc.) and also a system of imposed or ‘live’ loads which comprise snow loads, wind loads or
any movable equipment. The structural elements of the building must then be designed to withstand
the worst combination of these fixed and movable loads.

Other forms of movable load consist of vehicles and trains that cross bridges and viaducts. Again,
these structures must be designed to support their self-weight, the weight of any permanent fixtures
such as a road deck or railway track and also the forces produced by the passage of vehicles or trains. It
is then necessary to determine the critical positions of the vehicles or trains in relation to the bridge or
viaduct. Although these loads are moving loads, they are assumed to be moving or changing at such a
slow rate that dynamic effects (such as vibrations and oscillating stresses) are absent.

The effects of loads that occupy different positions on a structure can be studied by means of influence
lines. Influence lines give the value at a particular point in a structure of functions such as shear force,
bending moment and displacement for 4// positions of a travelling unit load; they may also be con-
structed to show the variation of support reaction with the unit load position. From these influence lines
the value of a function at a point can be calculated for a system of loads traversing the structure. For this
we use the principle of superposition so that the structural systems we consider must be linearly elastic.

20.1 Influence lines for beams in contact with the load

We shall now investigate the construction of influence lines for support reactions and for the shear force
and bending moment at a section of a beam when the travelling load is in continuous contact with the
beam.

Consider the simply supported beam AB shown in Fig. 20.1(a) and suppose that we wish to con-
struct the influence lines for the support reactions, Ry and Rp, and also for the shear force, Sk, and
bending moment, My, at a given section K; all the influence lines are constructed by considering the
passage of a unit load across the beam.

R, influence line

Suppose that the unit load has reached a position C, a distance x from A, as it travels across the beam.
Then, considering the moment equilibrium of the beam about B we have

RAL— 1(L—x)=0
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A I (20.1)

Hence Ry is a linear function of x and when x = 0, Ry = 1 and when x = L, R, = 0; both these results
obvious from inspection. The influence line (7Z) for Ry (RAIL) is then as shown in Fig. 20.1(b). Note
t when the unit load is at C, the value of Ry is given by the ordinate cd in the R, influence line.

influence line

e influence line for the reaction Rn is constructed in an identical manner. Thus. takinoe maments

20.1 Influence lines for beams in contact with the load 665
RBL —1x=0
so that

Ry = (20.2)

N~ R

Equation (20.2) shows that Ry is a linear function of x. Further, when x =0, Rg =0 and when
x=L, Rg =1, giving the influence line shown in Fig. 20.1(c). Again, with the unit load at C the value
of Ry is equal to the ordinate c;e in Fig. 20.1(c).

Sk influence line

The value of the shear force at the section K depends upon the position of the unit load, i.e. whether it
is between A and K or between K and B. Suppose initially that the unit load is at the point C between
A and K. Then the shear force at K is given by

SK:RB

so that from Eq. (20.2)

Sk = 0=x=g) (20.3)

N~ R

The sign convention for shear force is that adopted in Section 3.2. We could have established
Eq. (20.3) by expressing Sk in terms of Rs. Thus

SK = = RA +1
Substituting for Ry from Eq. (20.1) we obtain

L—ux
SK:— L +1=

x
L

as before. Clearly, however, expressing Sk in the terms of Ry is the most direct approach.
We see from Eq. (20.3) that Sk varies linearly with the position of the load. Therefore, when x =0,
Sk =0 and when x = 4, Sx = 4/L, the ordinate kg in Fig. 20.1(d), and is the value of Sk with the unit
load immediately to the left of K. Thus, with the load between A and K the Sk influence line is the
line a,g in Fig. 20.1(d) so that, when the unit load is at C, the value of Sk is equal to the ordinate c,f.
With the unit load between K and B the shear force at K is given by

SK= —RA (or SKZRB—l)

Substituting for R4 from Eq. (20.1) we have

Sk =— (a=x=IL) (20.4)

Again Sk is a linear function of load position. Therefore when x = L, Sx = 0 and when x = 4, i.e. the
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From Fig. 20.1(d) we see that the gradient of the line a,g is equal to [(#/L) — 0]/a = 1/L and that the
dient of the line hb, is equal to [0 + (L — 2)/L]/(L — 2) = 1/L. Thus the gradient of the Sk influence
: is the same on both sides of K. Furthermore, gh =kh + kgorgh= (L —2)/L+ #/L=1.

- influence line

: value of the bending moment at K also depends upon whether the unit load is to the left or right
<. With the unit load at C

MK &= RB(L - a) (or MK =RA a— l(a—~ x))
ch, when substituting for R from Eq. (20.2) becomes

(L-a
L

My = x (0=x=4q) (20.5)

From Eq. (20.5) we see that My varies linearly with x. Therefore, when x =0, Mx =0 and when
a, My = (L — a)a/L, which is the ordinate k;j in Fig. 20.1(e).
Now with the unit load between K and B

MK = RAtZ
ch becomes, from Eq. (20.1)

My = (L;x)a (a=x=<I) (20.6)

Again My is a linear function of x so that when x=a, Mx= (L — 4)a/L, the ordinate kjj in
20.1(e), and when x= L, Mg =0. The complete influence line for the bending moment at K is
1 the line a3jbs as shown in Fig. 20.1(e). Hence the bending moment at K with the unit load at C
1e ordinate csi in Fig. 20.1(e).
In establishing the shear force and bending moment influence lines for the section K of the beam in
20.1(a) we have made use of the previously derived relationships for the support reactions, Ry and Rg.
ly the influence lines for Sk and My had been required, the procedure would have been as follows.
With the unit load between A and K

SK = RB
Now, taking moments about A
RgL—1x=0
hat
x
RB = Z
Therefore
e
SK = z

20.1 Influence lines for beams in contact with the load 667

This, of course, amounts to the same procedure as before except that the calculation of Ry follows
the writing down of the expression for Sg. The remaining equations for the influence lines for S and
My are derived in a similar manner.

We note from Fig. 20.1 that all the influence lines are composed of straight-line segments. This is
always the case for statically determinate structures. We shall therefore make use of this property when
considering other beam arrangements.




aone

q




| .
CHAPTER 20 Influence Lines

A ll K B

I l

’7977 ’C 7@77
- a

(@)

(b)

(c)
. 20.3
ition of the Mueller—Breslau principle.

: moment at the section K due to a unit load at the point C, an arbitrary distance x from A, is
to the magnitude of the virtual displacement at C. But, as we have seen in Section 20.1, the
nt at a section K due to a unit load at a point C is the influence line for the moment at K.
ore, the My influence line may be constructed by introducing a hinge at K and imposing a unit
» in angle at K; the displaced shape is then the influence line.

e argument may be extended to the construction of the influence line for the shear force, Sk, at
stion K. Suppose now that the virtual displacement, vc, produces a shear displacement, vs, at
1own in Fig. 20.3(c). Note that the direction of v¢ is now in agreement with the sign convention
ar force. Again, from the principle of virtual work

lue = Sxvsx
ve choose v so that vsx =1
Sk =vc (20.8)

nce, since the shear force at the section K due to a unit load at any point C is the influence line
> shear force at K, we see that the displaced shape in Fig. 20.3(c) is the influence line for Sk
the displacement at K produced by the virtual displacement at C is unity. A similar argument

20.2 Mueller-Breslau principle 671

The Mueller—Breslau principle demonstrated above may be stated in general terms as follows:

The shape of an influence line for a particular function (support reaction, shear force, bending moment, esc,)
can be obtained by removing the resistance of the structure to that function at the section for which the influence
line is required and applying an internal force corresponding to that function so that a unit displacement is pro-
duced at the section. The resulting displaced shape of the structure then represents the shape of the influence line.

[
EXAMPLE 20.2

Use the Mueller—Breslau principle to determine the shape of the shear force and bending moment
influence lines for the section C in the beam in Ex. 20.1 (Fig. 20.2(2)) and calculate the values of
the principal ordinates. :

In Fig. 20.4(b) we impose a unit shear displacement at the section C. In effect we are removing
the resistance to shear of the beam at C by cutting the beam at C. We then apply positive shear
forces to the two faces of the cut section in accordance with the sign convention of Section 3.2.
Thus the beam to the right of C is displaced downwards while the beam to the left of C is displaced
upwards. Since the slope of the influence line is the same on each side of C we can determine the
ordinates of the influence line by geometry. Hence, in Fig. 20.4(b)

€e le

LS Rch Clbl

My IL
(c)

FIGURE 20.4
Construction of influence lines using the Mueller—Breslau principle.
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Therefore
Ciag 1
e= —qf=—¢qf
<1 o €y 5 1
Further, since
cet+cf=1
1 2
cre=~- ¢gf=-=
3 3

s before. The ordinate d;g (=3) follows.
In Fig. 20.4(c) we have, from the geometry of a triangle,

a+pB=1 (external angle = sum of opposite internal angles)

Then, assuming that the angles a and 3 are small so that their tangents are equal to the angles in
\dians

o il
Cay Cgbg
1 A
S R
Czh (2 4) 1
hence
4
Czh = '3"

in Fig. 20.2(d). The ordinate dzi(-—-%) follows from similar triangles.

1.3 Systems of travelling loads

uence lines for beams are constructed, as we have seen, by considering the passage of a unit load
>ss a beam or by employing the Mueller—Breslau principle. Once constructed, an influence line
7 be used to determine the value of the particular function for shear force, bending moment, etc. at
:ction of a beam produced by any system of travelling loads. These may be concentrated loads, dis-
uted loads or combinations of both. Generally we require the maximum values of a function as the
1s cross the beam.

ncentrated loads

definition the ordinate of an influence line at a point gives the value of the function at a specified sec-
1 of a beam due to a unit load positioned at the point. Thus, in the beam shown in Fig. 20.1(a) the

ar force at K due to a unit load at C is equal to the ordinate c,f in Fig. 20.1(d). Since we are assuming
L the svstem is linear it follawe that the chear farre at K nradiicad her a land W ae (O i W= £

20.3 Systems of travelling loads 673

The argument may be extended to any number of travelling loads whose positions are fixed in rela-
tion to each other. In Fig. 20.5(a), for example, three concentrated loads, Wy, W, and W are crossing
the beam AB and are at fixed distances ¢ and 4 apart. Suppose that they have reached the positions
C, D and E, respectively. Let us also suppose that we require values of shear force and bending moment
at the section K; the Sk and Mk influence lines are then constructed using either of the methods
described in Sections 20.1 and 20.2.

Since the system is linear we can use the principle of superposition to determine the combined
effects of the loads. Therefore, with the loads in the positions shown, and referring to Fig. 20.5(b)

SK = ‘%51 + %52 + %53 (209)

in which sy, 5, and s3 are the ordinates under the loads in the Sk influence line.
Similarly, from Fig. 20.5(c)

MK = VVlml + ‘%M2 + %m3 (2010)

where m, m, and m3 are the ordinates under the loads in the My influence line.

d c
A v \ \ K j
é ; E D C é
a
L

(a)

FIGURE 20.5
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ximum shear force at K

in be seen from Fig. 20.5(b) that, as the loads W;, W, and W3 move to the right, the ordinates sy, s,
53 increase in magnitude so that the shear force at K increases positively to a peak value with W} just
1e left of K. When W passes to the right of K, the ordinate, s;, becomes negative, then

SK: — \Vm -+ %Sz + %53

the magnitude of Sk suddenly drops. As the loads move further to the right the now negative ordi-
51 decreases in magnitude while the ordinates s, and s3 increase positively. Therefore, a second
¢ value of Sk occurs with W just to the left of K. When W, passes to the right of K the ordinate s,
ymes negative and

Sk = —Wisy — Was, + Wiss

hat again there is a sudden fall in the positive value of Sk. A third peak value is reached with W,
to the left of K and then, as Wj passes to the right of K, Sk becomes completely negative. The
e arguments apply for negative values of Sk as the loads travel from right to left.

Thus we see that maximum positive and negative values of shear force at a section of a beam occur
n one of the loads is at that section. In some cases it is obvious which load will give the greatest
e, in other cases a trial and error method is used.

Ximum bending moment at K

milar situation arises when determining the position of a set of loads to give the maximum bending
nent at a section of a beam although, as we shall see, a more methodical approach than trial and
t may be used when the critical load position is not obvious.

Yith the loads Wy, W, and W; positioned as shown in Fig. 20.5(a) the bending moment, Mg, at
given by Eq. (20.10), i.e.

My = Wimy + Wamy + Wams

\s the loads move to the right the ordinates 7, 72, and m5 increase in magnitude until W) passes K
m; begins to decrease. Thus My reaches a peak value with W at K. Further movement of the loads to
ight causes 7, and ;3 to increase, while 7; decreases so that a second peak value occurs with W at
milarly, a third peak value is reached with W; at K. Thus the maximum bending moment at K will
r with a load at K. In some cases this critical load is obvious, or it may be found by trial and error as
he maximum shear force at K. However, alternatively, the critical load may be found as follows.
suppose that the beam in Fig. 20.5(a) carries a system of concentrated loads, W;, W5, ..., W ...
and that they are in any position on the beam. Then, from Eq. (20.10)

My =" Wm; (20.11)
i=1
iuppose now that the loads are given a small displacement &x. The bending moment at K then
mes My + 8My and each ordinate m becomes 7 + 8. Therefore, from Eq. (20.11)

M + 6My = Wi(m; + 6m;)
j=1

or
My +6Mgc =Y Wimj+ > Wiom,
j=1 =1
whence n
SMx = > W;bm;
=
Therefore, in the limit as 6x—0
dMy _ -y 97
dx = 7 dx

in which d,/dx is the gradient of the My influence line. Therefore, if
D Vi
=1

is the sum of the loads to the left of K and

&S

iR

n
j=1

is the sum of the loads to the right of K, we have, from Eqgs (20.5) and (20.6)

7 L — n
- S () + Sy ()
j=1 =1

For a maximum value of My, dMy/dx =0 so that
z L—a z a
INACSEINE.
7=1 j=1
or 1 7

1
;ZV@’LZL—LZ

]'=1 J=1

~

=

}x.%
]

[ R

20.3 Systems of travelling loads

675

(20.12)

From Eq. (20.12) we see that the bending moment at K will be a maximum with one of the loads
at K (from the previous argument) and when the load per unit length of beam to the left of K is equal
to the load per unit length of beam to the right of K. Part of the load at K may be allocated to AK and

part to KB as required to fulfil this condition.
Equation (20.12) may be extended as follows. Since

14

S W=3 W+ S Win
=1 =

= F=
then

n

=

\%

n
Wir = E W — L
j=1 J

—_

j=1
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ibstituting for

. (20.12) we obtain

:arranging we have

4 z;=1 WiL
€
ISw=13 (20.13)
L].:1 a4
ymbining Egs (20.12) and (20.13) we have
lz":‘vj:lz":%Lz L S (20.14)
L= 2= L—dg

ierefore, for My to be a maximum, there must be a load at K such that the load per unit length
he complete span is equal to the load per unit length of beam to the left of K and the load per
:ngth of beam to the right of K.

MPLE 20.3

rmine the maximum positive and negative values of shear force and the maximum value of
ing moment at the section K in the simply supported beam AB shown in Fig. 20.6(a) when it
sssed by the system of loads shown in Fig. 20.6(b).

he influence lines for the shear force and bending moment at K are constructed using either of
nethods described in Sections 20.1 and 20.2 as shown in Fig. 20.6(c) and (d).

imum positive shear force at K
clear from inspection that Sk will be a maximum with the 5 kN load just to the left of K, in
h case the 3 kN load is off the beam and the ordinate under the 4 kN load in the Sk influence
s, from similar triangles, 0.1. Then

Sk(max) =5X03+4X0.1=19kN

imum negative shear force at K

e are two possible load positions which could give the maximum negative value of shear force at
sither can be eliminated by inspection. First we shall place the 3 kN load just to the right of K.
ordinates under the 4 and 5 kN loads are calculated from similar triangles and are —0.5 and
3, respectively. Then

20.3 Systems of travelling loads 677

3 kN 4 kN 5 kN

K b ]
%4m4m

T ¥

g b 14 m i (b)
|
(a)
0.3
2 A{ k b
—ve
Skl 0.7
©
k
a4 ! by
+ve
ML 42

(d)

FIGURE 20.6 ;
Determination of the maximum shear force and bending moment at a section of a beam.

Sk =3 X(~0.7)+4X(-05)+5X(-03)= —56kN

Now with the 4 kN load just to the right of K, the ordinates under the 3 and 5 kN loads are 0.1
and —0.5, respectively. Then

Sk =3X(0.1) +4X(=0.7) +5X(-0.5)= —5.0kN

Therefore the maximum negative value of Sk is —5.6 kN and occurs with the 3 kN load immedi-
ately to the right of K.

Maximum bending moment at K ‘
We position the loads in accordance with the criterion of Eq. (20.14). The load per unit length of the
complete beam is (3 + 4 + 5)/20 = 0.6 kN/m. Therefore if we position the 4 kN load at K and allocate
0.6 kN of the load to AK the load per unit length on AK is (3 + 0.6)/6 = 0.6 kN/m and the load per
unit length on KB is (3.4 + 5)/14 = 0.6 kN/m. The maximum bending moment at K therefore oceurs
with the 4 kN load at K; in this example the critical load position could have been deduced by inspection.
With the loads in this position the ordinates under the 3 and 5 kN loads in the My influence
line are 1.4 and 3.0, respectively. Then

Mg(max) =3 X 1.4 +4X42+5X3.0=36.0kNm
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20.3 Systems of travelling loads 679

stributed loads Similarly

/
ure 20.7(a) shows a simply supported beam AB on which a uniformly distributed load of intensity

MszJ mdl (20.16)
ind length /is crossing from left to right. Suppose we wish to obtain values of shear force and bend-

0
moment at the section K of the beam. Again we construct the Sk and My influence lines using
ier of the methods described in Sections 20.1 and 20.2.

If we consider an elemental length 8/ of the load, we may regard this as a concentrated load of magnitude

. The shear force, 85, at K produced by this elemental length of load is then from Fig. 20.7(b)

so that My = w X area under the projection of the load in the My influence line.

Maximum shear force at K '
It is clear from Fig. 20.7(b) that the maximum positive shear force at K occurs with the head of the

i i i ith the tail of the load at K. Note that
- load at K while the maximum negative shear force at K occurs wit . :
e [(1?11 slzllear f‘:rce at K would be zero if the load straddled K such that the negative area under the load in
el shearoree S ac € due o te complete length of load is then the Sk influence line was equal to the positive area under the load.
/
= J ws df Maximum bending moment at K
0 If we regard the distributed load as comprising an infinite number of concentrated lo%til]s, wi cain :zlpply
i i i ad per
since the load is uniformly distributed the criterion of Eq. (20.14) to obtain the max1mulm ;alue of .belndmi mff)lr)nzr; ztl‘; If};e legso'cf;:< an ;t)he
i th of be
! unit length of the complete beam is equal to the load per 'umt. eng L ¢
= wJ s dl (20.15) load pergunit length of beam to the right of K. Therefore, in Fig. 20.8, we position the load such that
0 weky  wdky
Hence S, = w X area under the projection of the load in the Sx influence line. = =
or
Ck1 dk]

_ 17)
—>] l‘_& Lo (20.17
w

From Fig. 20.8

so that
a - fo= 2 bk, = (alkl —Ck1>hk1 = <1 - C—k1—>hk1
E ‘I a1k ! arky arky
0
@ Similarly
dk; >
=(1——)hk
Si +ve dg ( blkl 1
k
) ’—ve ¢ Therefore, from Eq. (20.17) we see that
SklL 4
® o= dg
k
a4 1 b,
m i
+ve . 5 « ld .
1
ML
. FIGURE 20.8
'E 20.7

9 Load position for maximum bending
‘farra and hanAins mamonae & Moo £ A - —_——
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1e ordinates under the extremities of the load in the My influence line are equal. It may also be
| that the area under the load in the Mk influence line is a maximum when fc = dg. This is a

wive method of deducing the position of the load for maximum bending moment .at K Notn
rom Eq. (20.17), K divides the load in the same ratio as it divides the span. . )

MPLE 20.4

ad of length 2 m and inFensiry 2 kN/m crosses the simply supported beam AB shown in
20.9(a). paiculate the maximum positive and negative values of shear force and the maximum
- of bending moment at the quarter span point.

he shear force and bending moment influence lines for the quarter span point K are constructed
e same way as before and are shown in Fig, 20.9(b) and (c).

imum shear force at K

maximum positive shear force at K occurs with the head of the load at K. In thi iti
ate under the tail of the load is 0.05. Hence S e

Sk(max+ve) = 2 X %(0.05 +0.25) X2 =0.6 kN

1e maximum negative shear force at K occurs with the tail of the load at K. With the load i
osition the ordinate under the head of the load is —0.55. Thus i e

1
Sk(max—ve) = — 2 X —?:(0.75 +0.55)X2=—26kN

A K B
[ 1
/2 5 k ’
b5m
<—-———->f i
: |
|
0.25
i +ve lk b
~ve
SlL 0.75
k
a4 : 1 b1
+ve : FIGURE 20.9
Maximum shear force and
i b bending moment at the

quarter span point in the
beam of Ex. 20.4.

20.3 Systems of travelling loads 681

Maximum bending moment at K

We position the load so that K divides the load in the same ratio that it divides the span. Therefore
0.5 m of the load is to the left of K and 1.5 m to the right of K. The ordinate in the My influence
line under the tail of the load is then 1.5 as is the ordinate under the head of the load. The maxi-

mum value of M is thus given by
1 1
My (max) = 2{5(1.5 +1.875) X 0.5 + 5(1.875 + 13)K 1.5}
which gives

5F

Diagram of maximum shear force

Consider the simply supported beam shown in Fig. 20.10(a) and suppose that a uniformly distributed
load of intensity w and length L/5 (any fraction of L may be chosen) is crossing the beam. We can
draw a series of influence lines for the sections, A, Kj, Ky, K3, K4 and B as shown in Fig. 20.10(b) and
then determine the maximum positive and negative values of shear force at each of the sections Kj, Ky,
etc. by considering first the head of the load at K;, Ky, etc. and then the tail of the load at A, K;, K,
etc. These values are then plotted as shown in Fig. 20.10(c).

With the head of the load at K;, Ky, K3, K4 and B the maximum positive shear force is given by
w(ak,)s;, w(kiks)sy, and so on, where 51, 5, etc. are the mid-ordinates of the areas ak;, kiks, etc. Since sy,
55, etc. increase linearly, the maximum positive shear force also increases linearly at all sections of the beam
between K, and B. At a section between A and Kj, the complete length of load will not be on the beam so
that the maximum value of positive shear force at this section will not lie on the straight line and the

K Ky Kq K,

Ah JB

L L5 ‘L L5 | LI5 L/5 ‘L L5
~ > > g ! i
(@)
Sq ' k. K
a L 52 N s b
ki ko /

() +Sk(max)

by
/—SK(( FIGURE 20.10

| m———
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am of maximum positive shear force between A and K; will be curved; the maximum positive shear
should be calculated for at least one section between A and K.

n identical argument applies to the calculation of the maximum negative shear force which occurs
the tail of the load at a beam section. Thus, in this case, the non-linearity will occur as the load
s to leave the beam between K4 and B.

srsal of shear force

me structures it is beneficial to know in which parts of the structure, if any, the maximum shear
changes sign. In Section 4.5, for example, we saw that the diagonals of a truss resist the shear
i and therefore could be in tension or compression depending upon their orientation and the sign
: shear force. If, therefore, we knew that the sign of the shear force would remain the same under
esign loading in a particular part of a truss we could arrange the inclination of the diagonals so
hey would always be in tension and would not be subject to instability produced by compressive
. If, at the same time, we knew in which parts of the truss the shear force could change sign we
introduce counterbracing (see Section 20.5).

onsider the simply supported beam AB shown in Fig. 20.11(a) and suppose that it carries a uni-
y distributed dead load (self-weight, etc.) of intensity wpy. The shear force due to this dead load
lead load shear (DLS)) varies linearly from — wp;Z/2 at A to + wprL/2 at B as shown in
'0.11(b). Suppose now that a uniformly distributed live load of length less than the span AB
s the beam. As for the beam in Fig. 20.10, we can plot diagrams of maximum positive and nega-
1ear force produced by the live load; these are also shown in Fig. 20.11(b). Then, at any section
beam, the maximum shear force is equal to the sum of the maximum positive shear force due to
re load and the DLS force, or the sum of the maximum negative shear force due to the live load
1e DLS force. The variation in this maximum shear force along the length of the beam will be
easily understood if we invert the DLS force diagram.

ferring to Fig. 20.11(b) we sece that the sum of the maximum negative shear force due to the live
nd the DLS force is always negative between a and c. Furthermore, between a and ¢, the sum of
aximum positive shear force due to the live load and the DLS force is always negative. Similarly,

WpL

ALY V V V VYV V VvV VYV Y B

FIGURE 20.11
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between e and b the maximum shear force is always positive. However, between ¢ and e the summation
of the maximum negative shear force produced by the live load and the DLS force is negaFive, Whﬂe
the summation of the maximum positive shear force due to the live load and Fhe I?LS forcei is positive.
Therefore the maximum shear force between c and e may be positive or negative, i.e. there is a possible
reversal of maximum shear force in this length of the beam.

—
EXAMPLE 20.5
A simply supported beam AB has a span of 5 m and carries a uniformly distributed dead. lpad .of
0.6 kN/m (Fig. 20.12(a)). A similarly distributed live load of length greater than 5 m and intensity
1.5 kN/m travels across the beam. Calculate the length of beam over which reversal of shear force
occurs and sketch the diagram of maximum shear force for the beam. .

The shear force at a section of the beam will be a maximum with the head or tail of the load at
that section. Initially, before writing down an expression for shear force, we require the support reac-
tion at A, Ry. Thus, with the head of the load at a section a distance x from A, the reaction, Ry, is
found by taking moments about B.

Thus
X
RaX5—06x5%25=15%(5- i):o
whence
Ra=15+15x—0.15% @
The maximum shear force at the section is then
S(max) = — Ry +0.6x+ 1.5x (i)
1.5 kN/m
e 0.6 kN/m
YV V VYV YVYYVYVYYVYVVY
A B
& 7
? X
Ra 5

< m N

[«
(a)

e 5.25kN
i
SK(max) +ve 1.5kN
¢
a | 3 b
1.5kN
—ve
5.25kN [ 1.74m ~,l St Liam FIGURE 20.12
_Load Reversal of shear force in the

(b) beam of Ex. 20.5.
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r, substituting in Eq. (ii) for Ry from Eq. (i)
S(max) = —1.5 + 0.6x + 0.15 x> (iii)

Equation (iii) gives the maximum shear force at any section of the beam with the load movin
om left to right. Then, when x =0, S(max) = —1.5 kN and when x=5 m, S(max) = +5.25 kN.
urthermore, from Eq. (iii) S(max) = 0 when x = 1.74 m.

The maximum shear force for the load travelling from right to left is found in a similar manner.
he final diagram of maximum shear force is shown in Fig. 20.12(b) where we see that reversal of
rear force may take place within the length cd of the beam; cd is sometimes called the focal length.

termination of the point of maximum bending moment in a beam

viously we have been concerned with determining the position of a set of loads on a beam that would
duce the maximum bending moment at a given section of the beam. We shall now determine the sec-
1and the position of the loads for the bending moment to be the absolute maximum.

Consider a section K a distance x; from the mid-span of the beam in Fig. 20.13 and suppose that a
of loads having a total magnitude Wr is crossing the beam. The bending moment at K will be a
<imum when one of the loads is at K; let this load be W Also, suppose that the centre of gravity of
complete set of loads is a distance ¢ from the load W, and that the total weight of all the loads to
left of W} is W1, acting at a distance 4 from Wj; @ and ¢ are fixed values for a given set of loads.
Initially we find R4 by taking moments about B.

Hence

L
RAL_WT(E _‘X1+C> =0

ch gives

le—— )
le——
=
«——
le——

- B
L ]
‘;/7 a " 79?

S
e

]

FIGURE 20.13

Determination of the absolute maximum bending
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The bending moment, My, at K is then given by

L
MK :RA<E +x1> = WLﬂ

Wt (L L
MA: TT<§ —x1+c> (5 +x1> —WLd

Differentiating My with respect to x; we have
dMy Wi L L

L R A ]
b AR R R GRS

dMy
dx

For a maximum value of My, dMy/dx; = 0 so that

or, substituting for Ra

or

WA
= TT(_ 2X1 +C)

(20.18)

X1 =

[NSRECY

Therefore the maximum bending moment occurs at a section K under a load Wj such that the sec-
tion K and the centre of gravity of the complete set of loads are positioned at equal distances either side
of the mid-span of the beam.

To apply this rule we select one of the larger central loads and position it over a section K such that
K and the centre of gravity of the set of loads are placed at equal distances on either side of the mid-
span of the beam. We then check to determine whether the load per unit length to the left of K is equal
to the load per unit length to the right of K. If this condition is not satisfied, another load and another
section K must be selected.

T—
EXAMPLE 20.6
The set of loads shown in Fig. 20.14(b) crosses the simply supported beam AB shown in Fig. 20.14(a).
Calculate the position and magnitude of the maximum bending moment in the beam.
The first step is to find the position of the centre of gravity of the set of loads. Thus, taking
moments about the load W5 we have

(9+15+15+8+8)E=15X2+15X4.3+8X7.0+8X9.3
whence
% =4.09 m

Therefore the centre of gravity of the loads is 0.21 m to the left of the load Wj.

By inspection of Fig. 20.14(b) we see that it is probable that the maximum bending moment will
occur under the load Ws. We therefore position Wj and the centre of gravity of the set of loads at
equal distances either side of the mid-span of the beam as shown in Fig. 20.14(a). We now check
to determine whether this position of the loads satisfies the load per unit length condition. The load
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3URE 20.14

stermination of absolute maximum bending moment in the beam of Ex. 20.6.

unit length on AB=55/20=2.75kN/m. Therefore the total load required on
= 2'.75 X 10.105 = 27.79 kN. This is satisfied by Ws, Wy and part (3.79 kN) of Wj.
Taving found the load position, the bending moment at K is most easily found by direct calcula-
. Thus taking moments about B we have e

R X20 —55X10.105=0
th gives

RA =27.8 kN
1at

My =27.8X10.105-9X43—-15X23=207.7kN m

£ is'po§sible that in some load systems there may be more than one load position which satisfies
\ criteria for maximum bending moment but the corresponding bending moments have different
es. Generally the absolute maximum bending moment will occur under one of the loads between
h the centre of gravity of the system lies. If the larger of these two loads is closer to the centre

ravéty than the other, then this load will be the critical load; if not then both cases must be
ysed.

20.4 Influence lines for beams not in contact with the load 687

20.4 Influence lines for beams not in contact with the load

In many practical situations, such as bridge construction for example, the moving loads are not in direct
contact with the main beam or girder. Figure 20.15 shows a typical bridge construction in which the
deck is supported by stringers that are mounted on cross beams which, in turn, are carried by the main
beams or girders. The deck loads are therefore transmitted via the stringers and cross beams to the
main beams. Generally, in the analysis, we assume that the segments of the stringers are simply sup-
ported at each of the cross beams. In Fig. 20.15 the portion of the main beam between the cross beams,
for example FG, is called a panel and the points F and G are called panel points.

Figure 20.16 shows a simply supported main beam AB which supports a bridge deck via an arrange-
ment of cross beams and stringers. Let us suppose that we wish to construct shear force and bending
moment influence lines for the section K of the main beam within the panel CD. As before we consider
the passage of a unit load; in this case, however, it crosses the bridge deck.

Sk influence line
With the unit load outside and to the left of the panel CD (position 1) the shear force, Sk, at K is
given by
Sc=Rs= = (20.19)
L

Sk therefore varies linearly as the load moves from A to C. Thus, from Eqg. (20.19), when x; = 0,
Sk =0 and when x; =4, S =4/L, the ordinate cf in the Sk influence line shown in Fig. 20.16(b).
Furthermore, from Fig. 20.16(a) we see that Sx = Sc = Sp with the load between A and C, so that for a
given position of the load the shear force in the panel CD has the same value at all sections.

Suppose now that the unit load is to the right of D between D and B (position 2). Then

L— X2
L
and is linear. Therefore when x, = L, Sx = 0 and when x, = ¢, Sx = — (L — ¢)/L, the ordinate dh in the
Sk influence line. Also, with the unit load between D and B, Sx = Sc = Sp (= —Ry) so that for a given
position of the load, the shear force in the panel CD has the same value at all sections.

Now consider the unit load at some point between C and D (position 3). There will now be reac-
tion forces, Rc and Rp, as shown in Fig. 20.16(a) acting on the stringer and the beam where, by con-
sidering the portion of the stringer immediately above the panel CD as a simply supported beam, we
see that Rc = (¢ — x3)/c and Rp = (x5 — @)/c. Therefore the shear force at K is given by

/ Stringers

| 1 / Cross beams
F G ‘\ Main beam
/

Sk=—Ry=—

(20.20)

FIGURE 20.15
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nce lines for a beam not in direct contact with the moving load.
Sk =R —Rp (or Sg=—Ry+ Re)
it
x5 (x—a)
S — — s
K 7 . (20.21)
. therefore varies linearly as the load moves between C and D. Furthermore, when x; = 2, Sx = #/L,
‘dinate cf in the Sk influence line, and when x;3 =¢, Sx = — (L — ¢)/L, the ordinate dh in the Sk

nce line. Note that in the calculation of the latter value, e — 2 = ¢
ote also that for all positions of the unit load between C and D, Sx = Ry + Rp which is indepen-

>f the position of K. Therefore, for a given load position between C and D, the shear force is the
at all sections of the panel.

ifluence line
the unit load in position 1 between A and C, the bending moment, M, at K is given by

Mg =Ry(L—d)=2(L-d) (20.22)

20.5 Forces in the members of a truss 689

M therefore varies linearly with the load position between A and C. Also, when x; = 0, My = 0 and

when x; = 2, My = a(L — d)/L, the ordinate c;i in the M influence line in Fig. 20.16(c).

With the unit load in position 2 between D and B

L—
MKZRAL{: %2

d (20.23)

Again, My varies linearly with load position so that when x, = ¢, Mx = (L — e)d/L, the ordinate d,p

in the My influence line. Furthermore, when x, = L, My = 0.

When the unit load is between C and D (position 3)
My = Ry(L —d) — Rp(e — d)

As before we consider the stringer over the panel CD as a simply supported beam so that

Rp = (x3 — a)/c. Then since

X

M =f3(1:—4)—(

X3

- “) (e —d) (20.24)
4

Equation (20.24) shows that My varies linearly with load position between C and D. Therefore, when

x3 = a, My = a(L — d)/L, the ordinate c,i in the My influence line, and when x; = ¢, M = d(L — e)/L, the
ordinate d;p in the My influence line. Note that in the latter calculation e — 2z =rc.

Maximum values of Sx and M

In determining maximum values of shear force and bending moment at a section of a beam that is not
in direct contact with the load, certain points are worthy of note.

1.

When the section K coincides with a panel point (C or D, say) the Sx and M influence lines are
identical in geometry to those for a beam that is in direct contact with the moving load; the same
rules governing maximum and minimum values therefore apply.

The absolute maximum value of shear force will occur in an end panel, AE or DB, when the Sk
influence line will be identical in form to the bending moment influence line for a section in a
simply supported beam that is in direct contact with the moving load. Therefore the same criteria
for load positioning may be used for determining the maximum shear force, i.e. the load per unit
length of beam is equal to the load per unit length to the left of E or D and the load per unit
length to the right of E or D.

To obtain maximum values of shear force and bending moment in a panel, a trial and error
method is the simplest approach remembering that, for concentrated loads, a load must be placed
at the point where the influence line changes slope.

I

20.5 Forces in the members of a truss

In some instances the main beams in a bridge are trusses, in which case the cross beams are positioned at

the joints of the truss. The shear force and bending moment influence lines for a panel of the truss may

then be used to determine the variation in the truss member forces as moving loads cross the bridge.
Consider the simply supported Warren truss shown in Fig. 20.17(a) and suppose that it carries cross
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ed and the cross beams supported by the lower chord joints; the bridge deck is then the #hrough type
»se also that we wish to determine the forces in the members CD, CE, DE and GE of the truss. ‘
‘e have seen in Section 4.5 the mechanism by which a truss resists shear forces and bending
:nts. Thus shear forces are resisted by diagonal members, while bending moments are generally
d by a combination of both diagonal and horizontal members. Therefore, referring to Fig. 20.17(a)
: that the forces in the members CE and DE may be determined from the shear force in the panei
vhile the forces in the members CD and GE may be found from the bending moments at E and C
tively. Therefore we construct the influence lines for the shear force in the panel CD and for the,
ag moment at E and C, as shown in Fig. 20.17(b), (c) and (d).

Section 20.4 we saw that, for a given load position, the shear force in a panel such as CD is con-
at all sections in the panel; we will call this shear force Scp. Then, considering a section XX

sh CE, CD and GE, we have

FCE sin 9 = SCD

Scp

Fcg = a0 (20.25)

>

= b
c J
(b) Sg = SpiL
C d
aq 1 1 b1
() MglL
Co d
ay 2 b2
(d) Mg IL

20.17
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Similarly
Fpg = — (20.206)

From Fig. 20.17(b) we see that for a load position between A and J, Scp is positive. Therefore, referring
to Fig. 20.17(a), Fcg is compressive while Fpg is tensile. For a load position between ] and B, Scp is nega-
tive so that Fcg is tensile and Fpg is compressive. Thus Fcg and Fpg will always be of opposite sign; this
may also be deduced from a consideration of the vertical equilibrium of joint E.

If we now consider the moment equilibrium of the truss at a vertical section through joint E we have

Feph= Mg
or
M,
Fep = TE (20.27)

Since Mg is positive for all load positions (Fig. 20.17(c)), Fcp is compressive.
The force in the member GE is obtained from the M influence line in Fig. 20.17(d). Thus

Fgeh=Mc
which gives
M,
Fop = TC (20.28)

Fgg will be tensile since M is positive for all load positions.

It is clear from Eqs (20.25)—(20.28) that the influence lines for the forces in the members could be
constructed from the appropriate shear force and bending moment influence lines. Thus, for example,
the influence line for Fcg would be identical in shape to the shear force influence line in Fig. 20.17(b)
but would have the ordinates factored by 1/sin 6 and the signs reversed. The influence line for Fpg
would also have the Scp influence line ordinates factored by 1/sin 6.

[
EXAMPLE 20.7
Determine the maximum tensile and compressive forces in the member EC in the Pratt truss shown
in Fig. 20.18(a) when it is crossed by a uniformly distributed load of intensity 2.5 kN/m and length
4 m; the load is applied on the bottom chord of the truss.

The vertical component of the force in the member EC resists the shear force in the panel DC.
Therefore we construct the shear force influence line for the panel DC as shown in Fig. 20.18(b).
From Eq. (20.19) the ordinate df =2 X 1.4/(8 X 1.4) = 0.25 while from Eq. (20.20) the ordinate
cg=(8 X 1.4—3X1.4)/(8 X 1.4) =0.625. Furthermore, we see that Spc changes sign at the
point j (Fig. 20.18(b)) where jd, from similar triangles, is 0.4.

The member EC will be in compression when the shear force in the panel DC is positive and its
maximum value will occur when the head of the load is at j, thereby completely covering the length
3j in the Spc influence line. Therefore

Frcsind5® = Spc = 2.5 X —;— X 3.2 X0.25
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Counterbracing
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‘rmination of the force in a member of the Pratt girder of Ex. 20.7.

which
Fpc =141 kN (compression)

e force in the member EC will be tensile when the shear force in the panel DC is negative.
fore to find the maximum tensile value of Fyc we must position the load within the part jb of
>c influence line such that the maximum value of Spe occurs. Since the positive portion of the
nfluence line is triangular, we may use the criterion previously established for maximum bend-
oment. Thus the load per unit length over jb must be equal to the load per unit length over jc
he load per unit length over cb. In other words, ¢ divides the load in the same ratio that it
s jb, i.e. 1+ 7. Therefore 0.5 m of the load is to the left of ¢, 3.5 m to the right. The ordinates
the extremities of the load in the Spe influence line are then both 0.3125 m. Hence the maxi-
negative shear force in the panel CD is

1
Scp(max —ve) = 2.5 5(0.3125 + 0.625)0.5 + %(0.625 = 0‘3125)35]
gives

Scp(max —ve) = 4.69 kN
en, since
Fie sin 45° = Scp
FEC = 6.63 kN

is the maximum tensile force in the member EC.

20.5 Forces in the members of a truss 693

Counterbracing

A diagonal member of a Pratt truss will, as we saw for the member EC in Ex. 20.7, be in tension or
compression depending on the sign of the shear force in the particular panel in which the member is
placed. The exceptions are the diagonals in the end panels where, in the Pratt truss of Fig. 20.18(a),
construction of the shear force influence lines for the panels AH and MB shows that the shear force in
the panel AH is always negative and that the shear force in the panel MB is always positive; the diago-
nals in these panels are therefore always in tension.

In some situations the diagonal members are unsuitable for compressive forces so that counterbracing
is required. This consists of diagonals inclined in the opposite direction to the original diagonals as
shown in Fig. 20.18(a) for the two centre panels. The original diagonals are then assumed to be carry-
ing zero force while the counterbracing is in tension.

It is clear from Ex. 20.7 that the shear force in all the panels, except the two outer ones, of a Pratt truss
can be positive or negative so that all the diagonals in these panels could experience compression. Therefore
it would appear that all the interior panels of a Pratt truss require counterbracing. However, as we saw in
Section 20.3, the dead load acting on a beam has a beneficial effect in that it reduces the length of the beam
subjected to shear reversal. This, in turn, will reduce the number of panels requiring counterbracing.

3%
EXAMPLE 20.8

The Pratc truss shown in Fig. 20.19(a) carries a dead load of 1.0 kN/m applied at its upper chord
joints. A uniformly distributed live load, which exceeds 9 m in length, has an intensity of 1.5 kN/m
and is also carried at the upper chord joints. If the diagonal members are designed to resist tension
only, find which panels require counterbracing.

A family of influence lines may be drawn as shown in Fig. 20.19(b) for the shear force in each
of the 10 panels. We begin the analysis at the centre of the truss where the DLS force has its least

1 2 3 4 5 6 iz 8 9 10

L 10 x 0.9 m

= i

(a)

(b)

FIGURE 20.19
Counterbracing in a Pratt truss.
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3 inidially, therefore, we consider panel 5. The shear force, Ss, in panel 5 with the head of the
oad at ns is given by

Ss = 1.0 (area nsqa — area nsgb) + 1.5 (area nsqa)

Ss = — 1.0 X area nsgb + 2.5 X area nsqa (i)
1e ordinates in the S5 influence line at g and q are found from similar triangles and are 0.5 and

respectively. Also, from similar triangles, ns divides the horizontal distance between qand g in
uio 0.4:0.5. Therefore, from Eq. (i)

1 1
55=—I.OXEX‘S“OXO.S-E-Z.SX5X~4.0X0.4

1 gives
55 =0.75 kN
rerefore, since Ss is positive, the diagonal in panel 5 will be in compression so that panel 5, and
symmetry panel 6, requires counterbracing.
>w with the head of the live load at ny,S; = 1.0 (area ngra — area nyfb) + 1.5 (area nyra).
1e ordinates and base lengths in the triangles nyfb and ngra are determined as before.
ten

o —1.o><%><6.0><o.6+25>< % X 3.0 X 0.3
which
Si= —0.67kN

erefore, since S is negative, panel 4, and therefore panel 7, do not require counterbracing.
zarly the remaining panels will not require counterbracing.

ste that for a Pratt truss having an odd number of panels the net value of the dead load shear
in the central panel is zero, so that this panel will always require counterbracing.

Influence lines for continuous beams

uctures we have investigated so far in this chapter have been statically determinate so that the
ze lines for the different functions have comprised straight line segments. A different situation
or statically indeterminate structures such as continuous beams.
isider the two-span continuous beam ABC shown in Fig. 20.20(a) and let us suppose that we
construct influence lines for the reaction at B, the shear force at the section D in AB and the
r moment at the section F in BC.

shape of the influence lines may be obtained by employing the Mueller—Breslau principle
'd in Section 20.2. Thus, in Fig. 20.20(b) we remove the support at B and apply a unit displace-
 the direction of the support reaction, Rs. The beam will bend into the shape shown since it
pinned to the supports at A and C.
i would not have been the case, of course, if the span BC did not exist for then the beam would
dout A as a rigid link and the Ry influence line would have been straight as in Fig. 20.1(c).

T ————

I
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FIGURE 20.20

Influence lines for a continuous beam using the Mueller—Breslau principle.

To obtain the shear force influence line for the section D we ‘cut’ the beam at D and apply a unit
shear displacement as shown in Fig. 20.20(c). Again, since the beam is att:jlched to tl.le support at C,
the resulting displaced shape is curved. Furthermore, the gradient of the influence line .must be t'he
same on each side of D because, otherwise, it would imply the presence of a moment causing a relative
rotation. This is not possible since the displacement we have specified is due solely to shear. It follows
that the influence line between A and D must also be curved. .

The influence line for the bending moment at F is found by inserting a hinge at F and applying a
relative unit rotation as shown in Fig. 20.20(d). Again the portion ABF of the beam wi?l be curved, as
will the portion FC, since this part of the beam must rotate so that the sum of the rotations of the two
portions of the beam at F is equal to unity.

[
EXAMPLE 20.9

Construct influence lines for the reaction at B and for the shear force and bending moment at D in
the two-span continuous beam shown in Fig. 20.21(a). (e )
The shape of each influence line may be drawn using the Mucﬂer—Bre.skitu pnnflplc as shown in
Fig. 20.21(b), (c) and (d). However, before they can be of direct use in determining maximum values, say,
of the various functions due to the passage of loading systems, the ordinates must be calculated; for this,

cince the inflilence lines are comnrised of curved seements. we need to derive their equations.
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ance lines for the continuous beam of Ex. 20.9.

wever, once the influence line for a support reaction, Rp in this case, has been established, the
1ing influence lines follow from statical equilibrium.

luence line

se initially that a unit load is a distance x; from A, berween A and B. To determine Ry we may
e flexibility method described in Section 16.4. Thus we remove the support at B (point 2)
lculate the displacement, 4, at B due to the unit load at x; (point 1). We then calculate the

’ement, @y, at B due to a vertically downward unit load at B. The total displacement at B due
unit load at x; and the reaction Ry is then

a3 — apk =0 (i)

since the support at B is not displaced. In Eq. (i) the term #,,Rg is negative since Rp is in the oppo-
site direction to the applied unit load at B.

Both the flexibility coefficients in Eq. (i) may be obtained from a single unit load application
since, from the reciprocal theorem (Section 15.4), the displacement at B due to a unit load at x; is
equal to the displacement at x; due to a unit load at B. Therefore we apply a vertically downward
unit load at B.

The equation for the displaced shape of the beam is that for a simply supported beam carrying a
central concentrated load. Therefore, from Eq. (iv) of Ex. 13.5

e 2 .o
U= T E[ (4x° — 3I%x) (ii)
or, for the beam of Fig. 20.21(a)
v= 12E,(x — 48) (iii)
At B, when x=4 m
a2 .
Up = o S (iv)

Furthermore, the displacement at B due to the unit load at x; (=displacement at x; due to a unit
load at B) is from Eq. (iii)

Uy = IZEI (xl 48) = an (V)
Substituting for 25, and »; in Eq. (i) we have
X1 32
+ e
12ET ( T E] 8
from which
Rg = i ( x; —48) (0=x;=4.0m) (vi)

Equation (vi) gives the influence line for Rg with the unit load between A and B; the remainder
of the influence line follows from symmetry. Eq. (vi) may be checked since we know the value of R
with the unit load at A and B. Thus from Eq. (vi), when x; =0, Rg =0 and when x; =4.0 m,
Rg =1 as expected.

If the support at B were not symmetrically positioned, the above procedure would be repeated for
the unit load on the span BC. In this case the equations for the deflected shape of AB and BC would
be Eqs (xiv) and (xv) in Ex. 13.6.

In this example we require the Sp influence line so that we shall, in fact, need to consider the
value of R with the unit load on the span BC. Therefore from Eq. (xv) in Ex. 13.6

Vg = = 12E[(x1—24x1+144x1-128) (4.0 m=x; =8.0 m) (vii)
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ice from Eq. (i)

Ry = ~1-5§(x1 = 24x1 + 144x, —128) (4.0 m=x; =8.0 m) (viii)
1eck on Eq. (viii) shows that when x; = 4.0 m, Rg = 1 and when x; = 8.0 m, Rg = 0.
uence line
he unit load to the left of D, the shear force, Sp, at D is most simply given by

SD == “RA 41 (IX)
by taking moments about C, we have
Ry X8—1(8—x)+RgX4=0 ()

stituting in Eq. (x) for Ry from Eq. (vi) and rearranging gives

- 3
Ry = 756 (x3 80x; 256) (xi)
:, from Eq. (ix)
1
Sp=— 5’5'6("? —80x;) (0=x =2.0m) (xii)

refore, when x; =0, Sp =0 and when x; = 2.0 m, Sp = 0.59, the ordinate d;g in the Sp
ce line in Fig. 20.21(c).
h the unit load between D and B

Sp=—Ra
, substituting for Ry from Eq. (xi)

Sp = —--i-sw-é(xl —80x; +256) (2.0m=x; =4.0m) (xiii)

15, when x; =2.0 m, Sp = —0.41, the ordinate d,f in Fig. 20.21(c) and when x; = 4.0 m,
w consider the unit load between B and C. Again

Sp=—Ra
this case, Rp in Eq. (x) is given by Eq. (viii). Substituting for Rg from Eq. (viii) in Eq. (x) we

Ri=—-S55=— (x1 — 24x, +176x; —384) (4.0 m=x =80 m) (xiv)

256
wrefore the Sp influence line consists of three segments, a;g, tby and bycy.

luence line
he unit load between A and D

MD=RAX2+1(2—-x1) (XV)

stituting for Ry from Eq. (xi) in Eq. (xv) and simplifying, we obtain

Problems 699

My = Fg(xl —48x) (0=x=20m) (xvi)

When x; =0, Mp =0 and when x; = 2.0 m, Mp = 0.81, the ordinate dh in the M, influence
line in Fig. 20.21(d).
Now with the unit load between D and B

Mp = Ry X2 (xvii)

Therefore, substituting for Ra from Eq. (xi) we have

Mp = 128 (x1 —80x; +256) 20m=x =4.0m) (xviii)

From Eq. (xviii) we see that when x; = 2.0 m, Mp = 0.81, again the ordinate d,h in Fig. 20.21(d).
Also, when x; = 4.0 m, Mp = 0.

Finally, with the unit load between B and C, Mp, is again given by Eq. (xvii) but in which Ry is
given by Eq. (xiv). Hence

Mp = = —2(xf = 24x] +176x1 —384) (40 m=x =8.0m) (xix)

The maximum ordinates in the Sp and Mp influence lines for the span BC may be found by dif-
ferentiating Eqs (xiv) and (xix) with respect to x;, equating to zero and then substituting the result-
ing values of x; back in the equations. Thus, for example, from Eq. (xiv)

dSp
— — 48x; + 0
dxl 256(336‘1 X1 176)
from which x; = 5.7 m. Hence

Sp(max) =

Similarly Mp(max) = —0.2 at x; = 5.7 m.
|

In this chapter we have constructed influence lines for beams, trusses and continuous beams. Clearly
influence lines can be drawn for a wide variety of structures that carry moving loads. Their construction,
whatever the structure, is based on considering the passage of a unit load across the structure.

PROBLEMS

P.20.1 Construct influence lines for the support reaction at A in the beams shown in Fig. P.20.1(a), (b)
and ().
Abns.

a. Unit load at C, Ry = 1.25.

b. Unit load at C, Ry = 1.25; at D, Ry = —0.25.
o TTaic land hameroan A and R P. = 1.ar C R. =0
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(©)
FIGURE P.20.1

Draw influence lines for the shear force at C in the beams shown in Fig. P.20.2(a) and (b).
Apns. Influence line ordinates

a. D=-0.25A=0,C= £0.5,B
b. D=-0.25A=B=0,C= *0.

D A Cc

-z, S 5,

L/4 L2 L2 L/4 L/2 L/2 L/4

(a) (b)
FIGURE P.20.2

Draw influence lines for the bending moment at C in the beams shown in Fig. P.20.2(a)

and (b).

Apmns. Influence line ordinates

a. D=—-0.125L, A=B=0, C=0.25L.
b. D=E=—0.125L, A=B=0, C=0.25L.

The simply supported beam shown in Fig. P.20.4 carries a uniformly distributed travelling
load of length 10 m and intensity 20 kN/m. Calculate the maximum positive and negative
values of shear force and bending moment at the section C of the beam.

Ans. Sc = —37.5kN, +40.0 kN Mc= +550 kN m, —80 kN m.

A C B D

55 5

8m 8m 4m

FIGLIRF P20 4

P.20.5

P.20.6

P.20.7

[y icasn iy

Problems 701

The beam shown in Fig. P.20.5(a) is crossed by the train of four loads shown in Fig, P.20.5(b).
For a section at mid-span, determine the maximum sagging and hogging bending
moments.

Ans. +161.3 kN m, —77.5 kN m.
10 5 20 20kN

5m 15m 5m

(a) (b)
FIGURE P.20.5

A simply supported beam AB of span 20 m is crossed by the train of loads shown in
Fig. P.20.6. Determine the position and magnitude of the absolute maximum bending
moment on the beam and also the maximum values of positive and negative shear force
anywhere on the beam.
Ans. M (max) = 466.7 kN m under a central load 10.5 m from A.

S(max —ve) = —104 kN at A, S(max +ve) =97.5 kN at B.

50 kN 50 kN 30kN

.

5m 4m FIGURE P.20.6

The three-span beam shown in Fig. P.20.7 has hinges at C and E in its central span.
Construct influence lines for the reaction at B and for the shear force and bending moment at
the sections K and D.

Apwns. Influence line ordinates

Rg; A=0,B=1,C=125E=F=G=0.

Sp;A=B=0,D=-10,C=-1.0,E=F=G=0.
Mg A=B=0,K=1.0,C=—-05E=F=G=0.
Mp;A=B=D=0,C=-05E=F=G=0

L 2m g 2m o im ) Im ) 4m
I i T = 1

EIRIIDE D 2N 7
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i Draw influence lines for the reactions at A and C and for the bending moment at E in the

beam system shown in Fig. P.20.8. Note that the beam AB is supported on the lower beam at

D by a roller.
If two 10 kN loads, 5 m apart, cross the upper beam AB, determine the maximum values
of the reactions at A and C and the bending moment at E.

Ans. Ry(max) = 16.7 kN, Rc(max) = 17.5 kN, Mg(max) = 58.3 kN m.

|<1°—m+5—m>}<5—’".{<__1°"‘—>| FIGURE P.20.8

' A simply supported beam having a span of 5 m has a self-weight of 0.5 kN/m and carries a
travelling uniformly distributed load of intensity 1.2 kN/m and length 1 m. Calculate the
length of beam over which shear reversal occurs.

Ans. The central 1.3 m (graphical solution).

0 Construct an influence line for the force in the member CD of the truss shown in
Fig. P.20.10 and calculate the force in the member produced by the loads positioned at C, D
and E.

Ans. 28.1 kN (compression).

20 kN 10kN 5kN
Cy Dy Ey
4m
A B_YVY
F
/
4x5m
= > FIGURE P.20.10

1 The truss shown in Fig. P.20.11 carries a train of loads consisting of, left to right, 40, 70, 70
and 60 kN spaced at 2, 3 and 3 m, respectively. If the self-weight of the truss is 15 kN/m,
calculate the maximum force in each of the members CG, HD and FE.

Ans. CG =763 kN, HD = —724 kN, FE = —307 kN.

[
Problems 703

K
AN B 1.5m

| 8x2m |
g

FIGURE P.20.11

P.20.12 One of the main girders of a bridge is the truss shown in Fig. P.20.12. Loads are transmitted to
the truss through cross beams attached at the lower panel points. The self-weight of the truss is
30 kN/m and it carries a live load of intensity 15 kN/m and of length greater than the span.
Draw influence lines for the force in each of the members CE and DE and determine their
maximum values.

Ans. CE= +37.3 kN, —65.3 kN, DE = +961.2 kN.

N 4m

Fam |35m
A B
D E %
’7977 7
|

6x4m

|4

FIGURE P.20.12

P.20.13 Fig. P.20.13(a) represents a bridge structure with a suspended span so that C and D are
hinged connections. Sketch dimensioned influence lines for the vertical reactions at A and B
and the shearing force at the hinge C.
The truss shown in Fig. P.20.13(b) is supported at A, E and H. A scale model of the truss,
supported at A and H only, was loaded by a vertical load at E which produced the following
values of deflection:

ABCDEF GH
0 10 16 21 27 20 13 0

Plot the unit influence line for the vertical reaction at E in the real truss and hence find its
value when concentrated loads of 120 kN at B and 160 kN at C are applied. For this loading
system find the values of the axial force in the members JC and JK.

Apns. See Solutions Manual for influence lines. Rg = 139.3 kN.

T ZA ATlwT / . N oTTs AANZL A TAT 7 ¥
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J K
60°

g B C D te F G 3
le 4x3m L 3x3m N

FIGURE P.20.13

$ The Pratt truss shown in Fig. P.20.14 has a self-weight of 1.2 kN/m and carries a uniformly
distributed live load longer than the span of intensity 2.8 kN/m, both being applied at the
upper chord joints. If the diagonal members are designed to resist tension only, determine
which panels require counterbracing.

Apns. Panels 4, 5 and 6.
1 2 3 4 5 6 7 8 9

1m

9x1m

I >

FIGURE P.20.14

5 Using the Mueller—Breslau principle sketch the shape of the influence lines for the support
reactions at A and B, and the shear force and bending moment at E in the continuous beam
shown in Fig. P.20.15.

B E C D

l

A
l
7%7/ 77%7/ 7@77/ 7@77/ FIGURE P.20.15

5 Determine the equation of the influence line for the reaction at A in the continuous beam
shown in Fig. P.20.16 and determine its value when a load of 30 kN/m covers the span AB.

Ans.

3 (1 10 16
Rs ol — Sfe—2P — =g — : .
A 16{6 3[x ] 3% 3}2625kN

Problems 705

A B C
| |
| 1.5m | 0.5m | 20m |
|< > > =‘ FIGURE P.20.16

P.20.17 Derive the equation for the unit influence line for the reaction at the support B in the
continuous beam shown in Fig. P.20.17 and calculate its value if a uniformly distributed load of
intensity 20 kN/m covers the span AB; the flexural rigidity of the beam is E1. Also sketch the

unit influence lines for the shear force and bending moment ar the point D.

Awns.
3 s L -2 Ry=sok
AREY) B 12f° F '
See Solutions Manual for I.Ls.
A D B c
5 5 2
e 2m . 2m 4m N FIGURE P.20.17
P e " ———

P.20.18 Derive the equation for the unit influence line for the vertical reaction at B in the continuous
beam shown in Fig. P.20.18 and hence find its value when a uniformly distributed load of
intensity 24 kN/m covers the span AB.

Apns.
S pr [—6]3—’63 Rs =81 kN
ARETH A 9 [ 7B ‘
—x
A B G
5 5 2
le 6m ble 12m N FIGURE P.20.18
[« e " S —



uctural Instability

in considering the behaviour of structural members under load, we have been concerned with
sility to withstand different forms of stress. Their strength, therefore, has depended upon the
h properties of the material from which they are fabricated. However, structural members sub-
‘0 axial compressive loads may fail in a manner that depends upon their geometrical properties
than their material properties. It is common experience, for example, that a long slender struc-
1iember such as that shown in Fig. 21.1(a) will suddenly bow with large lateral displacements
ubjected to an axial compressive load (Fig. 21.1(b)). This phenomenon is known as instability
: member is said to buckle. If the member is exceptionally long and slender it may regain its
straight shape when the load is removed.

ictural members subjected to axial compressive loads are known as columns or struts, although
mer term is usually applied to the relatively heavy vertical members that are used to support
and slabs; struts are compression members in frames and trusses.

i clear from the above discussion that the design of compression members must take into account
ly the material strength of the member but also its stability against buckling. Obviously the
a member is in relation to its cross-sectional dimensions, the more likely it is that failure will be
e in compression of the material rather than one due to instability. It follows that in some inter-
: range a failure will be a combination of both.

shall investigate the buckling of long slender columns and derive expressions for the buckling or
load; the discussion will then be extended to the design of columns of any length and to a con-
on of beams subjected to axial load and bending moment.

Euler theory for slender columns

st significant contribution to the theory of the buckling of columns was made in the 18th cen-

Euler. His classical approach is still valid for long slender columns possessing a variety of end
ts. Before presenting the theory, however, we shall investigate the nature of buckling and the dif-
between theory and practice.

FIGURE 21.1
Buckling of a slender column.

(@) (b)

=

21.1 Euler theory for slender columns 707

We have seen that if an increasing axial compressive load is applied to a long slender column there
is a value of load at which the column will suddenly bow or buckle in some unpredetermined direc-
tion. This load is patently the buckling load of the column or something very close to the buckling
load. The fact that the column buckles in a particular direction implies a degree of asymmetry in the
plane of the buckle caused by geometrical and/or material imperfections of the column and its load.
Theoretically, however, in our analysis we stipulate a perfectly straight, homogeneous column in which
the load is applied precisely along the perfectly straight centroidal axis. Theoretically, therefore, there
can be no sudden bowing or buckling, only axial compression. Thus we require a precise definition of
buckling load which may be used in the analysis of the perfect column.

If the perfect column of Fig. 21.2 is subjected to a compressive load P, only shortening of the column
occurs no matter what the value of P. Clearly if P were to produce a stress greater than the yield stress of
the material of the column, then material failure would occur. However, if the column is displaced a
small amount by a lateral load, 7, then, at values of P below the critical or buckling load, Pcg, removal
of Fresults in a return of the column to its undisturbed position, indicating a state of stable equilibrium.
When P = Pcy the displacement does not disappear and the column will, in fact, remain in any displaced
position so long as the displacement is small. Thus the buckling load, Pcg, is associated with a state of
neutral equilibrium. For P> Pcg enforced lateral displacements increase and the column is unstable.

Buckling load for a pin-ended column

Consider the pin-ended column shown in Fig. 21.3. We shall assume that it is in the displaced state of
neutral equilibrium associated with buckling so that the compressive axial load has reached the value
Pcr. We also assume that the column has deflected so that its displacements, v, referred to the axes Oxy
are positive. The bending moment, M, at any section X is then given by

M=— PCRU
Initial
position )
Displaced
position
¥
T Pcr
FIGURE 21.2 FIGURE 21.3

Definition of buckling load of a column. Determination of buckling load for a pin-ended
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substituting for M from Eq. (13.3) we obtain

dZU PCR
rranging we obtain
d2U PCR
— + —v=0 21.2
& " E Y (21.2)

solution of Eq. (21.2) is of standard form and is
v=C} cos pux + C, sin px (21.3)

h C; and G, are arbitrary constants and p* = Pcp/EL The boundary conditions for this particular
v=0atx=0 and x = L. The first of these gives C; = 0 while from the second we have

0=0C, sin ul

a non-trivial solution (i.e. v # 0 and C, # 0) then
sin uL =0

puL = nmw where n=1, 2, 3,...
ce

P,

% 2 = 2n?
1ch

w2 El
PCR = 12 (214)

¢ that G, is indeterminate and that the displacement of the column cannot therefore be found.
‘0 be expected since the column is in neutral equilibrium in its buckled state.
smallest value of buckling load corresponds to a value of =1 in Eq. (21.4), i.c.

T El
12

column then has the displaced shape v = G, sin px and buckles into the longitudinal half sine-
own in Fig. 21.4(a). Other values of Pcg corresponding to n =2, 3,... are

Pcr = (21.5)

42 El _ 9mEl
R = —f3

ie higher values of buckling load correspond to more complex buckling modes as shown in
4(b) and (c). Theoretically these different modes could be produced by applying external
s to a slender column at the points of contraflexure to prevent lateral movement. However, in
. the lowest value is never exceeded since high stresses develop at this load and failure of the col-
sues. Therefore we are not concerned with buckling loads higher than this.

ng load for a column with fixed ends

ice, columns usually have their ends restrained against rotation so that they are, in effect, fixed.

CHAPTER 21 Structural Instability e B

21.1 Euler theory for slender columns 709

FIGURE 21.4

Buckling modes of a pin-ended column.

FIGURE 21.5
Buckling of a slender column with fixed ends.

reached the critical value, Pcg, so that the column is in a state of neutral equilibrium. In this case, the
ends of the column are subjected to fixing moments, Mg, in addition to axial load. Thus at any section
X the bending moment, M, is given by

M = — Pcrv + Mg
Substituting for M from Eq. (13.3) we have

2
dv_ _Per, M (21.6)
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rranging we obtain

d2U PCR MF

FER 3 @17)
ition of which is
M,
v = Cjcos px + Cysin px + ) (21.8)
Pcr
2_ Per
El
en x=0, v =0 so that C; = —Mp/Pcg. Further v =0 at x = L, hence
M M,
0= ——F—cosul—i—Czsin,uL+ e
Pcr Pcr
sives
Mg (1 — cos pl)
Pcr  sin pl
ice Eq. (21.8) becomes
M, 1- L
v= P_cf{ cos x + (——s-i%LN)Sin ux — 1 (21.9)

e that again v is indeterminate since Mg cannot be found. Also since dv/dx =0 at x= L we

ym Eq. (21.9)
0=1—cos uL

cos ul =1

uL=mnr where n=0,2,4, -

a non-trivial solution, i.e. # # 0, and taking the smallest value of buckling load (7 = 2) we have

Pcr = (21.10)

ng load for a column with one end fixed and one end free

configuration the upper end of the column is free to move laterally and also to rotate as shown
21.6. At any section X the bending moment M is given by

M=PCR(6—U)OIM= —PCRU+MF

stituting for M in the first of these expressions from Eq. (13.3) (equally we could use the sec-
: obtain

2
d'U_PCR,C

S, ¥ I 4N

21.1 Euler theory for slender columns 711

FIGURE 21.6
Per Determination of buckling load for a column with one end fixed and one end free.

which, on rearranging, becomes

2
P P
dv  Per _ Perg

(21.12)
dx? EI EI
The solution of Eq. (21.12) is
v = Cjcos ux + C, sin ux + 6 (21.13)

where p? = Pcp/El. When x=0, v=0 so that C;=—8. Also when x=1, v=29 so that from
Eq. (21.13) we have

§=—08cos ul + Cysin uL + 8
which gives

cos L

(=% sin pl

Hence

L
U= —6<cos ,u,x——c_os MLsin ux—l) (21.14)

sin f

Again v is indeterminate since & cannot be determined. Finally we have dv/dx =0 at x= 0. Hence

from Eq. (21.14)
cos uL =0
whence

ul,:ng wheren=1,3,5, ---

Thus taking the smallest value of buckling load (corresponding to # = 1) we obtain

w2 El

n _ (M1 1K)\
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g of a column with one end fixed and the other pinned

mn in this case is allowed to rotate at one end but requires a lateral force, F, to maintain its

Fig. 21.7).

v section X the bending moment M is given by

M = — Pegv — F(L — x)

tuting for M from Eq. (13.3) we have

d2’U PCR F
| rearranging, becomes
dz’U PCR F
>lution of Eq. (21.17) is
o L F
v = Cjcos px + Cysin pux — — (L — x) (21.18)
Pcr
lv/dx =0 at x=0, so that
F
0= y,Cz + —
Pcr
:h
F
C2 = —
wPcr
x=L, v=0, hence
0= Cicos puL + GCysin pl
l Pcr
ix
"
-
FIGURE 21.7
tI/pA_ D»etermination of buckling load for a column with one end fixed and the other end

21.1 Euler theory for slender columns 713

Solution for lowest
critical load

A , . tan gl
2 E E 3m > ul
2! ' 2
E FIGURE 21.8
: : Solution of a transcendental equation.
which gives
G = tan L
' pPer
Thus Eq. (21.18) becomes
F
= [tan L cos px — sin px — p (L — x)] (21.19)
puPcr
Also v=10at x=0. Then
0=tan uL — pulL
or
wL =tan puL (21.20)

Equation (21.20) is a transcendental equation which may be solved graphically as shown in
Fig. 21.8. The smallest non-zero value satisfying Eq. (21.20) is approximately 4.49.
This gives

_ 20.2EI
=
which may be written approximately as
2.05m*El
CR = 7 (21.21)

It can be seen from Eqgs (21.5), (21.10), (21.15) and (21.21) that the buckling load in all cases has
the form

K2m*El
PCR = 12 (21.22)
in which K is some constant. Equation (21.22) may be written in the form
_ mEI

(21.23)

D__
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\ L(=L/K) is the equivalent length of the column, i.e. (by comparison of Eqs (21.23) and
he length of a pin-ended column that has the same buckling load as the actual column. Clearly The solution of Eq. (i) is
ding load of any column may be expressed in this form so long as its equivalent length is
By inspection of Eqs (21.5), (21.10), (21.15) and (21.21) we see that the equivalent lengths of v=A cos \x + Bsin Ax + kvcx
us types of column are 2p
The boundary conditions are v =0 when x=0, v = v, when x=L/2 and (dv/dx) =0 when
both ends pinned Le=1.0L x= L/2. From the first of these A = 0 while from the second
both ends fixed Le=05L
one end fixed and one free Le=2.0L B=uvc(1 — kL/4P)/sin(AL/2)

one end fixed and one pinned Le=07L ; it i i
P ° The third boundary condition gives, since v.#0

( /el) AL k . AL
1= = —sin- =

’LE 21.1 VS R T

wm column of length L and flexural stiffness £/ is simply supported at its ends and has an
1l elastic support at mid-span. This support is such that a lateral displacement v, causes a
g force ku. to be generated at the point. Derive an expression for the buckling load of the col- kL (,_ tanAL/2

“the buckling load is 4w”El/L* find the value of 4. Also, if the elastic support is infinitely stiff o 4P ( . 2 )

at the buckling load is given by the equation tan\L = \L/2 where \ = \/(P/E) :

column is shown in its displaced position in Fig. 21.9. The bending moment at any section If the buckling load P= 4 EJ/L* then \L/2. = m so that £ = 4P/L. Finally, if > co
olumn is given by

Rearranging

tan AL AL h
=i (i)
l ko 2 2
o
Note that Eq. (ii) is the transcendental equation which would be derived when determining the
buckling load of a column of length L/2, built in at one end and pinned at the other (see
Eq. (21.23).
vl
B 04" 21.2 Limitations of the Euler theory
- For a column of cross-sectional area A the critical stress, ocg, is, from Eq. (21.23)
Column of Ex. 21.1
PCR s ZE]
= —= 21.24
OcR = — D ( )
M = Py — @_ﬁ % The second moment of area, I, of the cross section is equal to Ar* where r is the radius of gyration
of the cross section. Thus we may write Eq. (21.24) as
oy comparison with Eq. (21.1) 2
E
d*v b OCrR = T ZT = (21.25)
El-—— =-—Py+ — e/7
2 Pvu 3 x

Therefore for a column of a given material, the critical or buckling stress is inversely proportional to
the parameter (LJ")?. LJrisan expression of the proportions of the length and cross-sectional dimensions
) 2E () of the column and is known as its slenderness ratio. Cleatly if the column is long and slender L'e/ ris large

and ocp is small; conversely, for a short column having a comparatively large area of cross section, L./7 is
= PIEI small and ocg is high. A graph of ocg against Lc/r for a particular material has the form shown in

G | 1 -
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Euler theory

Actual failure stress

Ss
S
==
~~~~

FIGURE 21.10

- Lt Variation of critical stress with slenderness ratio.

n compression rather than by buckling so that ocg as predicted by the Euler theory is no longer
ws in Fig. 21.10, the actual failure stress follows the dotted curve rather than the full line.

Failure of columns of any length

l or semi-empirical methods are generally used to predict the failure of a column of any length:
n form the basis for safe load or safe stress tables given in Codes of Practice. One such method
ves good agreement with experiment is that due to Rankine.

e theory

that P is the failure load of a column of a given material and of any length. Suppose also that P
ure load in compression of a short column of the same material and that Pcy is the buckling load
slender column, again of the same material. The Rankine theory proposes that

1 1 1

—+ — 21.26
P Ps  Pcr ( )
tion (21.26) is valid for a very short column since 1/Pcg— 0 and P then— Ps; the equation is
. for a long slender column since 1/Ps is small compared with 1/Pcg; thus P— Pcg. Therefore,
'6) is seen to hold for extremes in column length.

let o5 be the yield stress in compression of the material of the column and A its cross-
area. Then

Ps = UsA
tom Eq. (21.23)
w2 El
oy = 2

ituting for Ps and Pcg in Eq. (21.26) we have
1 1 1
+

P oA mEIL2

21.3 Failure of columns of any length 717

Thus ‘
1 mEI/[*+osA ‘

P osAmEI]I?

so that

osAT?El |2
w2 El /2 + 0sA
Dividing top and bottom of the right-hand side of this equation by w2El | [? we have
po_ T
1+ ogAL2 /m2El

But /= A7 so that
0'5A
P= 5
1+ (os/m*E)(Le/7)

which may be written
g sA
P= sy
1+ k(L/7)
in which £ is a constant that depends upon the material of the column. The failure stress in compres-
sion, o, of a column of any length is then, from Eq. (21.27)

(21.27)

_ 9
1+ k(L/7)

Note that for a column of a given material o¢ is a function of the slenderness ratio, L/r.

P
= (21.28)
acC A

[
EXAMPLE 21.2 ;
A twbular column has an effective length of 2.5 m and is to be designed to carry a safe load (?f
300 kN. Assuming an approximate ratio of thickness to external diameter of; 1/16 calmla:g a practi-
cal diameter and thickness using the Rankine formula with o5 =330 N/mm"” and % = 1/7500. Use a
factor of safety of 3.
The radius of gyration of the column is given by

P =1/A
where 7 is the second moment of area of the column cross section and A its area. Then, if D is the

external diameter

2 _ (@/64)[D* — (7D/8)]

(n/4)[D? — (7D/8)’]

which gives
7 =011D
Substituting for 7 etc. in Eq. (21.28) and rearranging gives

4 140103 N2 Aa1nc v 1n3 —n
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tion of which is
D=122 mm

the ratio of thickness to external diameter is 1:16 then a diameter of 122 mm would give
ess of 7.6 mm. Therefore assume a thickness of 8 mm which gives an external diameter of

curved column

tive approach to the Rankine theory bases a design formula on the failure of a column posses-
Ul initial curvature, the argument being that in practice columns are never perfectly straight.
ler the pin-ended column shown in Fig. 21.11. In its unloaded configuration the column has a
al curvature such that the lateral displacement at any value of x is vy. Let us assume that

. X
Vo = 4 sin 7rz (21.29)

2 is the initial displacement at the centre of the column. Equation (21.29) satisfies the bound-
tions of vp=0 at x=0 and x=L and also dvy/dx=0 at x= L/2; the assumed deflected
rerefore reasonable, particularly since we note that the buckled shape of a pin-ended column
alf sine-wave.

the column is initially curved, an axial load, P, immediately produces bending and therefore
eral displacements, v, measured from the initial displaced position. The bending moment,
section X is then

M= —P(v+ ) (21.30)

olumn s initially unstressed, the bending moment at any section is proportional to the change in
it that section from its initial configuration and not its absolute value. From Eq. (13.3)
d*v

Initial curved shape
of column

1ape produced
sive load, P

n EIRIIDE 21 11
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v P

2 :_E(U+Uo) (21.31)
Rearranging Eq. (21.31) we have

v P P

L e 21.32

w2 T EHUT T EY (21.532)

Note that P is not, in this case, the buckling load for the column. Substituting for v, from
Eq. (21.29) we obtain

d&v P P . x
@ + E—YU: _EZZSII’ITI']—‘ (2133)
The solution of Eq. (21.33) is

2
wa X
msm TFZ (2134)
in which p? = P/EL If the ends of the column are pinned, v =0 at x =0 and x = L. The first of these
boundary conditions gives C; = 0 while from the second we have

0= Cysin puL

v = Cjcos ux + Cysin px +

Although this equation is identical to that derived from the boundary conditions of an initially
straight, buckled, pin-ended column, the circumstances are now different. If sin 4L = 0 then uL = so
that /Lz = 7%/[2. This would then make the third term in Eq. (21.34) infinite which is clearly impossi-
ble for a column in stable equilibrium (P<Pcr). We conclude, therefore, that C; =0 and hence
Eq. (21.34) becomes

2a . ox
= (7‘{'2—/21,2)_-:—/1—ESIH ﬂ'z (2135)

Dividing the top and bottom of Eq. (21.35) by ©* we obtain

v

_ asinmx/L
ENCOR
But p? = P/EI and a sin 7x/L = vg. Thus
Vo

- W 36
VT @EI/P) -1 wlo8)

From Eq. (21.5) we see that (T2El/[* = Pcg, the buckling load for a perfectly straight pin-ended
column. Hence Eq. (21.36) becomes

(Pcr/P)— 1

It can be seen from Eq. (21.37) that the effect of the compressive load, P, is to increase the init.ial
deflection, vy, by a factor 1/[(Pcg/P) — 1]. Cleatly as P approaches Pcg, v tends to infinity. In practice
this is impossible since material breakdown would occur before Pcp is reached.

If we consider displacements at the mid-height of the column we have from Eq. (21.37)

v (21.37)

a
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Gradient = Pcr

> /P FIGURE 21.12

Experimental determination of the buckling load of a column
from a Southwell plot.

ing we obtain
Ve
ve=Por 5 ~a (21.38)

(21.38) represents a linear relationship between v, and v./P. Thus in an actual test on an
red column a graph of v, against v/P will be a straight line as the critical condition is
The gradient of the line is Pcg and its intercept on the v, axis is equal to 4, the initial dis-
: the mid-height of the column. The graph (Fig. 21.12) is known as a Southwell plot and
:nient, non-destructive, method of determining the buckling load of columns.
imum bending moment in the column of Fig. 21.11 occurs at mid-height and is

Moy = — Pla+vc)

ing for v, from Eq. (21.38) we have

_ 1
Moo = Pa(l + 7(PCR/P) ~ 1)

Pcr
M = — P .
a(PCR ~ P) (21.39)

imum compressive stress in the column occurs in an extreme fibre and is from Eq. (9.15)

P PCR c
Omax = — 1+ Pa (—)
A4 Pcr—P) \I
s the cross-sectional area, ¢ is the distance from the centroidal axis to the extreme fibre and

1d moment of area of the column’s cross section. Since 7= Ar* (» = radius of gyration), we
the above equation as

P PCR ac
= = |1+ (—) ;
o Y, < Pon—P\2 ) (21.40)
l is the average stress, o, on the cross section of the column. Thus, writing Eq. (21.40) in
ss we have
amax:a(l + R (”—5)) (21.41)
OCR — O \r

R = Pcr/A = *E(+/L)? (see Eq. (21.25)). The term ac/” is an expression of the geometrical

Tal | 1 1
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_ TIOCR
Omax = 0’(1 + —UCR — U> (21.42)
Expanding Eq. (21.42) we have
Umax(aCR - U) = U[(l + 77)O'CR - U]

which, on rearranging, becomes

0% — 0[O max + (1 + Mocr] + Trmaxcr =0 (21.43)
the solution of which is
1 1 ;
o= E[Umax + (1 +nocr] — Z[Umax+(1 +m)ocr]” — TmaxOCrR (21.44)

The positive square root in the solution of Eq. (21.43) is ignored since we are only interested in the
smallest value of 0. Equation (21.44) then gives the average stress, o, in the column at which the maxi-
mum compressive stress would be reached for any value of 7. Thus if we specify the maximum stress to
be equal to oy, the yield stress of the material of the column, then Eq. (21.44) may be written

1 1
o= E[O'Y + (1 +nocr] - \/Z[UY+(1 +n)ocr]’ — ovocr (21.45)

It has been found from tests on mild steel pin-ended columns that failure of an initially curved col-
umn occurs when the maximum stress in an extreme fibre reaches the yield stress, oy. Also, from a
wide range of tests on mild steel columns, Robertson concluded that

L
n=0.003 <—)
"

Substituting this value of 77 in Eq. (21.45) we obtain

1 L 1 L 2
= 5 gy +({1+0.003— OCR| — Z Uy+ 1+0.003— OCR| —O0OYyOCRr (2146)
r r

In Eq. (21.46) oy is a material property while ocr (from Eq. (21.25)) depends upon Young’s mod-
ulus, E, and the slenderness ratio of the column. Thus Eq. (21.46) may be used to determine safe axial
loads or stresses (o) for columns of a given material in terms of the slenderness ratio. Codes of Practice
tabulate maximum allowable values of average compressive stress against a range of slenderness ratios.

[
EXAMPLE 21.3

A column 3 m high has a rectangular thin-walled cross section 120 mm X 180 mm and is fixed ac
both ends; the short sides are each 6 mm thick while the long sides are each 8 mm thick. Find the
safe load for the column using the Perry-Robertson formula (Eq. (21.46)) given that the yield stress
in compression of mild steel is 250 N/mm? and the factor of safety is 3; take £= 200000 N/mm”.
By comparing the crippling load of the column with that given by the Euler theory deduce how the
column would fail in practice.

The second moments of area about axes parallel to the sides of the column cross section are

e Ut
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=19.4 X 10°mm?*

3
I(axis parallel to short sides) = 2 (120 X 6 X 90% + §—>—<—1%8—(-)—->

=12.1 X 10°mm*

3
I(axis parallel to long sides) = 2 ( 180 X 8 X 60% + 6112&)

column therefore buckles about an axis parallel to the longest sides of its cross section. The

stional area of the column is

A=2(120 X 6+ 180 X 8) = 4320 mm?>

radius of gyration is then

r= \/(12.1 X 10°/4320) = 52.9 mm
slenderness ratio is then
L/r=0.5X3X10°/52.9 =284
1 Eq. (21.25)

7200000
5 2847

tituting the relevant values in Eq. (21.46) gives

= 2447.3 N/mm?

o =228.5 N/mm?
safe load for the column is then

228.5 X 4320
P=—————53 220 — 3291

Euler buckling load is 2447.3 X 4320/10° = 10572 kN

P(Euler) _ 10572
P(crippling) 987

solumn therefore fails by material yielding.

=107

ffect of cross section on the buckling of columns

nns we have considered so far have had doubly symmetrical cross sections with equal second
of area about both centroidal axes. In practice, where columns frequently consist of I-section
is is not the case. For example, a column having the I-section of Fig. 21.13 would buckle
centroidal axis about which the flexural rigidity, E7, is least, i.e. Gy. In fact, the most efficient
on from the viewpoint of instability would be a hollow circular section that has the same sec-
ent of area about any centroidal axis and has as small an amount of material placed near the
sssible. However, a disadvantage with this type of section is that connections are difficult

21.5 Stability of beams under transverse and axial loads 723

\
—
G

FIGURE 21.13
Effect of cross section on the buckling of columns.

In designing columns having only one cross-sectional axis of symmetry (e.g. a channel section) or none
at all (i.e. an angle section having unequal legs) the least radius of gyration is taken in calculating the slen-
derness ratio. In the latter case the radius of gyration would be that about one of the principal axes.

Another significant factor in determining the buckling load of a column is the method of end sup-
port. We saw in Section 21.1 that considerable changes in buckling load result from changes in end
conditions. Thus a column with fixed ends has a higher value of buckling load than if the ends are
pinned (cf. Eqs (21.5) and (21.10)). However, we have seen that by introducing the concept of equiva-
lent length, the buckling loads of all columns may be referred to that of a pin-ended column no matter
what the end conditions. It follows that Eq. (21.46) may be used for all types of end condition, pro-
vided that the equivalent length, L., of the column is used. Codes of Practice list equivalent or ‘effec-
tive’ lengths of columns for a wide variety of end conditions. Furthermore, although a column buckles
naturally in a direction perpendicular to the axis about which EI is least, it is possible that the column
may be restrained by external means in this direction so that buckling can only take place about the
other axis.

21.5 Stability of beams under transverse and axial loads

Stresses and deflections in a linearly elastic beam subjected to transverse loads as predicted by simple
beam theory are directly proportional to the applied loads. This relationship is valid if the deflections
are small such that the slight change in geometry produced in the loaded beam has an insignificant
effect on the loads themselves. This situation changes drastically when axial loads act simultaneously
with the transverse loads. The internal moments, shear forces, stresses and deflections then become
dependent upon the magnitude of the deflections as well as the magnitude of the external loads. They
are also sensitive, as we observed in Section 21.3, to beam imperfections such as initial curvature and
eccentricity of axial loads. Beams supporting both axial and transverse loads are sometimes known as
beam-columns or simply as transversely loaded columns.

We consider first the case of a pin-ended beam carrying a uniformly distributed load of intensity w
and an axial load, P, as shown in Fig. 21.14. The bending moment at any section of the beam is

wlx = wx* d*v

:—P '——+_= - 5 f # °
M == 3 E[dxz (from Eq.13.3)

giving
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d%v P w
X 2
Sl Ly 21.4
T w2 T EY T m® T (21.47)
The standard solution of Eq. (21.47) is
v 2
— X _ v= (] cos ux + C; si +—£<2—Lx——>
X 2 sin uux x
e 2§ 2P u2
< where C; and C, are unknown constants and pu”= P/EL
Substituting the boundary conditions v =0 at x =0 and L gives
- w w
o = — = (1—cosul
< 1 2P 2 szsinuL( cos pL)
- so that the deflection is determinate for any value of w and P and
_ w L is given by
* _w 1—cos pul\ . w [ , 2
e v—ﬁ[cosux-ﬁ-(m—)sm,ux]-i-ﬁ(x —Lx—;)
A (21.48)
i In beam columns, as in beams, we are primarily interested in
. maximum values of stress and deflection. For this particular case
\ wh oy the maximum deflection occurs at the centre of the beam and is,
2 after some transformation of Eq. (21.48)
w ul wl?
n = o [ g ] | e 21.4
p v 2D (sec 5 ) P (21.49)
14 The corresponding maximum bending moment is
“a uniformly loaded "
Ll M,y = — Py — wL”
8
iq. (21.49)
L
My = iz (1 - sec'u—> (21.50)
W 2

ay rewrite Eq. (21.50) in terms of the Euler buckling load, Pcg = w*EI/[?, for a pin-ended

{ence
wl? Pcg T | P
Mpow=——|1—sec—4/— 21.
7['2 P ( Sec2 PCR ( 151)

pproaches Pcr the bending moment (and deflection) becomes infinite. However, the above the-
d on the assumption of small deflections (otherwise d*v/dx” would not be a close approximation
ire) so that such a deduction is invalid. The indication is, though, that large deflections will be
sy the presence of a compressive axial load no matter how small the transverse load might be.
consider now the beam column of Fig. 21.15 with pinned ends carrying a concentrated load
tance # from the upper support.

21.5 Stability of beams under transverse and axial loads 725

d*v W
El 5 =M=—Py-— (21.52)

and forx=L — a,

d? w
W(L—a) Efgf =M= —PU*T(L—a)(L—x) (21.53)

] 7 Sl Writing

T
/ |
W Pv , _ Wa
, &2 T EYT T EL”
the general solution of which is
W
v v = Cj cos px + Cy sin ,ux——ﬁx (21.54)
PL
Similarly the general solution of Eq. (21.53) is
) W
v = Cjs cos ux + Cy sin px — FZ(L—a)(L—x)
[
Y Wa (21.55)
where C;, C,, C; and Cj are constants which are found
P from the boundary conditions as follows.

When x=0, v=0, therefore from Eq. (21.54)

x~§w

FIGURE 2115 C,=0. At x=L, v=0 giving, from Eq. (21.55),
Beam-column supporting a point load. Cy;=—Cy tan pL. At the point of application of the

load the deflection and slope of the beam given by Eqs
(21.54) and (21.55) must be the same. Hence equating deflections

W . Wa
Cy sin w(L —a) — —a(L — 4) = Cy[sin (L — a) — tan pL cos (L — a)] — —(L — a)
PL PL
and equating slopes
W ) Wa
Gyt cos (L — a) — P_z = Cypfcos (L — a) + tan puL sin p(L — a)] + E(L —a)

Solving the above equations for C, and Cj and substituting for Ci, G5, Cs and Cy in Eqgs (21.54)
and (21.55) we have

W si W

v= _—Puzlizl/ﬁsm ,ux——lfxforxSL—a (21.56)
: - W.

V= wsinp(l,—x)——ﬂ@—ﬂ)(l«_x) forx=L—a (21.57)
P sin uL PL

These equations for the beam-column deflection enable the bending moment and resulting bending

etraccae tn he fannd at all cectinng
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.16
Imn supporting end moments.

ticular case arises when the load is applied at the centre of the span. The deflection curve is
netrical with a maximum deflection under the load of

W ul WL
= _—tan— — —
2Pu 2 4P

Vmax

7 we consider a beam column subjected to end moments, M, and Mp, in addition to an axial
lig. 21.16). The deflected form of the beam column may be found by using the principle of
ion and the results of the previous case. First we imagine that My acts alone with the axial
“we assume that the point load, W, moves towards B and simultaneously increases so that the
7a = constant = Mp then, in the limit as # tends to zero, we have the moment Mz applied at B.
;tion curve is then obtained from Eq. (21.56) by substituting pa for sin pa (since pa is now

) and My for W,. Thus
My (sin px  x
— ¥B = 21.58

YT (sin L L) 28

id the deflection curve corresponding to M, acting alone in a similar way. Suppose that W
rards A such that the product W(L — 4) = constant = My. Then as (L — 4) tends to zero we
(L — 4) = (L — 4) and Eq. (21.57) becomes

_ M [sin ML —x) (L—x)]

v P sin pulL L

(21.59)

fect of the two moments acting simultaneously is obtained by superposition of the results of
}) and (21.59). Hence, for the beam-column of Fig. 21.16

zlﬁ(sin,ux B x) +%[sinu([—x) _ (L-—x)}

P \sinul L P | sinul L

v

(21.60)

»n (21.60) is also the deflected form of a beam-column supporting eccentrically applied end
and B. For example, if e and ep are the eccentricities of P at the ends A and B, respectively,
: Pep, My = Peg, giving a deflected form of

o= (sin x f) +ex [Sin pLl—x) (L- x)}

sin L 1 sin puL L

(21.61)

beam-column configurations featuring a variety of end conditions and loading regimes may

11
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=
EXAMPLE 21.4

The pin-jointed column shown in Fig. 21.17 carries a compressive load P appliec'l eccentrically at a dis-
tance ¢ from the axis of the column. Determine the maximum bending moment in the column.

o

P
= FIGURE 21.17 |
L >| Eccentrically loaded column of Ex. 21.4.

I el

The bending moment at any section of the column is given by

M = P(e+v)
Then, by comparison with Eq. 21.1
d*v
El a—;‘i B P((} + ’U)
giving
_— == — = P/E
the solution of which is

v=Acos pux + Bsin fix — e

The boundary conditions are v =0 when x= 0 and (dv/dx) =0 when x = L/2. From the first of
these A = ¢ while from the second

L
Betan2

The equation for the deflected shape of the column is then

i

The maximum value of v occurs at mid-span where x = L/2, that is

The maximum bending moment is given by

My = Pe + Pl
so that
L
M,y = Pe sec (%—)

> 1. 1 ey 1 1. e ALt e e ade Ba 1 L1V and vhiea
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.nergy method for the calculation of buckling loads in columns
Rayleigh—Ritz Method)

‘hat the total potential energy of an elastic body possesses a stationary value in an equilibrium
Section 15.3) may be used to investigate the neutral equilibrium of a buckled column. In par-
e energy method is extremely useful when the deflected form of the buckled column is
and has to be ‘guessed’.

we shall consider the pin-ended column shown in its buckled position in Fig. 21.18. The
r strain energy, U, of the column is assumed to be produced by bending action alone and is

iq. 9.21), i.e.

MZ
U=J S (21.62)

tively, since EId*v/dx* = M (Eq. (13.3))

EI (F (o)

otential energy, V, of the buckling load, Pcg, referred to the straight position of the column
is then

V= _PCR§

i the axial movement of Pcg caused by the bending of the column from its initially straight
from Fig. 21.18 the length 6L in the buckled column is

0L = (8x% +60%)\/?

dv/dx is small then
dv
L~ +
Sx[I 2<dx>}
L 1 /dv\?
I=| l1#={+
J[ (&) @
1 /dv\?
L=I'+]| -+
[,2(&) &
ore
1 (dv\?
d=L-I'=]| -[=
J,3 (@) *

L1 7daN2

"

[T

21.6 Energy method for the calculation of buckling loads in columns 729

only differs from

x
L 1/d 2
T [
Pcr 02 \dx
é by a term of negligible order, we write
L A
dv
: o= [ (&)
v iy
Y giving
PCR L d’U 2
v+ dv e .
14 = Jo <dx) dx (21.64)

The total potential energy of the column in the neutral equi-
librium of its buckled state is therefore

L M2 PCR L dv 5
Length, L L U+VvV= MOE‘E—,jdx—'Z—J’O (a) dx (21.65)
or, using the alternative form of U from Eq. (21.63)
EI dv PCRJ dv 2
U+V=— dx — — ] dx 21.66
2 Jo (dx) 2 Jo \dx ( )
We shall now assume a deflected shape having the equation
y LB v= ZA,, sin "= (21.67)
Py This satisfies the boundary conditions of
d*v d*v
FIGURE 21 -18 (/U)x:() = (U)x=L = 0 <@>x=o = <@>x=l’ = O

Shortening of a column due to buckling.

and is capable, within the limits for which it is valid and if
suitable values for the constant coefficients, A4,,, are chosen, of representing any continuous curve. We
are therefore in a position to find Pcg exactly. Substituting Eq. (21.67) into Eq. (21.66) gives

EI [ rmd (& S
U+Vs= —Z—L (%) <n§=:1 2z‘l,,mnﬂl:x) dx — CRJ ( ) (ZnA cos mrx) (21.68)

The product terms in both integrals of Eq. (21.68) disappear on integration leaving only integrated
values of the squared terms. Thus

U+V———”E[Z i 42 ”PCRZ A2 (21.69)

Assigning a stationary value to the total potential energy of Eq. (21.69) with respect to each coeffi-
cient, A, in turn, then taking 4, as being typical, we have

B & 4 a .
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ich

7w Eln?
12

e that each term in Eq. (21.67) represents a particular deflected shape with a corresponding criti-
Hence the first term represents the deflection of the column shown in Fig. 21.18 with
EI/L*. The second and third terms correspond to the shapes shown in Fig. 21.4(b) and (c) having
ads of 4m°El/L* and 97 El/L* and so on. Clearly the column must be constrained to buckle into
re complex forms. In other words, the column is being forced into an unnatural shape, is conse-
iffer and offers greater resistance to buckling, as we observe from the higher values of critical load.
deflected shape of the column is known, it is immaterial which of Egs. (21.65) or (21.66) is
‘he total potential energy. However, when only an approximate solution is possible, Eq. (21.65)
sle since the integral involving bending moment depends upon the accuracy of the assumed form
reas the corresponding term in Eq. (21.66) depends upon the accuracy of d2v/dP. Generally, for
:d deflection curve v is obtained much more accurately than d*v/dx?.
sse that the deflection curve of a particular column is unknown or extremely complicated. We then
reasonable shape which satisfies as far as possible the end conditions of the column and the pattern
lected shape (Rayleigh—Ritz method). Generally the assumed shape is in the form of a finite series
a series of unknown constants and assumed functions of x. Let us suppose that v is given by

U= A1fi(x) + Ao fa(x) + A3f5(x)

tution in Eq. (21.65) results in an expression for total potential energy in terms of the critical
the coefficients 4;, A, and A3 as the unknowns. Assigning stationary values to the total potential
th respect to Ay, A, and A3 in turn produces three simultaneous equations from which the
Ay, A1/A5 and the critical load are determined. Absolute values of the coefficients are unobtain-
the displacements of the column in its buckled state of neutral equilibrium are indeterminate.

LE 21.5

energy method to determine the buckling load of the column shown in Fig. 21.19.

:
o

x ¥

FIGURE 21.19

Buckling load for a built-in column by the
energy method.

»proximate shape may be deduced from the deflected shape of a cantilever loaded at its free
1s, from Eq. (iv) of Ex. 13.1

Upx?

y= (3L~ X

Problems 731

This expression satisfies the end conditions of deflection, viz. v =0 at x=0 and v = vy at x= L.
In addition, it satisfies the conditions that the slope of the column is zero at the built-in end and
that the bending moment, i.e. d?vlds?, is zero at the free end. The bending moment at any section
is M = Pcr(vg — v) so that substitution for M and v in Eq. (21.65) gives

2 L 2
_ P&ryg 'L ,3"2 _{Ci _EQEJ 3o 2O~ Pl

Hieete JQ i R e e R R
Integrating and substituting the limits we have

17P&usl 3, v

e e
Hence
QU +V) _ 17Pguol _ 6Pcr v _
oo 35 EI 5L
from which
Pcp = %‘Z—ﬁ = 2471 %

This value of critical load compares with the exact value (see Eq. (21.15)) of n2EI/AL* = 2.467
EIII% the error, in this case, is seen to be extremely small. Approximate values of critical load
obtained by the energy method are always greater than the correct values. The explanation lies in the
fact that an assumed deflected shape implies the application of constraints in order to force the col-
umn to take up an artificial shape. This, as we have seen, has the effect of stiffening the column
with a consequent increase in critical load. :

It will be observed that the solution for the above example may be obtained by simply equating
the increase in internal energy (U) to the work done by the external critical load (—V). This is always
the case when the assumed deflected shape contains a single unknown coefficient, such as vy, in the
above example. ‘ ¥

In this chapter we have investigated structural instability with reference to the overall buckling or fail-
ure of columns subjected to axial load and also to bending. The reader should also be aware that other
forms of instability occur. For example, the compression flange in an I-section plate girder can buc%de
laterally when the girder is subjected to bending moments unless it is restrained. Ffzrthermore, thin-
walled open section beams that are weak in torsion can exhibit torsional instability, i.e. they suddenly
twist, when subjected to axial load. These forms of instability are considered in more advanced texts.

PROBLEMS

P.21.1 A uniform column of length L and flexural rigidity EI is built-in at one end and is free at the
other. It is designed so that its lowest buckling load is P (Fig. P.21.1(a)). Subsequently it is
required to carry an increased load and for that it is provided with a lateral spr'ing at th§ free end
(Fig. P.21.1 (b)). Determine the necessary spring stiffness, £, so that the buckling load is 4P.

r s/ T ™o 2 nirr
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3) (b) FIGURE P.21.1

pin-ended column of length Z and flexural rigidity £ is reinforced to give a flexural rigidity
i over its central half. Determine its lowest buckling load.

1. 24.2EI/L2,

uniform pin-ended column of length L and flexural rigidity £/ has an initial curvature such

at the lateral displacement at any point between the column and the straight line joining its
ds is given by

tere 4 is the initial displacement at the mid-length of the column and the origin for x is at
e end.

Show that the maximum bending moment due to a compressive axial load, P, is given by

8aP L P
Moy = — - 5 sec'u— -1 where uz = —
(ul) 2 ET

compression member is made of circular section tube having a diameter 4 and thickness #
d is curved initially so that its initial deflected shape may be represented by the expression

vg = 6 sin (%)

which 6 is the displacement at its mid-length and the origin for x is at one end.
Show that if the ends are pinned, a compressive load, P, induces a maximum direct stress,

a0 given by
o P 1o 1 46
" ndy l—ad

ere @ = P/Pcg and Pcg = m*El/[*. Assume that 7 is small compared with 4 so that the
iss-sectional area of the tube is ¢ and its second moment of area is T4#8.

€ uniform pin-ended column shown in Fig. P.21.5 is bent at the centre so that the
entricity there is 8. If the two halves of the column are otherwise straight and have a

Problems 733

flexural stiffness E7 find the maximum bending moment when the column carries a
compressive load P.

Abns.

—ng V/(EI/P)tan ﬂP/EI)%

\
/)
P_>/\(J— P

| L2 I L/2

>
I I

FIGURE P.21.5

>

P.21.6 A straight uniform column of length L and bending stiffness £/ is subjected to uniform lateral
loading w/unit length. The end attachments do not restrict rotation of the column erllds. The
longitudinal compressive force P has eccentricity ¢ from the centroids of the. en(.i sections and
is placed so as to oppose the bending effect of the lateral loading as ShOWI’.l in Fig. P.21.6. The
eccentricity ¢ can be varied and is to be adjusted to the value which, for given values of P and
w, will result in the least maximum bending moment on the column. Show that

e = (w/Pp*)ran’(uL/4)

where p2 = P/EL Also deduce the end moment that gives the optimum condition when P
tends to zero.

Ans. wI*/16.

Wiunit length

EEREEEREERR’

P <P

< FIGURE P.21.6

P.21.7 A rectangular portal frame ABCD is rigidly fixed to foundations A and D and is subje.cted to
a compression load P as shown in Fig. P.21.7. If all the members have the same bendmg.
stiffness EI show that the buckling loads for modes which are symmetrical about the vertical
centre line are given by the transcendental equation

S -—3(=(5)
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 150mm | FIGURE P.21.11

n the experimental determination of the buckling loads for 12.5 mm diameter, mild steel,
in-ended columns, two of the values obtained were:
(i) length 500 mm, load 9800 N,
(ii) length 200 mm, load 26 400 N.
(a) Determine whether either of these values conforms to the Euler theory for buckling load.
(b) Assuming that both values are in agreement with the Rankine formula, find the
constants o and £ Take E= 200 000 N/mm?.

ns. (a) (i) conforms with Euler theory. ] [ ]

(b) o,=317 N/mm? k=1.16 X 10~%, F_M_,' FIGURE P.21.12

- tubular column has an effective length of 2.5 m and is to be designed to carry a safe load of
00 kN. Assuming an approximate ratio of thickness to external diameter of 1/16, determine
practical diameter and thickness using the Rankine formula with o, = 330 N/mm? and

= 1/7500. Use a safety factor of 3. l — — ]

ns. Diameter = 128 mm thickness = 8 mm. Centroid |

-short length of hollow tube 32 mm external diameter and 25 mm internal diameter yielded g;:::r?elf \
1 a compression test at a load of 70 kN. When a 2.5 m length of the same tube was tested as

column with fixed ends the failure load was 24.1 kN. Assuming that o5 in the Rankine

rrmula is given by the first test find the value of the constant # and hence the crippling load

r a column 1.5 m in length when used as a column with pinned ends. |

ns. k= 0.000126, 18.7 kN. — —

mild steel column is 6 m long, is fixed at both ends and has the cross section shown in
ig. P.21.11. Given that the yield stress in compression of mild steel is 300 N/mm? calculate ’4—»‘4&"&»{

te maximum allowable load for the column using the Perry-Robertson formula. Take FIGURE F.21.14

19mm
= 200000 N/mm? and assume a factor of safety of 2.
ns. 406.8 kN.
column is fabricated from two 305 mm X 305 mm X 158 kg Universal Column sections _
aced side by side as shown in Fig. P.21.12. The column has fixed ends and an overall height P.21.13 A column is fabricated from two 250 mm X 75 mm channel sections atFache‘d to two flange
“12 m. Given that the yield stress in compression of mild steel is 250 N/mm? calculate the plates each 300 mm X 12 mm as shown in Fig. P.21.13; the column helght is 10 m and tlzle
aximum allowable load for the column using the Perry-Robertson formula. Take ends of the column are fixed. If the yield stress of mild steel in compression is 250 N/mm” use
= 200000 N/mm? and assume a factor of safety of 2. The properties of a single the Perry-Robertson formula to calculate the crippling load for the column. Take
)5 mm X 305 mm X 158 kg UC are: E = 205000 N/mm?. The properties of a single 250 mm X 75 mm channel are:

Area =201.2 em?, I, = 38740 cm®, I, = 12524 cm* Area =36.6 cm’, I, = 3440 cm®, I, =166 cm®.

lAaAAa 1aTr
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1ild steel pin-ended column is 2.5 m long and has the cross section shown in Fig. P.21.14. A p pe n d IX A: Ta ble Of SeCtIO n

1€ yield stress in compression of mild steel is 300 N/mm?, determine the maximum load P ro pe rtie S
column can withstand using the Robertson formula. Compare this value with that

licted by the Euler theory.
576 kN, P (Robertson)/P (Euler) = 0.62.

Table A.1
Section A z y I Iy lzy
3
AL y BD 2 : 5 5% g
8 mm z
‘ [—>
6 mm z G D
y
184 mm }«B—.{
T y % DTBS 524D2
8 mm
—,‘ D
130 mm FIGURE P.21.14
z » o)
n-ended column of length L has its central portion reinforced, the second moment of its
being 7, while that of the end portions, each of length 4, is /;. Use the Rayleigh—Ritz
o ’ L . . . c BH B+c H B BH(B2 — BC + C? BB -2C
10d to determine the critical load of the column assuming that its centreline deflects into "o 2 S 8 89 % ! 72 )
sarabola v = kx(L — x) and taking the more accurate of the two expressions for bending
nent. H
n the case where [, = 1.6/; and 2 =0.2 L find the percentage increase in strength due to
:einforcement.
Pcg = 14.96ELIL%, 52%.
bular column of length L is tapered in wall thickness so that the area and the second ¥ 2R2. 10 R 1Dt nft 2Dt 0
aent of area of its cross section decrease uniformly from A; and 7; at its centre to 0.24; R 4o
0.21; at its ends, respectively.
\ssuming a deflected centreline of parabolic form and taking the more correct form for
»ending moment, use the Rayleigh—Ritz method to estimate its critical load; the ends of z
solumn may be taken as pinned. Hence show that the saving in weight by using such a
mn instead of one having the same radius of gyration and constant thickness is
it 15%.
7EL/I2. y id £ ~01R 0

(Continued)
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(Continued)

A z TR I,
y 2nRt, wDt ﬂRst, 7r_gﬂ WRSt, lr%a_t
D
el 2
t
4 wBD BD° =BD®
4 4
D
G
D
L.|
y 2BH 3B 2H
3 8 5
-2
B2
V4
G H
y
B (¢}
y BH 38 3H
z 3 4 10
arabola
HZ
14 =?
(o}

Appendix B: Bending of Beams:

Standard Cases

Table B.1
Beam

Ty
A Cc

L

A B
M
A C B
T a |
|
" le B
] 1
| L2 \ 2 |
| |
w
B

SF distribution
A B
—ve
w w
A B
—-ve
wL
A C B
—ve
wa
w
+ve 4
A c
—ve B
w
2
wL
2
+ve
. B
—ve ¢
wL
2

BM distribution

WL

—ve

—ve

+ve

DEF

we?
3El

(max)

®

w4
BE ®

(max)

wad
oag H~9

(max)  (B)

w3
48E1

(max)

©

SwiL4

384E£] ©

(max)

(Continued)
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sontinued)
SF distribution BM distribution
Wa A o]

A +ve +ve

—ve Wa (L—a)

w  —im
3
>
o

+ve
A c +ve

;

—-ve Wa Wa

l

DEF

wa?(a—L)?
3EIL ©
(not max)

wme fsa (Y
6E |4L |\t

©  (max)

Index

Note: Page number followed by “f”, “#”, and “4” refers to figures, tables, and boxes respectively.

A
Actual stress, 186
Allowable (working) stress, 205
Analysis and design, 10

dead loads, 2

live (imposed) loads, 2

safety, 10

serviceability, 10

wind loads, 2
Anisotropic materials, 185
Anticlastic bending, 224—226, 226f
Arches, 3—4, 130, 520—527. See also Three-pinned arches;

Two-pinned arches

flying buttress, 130

linear arch, 130—132

springings, 130

voussoirs, 130
Axial load

compressive, 38

tensile, 38

B

“Barrelling” 192, 192f

Beams
braced, 514—517
cantilever, 8, 9f
continuous, 8, 8f; 5056, 5296, 5405, 694—699
deflections. See Deflection of beams
fixed (built-in, encastré), 8, 97, 375—380, 499—506, 4996,

5024

influence lines, 663
simply supported, 8, 8f
statically indeterminate. See Statically indeterminate structures
structural forms, 2
subjected to shear, 253
subjected to torsion, 287
support reactions, 8, 9f; 31—34

Bending moment, 39
diagrams, 47—61
notation and sign convention, 41—42, 227—228
point of contraflexure (inflexion), 55—56
relationship to load and shear force, 61—67, 245
sagging, hogging, 42
standard cases, 739¢

Bending of symmetrical section beams, 210—220
anticlastic bending, 224—226, 226f

assumptions, 211
combined bending and axial load, 220—226
core of a circular section, 224—226
core of a rectangular section, 223—224, 223
deflections. See Deflection of beams
direct stress distribution, 211—-213
elastic section modulus, 211—-213
flexural rigidity, 216
inclination of neutral axis, 218, 218/
middle third rule, 225—226
neutral axis, 210, 212f
neutral plane (surface), 210
resolution of bending moments, 27f, 217
second moments of area. See Calculation of section properties
standard cases, 739¢
strain energy in bending, 226—227
Bending of unsymmetrical section beams, 226—227
assumptions, 227
deflections. See Deflection of beams
direct stress distribution, 229—230
effect of shear force, 244—245
load, shear force and bending moment relationships, general
case, 245
principal axes, 242—244
second moments of area. See Calculation of section
properties
sign conventions and notation, 227—228
Bending tests, 186—187
Biaxial stress system, 391—394
Bond, 318
Bowstring truss, 79, 80f
Braced beams, 514—517
Bredt—Batho formula, 302
Brinell Hardness Number, 189
Brittle materials, 193—194 ‘
Brittleness, 184
Buckling of columns. See Structural instability

c
Cables, 110
heavy cables, 115—127
carrying a uniform horizontally distributed load, 119—123
catenary, 117—119
deflected shape, 115—116
under self-weight, 116—118
lightweight cables carrying concentrated loads, 110—115
suspension bridges, 5, 5f 123—127
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sction properties, 231—242

ns for thin-walled sections, 237—239
n, 233234, 234f

zurved thin-walled sections, 239—242, 240f
f

heorem, 231

and principal second moments of area,
4

d moment of area, 234—236, 235f
ction, 232, 232f

739

rpendicular axes, 232, 232f

ts, 537—540

t theorem (Parts I and II), 460

ond theorem, 513

119

est, 189, 190f

(hoop) stresses in a thin cylindrical shell,
R

a beam, 621—622

ructural instability

ing and axial load, 220—226

w for forces, 20

energy. See Energy methods

ance strain gauges, 409—415

neasurement of surface strains and stresses,
)

ar strain, 406—409

>f strain, 407—409

15, 405—407

isettes, 409

ined planes, 403—405

rstem, 391—394

mensional case, 391—394

ir stress, 3936

f stress, 400—403

es and principal planes, 396—399

of stress at a point, 389—390, 389/

, 403

ined planes, 390—396, 390f

es, 403

force, 21, 22f

5, 313. See also Reinforced concrete beams
ete beams, 332—335

. timber beams, 313—318

ials, 16, 194—195

ures, 166

s, 99

5, 186

i, 197

s, 8, 8f; 5056, 5296, 5405, 694—699
tures, 6

section, 224—226
nlar cartinn 772294 212£

Core walls, 5—6
Counterbracing, 693—694
Couple, 26—28
Crack propagation, 200—205
Creep and relaxation, 195, 196f
primary creep, 196f
secondary creep, 196f
tertiary creep, 196f
Critical (economic) section for a reinforced concrete beam, 3204
Crotti—Engesser theorem, 460

D

Deflection of beams
deflection due to shear, 369372
deflection due to unsymmetrical bending, 365—369
differential equation of symmetrical bending, 337—350
form factor, 369—370
moment—area method for symmetrical bending, 357—364
singularity functions (Macauley’s method), 350—357
standard cases, 739¢
statically indeterminate beams. See Statically indeterminate
structures
Design, 10
dead loads, 2
live or imposed loads, 2
safety, 10
serviceability, 10
wind loads, 1
Design methods, 205—206
allowable (working) stress, 205
design strengths, 205—206
elastic design, 205
limit state (ultimate load) design, 205
partial safety factors, 205—206
plastic design, 205
Distribution factors, 537
Ductility, 184
Dummy (fictitious) load method, 463—464, 466f

E

Effective depth of a reinforced concrete beam,
318
Elastic and linearly elastic materials, 184
Elastic design, 205
Elastic limit, 185, 190—191
Elastic section modulus, 214—220
Elastoplastic materials, 185
Electrical resistance strain gauges, 409—415
Endurance limit, 196—197
Energy methods
Castigliano’s first theorem (Parts I and II), 460—461
Castigliano’s second theorem, 513
column failure (Rayleigh-Ritz method), 728—731
complementary energy, 458, 460

I trn

dummy (fictitious) load method, 463—464, 466f
flexibility coefficients, 476—477
Maxwell’s reciprocal theorem, 476
potential energy, 472—473
principle of the stationary value of the total complementary
energy, 461—470, 500, 513
principle of the stationary value of the total potential energy,
473—476
reciprocal theorems, 476—481
strain energy, 433, 458—461
due to shear, 264—265
due to torsion, 296—297
in bending, 226—227
in tension and compression, 160—175
temperature effects, 470—472
theorem of reciprocal work, 476, 480—481
total complementary energy, 461—470, 500, 513—514
total potential energy, 473
Engesser, 460
Equilibrium of force systems, 30—31
Euler theory for slender columns, 706—715
failure of columns of any length, 716—722
initially curved column, 718—722
Rankine theory, 716718
limitations of Euler theory, 715—716
Robertson formula, 721
slenderness ratio, 715—716
Southwell plot, 720
stability of beams under transverse and axial loads, 723—727
Euler theory. See Structural instability
Experimental measurement of surface strains and stresses,
409—-415

Extreme value distributions, 197

F

Factors of safety, 2, 205—206
Fatigue, 195—205
endurance limit, 196—197
fatigue strength, 196—197
Miner’s cumulative damage theory, 199
stress concentrations, 196
stress—endurance curves, 196—197
Finite element method, 11, 588—604
Fixed (built-in) beams, 375—380
sinking support, 380—381
Fixed end moments (table), 535
Flexibility (force) method, 490—491
Flexibility, 163
Flexibility coefficients, 476—477
Flexural rigidity, 213
Flying buttress, 130
Force. See Principles of statics
Form factor, 369—370
Fracture toughness, 203—204
Free body diagrams, 43

Cecommslnam ala caeenseinn 1

Index 743

Galvanizing, 192
Graphical method for truss analysis, 97—99

H
Hardness tests, 188—189
Hinges
in principle of virtual work, 446
plastic, 621—-622
Homogeneous materials, 185
Hooke’s law, 152, 190—191
Howe truss, 79, 80f
Hysteresis, 195

Impact tests, 189—190
Indentation tests, 189
Influence lines
beams in contact with load, 663
concentrated travelling loads, 672—677
diagram of maximum shear force, 681—682, 681f
distributed travelling loads, 678—681
maximum bending moment, 674—677, 679—681
maximum shear force at a section, 679, 681—682
Mueller—Breslau principle, 669—672, 694
point of maximum bending moment, 684—686
reversal of shear force, 682—684
beams not in contact with the load, 687—689
maximum values of shear force and bending moment,
689
panels, panel points, 687
continuous beams, 694—699
forces in members of a truss, 689—694
Initial stress and prestressing, 172—175
Isotropic materials, 185
Izod impact test, 189

K

K truss, 79, 80f
Kinematic indeterminacy, 9—10, 491, 496—499, 571—-572

L
Limit of proportionality, 160—161, 190—191
Limit state (ultimate load) design, 205
Linear arches, 130—132
Load, types of

axial, 38

bending moment, 39

concentrated, 38

dead loads, 2

distributed, 38

externally applied, 39

free body diagrams, 43
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loads, 2

e and bending moment relationships, 61—67,

2—46

3n convention, 41—42, 227—228

bending moment, 47—67

40—41
. 68—70

11-12

‘es in a thin cylindrical shell,

-192

1, 506

uction, 13—16. See also Properties of

; materials
-16
ht iron, 16

71
:mbers, 572—581
}81—588
), 580
ninate trusses, 580
373
nber, 573—574
1atrix, 576
| theorem, 476—481
8-91
91-93
125226
damage theory, 199
-319
e, 163
152
, 187
in, 407—409
ss, 400—403
n method
537—540
i, 540—546
s, 537
ts (table), 535
»—556
ual work, 549

55

te K28 &4N

Moment frames, 3
Moment of a force, 25—28
couple, 26—28
lever arm, moment arm, 25—28
resolution of a moment, 27f
Moment—area method
fixed beams, 375—380
symmetrical bending of beams, 365—369
Mueller—Breslau principle, 669—672, 694

“Necking” of test pieces, 191f
Neutral plane, neutral axis, 210—213
elastic neutral axis, 612—613
inclination, 218, 231
plastic neutral axis, 614, 614f
position, 212—213, 231
Newton’s first law of motion, 17
Nominal stress, 186
Normal force
diagrams, 42—46
notation and sign convention, 41—42
Notation and sign convention for forces and displacements,

41-42

0

Orthotropic materials, 185

P

Parallelogram of forces, 19—22
Partial safety factors, 205—206
Pascal, 147
Permanent set, 185, 190—191
Pin-jointed plane and space frames. See Trusses
Plane strain, 179
Plane stress, 175—178
Plastic analysis of frames, 631—639
beam mechanism, 633
method of instantaneous centres, 636, 637f
sway mechanism, 633
Plastic bending (beams), 611
collapse load, 621622
contained plastic flow, 620
effect of axial load, 629—631
elastic neutral axis, 612—613
idealized stress—strain curve, 612f
moment—curvature relationships, 618—621
plastic analysis of beams, 622—628
plastic hinges, 621—622
plastic modulus, 614—615
plastic moment, 613
plastic neutral axis, 614
principle of virtual work. See Virtual work
shape factor, 615—618

statically indeterminate beams, 6234
theorems of plastic analysis, 611—612
unrestricted plastic flow, 620
yield moment, 613
Plastic design, 205, 629
Plasticity, 185
Point of contraflexure (inflection), 55—56
Poisson effect, 154—156, 154f, 226
Poisson’s ratio, 154, 186
Polygon of forces, 24
Portal frames, 4f; 490, 532—533, 546—556
Potential energy. See Energy methods
Pratt truss, 79, 80f, 91-92, 6914
Prestressing, 172—175
Principal axes and principal second moments of area,
242244
Principal strains, 405—407
Principle of superposition, 70—71, 373—374
Principle of the stationary value of the total complementary
energy. See Energy methods
Principle of the stationary value of the total potential energy.
See Energy methods
Principle of virtual work. See Virtual work
Principles of statics, 17
as a vector, 17—18
calculation of support reactions, 31—34
commutative law, 20
components of a force, 21
couple, 26—28
equilibrant of a force system, 23—24
equilibrium of force systems, 30—31
equivalent force systems, 28
force, 17—25
moment of a force, 25—28
Newton’s first law of motion, 17
Newton’s second law of motion, 17
parallelogram of forces, 19—22
polygon of forces, 24
resolution of a moment, 27f, 217
resultant of a force system, 19—22, 28—30
resultant of a system of parallel forces, 28—30
statical equilibrium, 17
transmissibility of a force, 18—19
triangle of forces, 23
Proof stress, 192
Properties of engineering materials, 184. See also Testing of
engineering materials
anisotropic, 185
brittleness, 184
ductility, 184
elastic and linearly elastic, 184
elastic limit, 185, 190—191
elastoplastic, 185
homogeneous, 185
isotropic, 185
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permanent set, 185, 190—191
plasticity, 185
table of material properties, 206z

Rankine theory for column failure, 716—718
Rankine theory of elastic failure, 425—426

yield locus, 425—426
Rayleigh-Ritz method for column failure, 728—731
Reciprocal theorems, 476—481

flexibility coefficients, 476—477

Maxwell’s reciprocal theorem, 476—481

theorem of reciprocal work, 480—481
Reinforced concrete beams, 318—332

bond, 318

critical (economic) section, 320—322

effective depth, 318

elastic theory, 318—325

factors of safety, 325—326

modular ratio, 318—319

ultimate load theory, 325—332
Relationships between the elastic constants, 156—160
Resultant of a force system, 22—23, 28—30
Robertson’s formula for column failure, 721

Rockwell hardness test, 189

S

Safety, 10
Safety factors, 205—206
Scratch and abrasion tests, 189
Secant assumption (arches), 523—526
Segmental arches, 526—527
Serviceability, 10
Shape factor, 615—618
Shear and core walls, 5—6
Shear centre, 268—270, 274—278
Shear flow, definition, 260, 265—266
Shear force, 38
diagrams, 47—61
effect on theory of bending, 244—245
notation and sign convention, 41—42, 227—228
relationship to load intensity and bending moment,
245, 245
standard cases, 739¢
Shear lag, 260
Shear of beams, 253
deflection due to shear. See Deflection of beams
horizontal shear stress in flanges of an I-section beam,
260
shear centre, 268—270, 274—278
shear flow, definition, 260, 265—266
shear lag, 260
shear stress distribution in symmetrical sections, 255—264
shear stress distribution in thin-walled closed sections,
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1e analysis
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1. See Principles of statics
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Statically determinate structures, 11

Stiffness (displacement) method, 489—491, 526—527, 573

Stiffness, 163, 573
Strain. See also Complex strain
direct strain, 150
shear strain, 150
volumetric strain, 151
Strain energy. See also Energy methods
due to shear, 264—265
due to torsion, 296—297
in bending, 226—227
in tension and compression, 160—175
modulus of resilience, 163
Strain gauge rosettes, 409
Strain hardening, 195
Strains on inclined planes, 403—405
Stress. See also Complex stress
actual stress, 186
complementary shear stress, 149—150

direct stress due to bending, 211—213, 229—230. See also

Bending of beams

direct stress in tension and compression, 146—148

nominal stress, 186

shear stress in shear and torsion, 148—149. See also Shear of

beams; Torsion of beams
stress concentrations, 147, 195—196
units, 147
Stress contours, 403
Stress resultants, 40—41
Stress trajectories, 403
Stress—endurance curves, 196—197, 197f
Stresses on inclined planes, 390—396
Stress—strain curves, 152—154
aluminium, 192—193, 206
brittle materials, 193—194
failure modes, 190—194
hysteresis, 195
mild steel, 190—192
strain hardening, 191
ultimate stress, 191—192
upper and lower yield points for mild steel, 191
“barrelling” 192
“necking” 191
Stress—strain relationships, 152—154
Hooke’s law, 152 .
shear modulus, modulus of rigidity, 152
volume or bulk modulus, 152—154
Young’s modulus, elastic modulus, 152
Structural and load idealization, 11—12
finite elements, 11
nodes, 11
roof truss, 11, 81—82
Structural elements, 12—13
Structural instability
buckling (critical) load, definition, 707

column with fixed ends, 708—710
column with one end fixed, one end free, 710—711
column with one end fixed, one end pinned, 712—715
effect of cross-section on buckling, 722—723
energy method (Rayleigh-Ritz), 728—731
equivalent length of a column, 713—715
Structural systems, 2—6
arches, 3—4
beams, 2
cables, 4—5
continuum structures, 6
moment frames, 3
portal frames, 3
slabs, 6
suspension bridges, 4—5
trusses, 3
Support reactions, 6—9, 31—34
Support systems, 6—9
fixed (built-in, encastré), 8
idealization, 6, 124f
pinned, 6
roller, 7—8
support reactions, 8, 31—34
Suspension bridges, 4—5, 123—127

T

Table of material properties, 206¢
Table of section properties, 737
Temperature effects, 168—172, 179
Tension coefficients, 93—97, 100—103
Testing of engineering materials, 185—190

actual stress, 186

bending tests, 186—187

Brinell Hardness Number, 189

compression tests, 186

hardness tests, 188—189

impact tests, 189—190

indentation tests, 188—189

modulus of rupture, 187

nominal stress, 186

proof stress, 192

Rockwell, 189

scratch and abrasion tests, 188—189

Shore scleroscope, 189

tensile tests, 185—186
Theorem of reciprocal work, 480—481
Theorems of plastic analysis, 611—612
Theories of elastic failure, 415—426

brittle materials, 424—426

ductile materials, 416—424

maximum normal stress theory (Rankine),

425—426
maximum shear stress theory (Tresca), 416—417
shear strain energy theory (von Mises),
417—-420
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Thermal effects, 168—172, 470—472
Thin-walled shells under internal pressure, 175—178
cylindrical, 175
spherical, 177—-178
Three-pinned arches, 132—138
bending moment diagram, 140—142
parabolic arch carrying a uniform horizontally distributed
load, 138—139
support reactions, 132—135
Torsion of beams, 287
Bredt—Batho formula, 302
compatibility condition, 293—295
diagrams, 68—70
plastic torsion of circular section bars, 297—300
shear stress due to torsion, 148—149
solid and hollow circular section bars, 287—295
solid section beams, 303—306
statically indeterminate beams, 293—295
strain energy due to torsion, 296—297
thin-walled closed section beams, 300—303
thin-walled open section beams, 303—306
torsion constant, 304—305
warping of cross-sections, 307
Total complementary energy. See Energy methods
Total potential energy. See Energy methods
Transmissibility of a force, 18—19
Tresca theory of elastic failure, 416
yield locus, 421
Triangle of forces, 23
Trusses
assumptions in analysis, 79—80
compound trusses, 99
computer based approach, 103—104
counterbracing, 693—694
graphical method, 97—99
idealization, 81—82
indeterminate structures temperature effects, 511—514
influence lines, 689—694
method of joints, 88—91
method of sections, 91—93
pin-jointed space trusses, 100—103
resistance to shear force and bending moment, 86—88
self-straining (lack of fit) trusses, 511—514
stability, 84
statical determinacy, 82—85, 495—496
statically indeterminate. See Statically indeterminate
structures
tension coefficients, 93—97, 100—103
types of truss, 79
Two-pinned arches, 520—527
flexibility method, 520
parabolic arch carrying a part span uniformly distributed
load, 5234
secant assumption, 523—526
segmental arches, 526—527




t in a slab, 647—648
91
em in plastic analysis, 611

1, 4514, 464, 467, 507

bound theorems in plastic analysis, 612
yield points for mild steel, 190—192

principle, 448—457
force systems, 447—448
446

tual work, 434—457

, 435—436

dy, 436—441

virtual work, 446—447
>d, 451—457, 4514
tems, use of, 448

a deformable body, 442
1, 433—434

nternal force systems
142—444

nents, 445—446
444—445

Volume or bulk modulus, 152—154

von Mises theory of elastic failure, 417—420
design application, 420—421
yield locus, 421—424

Voussoirs, 130

w

Warping of beam cross-sections, 307
Warren truss, 3f, 79, 83f. 886, 974
Work, definition, 433—434

Y
Yield line analysis of slabs, 646
case of a non-isotropic slab, 6534
collapse mechanisms, 646, 647f
diagrammatic representation of support conditions,
647f
discussion, 658
internal virtual work due to an ultimate moment,
648—649
ultimate moment along a yield line, 647—648
virtual work due to an applied load, 649—657
yield lines, 646—657
Yield moment, 613
Young’s modulus, elastic modulus, 152, 186, 612




