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Since writing the first edition of Design and Analysis of Experiments, there
have been a number of additions to the research investigator’s toolbox. In
this second edition, we have incorporated a few of these modern topics.

Small screening designs are now becoming prevalent in industry for
aiding the search for a few influential factors from amongst a large pool of
factors of potential interest. In Chap. 15, we have expanded the material on
saturated designs and introduced the topic of supersaturated designs which
have fewer observations than the number of factors being investigated. We
have illustrated that useful information can be gleaned about influential
factors through the use of supersaturated designs even though their contrast
estimators are correlated. When curvature is of interest, we have described
definitive screening designs which have only recently been introduced in the
literature, and which allow second order effects to be measured while
retaining independence of linear main effects and requiring barely more than
twice as many observations as factors.

Another modern set of tools, now used widely in areas such as biomedical
and materials engineering, the physical sciences, and the life sciences, is that
of computer experiments. To give a flavor of this topic, a new Chap. 20 has
been added. Computer experiments are typically used when a mathematical
description of a physical process is available, but a physical experiment
cannot be run for ethical or cost reasons. We have discussed the major issues
in both the design and analysis of computer experiments. While the complete
treatment of the theoretical background for the analysis is beyond the scope
of this book, we have provided enough technical details of the statistical
model, as well as an intuitive explanation, to make the analysis accessible to
the intended reader. We have also provided computer code needed for both
design and analysis.

Chapter 19 has been expanded to include two new experiments involving
split-plot designs from the discipline of human factors engineering. In one
case, imbalance due to lost data, coupled with a mixed model, motivates
introduction of restricted-maximum-likelihood-based methods implemented
in the computer software sections, including a comparison of these methods
to those based on least squares estimation.

It is now the case that analysis of variance and computation of confidence
intervals is almost exclusively done by computer and rarely by hand.
However, we have retained the basic material on these topics since it is



vi Preface to the Second Edition

fundamental to the understanding of computer output. We have removed
some of the more specialized details of least squares estimates from
Chaps. 10-12 and canonical analysis details in Chap. 16, relying on the
computer software sections to illustrate these.

SAS® software is still used widely in industry, but many university
departments now teach the analysis of data using R (R Development Core
Team, 2017). This is a command line software for statistical computing and
graphics that is freely available on the web. Consequently, we have made a
major addition to the book by including sections illustrating the use of R
software for each chapter. These sections run parallel to the “Using SAS
Software” sections, retained from the first edition.

A few additions have been made to the “Using SAS Software” sections.
For example, in Chap. 11, PROC OPTEX has been included for generation of
efficient block designs. PROC MIXED is utilized in Chap. 5 to implement
Satterthwaite’s method, and also in Chaps. 17-19 to estimate standard errors
involving composite variance estimates, and in Chap. 19 to implement
restricted maximum likelihood estimation given imbalanced data and mixed
models.

We have updated the SAS output’, showing this as reproductions of PC
output windows generated by each program. The SAS programs presented
can be run on a PC or in a command line environment such as unix, although
the latter would use PROC PLOT rather than the graphics PROC SGPLOT.

Some minor modifications have been made to a few other chapters from
the first edition. For example, for assessing which contrasts are
non-negligible in single replicate or fractional factorial experiments, we have
replaced normal probability plots by half-normal probability plots (Chaps. 7,
13 and 15). The reason for this change is that contrast signs are dependent
upon which level of the factor is labeled as the high level and which is
labeled as the low level. Half-normal plots remove this potential arbitrariness
by plotting the absolute values of the contrast estimates against “half-normal
scores”.

Section 7.6 in the first edition on the control of noise variability and
Taguchi experiments has been removed, while the corresponding material in
Chap. 15 has been expanded. On teaching the material, we found it preferable
to have information on mixed arrays, product arrays, and their analysis, in
one location. The selection of multiple comparison methods in Chap. 4 has
been shortened to include only those methods that were used constantly
throughout the book. Thus, we removed the method of multiple comparisons
with the best, which was not illustrated often; however, this method remains
appropriate and valid for many situations in practice.

Some of the worked examples in Chap. 10 have been replaced with newer
experiments, and new worked examples added to Chaps. 15 and 19. Some
new exercises have been added to many chapters. These either replace

'"The output in our “Using SAS Software” sections was generated using SAS software
Version 9.3 of the SAS System for PC. Copyright © SAS 2012 SAS Institute Inc. SAS and
all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc., Cary, NC, USA.
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exercises from the first edition or have been added at the end of the exercise
list. All other first edition exercises retain their same numbers in this second
edition.

A new website  http://www.wright.edu/~dan.voss/
DeanVossDraguljic.html has been set up for the second edition.
This contains material similar to that on the website for the first edition,
including datasets for examples and exercises, SAS and R programs, and any
corrections.

We continue to owe a debt of gratitude to many. We extend our thanks to
all the many students at The Ohio State University and Wright State
University who provided imaginative and interesting experiments and gave
us permission to include their projects. We thank all the readers who notified
us of errors in the first edition and we hope that we have remembered to
include all the corrections. We will be equally grateful to readers of the
second edition for notifying us of any newly introduced errors. We are
indebted to Russell Lenth for updating the R package 1smeans to encompass
all the multiple comparisons procedures used in this book. We are grateful to
the editorial staff at Springer, especially Rebekah McClure and Hannah
Bracken, who were always available to give advice and answer our questions
quickly and in detail.

Finally, we extend our love and gratitude to Jeff, Nancy, Tom, Jimmy,
Linda, Luka, Nikola, Marija and Anika.

Columbus, USA Angela Dean
Dayton, USA Daniel Voss
Lancaster, USA Danel Dragulji¢



The initial motivation for writing this book was the observation from various
students that the subject of design and analysis of experiments can seem like
“a bunch of miscellaneous topics.” We believe that the identification of the
objectives of the experiment and the practical considerations governing
the design form the heart of the subject matter and serve as the link between
the various analytical techniques. We also believe that learning about design
and analysis of experiments is best achieved by the planning, running, and
analyzing of a simple experiment.

With these considerations in mind, we have included throughout the book
the details of the planning stage of several experiments that were run in the
course of teaching our classes. The experiments were run by students in
statistics and the applied sciences and are sufficiently simple that it is possible
to discuss the planning of the entire experiment in a few pages, and the
procedures can be reproduced by readers of the book. In each of these
experiments, we had access to the investigators’ actual report, including the
difficulties they came across and how they decided on the treatment factors,
the needed number of observations, and the layout of the design. In the later
chapters, we have included details of a number of published experiments.
The outlines of many other student and published experiments appear as
exercises at the ends of the chapters.

Complementing the practical aspects of the design are the statistical
aspects of the analysis. We have developed the theory of estimable functions
and analysis of variance with some care, but at a low mathematical level.
Formulae are provided for almost all analyses so that the statistical methods
can be well understood, related design issues can be discussed, and com-
putations can be done by hand in order to check computer output.

We recommend the use of a sophisticated statistical package in con-
junction with the book. Use of software helps to focus attention on the
statistical issues rather than the calculation. Our particular preference is for
the SAS software, and we have included the elementary use of this package
at the end of most chapters. Many of the SAS program files and data sets
used in the book can be found at www.springer—ny.com. However, the book
can equally well be used with any other statistical package. Availability of
statistical software has also helped shape the book in that we can discuss
more complicated analyses—the analysis of unbalanced designs, for
example.



The level of presentation of material is intended to make the book
accessible to a wide audience. Standard linear models under normality are
used for all analyses. We have avoided using calculus, except in a few
optional sections where least squares estimators are obtained. We have also
avoided using linear algebra, except in an optional section on the canonical
analysis of second-order response surface designs. Contrast coefficients are
listed in the form of a vector, but these are interpreted merely as a list of
coefficients.

This book reflects a number of personal preferences. First and foremost,
we have not put side conditions on the parameters in our models. The reason
for this is threefold. Firstly, when side conditions are added to the model, all
the parameters appear to be estimable. Consequently, one loses the per-
spective that in factorial experiments, main effects can be interpreted only as
averages over any interactions that happen to be present. Secondly, the side
conditions that are the most useful for hand calculation do not coincide with
those used by the SAS software. Thirdly, if one feeds a nonestimable para-
metric function into a computer program such as PROC GLM in SAS, the
program will declare the function to be “nonestimable,” and the user needs to
be able to interpret this statement. A consequence is that the traditional
solutions to the normal equations do not arise naturally. Since the traditional
solutions are for nonestimable parameters, we have tried to avoid giving
these, and instead have focused on the estimation of functions of E[Y], all of
which are estimable.

We have concentrated on the use of prespecified models and preplanned
analyses rather than exploratory data analysis. We have emphasized the
experimentwise control of error rates and confidence levels rather than
individual error rates and confidence levels.

We rely upon residual plots rather than formal tests to assess model
assumptions. This is because of the additional information provided by
residual plots when model assumption violations are indicated. For example,
plots to check homogeneity of variance also indicate when a variance-
stabilizing transformation should be effective. Likewise, nonlinear patterns in
a normal probability plot may indicate whether inferences under normality
are likely to be liberal or conservative. Except for some tests for lack of fit,
we have, in fact, omitted all details of formal testing for model assumptions,
even though they are readily available in many computer packages.

The book starts with basic principles and techniques of experimental
design and analysis of experiments. It provides a checklist for the planning of
experiments, and covers analysis of variance, inferences for treatment con-
trasts, regression, and analysis of covariance. These basics are then applied in
a wide variety of settings. Designs covered include completely randomized
designs, complete and incomplete block designs, row-column designs, single
replicate designs with confounding, fractional factorial designs, response
surface designs, and designs involving nested factors and factors with ran-
dom effects, including split-plot designs.

In the last few years, “Taguchi methods” have become very popular
for industrial experimentation, and we have incorporated some of these ideas.
Rather than separating Taguchi methods as special topics, we have interspersed

Preface to the First Edition
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them throughout the chapters via the notion of including “noise factors” in an
experiment and analyzing the variability of the response as the noise factors vary.

We have introduced factorial experiments as early as Chapter 3, but
analyzed them as one-way layouts (i.e., using a cell means model). The
purpose is to avoid introducing factorial experiments halfway through the
book as a totally new topic, and to emphasize that many factorial experiments
are run as completely randomized designs. We have analyzed contrasts in a
two-factor experiment both via the usual two-way analysis of variance model
(where the contrasts are in terms of the main effect and interaction parame-
ters) and also via a cell-means model (where the contrasts are in terms of the
treatment combination parameters). The purpose of this is to lay the
groundwork for Chapters 13-15, where these contrasts are used in con-
founding and fractions. It is also the traditional notation used in conjunction
with Taguchi methods.

The book is not all-inclusive. For example, we do not cover recovery of
interblock information for incomplete block designs with random block
effects. We do not provide extensive tables of incomplete block designs.
Also, careful coverage of unbalanced models involving random effects is
beyond our scope. Finally, inclusion of SAS graphics is limited to low-
resolution plots.

The book has been classroom tested successfully over the past five years
at The Ohio State University, Wright State University, and Kenyon College,
for junior and senior undergraduate students majoring in a variety of fields,
first-year graduate students in statistics, and senior graduate students in the
applied sciences. These three institutions are somewhat different. The Ohio
State University is a large land-grant university offering degrees through the
Ph.D., Wright State University is a mid-sized university with few Ph.D.
programs, and Kenyon College is a liberal arts undergraduate college. Below
we describe typical syllabi that have been used.

At OSU, classes meet for five hours per week for ten weeks. A typical
class is composed of 35 students, about a third of whom are graduate students
in the applied statistics master’s program. The remaining students are
undergraduates in the mathematical sciences or graduate students in indus-
trial engineering, biomedical engineering, and various applied sciences. The
somewhat ambitious syllabus covers Chapters 1-7 and 10, Sections
11.1-11.4, and Chapters 13, 15, and 17. Students taking these classes plan,
run, and analyze their own experiments, usually in a team of four or five
students from several different departments. This project serves the function
of giving statisticians the opportunity of working with scientists and of seeing
the experimental procedure firsthand, and gives the scientists access to col-
leagues with a broader statistical training. The experience is usually highly
rated by the student participants.

Classes at WSU meet four hours per week for ten weeks. A typical class
involves about 10 students who are either in the applied statistics master’s
degree program or who are undergraduates majoring in mathematics with a
statistics concentration. Originally, two quarters (20 weeks) of probability
and statistics formed the prerequisite, and the course covered much of
Chapters 1-4, 6, 7, 10, 11, and 13, with Chapters 3 and 4 being primarily
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review material. Currently, students enter with two additional quarters in
applied linear models, including regression, analysis of variance, and
methods of multiple comparisons, and the course covers Chapters 1 and 2,
Sections 3.2, 6.7, and 7.5, Chapters 10, 11, and 13, Sections 15.1-15.2, and
perhaps Chapter 16. As at OSU, both of these syllabi are ambitious. During
the second half of the course, the students plan, run, and analyze their own
experiments, working in groups of one to three. The students provide written
and oral reports on the projects, and the discussions during the oral reports
are of mutual enjoyment and benefit. A leisurely topics course has also been
offered as a sequel, covering the rest of Chapters 14-17.

At Kenyon College, classes meet for three hours a week for 15 weeks.
A typical class is composed of about 10 junior and senior undergraduates
majoring in various fields. The syllabus covers Chapters 1-7, 10, and 17.

For some areas of application, random effects, nested models, and
split-plot designs, which are covered in Chapters 17-19, are important topics.
It is possible to design a syllabus that reaches these chapters fairly rapidly by
covering Chapters 1-4, 6, 7, 17, 18, 10, 19.

We owe a debt of gratitude to many. For reading of, and comments on,
prior drafts, we thank Bradley Hartlaub, Jeffrey Nunemacher, Mark Irwin, an
anonymous reviewer, and the many students who suffered through the early
drafts. We thank Baoshe An, James Clark, and Dionne Pratt for checking a
large number of exercises, and Paul Burte, Kathryn Collins, Yuming Deng,
Joseph Mesaros, Dionne Pratt, Joseph Whitmore, and many others for
catching numerous typing errors. We are grateful to Peg Steigerwald, Terry
England, Dolores Wills, Jill McClane, and Brian J. Williams for supplying
hours of typing skills. We extend our thanks to all the many students in
classes at The Ohio State University, Wright State University, and the
University of Wisconsin at Madison whose imagination and diligence pro-
duced so many wonderful experiments; also to Brian H. Williams and Bob
Wardrop for supplying data sets; to Nathan Buurma, Colleen Brensinger, and
James Colton for library searches; and to the publishers and journal editors
who gave us permission to use data and descriptions of experiments. We are
especially grateful to the SAS Institute for permission to reproduce portions
of SAS programs and corresponding output, and to John Kimmel for his
enduring patience and encouragement throughout this endeavor.

This book has been ten years in the making. In the view of the authors, it
is “a work in progress temporarily cast in stone”—or in print, as it were. We
are wholly responsible for any errors and omissions, and we would be most
grateful for comments, corrections, and suggestions from readers so that we
can improve any future editions.

Finally, we extend our love and gratitude to Jeff, Nancy, Tommy, and
Jimmy, often neglected during this endeavor, for their enduring patience,
love, and support.

Columbus, Ohio Angela Dean
Dayton, Ohio Daniel Voss
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1.1 Design:Basic Principles and Techniques
1.1.1 The Art of Experimentation

One of the first questions facing an experimenter is, “How many observations do I need to take?” or
alternatively, “Given my limited budget, how can I gain as much information as possible?” These are
not questions that can be answered in a couple of sentences. They are, however, questions that are
central to the material in this book. As a first step towards obtaining an answer, the experimenter must
ask further questions, such as, “What is the main purpose of running this experiment?”” and “What do
I hope to be able to show?”

Typically, an experiment may be run for one or more of the following reasons:

(i) to determine the principal causes of variation in a measured response,

(ii) to find the conditions that give rise to a maximum or minimum response,
(iii) to compare the responses achieved at different settings of controllable variables,
(iv) to obtain a mathematical model in order to predict future responses.

Observations can be collected from observational studies as well as from experiments, but only an
experiment allows conclusions to be drawn about cause and effect. For example, consider the following
situation:

The output from each machine on a factory floor is constantly monitored by any successful manufac-
turing company. Suppose that in a particular factory, the output from a particular machine is consistently
of low quality. What should the managers do? They could conclude that the machine needs replacing
and pay out a large sum of money for a new one. They could decide that the machine operator is at
fault and dismiss him or her. They could conclude that the humidity in that part of the factory is too
high and install a new air conditioning system. In other words, the machine output has been observed
under the current operating conditions (an observational study), and although it has been very effective
in showing the management that a problem exists, it has given them very little idea about the cause of
the poor quality.

It would actually be a simple matter to determine or rule out some of the potential causes. For
example, the question about the operator could be answered by moving all the operators from machine
to machine over several days. If the poor output follows the operator, then it is safe to conclude that
the operator is the cause. If the poor output remains with the original machine, then the operator is
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blameless, and the machine itself or the factory humidity is the most likely cause of the poor quality.
This is an “experiment.” The experimenter has control over a possible cause in the difference in output
quality between machines. If this particular cause is ruled out, then the experimenter can begin to vary
other factors such as humidity or machine settings.

It is more efficient to examine all possible causes of variation simultaneously rather than one at a
time. Fewer observations are usually needed, and one gains more information about the system being
investigated. This simultaneous study is known as a “factorial experiment.” In the early stages of a
project, a list of all factors that conceivably could have an important effect on the response of interest
is drawn up. This may yield a large number of factors to be studied, in which case special techniques
are needed to gain as much information as possible from examining only a subset of possible factor
settings.

The art of designing an experiment and the art of analyzing an experiment are closely intertwined and
need to be studied side by side. In designing an experiment, one must take into account the analysis that
will be performed. In turn, the efficiency of the analysis will depend upon the particular experimental
design that is used to collect the data. Without these considerations, it is possible to invest much time,
effort, and expense in the collection of data which seem relevant to the purpose at hand but which, in
fact, contribute little to the research questions being asked. A guiding principle of experimental design
is to “keep it simple.” Interpretation and presentation of the results of experiments are generally clearer
for simpler experiments.

Three basic techniques fundamental to experimental design are replication, blocking, and random-
ization. The first two help to increase precision in the experiment; the last is used to decrease bias.
These techniques are discussed briefly below and in more detail throughout the book.

1.1.2 Replication

Replication is the repetition of experimental conditions so that the effects of interest can be estimated
with greater precision and the associated variability can be estimated.

There is a difference between “replication” and “repeated measurements.” For example, suppose
four subjects are each assigned to a drug and a measurement is taken on each subject. The result is four
independent observations on the drug. This is “replication.” On the other hand, if one subject is assigned
to a drug and then measured four times, the measurements are not independent. We call them “repeated
measurements.” The variation recorded in repeated measurements taken at the same time reflects the
variation in the measurement process, while the variation recorded in repeated measurements taken
over a time interval reflects the variation in the single subject’s response to the drug over time. Neither
reflects the variation in independent subjects’ responses to the drug. We need to know about the latter
variation in order to generalize any conclusion about the drug so that it is relevant to all similar subjects.

1.1.3 Blocking

A designed experiment involves the application of treatments to experimental units to assess the effects
of the treatments on some response. The “experimental units,” which may be subjects, materials,
conditions, points in time, or some combination of these, will be variable and induce variation in
the response. Such variation in experimental units may be intentional, as the experimental conditions
under which an experiment is run should be representative of those to which the conclusions of the
experiment are to be applied. For inferences to be broad in scope, the experimental conditions should
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be appropriately varied. Blocking is a technique that can often be used to control and adjust for some
of the variation in experimental units.

To block an experiment is to divide, or partition, the experimental units into groups called blocks
in such a way that the experimental units in each block are intended to be relatively similar, so that
treatments assigned to experimental units in the same block can be compared under relatively similar
experimental conditions. If blocking is done well, then comparisons of two or more treatments are
made more precisely in the experiment than similar comparisons from an unblocked design. For
example, in an experiment to compare the effects of two skin ointments for rash, the two treatments
can be compared more precisely on two arms of the same person than on the arms of two different
people. Either circumstance can be replicated, ideally using subjects randomly sampled from or at least
representative of the population of interest.

1.1.4 Randomization

The purpose of randomization is to prevent systematic and personal biases from being introduced into
the experiment by the experimenter. A random assignment of subjects or experimental material to
treatments prior to the start of the experiment ensures that observations that are favored or adversely
affected by unknown sources of variation are observations “selected in the luck of the draw” and not
systematically selected.

Lack of arandom assignment of experimental material or subjects leaves the experimental procedure
open to experimenter bias. For example, a horticulturist may assign his or her favorite variety of
experimental crop to the parts of the field that look the most fertile, or a medical practitioner may
assign his or her preferred drug to the patients most likely to respond well. The preferred variety or
drug may then appear to give better results no matter how good or bad it actually is.

Lack of random assignment can also leave the procedure open to systematic bias. Consider, for
example, an experiment involving drying time of three paints applied to sections of a wooden board,
where each paint is to be observed four times. If no random assignment of order of observation is
made, many experimenters would take the four observations on paint 1, followed by those on paint
2, followed by those on paint 3. This order might be perfectly satisfactory, but it could equally well
prove to be disastrous. Observations taken over time could be affected by differences in atmospheric
conditions, fatigue of the experimenter, systematic differences in the wooden board sections, etc. These
could all conspire to ensure that any measurements taken during the last part of the experiment are,
say, underrecorded, with the result that paint 3 appears to dry faster than the other paints when, in fact,
it may be less good. The order 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3 helps to solve the problem, but it does not
remove it completely (especially if the experimenter takes a break after every three observations).

There are also analytical reasons to support the use of a random assignment. It will be seen in
Chaps. 3 and 4 that common forms of analysis of the data depend on the F and ¢ distributions. It can
be shown that a random assignment ensures that these distributions are the correct ones to use. The
interested reader is referred to Kempthorne (1977).

To understand the meaning of randomization, consider an experiment to compare the effects on
blood pressure of three exercise programs, where each program is observed four times, giving a total
of 12 observations. Now, given 12 subjects, imagine making a list of all possible assignments of the
12 subjects to the three exercise programs so that 4 subjects are assigned to each program. (There are
12!/(4!4!41), or 34,650 ways to do this.) If the assignment of subjects to programs is done in such
a way that every possible assignment has the same chance of occurring, then the assignment is said
to be a completely random assignment. Completely randomized designs, discussed in Chaps.3—7 of
this book, are randomized in this way. It is, of course, possible that a random assignment itself could
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lead to the order 1, 1,1, 1,2,2,2,2,3,3,3, 3. If the experimenter expressly wishes to avoid certain
assignments, then a different type of design should be used. An experimenter should not look at the
resulting assignment, decide that it does not look very random, and change it.

Without the aid of an objective randomizing device, it is not possible for an experimenter to make
arandom assignment. In fact, it is not even possible to select a single number at random. This is borne
out by a study run at the University of Delaware and reported by Professor Hoerl in the Royal Statistical
Society News and Notes (January 1988). The study, which was run over several years, asked students
to pick a number at random between 0 and 9. The numbers 3 and 7 were selected by about 40% of the
students. This is twice as many as would be expected if the numbers were truly selected at random.

The most frequently used objective mechanism for achieving a random assignment in experimental
design is a random number generator. A random number generator is a computer program that gives
as output a very long string of digits that are integers between 0 and 9 inclusive and that have the
following properties. All integers between 0 and 9 occur approximately the same number of times, as
do all pairs of integers, all triples, and so on. Furthermore, there is no discernible pattern in the string
of digits, and hence the name “random” numbers.

The random numbers in Appendix Table A.1 are part of a string of digits produced by a random
number generator (in SAS® version 6.09 on a DEC Model 4000 MODEL 610 computer at Wright
State University). Many experimenters and statistical consultants will have direct access to their own
random number generator on a computer or calculator and will not need to use the table. The table is
divided into six sections (pages), each section containing six groups of six rows and six groups of six
columns. The grouping is merely a device to aid in reading the table. To use the table, a random starting
place must be found. An experimenter who always starts reading the table at the same place always
has the same set of digits, and these could not be regarded as random. The grouping of the digits by
six rows and columns allows a random starting place to be obtained using five rolls of a fair die. For
example, the five rolls giving 3, 1, 3, 5, 2 tells the experimenter to find the digit that is in Sect. 3 of the
table, row group 1, column group 3, row 5, column 2. Then the digits can be read singly, or in pairs,
or triples, etc. from the starting point across the rows.

The most common random number generators on computers or calculators generate n-digit real
numbers between zero and one. Single digit random numbers can be obtained from an n-digit real
number by reading the first digit after the decimal point. Pairs of digits can be obtained by reading the
first two digits after the decimal point, and so on. The use of random numbers for randomization is
shown in Sects. 3.2, 3.8.1 and 3.9.1.

1.2 Analysis: Basic Principles and Techniques

In the analysis of data, it is desirable to provide both graphical and statistical analyses. Plots that
illustrate the relative responses of the factor settings under study allow the experimenter to gain a feel
for the practical implications of the statistical results and to communicate effectively the results of
the experiment to others. In addition, data plots allow the proposed model to be checked and aid in
the identification of unusual observations, as discussed in Chap.5. Statistical analysis quantifies the
relative responses of the factors, thus clarifying conclusions that might be misleading or not at all
apparent in plots of the data.

The purpose of an experiment can range from exploratory (discovering new important sources of
variability) to confirmatory (confirming that previously discovered sources of variability are sufficiently
major to warrant further study), and the philosophy of the analysis depends on the purpose of the
experiment. In the early stages of experimentation the analysis may be exploratory, and one would plot
and analyze the data in any way that assists in the identification of important sources of variation. In
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later stages of experimentation, analysis is usually confirmatory in nature. A mathematical model of
the response is postulated and hypotheses are tested and confidence intervals are calculated.

In this book, we use linear models to model our response and the method of least squares for
obtaining estimates of the parameters in the model. These are described in Chap.3. We also use
restricted maximum likelihood estimation of parameters in Chap.19. Our models include random
“error variables” that encompass all the sources of variability not explicitly present in the model.
We operate under the assumption that the error terms are normally distributed. However, most of the
procedures in this book are generally fairly robust to nonnormality, provided that there are no extreme
observations among the data.

It is rare nowadays for experimental data to be analyzed by hand. Most experimenters and sta-
tisticians have access to a computer package that is capable of producing, at the very least, a basic
analysis of data for the simplest experiments. To the extent possible, for each design discussed, we shall
present useful plots and methods of analysis that can be obtained from most statistical software pack-
ages. We will also develop many of the mathematical formulas that lie behind the computer analysis.
This will enable the reader more easily to appreciate and interpret statistical computer package output
and the associated manuals. Computer packages vary in sophistication, flexibility, and the statistical
knowledge required of the user. The SAS software (see SAS Institute Inc., 2004) is one of the better
commercial statistical packages for analyzing experimental data. The R software (see R Core Team,
2017) is a command line software for statistical computing and graphics which is freely available on
the web. Both packages can handle every model discussed in this book, and although they require some
knowledge of experimental design on the part of the user, neither is difficult to learn. We provide some
basic SAS and R statements and resulting output at the end of most chapters to illustrate data analysis.
A reader who wishes to use a different computer package can run the equivalent analyses on his or her
own package and compare the output with those shown. It is important that every user know exactly
the capabilities of his or her own package and also the likely size of rounding errors.

It is not our intent to teach the best use of SAS and R software, and readers may find better ways of
achieving the same analyses. SAS software, being acommercial package, requires purchase of a license,
but many universities and companies already have site licenses. R is a free software environment for
statistical computing and graphics. Links for downloading and installing R are provided in Sect.3.9.
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Planning Experiments

2.1 Introduction

Although planning an experiment is an exciting process, it is extremely time-consuming. This creates
a temptation to begin collecting data without giving the experimental design sufficient thought. Rarely
will this approach yield data that have been collected in exactly the right way and in sufficient quantity
to allow a good analysis with the required precision. This chapter gives a step by step guide to the
experimental planning process. The steps are discussed in Sect. 2.2 and illustrated via real experiments
in Sects. 2.3 and 2.5. Some standard experimental designs are described briefly in Sect.2.4.

2.2 A Checklist for Planning Experiments

The steps in the following checklist summarize a very large number of decisions that need to be made
at each stage of the experimental planning process. The steps are not independent, and at any stage, it
may be necessary to go back and revise some of the decisions made at an earlier stage.

Checklist

(a) Define the objectives of the experiment.
(b) Identify all sources of variation, including:

(i) treatment factors and their levels,
(i1) experimental units,
(iii) blocking factors, noise factors, and covariates.

(c) Choose a rule for assigning the experimental units to the treatments.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated difficulties.
(e) Run a pilot experiment.

(f) Specify the model.

(g) Outline the analysis.

(h) Calculate the number of observations that need to be taken.

(i) Review the above decisions. Revise, if necessary.

© Springer International Publishing AG 2017 7
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8 2 Planning Experiments

A short description of the decisions that need to be made at each stage of the checklist is given
below. Only after all of these decisions have been made should the data be collected.

(a) Define the objectives of the experiment.

A list should be made of the precise questions that are to be addressed by the experiment. It is this
list that helps to determine the decisions required at the subsequent stages of the checklist. It is
advisable to list only the essential questions, since side issues will unnecessarily complicate the
experiment, increasing both the cost and the likelihood of mistakes. On the other hand, questions
that are inadvertently omitted may be unanswerable from the data. In compiling the list of objec-
tives, it can often be helpful to outline the conclusions expected from the analysis of the data. The
objectives may need to be refined as the remaining steps of the checklist are completed.

(b) Identify all sources of variation.

A source of variation is anything that could cause an observation to have a different numerical
value from another observation. Some sources of variation are minor, producing only small dif-
ferences in the data. Others are major and need to be planned for in the experiment. It is good
practice to make a list of every conceivable source of variation and then label each as either major
or minor. Major sources of variation can be divided into two types: those that are of particular
interest to the experimenter, called “treatment factors,” and those that are not of interest, called
“nuisance factors.”

(i) Treatment factors and their levels.

Although the term treatment factor might suggest a drug in a medical experiment, it is used
to mean any substance or item whose effect on the data is to be studied. At this stage in the
checklist, the treatment factors and their levels should be selected. The levels are the specific types
or amounts of the treatment factor that will actually be used in the experiment. For example, a
treatment factor might be a drug or a chemical additive or temperature or teaching method, etc.
The levels of such treatment factors might be the different amounts of the drug to be studied,
different types of chemical additives to be considered, selected temperature settings in the range
of interest, different teaching methods to be compared, etc. Few experiments involve more than
four levels per treatment factor.

If the levels of a treatment factor are quantitative (i.e., can be measured), then they are usually
chosen to be equally spaced. Two levels are needed to model a linear trend, three levels for
a quadratic trend, and so forth. If the response or log(response) should be well modeled by a
rather simple function of the log of the factor level, then one may choose the factor levels to be
equally spaced on a log scale. For convenience, treatment factor levels can be coded. For example,
temperature levels 60, 70, 80°, ... might be coded as 1, 2, 3, ... in the plan of the experiment,
or as 0, 1, 2,.... With the latter coding, level 0 does not necessarily signify the absence of the
treatment factor. It is merely a label. Provided that the experimenter keeps a clear record of the
original choice of levels, no information is lost by working with the codes.

When an experiment involves more than one treatment factor, every observation is a measurement
on some combination of levels of the various treatment factors. For example, if there are two
treatment factors, temperature and pressure, whenever an observation is taken at a certain pressure,
it must necessarily be taken at some temperature, and vice versa. Suppose there are four levels
of temperature coded 1, 2, 3, 4 and three levels of pressure coded 1, 2, 3. Then there are twelve
combinations of levels coded 11, 12, ..., 43, where the first digit of each pair refers to the level
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of temperature and the second digit to the level of pressure. Treatment factors are often labeled
Fi,F), F5,...orA, B, C,.... The combinations of their levels are called treatment combinations
and an experiment involving two or more treatment factors is called a factorial experiment.

We will use the term freatment to mean a level of a treatment factor in a single factor experiment,
or to mean a treatment combination in a factorial experiment.

(ii) Experimental units.

Experimental units are the “material” to which the levels of the treatment factor(s) are applied. For
example, in agriculture these would be individual plots of land, in medicine they would be human
or animal subjects, in industry they might be batches of raw material, factory workers, etc. If an
experiment has to be run over a period of time, with the observations being collected sequentially,
then the times of day can also be regarded as experimental units.

Experimental units should be representative of the material and conditions to which the conclu-
sions of the experiment will be applied. For example, the conclusions of an experiment that uses
university students as experimental units may not apply to all adults in the country. The results of a
chemical experiment run in an 80° laboratory may not apply in a 60° factory. Thus it is important
to consider carefully the scope of the experiment in listing the objectives in step (a).

It is important to distinguish experimental units from observational units—namely, what is mea-
sured to obtain observations. For example, in an experiment involving the feeding of animals in
a pen to assess the effects of diet on weight gain, it may be that pens of animals fed together are
the experimental units while the individual animals are the observational units. In most experi-
ments, the experimental units and observational units are one and the same. However, when there
is a distinction, it is important that the data analysis reflect it. Otherwise, mistakenly treating the
observational units as experimental units would give the appearance that the experiment provides
more data or replication than is indeed present.

(iii) Blocking factors, noise factors, and covariates.

An important part of designing an experiment is to enable the effects of the nuisance factors to be
distinguished from those of the treatment factors. There are several ways of dealing with nuisance
factors, depending on their nature.

It may be desirable to limit the scope of the experiment and to fix the level of the nuisance factor.
This action may necessitate a revision of the objectives listed in step (a) since the conclusions
of the experiment will not be so widely applicable. Alternatively, it may be possible to hold the
level of a nuisance factor constant for one group of experimental units, change it to a different
fixed value for a second group, change it again for a third, and so on. Such a nuisance factor is
called a blocking factor, and experimental units measured under the same level of the blocking
factor are said to be in the same block (see Chap. 10). For example, suppose that temperature was
expected to have an effect on the observations in an experiment, but it was not itself a factor of
interest. The entire experiment could be run at a single temperature, thus limiting the conclusions
to that particular temperature. Alternatively, the experimental units could be divided into blocks
with each block of units being measured at a different fixed temperature.

Even when the nuisance variation is not measured, it is still often possible to divide the experimental
units into blocks of like units. For example, plots of land or times of day that are close together are
more likely to be similar than those far apart. Subjects with similar characteristics are more likely
to respond in similar ways to a drug than subjects with different characteristics. Observations made
in the same factory are more likely to be similar than observations made in different factories.
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Sometimes nuisance variation is a property of the experimental units and can be measured before
the experiment takes place, (e.g., the blood pressure of a patient in a medical experiment, the 1.Q.
of a pupil in an educational experiment, the acidity of a plot of land in an agricultural experiment).
Such a measurement is called a covariate and can play a major role in the analysis (see Chap.9).
Alternatively, the experimental units can be grouped into blocks, each block having a similar value
of the covariate. The covariate would then be regarded as a blocking factor.

If the experimenter is interested in the variability of the response as the experimental conditions
are varied, then nuisance factors are deliberately included in the experiment and not removed via
blocking. Such nuisance factors are called noise factors, and experiments involving noise factors
form the subject of robust design, discussed in Chap. 15.

Choose a rule by which to assign the experimental units to the levels of the treatment factors.

The assignment rule, or the experimental design, specifies which experimental units are to be
observed under which treatments. The choice of design, which may or may not involve blocking
factors, depends upon all the decisions made so far in the checklist. There are several standard
designs that are used often in practice, and these are introduced in Sect.2.4. Further details and
more complicated designs are discussed later in the book.

The actual assignment of experimental units to treatments should be done at random, subject to
restrictions imposed by the chosen design. The importance of a random assignment was discussed
in Sect. 1.1.4. Methods of randomization are given in Sect.3.2.

There are some studies in which it appears to be impossible to assign the experimental units to the
treatments either at random or indeed by any method. For example, if the study is to investigate
the effects of smoking on cancer with human subjects as the experimental units, it is neither eth-
ical nor possible to assign a person to smoke a given number of cigarettes per day. Such a study
would therefore need to be done by observing people who have themselves chosen to be light,
heavy, or nonsmokers throughout their lives. This type of study is an observational study and not
an experiment. Although many of the analysis techniques discussed in this book could be used
for observational studies, cause and effect conclusions are not valid, and such studies will not be
discussed further.

Specify the measurements to be made, the experimental procedure, and the anticipated dif-
ficulties.

The data (or observations) collected from an experiment are measurements of a response variable
(e.g., the yield of a crop, the time taken for the occurrence of a chemical reaction, the output of
a machine). The units in which the measurements are to be made should be specified, and these
should reflect the objectives of the experiment. For example, if the experimenter is interested in
detecting a difference of 0.5 gram in the response variable arising from two different treatments,
it would not be sensible to take measurements to the nearest gram. On the other hand, it would be
unnecessary to take measurements to the nearest 0.01 gram. Measurements to the nearest 0.1 gram
would be sufficiently sensitive to detect the required difference, if it exists.

There are usually unforeseen difficulties in collecting data, but these can often be identified by
taking a few practice measurements or by running a pilot experiment (see step (e)). Listing the
anticipated difficulties helps to identify sources of variation required by step (b) of the checklist,
and also gives the opportunity of simplifying the experimental procedure before the experiment
begins.
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Precise directions should be listed as to how the measurements are to be made. This might include
details of the measuring instruments to be used, the time at which the measurements are to be
made, the way in which the measurements are to be recorded. It is important that everyone involved
in running the experiment follow these directions exactly. It is advisable to draw up a data col-
lection sheet that shows the order in which the observations are to be made and also the units of
measurement.

Run a pilot experiment.

A pilot experiment is a mini experiment involving only a few observations. No conclusions are
necessarily expected from such an experiment. It is run to aid in the completion of the checklist.
It provides an opportunity to practice the experimental technique and to identify unsuspected
problems in the data collection. If the pilot experiment is large enough, it can also help in the
selection of a suitable model for the main experiment. The observed experimental error in the
pilot experiment can help in the calculation of the number of observations required by the main
experiment (step (h)).

At this stage, steps (a)—(d) of the checklist should be reevaluated and changes made as necessary.

Specify the model.

The model must indicate explicitly the relationship that is believed to exist between the response
variable and the major sources of variation that were identified at step (b). The techniques used
in the analysis of the experimental data will depend upon the form of the model. It is important,
therefore, that the model represent the true relationship reasonably accurately.

The most common type of model is the linear model, which shows the response variable set equal
to a linear combination of terms representing the major sources of variation plus an error term
representing all the minor sources of variation taken together. A pilot experiment (step (e)) can
help to show whether or not the data are reasonably well described by the model.

There are two different types of treatment or block factors that need to be distinguished, since they
lead to somewhat different analyses. The effect of a factor is said to be a fixed effect if the factor
levels have been specifically selected by the experimenter and if the experimenter is interested in
comparing the effects on the response variable of these specific levels. This is the most common
type of factor and is the type considered in the early chapters. A model containing only fixed-effect
factors (apart from the response and error random variables) is called a fixed-effects model.
Occasionally, however, a factor has an extremely large number of possible levels, and the levels
included in the experiment are a random sample from the population of all possible levels. The
effect of such a factor is said to be a random effect. Since the levels are not specifically chosen,
the experimenter has little interest in comparing the effects on the response variable of the par-
ticular levels used in the experiment. Instead, it is the variability of the response due to the entire
population of levels that is of interest. Models for which all factors are random effects are called
random-effects models. Models for which some factors are random effects and others are fixed
effects are called mixed models. Experiments involving random effects will be considered in
Chaps. 17 and 18.

Outline the analysis.

The type of analysis that will be performed on the experimental data depends on the objectives
determined in step (a), the design selected in step (c), and its associated model specified in step (f).
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The entire analysis should be outlined (including hypotheses to be tested and confidence intervals
to be calculated). The analysis not only determines the calculations at step (h), but also verifies
that the design is suitable for achieving the objectives of the experiment.

(h) Calculate the number of observations needed.

At this stage in the checklist, a calculation should be done for the number of observations that
are needed in order to achieve the objectives of the experiment. If too few observations are taken,
then the experiment may be inconclusive. If too many are taken, then time, energy, and money are
needlessly expended.

Formulae for calculating the number of observations are discussed in Sects.3.6 and 4.5 for the
completely randomized design, and in later chapters for more complex designs. The formulae
require a knowledge of the size of the experimental variability. This is the amount of variability
in the data caused by the sources of variation designated as minor in step (b) (plus those sources
that were forgotten!). Estimating the size of the experimental error prior to the experiment is not
easy, and it is advisable to err on the large side. Methods of estimation include the calculation of
the experimental error in a pilot experiment (step (e)) and previous experience of working with
similar experiments.

(i) Review the above decisions. Revise if necessary.

Revision is necessary when the number of observations calculated at step (h) exceeds the number
that can reasonably be taken within the time or budget available. Revision must begin at step (a),
since the scope of the experiment usually has to be narrowed. If revisions are not necessary, then
the data collection may commence.

It should now be obvious that a considerable amount of thought needs to precede the running of
an experiment. The data collection is usually the most costly and the most time-consuming part of the
experimental procedure. Spending a little extra time in planning helps to ensure that the data can be
used to maximum advantage. No method of analysis can save a badly designed experiment.

Although an experimental scientist well trained in the principles of design and analysis of experi-
ments may not need to consult a statistician, it usually helps to talk over the checklist with someone
not connected with the experiment. Step (a) in the checklist is often the most difficult to complete. A
consulting statistician’s first question to a client is usually, “Tell me exactly why you are running the
experiment. Exactly what do you want to show?” If these questions cannot be answered, it is not sensi-
ble for the experimenter to go away, collect some data, and worry about it later. Similarly, it is essential
that a consulting statistician understand reasonably well not only the purpose of the experiment but
also the experimental technique. It is not helpful to tell an experimenter to run a pilot experiment that
eats up most of the budget.

The experimenter needs to give clear directions concerning the experimental procedure to all persons
involved in running the experiment and in collecting the data. It is also necessary to check that these
directions are being followed exactly as prescribed. An amusing anecdote told by Salvadori (1980)
in his book Why Buildings Stand Up illustrates this point. The story concerns a quality control study
of concrete. Concrete consists of cement, sand, pebbles, and water and is mixed in strictly controlled
proportions in a concrete plant. It is then carried to a building site in a revolving drum on a large truck.
A sample of concrete is taken from each truckload and, after seven days, is tested for compressive
strength. Its strength depends partly upon the ratio of water to cement, and decreases as the proportion
of water increases. The anecdote concerns a problem that occurred during construction of an airport
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terminal in New York. Although the concrete reaching the site before noon showed good strength,
some of the concrete arriving shortly after noon did not. The supervisor investigated the most plausible
causes until he decided to follow the trucks as they went from the plant to the site. He spotted a truck
driver regularly stopping for beer and a sandwich at noon, and to prevent the concrete hardening, he
added extra water into the drums. Thus, Salvadori concludes “the prudent engineer must not only be
cautious about material properties, but be aware, most of all, of human behavior.”

This applies to prudent experimenters, too! In the chapters that follow, most of the emphasis falls on
the statistical analysis of well-designed experiments. It is crucial to keep in mind the ideas in these first
sections while reading the rest of the book. Unfortunately, there are no nice formulae to summarize
everything. Both the experimenter and the statistical consultant should use the checklist and lots of
common sense!

2.3 A Real Experiment—Cotton-Spinning Experiment

The experiment to be described was reported in the November 1953 issue of the journal Applied
Statistics by Robert Peake, of the British Cotton Industry Research Association. Although the experi-
ment was run many years ago, the types of decisions involved in planning experiments have changed
very little. The original report was not written in checklist form, but all of the relevant details were
provided by the author in the article.

ChecKlist
(a) Define the objectives of the experiment.

At an intermediate stage of the cotton-spinning process, a strand of cotton (known as “roving”)
thicker than the final thread is produced. Roving is twisted just before it is wound onto a bobbin.
As the degree of twist increases, so does the strength of the cotton, but unfortunately, so does the
production time and hence, the cost. The twist is introduced by means of a rotary guide called a
“flyer.” The purpose of the experiment was twofold; first, to investigate the way in which different
degrees of twist (measured in turns per inch) affected the breakage rate of the roving, and secondly,
to compare the ordinary flyer with the newly devised special flyer.

(b) Identify all sources of variation.
(i) Treatment factors and their levels.

There are two treatment factors, namely “type of flyer” and “degree of twist.” The first treatment
factor, flyer, has two levels, “ordinary” and “special.” We code these as 1 and 2, respectively.
The levels of the second treatment factor, twist, had to be chosen within a feasible range. A pilot
experiment was run to determine this range, and four non equally spaced levels were selected,
1.63, 1.69, 1.78, and 1.90 turns per inch. Coding these levels as 1, 2, 3, and 4, there are eight
possible treatment combinations, as shown in Table2.1.

The two treatment combinations 11 and 24 were omitted from the experiment, since the pilot
experiment showed that these did not produce satisfactory roving. The experiment was run with
the six treatment combinations 12, 13, 14, 21, 22, 23.
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Table 2.1 Treatment Twist
combinations for the Flyer 163 169 178 190
cotton-spinning experiment

Ordinary (11) 12 13 14

Special 21 22 23 (24)

(©

(d)

(ii) Experimental units.

An experimental unit consisted of the thread on the set of full bobbins in a machine on a given day.
It was not possible to assign different bobbins in a machine to different treatment combinations.
The bobbins needed to be fully wound, since the tension, and therefore the breakage rate, changed
as the bobbin filled. It took nearly one day to wind each set of bobbins completely.

(iii) Blocking factors, noise factors, and covariates.

Apart from the treatment factors, the following sources of variation were identified: the differ-
ent machines, the different operators, the experimental material (cotton), and the atmospheric
conditions.

There was some discussion among the experimenters over the designation of the blocking factors.
Although similar material was fed to the machines and the humidity in the factory was controlled
as far as possible, it was still thought that the experimental conditions might change over time. A
blocking factor representing the day of the experiment was contemplated. However, the experi-
menters finally decided to ignore the day-to-day variability and to include just one blocking factor,
each of whose levels represented a machine with a single operator. The number of experimental
units per block was limited to six to keep the experimental conditions fairly similar within a block.

Choose a rule by which to assign the experimental units to the treatments.

A randomized complete block design, which is discussed in detail in Chap. 10, was selected. The
six experimental units in each block were randomly assigned to the six treatment combinations.
The design of the final experiment was similar to that shown in Table2.2.

Specify the measurements to be made, the experimental procedure, and the anticipated
difficulties.

It was decided that a suitable measurement for comparing the effects of the treatment combinations
was the number of breaks per hundred pounds of material. Since the job of machine operator
included mending every break in the roving, it was easy for the operator to keep a record of every
break that occurred.

The experiment was to take place in the factory during the normal routine. The major difficulties
were the length of time involved for each observation, the loss of production time caused by
changing the flyers, and the fact that it was not known in advance how many machines would be
available for the experiment.
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Table 2.2 Part of the Time order
design for the . Blook 1 2 3 4 5 6
cotton-spinning experiment

I 22 12 14 21 13 23

I 21 14 12 13 22 23

I 23 21 14 12 13 22

v 23 21 12
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(h)

Run a pilot experiment.

The experimental procedure was already well known. However, a pilot experiment was run in order
to identify suitable levels of the treatment factor “degree of twist” for each of the flyers; see step (b).

Specify the model.
The model was of the form

Breakage rate = constant + effect of treatment combination

+ effect of block + error .
Models of this form and the associated analyses are discussed in Chap. 10.
Outline the analysis.

The analysis was planned to compare differences in the breakage rates caused by the six flyer/twist
combinations. Further, the trend in breakage rates as the degree of twist was increased was of inter-
est for each flyer separately.

Calculate the number of observations that need to be taken.

The experimental variability was estimated from a previous experiment of a somewhat different
nature. This allowed a calculation of the required number of blocks to be done (see Sect. 10.5.2).
The calculation was based on the fact that the experimenters wished to detect a true difference in
breakage rates of at least 2 breaks per 100 pounds with high probability. The calculation suggested
that 56 blocks should be observed (a total of 336 observations!).

Review the above decisions. Revise, if necessary.

Since each block would take about a week to observe, it was decided that 56 blocks would not
be possible. The experimenters decided to analyze the data after the first 13 blocks had been
run. The effect of decreasing the number of observations from the number calculated is that the
requirements stated in step (h) would not be met. The probability of detecting differences of 2
breaks per 100 lbs was substantially reduced.
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Table 2.3 Data from the cotton-spinning experiment

Treatment combination

Block number

1 2 3 4 5 6
12 6.0 9.7 7.4 11.5 17.9 11.9
13 6.4 8.3 7.9 8.8 10.1 11.5
14 23 33 7.3 10.6 7.9 5.5
21 33 6.4 4.1 6.9 6.0 7.4
22 3.7 6.4 8.3 33 7.8 5.9
23 4.2 4.6 5.0 4.1 5.5 3.2
Treatment combination Block number
7 8 9 10 11 12 13
12 10.2 7.8 10.6 17.5 10.6 10.6 8.7
13 8.7 9.7 8.3 9.2 9.2 10.1 12.4
14 7.8 5.0 7.8 6.4 8.3 9.2 12.0
21 6.0 73 7.8 7.4 7.3 10.1 7.8
22 8.3 5.1 6.0 3.7 11.5 13.8 8.3
23 10.1 4.2 5.1 4.6 11.5 5.0 6.4
Source Peake (1953). Copyright © 1953 Royal Statistical Society. Reprinted with permission
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The results from the 13 blocks are shown in Table 2.3, and the data from five of these are plotted in
Fig.2.1. The data show that there are certainly differences in blocks. For example, results in block 5 are
consistently above those for block 1. The breakage rate appears to be somewhat higher for treatment
combinations 12 and 13 than for 23. However, the observed differences may not be any larger than the
inherent variability in the data. Therefore, it is important to subject these data to a careful statistical

analysis. This will be done in Sect. 10.5.

2.4 Some Standard Experimental Designs

An experimental design is a rule that determines the assignment of the experimental units to the
treatments. Although experiments differ from each other greatly in most respects, there are some
standard designs that are used frequently. These are described briefly in this section.


http://dx.doi.org/10.1007/978-3-319-52250-0_10
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2.4.1 Completely Randomized Designs

A completely randomized design is the name given to a design in which the experimenter assigns the
experimental units to the treatments completely at random, subject only to the number of observations
to be taken on each treatment. Completely randomized designs are used for experiments that involve
no blocking factors. They are discussed in depth in Chaps. 3-9 and again in some of the later chapters.
The mechanics of the randomization procedure are illustrated in Sect. 3.2. The statistical properties of
the design are completely determined by specification of ry, r, ..., ry, where r; denotes the number
of observations on the ith treatment,i =1, ..., v.
The model is of the form

Response = constant + effect of treatment + error.

Factorial experiments often have a large number of treatments. This number can even exceed the
number of available experimental units, so that only a subset of the treatment combinations can be
observed. Special methods of design and analysis are needed for such experiments, and these are
discussed in Chap. 15.

2.4.2 Block Designs

A block design is a design in which the experimenter partitions the experimental units into blocks,
determines the allocation of treatments to blocks, and assigns the experimental units within each block
to the treatments completely at random. Block designs are discussed in depth in Chaps. 10-14.

In the analysis of a block design, the blocks are treated as the levels of a single blocking factor
even though they may be defined by a combination of levels of more than one nuisance factor. For
example, the cotton-spinning experiment of Sect.2.3 is a block design with each block corresponding
to a combination of a machine and an operator. The model is of the form

Response = constant + effect of block

+ effect of treatment + error .

The simplest block design is the complete block design, in which each treatment is observed the
same number of times in each block. Complete block designs are easy to analyze. A complete block
design whose blocks contain a single observation on each treatment is called a randomized complete
block design or, simply, a randomized block design.

When the block size is smaller than the number of treatments, so that it is not possible to observe
every treatment in every block, a block design is called an incomplete block design. The precision with
which treatment effects can be compared and the methods of analysis that are applicable depend on
the choice of the design. Some standard design choices, and appropriate methods of randomization,
are covered in Chap. 11. Incomplete block designs for factorial experiments are discussed in Chap. 13.

2.4.3 Designs with Two or More Blocking Factors
When an experiment involves two major sources of variation that have each been designated as blocking

factors, these blocking factors are said to be either crossed or nested. The difference between these is
illustrated in Table 2.4. Each experimental unit occurs at some combination of levels of the two blocking
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Table 2.4 Schematic plans of experiments with two blocking factors

(i) Crossed blocking factors (ii) Nested blocking factors
Block Block
Factor 1 Factor 1
1 2 3 1 2 3
Block 1 * * 1 *
Factor 2 * * * 2 *
Block 4 *
Factor 5 *
2 6 *
’7 *
8 *
() *

factors, and an asterisk denotes experimental units that are to be assigned to treatment factors. It can be
seen that when the block factors are crossed, experimental units are used from all possible combinations
of levels of the blocking factors. When the block factors are nested, a particular level of one of the
blocking factors occurs at only one level of the other blocking factor.

Crossed Blocking Factors

A design involving two crossed blocking factors is sometimes called a “row—column” design. This
is due to the pictorial representation of the design, in which the levels of one blocking factor are
represented by rows and the levels of the second are represented by columns as in Table 2.4(i). An
intersection of a row and a column is called a “cell.” Experimental units in the same cell should be
similar. The model is of the form

Response = constant + effect of row block + effect of column block

+ effect of treatment + error.

Some standard choices of row—column designs with one experimental unit per cell are discussed in
Chap. 12, and an example is given in Sect.2.5.3 (p. 26) of a row—column design with six experimental
units per cell.

The example shown in Table 2.5 is a basic design (prior to randomization) that was considered for the
cotton-spinning experiment. The two blocking factors were “machine with operator” and “day.” Notice
that if the column headings are ignored, the design looks like a randomized complete block design.
Similarly, if the row headings are ignored, the design with columns as blocks looks like a randomized
complete block design. Such designs are called Latin squares and are discussed in Chap. 12. For the
cotton-spinning experiment, which was run in the factory itself, the experimenters could not guarantee
that the same six machines would be available for the same six days, and this led them to select
a randomized complete block design. Had the experiment been run in a laboratory, so that every
machine was available on every day, the Latin square design would have been used, and the day-to-day
variability could have been removed from the analysis of treatments.

Nested (or Hierarchical) Blocking Factors.

Two blocking factors are said to be nested when observations taken at two different levels of one
blocking factor are automatically at two different levels of the second blocking factor as in Table 2.4(ii).
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Table 2.5 A Latin square for the cotton-spinning experiment

Machine with operator Days
1 2 3 4 5 6
1 12 13 14 21 22 23
2 13 14 21 22 23 12
3 14 21 22 23 12 13
4 22 23 12 13 14 21
5 23 12 13 14 21 22
6 21 22 23 12 13 14

As an example, consider an experiment to compare the effects of a number of diets (the treatments) on
the weight (the response variable) of piglets (the experimental units). Piglets vary in their metabolism,
as do human beings. Therefore, the experimental units are extremely variable. However, some of this
variability can be controlled by noting that piglets from the same litter are more likely to be similar than
piglets from different litters. Also, litters from the same sow are more likely to be similar than litters
from different sows. The different sows can be regarded as blocks, the litters regarded as subblocks, and
the piglets as the experimental units within the subblocks. A piglet belongs only to one litter (piglets
are nested within litters), and a litter belongs only to one sow (litters are nested within sows). The
random assignment of piglets to diets would be done separately litter by litter in exactly the same way
as for any block design.

In the industrial setting, the experimental units may be samples of some experimental material (e.g.,
cotton) taken from several different batches that have been obtained from several different suppliers.
The samples, which are to be assigned to the treatments, are “nested within batches,” and the batches
are “nested within suppliers.” The random assignment of samples to treatment factor levels is done
separately batch by batch.

In an ordinary block design, the experimental units can be thought of as being nested within blocks.
In the above two examples, an extra “layer” of nesting is apparent. Experimental units are nested within
subblocks, subblocks are nested within blocks. The subblocks can be assigned at random to the levels
of a further treatment factor. When this is done, the design is often known as a split-plot design (see
Sect.2.4.4).

2.4.4 Split-Plot Designs

A split-plot design is a design with at least one blocking factor where the experimental units within
each block are assigned to the treatment factor levels as usual, and in addition, the blocks are assigned
at random to the levels of a further treatment factor. This type of design is used when the levels of
one (or more) treatment factors are easy to change, while the alteration of levels of other treatment
factors are costly, or time-consuming. For example, this type of situation occurred in the cotton-spinning
experiment of Sect. 2.3. Setting the degree of twist involved little more than a turn of a dial, but changing
the flyers involved stripping down the machines. The experiment was, in fact, run as a randomized
complete block design, as shown in Table2.2. However, it could have been run as a split-plot design,
as shown in Table2.6. The time slots have been grouped into blocks, which have been assigned at
random to the two flyers. The three experimental units within each cell have been assigned at random
to degrees of twist.
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Table 2.6 A split-plot design for the cotton-spinning experiment

Time order
1 2 3 4 5 6
Block I Block II
Flyer 2 Flyer 1
Machine I Twist 2 Twist 1 Twist 3 Twist 2 Twist 4 Twist 3
Flyer 2 Flyer 1
Machine II Twist 1 Twist 2 Twist 3 Twist 4 Twist 2 Twist 3
Flyer 1 Flyer 2
Machine II1 Twist 4 Twist 2 Twist 3 Twist 3 Twist 1 Twist 2

Split-plot designs also occur in medical and psychological experiments. For example, suppose that
several subjects are assigned at random to the levels of a drug. In each time-slot each subject is asked
to perform one of a number of tasks, and some response variable is measured. The subjects can be
regarded as blocks, and the time-slots for each subject can be regarded as experimental units within
the blocks. The blocks and the experimental units are each assigned to the levels of the treatment
factors—the subject to drugs and the time-slots to tasks. Split-plot designs are discussed in detail in
Chap. 19.

In a split-plot design, the effect of a treatment factor whose levels are assigned to the experimental
units is generally estimated more precisely than a treatment factor whose levels are assigned to the
blocks. It was this reason that led the experimenters of the cotton-spinning experiment to select the
randomized complete block design in Table2.2 rather than the split-plot design of Table2.6. They
preferred to take the extra time in running the experiment rather than risk losing precision in the
comparison of the flyers.

2.5 More Real Experiments

Three experiments are described in this section. The first, called the “soap experiment,” was run as a
class project by Suyapa Silvia in 1985. The second, called the “battery experiment,” was run by one of
the authors. Both of these experiments are designed as completely randomized designs. The first has
one treatment factor at three levels while the second has two treatment factors, each at two levels. The
soap and battery experiments are included here to illustrate the large number of decisions that need
to be made in running even the simplest investigations. Their data are used in Chaps. 3-5 to illustrate
methods of analysis. The third experiment, called the “cake-baking experiment,” includes some of the
more complicated features of the designs discussed in Sect.2.4.

2.5.1 Soap Experiment

The checklist for this experiment has been obtained from the experimenter’s report. Our comments are
in parentheses. The reader is invited to critically appraise the decisions made by this experimenter and
to devise alternative ways of running her experiment.
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Checklist (Suyapa Silvia, 1985)

(a)

(b)

Define the objectives of the experiment.

The purpose of this experiment is to compare the extent to which three particular types of soap
dissolve in water. It is expected that the experiment will answer the following questions: Are there
any differences in weight loss due to dissolution among the three soaps when allowed to soak in
water for the same length of time? What are these differences?

Generalizations to other soaps advertised to be of the same type as the three used for this experiment
cannot be made, as each soap differs in terms of composition, i.e., has different mixtures of
ingredients. Also, because of limited laboratory equipment, the experimental conditions imposed
upon these soaps cannot be expected to mimic the usual treatment of soaps, i.e., use of friction,
running water, etc. Conclusions drawn can only be discussed in terms of the conditions posed in
this experiment, although they could give indications of what the results might be under more
normal conditions.

(We have deleted the details of the actual soaps used).

Identify all sources of variation.
(i) Treatment factors and their levels

The treatment factor, soap, has been chosen to have three levels: regular, deodorant, and moistur-
izing brands, all from the same manufacturer. The particular brands used in the experiment are of
special interest to this experimenter.

The soap will be purchased at local stores and cut into cubes of similar weight and size—about 1”
cubes. The cubes will be cut out of each bar of soap using a sharp hacksaw so that all sides of the
cube will be smooth. They will then be weighed on a digital laboratory scale showing a precision
of 10 mg. The weight of each cube will be made approximately equal to the weight of the smallest
cube by carefully shaving thin slices from it. A record of the preexperimental weight of each cube
will be made.

(Note that the experimenter has no control over the age of the soap used in the experiment. She is
assuming that the bars of soap purchased will be typical of the population of soap bars available in
the stores. If this assumption is not true, then the results of the experiment will not be applicable in
general. Each cube should be cut from a different bar of soap purchased from a random sample of
stores in order for the experiment to be as representative as possible of the populations of soap bars.)

(ii) Experimental units

The experiment will be carried out using identical metal muffin pans. Water will be heated to
100°F (approximate hot bath temperature), and each section will be quickly filled with 1/4 cup of
water. A pilot study indicated that this amount of water is enough to cover the tops of the soaps.
The water-filled sections of the muffin pans are the experimental units, and these will be assigned
to the different soaps as described in step (c).

(>iii) Blocking factors, noise factors, and covariates

(Apart from the differences in the composition of the soaps themselves, the initial sizes of the
cubes were not identical, and the sections of the muffin pan were not necessarily all exposed to the
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same amount of heat. The initial sizes of the cubes were measured by weight. These could have
been used as covariates, but the experimenter chose instead to measure the weight changes, that is,
“final weight minus initial weight.” The sections of the muffin pan could have been grouped into
blocks with levels such as “outside sections,” “inside sections,” or such as “center of heating vent”
and “off-center of heating vent.” However, the experimenter did not feel that the experimental units
would be sufficiently variable to warrant blocking. Other sources of variation include inaccuracies
of measuring initial weights, final weights, amounts and temperature of water. All of these were

designated as minor. No noise factors were incorporated into the experiment.)
(c) Choose a rule by which to assign the experimental units to the levels of the treatment factors.

An equal number of observations will be made on each of the three treatment factor levels.
Therefore, r cubes of each type of soap will be prepared. These cubes will be randomly matched
to the experimental units (muffin pan sections) using a random-number table.

(This assignment rule defines a completely randomized design with r observations on each treat-
ment factor level, see Chap. 3).

(d) Specify the measurements to be made, the experimental procedure, and the anticipated
difficulties.

The cubes will be carefully placed in the water according to the assignment rule described in
paragraph (c). The pans will be immediately sealed with aluminum foil in order to prevent excessive
moisture loss. The pans will be positioned over a heating vent to keep the water at room temperature.
Since the sections will be assigned randomly to the cubes, it is hoped that if water temperature
differences do exist, these will be randomly distributed among the three treatment factor levels.
After 24 hours, the contents of the pans will be inverted onto a screen and left to drain and dry
for a period of 4 days in order to ensure that the water that was absorbed by each cube has been
removed thoroughly. The screen will be labeled with the appropriate soap numbers to keep track
of the individual soap cubes.

After the cubes have dried, each will be carefully weighed. These weights will be recorded next to
the corresponding preexperimental weights to study the changes, if any, that may have occurred.
The analysis will be carried out on the differences between the post- and preexperimental weights.

Expected Difficulties

(i) The length of time required for a cube of soap to dissolve noticeably may be longer than is practical
or assumed. Therefore, the data may not show any differences in weights.
(i) Measuring the partially dissolved cubes may be difficult with the softer soaps (e.g., moisturizing
soap), since they are likely to lose their shape.
(iii)) The drying time required may be longer than assumed and may vary with the soaps, making it
difficult to know when they are completely dry.
(iv) The heating vent may cause the pan sections to dry out prematurely.

(After the experiment was run, Suyapa made a list of the actual difficulties encountered. They are
reproduced below. Although she had run a pilot experiment, it failed to alert her to these difficulties
ahead of time, since not all levels of the treatment factor had been observed.)
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Difficulties Encountered

(i) When the cubes were placed in the warm water, it became apparent that some soaps absorbed water
very quickly compared to others, causing the tops of these cubes to become exposed eventually.
Since this had not been anticipated, no additional water was added to these chambers in order to
keep the experiment as designed. This created a problem, since the cubes of soap were not all
completely covered with water for the 24-hour period.

(i) The drying time required was also different for the regular soap compared with the other two. The
regular soap was still moist, and even looked bigger, when the other two were beginning to crack
and separate. This posed a real dilemma, since the loss of weight due to dissolution could not be
judged unless all the water was removed from the cubes. The soaps were observed for two more
days after the data was collected and the regular soap did lose part of the water it had retained.

(iii)) When the contents of the pans were deposited on the screen, it became apparent that the dissolved
portion of the soap had become a semisolid gel, and a decision had to be made to regard this as
“nonusable” and not allow it to solidify along with the cubes (which did not lose their shape).

(The remainder of the checklist together with the analysis is given in Sect.3.7. The calculations at
step (h) showed that four observations should be taken on each soap type. The data were collected and
are shown in Table 2.7. A plot of the data is shown in Fig.2.2.)

The weightloss for each cube of soap measured in grams to the nearest 0.01 gm is the difference
between the initial weight of the cube (pre-weight) and the weight of the same cube at the end of
the experiment (post-weight). Negative values indicate a weight gain, while positive values indicate a
weight loss (a large value being a greater loss). As can be seen, the regular soap cubes experienced the
smallest changes in weight, and in fact, appear to have retained some of the water. Possible reasons for
this will be examined in the discussion section (see Sect. 3.7.3). The data show a clear difference in the
weight loss of the different soap types. This will be verified by a statistical hypothesis test (Sect. 3.7.2).

Table 2.7 Weight loss for soaps in the soap experiment

Soap (Level) Cube Pre-weight (grams) Post-weight (grams) Weightloss (grams)
Regular (1) 1 13.14 13.44 —0.30
2 13.17 13.27 —0.10
3 13.17 13.31 —0.14
4 13.17 12.77 0.40
Deodorant (2) 5 13.03 10.40 2.63
6 13.18 10.57 2.61
7 13.12 10.71 241
8 13.19 10.04 3.15
Moisturizing (3) 9 13.14 11.28 1.86
10 13.19 11.16 2.03
11 13.06 10.80 2.26
12 13.00 11.18 1.82
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2,5.2 Battery Experiment

Checklist

(a)

(b)

Define the objectives of the experiment.

Due to the frequency with which his family needed to purchase flashlight batteries, one of the
authors (Dan Voss) was interested in finding out which type of nonrechargeable battery was the
most economical. In particular, Dan was interested in comparing the lifetime per unit cost of the
particular name brand that he most often purchased with the store brand where he usually shopped.
He also wanted to know whether it was worthwhile paying the extra money for alkaline batteries
over heavy duty batteries.

A further objective was to compare the lifetimes of the different types of battery regardless of
cost. This was due to the fact that whenever there was a power cut, all the available flashlights
appeared to have dead batteries! (Only the first objective will be discussed in Chaps. 3 and 4. The
second objective will be addressed in Chap.5.)

Identify all sources of variation.

There are several sources of variation that are easy to identify in this experiment. Clearly, different
duty batteries such as alkaline and heavy duty could well be an important factor in the lifetime
per unit cost, as could the brand of the battery. These two sources of variation are the ones of most
interest in the experiment and form the levels of the two treatment factors “duty” and “brand.”
Dan decided not to include regular duty batteries in the experiment.

Other possible sources of variation include the date of manufacture of the purchased battery, and
whether the lifetime was monitored under continuous running conditions or under the more usual
setting with the flashlight being turned on and off, the temperature of the environment, the age
and variability of the flashlight bulbs.

The first of these could not be controlled in the experiment. The batteries used in the experiment
were purchased at different times and in different locations in order to give a wide representation
of dates of manufacture. The variability caused by this factor would be measured as part of the
natural variability (error variability) in the experiment along with measurement error. Had the
dates been marked on the packets, they could have been included in the analysis of the experiment
as covariates. However, the dates were not available.
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The second of these possible sources of variation (running conditions) was fixed. All the measure-
ments were to be made under constant running conditions. Although this did not mimic the usual
operating conditions of flashlight batteries, Dan thought that the relative ordering of the different
battery types in terms of life per unit cost would be the same. The continuous running setting was
much easier to handle in an experiment since each observation was expected to take several hours
and no sophisticated equipment was available.

The third source of variation (temperature) was also fixed. Since the family living quarters are
kept at a temperature of about 68° in the winter, Dan decided to run his experiment at this usual
temperature. Small fluctuations in temperature were not expected to be important.

The variability due to the age of the flashlight bulb was more difficult to handle. A decision had
to be made whether to use a new bulb for each observation and risk muddling the effect of the
battery with that of the bulb, or whether to use the same bulb throughout the experiment and risk
an effect of the bulb age from biasing the data. A third possibility was to divide the observations
into blocks and to use a single bulb throughout a block, but to change bulbs between blocks. Since
the lifetime of a bulb is considerably longer than that of a battery, Dan decided to use the same
bulb throughout the experiment.

(i) Treatment factors and their levels

There are two treatment factors each having two levels. These are battery “duty” (Ievel 1 = alkaline,
level 2=heavy duty) and “brand” (level 1 =name brand, level 2 =store brand). This gives four
treatment combinations coded 11, 12, 21, 22. In Chaps.3-5, we will recode these treatment
combinations as 1, 2, 3, 4, and we will often refer to them as the four different treatments or the
four different levels of the factor “battery type.” Thus, the levels of battery type are:

Level Treatment Combination
1 alkaline, name brand (11)
alkaline, store brand (12)

heavy duty, name brand (21)

heavy duty, store brand (22)

B Lo

(ii) Experimental units

The experimental units in this experiment are the time slots. These were assigned at random to
the battery types so as to determine the order in which the batteries were to be observed. Any
fluctuations in temperature during the experiment form part of the variability between the time
slots and are included in the error variability.

(ii1) Blocking factors, noise factors, and covariates

As mentioned above, it was decided not to include a blocking factor representing different flash-
light bulbs. Also, the date of manufacture of each battery was not available, and small fluctuations
in room temperature were not thought to be important. Consequently, there were no covariates in
the experiment, and no noise factors were incorporated.
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Choose a rule by which to assign the experimental units to the levels of the treatment factor.

Since there were to be no blocking factors, a completely randomized design was selected, and the
time slots were assigned at random to the four different battery types.

Specify the measurements to be made, the experimental procedure, and the anticipated dif-
ficulties.

The first difficulty was in deciding exactly how to measure lifetime of a flashlight battery. First, a
flashlight requires two batteries. In order to keep the cost of the experiment low, Dan decided to
wire a circuit linking just one battery to a flashlight bulb. Although this does not mimic the actual
use of a flashlight, Dan thought that as with the constant running conditions, the relative lifetimes
per unit cost of the four battery types would be preserved. Secondly, there was the difficulty in
determining when the battery had run down. Each observation took several hours, and it was not
possible to monitor the experiment constantly. Also, a bulb dims slowly as the battery runs down,
and it is a judgment call as to when the battery is flat. Dan decided to deal with both of these prob-
lems by including a small clock in the circuit. The clock stopped before the bulb had completely
dimmed, and the elapsed time on the clock was taken as a measurement of the battery life. The
cost of a battery was computed as half of the cost of a two-pack, and the lifetime per unit cost was
measured in minutes per dollar (min/$).

Run a pilot experiment.

A few observations were run as a pilot experiment. This ensured that the circuit did indeed work
properly. It was discovered that the clock and the bulb had to be wired in parallel and not in
series, as Dan had first thought! The pilot experiment also gave a rough idea of the length of
time each observation would take (at least four hours), and provided a very rough estimate of the
error variability that was used at step (h) to calculate that four observations were needed on each
treatment combination.

Difficulties Encountered

The only difficulty encountered in running the main experiment was that during the fourth obser-
vation, it was discovered that the clock was running but the bulb was out. This was due to a loose
connection. The connection was repaired, a new battery inserted into the circuit, and the clock reset.

Data

The data collected in the main experiment are shown in Table 2.8 and plotted in Fig. 2.3. The experiment
was run in 1993.
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Table 2.8 Data for the battery experiment

Battery type Life (min) Unit cost ($) Life per unit cost Time order
1 602 0.985 611 1
2 863 0.935 923 2
1 529 0.985 537 3
4 235 0.495 476 4
1 534 0.985 542 5
1 585 0.985 593 6
2 743 0.935 794 7
3 232 0.520 445 8
4 282 0.495 569 9
2 773 0.935 827 10
2 840 0.935 898 11
3 255 0.520 490 12
4 238 0.495 480 13
3 200 0.520 384 14
4 228 0.495 460 15
3 215 0.520 413 16
Fig.2.3 Battery life per 1000 A
unit cost versus battery § 8
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2.5.3 Cake-Baking Experiment

2 3
Battery Type

The following factorial experiment was run in 1979 by the baking company Spillers Ltd. (in the U.K.)

and was reported in the Bulletin in Applied Statistics in 1980 by S.M. Lewis and A.M. Dean.
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Checklist
(a) Define the objectives of the experiment.

The experimenters at Spillers, Ltd. wanted to know how ‘“cake quality” was affected by adding
different amounts of glycerine and tartaric acid to the cake mix.

(b) Identify all sources of variation.
(i) Treatment factors and their levels

The two treatment factors of interest were glycerine and tartaric acid. Glycerine was called the
“first treatment factor” and labeled F, while tartaric acid was called the “second treatment factor”
and labeled F>. The experimenters were very familiar with the problems of cake baking and deter-
minations of cake quality. They knew exactly which amounts of the two treatment factors they
wanted to compare. They selected four equally spaced amounts of glycerine and three equally
spaced amounts of tartaric acid. These were coded as 1, 2, 3, 4 for glycerine and 1, 2, 3 for tartaric
acid. Therefore, the twelve coded treatment combinations were 11, 12, 13, 21, 22, 23, 31, 32, 33,
41, 42, 43.

(i) Identify the experimental units

Before the experimental units can be identified, it is necessary to think about the experimental
procedure. One batch of cake-mix was divided into portions. One of the twelve treatment com-
binations (i.e., a certain amount of glycerine and a certain amount of tartaric acid) was added to
each portion. Each portion was then thoroughly mixed and put into a container for baking. The
containers were placed on a tray in an oven at a given temperature for the required length of time.
The experimenters required an entire tray of cakes to make one measurement of cake quality. Only
one tray would fit on any one shelf of an oven. An experimental unit was, therefore, “an oven shelf
with a tray of containers of cake-mix,” and these were assigned at random to the twelve treatment
combinations.

(iii) Blocking factors, noise factors, and covariates

There were two crossed blocking factors. The first was time of day with two levels (morning and
afternoon). The second was oven, which had three levels, one level for each of the three ovens
that were available on the day of the experiment. Each cell (defined by oven and time of day)
contained six experimental units, since an oven contained six shelves (see Table2.9). Each set of
six experimental units was assigned at random to six of the twelve treatment combinations, and it

Table 2.9 Basic design for the baking experiment

Oven codes Time of day codes
1 2
11 13 22 24 32 34 12 14 21 23 31 33
2 12 14 21 23 32 34 11 13 22 24 31 33

3 12 14 22 24 31 33 11 13 21 23 32 34
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was decided in advance which six treatment combinations should be observed together in a cell
(see step (c) of the checklist).

Although the experimenters expected differences in the ovens and in different runs of the same
oven, their experience showed that differences between the shelves of their industrial ovens were
very minor. Otherwise, a third blocking factor representing oven shelf would have been needed.
It was possible to control carefully the amount of cake mix put into each container, and the
experimenters did not think it was necessary to monitor the precooked weight of each cake. Small
differences in these weights would not affect the measurement of the quality. Therefore, no covari-
ates were used in the analysis.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment factors.

Since there were two crossed blocking factors, a row—column design with six experimental units
per cell was required. It was not possible to observe every treatment combination in every cell.
However, it was thought advisable to observe all twelve treatment combinations in each oven,
either in the morning or the afternoon. This precaution was taken so that if one of the ovens failed
on the day of the experiment, the treatment combinations could still all be observed twice each.
The basic design (before randomization) that was used by Spillers is shown in Table2.9. The
experimental units (the trays of containers on the six oven shelves) need to be assigned at random
to the 6 treatment combinations cell by cell. The oven codes need to be assigned to the actual
ovens at random, and the time of day codes 1 and 2 to morning and afternoon.

Exercises

Exercises 1-7 refer to the list of experiments in Table2.10.

>

. Table2.10 gives a list of experiments that can be run as class projects. Select a simple experiment

of interest to you, but preferably not on the list. Complete steps (a)—(c) of the checklist with the
intention of actually running the experiment when the checklist is complete.

. For experiments 1 and 7 in Table 2.10, complete steps (a) and (b) of the checklist. There may be

more than one treatment factor. Give precise definitions of their levels.

For experiment 2, complete steps (a)—(c) of the checklist.

For experiment 3, complete steps (a)—(c) of the checklist.

For experiment 4, list sources of variation. Decide which sources can be controlled by limiting the
scope of the experiment or by specifying the exact experimental procedure to be followed. Of the

Table 2.10 Some simple experiments

1. Compare the growth rate of bean seeds under different watering and lighting schedules.
Does the boiling point of water differ with different concentrations of salt?

2
3. Compare the strengths of different brands of paper towel.
4

Do different makes of popcorn give different proportions of unpopped kernels? What about cooking meth-
ods?

5. Compare the effects of different locations of an observer on the speed at which subjects locate the

IR

occurrences of the letter “¢” in a written passage.
Do different colored candles burn at different speeds?

7. Compare the proportions of words remembered from lists of related or unrelated words, and under various

conditions such as silence and distraction.
8. Compare the effects of different colors of exam paper on students’ performance in an examination.
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remaining sources of variation, decide which are minor and which are major. Are there any blocking
factors in this experiment?

. For experiment 6, specify what measurements should be made, how they should be made, and list
any difficulties that might be expected.

. For experiment 8, write down all the possible sources of variation. In your opinion, should this
experiment be run as a completely randomized design, a block design, or a design with more than
one blocking factor? Justify your answer.

. Read critically through the checklists in Sect.2.5. Would you suggest any changes? Would you
have done anything differently? If you had to criticize these experiments, which points would you
address?

. The following description was given by Clifford Pugh in the 1953 volume of Applied Statistics.

“The widespread use of detergents for domestic dish washing makes it desirable for manufacturers
to carry out tests to evaluate the performance of their products. ... Since foaming is regarded as
the main criterion of performance, the measure adopted is the number of plates washed before
the foam is reduced to a thin surface layer. The five main factors which may affect the number
of plates washed by a given product are (i) the concentration of detergent, (ii) the temperature of
the water, (iii) the hardness of the water, (iv) the type of “soil” on the plates, and (v) the method
of washing used by the operator. . .. The difficulty of standardizing the soil is overcome by using
the plates from a works canteen (cafeteria) for the test and adopting a randomized complete block
technique in which plates from any one course form a block . . .. One practical limitation is the num-
ber of plates available in any one block. This permits only four . . . tests to be completed (in a block).”

Draw up steps (a)—(d) of a checklist for an experiment of the above type and give an example of a
design that fits the requirements of your checklist.



3.1 Introduction

In working through the checklist in Chap. 2, the experimenter must choose an experimental design at
step (c). A design is the rule that determines the assignment of the experimental units to treatments.
The simplest possible design is the completely randomized design, where the experimental units are
assigned to the treatments completely at random, subject to the number of observations to be taken on
each treatment. Completely randomized designs involve no blocking factors.

Two ways of calculating the required number of observations (sample sizes) on each treatment
are presented in Sects. 3.6 and 4.5. The first method chooses sample sizes to obtain desired powers of
hypothesis tests, and the second chooses sample sizes to achieve desired lengths of confidence intervals.
We sometimes refer to the list of treatments and the corresponding sample sizes as the design, with
the understanding that the assignment of experimental units to treatments is to be done completely at
random.

In this chapter, we discuss the random assignment procedure for the completely randomized design,
we introduce the method of least squares for estimating model parameters, and we develop a procedure
for testing equality of the treatment parameters. Analyses by the SAS and R software are described at
the end of the chapter.

3.2 Randomization

In this section we provide a procedure for randomization that is very easily applied using a computer,
but can equally well be done by hand. On a computer, the procedure requires the availability of software
that stores data in rows and columns (like spreadsheet software, a SAS data set, or a data.frame or
matrix in R), that includes a function that randomly generates real numbers between zero and one, and
that includes the capacity to sort rows by the values in one column.

We use r; to denote the number of observations to be taken on the ith treatment, and n = Xr; to
denote the total number of observations (and hence the required number of experimental units). We
code the treatments from 1 to v and label the experimental units 1 to n.

Step 1:  Enter into one column ry 1’s, then rp 2’s, ..., and finally r,, v’s, giving a total of n = Xr;
entries. These represent the treatment labels.

Step 2:  Enter into another column n = Xr; random numbers, including enough digits to avoid ties.
(The random numbers can be generated by a computer program or read from Table A.1).
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Table 3.1 Randomization Unsorted Unsorted Sorted Sorted Experimental unit
treatments random treatments random
numbers numbers

1 0.533 3 0.139 1
1 0.683 2 0.379 2
2 0.702 3 0411 3
2 0.379 1 0.533 4
3 0411 1 0.683 5
3 0.962 2 0.702 6
3 0.139 3 0.962 7

Step 3:  Reorder both columns so that the random numbers are put in ascending order. This arranges
the treatment labels into a random order.
Step 4:  Assign experimental unit ¢ to the treatment whose label is in row 7.

If the number n of experimental units is a k-digit integer, then the list in step 2 should be a list of
k-digit random numbers. To obtain k-digit random numbers from Table A.1, a random starting place is
found as described in Sect. 1.1.4, p. 3. The digits are then read across the rows in groups of k (ignoring
spaces).

We illustrate the randomization procedure using the SAS software in Sect.3.8.1, p. 52, and using
the R software in Sect.3.9.1, p. 59. The procedure can equally well be done using the random digits in
Table A.1 and sorting by hand.

Example 3.2.1 Randomization

Consider a completely randomized design for three treatments and sample sizes r| = rp = 2,r3 = 3.
The unrandomized design (step 1 of the randomization procedure) is 1 1 2 2 3 3 3, and is listed in
column 1 of Table3.1. Suppose step 2 generates the random numbers in column 2 of Table 3.1. In step
3, columns 1 and 2 are sorted so that the entries in column 2 are in ascending order. This gives columns
3 and 4. In step 4, the entries in column 3 are matched with experimental units 1-7 in order, so that
column 3 contains the design after randomization. Treatment 1 is in rows 4 and 5, so experimental
units 4 and 5 are assigned to treatment 1. Likewise, units 2 and 6 are assigned to treatment 2, and units
1, 3 and 7 are assigned to treatment 3. The randomly ordered treatments are then 32 3 1 1 2 3, and the
experimental units 1-7 are assigned to the treatments in this order. 0

3.3 Model for a Completely Randomized Design

A model is an equation that shows the dependence of the response variable upon the levels of the
treatment factors. (Models involving block effects or covariates are considered in later chapters.)

Let Y;; be a random variable that represents the response obtained on the ¢th observation of the ith
treatment. Let the parameter u; denote the “true response” of the i th treatment, that is, the response that
would always be obtained from the ith treatment if it could be observed under identical experimental
conditions and measured without error. Of course, this ideal situation can never happen—there is always
some variability in the experimental procedure even if only caused by inaccuracies in reading measuring
instruments. Sources of variation that are deemed to be minor and ignored during the planning of the
experiment also contribute to variation in the response variable. These sources of nuisance variation
are usually represented by a single variable ¢;;, called an error variable, which is a random variable
with zero mean. The model is then
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Yir=pi+er, t=1,...,r, i=1,...,v,

where v is the number of treatments and r; is the number of observations to be taken on the i th treatment.
An alternative way of writing this model is to replace the parameter y; by p + 7i, so that the model
becomes

Yir=p+7m+te, t=1,....r, i=1,...,0.

In this model, ¢ + 7; denotes the true mean response for the ith treatment, and examination of
differences between the parameters p; in the first model is equivalent to examination of differences
between the parameters 7; in the second model.

It will be seen in Sect. 3.4 that unique estimates of the parameters in the second formulation of the
model cannot be obtained. Nevertheless, many experimenters prefer this model. The parameter p is a
constant, and the parameter 7; represents the positive or negative deviation of the response from this
constant when the ith treatment is observed. This deviation is called the “effect” on the response of
the ith treatment.

The above models are linear models, that is, the response variable is written as a linear function of
the parameters. Any model that is not, or cannot, be transformed into a linear model cannot be treated
by the methods in this book. Linear models often provide reasonably good approximations to more
complicated models, and they are used extensively in practice.

The specific forms of the distributions of the random variables in a model need to be identified before
any statistical analyses can be done. The error variables represent all the minor sources of variation
taken together, including all the measurement errors. In many experiments, it is reasonable to assume
that the error variables are independent and that they have a normal distribution with zero mean and
unknown variance o2, which must be estimated. We call these assumptions the error assumptions. It
will be shown in Chap. 5 that plots of the experimental data give good indications of whether or not
the error assumptions are likely to be true. Proceeding with the analysis when the constant variance,
normality, or independence assumptions are violated can result in a totally incorrect analysis.

A complete statement of the model for any experiment should include the list of error assumptions.
Thus, for a completely randomized design with v specifically selected treatments (fixed effects), the

model is
Yio=p+7+er,

o~ 2
/ €ir N(O,.U ) (3.1
€ir's are mutually independent,
t=1,...,r;, i=1,...,v,

where “~ N (0, 02)” denotes “has a normal distribution with mean 0 and variance o2.” This is some-
times called a one-way analysis of variance model, since the model includes only one major source
of variation, namely the treatment effect, and because the standard analysis of data using this model
involves a comparison of measures of variation.

Notice that it is unnecessary to specify the distribution of Y;; in the model, as it is possible to deduce
this from the stated information. Since Y;; is modeled as the sum of a treatment mean x4 + 7; and a
normally distributed random variable ¢;;, it follows that

Yie ~ N(p+1i,07).
Also, since the €;;’s are mutually independent, the Y;,’s must also be mutually independent. Therefore,

if the model is a true representation of the behavior of the response variable, then the data values y;,
for the ith treatment form a random sample from a N (i + 7, 0%) distribution.
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3.4 Estimation of Parameters
3.4.1 Estimable Functions of Parameters

A function of the parameters of any linear model is said to be estimable if and only if it can be written
as the expected value of a linear combination of the response variables. Only estimable functions of the
parameters have unique linear unbiased estimates. Since it makes no sense to work with functions that
have an infinite possible number of values, it is important that the analysis of the experiment involve
only the estimable functions. For the one-way analysis of variance model (3.3.1), every estimable
function is of the form

E [ZzaitYi;] = ZzaitE[Yit]
r i

i i

= ZZai,(quTi) = Zbi(ﬂ+7i)v
i t i

where b; = X;a;; and the a;;’s are real numbers. Any function not of this form is nonestimable.

Clearly, © + 71 is estimable, since it can be obtained by setting by = landby, = b3 =--- = b, = 0.
Similarly, each p + 7; is estimable. If we choose b; = ¢; where > ¢; = 0, we see that > ¢;7;
is estimable. Any such function > ¢;7; for which Zi c¢; = 0 is called a contrast, so all contrasts
are estimable in the one-way analysis of variance model. For example, setting by = 1, by = —1,
b3z = --- = b, = 0 shows that 71 — 7 is estimable. Similarly, each 7; — 75, i # s, is estimable. Notice
that there are no values of b; that give u, 71, 7, . . ., or 7, separately as the expected value. Therefore,
these parameters are not individually estimable.

3.4.2 Notation

We write the ith treatment sample mean as

1<
Yio=— (Z Yit)
' \r=1

and the corresponding observed sample mean as y, . The “dot” notation means “add over all values
of the subscript replaced with a dot,” and the “bar” means “divide by the number of terms that have
been added up.” This notation will be extremely useful throughout this book. For example, in the next
subsection we write

v

1 voor 1 v 1
;ZZ)’H = ;Zyl: = ;y,_ =y, wherenzzri =r,

i=1t=1 i=1 i=1

so that y is the average of all of the observations. Note that if the summation applies to a subscript
on two variables, the dot notation cannot be used. For example, > r;7; cannot be written as r 7., since
r 7. denotes (3_r;)(D_ 7i). Also note that when notation involves both a sum and a square, such as y%
or &l.z_, the sum is taken first and then the sum is squared.
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3.4.3 Obtaining Least Squares Estimates

The method of least squares is used to obtain estimates and estimators for estimable functions of
parameters in linear models. We shall show that the ith treatment sample mean Y; and its observed
value y; are the “least squares estimator” and “least squares estimate,” respectively, of 1 + 7;. Least
squares solutions for the parameters u, 71, ..., 7, are any set of corresponding values i, 71, ..., Ty
that minimize the sum of squared errors

>3- ZZ(yn =) (34.2)

i=1t=1 i=1t=1

The estimated model y;; = [i + 7; is the model that best fits the data in the sense of minimizing (3.4.2).

Finding least squares solutions is a standard problem in calculus.' The sum of squared errors (3.4.2)
is differentiated with respect to each of the parameters y, 71, ..., 7, in turn. Then each of the v + 1
resulting derivatives is set equal to zero, yielding a set of v 4 1 equations. These v + 1 equations are
called the normal equations. Any solution to the normal equations gives a minimum value of the sum
of squared errors (3.4.2) and provides a set of least squares solutions for the parameters.

The reader is asked to verify in Exercise 6 that the normal equations for the one-way analysis of
variance model (3.3.1) are those shown in (3.4.3). The first equation in (3.4.3) is obtained by setting
the derivative of the sum of squared errors of (3.4.2) with respect to p equal to zero, and the other v
equations are obtained by setting the derivatives with respect to each 7; in turn equal to zero. We put
“hats” on the parameters at this stage to denote solutions. The v + 1 normal equations are

Y. —nji= > rifi =0, (3.4.3)
vi. —rip—ri7; =0, i=1,...,v,
and include v + 1 unknown parameters. From the last v equations, we obtain
A+7 =y, i=1,...,v,

so the least squares solution for the ith treatment mean p + 7; is the corresponding sample mean y; .

There is a problem in solving the normal equations to obtain least squares solutions for each
parameter i, 71, . .., Ty individually. If the last v normal equations (3.4.3) are added together, the first
equation results. This means that the v+ 1 equations are not distinct (not linearly independent). The last
v normal equations are distinct, since they each contain a different 7;. Thus, there are exactly v distinct
normal equations in v + 1 unknown parameters, and there is no unique solution for the parameters.
This is not surprising, in view of the fact that we have already seen in Sect.3.4.1 that these parameters
are not individually estimable. For practical purposes, any one of the infinite number of solutions will
be satisfactory, since they lead to identical solutions for the estimable parameters. To obtain any one
of these solutions, it is necessary to add a further equation to the set of normal equations. Any extra
equation can be added, provided that it is not a linear combination of the equations already present.
The trick is to add whichever equation will aid most in solving the entire set of equations.

IReaders without a background in calculus may note that the least squares solutions for the parameters, individually, are
not unique and then may skip forward to Sect.3.4.4.
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One obvious possibility is to add the equation £t = 0, in which case the normal equations become

=0,
Y= D rifi =0,
i
y,;—r,-ﬁ =O, I = 1,...,1).
It is then a simple matter to solve the last v equations for the 7;’s, yielding 7; = y;./r; = ;. Thus,
one solution to the normal equations is
=0,

i:yi., i=1,...,U.

=>

>

A more common solution is obtained by adding the extra equation Zi ri7i = 0to (3.4.3). In this case,
the normal equations become

E ri7i =0,
i

y.—nig=0,

yi. —rip—ri7i =0, i=1,...,0,

from which we obtain the least squares solutions

>
I

s

>

=l =<l

-y, i=1...,v.

Still another solution, used, for example, by the SAS software, is obtained by adding the equation
7y = 0. Then the solutions to the normal equations are

>
< <

>

i = i._yvﬂ i=1,...,v.
The default solution for the R software is similar and obtained by adding the equation 77 = 0. In each
of the sets of solutions just obtained, it is always true that

A+Ti=7;.

No matter which extra equation is added to the normal equations, y; will always be the least squares
solution for u + 7;. Thus, although it is not possible to obtain unique least squares solutions for y and
7; separately, the least squares solution for the estimable true treatment mean p + 7; is unique. We call
Y, the least squares estimate and Y ;. the least squares estimator of y1 + 7;. The notation /i + 7; is used
somewhat ambiguously to mean both the least squares estimator and estimate. It should be clear from
the context which of these is meant.
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3.4.4 Properties of Least Squares Estimators

An important property of a least squares estimator is that

the least squares estimator of any estimable function of the parameters is the unique best linear unbiased estimator.

This statement, called the Gauss—Markov Theorem, is true for all linear models whose error variables
are independent and have common variance 2. The theorem tells us that for the one-way analysis of
variance model (3.3.1), the least squares estimator > b;Y; of the estimable function > bi(u+ 1) is
unique, is unbiased and has smallest variance. The theorem also tells us that 7; cannot be estimable,
since we have three different solutions for 7; and none of the corresponding estimators has expected
value equal to 7;.

For the one-way analysis of variance model, Y;; has a normal distribution with mean p + 7; and
variance o2 (see Sect.3.3), so E[Y;] = w~+ 7 and Var(Y;) = o2 /ri. Therefore, the distribution of
the least squares estimator Y; of w7 is

Yi~Nu+m, o/r).

The Y, ’s are independent, since they are based on different Y;,’s. Consequently, the distribution of the
least squares estimator > ¢;Y;. of the contrast > ¢;7;, with D> ¢; = 0, is

2
v S 2
E ciY; ~NZcjtj, T—0°).
r

Example 3.4.1 Heart-lung pump experiment

The following experiment was run by Richard Davis at The Ohio State University in 1987 to determine
the effect of the number of revolutions per minute (rpm) of the rotary pump head of an Olson heart—lung
pump on the fluid flow rate. The rpm was set directly on the tachometer of the pump console and PVC
tubing of size 3/8” by 3/32” was used. The flow rate was measured in liters per minute. Five equally
spaced levels of the treatment factor “rpm” were selected, namely, 50, 75, 100, 125, and 150 rpm, and
these were coded as 1, 2, 3, 4, 5, respectively. The experimental design was a completely randomized
design with r1 = r3 = r5 = 5, r, = 3, and r4 = 2. The data, in the order collected, are given in
Table 3.2, and the summary information is

yL.= 5.676,r =57, =1.1352,
ya.= 5.166, r, =3, y, = 1.7220,
y3. = 11.634, r3 =5, 33 = 2.3268,
ya. = 5.850, r4 =2, 7, =2.9250,
ys. = 17.646, rs =5, y5 = 3.5292.

The least squares estimate of the mean fluid flow rate when the pump is operating at 150 rpm is
(L+75) =y5. = 3.5292
liters per minute. The other mean fluid flow rates are estimated in a similar way. The experimenter

expected the flow rate to increase as the rpm of the pump head was increased. Figure 3.1 supports this
expectation.
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Table 3.2 Fluid flow

Observation rpm Level Liters/minute
obtained from the rotary
pump head of an Olson 1 150 3 3.540
heart-lung pump 2 50 1 1.158
3 50 1 1.128
4 75 2 1.686
5 150 5 3.480
6 150 5 3.510
7 100 3 2.328
8 100 3 2.340
9 100 3 2.298
10 125 4 2.982
11 100 3 2.328
12 50 1 1.140
13 125 4 2.868
14 150 5 3.504
15 100 3 2.340
16 75 2 1.740
17 50 1 1.122
18 50 1 1.128
19 150 5 3.612
20 75 2 1.740
Fig.3.1 Plot of data for 0 | 8
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Since the variance of the least squares estimator Y, of W+ s a2 /ri, the first, third, and fifth

treatment means are more precisely measured than the second and fourth.

The least squares estimate of the difference in fluid flow rate between 50 and 150 rpm is

(s =T =(i+75) —(i+71) =5 =y =2.3%

liters per minute. The associated variance is
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3.4.5 Estimation of o2

The least squares estimates /i +7; =y; of u+ 7; (i = 1, ..., v) minimize the sum of squared errors.
Therefore, for the one-way analysis of variance model (3.3.1), the minimum possible value of the sum
of squared errors (3.4.2), which we write as ssE, is equal to

ssE = ZZ@?I = ZZ()’” — =)
it it

Here, ¢;; = (yir — ji — 7;) is the deviation of the rth observation on the ith treatment from the
estimated ith treatment mean. This is called the (i¢)th residual. Substituting the least squares estimates
{4+ 7; =7; into the formula for ssE, we have

SsE = > (i =5 (3.4.4)
i t

The minimum sum of squared errors, ssE, is called the sum of squares for error or the error sum of
squares, and is used below to find an unbiased estimate of the error variance o2. A useful computational
formula for ssE is obtained by multiplying out the quantity in parentheses in (3.4.4); that is,

SSE = D" >y = > riy; (3.4.5)
i t

L

Now, the random variable SSE corresponding to the minimum sum of squared errors ssE in (3.4.4) is
SSE=> ">V =Yi)* =D (i — 1S}, (3.4.6)
it i

where S[.2 = Zf’zl Y — 7,-,)2/(r,- — 1)) is the sample variance for the ith treatment. In Exercise3.11,
the reader is asked to verify that Sl.2 is an unbiased estimator of the error variance 2. Then, the expected
value of SSE is
E(SSE) = Z(r,- —DE(S?) = (n —v)o?,
1

giving an unbiased estimator of o as

52 = SSE/(n — v) = MSE. (3.4.7)
The corresponding unbiased estimate of o2 is the observed value of MSE, namely msE = ssE/(n —v).
Both MSE and msE are called the mean square for error or error mean square. The estimate msE is
sometimes called the “within groups (or within treatments) variation.”
3.4.6 Confidence Bound for o
If an experiment were to be repeated in the future, the estimated value of o2 obtained from the current

experiment could be used at step (h) of the checklist to help calculate the number of observations that
should be taken in the new experiment (see Sects.3.6.2 and 4.5). However, the error variance in the
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new experiment is unlikely to be exactly the same as that in the current experiment, and in order not
to underestimate the number of observations needed, it is advisable to use a larger value of o2 in the
sample size calculation. One possibility is to use the upper limit of a one-sided confidence interval for
g 2 .

It can be shown that the distribution of SSE/o? is chi-squared with n — v degrees of freedom,

denoted by X%—v' Consequently,

SSE
P (=5 zXwia)=1-0, (3.4.8)

where X%—v |_o, 18 the percentile of the chi-squared distribution with n — v degrees of freedom and
with probability of 1 — o in the right-hand tail.

Manipulating the inequalities in (3.4.8), and replacing SSE by its observed value ssE, gives a one-
sided 100(1 — )% confidence bound for o2 as

2 ssE
< 3.4.9)

g
— .2
anv,lfa

This upper bound is called a 100(1 — )% upper confidence limit for o2.

Example 3.4.2 Battery experiment, continued
The data of the battery experiment (Sect.2.5.2, p. 24) are summarized in Table 3.3. The sum of squares
for error is obtained from (3.4.5); that is,

ssE = ZZyZZt —Zriig
it

1

= 6,028,288 — 4(570.75% + 860.50% + 433.00% + 496.25%)
—=28.,412.5.

An unbiased estimate of the error variance is then obtained as
msE = ssE/(n — v) = 28,412.5/(16 — 4) = 2367.71.

A 95% upper confidence limit for o is given by

E 28.412.5
o2 < 22 — 5432.60,

)
X12,0.95 5.23

and taking the square root of the confidence limit, a 95% upper confidence limit for o is 73.71 minutes
per dollar. If the experiment were to be repeated in the future, the calculation for the number of observa-
tions at step (h) of the checklist might take the largest likely value for ¢ to be around 70-75 minutes per
dollar. 0
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Table 3.3 Data for the battery experiment

Battery type Life per unit cost (minutes per dollar) i

1 611 537 542 593 570.75
2 923 794 827 898 860.50
3 445 490 384 413 433.00
4 476 569 480 460 496.25

3.5 One-Way Analysis of Variance
3.5.1 Testing Equality of Treatment Effects

In an experiment involving v treatments, an obvious question is whether or not the treatments differ at
all in terms of their effects on the response variable. Thus one may wish to test the null hypothesis

Hy:{nn=mn=-=7}
that the treatment effects are all equal against the alternative hypothesis
Hy : {at least two of the 7;’s differ}.

At first glance, the null hypothesis appears to involve nonestimable parameters. However, we can easily
rewrite it in terms of v — 1 estimable contrasts, as follows:

Hy:{ri—m»=0and f —3 =0 and --- and 7 — 7, = 0}.

This is not the only way to rewrite Hp in terms of estimable contrasts. For example, we could use the
contrasts 7; — 7, (where 7. = >_ 77 /v) and write the null hypothesis as follows:

Hy:{rmqy—7.=0andm —7 =0and --- and 7, — 7, =0}.
Now 7. is the average of the 7;’s, so the 7; — 7.’s add to zero. Consequently, if 7; — 7. = 0 for
i=1,...,v—1,then 7, — 7 mustalso be zero. Thus, this form of the null hypothesis could be written
in terms of just the first v — 1 estimable functions 7y — 7, ..., Ty—1 — T..

Any way that we rewrite Hy in terms of estimable functions of the parameters, it will always depend
on v — 1 distinct contrasts. The number v — 1 is called the treatment degrees of freedom.

The basic idea behind an analysis of variance test is that the sum of squares for error measures how
well the model fits the data. Consequently, a way of testing Hy is to compare the sum of squares for
error under the original one-way analysis of variance model (3.3.1), known as the full model, with
that obtained from the modified model, which assumes that the null hypothesis is true. This modified
model is called the reduced model.

Under Hy, the 7;’s are equal, and we can write the common value of 7, . . ., 7, as 7. If we incorporate
this into the one-way analysis of variance model, we obtain the reduced model
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Fig.3.2 Residuals under
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€

where we write e?t for the (it)th error variable in the reduced model. To calculate the sum of squares
for error, ssE(, we need to determine the value of i + 7 that minimizes the sum of squared errors

DD u—n—1?.
t

i

Using calculus, the reader is asked to show in Exercise 7 that the unique least squares estimate of ;1 + 7
is the sample mean of all the observations; that is, i + 7 = y_. Therefore, the error sum of squares for
the reduced model is

SSEq = D> (v =)’
t

i

=3 St (3.5.10)
it

If the null hypothesis Hy : {11 = 77 = --- = 7,} is false, and the treatment effects differ, the sum of
squares for error ssE under the full model (3.3.1) is considerably smaller than the sum of squares for
error ssE( for the reduced model. This is depicted in Fig. 3.2. On the other hand, if the null hypothesis
is true, then ssE( and ssE will be very similar. The analysis of variance test is based on the difference
ssEo — ssE, relative to the size of ssE; that is, the test is based on (ssEy — ssE)/ssE. We would want
to reject Hy if this quantity is large.

We call ssT = ssEy — ssE the sum of squares for treatments or the treatment sum of squares, since
its value depends on the differences between the treatment effects. Using formulas (3.5.10) and (3.4.5)
for ss E( and ssE, the treatment sum of squares is
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ssT = ssEg — ssE (3.5.11)
(Zz i) (222 -2m)
i t i t i
— Zriﬁ _ nyZ (3.5.12)
i

An equivalent formulation is

ssT = ri(¥, —¥.)%. (3.5.13)

The reader is invited to multiply out the parentheses in (3.5.13) and verify that (3.5.12) is obtained.
There is a shortcut method of expanding (3.5.13) to obtain (3.5.12). First write down each term in y and
square it. Then associate with each squared term the signs in (3.5.13). Finally, precede each term with
the summations and constant outside the parentheses in (3.5.13). This quick expansion will work for
all terms like (3.5.13) in this book. Formula (3.5.13) is probably the easier form of ssT to remember,
while (3.5.12) is easier to manipulate for theoretical work and use for computations.

Since we will reject Hy if ssT/ssE is large, we need to know what “large” means. This in turn means
that we need to know the distribution of the corresponding random variable SST/SSE when Hj is true,
where

SST = ri(Yi.=Y.)* and SSE= > (Y —Y:)’. (3.5.14)
i i t

Now, as mentioned in Sect.3.4.6, it can be shown that SSE /o has a chi-squared distribution with
n —v degrees of freedom, denoted by X%*U’ Similarly, it can be shown that when Hy is true, SST/o> has
a X%q distribution, and that SST and SSE are independent. The ratio of two independent chi-squared
random variables, each divided by their degrees of freedom, has an F distribution. Therefore, if Hy is
true, we have

SST /% (v — 1) N
SSE /o2(n — v)

v—1l,n—v -

We now know the distribution of SST/SSE multiplied by the constant (n — v)/(v — 1), and we want
to reject the null hypothesis Hy : {71 = --- = 7} in favor of the alternative hypothesis H4 : {at least
two of the treatment effects differ} if this ratio is large. Thus, if we write msT = ssT/(v — 1), msE =
ssE/(n — v), where ssT and ssE are the observed values of the treatment sum of squares and error sum
of squares, respectively, our decision rule is to

. .. msT
reject Hy if —— > Fy_1n—v.a> (3.5.15)
msE

where F,_1 ,—y,q 1s the critical value from the F distribution with v — 1 and n — v degrees of freedom
with « in the right-hand tail. The probability « is often called the significance level of the test and is
the probability of rejecting Hy when in fact it is true (a Type I error). Thus, o should be selected to be
small if it is important not to make a Type I error (v = 0.01 and 0.001 are typical choices); otherwise,
o can be chosen to be a little larger (o« = 0.10 and 0.05 are typical choices). Critical values Fy—1 y—v,a
for the F distribution are given in Table A.6. Due to lack of space, only a few typical values of o have
been tabulated.
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Table 3.4 One-way analysis of variance table

Source of variation Degrees of freedom Sum of squares Mean square Ratio Expected mean square

Treatments v-1 ssT ;‘TTI zjig a2 + Q(m)
Error n-v ssE % o2
Total n-1 sstot

Computational formulae
ssT =3, riy; —ny’ SSE =30 3, vy — 2, 1iVi
sstot = 3 3, ¥, —ny-
Qi) = 3 ri(ri = > rnmn/n)* /(v = 1)

The calculations involved in the test of the hypothesis Hy against H4 are usually written as an
analysis of variance table as shown in Table 3.4. The last line shows the fotal sum of squares and total
degrees of freedom. The total sum of squares, sstot, is (n — 1) times the sample variance of all of the

data values. Thus,
sstot = Z Z(y,-, -y )’ = Z z y2 —ny>. (3.5.16)
it it

From (3.5.10), we see that sstot happens to be equal to ssEq for the one-way analysis of variance
model, and from (3.5.11) we see that

sstot = ssT + ssE.

Thus, the total sum of squares consists of a part ssT that is explained by differences between the
treatment effects and a part ssE that is not explained by any of the parameters in the model.

Example 3.5.1 Battery experiment, continued

Consider the battery experiment introduced in Sect.2.5.2, p. 24. The sum of squares for error was
calculated in Example 3.4.2, p. 40, to be ssE = 28,412.5. The life per unit cost responses and treatment
averages are given in Table 3.3, p. 41. From these, we have EEyizt = 6,028,288,y = 590.125, and
r; = 4. Hence, the sums of squares ssT (3.5.12) and sstot (3.5.16) are

ssT = Zr,iiz_ — n?_?
= 4(570.75% + 860.50% + 433.00% + 496.25%) — 16(590.125)>
— 427,915.25,
sstot = ssEg = Z Z yizt - n?%

= 6,028,288 — 16(590.125)> = 456,327.75,

and we can verify that sstot = ssT + ssE.

The decision rule for testing the null hypothesis Hy : {ry = m = 73 = 74} that the four battery
types have the same average life per unit cost against the alternative hypothesis that at least two of the
battery types differ, at significance level a, is

reject Ho if msT /msE = 60.24 > F3 12 4.
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Table 3.5 One-way analysis of variance table for the battery experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Type 3 427,915.25 142,638.42 60.24 0.0001
Error 12 28,412.50 2,367.71

Total 15 456,327.75

From Table A.6, it can be seen that 60.24 > F3 12, for any of the tabulated values of «.. For example, if
o is chosen to be 0.01, then F3 12,0.01 = 5.95. Thus, for any tabulated choice of «, the null hypothesis
is rejected, and it is concluded that at least two of the battery types differ in mean life per unit cost. In
order to investigate which particular pairs of battery types differ, we would need to calculate confidence
intervals. This will be done in Chap. 4. g

3.5.2 Use of p-Values

The p-value of a test is the smallest choice of « that would allow the null hypothesis to be rejected.
For convenience, computer packages usually print the p-value as well as the ratio msT/msE. Having
information about the p-value saves looking up F,— ,—y, o in Table A.6. All we need to do is to compare
the p-value with our selected value of a.. Therefore, the decision rule for testing Hy : {11 = - - - 7}
against Hy : {not all of 7;’s are equal} can be written as

reject Hy if p < a.

Example 3.5.2 Battery experiment, continued

In the battery experiment of Example 3.5.1, the null hypothesis Hy : {11 = 7 = 73 = 74} that the four
battery types have the same average life per unit cost was tested against the alternative hypothesis that
they do not. The p-value generated by SAS software for the test is shown in Table3.5 as p = 0.0001.
A value of 0.0001 in the SAS computer output indicates that the p-value is less than or equal to 0.0001.
Smaller values are not printed explicitly. If o were chosen to be 0.01, then the null hypothesis would
be rejected, since p < a. U

3.6 Sample Sizes

Before an experiment can be run, it is necessary to determine the number of observations that should
be taken on each treatment. This forms step (h) of the checklist in Sect.2.2. In order to make this
determination, the experimenter must first ascertain the approximate cost, in both time and money,
of taking each observation and whether the cost differs for different levels of the treatment factor(s).
There will probably be a fixed budget for the entire experiment. Therefore, remembering to set aside
sufficient resources for the analysis of the experimental data, a rough calculation can be made of the
maximum number, N, of observations that can be afforded. After having worked through steps (a)—(g)
of the checklist, the experimenter will have identified the objectives of the experiment and the type of
analysis required. It must now be ascertained whether or not the objectives of the experiment can be
achieved within the budget. The calculations at step (h) may show that it is unnecessary to take as many
as N observations, in which case valuable resources can be saved. Alternatively, and unfortunately
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the more likely, it may be found that more than N observations are needed in order to fulfill all the
experimenter’s requirements of the experiment. In this case, the experimenter needs to go back and
review the decisions made so far in order to try to relax some of the requirements. Otherwise, an
increase in budget needs to be obtained. There is little point in running the experiment with smaller
sample sizes than those required without finding out what effect this will have on the analysis. The
following quotation from J. N.R. Jeffers in his article “Acid rain and tree roots: an analysis” in The
Statistical Consultant in Action (1987) is worth careful consideration:
There is a quite strongly held view among experimenters that statisticians always ask for more replication than
can be provided, and hence jeopardize the research by suggesting that it is not worth doing unless sufficient
replication can be provided. There is, of course, some truth in this allegation, and equally, some truth in the view
that, unless an experiment can be done with adequate replication, and with due regard to the size of the difference
which it is important to be able to detect, the research may indeed not be worth doing.

We will consider two methods of determining the number of observations on each treatment (the
sample sizes). One method, which involves specifying the desired length of confidence intervals, will be
presented in Sect.4.5. The other method, which involves specifying the power required of the analysis
of variance, is the topic of this section. Since the method uses the expected value of the mean square
for treatments, we calculate this first.

3.6.1 Expected Mean Squares for Treatments

The formula for SST, the treatment sum of squares, was given in (3.5.14) on p. 43. Its expected value
is

E[SST] = E[Y_ ri(Yi =Y )’]
= E[SrY, —nY ]

= > HEY1-nE[Y].

From the definition of the variance of a random variable, we know that Var(X) = E[X?%] — (E[X])2,
so we can write E[SST] as

E[SST] = Zri[Var(Y;)) + (E[Y;])*] — n[Var(Y ) + (E[Y ])*].

For the one-way analysis of variance model (3.3.1), the response variables Y;; are independent, and
each has a normal distribution with mean y + 7; and variance 2. So,

zri (Uz/ri + (M+Ti)2)
—n (02/}1 + (u + Zrﬂi/n)z)
vo? + n,u2 + ZMZV,-T,- + Zrﬁf

—o® —np® = 2p ) rimi — (O rim)?/n
W — Dlo? + Q(m)1,

E[SST]
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where
O(1) = Biri (1; — Spramn/n)? J(w — 1), (3.6.17)

which reduces to Q(7;) =r >, (1 — F,)z/(v — 1) whenry =rp =...r, = r. The expected value of
the mean square for treatments MST = SST /(v — 1) is

E[MST] = o> + Q(1),

which is the quantity we listed in the analysis of variance table, Table 3.4. We note that when the
treatment effects are all equal, Q(7;) = 0, and E[MST] = a2

3.6.2 Sample Sizes Using Power of a Test

Suppose that one of the major objectives of an experiment is to examine whether or not the treatments
all have a similar effect on the response. The null hypothesis is actually somewhat unrealistic. The
effects of the treatments are almost certainly not exactly equal, and even if they were, the nuisance
variability in the experimental data would mask this fact. In any case, if the different levels produce only
a very small difference in the response variable, the experimenter may not be interested in discovering
this fact. For example, a difference of 5 minutes in life per dollar in two different batteries would
probably not be noticed by most users. However, a larger difference such as 60 minutes may well be
noticed. Thus the experimenter might require Hy to be rejected with high probability if ; — 7, > 60
minutes per dollar for some i # s but may not be concerned about rejecting the null hypothesis if
T; — Ty < 5 minutes per dollar for all i # s. In most experiments, there is some value A such that if
the difference in the effects of any two of the treatments exceeds A, the experimenter would like to
reject the null hypothesis in favor of the alternative hypothesis with high probability.

The power of the test at A, denoted by 7m(A), is the probability of rejecting Hy when the effects
of at least two of the treatments differ by A. The power of the test m(A) is a function of A and also
of the sample sizes, the number of treatments, the significance level «, and the error variance o2
Consequently, the sample sizes can be determined if m(A), v, o, and o2 are known. The values of A,
m(A), v, and « are chosen by the experimenter, but the error variance has to be guessed using data
from a pilot study or another similar experiment. In general, the largest likely value of o should be
used. If the guess for o is too small, then the power of the test will be lower than the specified 7(A).
If the guess for o2 is too high, then the power will be higher than needed, and differences in the 7;’s
smaller than A will cause Hy to be rejected with high probability.

The rule for testing the null hypothesis Hy : {r] = --- = 7,} against Hx: {at least two of the 7;’s
differ}, given in (3.5.15), on p. 43, is

. .. msT
reject Hy if — > Fy_1p—v.a-
msE

As stated in Sect.3.5.1, the test statistic MST/MSE has an F distribution if the null hypothesis is
correct. But if the null hypothesis is false, then MST/MSE has a related distribution called a noncen-
tral F distribution. The noncentral F distribution is denoted by F,_; ,_, 52, where 62 is called the
noncentrality parameter and is defined to be

2 =@w-10(m)/s, (3.6.18)
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where Q(7;) was calculated in (3.6.17). When Q(7;) = 0, then 52 = 0, and the distribution of
MST/MSE becomes the usual F-distribution. Otherwise, 62 is greater than zero, and the mean and
spread of the distribution of MST/MSE are larger than those of the usual F-distribution. For equal
sample sizesr; =r, = --- = ry, = r, we see that 5% is

P =r> (—7)%

The calculation of the sample size  required to achieve a power 7(A) at A for given v, o, and o
rests on the fact that the hardest situation to detect is that in which the effects of two of the factor levels
(say, the first and last) differ by A, and the others are all equal and midway between; that is,

pt+m=p+m=--=p+m-1=c,
pw+m=c+A/2, and p+T1,=c—A/2,

for some constant c. In this case,

=32 2
s T —7) A
) _rzi:T_ﬁ. (3.6.19)

The power of the test depends on the sample size r through the distribution of MST/MSE, which
depends on 2. Since the power of the test is the probability of rejecting Hy, we have

MST
m(A) =P MSE > Fy—1n—v,a ] -

The noncentral F distribution is tabulated in Table A.7, with power 7 given as a function of ¢ = §/,/v
for various values of 1 = v — 1, v, = n — v, and «. Using (3.6.19),

(bz_f_ rA2

v 2uo?’

SO

2v0%¢?

Hence, given «, A, v, and o2, the value of r can be determined from Table A.7 to achieve a specified
power 7(A). The determination has to be done iteratively, since the denominator degrees of freedom,
vy =n —v = v(r — 1), depend on the unknown r. The procedure is as follows:

(a) Find the section of Table A.7 for the numerator degrees of freedom v; = v — 1 and the specified
a (only o = 0.05 is shown).

(b) Calculate the denominator degrees of freedom using v, = 1000 in the first iteration and 1, =
n —v = v(r — 1) in the following iterations, and locate the appropriate row of the table, taking
the smaller listed value of v, if necessary.

(c) For the required power 7(A), use interpolation to determine the corresponding value of ¢, or take
the larger listed value if necessary.
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(d) Calculate r = 2vo2¢?/A?, rounding up to the nearest integer. (The first iteration gives a lower
bound for r.)

(e) Repeat steps (b)—(d) until the value of r is unchanged or alternates between two values. Select the
larger of alternating values.

Example 3.6.1 Soap experiment, continued

The first part of the checklist for the soap experiment is given in Sect.2.5.1, p. 20, and is continued in
Sect. 3.7, below. At step (h), the experimenter calculated the number of observations needed on each
type of soap as follows.

The error variance was estimated to be about 0.007 grams squared from the pilot experiment. In
testing the hypothesis Hy : {1 = 7 = 13}, the experimenter deemed it important to be able to detect
a difference in weight loss of at least A = 0.25 g between any two soap types, with a probability 0.90
of correctly doing so, and a probability 0.05 of a Type I error. This difference was considered to be the
smallest discrepancy in the weight loss of soaps that would be noticeable.

Using a one-way analysis of variance model, for v = 3 treatments, with A = 0.25, r =
2002¢%/A? = 0.672¢2%, and 1, = v(r — 1) = 3(r — 1), r was calculated as follows. Using Table A.7
forvy =v—1=2,a=0.05, and 7(A) = 0.90:

roowm=30r-—1) é r=0.672¢>  Action

1000 2.25 3.40 Rounduptor =4
4 9 2.50 4.20 Rounduptor =5
5 12 2.50 4.20 Stop, and use r = 4 or 5.

The experimenter decided to take r = 4 observations on each soap type. Sections 3.8.3 and 3.9.4 show
how to make these calculations using the SAS and R software, respectively. 0

3.7 A Real Experiment—Soap Experiment, Continued

The objective of the soap experiment described in Sect.2.5.1, p. Xx, was to compare the extent to
which three different types of soap dissolve in water. The three soaps selected for the experiment were
aregular soap, a deodorant soap, and a moisturizing soap from a single manufacturer, and the weight-
loss after 24 h of soaking and 4 days drying is reproduced in Table 3.6. Steps (a)—(d) of the checklist
were given in Sect.2.5.1. The remaining steps and part of the analysis of the experimental data are
described below. The first part of the description is based on the written report of the experimenter,
Suyapa Silvia.

Table 3.6 Data for the soap experiment

Soap Weight-loss (grams) Vi
1 —0.30 —0.10 —0.14 0.40 —0.0350
2 2.63 2.61 241 3.15 2.7000

3 1.86 2.03 2.26 1.82 1.9925
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3.7.1 Checklist, Continued

(e)

®

(@

(h)

®

Run a pilot experiment.

A pilot experiment was run and used for two purposes. First, it helped to identify the difficulties
listed at step (d) of the checklist. Secondly, it provided an estimate of o2 for step (h). The error
variance was estimated to be about 0.007 gZ. The value 0.007 gm? was the value of msE in the
pilot experiment. In fact, this is an underestimate, and it would have been better to have used the
one-sided confidence bound (3.4.9) for o2.

Specify the model.

Since care will be taken to control all extraneous sources of variation, it is assumed that the
following model will be a reasonable approximation to the true model.

Yie=p+7+¢ir,
€ir ~ N(0,0%),
€;¢'s are mutually independent
i=1,2,3;, t=1,...r;

where 7; is the (fixed) effect on the response of the ith soap, x is a constant, Y;; is the weight loss
of the rth cube of the ith soap, and ¢;; is a random error.

Before analyzing the experimental data, the assumptions concerning the distribution of the error
variables will be checked using graphical methods. (Assumption checking will be discussed in
Chap.5).

Outline the analysis.

In order to address the question of differences in weights, a one-way analysis of variance will be
computed at o = 0.05 to test

Hoy : {1 =7 = 73}

Hy : { the effects of at least two pairs of soap types differ}.
To find out more about the differences among pairs of treatments, 95% confidence intervals for
the pairwise differences of the 7; will be calculated using Tukey’s method (Tukey’s method will
be discussed in Sect.4.4.4).

versus

Calculate the number of observations that need to be taken.

Four observations will be taken on each soap type. (See Example 3.6.1, p. 49, for the calculation.)

Review the above decisions. Revise if necessary.

It is not difficult to obtain 4 observations on each of 3 soaps, and therefore the checklist does not
need revising. Small adjustments to the experimental procedure that were found necessary during
the pilot experiment have already been incorporated into the checklist.

3.7.2 Data Collection and Analysis

The data collected by the experimenter are plotted in Fig.2.2, p. 24, and reproduced in Table3.6.
The assumptions that the error variables are independent and have a normal distribution with constant
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Table 3.7 One-way analysis of variance table for the soap experiment

Source of variation  Degrees of freedom  Sum of squares Mean square  Ratio p-value

Soap 2 16.1220 8.0610 104.45  0.0001
Error 9 0.6946 0.0772
Total 11 16.8166

variance were checked (using methods to be described in Chap. 5) and appear to be satisfied. The least
squares estimates, [t + 7; = y; , of the average weight loss values (in grams) are

¥, =—0.0350, 7y, =2.7000, y; = 1.9925.

The hypothesis of no differences in weight loss due to the different soap types is tested below using
an analysis of variance test.

Using the values y; given above, together with > > y2 = 457397 and r| = r, = r3 = 4, the
sums of squares for Soap and Total are calculated using (3.5.12) and (3.5.16), pp. 43 and 44, as

ssT = Zriig — n?_?

= [4(—0.0350)% + 4(2.7000)* + 4(1.9925)?] — [12(1.5525)*] = 16.1220,

sstot = ssEg = z Zy,zt - ”7.?

= 45.7397 — 12(1.5525)% = 16.8166.

The sum of squares for error can be calculated by subtraction, giving ssE = sstot — ssT = 0.6946, or
directly from (3.4.5), p. 39, as

SSE=>""yh = > riv;

= 45.7397 — [4(—0.0350) + 4(2.7000)* + 4(1.9925)] = 0.6946..
The estimate of error variability is then
62 = msE = ssE/(n — v) = 0.6945/(12 — 3) = 0.0772.

The sums of squares and mean squares are shown in the analysis of variance table, Table 3.7. Notice
that the estimate of o2 is ten times larger than the estimate of 0.007 g2 provided by the pilot experiment.
This suggests that the pilot experiment was not sufficiently representative of the main experiment. As
a consequence, the actual power of detecting a difference of A = 0.25 g between the weight losses of
the soaps is, in fact, somewhat below the desired probability of 0.90.

The decision rule for testing Hy : {r] = ™ = 73} against the alternative hypothesis, that at least
two of the soap types differ in weight loss, using a significance level of o = 0.05, is to reject Hy if
msT /msE = 104.45 > F3 9,0.05. From Table A.6, F> 9 0.05 = 4.26. Consequently, the null hypothesis
is rejected, and it is concluded that at least two of the soap types do differ in their weight loss after 24 h
in water (and 4 days drying time). This null hypothesis would have been rejected for most practical
choices of a. If @ had been chosen to be as small as 0.005, F3 9 , is still only 10.1. Alternatively, if the
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analysis is done by computer, the p-value would be printed in the computer output. Here the p-value
is less than 0.0001, and Hy would be rejected for any choice of o above this value.

The experimenter was interested in estimating the contrasts 7; — 7, for all i # u, that is, she was
interested in comparing the effects on weight loss of the different types of soaps. For the one-way
analysis of variance model (3.3.1) and a completely randomized design, all contrasts are estimable,
and the least squares estimate of 7; — 7, is

T — Tu = (/}4_7,\-1)_(/}‘}'7214) ZYi. _yu.'
Hence, the least square estimates of the differences in the treatment effects are
7= =07075, F -7 =27350, 73— 7 =2.0275.

Confidence intervals for the differences will be evaluated in Example 4.4.5.

3.7.3 Discussion by the Experimenter

The results of this experiment were unexpected in that the soaps reacted with the water in very different ways,
each according to its ingredients. An examination of the soap packages showed that for the deodorant soap and
the moisturizing soap, water is listed as the third ingredient, whereas the regular soap claims to be 99.44% pure
soap. Information on the chemical composition of soaps revealed that soaps are sodium and/or potassium salts of
oleic, palmitic, and coconut oils and therefore in their pure form (without water) should float as the regular soap
bars do. The other two soaps under discussion contain water and therefore are more dense and do not float.

One possible reason for the regular soap’s actual increase in weight is that this “dry” soap absorbed and retained
the water and dissolved to a lesser extent during the soaking period. The deodorant soap and the moisturizing
soap, on the other hand, already contained water and did not absorb as much as the regular soap. They dissolved
more easily during the soaking phase as a consequence. This is somewhat supported by the observation that the
dissolved soap gel that formed extensively around the deodorant soap and the moisturizing soap did not form as
much around the regular soap. Furthermore, the regular soap appeared to increase in size and remain larger, even
at the end of the drying period.

3.7.4 Further Observations by the Experimenter

The soaps were weighed every day for one week after the experimental data had been collected in order to see
what changes continued to occur. The regular soap eventually lost most of the water it retained, and the average
loss of weight (due to dissolution) was less than that for the other two soaps.

If this study were repeated, with a drying period of at least one week, I believe that the results would indicate that
regular soap loses less weight due to dissolution than either of the deodorant soap or the moisturizing soap

3.8 Using SAS Software
3.8.1 Randomization

A simple procedure for randomizing a completely randomized design was given in Sect. 3.2, p. 31. This
procedure is easily implemented using the SAS software, as we now illustrate. Consider a completely
randomized design for two treatments and r = 3 observations on each, giving a total of n = 6 obser-
vations. The following SAS statements create and print a data set named DESIGN, which includes the
lists of values of the two variables TRTMT and RANNO as required by steps 1 and 2 of the randomization
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procedure in Sect.3.2. The statements INPUT and LINES are instructions to SAS that the values of
TRTMT are being input on the lines that follow rather than from an external data file. Inclusion of
“@@” in the INPUT statement allows the levels of TRTMT to be entered on one line as opposed to one
per line. For each treatment label entered for the variable TRTMT, a corresponding value of RANNO
is generated using the SAS random number generating function RANUNI which generates uniform
random numbers between 0 and 1.

DATA DESIGN;
INPUT TRTMT @@;
RANNO=RANUNTI (0) ;
LINES;
111222

PROC PRINT; RUN;

The statement PROC PRINT then prints the following output. The column labeled OBS (observation
number) is generated by the SAS software for reference.

The SAS System

Obs TRTMT RANNO
1 1 0.74865
2 1 0.62288
3 1 0.87913
4 2 0.32869
5 2 0.47360
6 2 0.72967

The following additional statements sort the data set by the values of RANNO, as required by step 3
of the randomization procedure, and print the randomized design along with the ordered experimental
unit labels 1-6 under the heading OBS.

PROC SORT; BY RANNO;
PROC PRINT; RUN;

The resulting output is as follows.

The SAS System

Obs TRTMT RANNO
2 .32869
.47360
.62288
.72967
.74865
.87913

oUW N
[ SN
oo oooo

Experimental units 3, 5, and 6 are assigned to treatment 1, and experimental units 1, 2, and 4 are
assigned to treatment 2.
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Table 3.8 SAS program for the soap experiment

Line SAS Program
1 OPTIONS LINESIZE = 72;

DATA SOAP;
INPUT WTLOSS SOAP;
LINES;
-0.30 1
-0.10 1
-0.14 1

1.82 3

O W oo Jo Ul WN

=

7

11 PROC PRINT;

12 PROC SGPLOT;

13 SCATTER X = SOAP Y = WTLOSS;
14 XAXIS TYPE = DISCRETE LABEL = ’'Soap’;
15 YAXIS LABEL = 'Weight Loss (grams) ’;

16 PROC GLM;

17 CLASS SOAP;
18 MODEL WTLOSS = SOAP;
19 LSMEANS SOAP;

20  RUN; QUIT;

3.8.2 Analysis of Variance

In this section we illustrate how SAS software can be used to conduct a one-way analysis of variance
test for equality of the treatment effects, assuming that model (3.3.1) is appropriate. We use the data
in Table 2.7, p. 23, from the soap experiment.

A sample SAS program to analyze the data is given in Table 3.8. Line numbers have been included
for reference, but the line numbers are not part of the SAS program and if included would cause SAS
software to generate error messages. SAS programs and data files for this edition are available at the
following website.

http://www.wright.edu/~dan.voss/DeanVossDraguljic.html

The option LINESIZE = 72 in the OPTIONS statement in line 1 of the program causes all list
output generated by the program to be restricted to 72 characters per line, which is convenient for
printing list output on 8.5 by 11 inch paper in the portrait orientation. This option has no effect on the
standard html output, however, so can be ignored by readers running the SAS software in a windows
environment, which is most likely to be the norm. Some of our SAS programs, including those using
PROC SGPLOT for example, assume the user is running SAS in a windows environment, whereas
PROC PLOT might be used instead if running SAS in a command line mode. All SAS statements are
ended by a semicolon.

Lines 2—-10 of the program create a SAS data set named SOAP that includes as variables the response
variable WTLOSS and the corresponding level of the treatment factor SOAP. The LINES statement
indicates that subsequent lines contain data to be read directly from the program, until data entry is
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stopped by the next semicolon (line 10). Line 8 must be replaced by the additional data not shown
here.

Alternatively, the same data could be read from a file, soap . txt say, by replacing lines 2—10 with
the following code, including a correct file path.

INFILE 'c:\path\soap.txt’ FIRSTOBS = 2; INPUT WTLOSS SOAP;

Include the option FIRSTOBS = 2 if the data file contains headers on line one then data starting on
line two, but delete it if the data starts on line one with no headers.

The PRINT procedure (line 11) prints the data. While this is good practice to verify that the data
were read correctly, the PRINT procedure will not routinely be shown in subsequent programs.

The SGPLOT procedure (lines 12—15) generates a scatterplot of WTLOSS versus SOAP like that
shown in Fig. 3.3. The x-axis option TYPE = DISCRETE instructs the SAS software to use integer
values for x-axis tick marks. The LABEL option sets the desired label for each axis.

The resulting scatterplot is displayed in a SAS output window, by default (on a PC). Alternatively,
one could redirect the scatterplot to be saved in the file ch3 soap . pdf in pdf format, for example, as
illustrated by the following code.

ODS GRAPHICS / RESET IMAGENAME =’'ch3soap’ IMAGEFMT = PDF
HEIGHT = 1.5in WIDTH = 2in;

ODS LISTING GPATH ='c:\path\figs’;

* insert PROC SGPLOT and its subcommands here;

RUN; * Run PROC SGPLOT before closing output to pdf file;

ODS GRAPHICS / RESET;

6,9

The statements beginning “*”” and ending *“;”” are comments which are not executed by the SAS software.
The first ODS GRAPHICS command redirects graphics output to the file ch3 soap . pd £ using pdf as
the image format, and specifies the dimension of the graphic image to be saved. The ODS LISTING
command then specifies the directory where the SAS software is to store the file, so the user must replace
“c :\path\figs” with an existing path and directory on the user’s computer. Following PROC
SGPLOT and its statements, the second ODS GRAPHICS command resets the graphics defaults, so
graphics output reverts again to the SAS output window. However, before doing so, the RUN command
causes SGPLOT to execute while output is still directed to the file ch3soap.pdf.

The General Linear Models procedure PROC GLM (lines 16—19) generates an analysis of variance
table. The CLASS statement identifies SOAP as a major source of variation to be modeled as a clas-
sification variable, so a parameter is associated with each of its levels. The MODEL statement defines
the response variable as WTLOSS, and the only source of variation included in the model is SOAP. The
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Fig.3.4 Sample SAS
output from PROC GLM (81 Results Viewer - SAS Output =8 |ECR =

for the soap experiment The GLM Procedure

Dependent Variable: WTLOSS

m

Source DF  Sum of Squares  Mean Square F Value Pr>F
Model 2 16.12205000 8.06102500 104.45 <.0001
Error 9 0.69457500 0.07717500
Corrected Total | 11 16.81662500
33 Cuon v 0 =S
the soap experiment o EMP =

Least Squares Means

SOAP WTLOSS LSMEAN

1 -0.03500000
2 2.70000000 =
3 1.99250000

parameter ;4 and the error variables are automatically included in the model. The MODEL statement
causes the analysis of variance table shown in Fig.3.4 to be calculated. The F Value is the value
of the ratio msT/msE for testing the null hypothesis that the three treatment effects are all equal. The
value Pr > F is the p-value of the test to be compared with the chosen significance level. When the
p-value is listed as <.0001, the null hypothesis would be rejected for any chosen significance level
larger than 0.0001.

The LSMEANS statement (line 19 of Table 3.8), which is part of the GLM procedure, causes the least
squares means, [t + 7; = y; , to be printed. The output from this statement is shown in Fig. 3.5.

The RUN statement in line 20 is needed to cause the last procedure to be executed when the program
is run in an interactive line mode, typical of a PC Windows environment for example, and the QUIT
statement ends the procedure. Though necessary for interactive program processing, the RUN and QUIT
statements will not be shown from now on in any programs.

3.8.3 Calculating Sample Size Using Power of a Test

InTable 3.9, we show a sample SAS program which calculates the power of the test of the null hypothesis
Hp : {m1 = --- = 7,}against Ha: {at least two of the 7;’s differ}. The program uses a DO statement,
which allows the calculation to be done for a selected range of sample sizes r, using the formulae in
Sect.3.6.2. ThelineDO R = 3 TO 6 BY 1; asksthe SAS software to do the calculations for each
value of r between 3 and 6, increasing r by 1 each time.

The code shown is for the soap experiment in Example3.6.1, but is easily modified for other
experiments by changing the values of the number of levels of the treatment factor (V), the difference
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Table 3.9 Calculating sample sizes using power of the test

DATA POWER;
vV = 3;
DEL = 0.25;
SIGMA2 = 0.007;
ALPHA 5;
NUl = H
LHTPB

0
1

<

0.
1 - ALPHA;

DO R =3 TO 6 BY 1;
NU2 = V*(R - 1);
PHI = (SQRT(R / (2*V*SIGMA2)) ) *DEL;
FVALUE = FINV(LHTPB, NUl, NU2);
NONCN = V*PHI**2;
POWER = 1 - PROBF (FVALUE, NU1l, NU2, NONCN) ;
OUTPUT;
END;

PROC PRINT;
VAR R POWER;

(DEL) to be detected (i.e. A), the assumed largest value of the error variance (STGMA?2), the significance
level of the test (ALPHA), and the range of values of » to be investigated.

In Table 3.9, the degrees of freedom vy = v — 1 and v, = n — v = v(r — 1) for the F-distribution
are donated by NU1 and NU2. The “left-hand tail probability” 1 — « is called LHTPB, and is used in
calculating the critical value Fy_1 ,—y. q, called FVALUE. From (3.6.20), the value of ¢, labelled PHI
is calculated as v/r A2/(2v52). The “non-centrality parameter” NONCN is 6> = v and this is needed
by the non-central F distribution in the calculation of the power for the range of values of r specified.
The output, generated by the PROC PRINT statement is

Obs R POWER
2 3 0.70934
3 4 0.89565
4 5 0.96715
5 6 0.99058

and we can see that, just as in Example 3.6.1, to achieve a power of approximately 0.9, the number of
observations needed is » = 4 per level of the treatment factor. To see the values of all the variables
calculated at each step, remove the line VAR R POWER; which restricts which variables are printed.

3.9 Using R Software

Preliminaries

R is a free software environment for statistical computing and graphics, used extensively in this book.
Readers can install the R software after downloading it from http://cran.us.r-project.org, for example,
choosing the appropriate version for the computer and operating system. RStudio is free software
providing an enhanced environment for running R. After installing R, readers are recommended to
also download and install RStudio; it can be downloaded from http://www.rstudio.com, choosing
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again the appropriate version for the computer and operating system. Run either R or RStudio, as
RStudio invokes R.

Throughout the book, we shall assume that the reader has set up a working directory for R called
RCode and that R program files are either in the working directory or in specified subdirectories
of the working directory. For example, we assume that RCode includes a subdirectory called data
containing any data set that is to be read by R and a subdirectory called £igs in which R will store
any plots generated. R programs and data files for this edition are available at the following website.

http://www.wright.edu/~dan.voss/DeanVossDraguljic.html

We shall assume that the user will execute the following commands or similar each time that R (or
RStudio) is started.

rm(list = 1s()) # Remove all objects (start with clean slate)
opar = par /() # Save default graphics parameters as opar
setwd (" /RCode") # Set the working directory

getwd () # Confirm working directory

options (show.signif.stars = FALSE) # Show no stars for significance tests
options (width = 72, digits = 5, scipen = 2) # Control printed output
ooptions = options(width = 72, digits = 5, scipen = 2) # Save print options

The first command removes all existing R objects created previously by the user, clearing the slate
for a new session. The symbol “#” starts a line comment, used for program documentation. The second
command assigns R’s current graphics parameters par () —initially the default graphics parameter
values—to the object opar, saving them so they can be restored later via the command par (opar)
if desired. We will routinely use “=" for assignment, though use of “<—"" is more traditional in R. The
setwd command in the third line sets /RCode as the working directory, where the software reads
and writes files by default. If RCode is not in the root directory, then use setwd (" /path/RCode")
but specify the correct directory path to RCode. The getwd () command in the fourth line displays
the working directory, to confirm it is now /RCode. For functions that conduct hypothesis tests, the
options command in the fifth line suppresses printing of stars for various levels of significance. The
options command in line six controls printed output, restricting it to be at most 72 columns wide
with five significant digits, and penalizing use of scientific notation. We have initialized R in this way
or similarly when running our programs, though these commands will generally not be shown in our
subsequent program code. The last line saves these print options as coptions, so if changed they
can be restored by the command options (ooptions).

While the above commands can be typed into the R Console and executed one by one, it is more
convenient to save them in a file, startup. r say, in the working directory. Then the single command

source (" /RCode/startup.r")

will execute the commands in the startup. r file. We routinely executed this code line each time
we started R (or RStudio) to produce R program output in this book, though we do not show this code
line in our programs.

As will be seen in the following sections, when R is waiting for the next command, a prompt > is
displayed, and if the user command is not complete when a line is entered (for example if the final
parenthesis is missing), the prompt will change to + on the next line, prodding the user to enter the rest
of the command. To end an R session, type g ().

Itis prudent to use the latest production version of R. On a Windows operating system, the updateR
command of the installr package will detect if there is a new R version available, and if so it will
download and install it and update previously installed add-on packages. The following commands,
when executed from within R, install and load the installr package and execute the updateR
command.
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install.packages ("installr"); library(installr); updateR()

Assuming the user has installed and set up R as noted above, we are ready to use the software.

3.9.1 Randomization

A simple procedure for randomizing a completely randomized design was given in Sect. 3.2, p. 31. This
procedure is easily implemented using the R software, as we now illustrate. Consider a completely
randomized design for two treatments and » = 3 observations on each, giving a total of n = 6
observations.

The following R statements create and display a data frame named design, a data frame being a
data set consisting of equal-length columns of information. Here, the columns of design are the lists
of values of the two variables trtmt and ranno as required by steps 1 and 2 of the randomization
procedure in Sect. 3.2. In particular, the first statement creates the column trtmt of treatment labels.
The second statement creates the column ranno consisting of six uniform random numbers between
0 and 1, six being the length of the column trtmt. The third statement puts the columns trtmt
and ranno into a data frame, and assigns this object the name design. Then the fourth statement
displays design. The R output is shown immediately following the R statements.

trtmt = c(1, 1, 1, 2, 2, 2) # Create column trtmt = (1, 1, 1, 2, 2, 2)
ranno = runif(length(trtmt)) # Create column of 6 unif (0, 1) RVs
design = data.frame(trtmt, ranno) # Create data.frame "design"

design # Display the data.frame design

vV V. V V

trtmt ranno
.447827
.494462
.174414
.894132
.473540
.010771

o Ul W N
N NN R
O O O O O o

We digress to provide additional information about R, before finishing the randomization process in
the next paragraph. The command trtmt = rep(c(1l, 2), each = 3) would yield the same
column trtmt, but by replicating 1 and 2 three times each—a more convenient approach for larger
designs. Each time the above R commands are run, a different set of random numbers will result. Typing
the command design causes the entire data frame design to be displayed. One could display only
what is in column 1 named trtmt, for example, by typing designStrtmt, design[, 1], or
design[, "trtmt"].Thecolumn trtmt alsostillexistsas aseparate object, that can be displayed
simply by typing trtmt. One could remove this redundant object by the command rm (trtmt ) . Note
that R is “case-sensitive”, so if the column name is trtmt, then R will not be able to locate a column
called, say, Trtmt with a capital T. The details about any of the commands used can be found by
typing ? commandName, for example typing ?runi £ will bring up the command help file containing
many details about the use of runif.

The following additional statements sort the trtmt column of the data frame design by the
values of ranno, as required by step 3 of the randomization procedure. Specifically, the statement
order (ranno) yields the order 6 3 1 52 4, since the smallest random variate is in row 6, the second
smallest is in row 3, etc. So, the first statement below redefines the data frame design to have its rows
reordered accordingly, effectively sorting the rows based on the values of the random numbers (RNs).
The second statement below defines a new column of design named EU containing the integers from
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Table 3.10 R program for the soap experiment: reading and plotting data

Line R Code and Output
1 > # Read the data into the data.frame "soap.data"
2 > soap.data = read.table("data/soap.txt", header = TRUE)
3 > head(soap.data, 5) # Display first 5 lines of soap.data
4 Soap Cube PreWt PostWt WtLoss
5 1 1 1 13.14 13.44 -0.30
6 2 1 2 13.17 13.27 -0.10
7 3 1 3 13.17 13.31 -0.14
8 4 1 4 13.17 12.77 0.40
9 5 2 5 13.03 10.40 2.63
10 > # Add factor variable fSoap to socap.data for later ANOVA
11 > soap.data$fSoap = factor (soap.data$Soap)
12 > # Plot WtLoss vs Soap, specify axis labels, suppress x-axis.
13 > plot (WtLoss ~ Soap, data = soap.data, xlab = "Soap",
14 + yvlab = "Weight Loss (grams)", las = 1, xaxt = "n")
15 > # Insert x-axis (axis 1) with tick marks from 1 to 3 by 1.
16 > axis(l, at = seqg(1,3,1))

1 to 6 as labels for the experimental units. Then the last statement asks for the sorted design to be

displayed.

> design = designl[order (ranno), ] # Sort rows by RNs, save
> design$SEU = c¢(1:6) # Add col EU = (1,2,3,4,5,6) to design
> design # Display the results of the randomization

trtmt ranno EU
.010771
.174414
447827
.473540
.494462
.894132

=N O W o
[ e N i Y
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Experimental units 2, 3, and 5 are to be assigned to treatment 1, and experimental units 1, 4, and 6 are

to be assigned to treatment 2.

3.9.2 Reading and Plotting Data

A sample R program to input, display, and plot the data is given in Table 3.10. Line numbers have been
included for reference, but they are not part of the R program and if included in the R code would yield
error messages. The prompt “>" and the continuation prompt “+” are supplied by R and should not be

typed by the user.

We use the data in Table 2.7, p. 23, from the soap experiment, and assume that the data are stored in
the file soap . txt in the data subdirectory of the working directory; that is, in data/soap. txt.
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Line 2 of Table 3.10 reads the data from the file soap . txt and puts it into an R data set (data frame)
called soap.data. Alternatively, one could enter the data via the keyboard, which is the standard
input device stdin (), by replacing line 2 with the following.

> goap.data = read.table(stdin(), header = TRUE)
0: Soap Cube PreWt PostWt WtLoss
1: 1 1 13.14 13.44 -0.30
2: 1 2 13.17 13.27 -0.10

12: 3 12 13.00 11.18 1.82
13:

Keyboard data entry is ended by hitting the return key twice.

The head (soap.data, 5) command in line 3 displays the first five lines of the data set shown
in lines 4-9. Alternatively, the command head (soap.data) would display the first six lines by
default, and the command soap .data would display the full data set. The first column displayed
indicates the data is from rows 1-5 of the data set, and the other five columns show the five variables
in the data set, including the response variable WtLoss and the corresponding level of the treatment
factor Soap. In line 2, the statement header = TRUE (i.e. header = T) tells R that the columns
of data in the file soap . txt have headings, and these can be seen in line 4. If a data file has no
headings, the header statement may be omitted, the default being header = FALSE (i.e. header
= F).

Inline 11, the dataset soap . datais augmented with anew variable, £ Soap, created by converting
the numerical variable Soap to a factor variable, needed later for the analysis of variance.

The remaining code generates a plot of the data. The plot command in lines 13-14 generates a
scatterplot of WtLoss versus Soap like that shown in Fig. 3.6, with labels specified for each axis by
x1lab and ylab. The option data = soap.data indicates that the variables being plotted are in
the data set soap . data. Alternatively, one could use the syntax

plot (socap.dataswWtLoss soap.datas$Soap, xlab ="Soap",

in line 13. The dollar sign identifies specific columns of the data set, so, for example,
soap.datasSoap just means “read the column labeled Soap from the data set soap.data”.
The + prompt in line 14 indicates that the prior command is not yet complete. The option las = 1
sets labels style 1, making tick mark labels horizontal, impacting y-axis labeling. The option xaxt =
"n" in line 14 suppresses the automatically generated x-axis (which would have five tick marks), then
the axis command in line 16 includes instead an x-axis with three tick marks specified to be at 1, 2
and 3—namely, a sequence starting at 1 and ending at 3 in steps of size 1. If the numerical variable
Soap was replaced by the factor variable £Soap in line 13, then a box plot would be obtained instead
of a scatterplot.

The resulting scatterplot is displayed in a graphics window, by default (on a PC). Alternatively,
one can redirect the scatterplot to be saved in the file ch3 soap.pdf in pdf format, for example, as
illustrated by the following code.

pdf ("figs/ch3soapplot.pdf", width = 5, height = 3) # Open a pdf file
# Insert plot command and its subcommands here
dev.off() # Close the pdf file

The pdf command opens the pdf file ch3soapplot.pdf in the £igs subdirectory of the
working directory (as specified by the user upon startup), and specifies the dimension of the graphic
image to be saved. Once this has been done, plot function calls will send output to the pdf file.
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Then the dev.off () command closes the pdf file, so graphical output reverts to the default graphics
window.

3.9.3 Analysis of Variance

In this section we illustrate how the R software can be used to conduct a one-way analysis of variance
test for equality of the treatment effects, assuming model (3.3.1) is appropriate. Table 3.11 contains a
sample program and output, with line numbers again included for reference only. We continue to use the
soap experiment data, which in line 1 is read from the file soap . txt into the data set soap.data.

In line 3, we convert the numerical variable Soap to a factor variable, saving it as a new variable
fSoap of the soap.data data set. The statement in line 4 generates summary statistics for the
variables in columns 1, 5 and 6 of the data set, with the output shown in lines 5-11. If all six variables
are to be summarized, the statement summary (soap.data) without column numbers is sufficient.
One can see that the summary command treats the numeric variable Soap and the factor variable
fSoap differently, providing summary statistics for the Soap values, but levels and frequencies for
fSoap. A factor variable is treated as a qualitative variable by R, analogous to a CLASS variable in
SAS software.

The aov function in line 12 fits a linear model to the soap data, specifying WtLoss as the response
variable and £Soap as the primary source of variation, the symbol “~” separating and distinguishing
these, saving the resulting information as the object model1. Because £Soap is a factor variable, it is
modeled as a classification variable as desired. The parameter . and the error variables are automatically
included in the model. The anova (modell) command in line 13 displays the one-way analysis of
variance information shown in lines 14-19. In lines 17-18, the F value is the value of the ratio
msT/msE for testing the null hypothesis that the three treatment effects are all equal, and Pr (>F)
is the p-value of the test to be compared with the chosen significance level. The listed p-value is
5.91 x 1077, so the null hypothesis is rejected for any chosen significance level larger than this small
value.

The library (lsmeans) command in line 21 loads the package lsmeans from the user’s
library for subsequent use; (this assumes the reader has already installed the package as discussed in
the next paragraph). The 1 smeans command in line 22 generates the least squares means for the three
levels of the factor £ Soap, plus further statistical information which will be discussed in Chap.4. The
output is shown in lines 23-28.
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Table 3.11 R program for the soap experiment: analysis of variance and least squares means

Line R Code or Output
1 > soap.data = read.table("data/soap.txt", header = TRUE)
2 > # Add factor variable fSoap to soap.data for ANOVA
3 > soap.data$fSoap = factor (soap.data$Soap)
4 > summary (soap.datal,c(1,5:6)]) # Summarize data in cols 1, 5, 6
5 Soap wWtLoss fSoap
6 Min. 01 Min. :-0.300 1:4
7 1st Qu.:1 1st Qu.: 0.275 2:4
8 Median :2 Median 1.945 3:4
9 Mean :2 Mean : 1.552
10 3rd Qu.:3 3rd Qu.: 2.460
11 Max. :3 Max. : 3.150

12 > modell = aov(WtLoss ~ fSoap, data = soap.data)
13 > anova (modell)

14 Analysis of Variance Table

15

16 Response: WtLoss

17 Df Sum Sg Mean Sg F value Pr(>F)
18 fSoap 2 16.12 8.06 104 5.9e-07

19 Residuals 9 0.69 0.08

20 > # install.packages("lsmeans")

21 > library (lsmeans)

22 > lsmeans (modell, "fSoap")

23 fSoap lsmean SE df lower.CL upper.CL
24 1 -0.0350 0.1389 9 -0.34922 0.27922
25 2 2.7000 0.1389 9 2.38578 3.01422
26 3 1.9925 0.1389 9 1.67828 2.30672
27

28 Confidence level used: 0.95

Add-On Packages

Installation of the R software (see Sect. 1.2) installs the base software, including some base packages
providing limited functionality. There are thousands of additional user-defined packages that the user
may freely download, the 1smeans package introduced above being one example. To use any such
function not included in the base software installation, the “add-on” package containing the function
must first be installed and loaded. For example, the command install .packages ("lsmeans")
in line 20 installs the 1smeans package, permanently saving it in a library of packages on the user’s
computer, so the command 1ibrary (1smeans) can load the 1smeans package from the user’s
library. A package only needs to be installed once. However, any add-on package must be loaded by the
user prior to its first use in any new R session. As such, when our programs require an add-on package,
we will routinely include the necessary 1ibrary command to load the package. Furthermore, when
we use an add-on package for the first time, the corresponding program will include the corresponding
install.packages command, but commented out. Before running such a program the first time,
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Table 3.12 Calculating sample sizes using power of the test

#install.packages (pwr)
library (pwr)
v = 3; del = 0.25; sig2 = 0.007; alpha = 0.05; pwr = 0.90
pwr.anova.test(k = v, sig.level = alpha, power = pwr,
f sgrt(del”2/ (2*v*sig2)))

+ V.V VvV V

Balanced one-way analysis of variance power calculation

k =3
n = 4.038656
f = 1.219875
sig.level = 0.05
power = 0.9

NOTE: n is number in each group

the reader can simply delete the comment character, “#”, so the package gets installed. On most systems,
the process is automatic.

For linux users, when the install.packages command is invoked for the first time, you may
get a warning that says in effect that a library is not writable and it will ask you whether you would
like to use a personal library. If you answer vy, it will ask you if you would like to create one. If you
answer y again, it will ask you to select a CRAN “mirror” (i.e. a site from which to download the
package for installation). Select (give the number of) any site near your location, and then R will create
the personal library and download the package. After this, the install.packages command will
proceed automatically.

3.9.4 Calculating Sample Size Using Power of a Test

In Table 3.12, we show a sample R program which calculates the power of the test of the null hypothesis
Hy : {m = --- = 7y}against Hy: {at least two of the 7;’s differ}. The code shown is for the soap
experiment in Example 3.6.1, but is easily modified for other experiments by changing the values of the
number of levels of the treatment factor (v), the difference (del) to be detected (i.e. A), the assumed
largest value of the error variance (sig2), the significance level of the test (alpha), and the desired
power of the test pwr.

The R program from Table3.12 uses function pwr .anova.test which can be found in the
package pwr. The function’s inputs k = v, sig.level = alpha, and power = pwr are
self-explanatory. The degrees of freedom vy = v — 1, », = n — v = v(r — 1), and the criti-
cal value Fy,_1 n—y o forthe F-distribution corresponding to the required significance level are calcu-
lated internally by R. From (3.6.20), the value of ¢//7, labeled as input £, is calculated as / A2/ (2va?)
and is needed by the non-central F distribution in the calculation of the power for different values of
r. The output is also shown in Table3.12. and we can see that, just as in Example 3.6.1, to achieve a
power of approximately 0.9, the number of observations needed is r = 4 per level of the treatment
factor. Notice that r is labelled n in the R output.
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Exercises

Suppose that you are planning to run an experiment with one treatment factor having four levels
and no blocking factors. Suppose that the calculation of the required number of observations has
given r| = rp = r3 = rq4 = 5. Assign at random 20 experimental units to the v = 4 levels of the
treatments, so that each treatment is assigned 5 units.

Suppose that you are planning to run an experiment with one treatment factor having three levels
and no blocking factors. It has been determined that r; = 3, r, = r3 = 5. Assign at random 13
experimental units to the v = 3 treatments, so that the first treatment is assigned 3 units and the
other two treatments are each assigned 5 units.

Suppose that you are planning to run an experiment with three treatment factors, where the first
factor has two levels and the other two factors have three levels each. Write out the coded form of the
18 treatment combinations. Assign 36 experimental units at random to the treatment combinations
so that each treatment combination is assigned two units.

For the one-way analysis of variance model (3.3.1), p. 33, the solution to the normal equations
used by the SAS softwareis 7; =y, —y, (i=1,...,v)andg =7y, .

(a) Is 7; estimable? Explain.
(b) Calculate the expected value of the least squares estimator for 71 — 7, corresponding to the above

5.

solution. Is 71 — 7 estimable? Explain.

Consider a completely randomized design with observations on three treatments (coded 1, 2, 3).
For the one-way analysis of variance model (3.3.1), p. 33, determine which of the following are
estimable. For those that are estimable, state the least squares estimator.

(@) 71+ 7 —27m.

(b) pu+ 7.

© 1 —m— .

(d) p+ (i +712+73)/3.

10.

11.

(requires calculus) Show that the normal equations for estimating p, 71, . . ., 7, are those given in
Eq.(3.4.3) on p. 35.

(requires calculus) Show that the least squares estimator of y + 7 is Y _ for the linear model ¥;; =
w47+ e?l (t=1,...,ri;i=1,2,...,v),where the e?t’s are independent random variables with
mean zero and variance o2. (This is the reduced model for the one-way analysis of variance test,
Sect.3.5.1, p. 41.)

For the model in the previous exercise, find an unbiased estimator foraz.(Hint: first calcu-
late E[ssEg]in (3.5.10), p. 42.)

(requires calculus) Find the least squares estimates of 41, p2, ..., ty for the linear model ¥;; =
witer &=1,...,r;i =1,2,...,v),where thee;;’s are independent random variables with
mean zero and variance o2. Compare these estimates with the least squares estimates of ju + 7;
i=1,2,...,v)in model (3.3.1), p. 33.

For the model in the previous exercise, find an unbiased estimator for 2. Compare the estimator
with that in (3.4.7), p. 39.

Verify, for the one-way analysis of variance model (3.3.1), p. 33, that each treatment sample
variance Si2 is an unbiased estimator of the error variance o2, so that

E(SSE) = Z(r,» —DE(S?) = (n — v)o?.
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Table 3.13 Times (in seconds) for the balloon experiment

Time order 1 2 3 4 5 6 7 8
Coded color 1 3 1 4 3 2 2 2
Inflation time 22.0 24.6 20.3 19.8 24.3 222 28.5 25.7
Time order 9 10 11 12 13 14 15 16
Coded color 3 1 2 4 4 4 3 1
Inflation time 20.2 19.6 28.8 24.0 17.1 19.3 24.2 15.8
Time order 17 18 19 20 21 22 23 24
Coded color 2 1 4 3 1 4 4 2
Inflation time 18.3 17.5 18.7 22.9 16.3 14.0 16.6 18.1
Time order 25 26 27 28 29 30 31 32
Coded color 2 4 2 3 3 1 1 3

Inflation time 18.9 16.0 20.1 22.5 16.0 19.3 15.9 20.3

12. Balloon experiment

Prior to 1985, the experimenter (Meily Lin) had observed that some colors of birthday balloons
seem to be harder to inflate than others. She ran this experiment to determine whether balloons
of different colors are similar in terms of the time taken for inflation to a diameter of 7 inches.
Four colors were selected from a single manufacturer. An assistant blew up the balloons and the
experimenter recorded the times (to the nearest 1/10 second) with a stop watch. The data, in the
order collected, are given in Table 3.13, where the codes 1, 2, 3, 4 denote the colors pink, yellow,
orange, blue, respectively.

(a) Plot inflation time versus color and comment on the results.

(b) Estimate the mean inflation time for each balloon color, and add these estimates to the plot from
part (a).

(c) Construct an analysis of variance table and test the hypothesis that color has no effect on inflation
time.

(d) Plot the data for each color in the order that it was collected. Are you concerned that the assump-
tions on the model are not satisfied? If so, why? If not, why not?

(e) Is the analysis conducted in part (c) satisfactory?

13. Heart-lung pump experiment, continued

The heart-lung pump experiment was described in Example 3.4.1, p. 37, and the data were shown
in Table 3.2, p. 38.

(a) Calculate an analysis of variance table and test the null hypothesis that the different number of
revolutions per minute have the same effects on the fluid flow rate.

(b) Are you happy with your conclusion? Why or why not?

(c) Calculate a 90% upper confidence limit for the error variance 0.

14. Meat cooking experiment

(L. Alvarez, M. Burke, R. Chow, S. Lopez, and C. Shirk, 1998)
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Table 3.14 Post-cooking weight data (in grams) for the meat cooking experiment

Frying Grilling
Fat content Fat content
10% 15% 20% 10% 15% 20%
81 85 71 84 83 78
88 80 77 84 88 75
85 82 72 82 85 78
84 80 80 81 86 79
84 82 80 86 88 82

Table 3.15 Data for the trout experiment

Code Hemoglobin (grams per 100 ml)
1 6.7 7.8 5.5 8.4 7.0 7.8 86 74 58 7.0
2 9.9 8.4 10.4 9.3 10.7 11.9 71 64 8.6 10.6
3 10.4 8.1 10.6 8.7 10.7 9.1 88 81 78 8.0
4 9.3 9.3 7.2 7.8 9.3 10.2 87 86 93 7.2

Source: Gutsell (1951). Copyright © 1951 International Biometric Society. Reprinted with permission

An experiment was run to investigate the amount of weight lost (in grams) by ground beef ham-
burgers after grilling or frying, and how much the weight loss is affected by the percentage fat
in the beef before cooking. The experiment involved two factors: cooking method (factor A, with
two levels frying and grilling, coded 1, 2), and fat content (factor B, with three levels 10, 15, and
20%, coded 1, 2, 3). Thus there were six treatment combinations 11, 12, 13, 21, 22, 23, relabeled
as treatment levels 1, 2, ..., 6, respectively. Hamburger patties weighing 110 g each were prepared
from meat with the required fat content. There were 30 “cooking time slots” which were randomly
assigned to the treatments in such a way that each treatment was observed five times (r = 5). The
patty weights after cooking are shown in Table 3.14.

(a) Plot the data and comment on the results.

(b) Write down a suitable model for this experiment.

(c) Calculate the least squares estimate of the mean response for each treatment. Show these estimates
on the plot obtained in part (a).

(d) Test the null hypothesis that the treatments have the same effect on patty post-cooking weight.

(e) Estimate the contrast 71 — (72 + 73)/2 which compares the effect on the post-cooked weight of
the average of the two higher fat contents versus the leanest meat for the fried hamburger patties.

(f) Calculate the variance associated with the contrast in part (¢). How does the value of the variance
compare with the variance o2 of the random error variables?

15. Trout experiment (Gutsell 1951, Biometrics)

The data in Table 3.15 show the measurements of hemoglobin (grams per 100ml) in the blood of
brown trout. The trout were placed at random in four different troughs. The fish food added to the
troughs contained, respectively, 0, 5, 10, and 15 g of sulfamerazine per 100 pounds of fish (coded
1, 2, 3, 4). The measurements were made on ten randomly selected fish from each trough after 35
days.
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(a) Plot the data and comment on the results.

(b) Write down a suitable model for this experiment, assuming trough effects are negligible.

(c) Calculate the least squares estimate of the mean response for each treatment. Show these estimates
on the plot obtained in (a). Can you draw any conclusions from these estimates?

(d) Test the hypothesis that sulfamerazine has no effect on the hemoglobin content of trout blood.

(e) Calculate a 95% upper confidence limit for o2.

16. Trout experiment, continued

Suppose the trout experiment of Exercise3.15 is to be repeated with the same v = 4 treatments,
and suppose that the same hypothesis, that the treatments have no effect on hemoglobin content,
is to be tested.

(a) For calculating the number of observations needed on each treatment, what would you use as a
guess for 02?7

(b) Calculate the sample sizes needed for an analysis of variance test witha = 0.05 to have power
0.95if: (i) A = 1.5; (i1)) A = 1.0; (iii) A = 2.0.

17. Meat cooking experiment, continued

Suppose the meat cooking experiment of Exercise3.14 is to be repeated with the same v = 6
treatments, and suppose the same hypothesis, that the treatments have the same effect on burger
patty weight loss, is to be tested.

(a) Calculate an unbiased estimate of o> and a 90% upper confidence limit for it.

(b) Calculate the sample sizes needed for an analysis of variance test witha = 0.05 to have power
0.90 if:
(1) A =5.0; (ii) A = 10.0.

18. The diameter of a ball bearing is to be measured using three different calipers. How many observa-
tions should be taken on each caliper type if the null hypothesis Hy:{effects of the calipers are the
same} is to be tested against the alternative hypothesis that the three calipers give different average
measurements. It is required to detect a difference of 0.01 mm in the effects of the caliper types with
probability 0.98 and a Type I error probability of o« = 0.05.1t is thought that o is about0.03 mm.

19. An experiment is to be run to determine whether or not time differences in performing a simple
manual task are caused by different types of lighting. Five levels of lighting are selected ranging
from dim colored light to bright white light. The one-way analysis of variance model (3.3.1), p. 33
is thought to be a suitable model, and Hy : {r] = m = 73 = 74 = 75}is to be tested against
the alternative hypothesis H4:{the 7;’sare not all equal} at significance level 0.05. How many
observations should be taken at each light level given that the experimenter wishes to reject Hy with
probability 0.90 if the difference in the effects of any two light levels produces a 4.5-second time
difference in the task? It is thought that o is at most 3.0 seconds.



Inferences for Contrasts and Treatment
Means

4.1 Introduction

The objective of an experiment is often much more specific than merely determining whether or not
all of the treatments give rise to similar responses. For example, a chemical experiment might be run
primarily to determine whether or not the yield of the chemical process increases as the amount of the
catalyst is increased. A medical experiment might be concerned with the efficacy of each of several
new drugs as compared with a standard drug. A nutrition experiment may be run to compare high
fiber diets with low fiber diets. Such treatment comparisons are formalized in Sect.4.2. The purpose
of this chapter is to provide confidence intervals and hypothesis tests about treatment comparisons
and treatment means. We start, in Sect.4.3, by considering a single treatment comparison or mean,
and then, in Sect.4.4, we develop the techniques needed when more than one treatment comparison
or mean is of interest. The number of observations required to achieve confidence intervals of given
lengths is calculated in Sect.4.5. SAS and R commands for confidence intervals and hypothesis tests
are provided in Sects. 4.6 and 4.7, respectively.

4.2 Contrasts

In Chap. 3, we defined a contrast to be a linear combination of the parameters 71, 7, ..., 7, of the

form
ZC,'T,', with ZC,':O.

For example, 7, — 75 is the contrast that compares the effects (as measured by the response variable)
of treatments u# and s. If 7, — 7, = 0, then treatments u and s affect the response in exactly the same
way, and we say that these treatments do not differ. Otherwise, the treatments do differ in the way
they affect the response. We showed in Sect.3.4 that for a completely randomized design and the
one-way analysis of variance model (3.3.1), every contrast >_ c¢;7; is estimable with least squares

estimate
Zciﬁ' = Zci(ﬂ‘f‘ﬁ') = Zcii. “4.2.1)
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and corresponding least squares estimator >_ ¢;Y;.. The variance of the least squares estimator is

Var (Z c,»?i,) =S Var(¥i) = > ) =0 D (/) 4.2.2)
The first equality uses the fact that the treatment sample means Y;_involve different response variables,

which in model (3.3.1) are independent. The error variance o2 is generally unknown and is estimated
by the unbiased estimate msE, giving the estimated variance of the contrast estimator as

Var (Z cii‘) = msE> (cF/ri).

The estimated standard error of the estimator is the square root of this quantity, namely,

\/V’Tax (> avi) = \/msE > (/). (4.2.3)

Normalized Contrasts

When several contrasts are to be compared, it is sometimes helpful to be able to measure them all
on the same scale. A contrast is said to be normalized if it is scaled so that its least squares estimator
has variance o2. From (4.2.2), it can be seen that a contrast Xc¢;7; is normalized by dividing it by

+/ Eciz /ri. If we write h; = ¢;/ Eciz /ri, then the least squares estimator $h;Y;. of the normalized
contrast X/;7; has the following distribution:

WY ~N (> hiri.0?) . where h; = ——— |
Z iti (Z iTi 0) w i m

Normalized contrasts will be used for hypothesis testing (Sect.4.3.3).

Contrast Coefficients

It is convenient to represent a contrast by listing only the coefficients of the parameters 71, 7, ..., 7.
Thus, D ¢;7i = c171 + 272 + - - - + ¢y would be represented by the list of contrast coefficients

[Clv €2, ..., CU]'

Some types of contrasts are used frequently in practice, and these are identified in Sects.4.2.1-4.2.4.

4.2,1 Pairwise Comparisons

As the name suggests, pairwise comparisons are simple differences 7, — 7, of pairs of parameters 7,
and 7; (u # s). These are of interest when the experimenter wishes to compare each treatment with
every other treatment. The list of contrast coefficients for the pairwise difference 7, — 7y is

[0,0,1,0,...,0,-1,0,...,0],

where the 1 and —1 are in positions u and s, respectively. The least squares estimate of 7, — 7y is
obtained from (4.2.1) by setting ¢, = 1, ¢ = —1, and all other ¢; equal to zero, giving
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Tu — s:yu._ys.’

>

and the corresponding least squares estimator is Y. — Y. Its estimated standard error is obtained
from (4.2.3) and is equal to

VVar(Y,, = Ys) = /msE ((1/r,) + (1/r5)) .

Example 4.2.1 Battery experiment, continued

Details for the battery experiment were given in Sect.2.5.2 (p. 24). The experimenter was interested
in comparing the life per unit cost of each battery type with that of each of the other battery types.
The average lives per unit cost (in minutes/dollar) for the four batteries, calculated from the data in
Table 2.8, p. 27, are

¥, =570.75, ¥, =860.50, y; =433.00, 7y, =496.25.

The least squares estimates of the pairwise differences are, therefore,

TI—Tp=-289.75, 71 —73=137.75, 71 —74= 7450,

T —T3= 42750, 75— 74 =364.25, T3 — 74 =—63.25.
The estimated pairwise differences suggest that battery type 2 (alkaline, store brand) is vastly superior
to the other three battery types in terms of the mean life per unit cost. Battery type 1 (alkaline, name
brand) appears better than types 3 and 4, and battery type 4 (heavy duty, store brand) better than
type 3 (heavy duty, name brand). We do, however, need to investigate whether or not these perceived
differences might be due only to random fluctuations in the data.

In Example 3.4.2 (p. 40), the error variance was estimated to be msE = 2367.71. The sample
sizes were r| = rp = r3 = r4 = 4, and consequently, the estimated standard error for each pairwise
comparison is equal to

I 1
\/2367.71 (4_1 + 4_1) = 34.41 min/$.

It can be seen that all of the estimated pairwise differences involving battery type 2 are bigger than
four times their estimated standard errors. This suggests that the perceived differences in battery type
2 and the other batteries are of sizable magnitudes and are unlikely to be due to random error. We shall
formalize these comparisons in terms of confidence intervals in Example 4.4.3 later in this chapter. [J

4.2.2 Treatment Versus Control

If the experimenter is interested in comparing the effects of one special treatment with the effects of each
of the other treatments, then the special treatment is called the control. For example, a pharmaceutical
experiment might involve one or more experimental drugs together with a standard drug that has been
on the market for some years. Frequently, the objective of such an experiment is to compare the effect of
each experimental drug with that of the standard drug but not necessarily with the effects of any of the
other experimental drugs. The standard drug is then the control. If we code the control as level 1, and the
experimental drugs as levels 2, 3, ..., v, respectively, then the contrasts of interest are 7 — 71, 73 —
T, ..., Ty — T1. These contrasts are known as treatment versus control contrasts. They form a subset of
the pairwise differences, so we can use the same formulae for the least squares estimate and the estimated
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standard error. The contrast coefficients for the contrast ; — 71 are [—1,0,...,0,1,0, ..., 0], where
the 1 is in position i.

4.2.3 Difference of Averages

Sometimes the levels of the treatment factors divide naturally into two or more groups, and the experi-
menter is interested in the difference of averages contrast that compares the average effect of one group
with the average effect of the other group(s). For example, consider an experiment that is concerned
with the effect of different colors of exam paper (the treatments) on students’ exam performance (the
response). Suppose that treatments 1 and 2 represent the pale colors, white and yellow, whereas treat-
ments 3, 4, and 5 represent the darker colors, blue, green and pink. The experimenter may wish to
compare the effects of light and dark colors on exam performance. One way of measuring this is to
estimate the contrast %(Tl + 1) — %(73 + 14 + 75), which is the difference of the average effects of
the light and dark colors. The corresponding contrast coefficients are

1 1 1 1 1
272 3’ 3’ 3]

From (4.2.1) and (4.2.3), the least squares estimate would be

1 1 1 1 1

371 + 3727 337 3V4. 7 3)s.

with estimated standard error
. 1 4 1 n 1 n 1 . 1
mE{——+—+ —+ —+ —).
4r1 4r2 9}”3 9}’4 97’5

Example 4.2.2 Battery experiment, continued

In the battery experiment of Sect.2.5.2, p. 24, battery types 1 and 2 were alkaline batteries, while types
3 and 4 were heavy duty. In order to compare the running time per unit cost of these two types of
batteries, we examine the contrast %(71 +m) — %(7'3 + 74). The least squares estimate is

1 1
5 (570.75 + 860.50) — - (433.00 + 496.25) = 251.00 min/$

suggesting that the alkaline batteries are more economical (on average by over four hours per dollar
spent). The associated standard error is /msE(4/16) = 24.32 min/$, so the estimated difference in
running time per unit cost is over ten times larger than the standard error, suggesting that the observed
difference is not just due to random fluctuations in the data. O

4.2.4 Trends

Trend contrasts may be of interest when the levels of the treatment factor are quantitative and have a
natural ordering. For example, suppose that the treatment factor is temperature and its selected levels
are 50°C, 75°C, 100 °C, coded as 1, 2, 3, respectively. The experimenter may wish to know whether
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the value of the response variable increases or decreases as the temperature increases and, if so, whether
the rate of change remains constant. These questions can be answered by estimating linear and quadratic
trends in the response.

The trend contrast coefficients for v equally spaced levels of a treatment factor and equal sample
sizes are listed in Table A.2 for values of v between 3 and 7. For v treatments, trends up to (v — 1)th
order can be measured. Experimenters rarely use more than four levels for a quantitative treatment
factor, since it is unusual for strong quartic and higher-order trends to occur in practice, especially
within the narrow range of levels considered in a typical experiment.

Table A.2 does not tabulate contrast coefficients for unequally spaced levels or for unequal sample
sizes. The general method of obtaining the coefficients of the trend contrasts involves fitting a regression
model to the noncoded levels of the treatment factor. It can be shown that the linear trend contrast
coefficients can easily be calculated as

¢i = ri(xi —Xx.), wherex, = (Zrjx;)/n, “4.2.4)

where r; is the number of observations taken on the ith uncoded level x; of the treatment factor, and
n = Xr; is the total number of observations. We are usually interested only in whether or not the linear
trend is likely to be negligible, and to make this assessment, the contrast estimate is compared with
its standard error. Consequently, we may multiply or divide the calculated coefficients by any integer
without losing any information. When the r; are all equal, the coefficients listed in Appendix A.2 are
obtained, possibly multiplied or divided by an integer. Expressions for quadratic and higher-order trend
coefficients are more complicated (see Draper and Smith 1998, Chap.22).

Example 4.2.3 Heart-lung pump experiment, continued

The experimenter who ran the heart-lung pump experiment of Example 3.4.1, p. 37, expected to see
a linear trend in the data, since he expected the flow rate to increase as the number of revolutions
per minute (rpm) of the pump head was increased. The plot of the data in Fig.3.1 (p. 38) shows the
observed flow rates at the five different levels of rpm. From the figure, it might be anticipated that the
linear trend is large but higher-order trends are very small.

The five levels of rpm observed were 50, 75, 100, 125, 150, which are equally spaced. Had there
been equal numbers of observations at each level, then we could have used the contrast coefficients
[—2,—1, 0, 1, 2 ]for the linear trend contrastand [ 2, —1, —2, —1, 2 ] for the quadratic trend contrast
as listed in Table A.2 for v = 5 levels of the treatment factor. However, here the sample sizes were
ri=r3=rs =25, rp) =3 and ry = 2. The coefficients for the linear trend are calculated via (4.2.4).
Now n = Xr; = 20, and

(Trixi)/n = 207" x (5(50) + 3(75) + 5(100) + 2(125) + 5(150)) = 98.75.

So, we have

Xi ri(xi — X))

50 5 x (50 —98.75) = —243.75
75 3x (75—-98.75) = —=-71.25
100 5 x (100 —98.75) = 6.25
125 2 x (125 —98.75) = 52.50
150 5 x (150 —98.75) = 256.25
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If the coefficients are multiplied by 4, they are then integers each divisible by 5 so rather than using the
calculated coefficients [—243.75, —71.25, 6.25, 52.50, 256.25], we can multiply them by 4/5 and use
the linear trend coefficients [—195, —57, 5, 42, 205]. The average flow rates (1/min) were calculated as
v =1.1352,y, =1.7220, y3 =2.3268, y4, =2.9250, y5 = 3.5292.
The least squares estimate X¢;y; of the linear contrast is then
—195y, — 57y, + 5y3 +42y, +205ys =538.45
1/min. The linear trend certainly appears to be large. However, before drawing conclusions, we need to
compare this trend estimate with its corresponding estimated standard error. The data give > > yl.zt =
121.8176, and we calculate the error sum of squares (3.4.5), p. 39, as ssE = 0.0208, giving an
unbiased estimate of o2 as

msE = ssE/(n — v) = 0.0208/(20 — 5) = 0.001387 .

The estimated standard error of the linear trend estimator is then

— 2 _ 2 2 2 2
\/msE(( 195) +( 57) +Q+(42) +(2055)

=4.988.
5 3 5 2

Clearly, the estimate of the linear trend is extremely large compared with its standard error.
Had we normalized the contrast, the linear contrast coefficients would each have been divided by

/ 2, (=195)2  (=57)2 g (422 (205)2 .
Zci/rl—\/ 5 + 3 + 5 + > + 5 = 134.09,

and the normalized linear contrast estimate would have been 4.0156. The estimated standard error of
all normalized contrasts is ~msE = 0.03724 for this experiment, so the normalized linear contrast
estimate remains large compared with the standard error. g

4.3 Individual Contrasts and Treatment Means
4.3.1 Confidence Interval for a Single Contrast

In this section, we obtain a formula for a confidence interval for an individual contrast. If confidence
intervals for more than one contrast are required, then the multiple comparison methods of Sect. 4.4
should be used instead. We give the formula first, and the derivation afterwards. A 100(1 — a)%
confidence interval for the contrast Xc¢;7; is

> iV — ti—vaz yMSEX c?/ri < X iy (4.3.5)
= ZCJ,; + th—v.a/2 4/ mSEz C,‘z/ri .

We can write this more succinctly as


http://dx.doi.org/10.1007/978-3-319-52250-0_3

4.3 Individual Contrasts and Treatment Means 75

Zcm € (Z Ciyi Tlhiv,a)2 ,/msEch.z/ri) , (4.3.6)

where the symbol %, which is read as “plus or minus,” denotes that the upper limit of the interval is
calculated using + and the lower limit using —. The symbols “X¥c¢;7; €” mean that the interval includes
the true value of the contrast Xc¢;7; with 100(1 — «)% confidence. For future reference, we note that
the general form of the above confidence interval is

ZC,’T,‘ € (Zciﬁ' :l:tdf’u/z \/@(Eciﬁ)) s 4.3.7)

where df is the number of degrees of freedom for error.

To derive the confidence interval (4.3.5), we will need to use some results about normally distributed
random variables. As we saw in the previous section, for the completely randomized design and one-
way analysis of variance model (3.3.1), the least squares estimator of the contrast > ¢;7; is D ¢iY;,
which has variance Var(Z¢;Y;) = o2 > cl.2 /ri. This estimator is a linear combination of normally
distributed random variables and therefore also has a normal distribution. Subtracting the mean and
dividing by the standard deviation gives us a random variable

D S — X

g a‘/Zciz/r,- ’

which has a N(0, 1) distribution. We estimate the error variance, o2, by msE, and from Sect.3.4.6,
p- 39, we know that

4.3.8)

MSE/c* = SSE/(n — v)o? ~ x2_,/(n —v).

It can be shown that the random variables D and MSE are independent (see Graybill, 1976), and the
ratio of a normally distributed random variable and a chi-squared random variable that are independent
has a ¢-distribution with the same number of degrees of freedom as the chi-squared distribution. Hence,
the ratio D/+/MSE has a t distribution with n — v degrees of freedom. Using the expression (4.3.8),
we can now write down the following probability statement about D /+/MSE:

» >SaYi =Y e

_tnfv,a/Z =< =< tnfv,a/Z
JMSEY ¢?/r;

where 1,y o/2 is the percentile of the #,_, distribution corresponding to a probability of «/2 in the
right-hand-tail, the value of which can be obtained from Table A.4. Manipulating the two inequalities,
the probability statement becomes

P (Z Ci¥i —tavap fMSED c/ri < D e (4.3.9)
< ZCiYi. + thv,a/2 ,/MSEZC?/H) =1-a.

Then replacing the estimators by their observed values in this expression gives a 100(1 — )% confi-
dence interval for D ¢;7; as in (4.3.5).

=1—-«,

Example 4.3.1 Heart-lung pump experiment, continued
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Consider the heart—lung pump experiment of Examples 3.4.1 and 4.2.3, p. 37 and 73. The least squares
estimate of the difference in fluid flow at 75 rpm and 50 rpm (levels 2 and 1 of the treatment factor,
respectively) is

Yciy; =y, — ¥, = 0.5868

I/min. Since there were r, = 5 observations at 75 rpm and r; = 3 observations at 50 rpm, and msE =
0.001387, the estimated standard error of this contrast is

11
JmsE £c2/r; = \/0.001387 (3 + g) =0.0272 /min.

Using this information, together with #15,0.025 = 2.131, we obtain from (4.3.6) a 95% confidence
interval (in units of I/min) for 7 — 71 as

(0.5868 £+ (2.131)(0.0272)) = (0.5288, 0.6448) .

This tells us that with 95% confidence, the fluid flow at 75 rpm of the pump is between 0.53 and 0.64
liters per minute greater than at 50 rpm. g

Confidence bounds, or one-sided confidence intervals, can be derived in the same manner as two-
sided confidence intervals. For the completely randomized design and one-way analysis of variance
model (3.3.1), a 100(1 — a)% upper confidence bound for > ¢;7; is

Zcm < ZCJ,-_ + taf.a ,/msEch.z/r[ , (4.3.10)

and a 100(1 — )% lower confidence bound for ) ¢;7; is

> i > D6V — tara \|mSE Y cH/ri 4.3.11)

where 14, is the percentile of the ¢ distribution with df degrees of freedom and probability « in the
right-hand tail.

4.3.2 Confidence Interval for a Single Treatment Mean

For the one-way analysis of variance model (3.3.1), the true mean response p + 7 of the sth level of a
treatment factor was shown in Sect. 3.4 to be estimable with least squares estimator Y . Although one
is unlikely to be interested in only one of the treatment means, we can obtain a confidence interval as
follows.

Since Y, ~ N(p+ 75, Uz/rs) for model (3.3.1), we can follow the same steps as those leading
to (4.3.6) and obtain a 100(1 — )% confidence interval for u + 75 as

w+ 75 € (Vg L taras2/ mSE/rs) . (4.3.12)
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Example 4.3.2 Heart-lung pump experiment, continued

Suppose that the experimenter had required a 99% confidence interval for the true average fluid
flow (i + 73) for the heart—lung pump experiment of Example 3.4.1, p. 37, when the revolutions per
minute of the pump are set to 100 rpm. Using (4.3.12) and r3 = 5, y; = 2.3268, msE = 0.001387,
n—v =20—75,and #15,0.005 = 2.947, the 99% confidence interval for y1 4 73 is

w471 e (23268 £(2.947)(0.01666)) = (2.2777,2.3759).

So, with 99% confidence, the true average flow rate at 100 rpm of the pump is believed to be between
2.28 and 2.38 I/min. O

4.3.3 Hypothesis Test for a Single Contrast or Treatment Mean

The outcome of a hypothesis test can be deduced from the corresponding confidence interval in the
following way. The null hypothesis Hy : ¢;7; = h will be rejected at significance level « in favor
of the two-sided alternative hypothesis Hy4 : Xc¢;7; # h if the corresponding confidence interval for
Y.¢;T; fails to contain /. For example, the 95% confidence interval for 7 — 71 in Example 4.3.1 does
not contain zero, so the hypothesis Hy : 70 — 71 = 0 (that the flow rates are the same at 50 and 75 rpm)
would be rejected at significance level a = 0.05 in favor of the alternative hypothesis (that the flow
rates are not equal).

We can make this more explicit, as follows. Suppose we wish to test the hypothesis Hy : X¢;7; =0
against the alternative hypothesis Hy : ¥c;7; # 0. The interval (4.3.6) fails to contain 0 if the absolute

value of X¢;y; isbiggerthant,_y o2,/ msE Eciz /ri. Therefore, the rule for testing the null hypothesis
against the alternative hypothesis is

2.Ciy;.

— | > tn—v,(y/Z s
JmsEY c?/r;

where | | denotes absolute value. We call such rules decision rules. If Hy is rejected, then Hy is
automatically accepted. The test statistic can be squared, so that the decision rule becomes

reject Hy if (4.3.13)

reject Hy if M > 12 =F
msE> cl.z/ri n-v.a/2 e

and the F distribution can be used instead of the ¢ distribution. Notice that the test statistic is the square
of the normalized contrast estimate divided by msE. We call the quantity

(> Ci?i.)z
> ct/ri

the sum of squares for the contrast, or contrast sum of squares (even though it is the “sum” of only
one squared term). The decision rule can be more simply expressed as

SSC =

(4.3.14)

reject Ho if —— > Fin_va. (43.15)
msE
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For future reference, we can see that the general form of ssc/msE is

ssc (Zciﬁ-)z
msE @(ZCﬂA’,‘) .

(4.3.16)

The above test is a two-tailed test, since the null hypothesis will be rejected for both large and small
values of the contrast. One-tailed tests can be derived also, as follows.
The decision rule for the test of Hy : Xc¢;7; = 0 against the one-sided alternative hypothesis Hy :

> citi > 0is
.Gy

JmsEY 2 /r;

The outcome of this test can be deduced from the appropriate one-sided confidence bound. In particular,
the null hypothesis will be rejected at significance level « if the corresponding 100(1 — a)% lower
confidence bound for > ¢;7; in Eq. (4.3.11) is above zero so excludes zero.

Similarly, for the one-sided alternative hypothesis Hy : > ¢;7; < 0, the decision rule is

.Y

—2 < —Ih—v,a-
JMSEY c; /i

Here the null hypothesis will be rejected at significance level « if the corresponding 100(1 — a)%
upper confidence bound for >’ ¢;7; in Eq.(4.3.10) is below zero so excludes zero.

If the hypothesis test concerns a single treatment mean, for example, Hy : 1 + 7, = 0, then the
decision rules (4.3.13)—(4.3.18) are modified by setting ¢y equal to one and all the other ¢; equal to
Zero.

reject Hy if > th—v.a- “4.3.17)

reject Hy if (4.3.18)

Example 4.3.3 Filter experiment

Lorenz et al. (1982) describe an experiment that was carried out to determine the relative performance
of seven membrane filters in supporting the growth of bacterial colonies. The seven filter types are
regarded as the seven levels of the treatment factor and are coded 1, 2, ..., 7. Filter types 1, 4, and 7
were received presterilized. Several different types of data were collected, but the only data considered
here are the colony counts of fecal coliforms from a sample of Olentangy River water (August 1980)
that grew on each filter. Three filters of each type were observed and the average colony counts' were

¥, =360, ¥, =180, ¥; =277, y4 =28.0, 5. =283, ¥ =377, ¥, =30.3.

The mean squared error was msE = 21.6. Suppose we wish to test the hypothesis that the presterilized
filters do not differ from the nonpresterilized filters in terms of the average colony counts, against a
two-sided alternative hypothesis that they do differ. The hypothesis of interest involves a difference of
averages contrast, that is,

1 1
Ho:g(Tl+T4+T7)—Z(Tz+T3 +75+76) =0.

IReprinted from Journal AWWA, Vol. 74, No. 8 (August 1982), by permission. Copyright © 1982, American Water
Works Association.
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From (4.3.15), the decision rule is to reject Hy if

_ _ _ — _ _ _ 2
ssc [LG). + V4 +77) — LGa. + T3, + 5. + 6] R
= 1 [
msE 1y2 12 12 _ 1y _ 1y _ 1y _ 1y 1
mSE[g; N <33) N <33> 4 34> 4 34> L §> ny §> }

Selecting a probability of a Type I error equal to o = 0.05, this becomes

oot Ho if (3.508)2 o3l - F
rejec if ———~"" 9 - .
: 07 (21.6)(0.1944) 1,14,0.05

Since F1,14,0.05 = 4.6, there is not sufficient evidence to reject the null hypothesis, and we conclude
that the presterilized filters do not differ significantly from the nonpresterilized filters when « is set at
0.05.

Notice that the null hypothesis would be rejected if the probability of a Type I error is set a little
higher than o = 0.10, since Fj 14,0.10 = 3.10. Thus, if these experimenters are willing to accept a high
risk of incorrectly rejecting the null hypothesis, they would be able to conclude that there is a difference
between the presterilized and the nonpresterilized filters.

A 95% confidence interval for this difference can be obtained from (4.3.6) as follows:

1 1
SO AT - AT T ) € (3.508 + t14,o.025\/(21.6)(0.1944)> ,
and since #14,0.025 = 2.145, the interval becomes
(3.508 £ (2.145)(2.0492)) = (—0.888, 7.904) ,

where the measurements are average colony counts. The interval contains zero, which agrees with the
hypothesis test at « = 0.05. 0

4.3.4 Equivalence of Tests and Confidence Intervals (Optional)

There is a stronger relationship between hypothesis tests and confidence intervals (including both 1- and
2-sided confidence intervals) than was described in Sect.4.3.3. As already discussed, the outcome of a
hypothesis test at significance level a can be deduced from the corresponding 100(1 — o) % confidence
interval. Correspondingly, though less well known, one can conclude from a hypothesis test that the
true value of the parameter is in the corresponding confidence interval, by virtue of rejecting all values
outside the interval, providing more specific test conclusions than simply whether or not one rejects
the null hypothesis and so believes the alternative.

To illustrate this, consider a two-tailed level-« test of the null hypothesis Hy : > ¢;7; = 0 against
the alternative hypothesis H4 : > ¢;7; # 0. Under standard practice, only the null hypothesis Hy is
tested at significance level a. If Hy is rejected in favor of Hy4, one simply eliminates zero as a possible
value of the treatment contrast, and the hypothesis testing procedure guarantees that the probability of
making a mistake by rejecting Hy : > ¢;7; = 0 when it is true is at most .

Expanding upon standard practice, suppose one not only tests Hp; rather, suppose one conducts
a standard two-tailed level-« test of the null hypothesis Hyp : > c¢;7; = b against the alternative
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hypothesis Hap, : > ¢i7i # b for eachreal number b. Then the probably of rejecting Hy : > ¢;7; = 0if
itis true is still controlled to be ae. Moreover, even though this expanded testing procedure involves con-
ducting an infinite number of tests rather than only one, the probability of making any false rejections—
namely, of falsely rejecting any true null hypothesis Hgy,—is still at most «. This follows from the
partitioning principle, (see Finner and Strassburger 2002, and references therein). In particular, because
the sets {b} partition the set of real numbers, Hyp is only true for exactly one value of b, b* say. So,
one can only make a mistake by rejecting the only true null hypothesis Hgp+, and the probability of
rejecting Hop+ is a. Thus, in terms of error rates, there is no additional cost in testing infinitely many
hypothesis Hy instead of just one.

Furthermore, as we know, the null hypothesis Hp, will be rejected at level-a precisely for those
values b outside the 100(1 — )% confidence interval for D> ¢;7;. In other words, all values of > ¢;7;
outside of the 100(1 — «)% confidence interval are rejected at simultaneous significance level a.
Hence, one can conclude from this extended test that the true value of »_ ¢;7; is in the corresponding
100(1 — @)% confidence interval for > ¢;7;. This is true whether or not one rejects Hp, providing a
more specific conclusion than simply rejecting the null hypothesis or not.

For example, if one does reject Hy : > ¢;7; = 0 at significance level a, then one can conclude with
Type I error probability, a not only that > ¢;7; # 0 but also more specifically that the true value of
> ¢;7i is in the corresponding 100(1 — «)% confidence interval for > ¢;7;, where this confidence
interval will consist only of positive values if Hy is rejected and D" ¢;7; > 0, or only of negative values
if Hy is rejected and > ¢;7; < 0. On the other hand, if one fails to reject Hp, one can still conclude
that the true value of > ¢;7; is in the corresponding 100(1 — «)% confidence interval for >_ ¢;7;, but
this confidence interval will include zero as a possible value of the treatment contrast.

The analogous equivalence exists between one-sided tests and corresponding confidence bounds.
Consider for example the standard level-« test of Hy : Xc¢;7; = 0 against the one-sided alternative
hypothesis H4 : > ¢;7; > 0. More broadly, one can conduct a standard one-tailed a-level test of the
null hypothesis Hop : D ¢;7; = b against the alternative hypothesis Hap : D ¢;7; > b for each real
number b. In so doing, Hyp : > ¢;7; = b will be rejected for exactly those values of b that are below
the 100(1 — )% lower confidence bound for > ¢;7; given in Eq.(4.3.11). In other words, the values
of D ¢;7; rejected at level «v are exactly the values outside of the 100(1 — )% (one-sided) confidence
interval. Consequently, whether or not Hy is rejected, one can conclude that the true value of D ¢;7;
is above the 100(1 — «)% lower confidence bound for > ¢;7;, and one will reject Hy and conclude
> ¢;i1i > 0 exactly when the lower confidence bound is positive.

Similarly, for testing Hy : X¢;7; = 0 against Hy : >_¢;7; < 0 at level «, one can expand this by
conducting a standard one-tailed level-« test of Hop @ > ¢;7; = b against Hyp, : > ¢;7; < b for each
real number b. Then the values of > ¢;7; rejected at level « are exactly the values above the 100(1 —
)% upper confidence bound given in Eq. (4.3.10). Consequently, whether or not Hy is rejected, one
can conclude that the true value of > ¢;7; is below its 100(1 — )% upper confidence bound. Also,
one will reject Hy and conclude > ¢;7; < 0 exactly when the upper confidence bound is negative.

The equivalence between testing and confidence intervals illustrated above applies quite broadly,
including for example to one-step multiple comparison procedures such as those considered in the next
section (as discussed by Voss 2008, 2010). The partitioning principle also facilitates the construction
of more complicated confidence sets corresponding to stepwise multiple tests (see Stefansson et al.
1988).
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4.4 Methods of Multiple Comparisons
4.4.1 Multiple Confidence Intervals

Often, the most useful analysis of experimental data involves the calculation of a number of different
confidence intervals, one for each of several contrasts or treatment means. The confidence level for
a single confidence interval is based on the probability, like (4.3.9), that the random interval will be
“correct” (meaning that the random interval will contain the true value of the contrast or function).

It is shown below that when several confidence intervals are calculated, the probability that they are
all simultaneously correct can be alarmingly small. Similarly, when several hypotheses are to be tested,
the probability that at least one hypothesis is incorrectly rejected can be uncomfortably high. Much
research has been done over the years to find ways around these problems. The resulting techniques are
known as methods of multiple comparison, the intervals are called simultaneous confidence intervals,
and the tests are called simultaneous hypothesis tests.

Suppose an experimenter wishes to calculate m confidence intervals, each having a 100(1 — )%
confidence level. Then each interval will be individually correct with probability 1 — o*. Let S; be
the event that the jth confidence interval will be correct and S ;j the event that it will be incorrect
(j =1,...,m). Then, using the standard rules for probabilities of unions and intersections of events,
it follows that

PSiNSN---NSy)=1—PS1USU---US,,).

This says that the probability that all of the intervals will be correct is equal to one minus the probability
that at least one will be incorrect. If m = 2,

P(S1US2) = P(S1)+ P(S2) — P(S1 N S2)
< P(Sy) + P(S2).

A similar result, which can be proved by mathematical induction, holds for any number m of events,
that is,
P(S§1USU---US,) <D P(S)),
J

with equality if the events S1,82,..., S, are mutually exclusive. Consequently,

P(SINS N NSy =1—> P(S;) =1-ma*; (4.4.19)
j

that is, the probability that the m intervals will simultaneously be correct is at least 1 — ma™*. The
probability ma*is called the overall significance level or experimentwise error rate. A typical value
for o* for a single confidence interval is 0.05, so the probability that six confidence intervals each
calculated at a 95% individual confidence level will simultaneously be correct is at least 0.7. Although
“at least” means “bigger than or equal to,” it is not known in practice how much bigger than 0.7 the
probability might actually be. This is because the degree of overlap between the events Sy, S2, ..., Sy,
is generally unknown. The probability “at least 0.7” translates into an overall confidence level of “at
least 70%” when the responses are observed. Similarly, if an experimenter calculates ten confidence
intervals each having individual confidence level 95%, then the simultaneous confidence level for the
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ten intervals is at least 50%, which is not very informative. As m becomes larger the problem becomes
worse, and when m > 20, the overall confidence level is at least 0%, clearly a useless assertion!

Similar comments apply to the hypothesis testing situation. If hypotheses for m different contrasts
are to be tested, each at significance level «*, then the probability that at least one hypothesis is
incorrectly rejected is at most ma*.

Various methods have been developed to ensure that the overall confidence level is not too small and
the overall significance level is not too high. Some methods are completely general, that is, they can be
used for any set of estimable functions, while others have been developed for very specialized purposes
such as comparing each treatment with a control. Which method is best depends on which contrasts are
of interest and the number of contrasts to be investigated. In this section, four methods are discussed
that control the overall confidence level and overall significance level. The terms preplanned contrasts
and data snooping occur in the summary of methods and the subsequent subsections. These have
the following meanings. Before the experiment commences, the experimenter will have written out a
checklist, highlighted the contrasts and/or treatment means that are of special interest, and designed
the experiment in such a way as to ensure that these are estimable with as small variances as possible.
These are the preplanned contrasts and means. After the data have been collected, the experimenter
usually looks carefully at the data to see whether anything unexpected has occurred. One or more
unplanned contrasts may turn out to be the most interesting, and the conclusions of the experiment
may not be as anticipated. Allowing the data to suggest additional interesting contrasts is called data
snooping.

The following summary is written in terms of confidence intervals, but it also applies to hypothesis
tests. A shorter confidence interval corresponds to a more powerful hypothesis test. The block designs
mentioned in the summary will be discussed in Chaps. 10 and 11.

Summary of Multiple Comparison Methods

1. Bonferroni method for preplanned comparisons
Applies to any m preplanned estimable contrasts or functions of the parameters. Gives shorter
confidence intervals than the other methods listed if m is small. Can be used for any design. Cannot
be used for data snooping.

2. Scheffé method for all comparisons
Applies to any m estimable contrasts or functions of the parameters. Gives shorter intervals than
Bonferroni’s method if m is large. Allows data snooping. Can be used for any design.

3. Tukey method for all pairwise comparisons
Best for all pairwise comparisons. Can be used for completely randomized designs, randomized
block designs, and balanced incomplete block designs. Is believed to be applicable (conservative)
for other designs as well. Can be extended to include all contrasts, but Scheffé’s method is generally
better for these.

4. Dunnett method for treatment-versus-control comparisons
Best for all treatment-versus-control contrasts. Can be used for completely randomized designs,
randomized block designs, and balanced incomplete block designs.

Details of confidence intervals obtained by each of the above methods are given in Sects. 4.4.2-4.4.6.
The terminology “a set of simultaneous 100(1 — )% confidence intervals” will always refer to the
fact that the overall confidence level for a set of contrasts or treatment means is (at least) 100(1 — «)%.
Each of the four methods discussed gives confidence intervals of the form
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>ame (Zciﬂ- +w \/@(Eciﬁ)), (4.4.20)
i i

where w, which we call the critical coefficient, depends on the method, on v, on the number of
confidence intervals calculated, and on the number of error degrees of freedom. The term

msd = w +/ Var(Z¢; %),

which is added and subtracted from the least squares estimate in (4.4.20), is called the minimum
significant difference, because if the estimate is larger than msd, the confidence interval excludes zero,
and the contrast is significantly different from zero.

4.4.2 Bonferroni Method for Preplanned Comparisons

The inequality (4.4.19) shows that if m simultaneous confidence intervals are calculated for preplanned
contrasts, and if each confidence interval has confidence level 100(1 — a*)%, then the overall con-
fidence level is greater than or equal to 100(1 — ma*)%. Thus, an experimenter can ensure that the
overall confidence level is at least 100(1 — «)% by setting o™ = «/m. This is known as the Bonferroni
method for simultaneous confidence intervals. Replacing o by a/m in the formula (4.3.6), p. 75, for
an individual confidence interval, we obtain a formula for a set of simultaneous 100(1 — «)% confi-
dence intervals for m preplanned contrasts X¢;7; in a completely randomized design with the one-way
analysis of variance model (3.3.1), as

Samie D v £tuvasom mE D cF/ri | . (4.4.21)
i i i

where the critical coefficient, wg, is
WB = In—v,a/@2m) -

Since o/ (2m) is likely to be an atypical value, the percentiles #,_y, «/2m) may need to be obtained
by use of a computer package, or by approximate interpolation between values in Table A.4, or by
using the following approximate formula due to Peiser (1943):

taf,a/@m) = Za/@m) + (1,31/(2,,,) + Zas@m))/ (4(dD) , (4.4.22)

where df is the error degrees of freedom (equal to n — v in the present context), and where zq/2m)
is the percentile of the standard normal distribution corresponding to a probability of «/(2m) in the
right hand tail. The standard normal distribution is tabulated in Table A.3 and covers the entire range
of values for a/(2m). When m is very large, a/(2m) is very small, possibly resulting in extremely
wide simultaneous confidence intervals. In this case, the Scheffé or Tukey methods described in the
following subsections would be preferred.

If some of the m simultaneous intervals are for true mean responses p + 75, then the required
intervals are of the form (4.3.12), p. 76, with « replaced by a/m, that is,

ptT e (ys. + t,,_v,a/(gm)w/msE/rs) . (4.4.23)
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Similarly, replacing o by a/m in (4.3.15), a set of m null hypotheses, each of the form

v
Hy : ZCZ'T,‘ =0,
i=1

can be tested against their respective two-sided alternative hypotheses at overall significance level «
using the set of decision rules each of the form

reject Ho if —— > Fy gra/m - (4.4.24)
msE

Each null hypothesis is rejected if the corresponding confidence interval (4.4.21) excludes zero, and
each confidence interval consists of exactly those values that would not be rejected by a two-tailed test.

Note that Bonferroni’s method can be use only for preplanned contrasts and means. An experimenter
who looks at the data and then proceeds to calculate simultaneous confidence intervals for the few
contrasts that look interesting has effectively calculated a very large number of intervals. This is
because the interesting contrasts are usually those that seem to be significantly different from zero, and
a rough mental calculation of the estimates of a large number of contrasts has to be done to identify
these interesting contrasts. Scheffé’s method should be used for contrasts that were selected after the
data were examined.

Example 4.4.1 Filter experiment, continued

The filter experiment was described in Example 4.3.3, p. 78. Suppose that before the data had been
collected, the experimenters had planned to calculate a set of simultaneous 90% confidence intervals for
the following m = 3 contrasts. These contrasts have been selected based on the details of the original
study described by Lorenz et al. (1982).

@) %(Tl + 14+ 1) — %(’7’2 + 73 + 75 + 7¢). This contrast measures the difference in the average
effect of the presterilized and the nonpresterilized filter types. This was used in Example 4.3.3 to
illustrate a hypothesis test for a single contrast.

(i) %(7’1 +77) — %(7'2 + 73 + 74 + 75 + 76). This contrast measures the difference in the average
effects of two filter types with gradated pore size and five filter types with uniform pore size.

(iii) %(7’1 + ™ + 14 + 75 + 76 + 77) — 73. This contrast is the difference in the average effect of the
filter types that are recommended by their manufacturers for bacteriologic analysis of water and the
single filter type that is recommended for sterility testing of pharmaceutical or cosmetic products.

From Example 4.3.3, we know that

y1.=36.0, y, =18.0, y3 =27.7, Yy, =28.0, ys =28.3,
ye. =37.7, y; =303, r; =3, msE = 21.6.
The formula for each of the three preplanned simultaneous 90% confidence intervals is given
by (4.4.21) and involves the critical coefficient wp = t14,(0.1)/6 = t14,0.0167, Which is not available in

Table A.4. Either the value can be calculated from a computer program, or an approximate value can
be obtained from formula (4.4.22) as

114,0.0167 ~ 2.128 + (2.1283 +2.128)/(4 x 14) = 2.338.
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The minimum significant difference for each of the three simultaneous 90% confidence intervals is

msd = 2.338,/(21.6) D c?/3 = 62735 /> 7.

Thus, for the first interval, we have

1 1
d = 6.2735 /3| - 4{—) = 4.791,
. / (9)+ (16)

giving the interval as

1 1
FM AT+ ™) = (7 75+ 76) € B508£4T91) = (~1.283, 8.299).

Calculating the minimum significant differences separately for the other two confidence intervals leads
to

1 1

5(7’1 +77) — 3(7'2 + 713+ 714+ 75 4+ 76) € (—0.039, 10.459);
1
8(7'1 +m+T14+ 75+ 76 +77) — T3 € (—4.759, 8.793).

Notice that all three intervals include zero, although the second is close to excluding it. Thus, at overall
significance level o = 0.10, we would fail to reject the hypothesis that there is no difference in average
colony counts between the presterilized and nonpresterilized filters, nor between filter 3 and the others,
nor between filters with gradated and uniform pore sizes. At a slightly higher significance level, we
would reject the hypothesis that the filters with gradated pore size have the same average colony counts
as those with uniform pore size. The same conclusion would be obtained if (4.4.24) were used to test
simultaneously, at overall level o = 0.10, the hypotheses that each of the three contrasts is zero. The
confidence interval, whether utilized directly or obtained as the conclusion of the test, has the added
benefit that it provides more specific conclusions. For example, we can say with overall 90% confidence
that on average, the filters with gradated pore size give rise to colony counts up to 10.4 greater than
the filters with uniform pore sizes. 0

4.4.3 Scheffé Method of Multiple Comparisons

The main drawbacks of the Bonferroni method of multiple comparisons are that the m contrasts to
be examined must be preplanned and the confidence intervals can become very wide if m is large.
Scheffé’s method, on the other hand, provides a set of simultaneous 100(1 — «)% confidence intervals
whose widths are determined only by the number of treatments and the number of observations in the
experiment, no matter how many contrasts are of interest. The two methods are compared directly later
in this section.

Scheffé’s method is based on the fact that every possible contrast X c;7; can be written as a linear
combination of the set of (v — 1) treatment versus control contrasts, » — 71, 73 — 71, ..., Ty — T1.
(We leave it to the reader to check that this is true.) Once the experimental data have been collected, it
is possible to find a 100(1 — a))% confidence region for these v — 1 treatment-versus-control contrasts.
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The confidence region not only determines confidence bounds for each treatment-versus-control con-
trast, it determines bounds for every possible contrast Xc;7; and, in fact, for any number of contrasts,
while the overall confidence level remains fixed. The mathematical details are given by Scheffé (1959).

For v treatments in a completely randomized design and the one-way analysis of variance
model (3.3.1), aset of simultaneous 100(1 — o)) % confidence intervals for all contrasts X ¢; 7; is given by

ZC[T,' S ZCJ,: + \/(v —DFy1n-v.a lmSEZC,'z/ri . (4.4.25)
i i i

Notice that this is the same form as the general formula (4.4.20), p. 83, where the critical coefficient
w is

ws = \/(U - 1)Fv—l,n—v,a .
If confidence intervals for the treatment means p + 7; are also of interest, the critical coefficient wg

needs to be replaced by
w§ = VvFonva-

The reason for the increase in the numerator degrees of freedom is that any of the functions 1 + 7; can
be written as a linear combination of the v — 1 treatment versus control contrasts and one additional
function p + 71. For the completely randomized design and model (3.3.1), a set of simultaneous
100(1 — a))% confidence intervals for any number of true mean responses and contrasts is therefore

given by
Zcin € Zcii. +VVFy v msEZc?/ri
i i V i

p+Ts e (y,, + \/vF,,,n_,,,m/msE/rs) . (4.4.26)

together with

Example 4.4.2 Filter experiment, continued

If we look at the observed average colony counts,

vy, =360, ¥, =18.0, y; =27.7, y, =28.0,
yS‘ =28.3, 56, =377, §7. =30.3,

for the filter experiment of Examples 4.3.3 and 4.4.1 (p. 78 and 84), filter type 2 appears to give a
much lower count than the other types. One may wish to recalculate each of the three intervals in
Example 4.4.1 with filter type 2 excluded. It might also be of interest to compare the filter types 1 and
6, which showed the highest average colony counts, with the other filters. These are not preplanned
contrasts. They have become interesting only after the data have been examined, and therefore we
need to use Scheffé’s method of multiple comparisons. In summary, we are interested in the following
twelve contrasts:

1 1 1 1
s(+m+m)—3m+15+7%), (M1+7)—3(@B+7+75+76),
trm+n+rs+mw+m)—713,

T —T3, TI—T4, TI—T5, TI—Te, TI—T7,

T6 — T3, T6 — T4, T6 — 75, T6 — 77 -
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The formula for a set of Scheffé 90% simultaneous confidence intervals is given by (4.4.25) with
a = 0.10. Since v =7, n = 21, and msE = 21.6 for the filter experiment, the minimum significant
difference for each interval becomes

msd = \/6F 14,0.10y/21.6 £c?/3 = 9.837,/Zc?.

The twelve simultaneous 90% confidence intervals are then

1 1
g(ﬂ + T4+ T7) — §(T3 + 75 + 76)

€ ((31.43 —31.23) £ 9.837 /3 (é) +3 (é))

= (—7.83,8.23),

1 1

E(Tl +77) — Z(T3 + 714+ 75+ 76) € (—5.79,11.24) ,
1
5(7'1 +714+75+ 76+ T7T7) — T3 € (—6.42,15.14),

1 —T13 € (=5.61,22.21), 176 — 3 € (—3.91,23.91),
T1—14 € (=591,2191), 76 — 14 € (—4.21,23.61),
T1—75 € (—6.21,21.61), 76 — 75 € (—4.51,23.31),
71 — 76 € (—15.61,12.21), 76 — 77 € (—6.51,21.31),
1—m € (=8.21,19.61).

These intervals are all fairly wide and all include zero. Consequently, at overall error rate « = 0.1, we
are unable to infer that any of the contrasts are significantly different from zero. O

Relationship Between Analysis of Variance and the Scheffé Method

The analysis of variance test and the Scheffé method of multiple comparisons are equivalent in the
following sense. The analysis of variance test will reject the null hypothesis Hy : 1y = =+ =1,
at significance level « if there is at least one confidence interval among the infinite number of Scheffé
simultaneous 100(1 — «))% confidence intervals for all contrasts Xc;7; that excludes zero. However,
the intervals that exclude zero may not be among those for the interesting contrasts being examined.

Other methods of multiple comparisons do not relate to the analysis of variance test in this way.
It is possible when using one of the other multiple comparison methods that one or more intervals
in a simultaneous 100(1 — «)% set may exclude O, while the analysis of variance test of Hy is not
rejected at significance level a.. Hence, if specific contrasts of interest have been identified in advance
of running the experiment and a method of multiple comparisons other than Scheffé’s method is to be
used, then it is sensible to analyze the data using only the multiple comparison procedure.

4.4.4 Tukey Method for All Pairwise Comparisons
In some experiments, confidence intervals may be required only for pairwise difference contrasts.

Tukey, in 1953, proposed a method that is specially tailored to handle this situation and that gives
shorter intervals for pairwise differences than do the Bonferroni and Scheffé methods.
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For the completely randomized design and the one-way analysis of variance model (3.3.1), Tukey’s
simultaneous confidence intervals for all pairwise comparisons 7; — 7, i # s, with overall confidence
level at least 100(1 — a))% is given by

T € (@i_ —3,) £ wr, [msE (i + 1)) , (4427)

ri s

where the critical coefficient wr is
wr = qv,nfv,a/\/iy

and where g, ,—, o is tabulated in Appendix A.8. When the sample sizes are equal (r; =r;
i =1,...,v),theoverall confidence level is exactly 100(1 — o) %. When the sample sizes are unequal,
the confidence level is at least 100(1 — a)%.

The derivation of (4.4.27) is as follows. For equal sample sizes, the formula for Tukey’s simultaneous
confidence intervals is based on the distribution of the statistic

max{7;} — min{7}}

VMSE/r ’

Q:

where T; = Y; — (. + 7;) for the one-way analysis of variance model (3.3.1), and where max{7;} is
the maximum value of the random variables Ty, 1>, ..., T, and min{7;} the minimum value. Since the
Y ’s are independent, the numerator of Q is the range of v independent N (0, o2/r) random variables,
and is standardized by the estimated standard deviation. The distribution of Q is called the Studentized
range distribution. The percentile corresponding to a probability of « in the right-hand tail of this
distribution is denoted by gy ,—v,o, Where v is the number of treatments being compared, and n — v is
the number of degrees of freedom for error. Therefore,

(maX{Ti} — min{7;}
JMSE]r

Now, if max{7;} — min{7;} is less than or equal to g, y—v.o+/MSE/r, then it must be true that |7; —
Ts| < Gu.n—v.a/MSE]/r for every pair of random variables T;, Ty, i # s. Using this fact and the above
definition of T;, we have

=< QU,nv,a) =1-a.

l—a=P(—quavaoVMSE[r< (Y; —Y,) = (1i = 75)
= Guv.n—v,aV MSE/r , for all i # s) .

Replacing Y;. by its observed value ¥, , and MSE by the observed value msE, a set of simultaneous
100(1 — )% confidence intervals for all pairwise differences 7; — 75, i # s, is given by

Ti —Ts € (@, = V) £ Gun—v,avV msE/r) >

which can be written in terms of the critical coefficient as

T —Ty € ((yi_ —3,)+wr, |msE (% + l)) . (4.4.28)

r
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More recently, Hayter (1984) showed that the same form of interval can be used for unequal sample
sizes as in (4.4.27), and that the overall confidence level is then at least 100(1 — «)%.

Example 4.4.3 Battery experiment, continued

In the battery experiment of Example 4.2.1 (p. 71), we considered the pairwise differences in the life
lengths per unit cost of v = 4 different battery types, and we obtained the least squares estimates

TI—Tp=-289.75, 11 —73=13775, 71 —74 = 7450,
Ty —T3 = 427150, 7o — 74 =364.25, 73 —74 =—63.25.

The standard error was |, /msE(A—l1 + %) = 34.41, and the number of error degrees of freedom was

n—v = (16 —4) = 12. From Table A.8, g4,12,0.05 = 4.20, so wr = 4.20/ﬁ, and the minimum sig-
nificant difference is
msd = (4.20/+/2) (34.41) = 102.19.

Therefore, using Tukey’s method, the simultaneous 95% confidence intervals for the pairwise com-
parisons of lifetimes per unit cost of the different battery types are

71— € (—289.75 & 102.19) = (—391.94, —187.56),

1 — 73 € (137.75 £ 102.19) = (35.56, 239.94),
T — 14 € (—27.69,176.69), T — 73 € (325.31,529.69),
Ty — 74 € (262.06,466.44), T3 — 74 € (—165.44, 38.94).

Four of these intervals exclude zero, and one can conclude (at an overall 95% confidence level) that
battery type 2 (alkaline, store brand) has the highest lifetime per unit cost, and battery type 3 (heavy
duty, name brand) has lower lifetime per unit cost than does battery type 1 (alkaline, name brand). The
intervals show us that with overall 95% confidence, battery type 2 is between 188 and 391 minute per
dollar better than battery type 1 (the name brand alkaline battery) and even more economical than the
heavy-duty brands. g

Example 4.4.4 Bonferroni, Scheffé and Tukey methods compared

Suppose that v = 5, n = 35, and o = 0.05, and that only the 10 pairwise comparisons 7; — 7y, I # s,
are of interest to the experimenter and these were specifically selected prior to the experiment (i.e.,
were preplanned). If we compare the critical coefficients for the three methods, we obtain

Bonferroni : wp = 130,.025/10 = 3.02,
Scheffé : ws = 4 /4 F4’30,.05 = 3.28,
Tukey . wr = \/LECIS,30,-05 = 209I.

Since wr is less than wp, which is less than wg for this example, the Tukey intervals will be shorter
than the Bonferroni intervals, which will be shorter than the Scheffé intervals. O
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4.4.5 Dunnett Method for Treatment-Versus-Control Comparisons

In 1955, Dunnett developed a method of multiple comparisons that is specially designed to provide
a set of simultaneous confidence intervals for preplanned treatment-versus-control contrasts 7; — 7
(i =2,...,v), where level 1 corresponds to the control treatment. The intervals are shorter than those
given by the Scheffé, Tukey, and Bonferroni methods, but the method should not be used for any other
type of contrasts.

The formulae for the simultaneous confidence intervals are based on the joint distribution of the

estimators Y; — Y of 7 — 71 (i = 2, ..., v). This distribution is a special case of the multivariate ¢
distribution and depends on the correlation between Y; — Y1 and Y. — Y. For the completely ran-
domized design, with equal numbers of observations r, = - - - = r, = r on the experimental treatments

and r; = ¢ observations on the control treatment, the correlation is
p=r/(c+r).

In many experiments, the same number of observations will be taken on the control and experimental
treatments, in which case p = 0.5. However, the shortest confidence intervals for comparing v — 1
experimental treatments with a control treatment are generally obtained when ¢/ is chosen to be close
to /v — 1. Since we have tabulated the multivariate 7-distribution only with correlation p = 0.5, we
will discuss only the case ¢ = r. Other tables can be found in the book of Hochberg and Tamhane
(1987), and intervals can also be obtained via some computer packages (see Sects.4.6.2 and 4.7.2 for
the SAS and R software, respectively).

If the purpose of the experiment is to determine which of the experimental treatments give a sig-
nificantly higher response than the control treatment, then one-sided confidence bounds should be
used. For a completely randomized design with equal sample sizes and the one-way analysis of vari-
ance model (3.3.1), Dunnett’s simultaneous one-sided 100(1 — «)% confidence bounds for treatment-

versus-control contrasts ; — 71 (i =2,3,...,v) are
_ 2
i—711>((; —y1)—wpi ,/msE - 4.4.29)
where the critical coefficient is
_ 0.5)
Wp1 = tv—l,n—v,(v
and where tﬁ?n_v ., 1s the percentile of the maximum of a multivariate ¢-distribution with common

correlation 0.5 and n — v degrees of freedom, corresponding to a Type I error probability of « in the
right-hand tail. The critical coefficient is tabulated in Table A.9. If the right hand side of (4.4.29) is
positive, we infer that the ith experimental treatment gives a larger response than the control.

If the purpose is to determine which of the experimental treatments give a significantly lower
response than the control, then the inequality is reversed, and the confidence bound becomes

r

2
i—1<O; —y)+wp ,/msE (—) . (4.4.30)

If the right-hand side is negative, we infer that the ith experimental treatment gives a smaller response
than the control.
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To determine which experimental treatments are better than the control and which ones are worse,
two-sided intervals of the general form (4.4.20) are used as for the other multiple comparison methods.
For the completely randomized design, one-way analysis of variance model (3.3.1), and equal sample

sizes, the formula is
2
T —T] € (yl — 3y, Twpy ,/msE (—)) s 4.4.31)
r

where the critical coefficient is
_ 1410.5)
Wp2 = |t|v71,n7v,a

and is the upper critical value for the maximum of the absolute values of a multivariate ¢-distribution
with correlation 0.5 and n — v error degrees of freedom, corresponding to the chosen value of « in the
right-hand tail. The critical coefficients for equal sample sizes are provided in Table A.10.

For future reference, the general formula for Dunnett’s two-sided simultaneous 100(1 — )% con-
fidence intervals for treatment versus control contrasts 7; — 71 (i = 2,3,...,v)is

-1 € ((ﬁ — 7)) £ wpy +/ Var(F; — %1)) , (4.4.32)

and, for one-sided confidence bounds, we replace wp; by wp; and replace “€” by “<” or “>.” The
critical coefficients are

_140.5) _(0.5)
Wp2 = |t|v—1,df,a' and Wwp1 = tv—l,df,a

for two-sided and one-sided intervals, respectively, where df is the number of error degrees of freedom.

Example 4.4.5 Soap experiment, continued

Suppose that as a preplanned objective of the soap experiment of Sect.2.5.1, p. 20, the experimenter
had wanted simultaneous 99% confidence intervals comparing the weight losses of the deodorant
and moisturizing soaps (levels 2 and 3) with that of the regular soap (level 1). Then it is appropriate
to use Dunnett’s method as given in (4.4.31). From Sect.3.7.2, rj =r, =r3 =4, msE = 0.0772,
7y — 1 = 2.7350, and 73 — 71 = 2.0275. From Table A.10, wpy = |1\, _, . = 1135001 = 3.63,
so the minimum significant difference is

msd = 3.63 /msE(2/4) = 0.713.

Hence, the simultaneous 99% confidence intervals are
™ — 711 € (2.7350 £ 0.713) ~ (2.022, 3.448)

and
73— 711 € (2.0275 £0.713) ~ (1.314,2.741) .

One can conclude from these intervals (with overall 99% confidence) that the deodorant soap (soap 2)
loses between 2 and 3.4 g more weight on average than does the regular soap, and the moisturizing
soap loses between 1.3 and 2.7 g more weight on average than the regular soap. We leave it to the
reader to verify that neither the Tukey nor the Bonferroni method would have been preferred for these
contrasts (see Exercise 7). O
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4.4.6 Combination of Methods

The Bonferroni method is based on the fact that if m individual confidence intervals are obtained, each
with confidence level 100(1 — «*)%, then the overall confidence level is at least 100(1 — ma™)%. The
same fact can be used to combine the overall confidence levels arising from more than one multiple
comparison procedure.

In Example 4.4.1 (p. 84), the Bonferroni method was used to calculate simultaneous 90% confi-
dence intervals for m = 3 preplanned contrasts. In Example 4.4.2 (p. 86), the analysis was continued
by calculating simultaneous 90% Scheffé intervals for twelve other contrasts. The overall error rate
for these two sets of intervals combined is therefore at most 0.1 + 0.1 = 0.2, giving an overall, or
“experimentwise,” confidence level of at least 100(1 — 0.2)% = 80% for all fifteen intervals together.

Different possible strategies for multiple comparisons should be examined when outlining the
analysis at step (g) of the checklist (Sect.2.2, p. 7). Suppose that in the above example the overall
level for all intervals (both planned and otherwise) had been required to be at least 90%. We examine
two possible strategies that could have been used. First, the confidence levels for the Bonferroni and
Scheffé contrasts could have been adjusted, dividing o = 0.10 into two pieces, «; for the preplanned
contrasts and ay for the others, where oy + ap = 0.10. This strategy would have resulted in intervals
that were somewhat wider than the above for all of the contrasts. Alternatively, Scheffé’s method could
have been used with a = 0.10 for all of the contrasts including the three preplanned contrasts. This
strategy would have resulted in wider intervals for the three preplanned contrasts but not for the others.
Both strategies would result in an overall, or experimentwise, confidence level of 90% instead of 80%.

4.4.7 Methods Not Controlling Experimentwise Error Rate

We have introduced four methods of multiple comparisons, each of which allows the experimenter to
control the overall confidence level, and the same methods can be used to control the experimentwise
error rate when multiple hypotheses are to be tested. There exist other multiple comparison procedures
that are more powerful (i.e., that more easily detect a nonzero contrast) but do not control the overall
confidence level nor the experimentwise error rate. While some of these are used quite commonly, we
do not advocate their use. Such procedures include Duncan’s multiple range test, Fisher’s protected
LSD procedure, and the Newman—Keuls method. (For more details, see Hsu 1996.)

4.5 Sample Sizes

Before an experiment can be run, it is necessary to determine the number of observations that should
be taken on each level of each treatment factor (step (h) of the checklist in Sect. 2.2, p. 7). In Sect. 3.6.2,
a method was presented to calculate the sample sizes needed to achieve a specified power of the test
of the hypothesis Hy : 71 = - -+ = 7. In this section we show how to determine the sample sizes to
achieve confidence intervals of specified lengths.

The lengths of confidence intervals decrease as sample sizes increase. Consequently, if the length
of an interval is specified, it should be possible to calculate the required sample sizes, especially when
these are equal. However, there is a problem. Since the experimental data have not yet been collected,
the value of the mean squared error is not known. As in Sect.3.6.2, if the value of the mean squared
error can be reasonably well be guessed at, either from previous experience or from a pilot study, then
a trial and error approach to the problem can be followed, as illustrated in the next example.
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Example 4.5.1 Bean-soaking experiment

Suppose we were to plan an experiment to compare the effects of v = 5 different soaking times on the
growth rate of mung bean seeds. The response variable will be the length of a shoot of a mung bean
seed 48 hours after soaking. Suppose that a pilot experiment has indicated that the mean square for
error is likely to be not more than 10 mm?, and suppose that we would like a set of 95% simultaneous
confidence intervals for pairwise differences of the soaking times, with each interval no wider than
6 mm (that is, the half width or minimum significant difference should be no greater than 3 mm).

The formula for each of the simultaneous confidence intervals for pairwise comparisons using
Tukey’s method of multiple comparisons is given by (4.4.27) p. 88. For equal sample sizes, the interval
half width, or minimum significant difference, is required to be at most 3 mm; that is, we require

1 1
msd = wr 10(—+—) <3,
roor

where wr = ¢5,5--5,.05/ V2 or, equivalently,

2
45 5r—5,05 = 0.9r.

Adopting a trial-and-error approach, we guess a value for r, say » = 10. Then, from Table A.8, we find
q52’ 45.05 4.03% = 16.24, which does not satisfy the requirement that g> < 0.9r = 9. A larger value
for r is needed, and we might try » = 20 next. The calculations are most conveniently laid out in table
form, as follows.

rS5r—5 g2 <05 0.9r Action

10 45 4.032 =16.24 9.00 Increase r

20 95 3.95% =15.60 18.00 Decrease r

15 70 3.97> = 15.76 13.50 Increase r

18 85 3.96% = 15.68 16.20 Decrease r

17 80 3.96% = 15.68 15.30

If r = 17 observations are taken on each of the five soaking times, and if the mean square for error is
approximately 10 mm? in the main experiment, then the 95% Tukey simultaneous confidence intervals
for pairwise comparisons will be a little over the required 6 mm in length. If r = 18 observations are
taken, the interval will be a little shorter than the 6 mm required. If the cost of the experiment is high,
then r = 17 would be selected; otherwise, » = 18 might be preferred.

Trial and error procedures such as that illustrated in Example 4.5.1 for Tukey’s method of multiple
comparisons can be used for any of the other multiple comparison methods to obtain the approximate
sample sizes required to meet the objectives of the experiment. The same type of calculation can be
done for unequal sample sizes, provided that the relative sizes are specified, for example r| = 2r; =
2r3 = 2r4.

Unless more information is desired on some treatments than on others, or unless costs or variances
are unequal, it is generally advisable to select equal sample sizes whenever possible. Choosing equal
sample sizes produces two benefits! Confidence intervals for pairwise comparisons are all the same
length, which makes them easier to compare, and the multiple comparison and analysis of variance
procedures are less sensitive to an incorrect assumption of normality of the error variables.

Quite often, the sample size calculation will reveal that the required number of observations is too
large to meet the budget or the time restrictions of the experiment. There are several possible remedies:
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(a) Refine the experimental procedure to reduce the likely size of msE,
(b) Omit one or more treatments,
(c) Allow longer confidence intervals,

(d) Allow a lower confidence level.

4.6 Using SAS Software

In this section we illustrate how to use the SAS software to generate information for confidence
intervals and hypothesis tests for individual contrasts and means and also for the multiple comparison
procedures. We use the data from the battery experiment of Sect.2.5.2 (p. 24).

A sample SAS program to analyze the data is given in Table4.1. As in Chap. 3, line numbers have
been included for reference but are not part of the SAS program. A data set BATTERY, with variables
TYPE, LPUC and ORDER, is created from the statements in lines 1-9. The treatment factor is the type
of battery TYPE, the response variable is the life per unit cost LPUC, and the one-way analysis of
variance model (3.3.1) was used for the analysis. Lines 10-12 generate the analysis of variance table
shown in the top of Fig.4.1.

4.6.1 Inferences on Individual Contrasts

The SAS statements ESTIMATE and CONTRAST are part of the GLM procedure and are used for
making inferences concerning specific contrasts.

The ESTIMATE statements (lines 13—15 of Table4.1) generate information for constructing confi-
dence intervals or conducting hypothesis tests for individual contrasts. Each of the three ESTIMATE
statements includes a user-selected contrast name in single quotes, together with the name of the factor
for which the effects of levels are to be compared, and the coefficients of the contrast to be estimated.

Table 4.1 SAS program for the battery experiment: contrasts and multiple comparisons

Line SAS Program
1 DATA BATTERY;

2 INPUT TYPE LPUC ORDER;

3 LINES;

4 1 611 1

5 2 923 2

6 1 537 3

7 : : :

8 3 413 16

9 ;
10 PROC GLM;
11 CLASS TYPE;
12 MODEL LPUC = TYPE;
13 ESTIMATE 'DUTY’ TYPE 1 1 -1 -1 / DIVISOR = 2;
14 ESTIMATE ‘'BRAND’ TYPE 1 -1 1 -1 / DIVISOR = 2;
15 ESTIMATE ’INTERACTN’ TYPE 1 -1 -1 1 / DIVISOR = 2;
16 CONTRAST 'BRAND’ TYPE 1 -1 1 -1;

17 LSMEANS TYPE / ADJUST = TUKEY CL PDIFF ALPHA = 0.01;
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Fig.4.1 Analysis of
variance and output from [ Results Viewer - SAS Output e [=En @I
the CONTRASTS and The GLM Procedure =

ESTIMATE statements N
Dependent Variable: LPUC

Source DF | Sum of Squares Mean Square F Value Pr>F
Model 3 4279152500  142638.4167 60.24 <0001 1
Error 12 28412.5000 2367.7083

Corrected Total | 15 456327.7500

Contrast | DF | Contrast SS  Mean Square F Value Pr>F
BRAND 1/124609.0000 124609.0000 52.63 <.0001

Parameter Estimate Standard Error tValue Pr> |t
DUTY 251.000000 24.3295516 10.32 <.0001
BRAND -176.500000 243295516 -7.25 <.0001

INTERACTN ' -113.250000 243295516 -4.65 0.0006

If the contrast coefficients are to be divided by a constant, this is indicated by means of the DIVISOR
option. The information generated by these statements is shown in the bottom section of Fig.4.1.

The columns show the contrast name, the contrast estimate Xc;y; , the standard error , /msE(Eci2 /ri)
for the estimate, the value of the #-statistic for testing the null hypothesis that the contrast is zero
(see (4.3.13), p. 77), and the corresponding p-value for a two-tailed test. For each of the contrasts
shown in Fig.4.1, the p-value is at most 0.0006, indicating that all three contrasts are significantly
different from zero for any choice of individual significance level o* greater than 0.0006. The overall
and individual significance levels should be selected prior to analysis. The parameter estimates and
standard errors can be used to construct confidence intervals by hand, using the critical coefficient for
the selected multiple comparison methods (see also Sect.4.6.2).

The CONTRAST statement in line 16 of Table4.1 generates the information shown in the middle
portion of Fig.4.1 that is needed in (4.3.15), p. 77, for testing the single null hypothesis that the brand
contrast is zero versus the alternative hypothesis that it is not zero. The “F Value” of 52.63 is the
square of the “t Value” of —7.25 (up to rounding error) for the brand contrast generated by the
ESTIMATE statement, the two tests (4.3.13) and (4.3.15) being equivalent.

4.6.2 Multiple Comparisons

The LSMEANS statement (line 17) in the GLM procedure in Table 4.1 can be used to generate the
observed least squares means y; for each level of a factor, and to implement the multiple comparisons
procedures introduced in Sect.4.4. Inclusion of the options ADJUST=TUKEY, PDIFF and CL causes
the SAS software to use the Tukey method to compare the effects of each pair of levels, providing both
p-values for simultaneous testing and confidence limits for simultaneous estimation of all pairwise
comparisons. Individual confidence intervals for each treatment mean are also provided as a conse-
quence of the CL option. The option ALPHA=0. 01 sets the confidence level at 99%, both for Tukey’s
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Flg. 4.2 Tukey s method @ Results Viewer - SAS Ou‘tpul E

for the battery experiment
The GLM Procedure =

Least Squares Means
Adjustment for Multiple Comparisons: Tukey

Least Squares Means for Effect TYPE

Difference Between Simultaneous 99% Confidence Limits

ilj Means for LSMean(i)-L SMean(j)

112 -289.750000 -423.600030 -155.899970
113 137.750000 3.899970 271.600030
1.4 74.500000 -59.350030 208.350030
2|3 427.500000 293.649970 561.350030
2.4 364.250000 230.399970 498.100030
3 4 -63.250000 -197.100030 70.600030

method for the simultaneous pairwise comparisons and for the individual confidence intervals for each
treatment mean. Part of the corresponding SAS output is given in Fig.4.2.

Other methods of multiple comparisons can also be requested as options in the LSMEANS statement
of the GLM procedure. For example, the options ADJUST=BON and ADJUST=SCHEFFE request
all pairwise comparisons using the methods of Bonferroni and Scheffé, respectively. The option
ADJUST=DUNNETT requests Dunnett’s 2-sided method of comparing all treatments with a con-
trol, the lowest treatment level serving as the control by default. To explicitly specify level 1, say,
as the control, replace PDIFF with PDIFF=CONTROL (’1’). Similarly, replacing PDIFF with
PDIFF=CONTROLU (‘1) requests simultaneous lower bounds for the treatment-versus-control con-
trasts 7; — 71 by Dunnett’s method and is useful for “upper-tailed"alternative hypotheses—namely, for
showing which treatments have a larger effect than the control treatment (coded 1). Likewise, the option
PDIFF=CONTROLL (' 1’ ) provides upper bounds useful for “lower-tailed" alternatives—namely, for
showing which treatments have a smaller effect than the control treatment (coded 1).

4.7 Using R Software

In this section we illustrate how to use the R software to generate information for confidence intervals
and hypothesis tests for individual contrasts and means and also for the multiple comparison procedures.
We use the data from the battery experiment of Sect. 2.5.2 (p. 24). The treatment factor is type of battery
Type, the response variable is the life per unit cost LPUC, and the one-way analysis of variance
model (3.3.1) was used for the analysis.

A sample R program to analyze the data is given in Table 4.2. Line numbers have been included
for the sake of reference but they are not part of the R program. The data are read from file by the
statement in line 1 of the R code. In line 2, the data set is augmented with a new variable, £Type,
created by converting the numerical variable Type to a factor variable. The head command in line 3
displays the first 3 lines of the data set. The function aov in line 4 fits the one-way analysis of variance
model (3.3.1) to the data, saving the results as the object model1 for use by subsequent R functions.
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Table 4.2 R program for the battery experiment

Line R Code
1 battery.data = read.table("data/battery.txt", header=T)
2 battery.data$fType = factor (battery.data$Type)
3 head (battery.data, 3)

4 modell = aov(LPUC ~ fType, data=battery.data) # Fit aov model

5 anova (modell) # Display 1l-way ANOVA
6 # Individual contrasts: estimates, CIs, tests

7 library (lsmeans)

8 lsmType = lsmeans (modell, ~ fType) # Compute and save lsmeans
9 levels (battery.datas$fType)

10 summary (contrast (1smType, list(Duty=c( 1, 1,-1,-1)/2,

11 Brand=c( 1,-1, 1,-1)/2,

12 DB=c( 1,-1,-1, 1)/2)),

13 infer=c(T,T), level=0.95, side="two-sided")

14 # Multiple comparisons
15 confint (1smType, level=0.90) # Display lsmeans and 90

16 # Tukey’s method
17 summary (contrast (1smType, method="pairwise", adjust="tukey"),
18 infer=c(T,T), level=0.99, side="two-sided")

19 # Dunnett’s method
20 summary (contrast (1smType, method="trt.vs.ctrl", adjust="mvt", ref=1),
21 infer=c(T,T), level=0.99, side="two-sided")

The anova (modell) function in line 5 generates the analysis of variance data shown in the top of
Table 4.3.

4.7.1 Inferences on Individual Contrasts

The 1smeans package, loaded in line 7, provides the functionality for computing least squares means
and using these for inferences on treatment contrasts. The 1smeans statement (line 8) uses the
results of the previously fitted model (line 4) to compute least squares means for each battery type
(i.e. for each level of £Type), saving the results as 1smType. The levels command in line 9
displays the levels of the factor fType inorder: "1" "2" n"3" "4" Using the least squares means
saved in line 8, the summary and contrast functions of the 1smeans package (lines 10-13 of
Table 4.2) are coupled to generate least squares estimates, tests, and confidence intervals for specified
treatment contrasts. For each of these contrasts, the coefficients correspond to the respective levels
of £Type displayed by line 9. In particular, the contrast function inputs the least squares means
1smType for each battery type plus a list of contrasts, including a name and the coefficients for
each, and would generate the information in the middle of Table 4.3 except the confidence limits. The
confidence limits are obtained by wrapping the contrast function in the summary function, for
which the option infer=c (T, T) requests confidence intervals and tests. The confidence level is
optionally specified to be 95% (the default). Two-sided confidence intervals and tests (the default)
are also optionally specified, whereas side="<" would request upper confidence limits and specify
one-sided alternative hypotheses corresponding to the contrasts being less than zero, for example.
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Table 4.3 R output: analysis of variance, individual contrasts, and Tukey’s method

> anova (modell) # Display l-way ANOVA
Analysis of Variance Table

Response: LPUC
Df Sum Sg Mean Sg F value Pr(>F)

fType 3 427915 142638 60.2 1.7e-07

Residuals 12 28412 2368

> # Individual contrasts: estimates, CIs, tests

> library(lsmeans)

> lsmType = lsmeans (modell, ~ fType) # Compute and save lsmeans
> levels (battery.data$fType)

[1] wQm o ompmw o w3Iwo owpgw

> summary (contrast (lsmType, list(Duty=c( 1, 1,-1,-1)/2,

+ Brand=c( 1,-1, 1,-1)/2,

+ DB=c( 1,-1,-1, 1)/2)),

+ infer=c(T,T), level=0.95, side="two-sided")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
Duty 251.00 24.33 12 197.99 304.01 10.317 <.0001
Brand -176.50 24.33 12 -229.51 -123.49 -7.255 <.0001
DB -113.25 24.33 12 -166.26 -60.24 -4.655 0.0006

Confidence level used: 0.95

> # Tukey’s method
> summary (contrast (lsmType, method="pairwise", adjust="tukey"),

+ infer=c(T,T), level=0.99, side="two-sided")
contrast estimate SE df 1lower.CL upper.CL t.ratio p.value
1 -2 -289.75 34.407 12 -423.6021 -155.898 -8.421 <.0001
1 -3 137.75 34.407 12 3.8979 271.602 4.004 0.0082
1 -4 74.50 34.407 12 -59.3521 208.352 2.165 0.1882
2 -3 427.50 34.407 12 293.6479 561.352 12.425 <.0001
2 - 4 364.25 34.407 12 230.3979 498.102 10.586 <.0001
3 -4 -63.25 34.407 12 -197.1021 70.602 -1.838 0.3035

Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates

Lines 613 of the R code are reproduced in the middle of Table 4.3, along with the corresponding
output. The output for each listed contrast includes the contrast name, the estimate X¢;y; , the standard

error /msE(Eci2 /ri) of the estimate, the number of error degrees of freedom, the 95% confidence
interval for the treatment contrast, the value of the 7-statistic for testing the null hypothesis that the
contrast is zero (see (4.3.13) p. 77), and the corresponding p-value for a two-tailed test. For each of
the contrasts shown in Table 4.3, the p-value is less than 0.0006, indicating that all three contrasts
are significantly different from zero for any choice of individual significance level o* greater than
0.0006. The overall and individual significance levels should be selected prior to analysis. For multiple
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comparisons including non-pairwise comparisons, the contrast estimates and standard errors could be
used to construct confidence intervals by hand, using the critical coefficient for the selected multiple
comparison methods (see Sect. 4.6.2). Pairwise comparisons will be illustrated in the next section.

4.7.2 Multiple Comparisons

Multiple comparisons procedures introduced in Sect. 4.4 are implemented by the R code in lines 14—
21 of Table 4.2. The least squares means package 1smeans, loaded in line 7, provides functions to
generate the observed least squares means y; for each level of a factor, and also to implement the
multiple comparisons procedures introduced in Sect.4.4. In line 8, 1smeans uses the information
stored in model1l to compute the least squares mean for each battery type, saving the least squares
means as 1smType for subsequent use. The confint function in line 15 would display the least
squares means and corresponding individual 90% confidence intervals for the treatment means (not
shown).

Multiple comparison methods can be implemented by coupling the summary and contrast
functions, as illustrated for Tukey’s method in lines 16—-18. These code lines and the corresponding
output are shown in the bottom of Table 4.3. The optionmethod="pairwise" requests all pairwise
comparisons. The contrast statement embedded in line 17 would apply Tukey’s method to test
whether each pairwise comparison is zero. One also gets the corresponding Tukey confidence intervals
by including the summary function and its options, where infer=c (T, T) requests confidence
intervals as well as tests, Level=0. 99 sets the confidence level, and side="two-sided" requests
two-sided confidence intervals and tests. Tukey’s method and two-sided inferences are the defaults for
all pairwise comparisons, so adjust="tukey" and side="two-sided" are redundant here,
but one can replace "tukey" with "scheffe" or "bonferroni" to apply the corresponding
method, or with "none" for no multiple comparisons adjustment. The default confidence level is
95%. Using method="revpairwise" reverses the order of the pairwise comparisons, considering
7;j — 7; rather than 7; — 7;.

Implementation of Dunnett’s method for all treatment-versus-control comparisons is similar and
illustrated by lines 19-21 of Table 4.2. The option method="trt.vs.ctrl" yields all treatment-
versus-control comparisons (not shown). Dunnett’s method uses critical values from the multivariate
t-distribution, corresponding to adjust="mvt". These critical values are computed by simulation,
so the results vary slightly from run to run unless a simulation seed is specified. Also, if the number
of treatments is large, implementation of R functions for the multivariate ¢-distribution may be slow
or simply not work, so the default option adjust="dunnettx" provides an approximation of
Dunnett’s method for two-sided confidence intervals that runs faster and dependably, though it is only
applicable when the contrast estimates have pairwise correlations of 0.5 such as in the equireplicate case.
The first level of the factor, "1 ", which happens to be level 11in this case, is the control by default; the
syntax ref=1 illustrates how to specify the first (or any) level as the control. Also, "two-sided"
is the default for confidence intervals and tests, but one can specify side="<" for the one-sided
alternative H4 : 7; < 7] and the corresponding upper confidence bound for 7; — 71, or side=">" for
the alternative H4 : 7; > 71 and the corresponding lower confidence bound for 7; — 77.

For additional functionality for multiple comparisons procedures, see the multiple comparisons
package mul tcomp.
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Exercises
1. Buoyancy experiment

Consider conducting an experiment to investigate the question, “Is the buoyancy of an object in
water affected by different concentrations of salt in the water?”

(a) Complete steps (a)—(d) of the checklist (p. 7) in detail. Specify any preplanned contrasts or
functions that should be estimated. State, with reasons, which, if any, methods of multiple
comparisons will be used.

(b) Run a small pilot experiment to obtain a preliminary estimate of 2.

(c) Finish the checklist.

2. Cotton-spinning experiment, continued

For the cotton-spinning experiment of Sect. 2.3, p. 13, identify any contrasts or functions that you
think might be interesting to estimate. For any contrasts that you have selected, list the correspond-
ing contrast coefficients.

3. Meat cooking experiment, continued

The meat cooking experiment was described in Exercise 14 of Chap. 3, and the data were given in
Table 3.14, p. 68.

(a) Compare the effects of the six treatments, pairwise, using Scheffé’s method of multiple com-
parisons and a 95% overall confidence level.

(b) Consider p + (11 + 74)/2, p+ (12 + 75)/2, and p + (73 + 76) /2. What do these represent?
Make pairwise comparisons of these three expressions, using Scheffé’s method of multiple
comparisons and a 95% overall confidence level for all treatment contrasts. Interpret the results.

4. Reaction time experiment
(L. Cai, T. Li, Nishant, and A. van der Kouwe, 1996)

The experiment was run to compare the effects of auditory and visual cues on speed of response
of a human subject. A personal computer was used to present a “stimulus” to a subject, and the
reaction time required for the subject to press a key was monitored. The subject was warned that
the stimulus was forthcoming by means of an auditory or a visual cue. The experimenters were
interested in the effects on the subjects’ reaction time of the auditory and visual cues and also in
different elapsed times between cue and stimulus. Thus, there were two different treatment factors:
“cue stimulus” at two levels “auditory” or “visual,” and “elapsed time between cue and stimulus”
at three levels “five,” “ten,” or “fifteen” seconds. This gave a total of six treatment combinations,

which can be coded as
1 = auditory, Ssec 4 = visual, 5sec

2 = auditory, 10sec 5 = visual, 10sec
3 = auditory, 15sec 6 = visual, 15sec
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Table 4.4 Reaction times, in seconds, for the reaction time experiment—(order of collection in parentheses)

Treatments
1 2 3 4 5 6
0.204 (9) 0.167 (3) 0.202 (13) 0.257 (7) 0.283 (6) 0.256 (1)
0.170 (10) 0.182 (5) 0.198 (16) 0.279 (14) 0.235 (8) 0.281 (2)
0.181 (18) 0.187 (12) 0.236 (17) 0.269 (15) 0.260 (11) 0.258 (4)

The results of a pilot experiment, involving only one subject, are shown in Table 4.4. The reaction
times were measured by the computer and are shown in seconds. The order of observation is shown
in parentheses.

(a) Identify a set of contrasts that you would find particularly interesting in this experiment. (Hint:
A comparison between the auditory treatments and the visual treatments might be of interest).
These are your preplanned contrasts.

(b) Plot the data. What does the plot suggest about the treatments?

(c) Test the hypothesis that the treatments do not have different effects on the reaction time against
the alternative hypothesis that they do have different effects.

(d) Calculate a set of simultaneous 90% confidence intervals for your preplanned contrasts, using
a method or methods of your choice. State your conclusions.

5. Trout experiment, continued

Exercise 15 of Chap. 3 (p. 67) concerns a study of the effects of four levels of sulfamerazine (0, 5,
10, 15 g per 100 Ib of fish) on the hemoglobin content of trout blood. An analysis of variance test
rejected the hypothesis that the four treatment effects are the same at significance level o = 0.01.

(a) Compare the four treatments using Tukey’s method of pairwise comparisons and a 99% overall
confidence level.

(b) Compare the effect of no sulfamerazine on the hemoglobin content of trout blood with the
average effect of the other three levels. The overall confidence level of all intervals in parts (a)
and (b) should be at least 98%.

. Battery experiment, continued

In Example 4.4.3 (page 89), Tukey’s method is used to obtain a set of 95% simultaneous confidence
intervals for the pairwise differences 7; — 7. Verify that this method gives shorter confidence
intervals than would either of the Bonferroni or Scheffé methods (for v =4 and r = 4).

. Soap experiment, continued

The soap experiment was described in Sect.2.5.1, p. 20, and an analysis was given in Sect.3.7.2,
p. 50.

(a) Suppose that the experimenter had been interested only in the contrast 7| — %(7’2 + 73), which
compares the weight loss for the regular soap with the average weight loss for the other two
soaps. Calculate a confidence interval for this single contrast.
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(b) Test the hypothesis that the regular soap has the same average weight loss as the average
of the other two soaps. Do this via your confidence interval in part (a) and also via (4.3.13)
and (4.3.15).

(c) InExample4.4.5 (p.91), Dunnett’s method was used for simultaneous 99% confidence intervals
for two preplanned treatment-versus-control contrasts. Would either or both of the Bonferroni
and Tukey methods have given shorter intervals?

(d) Which method would be the best if all pairwise differences are required? Calculate a set of
simultaneous 99% confidence intervals for all of the pairwise differences. Why are the intervals
longer than those in part (c)?

8. Trout experiment, continued

(a) For the trout experiment in Exercise 15 of Chap. 3 (see p. 67), test the hypotheses that the linear
and quadratic trends in hemoglobin content of trout blood due to the amount of sulfamerazine
added to the diet is negligible. State the overall significance level of your tests.

(b) Regarding the absence of sulfamerazine in the diet as the control treatment, calculate simul-
taneous 99% confidence intervals for the three treatment-versus-control comparisons. Which
method did you use and why?

(c) Whatis the overall confidence level of the intervals in part (b) together with those in Exercise 5?
Is there a better strategy than using three different procedures for the three sets of intervals?
Explain.

9. Battery experiment, continued

Suppose the battery experiment of Sect.2.5.2 (p. 24) is to be repeated. The experiment involved
four treatments, and the error standard deviation is estimated from that experiment to be about
48.66 minutes per dollar (minute/dollar).

(a) Calculate a 90% upper confidence limit for the error variance 0.

(b) How large should the sample sizes be in the new experiment if Tukey’s method of pairwise
comparisons is to be used and it is desired to obtain a set of 95% simultaneous confidence
intervals of length at most 100 minutes per dollar?

(c) How large should the sample sizes be in the new experiment if Scheffé’s method is to be
used to obtain a set of 95% simultaneous confidence intervals for various contrasts and if the
confidence interval for the duty contrast is to be of length at most 100 minute per dollar?

10. Trout experiment, continued

Consider again the trout experiment in Exercise 15 of Chap. 3.

(a) Suppose the experiment were to be repeated. Suggest the largest likely value for the error mean
square msE.

(b) How many observations should be taken on each treatment so that the length of each interval in
a set of simultaneous 95% confidence intervals for pairwise comparisons should be at most 2 g
per 100 ml?
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5.1 Introduction

Throughout the two previous chapters, we discussed experiments whose data could be described by
the one-way analysis of variance model (3.3.1), that is,

Yie=p+7+€ir,

eir ~ N0, 0?),
€;¢'s are mutually independent ,
t=1,...,r;, i=1,...,v.

This model implies that the response variables Y;; are mutually independent and have a normal distri-
bution with mean g + 7; and variance o2, thatis, Y;; ~ N (n+ 7, o?). For a given experiment, the
model is selected in step (f) of the checklist using any available knowledge about the experimental
situation, including the anticipated major sources of variation, the measurements to be made, the type
of experimental design selected, and the results of any pilot experiment. However, it is not until the
data have been collected that the adequacy of the model can be checked. Even if a pilot experiment has
been used to help select the model, it is still important to check that the chosen model is a reasonable
description of the data arising from the main experiment.

Methods of checking the model assumptions form the subject of this chapter, together with some
indications of how to proceed if the assumptions are not valid. We begin by presenting a general
strategy, including the order in which model assumptions should be checked. For checking model
assumptions, we rely heavily on residual plots. We do so because while examination of residual plots
is more subjective than would be testing for model lack-of-fit, the plots are often more informative
about the nature of the problem, the consequences, and the corrective action.

5.2  Strategy for Checking Model Assumptions

In this section we discuss strategy and introduce the notions of residuals and residual plots. A good
strategy for checking the assumptions about the model is to use the following sequence of checks.

e Check the form of the model—are the mean responses for the treatments adequately described by
EYip)=p+m7,i=1,...,0v7
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Check for outliers—are there any unusual observations (outliers)?

Check for independence—do the error variables ¢;; appear to be independent?

Check for constant variance—do the error variables ¢;; have similar variances for each treatment?
Check for normality—do the error variables ¢;; appear to be a random sample from a normal
distribution?

For all of the fixed-effects models considered in this book, these same assumptions should be checked,
except that E(Y;;) differs from model to model. The assumptions of independence, equal variance,
and normality are the error assumptions mentioned in Chap. 3.

5.2.1 Residuals

The assumptions on the model involve the error variables, €¢;; = ¥;; — E(Y;;), and can be checked by
examination of the residuals. The it th residual é;, is defined as the observed value of Y;; — Y;;, where
Y;; is the least squares estimator of E[Y,], that is,

éir = Yir — Yir -
For the one-way analysis of variance model (3.3.1), E[Y;;] = p + 73, so the it th residual is
eir =yir — (L+7) =yt =y, -

While one can simply use the residuals, we prefer to work with the standardized residuals, since
standardization facilitates the identification of outliers. The standardization we use is achieved by
dividing the residuals by their standard deviation, that is, by «/ssE/(n — 1). The standardized residuals,

G
" JsEfn—1)

then have sample variance equal to 1.0. Residuals standardized in this simplistic way are scaled
residuals. Readers may prefer to use Studentized residuals, obtained by dividing each residual by its
estimated standard error, either including or excluding the corresponding observation from the model
fit. However, there is little distinction between these various approaches for analysis of variance models
for data that is balanced or nearly so.

If the assumptions on the model are correct, the standardized error variables ¢;; /o are independently
distributed with a N (0, 1) distribution, so the observed values ¢;;/o = (yir — (4 + 73))/0 would
constitute independent observations from a standard normal distribution. Although the standardized
residuals are dependent and involve estimates of both e;; and o, their behavior should be similar.
Consequently, methods for evaluating the model assumptions using the standardized residuals look for
deviations from patterns that would be expected of independent observations from a standard normal
distribution.

5.2.2 Residual Plots

A residual plot is a plot of the standardized residuals z;; against the levels of another variable, the choice
of which depends on the assumption being checked. In Fig.5.1, we show a plot of the standardized
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Table 5.1 Data for the trout experiment

Code Hemoglobin (grams per 100 ml) Vi
1 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0 7.20
2 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6 9.33
3 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0 9.03
4 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2 8.69

Source: Gutsell (1951). Copyright © 1951 International Biometric Society. Reprinted with permission

residuals against the levels of the treatment factor for the trout experiment. Plots like this are useful
for evaluating the assumption of constant error variance as well as the adequacy of the model.

Example 5.2.1 Constructing a residual plot: trout experiment

The trout experiment was described in Exercise 15 of Chap. 3. There was one treatment factor (grams
of sulfamerazine per 100 1b of fish) with four levels coded 1, 2, 3, 4, each observed r = 10 times. The
response variable was grams of hemoglobin per 100 ml of trout blood. The n = 40 data values are
reproduced in Table 5.1 together with the treatment means.

Using the one-way analysis of variance model (3.3.1), it can be verified that ssE = 56.471. The
residuals é;; = y;; —y, and the standardized residuals z;; = &;;/+/ssE/(n — 1) are shown in Table 5.2.
For example, the observation y1; = 6.7 yields the residual

e =67-172=-05

and the standardized residual

z11 = —0.5//56.471/39 = —0.42

to two decimal places.

A plot of the standardized residuals against treatments is shown in Fig.5.1. The residuals sum to
zero for each treatment since X;(y;; —y; ) = Oforeachi = 1,..., v. The standardized residuals seem
fairly well scattered around zero, although the spread of the residuals for treatment 2 seems a little
larger than the spread for the other three treatments. This could be interpreted as a sign of unequal
variances of the error variables or that the data values having standardized residuals 2.14 and —2.43
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Table 5.2 Residuals and standardized residuals for the trout experiment

Treatment Residuals
1 —0.50 0.60 —1.70 1.20 —0.20
0.60 1.40 0.20 —1.40 —0.20
2 0.57 —0.93 1.07 —0.03 1.37
2.57 —2.23 —2.93 —0.73 1.27
3 1.37 —-0.93 1.57 —0.33 1.67
0.07 —0.23 —0.93 —1.23 —1.03
4 0.61 0.61 —1.49 —0.89 0.61
1.51 0.01 —0.09 0.61 —1.49
Treatment Standardized residuals
1 —0.42 0.50 —1.41 1.00 —-0.17
0.50 1.16 0.17 —1.16 —-0.17
2 0.47 —0.77 0.89 —0.02 1.14
2.14 —1.85 —2.43 —0.61 1.06
3 1.14 —-0.77 1.30 —0.27 1.39
0.06 —-0.19 —-0.77 —1.02 —0.86
4 0.51 0.51 —1.24 —0.74 0.51
1.25 0.01 —-0.07 0.51 —1.24

are outliers, or it could be attributed to chance variation. Methods for checking for outliers and equality
of variances will be discussed in Sects. 5.4 and 5.6, respectively. g

5.3  Checking the Fit of the Model

The first assumption to be checked is the assumption that the model E (Y;;) for the mean response is
correct. One purpose of running a pilot experiment is to choose a model that is a reasonable description
of the data. If this is done, the model assumption checks for the main experiment should show no
problems. If the model for mean response does not adequately fit the data, then there is said to be model
lack of fit. If this occurs and if the model is changed accordingly, then any stated confidence levels and
significance levels will only be approximate. This should be taken into account when decisions are to
be made based on the results of the experiment.

In general, the fit of the model is checked by plotting the standardized residuals versus the levels
of each independent variable (treatment factor, block factor, or covariate) included in the model. Lack
of fit is indicated if the residuals exhibit a nonrandom pattern about zero in any such plot, being too
often positive for some levels of the independent variable and too often negative for others.

For model (3.3.1), the only independent variable included in the model is the treatment factor. Since
the residuals sum to zero for each level of the treatment factor, lack of fit would only be detected if
there were a number of unusually large or small observations. However, lack of fit can also be detected
by plotting the standardized residuals against the levels of factors that were omitted from the model.
For example, for the trout experiment, if the standardized residuals were plotted against the age of
the corresponding fish and if the plot were to show a pattern, then it would indicate that age should
have been included in the model as a covariate. A similar idea is discussed in Sect. 5.5 with respect to
checking for independence.
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5.4  Checking for Outliers

An outlier is an observation that is much larger or much smaller than expected. This is indicated by a
residual that has an unusually large positive or negative value. Outliers are fairly easy to detect from
a plot of the standardized residuals versus the levels of the treatment factors. Any outlier should be
investigated. Sometimes such investigation will reveal an error in recording the data, and this can be
corrected. Otherwise, outliers may be due to the error variables not being normally distributed, or
having different variances, or an incorrect specification of the model.

If all of the model assumptions hold, including normality, then approximately 68% of the stan-
dardized residuals should be between —1 and +1, approximately 95% between —2 and +2, and
approximately 99.7% between —3 and +3. If there are more outliers than expected under normality,
then the true confidence levels are lower than stated and the true significance levels are higher.

Example 5.4.1 Checking for outliers: battery experiment

In the battery experiment of Sect. 2.5.2 (p. 24), four observations on battery life per unit cost were
collected for each of four battery types. Figure5.2 shows the standardized residuals plotted versus
battery type for the data as originally entered into the computer for analysis using model (3.3.1). This
plot shows two related anomalies. There is one apparent outlier for battery type 2, the residual value
being —2.98. Also, all of the standardized residuals for the other three battery types are less than one
in magnitude. This is many more than the 68% expected.

An investigation of the outlier revealed a data entry error for the corresponding observation—a life
length of 473 minutes was typed, but the recording sheet for the experiment showed the correct value
to be 773 minutes. The unit cost for battery type 2 was $0.935 per battery, yielding the erroneous value
of 506 minutes per dollar for the life per unit cost, rather than the correct value of 827. After correcting
the error, the model was fitted again and the standardized residuals were replotted, as shown in Fig. 5.3.

Observe how correcting the single data entry error corrects both problems observed in Fig.5.2.
Not only is there no outlier, but the distribution of the 16 standardized residuals about zero is as one
might anticipate for independent observations from a standard normal distribution—about a third of
the standardized residuals exceed one in magnitude, and all are less than two in magnitude. The two
anomalies are related, since correcting the data entry error makes ssE smaller and the standardized
residuals correspondingly larger. 0

For an outlier like that shown in Fig. 5.2, the most probable cause of the problem is a measurement
error, a recording error, or a transcribing error. When an outlier is detected, the experimenter should
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look at the original recording sheet to see whether the original data value has been copied incorrectly
at some stage. If the error can be found, then it can be corrected. When no obvious cause can be found
for an outlier, the data value should not automatically be discarded, since it may be an indication of an
occasional erratic behavior of a treatment. For example, had it not been due to a typographical error,
the outlier for battery type 2in the previous example might have been due to a larger variability in the
responses for battery type 2.

The experimenter has to decide whether to include the unusual value in the analysis or whether
to omit it. First, the data should be reanalyzed without the outlying value. If the conclusions of the
experiment remain the same, then the outlier can safely be left in the analysis. If the conclusions change
dramatically, then the outlier is said to be influential, and the experimenter must make a judgment as to
whether the outlying observation is likely to be an experimental error or whether unusual observations
do occur from time to time. If the experimenter decides on the former, then the analysis should be
reported without the outlying observation. If the experimenter decides on the latter, then the model is
not adequate to describe the experimental situation, and a more complicated model would be needed.

5.5 Checking Independence of the Error Terms

Since the checks for the constant variance and normality assumptions assume that the error terms are
independent, a check for independence should be made next. The most likely cause of nonindepen-
dence in the error variables is the similarity of experimental units close together in time or space.
The independence assumption is checked by plotting the standardized residuals against the order in
which the corresponding observations were collected and against any spatial arrangement of the cor-
responding experimental units. If the independence assumption is satisfied, the residuals should be
randomly scattered around zero with no discernible pattern. Such is the case for Fig. 5.4 for the battery
experiment. If the plot were to exhibit a strong pattern, then this would indicate a serious violation of
the independence assumption, as illustrated in the following example.

Example 5.5.1 Checking independence: balloon experiment

The experimenter who ran the balloon experiment in Exercise 12 of Chap.3 was concerned about
lack of independence of the observations. She had used a single subject to blow up all the balloons
in the experiment, and the subject had become an expert balloon blower before the experiment was
finished! Having fitted the one-way analysis of variance model (3.3.1) to the data (Table3.13), she
plotted the standardized residuals against the time order in which the balloons were inflated. The plot
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is shown in Fig.5.5. There appears to be a strong downward drift in the residuals as time progresses.
The observations are clearly dependent. O

If an analysis is conducted under the assumptions of model (3.3.1) when, in fact, the error vari-
ables are dependent, the statistical conclusions may be distorted. For example, if errors corresponding
to observations on the same treatment are positively correlated, but errors associated with different
treatments are independently distributed, this artificially increases the power of tests, causing the true
significance levels of tests under model (3.3.1) to be higher than stated, and causing the true confi-
dence levels of confidence intervals to be lower than stated. Conversely, if groups of observations on
different treatments (analogous to observations in the same block) have positively correlated errors,
but errors associated with other pairs of observations (analogous to observations in different blocks)
are independent, this tends to inflate the mean squared error and deflate test power, causing the true
significance levels of tests under model (3.3.1) to be lower than stated, and causing the true confidence
levels of confidence intervals to be higher than stated. The problem of dependent errors can be difficult
to correct and a different model would need to be used (e.g. Chap. 17). If there is a clear trend in the
residual plot, such as the linear trend in Fig.5.5, it may be possible to add terms into the model to
represent a time or space effect. For example, a more complex model that might be adequate for the
balloon experiment is
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Yip = p+ 7 + yxir + €ir
€ir ~ N(0, %)
€;¢'s are mutually independent
t=1,2,...,r;; i=1,...,v,

where the variable x;; denotes the time at which the observation was taken and +y is a linear time trend
parameter that must be estimated. Such a model is called an analysis of covariance model and will
be studied in Chap.9. The assumptions for analysis of covariance models are checked using the same
types of plots as discussed in this chapter. In addition, the standardized residuals should also be plotted
against the values of x;;.

Had the experimenter in the balloon experiment anticipated a run order effect, she could have selected
an analysis of covariance model prior to the experiment. Alternatively, she could have grouped the
observations into blocks of, say, eight observations. Notice that each group of eight residuals in Fig. 5.5
looks somewhat randomly scattered. As mentioned earlier in this chapter, when the model is changed
after the data have been examined, then stated confidence levels and significance levels using that same
data are inaccurate.

If a formal test of independence is desired, the most commonly used test is that of Durbin and
Watson (1951) for time-series data (see Neter et al. 1996, pp. 504-510).

5.6 Checking the Equal Variance Assumption

If the independence assumption appears to be satisfied, then the equal-variance assumption should be
checked. Studies have shown that if the sample sizes r1, . . ., r, are chosen to be equal, then unless one
variance is considerably larger than the others, the significance level of hypothesis tests and confidence
levels of the associated confidence intervals remain close to the stated values. However, if the sample
sizes are unequal, and if the treatment factor levels which are more highly variable in response happen
to have been observed fewer times (i.e. if smaller r; coincide with larger Var(e;;) = al.z), then the
statistical procedures are generally quite liberal, and the experimenter has a greater chance of making
a Type I error in testing than anticipated, and also, the true confidence level of a confidence interval is
lower than intended. On the other hand, if the large r; coincide with large of, then the procedures are
conservative (significance levels are lower than stated and confidence levels are higher). Thus, unless
there is good knowledge of which treatment factor levels are the more variable, an argument can be
made that the sample sizes should be chosen to be equal.

5.6.1 Detection of Unequal Variances

The most common pattern of nonconstant variance is that in which the error variance increases as the
mean response increases. This situation is suggested when the plot of the standardized residuals versus
the fitted values resembles a megaphone in shape, as in Fig. 5.6. In such a case, one can generally find
a transformation of the data, known as a variance-stabilizing transformation, which will correct the
problem (see Sect.5.6.2).

If the residual plot indicates unequal variances but not the pattern of Fig. 5.6 (or its mirror image),
then a variance-stabilizing transformation is generally not available. Approximate and somewhat less
powerful methods of data analysis such as those discussed in Sect.5.6.3 must then be applied.

An unbiased estimate of the error variance al.z for the ith treatment is the sample variance of the
residuals for the ith treatment, namely
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There do exist tests for the equality of variances, but they tend to have low power unless there are
large numbers of observations on each treatment factor level. Also, the tests tend to be very sensitive
to nonnormality. (The interested reader is referred to Neter et al. 1996, p. 763).

A rule of thumb that we shall apply is that the usual analysis of variance F'-test and the methods
of multiple comparisons discussed in Chap.4 are appropriate, provided that the ratio of the largest
of the v treatment variance estimates to the smallest, 52, /s2. , does not exceed three. The rule of
thumb is based on simulation studies suggesting that the methods of analysis are appropriate, provided
that the largest ratio of actual variances, 02,,, /02 , does not exceed three. Since the actual variances
are unknown in practice, we are basing our rule of thumb on the estimates 312 of the variances. Be
aware, however, that it is possible, and perhaps even likely, for the ratio of extreme variance estimates
srznax / sﬁlin to exceed three, even when the model assumptions are correct, making the rule of thumb

conservative.

Example 5.6.1 Comparing variances: trout experiment

Figure 5.1 (p. 105) shows a plot of the standardized residuals against the levels of the treatment factor
for the trout experiment. The plot suggests that the variance of the error variables for treatment 2 might
be larger than the variances for the other treatments. Using the data in Table 3.15, we obtain

i1 2 3 4
¥;17.20 9.33 9.03 8.69
s2/1.04 2.95 1.29 1.00

SO srznax / sﬁlin = 2.95, which satisfies our rule of thumb, but only just. Both the standard analysis using
model (3.3.1) and an approximate analysis that does not require equal variances will be discussed in
Example 5.6.3. g
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5.6.2 DataTransformations to Equalize Variances

Finding a transformation of the data to equalize the variances of the error variables involves finding
some function %(y;,) of the data so that the model

h(Yi) = p* + 71 + €,

holds and €}, ~ N (0, o2) and the €/ ’s are mutually independent forallz = 1,...,r;andi = 1,..., v.
An appropriate transformation can generally be found if there is a clear relationship between the error
variance 01.2 = Var(¢;;) and the mean response E[Y;;] = pu+ 73, fori = 1, ..., v. If the variance and

the mean increase together, as suggested by the megaphone-shaped residual plot in Fig.5.6, or if one
increases as the other decreases, then the relationship between cri2 and u + 7; is often of the form

of = k(p+m)7, (5.6.2)
where k and g are constants. In this case, the function 4 (y;;) should be chosen to be

'~ WP if g #2,
h(yir) = § In(yi;) if ¢ = 2 and all y;,’s are nonzero, (5.6.3)
In(y;; + 1) if ¢ = 2 and some y;;’s are zero.

Here “In” denotes the natural logarithm, which is the logarithm to the base e. Usually, the value of ¢
is not known, but a reasonable approximation can be obtained empirically as follows. Substituting the
least squares estimates for the parameters into Eq. (5.6.2) and taking logs of both sides gives

ln(siz) = In(k) + Q(ln(yi.)) .

Therefore, the slope of the line obtained by plotting ln(siz) against In(y; ) gives an estimate for g. This
will be illustrated in Example 5.6.2.

The value of g is sometimes suggested by theoretical considerations. For example, if the normal
distribution assumed in the model is actually an approximation to the Poisson distribution, then the
variance would be equal to the mean, and ¢ = 1. The square-root transformation A (y;;) = (yir)V/?
would then be appropriate. The binomial distribution provides another commonly occurring case for
which an appropriate transformation can be obtained theoretically. If each Y;; has a binomial distribution
with mean mp and variance mp(1 — p), then a variance-stabilizing transformation is

h(yir) = sin~! v/ Yit/m = arcsin (\/yit/m) .

When a transformation is found that equalizes the variances, then it is necessary to check or recheck
the other model assumptions, since a transformation that cures one problem could cause others. If there
are no problems with the other model assumptions, then analysis can proceed using the techniques of
the previous two chapters, but using the transformed data A (y;;).

Example 5.6.2 Choosing a transformation: battery experiment

In Sect.2.5.2, the response variable considered for the battery experiment was “battery life per unit
cost,” and a plot of the residuals versus the fitted values looks similar to Fig.5.3 and shows fairly
constant error variances.


http://dx.doi.org/10.1007/978-3-319-52250-0_2

5.6 Checking the Equal Variance Assumption 113

Table 5.3 Life data for the battery experiment
2

Battery Lifetime (minutes) Vi s
1 602 529 534 585 562.50 1333.71
2 863 743 773 840 804.75 3151.70
3 232 255 200 215 225.50 557.43
4 235 282 238 228 245.75 601.72
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Suppose, however, that the response variable of interest had been “battery life” regardless of cost.
The corresponding data are given in Table 5.3. The battery types are

1 = alkaline, name brand

2 = alkaline, store brand

3 = heavy duty, name brand

4 = heavy duty, store brand

Figure 5.7 shows a plot of the standardized residuals versus the fitted values. Variability seems to
be increasing modestly with mean response, suggesting that a transformation can be found to stabilize
the error variance. The ratio of extreme variance estimates is s2,,, /52 = s5/53 = 3151.70/557.43 ~
5.65. Hence, based on the rule of thumb, a variance stabilizing transformation should be used. Using
the treatment sample means and variances from Table 5.3, we have

i Vi In(y;) h In(s?)
1 562.50 6.3324 1333.71 7.1957
2 804.75 6.6905 3151.70 8.0557
3 225.50 5.4183 557.43 6.3233
4 245.75 5.5043 601.72 6.3998

Figure 5.8 shows a plot of ln(siz) against In(y; ). This plot is nearly linear, so the slope will provide
an estimate of ¢ in (5.6.2). A line can be drawn by eye or by the regression methods of Chap. 8.
Both methods give a slope approximately equal to ¢ = 1.25. From Eq. (5.6.3) a variance-stabilizing
transformation is

h(io) = (in)*".
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Fig.5.8 Plot of In(s?) 8.2
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Table 5.4 Transformed life data ,/y;; for the battery experiment
Brand Xit = h(yir) = /Yir X;. 352
1 24.536 23.000 23.108 24.187 23.708 0.592
2 29.3717 27.258 27.803 28.983 28.355 0.982
3 15.232 15.969 14.142 14.663 15.001 0.614
4 15.330 16.793 15.427 15.100 15.662 0.587

Since (yi)?37 is close to (yi;)?, and since the square root of the data values is perhaps more
meaningful than (y;;)*37, we will try taking the square root transformation. The square roots of the
data are shown in Table 5.4.

The transformation has stabilized the variances considerably, as evidenced by s2,./s2. =
0.982/0.587 ~ 1.67. Checks of the other model assumptions for the transformed data also reveal
no severe problems. The analysis can now proceed using the transformed data. The stated significance
level and confidence levels will now be approximate, since the model has been changed based on the
data. For the transformed data, msE = 0.6936. Using Tukey’s method of multiple comparisons to
compare the lives of the four battery types (regardless of cost) at an overall confidence level of 99%,

the minimum significant difference obtained from Eq. (4.4.28) is

msd = q4.12.0.01/msE/4 = 5.50,/0.6936/4 = 2.29.

Comparing msd with the differences in the sample means X; of the transformed data in Table5.4,
we can conclude that at an overall 99% level of confidence, all pairwise differences are significantly
different from zero except for the comparison of battery types 3 and 4. Furthermore, it is reasonable
to conclude that type 2 (alkaline, store brand) is best, followed by type 1 (alkaline, name brand).
However, any more detailed interpretation of the results is muddled by use of the transformation,
since the comparisons use mean values of \/@. A more natural transformation, which also provided
approximately equal error variances, was used in Sect.2.5.2. There, the response variable was taken
to be “life per unit cost,” and confidence intervals were able to be calculated in meaningful units. [J
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5.6.3 Analysis with Unequal Error Variances

An alternative to transforming the data to equalize the error variances is to use a method of data
analysis that is designed for nonconstant variances. Such a method will be presented for constructing
confidence intervals. The method is approximate and tends to be less powerful than the methods of
Chap. 4 with transformed data. However, the original data units are maintained, and the analysis can
be used whether or not a variance-stabilizing transformation is available.

Without the assumption of equal variances for all treatments, the one-way analysis of variance
model (3.3.1) is

Yier = p+7+¢ir,

€ir ~ N(0,07),
€i¢'s are mutually independent ,
t=1,...,ri;, i=1,...,0.

For this model, each contrast X ¢;7; in the treatment parameters remains estimable, but the least squares
estimator £¢;7; = X¢;Y; now has variance Var(Z¢;Y;) = Ecizoiz /ri. If we estimate O'l-z by sl.2 as
given in (5.6.1), then

YT — 2T

v Var(Zc¢;7y)

has approximately a ¢-distribution with df degrees of freedom, where

2 2.2 2
— A Ci o . (Xeisi/ri)
Var(Ec,Tl) = Z 75’!- and df = W .

’ 2 Gn

(5.6.4)

Then an approximate 100(1 — «)% confidence interval for a single treatment contrast X¢; 7; is

ZC,’TI' € (Zciﬂ :I:w\/@(ZCﬂA',')) s (5.6.5)

where w = tgras2 and X¢;7; = X¢;y;, all sums being from i = 1 to i = v. The formulae for
@(Eciﬂ-) and df in (5.6.4), often called Satterthwaite’s approximation, are due to Smith (1936),
Welch (1938), and Satterthwaite (1946). The approximation is best known for use in inferences on a
pairwise comparison 7, — 7; of the effects of two treatments, in which case, for samples each of size r,
(5.6.4) reduces to s . ) -
@m—m=i+imma=ﬂjﬁgﬁl. (5.6.6)
rr Sp Tt 8;

Satterthwaite’s approach can be extended to multiple comparison procedures by changing the critical
coefficient w appropriately and computing 3c¢;7; and df separately for each contrast. For Tukey’s
method, for example, the critical coefficient in (5.6.5) is wr = qv,dr.a/ +/2; this variation on Tukey’s
method is the Games—Howell method due to Games and Howell (1976). Simulation studies by Dunnett
(1980) have shown this Games—Howell method to maintain approximately the specified error rate,
though in a few circumstances it can be modestly liberal (true « slightly larger than the stated value).
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Example 5.6.3 Satterthwaite’s approximation: trout experiment

In Example 5.6.1, it was shown that the ratio of the maximum to the minimum error variance for
the trout experiment satisfies the rule of thumb, but only just. The standardized residuals are plotted
against the fitted values in Fig. 5.9. The data for treatment 2 are the most variable and have the highest
mean response, but there is no clear pattern of variability increasing as the mean response increases.
In fact, it can be verified that a plot of ln(siz) against In(y; ) is not very close to linear, suggesting that
a transformation will not be successful in stabilizing the variances.

To obtain simultaneous approximate 95% confidence intervals for pairwise comparisons in the treat-
ment effects by Tukey’s method using Satterthwaite’s approximation, we use Eqs. (5.6.5) and (5.6.6)
with r = 10. The minimum significant difference for pairwise comparison 75, — 7; is

1 si si2
msd = —=q4,dr,0.05 - + -

/2

the size of which depends upon which pair of treatments is being compared. From Example 5.6.1, we
have
sT=1.04, 55 =295 s3=129, s7=1.00.

The values of / Var (7, — 7;) = , /s;zl /r+ sl.2 /r arelisted in Table 5.5. Comparing the values of msd with

the values of y,, — 7, in Table5.5, we can conclude with simultaneous approximate 95% confidence

Table 5.5 Approximate values for Tukey’s multiple comparisons for the trout experiment

(h, 1) i+ sr df q4,d£,0.05 msd Yh. — Vi,

(2,3) 0.651 15.6 ~ 16 4.05 1.86 0.30
(2,4) 0.629 14.5 ~ 15 4.08 1.82 0.64
2,1 0.631 14.6 ~ 15 4.08 1.82 2.13
3,4 0.478 17.7~ 18 4.00 1.35 0.34
3,1 0.483 17.8 ~ 18 4.00 1.37 1.83

“4, 1) 0.452 18.0 ~ 18 4.00 1.28 1.49
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that each of treatments 2, 3, and 4 yields statistically significantly higher mean response than does
treatment 1.

Since s,zn ax/ s,f”.n = 2.95, we could accept the rule of thumb and apply Tukey’s method (4.4.28) for
equal variances. The minimum significant difference for each pairwise comparison would then be

msd = CI4,36’0_05\/H’15E/10 = 3.82\/ 1.5685/10 ~ 1.51.

Comparing this with the values of y, —; inTable5.5, the same conclusion is obtained as in the analysis
using Satterthwaite’s approximation, namely, treatment 1 has significantly lower mean response than
do treatments 2, 3, and 4. The three confidence intervals involving treatment 2, having length 2(msd),
would be slightly wider using Satterthwaite’s approximation, and the other three confidence intervals
would be slightly narrower. Where there is so little difference in the two methods of analysis, the
standard analysis would usually be preferred. 0

5.7 Checking the Normality Assumption

The assumption that the error variables have a normal distribution is checked using a normal probability
plot, which is a plot of the standardized residuals against their normal scores. Normal scores are
percentiles of the standard normal distribution, and we will show how to obtain them after providing
motivation for the normal probability plot.

If a given linear model is a reasonable description of a set of data without any outliers, and if the
error assumptions are satisfied, then the standardized residuals would look similar to » independent
observations from the standard normal distribution. In particular, the gth smallest standardized residual
would be approximately equal to the 100[q/(n + 1)]th percentile of the standard normal distribution.
Consequently, when the model assumptions hold, a plot of the gth smallest standardized residual
against the 100[¢g/(n + 1)]th percentile of the standard normal distribution for eachg = 1,2,...,n
would show points roughly on a straight line through the origin with slope equal to 1.0. However, if
any of the model assumptions fail, and in particular if the normality assumption fails, then the normal
probability plot shows a nonlinear pattern.

Blom, in 1958, recommended that the standardized residuals be plotted against the 100[(g —
0.375)/(n + 0.25)]th percentiles of the standard normal distribution rather than the 100[g/(n + 1)]th
percentiles, since this gives a slightly straighter line. These percentiles are called Blom’s normal scores.

Blom’s gth normal score is the value &, for which

P(Z < &) = (q — 0.375)/(n +0.25),
where Z is a standard normal random variable. Hence, Blom’s gth normal score is
;=P (g —0.375)/(n +0.25)1, (5.7.7)

where @ is the cumulative distribution function (cdf) of the standard normal distribution. The normal
scores possess a symmetry about zero, that is, the jth smallest and the jth largest scores are always
equal in magnitude but opposite in sign.

The normal scores are easily obtained and normal probability plots are easily generated using
most statistical packages, as illustrated in Sects.5.8 and 5.9 for SAS and R software, respectively.
Alternatively, the normal scores can be calculated as shown in Example 5.7.1 using Table A.3 for the
standard normal distribution.
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Table 5.6 Normal scores: battery experiment

Zit & it Battery
—1.47 —1.77 27.258 2
—1.15 —1.28 14.142 3
—-0.95 —0.99 23.000 1
—0.80 —0.76 23.108 1
—0.76 —0.57 15.100 4
—0.74 —0.40 27.803 2
—0.45 —-0.23 14.663 3
—0.45 —0.08 15.330 4
—-0.32 0.08 15.427 4
0.31 0.23 15.232 3
0.64 0.40 24.187 1
0.84 0.57 28.983 2
1.11 0.76 24.536 1
1.30 0.99 15.969 3
1.37 1.28 29.377 2
1.52 1.77 16.793 4

Example 5.7.1 Computing normal scores: battery experiment

To illustrate the normal probability plot and the computation of normal scores, consider the battery
life data (regardless of cost) that were transformed in Example 5.6.2 to equalize the variances. The
transformed observations, standardized residuals, and normal scores are listed in Table 5.6, in order of
increasing size of the residuals. In the battery experiment there were n = 16 observations in total. The
first normal score that corresponds to the smallest residual (¢ = 1) is

& =@ '[(1—0.375)/(16 + 0.25)] = ' (0.0385) .

Thus, the area under the standard normal curve to the left of £; is 0.0385. Using a table for the standard
normal distribution or a computer program, this value is

®~1(0.0385) = —1.77.

By symmetry, the largest normal score is 1.77. The other normal scores are calculated in a similar fash-
ion, and the corresponding normal probability plot is shown in Fig. 5.10. We discuss the interpretation
of this plot below. g

For inferences concerning treatment means and contrasts, the assumption of normality needs only to
be approximately satisfied. Interpretation of a normal probability plot, such as that in Fig. 5.10, requires
some basis of comparison. The plot is not completely linear. Such plots always exhibit some sampling
variation even if the normality assumption is satisfied. Since it is difficult to judge a straight line for
small samples, normal probability plots are useful only if there are at least 15 standardized residuals
being plotted. A plot for 50 standardized residuals that are known to have a normal distribution is
shown in plot (a) of Fig.5.11 and can be used as a benchmark of what might be expected when the
assumption of normality is satisfied.

Small deviations from normality do not badly affect the stated significance levels, confidence levels,
or power. If the sample sizes are equal, the main case for concern is that in which the distribution has
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heavier tails than the normal distribution, as in plot (b) of Fig.5.11. The apparent outliers are caused
by the long tails of the nonnormal distribution, and a model based on normality would not be adequate
to represent such a set of data. If this is the case, then use of nonparametric methods of analysis should
be considered (as described, for example, by Hollander and Wolfe 2013). Sometimes, a problem of
nonnormality can be cured by taking a transformation of the data, such as In(y;,). However, it should be
remembered that any transformation could cause a problem of unequal variances where none existed
before. If the equal variance assumption does not hold for a given set of data, then a separate normal
probability plot should be generated for each treatment instead of one plot using all n residuals (provided
that there are sufficient data values).

The plot for the transformed battery life data shown in Fig.5.10 is less linear than the benchmark
plot, but it does not exhibit the extreme behavior of plot (b) of Fig.5.11 for the heavy-tailed nonnormal
distribution. Consequently, the normality assumption can be taken to be approximately satisfied, and
the stated confidence and significance levels will be approximately correct.

5.8 Using SAS Software
5.8.1 Residual Plots
We now illustrate use of the SAS software to generate the various plots used in this chapter. In the

following sections, we will check the assumptions on the one-way analysis of variance model (3.3.1)
for the data of the mung bean experiment described in Example 5.8.1 below.
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Table 5.7 Data for the mung bean experiment

Treatment Shoot length in mm (Order of observation in parentheses)
1 1.5 (14) 1.1 (15) 1.3 (18) 0.9 (30)
8.5 (35) 10.6 (39) 3.5 (42) 7.4 (43)
2 0.0 (3) 0.6 4) 9.5 () 11.3 (12)
12.6 (17) 8.1 (27) 7.8 (29) 7.3 (37)
3 5.2 (16) 0.4 (23) 3.6 31) 2.8 (36)
12.3 (45) 14.1 (46) 0.3 (47) 1.8 (48)
4 13.2 (1) 14.8 (11) 10.7 (13) 13.8 (20)
9.6 (24) 0.0 (34) 0.6 (40) 8.2 (44)
5 5.1(5) 3.3 (21 0.2 (26) 3.9 (28)
7.0 (32) 9.5(33) 11.1 (38) 6.2 (41)
6 11.6 (2) 2.3 (6) 6.7 (8) 2.509)
10.6 (10) 10.8 (19) 15.9 (22) 9.0 (25)

Example 5.8.1 Mung bean experiment

An experiment was run in 1993 by K.H. Chen, Y.F. Kuo, R. Sengupta, J. Xu, and L.L. Yu to compare
watering schedules and growing mediums for mung bean seeds. There were two treatment factors:
“amount of water” with three levels (1, 2, and 3 teaspoons of water per day) and “growing medium”
having two levels (tissue and paper towel, coded 1 and 2). We will recode the six treatment combinations
as1=11,2=12,3=21,4=22,5=31,6=32.

Forty-eight beans of approximately equal weights were randomly selected for the experiment. These
were all soaked in water in a single container for two hours. After this time, the beans were placed in
separate containers and randomly assigned to a treatment (water/medium) combination in such a way
that eight containers were assigned to each treatment combination. The 48 containers were placed on
a table in a random order. The shoot lengths of the beans were measured (in mm) after one week. The
data are shown in Table 5.7 together with the order in which they were collected. g

A SAS program that generates the residual plots for the mung bean experiment is shown in Table 5.8.
The program uses the SAS procedures GLM, PRINT, and SGPLOT, all of which were introduced in
Sect.3.8.

The values of the factors ORDER (order of observation), WATER, MEDIUM, and the response vari-
able LENGTH are entered into the data set MUNGBEAN using the INPUT statement. The treatment
combinations are then recoded, with the levels of TRTMT representing the recoded levels 1-6.

The OUTPUT statement in the GLM procedure calculates and saves the predicted values y;, as the
variable YPRED and two copies of the residuals ¢;; as the variables E and Z in a new data set named
MUNGBN2. The data set MUNGBN?2 also contains all of the variables in the original data set MUNGBEAN.
The residuals stored as the variable Z are then standardized using the procedure STANDARD by dividing
each residual by /ssE/(n — 1). This is done by requesting the procedure STANDARD to achieve a
standard deviation of 1.0. The variables E and Z then represent the residuals and standardized residuals,
respectively.

The procedure RANK is used to compute Blom’s normal scores. The procedure orders the standard-
ized residuals from smallest to largest and calculates their ranks. (The gth smallest residual has rank g.)
The values of the variable NSCORE calculated by this procedure are the normal scores for the values
of Z. The PRINT procedure prints all the values of the variables created so far. Some representative
output is shown in Fig.5.12. The PRINT statement can be omitted if this information is not wanted.
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Table 5.8 SAS program to generate residual plots: mung bean experiment

DATA MUNGBEAN;
INPUT ORDER WATER MEDIUM LENGTH;
TRTMT = 2* (WATER-1) + MEDIUM;

LINES;

1 2 2 13.2
2 3 2 11.
3 1 2 0.0

48 2 1 1.8
PROC GLM;

CLASS TRTMT;

MODEL LENGTH = TRTMT;

OUTPUT OUT=MUNGBN2 PREDICTED=YPRED RESIDUAL=E RESIDUAL=Z;
PROC STANDARD STD=1.0; VAR Z;
PROC RANK NORMAL=BLOM; VAR Z; RANKS NSCORE;
PROC PRINT;
* Plotting standardized residuals versus run order;
PROC SGPLOT;

SCATTER X=ORDER Y=Z;

XAXIS LABEL = ’‘Order’;

YAXIS LABEL = ’‘Standardized Residuals’;

REFLINE 0 / AXIS=Y;

* Plotting standardized residuals versus normal scores;
PROC SGPLOT;
SCATTER X=NSCORE Y=Z;
XAXIS VALUES = (-4 to 4 by 2) LABEL = ’‘Normal Scores’;
YAXIS LABEL = ’‘Standardized Residuals’;
REFLINE 0 / AXIS=Y;
REFLINE 0 / AXIS=X;

Fig.5.12 Output from [8) Results Viewer - SAS s
PROC PRINT The SAS Systen:m — 2
Obs ORDER WATER MEDIUM LENGTH TRTMT | YPRED E Z | NSCORE
i 1 2 2 13.2 4 88625 4.3375 098205 0.92011
2 2 3 2 116 6 86750 29250 0.66224 0.57578
3 3 1 2 0.0 2 7.1500 -7.1500 -1.61882 -1.60357
4 4 1 2 0.6 2 7.1500 -6.5500 -1.48297 -1.43862 =
5 5 3 1 5.1 5 57875 -0.6875 -0.15566 -0.18284  _
4 m | L3
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Plots of the standardized residuals z;; against treatments, predicted values, run order, and normal
scores may be of interest. For illustration, the last two of these are requested using the SGPLOT
procedure. Vertical and horizontal reference lines at zero may be included as appropriate via the
REFLINE statements.

For the mung bean experiment, a plot of the standardized residuals against the order in which the
observations are collected is shown in Fig.5.13, and a plot of standardized residuals against normal
scores is shown in Fig. 5.14. Neither of these plots indicates any serious problems with the assumptions
on the model.

A plot of the standardized residuals against the predicted values (not shown) suggests that treatment
variances are not too unequal, but that there could be outliers associated with one or two of the
treatments. The first nine lines of the SAS program in Table 5.9, through the first PRINT procedure,
produced the first four columns of output of Fig. 5.15. From this, the rule of thumb can be checked that
the sample variances should not differ by more than a factor of 3. It can be verified that the ratio of the
maximum and minimum variances is under 2.7 for this experiment.

When the equal-variance assumption does not appear to be valid, the experimenter may choose
to use an analysis based on Satterthwaite’s approximation (see Sect.5.8.3), using formulas involving
the treatment sample variances such as those in Fig.5.15. A normal probability plot such as that
of Fig.5.14 would not be relevant; rather, the normality assumption needs to be checked for each
treatment separately. This can be done by generating a separate normal probability plot for each
treatment (provided that the sample sizes are sufficiently large). To obtain the plots, first obtain the
normal scores separately for each treatment by including a BY TRTMT statement in the SORT and
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Table 5.9 SAS program to plot ln(siz) against In(y; ): mung bean experiment

DATA MUNGBEAN; SET MUNGBEAN;
PROC SORT; BY TRTMT;
PROC MEANS NOPRINT MEAN VAR; BY TRTMT;

VAR LENGTH;

OUTPUT OUT=MUNGBN3 MEAN=MEANLNTH VAR=VARLNTH;
PROC PRINT;

VAR TRTMT MEANLNTH VARLNTH;
DATA MUNGBN3; SET MUNGBN3;

LN_MEAN=LOG (MEANLNTH) ; LN_VAR=LOG (VARLNTH) ;
PROC PRINT;

VAR TRTMT MEANLNTH VARLNTH LN_MEAN LN_VAR;
PROC SGPLOT;

SCATTER X = LN_MEAN Y = LN_VAR;

XAXIS VALUES = (1.4 to 2.2 by .2) LABEL = ’'ln(mean)’;

YAXIS VALUES = (2.5 to 3.5 by .2) LABEL = ’ln(var)’;
Fig.5.15 Treatment '
sample means and [8) Results Viewer - SAS Output =5 Eol =3
variances: mung bean The SAS System =

experiment
Obs TRTMT MEANLNTH | VARLNTH LN_MEAN LN_VAR
1 1 4.3500 15.1714 147018 2.71941
2 2 7.1500 211171 1.96711 3.05009
3 3 5.0625  28.0570  1.62186 3.33424
4 4 8.8625 32.8027 2.18183 3.49051
5 5 5.7875 12.1555 1.75570 249778
6 6 8.6750 216793  2.16045 3.07636

4 m

RANK procedures. Then, instead of SGPLOT, use the SGPANEL procedure and PANELBY TRTMT to
produce a panel of plots—one for each treatment. Sample program lines are as follows.

PROC SORT; BY TRTMT;

PROC RANK NORMAL=BLOM; BY TRTMT;
VAR Z; RANKS NSCORE;

PROC SGPANEL; PANELBY TRTMT;
SCATTER X=NSCORE Y=Z;

5.8.2 Transforming the Data

If a variance-stabilizing transformation is needed, a plot of ln(sl.z) against In(y; ) can be achieved via
the program in Table 5.9 (shown for the mung bean experiment). These statements can be added to
those in Table 5.8 either before the GLM procedure or at the end of the program.

The SORT procedure and the BY statement sort the observations in the original data set MUNGBEAN
using the values of the variable TRTMT. This is required by the subsequent MEANS procedure with the
NOPRINT option, which computes the mean and variance of the variable LENGTH separately for each
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treatment, without printing the results. The OUTPUT statement creates a data set named MUNGBN3, with
one observation for each treatment, and with the two variables MEANLNTH and VARLNTH containing
the sample mean lengths and sample variances for each treatment. Two new variables LN_MEAN and
LN_VAR are created.

These are the natural logarithm, or log base e, of the sample mean and variance of length for
each treatment. The PRINT procedure prints the values of the variables TRTMT, MEANLNTH,
VARLNTH, LN_MEAN, LN_VAR. The outputisin Fig.5.15.

Finally, the SGPLOT procedure generates the plot of ln(sl.z) against In(y; ), shown in Fig.5.16. The
values do not fall along a straight line, so a variance-stabilizing transformation of the type given in
Eq.(5.6.3) does not exist for this data set. However, since the ratio of the maximum to the minimum
variance is less than 3.0, a transformation is not vital, according to our rule of thumb.

If an appropriate transformation is identified, then the transformed variable can be created from the
untransformed variable in a DATA step of a SAS program, just as the variables LN_MEAN and LN_VAR
were created in the data set MUNGBN?3 by transforming the variables MEANLNTH and VARLNTH, respec-
tively. Alternatively, the transformation can be achieved after the INPUT statement in the same way
as the factor TRTMT was created. SAS statements useful for the variance-stabilizing transformations
of Eq. (5.6.3) include:

Transformation SAS Statement

h =1n(y) H = LOG(Y);
h =sin"!(y) H=ARSIN(Y);
h=yP H=7Y % *P;

5.8.3 Implementing Satterthwaite’s Method

In Example 5.6.3, given indications of unequal variances in the trout experiment, simultaneous approx-
imate 95% confidence intervals for pairwise comparisons were computed using the Games—Howell
method—namely, using Satterthwaite’s approximation in conjunction with Tukey’s method. This
method can be implemented in SAS software using PROC MIXED—a procedure that will be intro-
duced in greater detail in later chapters. Appropriate statements are given in Table 5.10. The REPEATED
statement relaxes the model assumption of equal variances, allowing for separate variance estimates sl.2
at each level of sulfa. Correspondingly, the model is fit by restricted maximum likelihood estimation
rather than ordinary least squares (see Chap. 19 for more on restricted maximum likelihood estima-

tion). The collective options in the MODEL and LSMEANS statements implement Tukey’s method,
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Table 5.10 SAS program for multiple comparisons with unequal variances: trout experiment

DATA TROUT;
INPUT SULFA HEMO;
LINES;
1 6.7
1 7.8
1 5.5

PROC MIXED;
CLASS SULFA;
MODEL HEMO = SULFA / DDFM=SATTERTH;
REPEATED / GROUP=SULFA;
LSMEANS SULFA / ADJDFE=ROW ADJUST=TUKEY;

Fe
Results Viewer - SAS Output o || &3] 8

The SAS System

Obs Effect SULFA _SULFA Estimate StdErr DF Adjustment Adjp Alpha | AdjLower AdjUpper

1| SULFA 1 2 -21300 06312 14.6 Tukey-Kramer 00199 005 -3.9545  -0.3055
2 | SULFA 1 3| -1.8300 0.4824 17.8 Tukey-Kramer 0.0067 0.05 -3.1949  -0.4651
3 SULFA 1 4 -1.4900 04515 18 Tukey-Kramer 0.0190 005 -2.7662 -0.2138
4 SULFA 2 3| 03000 0.6508 15.6 Tukey-Kramer 0.9664 0.05 -1.5672 2.1672
5| SULFA 2 4 06400 06283 14.5 Tukey-Kramer 07415 0.05 -1.1785 24585
6 | SULFA 3 4| 0.3400 04785 17.7 Tukey-Kramer 0.8916 0.05 -1.0146 1.6946 _,

Fig.5.17 Approximate multiple comparisons allowing for unequal variances: trout experiment

using Satterthwaite’s method to compute the number of degrees of freedom separately for each pair-
wise comparison. Some of the corresponding multiple comparisons output is shown in Fig.5.17. The
estimates, standard errors, and degrees of freedom match the values in Table5.5, and the adjusted
confidence limits correspond to the values y, — y;. &= msd computable from the estimates and msd
values in Table5.5.

5.9  Using R Software
5.9.1 Residual Plots

We now illustrate use of the R software to generate the various plots used in this chapter. In the
following sections, we will check the assumptions on the one-way analysis of variance model (3.3.1)
for the data of the mung bean experiment described in Example 5.8.1, p. 120. The experiment was
conducted to compare the effects of two treatment factors—“amount of water” (1, 2, or 3 teaspoons
of water per day) and “growing medium” (tissue and paper towel, coded 1 and 2)—on the growth of
mung beans. The response variable was shoot lengths of the beans measured (in mm) after one week.
The experiment was a completely randomized design with eight replicates, and the experimental units
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were 48 containers placed in random order on a table. The data were provided in Table5.7, with the
six treatment combinations recodedas 1 = 11,2 =12,3=21,4=22,5 = 31,6 = 32.

An R program that generates the residual plots for the mung bean experiment is shown in Table 5.11,
with the first three lines of data displayed. After reading the data, the program uses the R function aowv,
introduced in Sect.3.9.3, to fit model (3.3.1), saving related information as the object model. Conse-
quently, the fitted values and residuals are available as the columns ypred = fitted (model) and
e = resid(model), respectively. The function sd (e) computes the sample standard deviation
of the residuals, so the column z = e/sd(e) contains the standardized residuals. Semi-colons sep-
arate commands on the same line. Blom’s normal scores are computed by Eq. (5.7.7), p. 117, using the
columnqg = rank (e) of ranks of the residuals and the standard normal quantile (inverse cumulative
distribution) function gnorm, and are saved as the column nscore. The gth smallest residual has
rank g and yields the gth smallest normal score. Creating these four new variables within the brackets
of the statement

mung.data = within(mung.data, {...})

Table 5.11 R program to generate residual plots: mung bean experiment

# R code and output
mung.data = read.table("data/mungbean.txt", header=T)
modell = aov(Length ~ factor (Trtmt), data=mung.data)

# Compute predicted values, residuals, standardized residuals, normal scores
mung.data = within (mung.data, {

# Compute predicted, residual, and standardized residual values

yvpred = fitted(modell); e = resid(modell); z = e/sd(e);

# Compute Blom’s normal scores

n = length(e); g = rank(e); nscore = gnorm((g-0.375)/(n+0.25)) 1})

# Display first 3 lines of mung.data, 4 digits per variable
print (head (mung.data, 3), digits=4)

Order Water Medium Length Trtmt nscore g n Z e ypred
1 1 2 2 13.2 4 0.9201 40 48 0.9820 4.337 8.863
2 2 3 2 11.6 6 0.5758 35 48 0.6622 2.925 8.675
3 3 1 2 0.0 2 -1.6036 3 48 -1.6188 -7.150 7.150

# Generate residual plots
plot(z ~ Trtmt, data=mung.data, ylab="Standardized Residuals", las=1)

abline (h=0) # Horizontal line at zero

plot(z ~ Order, data=mung.data, ylab="Standardized Residuals", las=1)
abline (h=0)

plot(z ~ ypred, data=mung.data, ylab="Standardized Residuals", las=1)
abline (h=0)

plot(z ~ nscore, data=mung.data, ylab="Standardized Residuals", las=1)

ggline (mung.datas$z) # Line through 1lst and 3rd quantile points
# A simpler way to generate the normal probability plot
ggnorm (mung.datas$z); ggline (mung.data$z)
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enables their creation from variables in the data set mung.data and their addition to the data set.
Alternatively, the normal scores could be obtained by replacing the three statements for n, g and
nscore with the single statement

nscore = ggnorm(z)$x

though the resulting normal scores are only Blom’s normal scores for 10 or fewer residuals, with
nscore = gnorm( (g-0.5) /n) otherwise. Here, ggnoxrm is a plotting function to be discussed
shortly that generates a normal probability plot with normal scores on the x axis.

Plots of the standardized residuals z;; against treatments, run order, predicted values, and normal
scores are generated by the four plot function calls. For each of the first three plots, the statement
abline (h=0) causes inclusion of a horizontal reference line at zero. For the normal probability plot,
the statement ggline (mung.data$z) causesinclusion of a line through the first and third quantile-
quantile points of z and nscore—namely, through the point corresponding to the first quantile of
each variable, and through the point corresponding to their third quantiles.

The last three lines of code illustrate an alternative, simpler method of generating the normal
probability plot, using the function ggnorm (z) . This function generates a normal probability plot,
plotting the standardized residuals z against the normal scores—namely, the quantiles of the standard
normal distribution. This function uses Blom’s normal scores for 10 or fewer z-values, and uses normal
scores equal to the 100[ (g —0.5)/n]th percentiles of the standard normal distribution otherwise. These
normal scores, corresponding to the x-axis of the plot, can be saved by the command nscore =
ggnorm (z) $x as noted above. As will be seen, using the ggnorm function is convenient if separate
normal probability plots are needed for each treatment.

For the mung bean experiment, a plot of the standardized residuals against the order in which the
observations are collected is shown in Fig.5.18, and a plot of standardized residuals against normal
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Table 5.12 R program to plot ln(siz) against In(y; ): mung bean experiment

# R Code and Output
mung.data = read.table("data/mungbean.txt", header=T)

# Compute sample means and variances and their natural logs by trtmt
MeanLnth = by (mung.data$Length, mung.data$Trtmt, mean) # Sample means
VarLnth = by (mung.data$Length, mung.data$Trtmt, var) # Sample variances
LnMean = log(MeanLnth) # Column of 1n sample means

LnVar = log(VarLnth) # Column of 1ln sample variances

Trtmt = c(1:6) # Column of trtmt levels

stats = cbind(Trtmt, MeanLnth, VarLnth, LnMean, LnVar) # Column bind
stats # Display the stats data

Trtmt MeanLnth VarLnth LnMean LnVar

1 1 4.3500 15.171 1.4702 2.7194
2 2 7.1500 21.117 1.9671 3.0501
3 3 5.0625 28.057 1.6219 3.3342
4 4 8.8625 32.803 2.1818 3.4905
5 5 5.7875 12.156 1.7557 2.4978
6 6 8.6750 21.679 2.1604 3.0764

plot (LnVvar ~ LnMean, las=1)

scores is shown in Fig. 5.19. Neither of these plots indicates any serious problems with the assumptions
on the model.

A plot of the standardized residuals against the predicted values (not shown) suggests that treatment
variances are not too unequal, but that there could be outliers associated with one or two of the treat-
ments. In the R program in Table 5.12, the second block of code computes the sample statistics displayed
subsequently by treatment. The by function is used to compute the (sample) mean and variance of
Length by Trtmt, saving the results in the columns MeanLnth and VarLnth, respectively. Then
the natural log of each value is computed, saving the log sample means and log sample variances in the
columns LnMean and LnVar, respectively. The cbind function column-binds these four columns
with another containing the treatment labels, saving them as stats, which is then displayed. Given
the displayed information, the rule of thumb can be checked that the sample variances should not differ
by more than a factor of 3. It can be verified that the ratio of the maximum and minimum variances is
under 2.7 for this experiment.

When the equal-variance assumption does not appear to be valid, the experimenter may choose
to use an analysis based on Satterthwaite’s approximation (see Sect.5.9.3), using formulas involving
the treatment sample variances such as those in Table 5.12. A normal probability plot such as that of
Fig.5.19 would not be relevant, but the normality assumption needs to be checked for each treatment
separately. This can be done by generating a separate normal probability plot for each treatment (pro-
vided that the sample sizes are sufficiently large). These separate plots are generated by the following
single line of R code.

by (mung.data$z, mung.data$Trtmt, ggnorm) # Generate NPPlots by Trtmt
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The by function applies the function ggnorm to the variable z at each Trtmt level. Alternatively,
these plots can be generated one-by-one using the following example for treatment 1, where the main
option adds a main title to the plot.

ggnorm (mung .datas$z [mung.data$Trtmt == 1],

main = "Normal Probability Plot: Trtmt 1")
aggline (mung.data$z)

5.9.2 Transforming the Data

If a variance-stabilizing transformation is needed, a plot of ln(siz) against In(y; ) can be achieved
as illustrated in the R program in Table5.12 (shown for the mung bean experiment). First, we need
to compute the statistics to be plotted. The R functions mean and var compute sample mean and
variance, respectively, of a specified variable and, when coupled with the by function, can compute
such statistics for a specified variable at each level of a factor. In our program, the by function in the
code line

MeanLnth = by (mung.dataSLength, mung.data$Trtmt, mean)

applies the function mean to the variable Length for (by) each level of Trtmt, saving the resulting
sample means as elements of the column MeanInth. The column VarLnth of sample variances is
computed similarly, coupling the by and var functions. The function, 1og, is then used to compute
the natural logarithm, or log base e, of the average length and the sample variance for each treatment,
saving the results in the columns LnMean and LnVar, respectively. The levels 1-6 of Trtmt are
assigned to the new column Trtmt for display purposes. The results are then displayed as columns
using the cbind function. Note that these columns of data were created outside of the mung.data
data set, since they have fewer entries.

Finally, the pl ot function generates the plot of ln(sl.z) against In(y;.), shown in Fig. 5.20. The values
do not fall along a straight line, so a variance-stabilizing transformation of the type given in Eq. (5.6.3)
does not exist for this data set. However, since the ratio of the maximum to the minimum variance is
less than 3.0, a transformation is not vital, according to our rule of thumb.

If an appropriate transformation is identified, then the transformed variable can be created from the
untransformed variable by applying the appropriate R function. R functions useful for the variance-
stabilizing transformations of Eq. (5.6.3) include:
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Transformation R Function

h =In(y) h = log(y)
h:sin_l(y) h = asin(y)
h=yP h =y'p

5.9.3 Implementing Satterthwaite’s Method

In Example 5.6.3, given indications of unequal variances in the trout experiment, simultaneous approx-
imate 95% confidence intervals for pairwise comparisons were computed using the Games—Howell
method—namely, using Satterthwaite’s approximation in conjunction with Tukey’s method. This
method is implemented in Table 5.13 by reading the author-defined R function GamesHowell from
the file GamesHowell.r in the funcs subdirectory of the working directory, then calling this
function via the following code line:

GamesHowell (y = trout.data$Hemo, T = trout.data$Sulfa, alpha = 0.05)

The function inputs are the column of observations y, the column of corresponding treatment levels
T, and the joint significance level o with a default value of 0.05. The results, shown at the bottom of
Table 5.13, match the corresponding information in Table 5.5 and Fig.5.17.

This touches upon an important characteristic of the R software—namely, that one can create user-
defined functions to implement methods and procedures that may not otherwise be available as R
functions. For example, the code

GamesHowell = function(y, T, alpha = 0.05) {function code}

Table 5.13 R program and output for multiple comparisons with unequal variances: trout experiment

trout.data = read.table("data/trout.txt", header = T)
head(trout.data, 3)

Sulfa Hemo

1 1 6.7
2 1 7.8
3 1 5.5

# Read user-defined function from file GamesHowell.r

source ("funcs/GamesHowell.r")

# Call the function, which returns the results displayed below
GamesHowell (y = trout.dataSHemo, T = trout.data$Sulfa, alpha = 0.05)

[[1]11]
[1] "Games-Howell method of MCP for tau_i-tau_s with alpha = 0.05"

[[2]]

i s estimate stde df t P msd lcl ucl
124 0.64 0.62831 14.482 1.01860 0.74148 1.8186 -1.1786 2.45860
234 0.34 0.47854 17.720 0.71050 0.89161 1.3546 -1.0146 1.69460
323 0.30 0.65083 15.609 0.46095 0.96645 1.8672 -1.5672 2.16720
41 4 -1.49 0.45153 17.994 -3.29990 0.01897 1.2762 -2.7662 -0.21381
51 3 -1.83 0.48237 17.793 -3.79380 0.00673 1.3649 -3.1949 -0.46514
6 1 2 -2.13 0.63123 14.640 -3.37430 0.01994 1.8246 -3.9546 -0.30540
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Table 5.14 R function GamesHowell for multiple comparisons with unequal variances

# Contents of file GamesHowell.r:

GamesHowell = function(y, T, alpha=0.05) {

# v is a data column, T the corresp column of trtmt levels.

# For the y-values corresponding to each level in T, compute:

r = tapply(y, T, length) # Column of reps r_i

ybar = tapply(y, T, mean) # Column of trtmt sample means ybar_i
s2 = tapply(y, T, var) # Column of trtmt sample variances s"2_1i
v = length(r) # v = number of treatments (length of column r)
combos = combn(v,2) # 2 by v-choose-2, cols being combos (i,s)

i = combos[l,] # Save row 1, i.e. the i’s, as the column i

s = combos[2,] # Save row 2, i.e. the s’s, as the column s

# For each combo (i,s), compute est of tau_i - tau_s, stde, etc.
estimate = combn (v, 2, function(is) -diff(ybar[is]) ) # est’s

stde = combn(v, 2, function(is) sgrt(sum(s2[is]/r[is])) ) # stde’'s

t = estimate/stde # t-statistics
df = combn(v, 2, function(is)
(sum(s2[is]/r[is])) "2/ (sum((s2[is]l/r[is]) 2/ (r[is]-1))) ) # df’'s

p = ptukey(abs(t)*sqgrt(2), v, df, lower.tail=F) # p-values
p = round(p, digits=5) # Keep at most 5 decimal places
w = gtukey (0.05,v,df,lower.tail=F)/sqgrt(2) # Critical coefficients
msd = w*stde # msd’s
lcl = estimate - msd # Lower confidence limits
ucl = estimate + msd # Upper confidence limits
results = cbind(i, s, estimate, stde, df, t, p, msd, 1lcl, ucl)
results = signif (results, digits=5) # Keep 5 significant digits
results = results[rev(order (estimate)),] # Sort by estimates
rownames (results) = seqg(l:nrow(results)) # Name rows 1,2,...,nrows
header=paste ("Games-Howell method of MCP for tau_i-tau_s",

"with alpha =",alpha)
return(list (header, results))
} # end function

uses function to create and define a new function named GamesHowe11 in terms of three parame-
ters y, T, and alpha, with 0.05 as the default value of alpha. Here “function code” would be
replaced by R code defining what the function does given the input parameters and what information
it returns when done. Such code defining a function can be saved in a separate file then read into a
program using the source function, as illustrated in Table 5.13. This facilitates reuse of the function
in other R programs. Alternatively, the code defining a function can simply be included directly in an
R program, replacing the code line source ( "GamesHowell.r") in Table5.13, for example. For
the interested reader, the GamesHowel1l function code is provided and discussed in the following
optional subsection.

The User-Defined R Function GamesHowell (Optional)

The author-defined function GamesHowell was used in Table 5.13 to implement the Games—Howell
method of multiple comparisons. The R code defining the function is provided in Table5.14 for
the interested reader. R functions are defined via the R function function. In particular, the
code GamesHowell = function(y, T, alpha=0.05) indicates thatanew function named
GamesHowell is being defined in terms of three parameters y, T, and alpha, and that the default
value of alpha is 0.05. All of the subsequent code inside the brackets “{}” is the R code defining
what the function does.
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When calling the function GamesHowell, one can specify alpha or not; if not, the default
value of 0.05 will be used. The other parameters y and T represent the column of response val-
ues and the corresponding column of treatment levels, respectively. In Table 5.13, the function call
GamesHowell (y=trout.data$Hemo, T=trout.data$Sulfa, alpha=0.05) explic-
itly indicates that the column trout .data$Hemo contains the response values (y in the function)
and the column trout .data$Sul fa contains the treatment levels (T in the function code). If one is
explicit, using y=, T=, and alpha=, then the parameters may be entered in any order. Otherwise, they
must be entered in the same order (y, T, alpha) as they are listed in the definition of the function.
For example, the function call GamesHowell (trout.data$Hemo, trout.datas$Sulfa,
0.05) also works, but not if the parameters were entered in any other order.

This code makes use of the R functions tapply and combn. Given data for a completely ran-
domized design, the function tapply (y, T, fn) applies any specified R function f£n separately to
the subset of the observations y corresponding to each trtmt level. For example, given observations
y and corresponding treatment levels T for a completely randomized design, the statement ybar =
tapply (v, T,mean) applies the function mean to compute the mean y; of y for each level of T,
saving these as ybar = (¥, ,...,y, ) but as a column. Similarly, tapply is used to compute the
column r of replication numbers r; and the column s2 of treatment sample variances sl.z.

Having v treatments, the function combn (v, 2) returns the (;) = v(v — 1)/2 combinations
(i, s) of the integers 1, ..., v taken two at a time as the columns of a matrix, providing the treat-
ment pairs for pairwise comparisons. For each combination or treatment pair (i, s), the function
combn (v, 2, function(is),-diff (ybar[is])) computes the negative difference of the ith
and sth elements of the column ybar, yielding the column estimate of estimates y; — y, . The
column stde of standard errors of the estimates is obtained similarly from the columns r and s2.

Other functions used include ptukey and gtukey, pertaining to the Studentized range distribu-
tion, (Table A.8). In particular, ptukey (x, v, df, lower. tail=F), which provides the upper-tail
probability P(X > x) of the range X of v Studentized variates each involving df degrees of freedom,
is used to compute p-values. Likewise, gtukey (a, v, df, lower.tail=F), which provides the
upper-a quantile of the same distribution, is used to obtain the critical coefficients for the simultaneous
confidence intervals.

An R function can return one object, via the return function. In this case, the function returns one
list consisting of two objects: (i) header, containing a description of the statistical procedure con-
ducted; and (ii) results, an R data.frame containing the numerical results. This returned information,
automatically displayed when the function finishes executing, is shown at the bottom of Table 5.13.

Exercises
1. Meat cooking experiment, continued

Check the assumptions on the one-way analysis of variance model (3.3.1) for the meat cooking
experiment, which was introduced in Exercise 14 of Chap.3. The data were given in Table 3.14.
(the order of collection of observations is not available).

2. Soap experiment, continued
Check the assumptions on the one-way analysis of variance model (3.3.1) for the soap experiment,

which was introduced in Sect.2.5.1. The data are reproduced in Table 5.15 (the order of collection
of observations is not available).
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Table 5.15 Weight loss for the soap experiment
2

Soap Weight loss Vi s

1 —0.30 —0.10 —0.14 0.40 —0.0350 0.09157
2 2.63 2.61 2.41 3.15 2.7000 0.09986
3 1.72 2.07 2.17 2.01 1.9925 0.03736

Table 5.16 Melting times for margarine in seconds

Brand Times Vi S

1 167,171, 178, 175, 184, 176, 185, 172, 178, 178 176.4 5.56
2 231, 233, 236, 252,233, 225, 241, 248, 239, 248 238.6 8.66
3 176, 168,171, 172, 178, 176, 169, 164, 169, 171 171.4 4.27
4 201, 199, 196, 211, 209, 223, 209, 219, 212, 210 208.9 8.45

3. Margarine experiment (Amy L. Phelps, 1987)

The data in Table5.16 are the melting times in seconds for three different brands of margarine
(coded 1-3) and one brand of butter (coded 4). The butter was used for comparison purposes. The
sizes and shapes of the initial margarine/butter pats were as similar as possible, and these were
melted one by one in a clean frying pan over a constant heat.

(a) Check the equal-variance assumption on model (3.3.1) for these data. If a transformation is
required, choose the best transformation of the form (5.6.3), and recheck the assumptions.

(b) Using the transformed data, compute a 95% confidence interval comparing the average melting
times for the margarines with the average melting time for the butter.

(c) Repeat part (b) using the untransformed data and Satterthwaite’s approximation for unequal
variances. Compare the results with those of part (b).

(d) For this set of data, which analysis do you prefer? Why?

4. Reaction time experiment, continued

The reaction time pilot experiment was described in Exercise 4 of Chap. 4. The experimenters were
interested in the different effects on the reaction time of the aural and visual cues and also in the
different effects of the elapsed time between the cue and the stimulus. There were six treatment

combinations:
1 = aural, 5 seconds 4 = visual, 5 seconds

2 = aural, 10 seconds 5 = visual, 10 seconds
3 = aural, 15 seconds 6 = visual, 15 seconds

The data are reproduced, together with their order of observation, in Table 5.17. The pilot experiment
employed a single subject. Of concern to the experimenters was the possibility that the subject
may show signs of fatigue. Consequently, fixed rest periods were enforced between every pair of
observations.

(a) Check whether or not the assumptions on the one-way analysis of variance model (3.3.1) are
approximately satisfied for these data. Pay particular attention to the experimenter’s concerns
about fatigue.
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Table 5.17 Reaction times (in seconds) for the reaction time experiment
Time order 2 3 4 5 6
Coded treatment 6 2 6 2 5
Reaction time 0.281 0.167 0.258 0.182 0.283
Time order 8 9 10 11 12
Coded treatment 5 1 1 5 2
Reaction time 0.235 0.204 0.170 0.260 0.187
Time order 14 15 16 17 18
Coded treatment 4 4 3 3 1
Reaction time 0.202 0.279 0.269 0.198 0.236 0.181

(b) Suggest a way to design the experiment using more than one subject. (Hint: consider using
subjects as blocks in the experiment).

5. Catalyst experiment

H. Smith, in the 1969 volume of Journal of Quality Technology, described an experiment that inves-
tigated the effect of four reagents and three catalysts on the production rate in a catalyst plant. He
coded the reagents as A, B, C, and D, and the catalysts as X, Y, and Z, giving twelve treatment
combinations, coded as AX, AY, ..., DZ. Two observations were taken on each treatment com-
bination, and these are shown in Table 5.18, together with the order in which the observations were
collected.

Are the assumptions on the one-way analysis of variance model (3.3.1) approximately satisfied for
these data? If not, can you suggest what needs to be done in order to be able to analyze the experiment?

6. Bicycle experiment (Debra Schomer 1987)
The bicycle experiment was run to compare the crank rates required to keep a bicycle at certain

speeds, when the bicycle was in twelfth gear on flat ground. The speeds chosen were 5, 10, 15, 20,
and 25 mph, (coded 1-5). The data are given in Table5.19. The experimenter fitted the one-way

Table 5.18 Production rates for the catalyst experiment

Time order 1 2 3 4 5 6 7 8
Treatment CcY AZ DX AY CX DZ AX CZ
Yield 9 5 12 7 13 7 4 13
Time order 9 10 11 12 13 14 15 16
Treatment BY Ccz BZ DX BX CcX DY BZ
Yield 13 13 7 12 4 15 12 9
Time order 17 18 19 20 21 22 23 24
Treatment BX DY AY DZ BY AX cY AZ
Yield 6 14 11 9 15 6 15 9

Source: Smith (1969). Reprinted with Permission from Journal of Quality Technology © 1969 ASQ, www.asq.org
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Table 5.19 Data for the bicycle experiment

Code Treatment (mph) Crank rates

1 5 15 19 22
2 10 32 34 27
3 15 44 47 44
4 20 59 61 61
5 25 75 73 75

analysis of variance model (3.3.1) and plotted the standardized residuals. She commented in her
report:

Note the larger spread of the data at lower speeds. This is due to the fact that in such a high gear, to maintain
such a low speed consistently for a long period of time is not only bad for the bike, it is rather difficult to do.

Thus the experimenter was not surprised to find a difference in the variances of the error variables
at different levels of the treatment factor.

(a) Plot the standardized residuals against y;;, compare the sample variances, and evaluate equality
of the error variances for the treatments.

(b) Choose the best transformation of the data of the form (5.6.3), and test the hypotheses that the
linear and quadratic trends in crank rates due to the different speeds are negligible, using an
overall significance level of 0.01.

(c) Repeat part (b), using the untransformed data and Satterthwaite’s approximation for unequal
variances,

(d) Discuss the relative merits of the methods applied in parts (b) and (c).

7. Dessert experiment

(P. Clingan, Y. Deng, M. Geil, J. Mesaros, and J. Whitmore, 1996)

The experimenters were interested in whether the melting rate of a frozen orange dessert would be
affected (and, in particular, slowed down) by the addition of salt and/or sugar. At this point, they
were not interested in taste testing. Six treatments were selected, as follows:

1 = 1/8 tsp salt, 1/4 cup sugar 4 = 1/4 tsp salt, 1/4 cup sugar
2 = 1/8 tsp salt, 1/2 cup sugar 5 = 1/4 tsp salt, 1/2 cup sugar
3 = 1/8 tsp salt, 3/4 cup sugar 6 = 1/4 tsp salt, 3/4 cup sugar

For each observation of each treatment, the required amount of sugar and salt was added to the
contents of a 12-ounce can of frozen orange juice together with 3 cups of water. The orange juice
mixes were frozen in ice cube trays and allocated to random positions in a freezer. After 48 hours,
the cubes were removed from the freezer, placed on half-inch mesh wire grid and allowed to melt
into a container in the laboratory (which was held at 24.4 °C) for 30 minutes. The percentage melting
(by weight) of the cubes are recorded in Table 5.20. The coded position on the table during melting
is also recorded.

(a) Plot the data. Does it appear that the treatments have different effects on the melting of the
frozen orange dessert?
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Table 5.20 Percentage melting of frozen orange cubes for the dessert experiment

Position 1 2 3 4 5 6
Treatment 2 5 5 1 4 3

% melt 12.06 9.66 7.96 9.04 10.17 7.86
Position 7 8 9 10 11 12
Treatment 4 1 3 1 2 4

% melt 8.14 9.52 4.28 8.32 10.74 5.98
Position 13 14 15 16 17 18
Treatment 2 6 6 3 6 5

% melt 9.84 7.58 6.65 9.26 8.46 12.83

(b) Check whether the assumptions on the one-way analysis of variance model (3.3.1) are satisfied
for these data. Pay particular attention to the equal-variance assumption.

(c) Use Satterthwaite’s method to compare the pairs of treatments, using individual 99% confi-
dence intervals. If doing the computations by hand, compute only the confidence intervals
corresponding to the three most disparate pairs of treatment sample means.

(d) What conclusions can you draw about the effects of the treatments on the melting of the frozen
orange dessert? If your concern was to produce frozen dessert with a long melting time, which
treatment would you recommend? What other factors should be taken into account before
production of such a dessert?

8. Wildflower experiment (Barbra Foderaro 1986)

An experiment was run to determine whether or not the germination rate of the endangered species
of Ohio plant Froelichia floridana is affected by storage temperature or storage method. The two
levels of the factor “temperature” were “spring temperature, 14-24°C” and “summer temperature,
18-27°C.” The two levels of the factor “storage” were “stratified” and “unstratified.” Thus, there
were four treatment combinations in total. Seeds were divided randomly into sets of 20 and the
sets assigned at random to the treatments. Each stratified set of seeds was placed in a mesh bag,
spread out to avoid overlapping, buried in two inches of moist sand, and placed in a refrigeration
unit for two weeks at 50 °F. The unstratified sets of seeds were kept in a paper envelope at room
temperature. After the stratification period, each set of seeds was placed on a dish with 5 ml of
distilled deionized water, and the dishes were put into one of two growth chambers for two weeks
according to their assigned level of temperature. At the end of this period, each dish was scored for
the number of germinated seeds. The resulting data are given in Table5.21.

(a) For the original data, evaluate the constant-variance assumption on the one-way analysis of
variance model (3.3.1) both graphically and by comparing sample variances.

(b) It was noted by the experimenter that since the data were the numbers of germinated seeds
out of a total of 20 seeds, the observations Y;; should have a binomial distribution. Does the
corresponding transformation help to stabilize the variances?

(c) Plot ln(siz) against In(y; ) and discuss whether or not a power transformation of the form given
in Eq. (5.6.3) might equalize the variances.

(d) Use Scheffé’s method of multiple comparisons, in conjunction with Satterthwaite’s approxi-
mation, to construct 95% confidence intervals for all pairwise comparisons and for the two
contrasts
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Table 5.21 Data for the wildflower experiment

Treatment combination Number germinating Vi Si

1: Spring/stratified 12 13 2 7 19 8.4 6.995
0 0 3 17 11

2: Spring/unstratified 6 2 0 2 4 2.5 3.308
1 0 10 0 0

3: Summer/stratified 6 4 5 7 6 5.0 1.633
5 7 5 2 3

4: Summer/unstratified 0 6 2 5 1 3.6 2.271
5 2 3 6 6

Table 5.22 Weights (in grams) for the spaghetti sauce experiment

Time order 1 2 3 4 5 7 8 9

Treatment 3 2 4 3 4 5 1 6 6

Weight 14 69 26 15 20 12 55 14 16

Time order 10 11 12 13 14 15 16 17 18

Treatment 5 1 2 4 6 3 5 2 1

Weight 16 66 64 23 17 22 18 64 53

1 1
—[1,1, -1, -1 d —[1,-1,1,-11,
5l I and —f ]

which compare the effects of temperature and storage methods, respectively.

9. Spaghetti sauce experiment

(K. Brewster, E. Cesmeli, J, Kosa, M. Smith, and M. Soliman 1996)

The spaghetti sauce experiment was run to compare the thicknesses of three particular brands of
spaghetti sauce, both when stirred and unstirred. The six treatments were:

1 = store brand, unstirred 2 = store brand, stirred
3 = national brand, unstirred 4 = national brand, stirred
5 = gourmet brand, unstirred 6 = gourmet brand, stirred

Part of the data collected is shown in Table 5.22. There are three observations per treatment, and the
response variable is the weight (in grams) of sauce that flowed through a colander in a given period
of time. A thicker sauce would give rise to smaller weights.

(a) Check the assumptions on the one-way analysis of variance model (3.3.1).
(b) Use Satterthwaite’s method to obtain simultaneous confidence intervals for the six preplanned
contrasts
=", T3—T4, T5—T6, T1—T5, T1—T3, T3—T5,

Select an overall confidence level of at least 94%.
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6.1 Introduction

In this chapter, we discuss the use of completely randomized designs for experiments that involve
two crossed treatment factors. We label the treatment factors as A and B, where factor A has a levels
coded 1,2, ..., a,and factor B has b levels coded 1, 2, .. ., b. Factors are crossed if every combination
of levels may be observed. For experiments considered in this chapter, every level of A is observed
with every level of B, so the factors are crossed. In total, there are v = ab treatments (treatment
combinations), and these are coded as 11, 12, ...,1b,21,22,...,2b,...,ab.

In the previous three chapters, we recoded the treatment combinations as 1, 2, ..., v and used the
one-way analysis of variance for comparing their effects. In this chapter, we investigate the contributions
that each of the factors make individually to the response, and it is more convenient to retain the 2-digit
code ij for a treatment combination in which factor A is at level i and factor B is at level j. In Sect. 6.2.1,
we define the “interaction” of two treatment factors. Allowing for the possibility of interaction leads
one to select a “two-way complete model” to model the data (Sect. 6.4). However, if it is known in
advance that the factors do not interact, a “two-way main-effects model” would be selected (Sect. 6.5).
Estimation of contrasts, confidence intervals, and analysis of variance techniques are described for
these basic models. The calculation of sample sizes is also discussed (Sect. 6.6). The corresponding
commands for SAS and R software are described in Sects. 6.8 and 6.9, respectively.

If each of the two factors has a large number of levels, the total number of treatment combina-
tions could be quite large. When observations are costly, it may be necessary to limit the number of
observations to one per treatment combination. Analysis for this situation is discussed in Sect.6.7.

6.2  Models and Factorial Effects
6.2.1 The Meaning of Interaction

In order to understand the meaning of the interaction between two treatment factors, it is helpful
to look at possible data sets from a hypothetical experiment. Universities have become increasingly
interested in online courses and other nontraditional modes of instruction. While an online course may
be offered for a group of students and involve interaction between the students in a common section,
consider development of a course that students take independently of one another. Suppose that a
hypothetical statistics department wishes to know to what extent student performance in an introductory

© Springer International Publishing AG 2017 139
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Fig.6.1 Possible
configurations of effects —&- Structure 1
present for two factors, -E- Structure 2 e )
presentation format (F) and
course schtur.e (S) when o Structure 1
the significant interaction = s . i = _g- Structure 2
effect is absent 1> = = >
G---------- 2 a
T T T T T T
1 2 3 1 2 3
Format Format
(a) F=no, S=no, FS=no (b) F=no, S=yes, FS=no

—o— Structure 1

—o— Structure 1 -g- Structure 2

-B- Structure 2

Vi,
Vi,

1 2 3 1 2 3
Format Format
(¢) F=yes, S=no, FS=no (d) F=yes, S=yes, FS=no

online course is affected by the primary presentation format (textbook reading assignments, videotaped
lectures, or interactive software) and course structure (structured, with regular deadlines throughout
the term; or unstructured, with only a deadline to finish by the end of the term).

There are two treatment factors of interest, namely “presentation format,” which has three levels,
coded 1, 2, and 3, and “course structure,” which has two levels, coded 1 and 2. Both of the treatment
factors have fixed effects, since their levels have been specifically chosen (see Sect. 2.2, p. 11, step (f)).
The students who enroll in the introductory course are the experimental units and are allocated at
random to one of the six treatment combinations in such a way that approximately equal numbers
of students are assigned to each combination of presentation format and course structure. Student
performance is to be measured by means of a computer-graded multiple-choice examination, and an
average exam score y;; for each treatment combination will be obtained, averaging over students for
each treatment combination.

There are eight different types of situations that could occur, and these are depicted in Figs. 6.1 and
6.2, where the plotted character indicates the course structure used. The plots are called interaction
plots and give an indication of how the different format—structure combinations affect the average
exam score.

In plots (a)—(d) of Fig. 6.1, the lines joining the average exam scores for the two course structures
are parallel (and sometimes coincide). In plot (b), all the presentation formats have obtained higher
exam scores with course structure 1 than with structure 2, but the presentation formats themselves look
very similar in terms of the average exam scores obtained. Thus there is an effect on the average exam
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score of course structure (S) but no effect of presentation format (F). Below the plot this is highlighted
by the notation “F = no, S = yes.” The notation “FS = no” refers to the fact that the lines are parallel,
indicating that there is no interaction (see below). In plot (c), no difference can be seen in the average
scores obtained from the two course structures for any presentation format, although the presentation
formats themselves appear to have achieved different average scores. Thus, the presentation formats
have an effect on the average exam score, but the course structures do not (F = yes, S = no). Plot (d)
shows the type of plot that might be obtained if there is both a presentation-format effect and a course-
structure effect. The plot shows that all three presentation formats have obtained higher average exam
scores using structure 1 than using structure 2. But also, presentation format 1 has obtained higher
average scores than the other two presentation formats. The individual course-structure effects and
presentation-format effects are known as main effects.

In plots (a)—(d) of Fig. 6.2, the lines are not parallel. This means that more is needed to explain the
differences in exam scores than just course structure and presentation format effects. For example, in
plot (a), all presentation formats have obtained higher exam scores using course structure 1 than using
structure 2, but the difference is very small for presentation format 3 and very large for presentation
format 1. In plot (d), presentation format 1 has obtained higher exam scores with structure 2, while the
other two presentation formats have done better with structure 1. In all of plots (a)—(d) the presentation
formats have performed differently with the different structures. This is called an effect of interaction
between presentation format and course structure.
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In plot (c), the presentation formats clearly differ. Two do better with structure 1 and one with
structure 2. However, if we ignore course structures, the presentation formats appear to have achieved
very similar average exam scores overall. So, averaged over the structures, there is little difference
between them. In such a case, a standard computer analysis will declare that there is no difference
between presentation formats, which is somewhat misleading. We use the notation “FS = yes” to
denote an interaction between presentation format and Structure, and “F = no?” to highlight the fact
that a conclusion of no difference between presentation formats should be interpreted with caution in
the presence of interaction. In general, if there is an interaction between two treatment factors, then it
may not be sensible to examine either of the main effects separately. Instead, it will often be preferable
to compare the effects of the treatment combinations themselves.

While interaction plots are extremely helpful in interpreting the analysis of an experiment, they give
no indication of the size of the experimental error. Sometimes a perceived interaction in the plot will
not be distinguishable from error variability in the analysis of variance. On the other hand, if the error
variability is very small, then an interaction effect may be statistically significant in the analysis, even
if it appears negligible in the plot.

6.2.2 Models for Two Treatment Factors

If we use the two-digit codes ij for the treatment combinations in the one-way analysis of variance
model (3.3.1), we obtain the model

Yip = p+ 7 + €ije
e ~ N0, 0?),
€jji’s independent ,
t=1,...,r; i=1,...,a; j=1,...,b,

6.2.1)

where i and j are the levels of A and B, respectively. This model is known as the cell-means model. The
“cell” refers to the cell of a table whose rows represent the levels of A and whose columns represent
the levels of B.

Since the interaction plot arising from a two-factor experiment could be similar to any of the plots
of Figs.6.1 and 6.2, it is often useful to model the effect on the response of treatment combination ij
to be the sum of the individual effects of the two factors, together with their interaction; that is,

Tij = a; + B + (af)jj.

Here, «; is the effect (positive or negative) on the response due to the fact that the ith level of factor
A is observed, and f3; is the effect (positive or negative) on the response due to the fact that the jth
level of factor B is observed, and (af3);; is the extra effect (positive or negative) on the response of
observing levels i and j of factors A and B together. The corresponding model, which we call the
two-way complete model, or the two-way analysis of variance model, is as follows:

Yij = p+ i + G + (@B + €ije
ji ~ N(0,0%),
€jji’s are mutually independent ,
t=1,...,r i=1,...,a; j=1,...,b.

(6.2.2)
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The phrase “two-way” refers to the fact that there are two primary sources of variation, namely, the
two treatment factors. Model (6.2.2) is equivalent to model (6.2.1), since all we have done is to express
the effect of the treatment combination in terms of its constituent parts.

Occasionally, an experimenter has sufficient knowledge about the two treatment factors being stud-
ied to state with reasonable certainty that the factors do not interact and that an interaction plot similar
to one of the plots of Fig. 6.1 will occur. This knowledge may be gleaned from previous similar exper-
iments or from scientific facts about the treatment factors. If this is so, then the interaction term can be
dropped from model (6.2.2), which then becomes

Yij =:U'+Oéi+ﬂj+€ijta
¢ji ~ N(0,07),
€jji’s are mutually independent ,
t=1,...,r; i=1,...,a; j=1,...,b.

(6.2.3)

Model (6.2.3) is a “submodel” of the two-way complete model and is called a two-way main-effects
model, or two-way additive model, since the effect on the response of treatment combination ij is
modeled as the sum of the individual effects of the two factors. If an additive model is used when the
factors really do interact, then inferences on main effects can be very misleading. Consequently, if the
experimenter does not have reasonable knowledge about the interaction, then the two-way complete
model (6.2.2) or the equivalent cell-means model (6.2.1) should be used.

6.2.3 Checking the Assumptions on the Model

The assumptions implicit in both the two-way complete model (6.2.2) and the two-way main-effects
model (6.2.3) are that the error random variables have equal variances, are mutually independent, and
are normally distributed. The strategy and methods for checking the error assumptions are the same as
those in Chap. 5. The standardized residuals are calculated as

zije = ije — Yije) /v/ssE/(n — 1)

with
Yip = Tij = Gi + Bj + (ap)jj

or
Yijt = Tij = @i + 3,

depending upon which model is selected, where the “hat” denotes a least squares estimate. The residuals
are plotted against

(i) the order of observation to check independence,
(i) the levels of each factor and y;;, to check for outliers and for equality of variances,
(iii) the normal scores to check the normality assumption.

When the main-effects model is selected, interaction plots of the data, such as those in Figs. 6.2 and 6.1,
can be used to check the assumption of no interaction. An alternative way to check for interaction is to
plot the standardized residuals against the levels of one of the factors with the plotted labels being the
levels of the second factor. An example of such a plot is shown in Fig. 6.3. (For details of the original


http://dx.doi.org/10.1007/978-3-319-52250-0_5

144 6 Experiments with Two Crossed Treatment Factors

Fig.6.3 Residual plot for 3
the temperature experiment O Site1
2] <& Site 2 <
S]
14 8 <
g o 2
’ ¢
_1 - @ 8
_2 -
_3 -
1 2 3

Thermometer type

experiment, see Exercise 17.9.1, p. 650.) If the main-effects model had represented the data well, then
the residuals would have been randomly scattered around zero. However, a pattern can be seen that
is reminiscent of the interaction plot (b) of Fig. 6.2 suggesting that a two-way complete model would
have been a much better description of the data. If the model is changed based on the data, subsequent
stated confidence levels and significance levels will be inaccurate, and analyses must be interpreted
with caution.

If there is some doubt about the equality of the variances, the rule of thumb 2, /s2. < 3 can be
employed, where 52, is the maximum of the variances of the data values within the cells, and s2,.  is
the minimum (see Sect. 5.6.1). In a two-way layout, however, there may not be sufficient observations
per cell to allow this calculation to be made. Nevertheless, we can at least check that the error variances
are the same for each level of any given factor by employing the rule of thumb for the variances of the
nonstandardized residuals calculated at each level of the factor.

2

6.3 Contrasts
6.3.1 Contrasts for Main Effects and Interactions

Since the cell-means model (6.2.1) is equivalent to the one-way analysis of variance model, we know
that all contrasts in the treatment effects 7;; are estimable (cf. Sect. 3.4.1, p. 34). Contrasts of interest
for a cell-means model are typically of three main types: treatment contrasts, interaction contrasts, and
main-effect contrasts.

Treatment contrasts X; X;d;;7;; are no different from the types of contrasts described in Chap. 4. For
example, 7;; — 7y, is a pairwise difference between treatment combinations ij and sh. All the confidence
interval methods of Chap. 4 are directly applicable.

Interaction contrasts are the contrasts that we use in order to measure whether or not the lines on
the interaction plots (cf. Figs.6.1 and 6.2) are parallel. An example of an interaction contrast is

(Tsh — T(s+1)h) — (qu - 7—(s+l)q) . (6.3.4)

We can verify that this is, indeed, an interaction contrast by using the equivalent two-way complete
model notation with 7;; = a; + 3 + (a/3);;. Substituting this into (6.3.4) gives the contrast

((@B)sh — (@B) s+1n) — ((@B)sg — (@B)(s11)q) » (6.3.5)
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which is a function of interaction parameters only. Interaction contrasts are always of the form
PIPNTEDIP I CEIE (63.6)
i i

where
Z dij = Oforeachj and Z dij =0 foreachi.
i J

Some, but not all, interaction contrasts have coefficients d;; = c;k;. For example, if we take ¢; =k, = 1
and c¢s11 = kg = —1 and all other ¢; and k; zero, then, setting d;; = c;k; in (6.3.6), we obtain the
coefficients in contrast (6.3.5).

If the interaction effect is very small, then the lines on an interaction plot are almost parallel (as in
plots (a)—(d) of Fig. 6.1). We can then compare the average effects of the different levels of A (averaging
over the levels of B). Thus, contrasts of the form X ¢;7; , with X¢; = 0, would be of interest. However,
if there is an interaction (as in plot (c) of Fig. 6.2), such an average may make little sense. This becomes
obvious when we use the two-way complete model formulation, since a main effect contrast in A is

> i = cilai+ (@B)i) (63.7)

where (@) i = % Zj (af3)ij, and we can see clearly that we have averaged over any interaction effect
that might be present. We will often write

O[;»k =qo; + (@)l and ﬂ}k = Bj + (Oé_ﬂ)]

for convenience. A contrast in the main effect of A for the two-way complete model is then written as
Yciof (¥c¢; = 0), and a contrast in the main effect of B is

S kTi=> ki + @B ) = D kil (63.8)
J J J

where Sk = 0 and (af); = 1 > (aB);.

Sometimes, it is of interest to compare the effects of the levels of one factor separately at each level
of the other factor. Consider a variation on the hypothetical experiment in Sect.6.2.1. Suppose the
hypothetical statistics department also wishes to study the effects on student learning of two pedago-
gies (traditional lecture, and discovery-based learning) for three instructors teaching an introductory
statistics course. Unless the department wants all instructors (factor A, say) to use the same pedagogy
(factor B, say) in teaching the course, a natural objective might be to choose a best pedagogy for each
instructor separately. If comparison of the effects of levels of factor B for each level of factor A is
required, then contrasts of the form

chﬂj, with ch:o foreachi=1,2,...,a,
J J

are of interest. We call such contrasts simple contrasts in the levels of B. As a special case, we have
the simple pairwise differences of factor B:
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Tin — Ty, foreach i=1,...,a.

These are a subset of the pairwise comparison contrasts. Simple contrasts and simple pairwise differ-
ences of factor A are defined in an analogous way.

When it is known in advance of the experiment that factors A and B do not interact, the two-way
main-effects model (6.2.3) would normally be used. In this model, there is no interaction term, so
7ij = o; + ;. The main-effects contrasts for A and B are respectively of the form

Zciﬂ = Zciai and Zkﬁ']’ = Zk/ﬂj’

with > ¢; =0and > k; = 0.

6.3.2 Writing Contrasts as Coefficient Lists

Instead of writing out a contrast explicitly, it is sometimes sufficient, and more convenient, to list the
contrast coefficients only. For the two-way complete model, we have a choice. We can refer to contrasts
as either a list of coefficients of the parameters a?‘, ﬂ;‘, and (a3);; or as a list of coefficients of the 7;;’s.
This is illustrated in the following example.

Example 6.3.1 Battery experiment, continued

The four treatment combinations in the battery experiment of Sect.2.5.2, p. 24, involved two treatment
factors, “duty” and “brand,” each having two levels (1 for alkaline and 2 for heavy duty; 1 for name
brand and 2 for store brand), giving treatment combinations 11, 12, 21, and 22. (These were coded in
previous examples as 1, 2, 3, and 4, respectively.) There were r = 4 observations on each treatment
combination.

The interaction plot in Fig. 6.4 shows a possible interaction between the two factors, since the dotted
lines on the plot are not close to parallel. However, we should remember that we cannot be certain
whether the nonparallel lines are due to an interaction or to inherent variability in the data, and we will
need to investigate the cause in more detail later.

The interaction is measured by the contrast

T — T2 — 721 + 722 = (@)1 — (@B)12 — (@B)21 + (@),

Fig.6.4 Plot of average 900
life per unit cost against S, —o— Name brand
“Duty” level i by “Brand” 8004 -< - Store brand
level j for the battery R
experiment 700 "
=

600

500

400+

T T

Alkaline Heavy duty
Duty
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which can be written in terms of the coefficient list [ 1, —1, —1, 1].
The contrast that compares the average lifetimes of heavy duty and alkaline batteries (averaged
across brands) is

_ _ 1 1 « «
7'2.—71.=§(7'21+7'22)—§(7'11+712)=042—0¢1'

This has coefficient list [—1, 1 ] in terms of the effects a’f, a§ of the levels of duty, but coefficient list
%[—l, —1, 1, 1]in terms of the effects 711, 712, ™1, T2 of the treatment combinations. Similarly,
the contrast that compares the average life of store brand with that of name brand (averaged over duty)
has coefficient list [—1, 1 ] in terms of the effects ﬂ;‘ of brand, but coefficient list %[—1, 1,—1, 1]in
terms of the 7;’s.

Since the main-effect contrasts each have divisor 2, the interaction contrast is often divided by 2
also. This has the effect that the least squares estimators of all three contrasts have the same variances
(see Example 6.4.1), and their magnitudes are more directly comparable. An alternative way to achieve
equal variances is to normalize the contrasts (see Sect.4.2), in which case all three contrasts would all

be divided by ,/Zc?/r. O

Contrast coefficients are often listed as columns in a table. For example, the contrast coefficients of
the 7;;’s for the main effect and interaction contrasts of Example 6.3.1 are written as below, with 1’s
in the body of the table, and the constants listed as divisors in the last row.

ij A B AB
11 -1 -1 1
12 —1 1 —1
21 1 -1 —1
22 1 1 1
Divisor 2 2 2

The benefit of this representation is that we can see easily that each AB interaction coefficient can be
obtained by multiplying the corresponding A and B main-effect coefficients. Most of the interaction
contrasts that we shall use have this product form. We will mention the exceptions when they arise.

Example 6.3.2 Trend contrasts

Suppose that the two factors, A and B, have ¢ = 3 and b = 6 equally spaced quantitative levels,
respectively, and that the sample sizes are equal. From Table A.2, we see that Ay, the linear trend
contrast for A, has contrast coefficient list [—1, 0, 1] in terms of the a;.“’s, and Ag, the quadratic trend
contrast for A, has contrast coefficient list [ 1, —2, 1 ]; that is

AL = —aof + 03,
Ag = af —2a5 + 3.
Similarly, in terms of the ﬂj* ’s, the coefficient lists for the linear and quadratic trends in the effects of the

six levels of B are also obtained from Table A.2as[—5, —3, —1, 1, 3, 5]and[5, —1, —4, —4, —1, 5],
respectively; that is,

BL = —501 — 3035 — 05 + 05 + 3065 +55¢ .
Bq =507 — 5 — 403 — 403, — 55 + 555 .
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Now,

1 1
a;k =T;, giving 2,‘6,‘0&7 = ¢ (EEjT’j) = 62,’2]'6‘,'7}']‘ ,

and . |

ﬂj* = fj, giving ijjﬁjk = Ejkj (3 Zﬂ',:/) = gEiEjkjnj ,
and we can write all of the above trends in terms of contrasts in 7;;, as shown in the columns of Table 6.1.
Contrast coefficients are also listed for cubic, quartic, and quintic trends for B. If we wish to compare
the A and B trends on the same scale, we can normalize the contrasts (see Sect.4.2).

In order to model a three-dimensional surface, we need to know not only how the response is affected
by the levels of each factor averaged over the levels of the other factor, but also how the response changes
as the levels of A and B change together. The linearA xlinearB trend (Ap By ) measures whether or not
the linear trend in A changes in a linear fashion as the levels of B are increased, and vice versa. This is an
interaction contrast whose coefficients are of the form d;; = c;k;j, where c; are the contrast coefficients
for A, and k; are the contrast coefficients for B. The AL By contrast coefficients are shown in Table 6.1,
and it can be verified that they are obtained by multiplying together corresponding main-effect linear
trend coefficients in the same row. Coefficients for the linearA x quinticB (AL Bqy, ) contrast is also shown
for use later in this chapter. O

Table 6.1 Trend contrasts when A and B have 3 and 6 equally spaced levels, respectively

ij AL Aq By, Bg Bc Bgr Ban ALBL ALBgn
11 -1 1 -5 5 -5 1 -1 5 1
12 -1 1 -3 -1 7 -3 5 3 -5
13 -1 1 -1 —4 2 —-10 1 10
14 -1 1 —4 —4 2 10 -1 —10
15 —1 1 3 -1 -7 -3 -5 -3 5
16 -1 1 5 5 5 1 1 -5 —1
21 0 -2 =5 5 -5 1 -1 0 0
22 0 -2 -3 -1 7 -3 5 0 0
23 0 -2 -1 —4 4 2 —10 0 0
24 0 -2 1 —4 —4 2 10 0 0
25 0 -2 3 -1 -7 -3 -5 0 0
26 0 -2 5 5 5 1 1 0 0
31 1 1 =5 5 -5 1 -1 -5 -1
32 1 1 -3 -1 7 -3 5 -3 5
33 1 1 -1 —4 4 2 -10 -1 —10
34 1 1 1 —4 —4 2 10 1 10
35 1 1 3 -1 -7 -3 -5 3 -5
36 1 1 5 5 5 5 1
Divisor 6 6 3 3 3 3 3 1 1
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6.4  Analysis of the Two-Way Complete Model

In the analysis of an experiment with two treatment factors that possibly interact, we may proceed with
the analysis in two equivalent ways. We may use the cell-means model (6.2.1) together with all the
analysis techniques of Chaps. 3 and 4, or we may use the two-way complete model (6.2.2) and isolate
the contributions to the response made by each of the two factors and their interaction separately.

A sensible strategy is to start with the two-way complete model and test a hypothesis of no interaction.
If the hypothesis is not rejected, we may then continue with the analysis by examining the main effects
under the same two-way complete model. We would not change to the two-way main-effects model,
since this is not an equivalent model. However, if the hypothesis of no interaction is rejected, then we
would normally prefer to change to the equivalent cell-means model and examine differences in the
effects of the treatment combinations. We would also use the cell-means model when the objective of
the experiment is to find the best treatment combination.

6.4.1 Least Squares Estimators for the Two-Way Complete Model
As in Sect.3.4.3, p. 35, the least squares estimator of y + 7 is 7,-]-,, so the least squares estimators

of the parameters in the cell-means model (6.2.1) and the equivalent two-way complete model (6.2.2)
are

fit 7= i+ & + B + (aB) = Yy

and the corresponding variance is o /r;;. Any interaction contrast of the form ¥ Xd;;7;; (with £;d;; = 0
and X;d;; = 0) has least squares estimator and associated variance equal to

d>

V.. 2 “ij

> dy¥y and o Zz(nj .

i J ! J

In particular, the least squares estimator of the interaction contrast
(Tsh — Tun) — (qu - Tuq)

is

Yo —Yun — Yyg. + Yuq. (6.4.9)
with variance
(1 1 1 1
Al—+—+—+—). (6.4.10)
Fsh  Tuh  Tsq  Tug

The least squares estimators of main-effect contrasts X.c;a] and Tk;/3; are

Z}C,‘OAé;k = ZC,’ %Z?U and Zk]B/* = Zk](éZVU) (6.4.11)
i i J J J l

with variances
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2
kj

2
R C N
Var(Zcid}) = o’ ZZbZZr,»j and Var(Zki3) = o Zza2r,-j . (64.12)
i j i j

respectively. If the sample sizes are equal, the least squares estimators of > c;af and > k; ﬁ;‘ reduce
e Dy = DY and D kB o= D kY, (6.4.13)
i i J J
where Y; = Zj > Yiit/br and 7,/; = > >, Yij/ar. Thus, for equal sample sizes,
& —ar =Y. — Y, and B — B =Y; -7, (6.4.14)
with associated variances 202 /(br) and 202/ (ar), respectively.

Example 6.4.1 Battery experiment, continued

The four treatment combinations in the battery experiment of Sect.2.5.2, p. 24, involved two treatment
factors, “duty” and “brand,” each having two levels (1 for alkaline and 2 for heavy duty; 1 for name
brand and 2 for store brand), giving treatment combinations 11, 12, 21, and 22. There were r = 4
observations on each treatment combination. The observed average lifetimes per unit cost for the
treatment combinations were

y”. = 57075, ylZ. == 86050, yZI. == 43300, yzz‘ == 49625

The interaction contrast

1 1
E(T“ —Tio— 71 + ™) = 3 (@)1 — (@B)12 — (aP)21 + (aB)22)

has least squares estimate

1 —_ — — —
E()’ll. = Yi2. — Ya1. T V) = —113.25,

with associated variance
2 2 212 1 1 15 2
(XD diir) = (T + )+ (=52 + () /4 =074
The duty contrast,
* * P} P} 1
al —a; = (a1 + (@f)1) — (2 + (af)) = 5 M+ —m—m),
has least squares estimate ¥, — 3, = 251.00 and associated variance o /4. The brand contrast,
— — 1
Bi =B = Br+ (@B = B+ (af)2) = 5 (1 = T2 + 721 = ™)

has least squares estimate y | — ¥, = —176.50 and associated variance o2 /4. O


http://dx.doi.org/10.1007/978-3-319-52250-0_2

6.4 Analysis of the Two-Way Complete Model 151
6.4.2 Estimation of o2 for the Two-Way Complete Model

Since the two-way complete model (6.2.2) is equivalent to the cell-means model (6.2.1), an unbiased
estimate of o2 is the same as that for the one-way analysis of variance model, apart from an extra
subscript j. Thus, the error sum of squares ssE can be obtained from (3.4.4) or (3.4.5), p. 39, that is,

sE=2 > > 0 —3;)° (6.4.15)
it
=22 D v = 2 2 i, (64.16)
i t i

An unbiased estimate for o2 is obtained as msE = ssE/(n — v), with v = ab. An upper 100(1 — @)%
confidence bound for o2 is given by (3.4.9), p. 40, that is,

2 ssE
o2 < . (6.4.17)

2
Xn—ab,l—a

Example 6.4.2 Reaction time experiment, continued

The reaction time pilot experiment, run in 1996 by Liming Cai, Tong Li, Nishant, and Andre van der
Kouwe, was described in Exercise 4 of Chap.4. The experiment was run to compare the speed of
response of a human subject to audio and visual stimuli. A personal computer was used to present a
“stimulus” to a subject, and the time that the subject took to press a key in response was monitored.
The subject was warned that the stimulus was forthcoming by means of an auditory or a visual cue.
The two treatment factors were “Cue Stimulus” at two levels, “auditory” and “visual” (Factor A, coded
1, 2), and “Cue Time” at three levels, 5, 10, and 15 seconds between cue and stimulus (Factor B,
coded 1, 2, 3), giving a total of v = 6 treatment combinations (coded 11, 12, 13, 21, 22, 23). Three
observations were taken on each treatment combination for a single subject. The reaction times are
shown in Table6.2. It can be verified that > > Zyizjt = 0.96519. Using (6.4.16) and the sums in
Table 6.2, the sum of squares for error is

SE=> > >3 -3> 35
ij ot i

= 0.96519 — 3(0.32057) = 0.00347 ,

Table 6.2 Data (in seconds) for the reaction time experiment

A: Cue stimulus B: Cue time Treatment combination Reaction time y;j Sums y;;.
1 1 11 0.204 0.170 0.181 0.555
1 2 12 0.167 0.182 0.187 0.536
1 3 13 0.202 0.198 0.236 0.636
2 1 21 0.257 0.279 0.269 0.805
2 2 22 0.283 0.235 0.260 0.778
2 3 23 0.256 0.281 0.258 0.795
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and an unbiased estimate of o2 is msE = ssE/(18—6) = 0.000289 seconds®. Anupper 95% confidence

bound for o2 is
ssE 0.00347 0.000664 ds2
= = 0. seconds
5.226 ’

2
X12,.95

and taking square roots, an upper 95% confidence bound for ¢ is 0.0257 seconds. U

6.4.3 Multiple Comparisons for the Complete Model

In outlining the analysis at step (g) of the checklist of Chap. 2, the experimenter should specify which
treatment contrasts are of interest, together with overall error rates for hypothesis tests and overall con-
fidence levels for confidence intervals. If the two-way complete model has been selected, comparison
of treatment combinations, comparison of main effects of A, and comparison of main effects of B may
all be of interest. A possibility in outlining the analysis is to select error rates of a1, an, and a3 for the
three sets of inferences. Then, by the Bonferroni method, the experimentwise simultaneous error rate is
at most a; + o + a3, and the experimentwise confidence level is at least 100(1 — a — ap — a3)%. If
interaction contrasts are also of interest, then the overall a-level can be divided into four parts instead
of three.

Comparing Treatment Combinations

When comparison of treatment combinations is of most interest, the cell-means model (6.2.1) is used.
The formulae for the Bonferroni, Scheffé, Tukey, and Dunnett methods can all be used in the same
way as was done in Chap. 4, but with ssE given by (6.4.16) and with v = ab.

The best treatment combination can be found using Tukey’s method of multiple comparisons. The
best treatment combination may not coincide with the apparent best levels of A and B separately.
For example, in Fig.6.2(d), p. 141, the apparent best treatment combination occurs with presentation
format 2 and structure 1, whereas the best presentation format, on average, appears to be number 3.

Comparing Main Effects

Main-effect contrasts compare the effects of the levels of one factor averaging over the levels of the
other factor and may not be of interest if the two factors interact. If main-effect contrasts are to be
examined, then the Bonferroni, Scheffé, Tukey, and Dunnett methods can be used for each factor
separately. The general formula is equivalent to (4.4.20), p. 83. For factor A and equal sample sizes

the formula is
Zc,-?,-_ = Zc,-a?‘ € Zc,-yi_' +w /msE Zciz/br , (6.4.18)
i i i \ i

where the critical coefficient w for each of the four methods is, respectively,

WB = In—ab,a/2m s WS = \/(a - I)Fa—l,n—ab,a )
. (0.5)
wr = qa,nfab,u/\/E ;o Wp2 = |t|a—l,n—ab,a .

The general formula for a confidence interval for a contrast in factor B is

Zkﬁ, = Zk/ﬂj* € Zk,y ; Tw [msE Zkf /(ar) (6.4.19)
j j j j
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with critical coefficients as above but interchanging a and b. The error variance estimate is msE =
ssE/(n — ab), where ssE is obtained from (6.4.16).

For unequal sample sizes, the Bonferroni and Scheffé methods can be used, but the least squares
estimates and variances must be replaced by (6.4.11) and (6.4.12), respectively. It has not yet been
proved that the other two methods retain an overall confidence level of at least 100(1 — ) % for unequal
sample sizes, although this is widely believed to be the case for Tukey’s method.

Example 6.4.3 Reaction time experiment, continued

Suppose the preplanned analysis for the reaction time experiment of Example 6.4.2 (p. 151) had been
to use the two-way complete model and to test the null hypothesis of no interaction. If the hypothesis
were to be rejected, then the plan was to use Tukey’s method at level 99% for the pairwise comparisons
of the treatment combinations. Otherwise, Tukey’s method would be used at level 99% for the pairwise
comparison of the levels of B (cue time), and a single 99% confidence interval would be obtained for
comparing the two levels of A (cue stimulus). Then the experimentwise confidence level for the three
sets of intervals would have been at least 97%.

After looking at the data plotted in Fig. 6.5, the experimenters might decide that comparison of the
levels of cue stimulus (averaged over cue time) is actually the only comparison of interest. However,
the experimentwise confidence level remains at least 97%, because two other sets of intervals were
planned ahead of time and only became uninteresting after the data were examined.

The sample mean weights for the two cue stimuli (averaged over cue times) are

y1.=0.1919, vy, =0.2642.
The mean square for error was calculated in Example 6.4.2 to be msE = 0.000289. The formula for

a 99% confidence interval for the comparison of a = 2 treatments and br = 9 observations on each
treatment is obtained from (6.4.18) with w = wp = #18—6,0.005 = 3.055, giving

af—aj € (yz._ -y, % wB\/msE (1/br + l/br))
= 0.0723 £+ (3.055)4/0.000289(2/9) = (0.0478, 0.0968) .

Thus, at an experimentwise confidence level of at least 97%, we can conclude that the average reaction
time with an auditory cue is between 0.0478 and 0.0968 seconds faster than with a visual cue. O
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Multiple Comparisons When Variances are Unequal

When the variances of the error variables are unequal, and no transformation can be found to remedy
the problem, Satterthwaite’s approximation, introduced in Sect.5.6.3 (p. 115), can be used. This is
illustrated in Example 6.4.4.

Example 6.4.4 Bleach experiment

The bleach experiment was run by Annie Autret in 1986 to study the effect of different bleach con-
centrations (factor A) and the effect of the type of stain (factor B) on the speed of stain removal from a
piece of cloth. The bleach concentration was to be observed at levels 3, 5, and 7 teaspoonfuls of bleach
per cup of water (coded 1, 2, 3), and three types of stain (blue ink, jam, tomato sauce; coded 1, 2, 3)
were of interest, giving v = 9 treatment combinations in total. The experimenter calculated that she
needed r = 5 observations per treatment combination in order to be able to detect, with probability
0.9, at significance level 0.05, a difference of 5min in the time of stain removal between the levels of
either treatment factor.

The data are shown in Table 6.3 together with the sample mean and standard deviation for each
treatment combination. The maximum sample standard deviation is about 8.9 times the size of the
minimum sample standard deviation, so the ratio of the maximum to the minimum variance is about
80, and a transformation of the data should be contemplated. The reader can verify, using the technique
described in Sect.5.6.2, that a plot of ln(sl.zj) against ln(il»j.) is not linear, so no transformation of the

form h(y;j) = yl.ll.t_(q/ 2 will adequately equalize the error variances.

An alternative is to apply Satterthwaite’s approximation (Sect. 5.6.3, p. 115). The plan of the analysis
was to use Tukey’s method with an error rate of 0.01 for each of the main-effect comparisons and for
the pairwise differences of the treatment combinations, giving an experimentwise confidence level of
at least 97%. For the main effect of B, for example, a pairwise comparison of levels u and / of factor

B is of the form
3k 3k = P 1
By — By =T.u_T.h=g(Tlu+7'2u+7'3u_Tlh_TZh_T3h) ,

which has least squares estimate

—~ —~ _ _ 1, _ _ _ _ _
By =By =Yy —Vp = 3 F1u. + You. + 30, = Yin, — Yon. — Van.) -

Table 6.3 Data for the bleach experiment, with treatment factors “concentration” (A) and “stain type” (B)

ij Time for stain removal (in seconds) Vij. Sij

11 3600 3920 3340 3173 2452 3297.0 550.27
12 495 236 515 573 555 474.8 137.04
13 733 525 793 1026 510 717.4 212.85
21 2029 2271 2156 2493 2805 2350.8 305.94
22 428 432 335 288 376 371.8 61.60
23 880 759 1138 780 1625 1036.4 361.91
31 3660 4105 4545 3569 3342 3844.2 479.85
32 410 225 437 350 140 3124 126.32

33 539 1354 347 584 781 721.0 386.02
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If sizj denotes the sample variance of the data for treatment combination ij, the estimated variance of
this estimator, as in (5.6.4), p. 115, is

Var ﬁ* ZZ "r

(slu + 55, + 53, Sty + 55 + 53)

and since r = 5, the approximate number of degrees of freedom for error is

_ (S%u + S%u + S%u + s%h + s%h + S%h)z
(sT/D + (s3,/9 + (s3,/9 + (s1,/9 + (s3,/9) + (s3,/%)

after canceling the factor 72 = 25 in the numerator and denominator.
For Tukey’s method of pairwise comparisons for factor B with b = 3 levels, the minimum significant
difference is

msd = wr +/Var (B,’; - B;:),
with wr = ¢3,4r.01/ /2. For measurements in seconds, we have the following values:

wh df  gyaoonr  Var(F-fB7)  msd ¥, -3,

(1,2) 115 5.09 14,780.6 437.57  2,777.67
(1,3) 18.6 4.68 21,153.5 481.31  2,339.07
(3,2) 126 4.99 8,084.7 317.26 438.60

The set of 99% simultaneous Tukey confidence intervals for pairwise differences is then
B — 55 € (2777.67 £437.57) = (2340.10, 3215.24) ,
Bf — B3 € (1857.76,2820.38),  [33 — [3; € (121.34,755.86) .

Since none of the intervals contains zero, we can state that all pairs of levels of B (stain types) have
different effects on the speed of stain removal, averaged over the three concentrations of bleach. With
experimentwise confidence level at least 97%, the mean time to remove blue ink (level 1) is between
1857 and 2820 seconds longer than that for tomato sauce (level 3), and the mean time to remove tomato
sauce is between 121 and 755 seconds longer than that for jam (level 2). g

6.4.4 Analysis of Variance for the Complete Model

There are three standard hypotheses that are usually examined when the two-way complete model
is used. The first hypothesis is that the interaction between treatment factors A and B is negligible;
that is,

P (@B — (@B)ig — (aB)yj + (@f)sg = 0 foralli # s, # g},

which occurs when the interaction plots show parallel lines. Notice that if all of the contrasts (a3);; —
(af)ig — (aB)sj + (aB)sy are zero, then their averages over s and g are also zero. This leads to an
equivalent way to write H4'® as


http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Hy® : {((aB)yj — (@B)i. — (aB)j + (af).. = 0 for all ij} .

In this form, it appears that H(’)“B is based on ab estimable contrasts, but in fact, some of them are
redundant, since the ab contrasts add to zero over the subscript i = 1,2,...,a and also over the
subscriptj = 1, 2, ..., b. Consequently, H§B is actually based on (a — 1)(b — 1) estimable contrasts,
and the test is based on (a — 1)(b — 1) degrees of freedom.

The other two standard hypotheses are the main-effect hypotheses

H:{af=as=...=a}} and HS: (Bf =P =... =0},

where of = a; + (af);. and Bj* =0+ (af) j- However, these main-effect hypotheses may not be of
interest if there is a sizable interaction. Each of the main-effect hypotheses can be rephrased in terms
of estimable contrasts in the parameters, and so can be tested. As in Chap. 3, the tests will be based on
(a — 1) and (b — 1) degrees of freedom, respectively.

When the sample sizes are unequal, there are no neat algebraic formulae for the decision rules of
the hypothesis tests. Therefore, we will obtain the tests for equal sample sizes and postpone discussion
of the unequal sample size case to Sects. 6.8 and 6.9, where analysis will be done by computer.

Testing Interactions—Equal Sample Sizes

Since tests for main effects may not be relevant if the two factors interact, the hypothesis of negligible
interaction should be tested first. As in Sect.3.5.1, p. 41, in order to test

Hy®  {(aB)y — (aB)i. — (@B)j + (aB).. = 0 for all ij}

against the alternative hypothesis HX‘B :{the interaction is not negligible}, we compare the sum of
squares for error ssE under the two-way complete model (6.2.2) with the sum of squares for error
ssE4® under the reduced model obtained when Hy'® is true. The difference

sSAB = ssEy® — ssE

is called the sum of squares for the interaction AB, and the test rejects H()“B in favor of H A‘XB if ssAB
is large relative to ssE.
We can rewrite the two-way complete model as

Vije = p+ i + 5 + (@B)ij + €
= 1+ of + 6 + (B — (@B)i. — (@B)j + (@B). 1+ €ij ,

where p* is the constant p — (a_ﬁ)“. So, when H6‘B is true, the reduced model is
yij[ = ‘LL* + O[;k +6]* + eljt )

which has the same form as the two-way main-effects model.

We will show in Sect. 6.5.1 that the least squares estimate of 11+ c; + 3; for the two-way main-effects
modelisy; +y; —V_,forequal sample sizes. Similarly, the least squares estimate of 1/* + o} + ﬂ;"
in the above reduced model is alsoy; +y; —Y_ . Hence, the sum of squares for error for the reduced
model is
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A\2
SEP = 333 (=i - )
it
=D 3> G =V~ 4V
iojot
Adding and subtracting a term y;; to this expression, we have
— _ — — - 2
SSEQ® = D" 3" (i = ¥3) + Gy — ¥i. =¥, +3.))
it

=D D D 0= )+ D DD Gy = =¥, V)%
it it

But the first term is just ssE given in (6.4.15). So, for equal sample sizes,

sSAB = ssEy® — ssE
= ’Z Z@u —¥ =¥+’ (6.4.20)
J

i

= rZZyi — eryf —ar Zyi + abrf‘ .
i ] i j

It can be shown that when H(‘)“B is true, the corresponding random variable SS(AB)/o? has a chi-
squared distribution with (a — 1)(b — 1) degrees of freedom. Also, SSE/o?* ~ X’%_ . and SSE can be
shown to be independent of SS(AB). So, when H(?B is true,

SS(AB)/(a — 1)(b — 1)0*> _ MS(AB)
SSE/(n — ab)o? ~  MSE

~ Fa—1)(—1),n—ab -

We reject Hg‘B for large values of the ratio msAB/msE. Thus, the rule for testing the hypothesis H6‘B
against the alternative hypothesis that the interaction is not negligible is

. AB .. MSAB
reject Hy” if o > Fla—1)(b—1),n—ab,a s (6.4.21)

where msAB = ssAB/(a — 1)(b — 1), msE = ssE/(n — ab), ssAB is given in (6.4.20), and ssE is

“E= 333 N
it i

It H6‘B is rejected, it is often preferable to use the equivalent cell-means model and look at contrasts
in the treatment combinations. If H()*B is not rejected, then tests and contrasts for main effects are
usually of interest, and the two-way complete model is retained. (We do not change to the inequivalent
main-effects model.)

Testing Main Effects of A—Equal Sample Sizes

In testing the hypothesis that factor A has no effect on the response, one can either test the hypothesis
that the levels of A (averaged over the levels of B) have the same average effect on the response, that is,
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A
Hy :{of =05 =---=a}},

or one can test the hypothesis that the response depends only on the level of B, that is
H(‘;H'AB : {H{;‘ and Héw are both true} .

The traditional test, which is produced automatically by many computer packages, is a test of the
former, and the sum of squares for error ssE under the two-way complete model is compared with the
sum of squares for error ssEé under the reduced model

Vie = 10+ B + (@B)y — @D — @B, + @B).) + ey

Itis, perhaps, more intuitively appealing to test H(’;HAB rather than H()“, since the corresponding reduced
model is
Yie = 1 + 67 + e

suggesting that A has no effect on the response whatsoever.

In this book, we take the view that the main effect of A would not be tested unless the hypothesis
of no interaction were first accepted. If it is true that there is no interaction, then the two hypotheses
and corresponding reduced models are the same, and the results of the two tests should be similar.
Consequently, we will derive the test of the standard hypothesis H(’;‘.

It can be shown that if the sample sizes are equal, the least squares estimate of E[Y};] for the reduced
model under Hj is

Vij. = Vi, TV

and so the sum of squares for error for the reduced model is
ssEy = D > D> i =¥y + 3. =307
it

Taking the terms in pairs and expanding the terms in parentheses, we obtain

a b r a
ssEA = z Z Z()’z‘jr - yij,)z —br Z@i,. ~-5.)%.
i=1

i=1 j=1 =1
Since the first term is the formula (6.4.15) for ssE, the sum of squares for treatment factor A is

a a
SSA = ssEg —ssE = br Z@i_ —y__.)2 = eryﬁ_ — abry%_. (6.4.22)

i=1 i=1

Notice that this formula for ssA is similar to the formula (3.5.12), p. 43, for ssT used to test the
hypothesis Hy:{71 = 7 = --- = 7,} in the one-way analysis of variance.

We write SSA for the random variable corresponding to ssA. It can be shown that if H‘O“ is true,
SSA/o? has a chi-squared distribution with a — 1 degrees of freedom, and that SSA and SSE are
independent. So, writing MSA = SSA/(a — 1), we have that MSA/MSE has an F-distribution when
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Table 6.4 Two-way ANOVA, crossed fixed effects with interaction

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio
Factor A a—1 SSA isf‘? —ﬁiA
Factor B b—1 ssB % —gﬁ
ssAB msAB
AB (a—DB-1) ssAB W msE
Error n—ab ssE ==
Total n—1 sstot
Computational formulae for equal sample sizes

SSE=3; Zj > y?ﬁ SSA=0bry; ylz —ny>

—-ry; zj ilzl ssB = ar Z/- yzl —ny?
sstot =23, 37 >, yizjt —ny*, sSAB=r3, > 22, —bry v,
n = abr —ar Zi izl + i’lyz

Hé is true, and the rule for testing HS‘ {a] =--- = a}} against Hg‘ : {not all of the o ’s are equal} is
msA

reject Hy if ——= > Fatn-aba, (6.4.23)

where msA = ssA/(a — 1) and msE = ssE/(n — ab).
Testing Main Effects of B—Equal Sample Sizes

Analogous to the test for main effects of A, we can show that the rule for testing Hg | ﬂ;" = ﬂi" =
--- = 3/} against Hf : {not all of the 5}*’5 are equal} is

. B .. msB
reject Hy if — > Fp—1 n—ab,a (6.4.24)
msE
where msB = ssB/(b — 1), msE = ssE/(n — ab), and

ssB=ar» (5, =3 ) =ar > 55 —abry’ . (6.4.25)
j j

Analysis of Variance Table

The tests of the three hypotheses are summarized in a two-way analysis of variance table, shown in
Table 6.4. The computational formulae are given for equal sample sizes. The last line of the table is
sstot = 37, > > (ije — ¥ )%, which is the total sum of squares similar to (3.5.16). It can be verified
that

$SA + ssB + ssAB + ssE = sstot .

When the sample sizes are not equal, the formulae for ssA, ssB, and ssAB are more complicated,
the corresponding random variables SSA, SSB, and SS(AB) are not independent, and

sSA + ssB + ssAB + ssE # sstot.

The analysis of experiments with unequal sample sizes will be discussed in Sects. 6.8 and 6.9 using
the software packages SAS and R, respectively.
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Example 6.4.5 Reaction time experiment, continued

The reaction time experiment was described in Example 6.4.2, p. 151. There were a = 2 levels of cue
stimulus and b = 3 levels of cue time, and r = 3 observations per treatment combination. Using the
data in Table 6.2, we have

sstot ="y —abry> = 0.96519 —0.93617 = 0.02902 ,
i t

ssA =br > yi —abry* = 9(0.1918% +0.2642%) — 0.93617 = 0.02354,

1

ssB=ar ) ¥5 —abry’, = 6(0.2267% + 0.2190> + 0.2385%) — 0.93617 = 0.00116

J
sSAB = rZZii — eryﬁ. —ar Zyzj +abr§%
i i J

= 0.96172 — 0.95971 — 0.93733 4 0.93617 = 0.00085,

and in Example 6.4.2, ssE was calculated to be 0.00347. It can be seen that sstot = ssA+ ssB+ ssAB+
ssE. The analysis of variance table is shown in Table 6.5. The mean squares are the sums of squares
divided by their degrees of freedom.

There are three hypotheses to be tested. If the Type I error probability « is selected to be 0.01 for
each test, then the probability of incorrectly rejecting at least one hypothesis when it is true is at most
0.03. The interaction plots in Fig. 6.5, p. 153, suggest that there is no interaction between cue stimulus
(A) and cue time (B). To test this hypothesis, we obtain from the analysis of variance table

msAB/msE = 0.00043/0.00029 = 1.46.

which is less than F> 12,01 = 6.93. Therefore, at individual significance level o = 0.01, there is not
sufficient evidence to reject the null hypothesis H()AB that the interaction is negligible. This agrees with
the interaction plot.

Now consider the main effects. Looking at Fig. 6.5, if we average over cue stimulus, there does
not appear to be much difference in the effect of cue time. If we average over cue time, then auditory
cue stimulus (level 1) appears to produce a shorter reaction time than a visual cue stimulus (level
2). From the analysis of variance table, msA/msE = 0.02354/0.00029 = 81.38. This is larger than
F1.12,.01 = 9.33, so we reject Hg‘:{oz’lk = o5}, and we would conclude that there is a difference in cue
stimulus averaged over the cue times. On the other hand, msB/msE = 0.00058/0.00029 = 2.0, which

Table 6.5 Two-way ANOVA for the reaction time experiment

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio p-value
Cue stimulus 1 0.02354 0.02354 81.38 0.0001

Cue time 2 0.00116 0.00058 2.00 0.1778

Interaction 2 0.00085 0.00043 1.46 0.2701

Error 12 0.00347 0.00029

Total 17 0.02902
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is less than F» 1201 = 6.93. Consequently, we do not reject Hg {87 = 5 = 37} and conclude that
there is no evidence for a difference in the effects of the cue times averaged over the two cue stimuli.

If the analysis were done by a computer program, the p-values in Table 6.5 would be printed. We
would reject any hypothesis whose corresponding p-value is less than the selected individual o* level.
In this example, we selected o* = 0.01, and we would fail to reject H{)*B and H(If , but we would reject
H(‘;‘, as in the hand calculations.

This was a pilot experiment, and since the experimenters already believed that cue stimulus and
cue time really do not interact, they selected the two-way main-effects model in planning the main
experiment. O

6.5  Analysis of the Two-Way Main-Effects Model
6.5.1 Least Squares Estimators for the Main-Effects Model
The two-way main-effects model (6.2.3) is

Yip = p+a; + 5 + €ijr
€t ~ N0, 0?),
€jji’s are mutually independent ,
t=1,...,r i=1,...,a; j=1,...,b.

This model is a submodel of the two-way complete model (6.2.2) in the sense that it can only
describe situations similar to those depicted in plots (a)—(d) of Fig. 6.1 and cannot describe plots (a)—
(d) of Fig. 6.2. When the sample sizes are unequal, the least squares estimators of the parameters in the
main-effects model are not easy to obtain, and calculations are best left to a computer (see Sects. 6.8
and 6.9). In the optional subsection below, we show that when the sample sizes are all equal to r, the
least squares estimator of E[Yj;/] = u + a; + 5; is

f+é&i+B=Y, +Y; —Y_. (6.5.26)

The least squares estimator for the estimable main-effect contrast > ; cja; with > ¢; = 0 is then
ZC,'@[ = Zci(ﬂ + & + /@) = ZC,‘ (7, + ?] — 7)
i i i
=> ¥,
i

which has variance

Var (Z Cidi) = Var (Z c,-?,-_) = Z_i ch _ (6.5.27)

i i

For example, oy, — a;, the pairwise comparison of levels p and s of A, has least squares estimator and
associated variance
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These are exactly the same formulas as for the two-way complete model and similar to those for
the one-way model. Likewise for B, a main-effect contrast ) k;3; with Zj ki = 0 has least squares
estimator and associated variance

ijﬁj = ijij. and  Var ij?'j' = Z—jZkJZ, (6.5.28)
J j J j

and the least squares estimator and associated variance for the pairwise difference 3, — 3, is

2

A A v - . - — 20
Bp—Byg=Yn—-Y, with Var(Y —Y,)= —.

Example 6.5.1 Nail varnish experiment

An experiment on the efficacy of nail varnish solvent in removing nail varnish from cloth was run by
Pascale Quester in 1986. Two different brands of solvent (factor A) and three different brands of nail
varnish (factor B) were investigated. One drop of nail varnish was applied to a piece of cloth (dropped
from the applicator 20 cm above the cloth). The cloth was immersed in a bow] of solvent and the time
measured (in minutes) until the varnish completely dissolved. There were six treatment combinations
11,12,13,21, 22, 23, where the first digit represents the brand of solvent and the second digit represents
the brand of nail varnish used in the experiment. The design was a completely randomized design with
r = 5 observations on each of the six treatment combinations. The data are listed in Table 6.6 in the
order in which they were collected.

The experimenter had run a pilot experiment to estimate the error variance o and to check that the
experimental procedure was satisfactory. The pilot experiment indicated that the interaction between
nail varnish and solvent was negligible. The similarity of the chemical composition of the varnishes and
solvents, and the verification from the pilot experiment, suggest that the main-effects model (6.2.3)
will be a satisfactory model for the main experiment. The data from the main experiment give the
interaction plots in Fig. 6.6. Although the lines are not quite parallel, the selected main-effects model
would not be a severely incorrect representation of the data.

Using the data in Table 6.6, the average dissolving time (in minutes) for the two brands of solvent are

Table 6.6 Data (minutes) for the nail varnish experiment

Solvent 2 1 1 2 2 2 1 2
Varnish 3 3 3 3 2 2 2 2
Time 32.50 30.20 27.25 24.25 34.42 26.00 22.50 31.08
Solvent 1 2 1 1 2 1 2 2
Varnish 2 1 1 1 1 3 3 2
Time 25.17 29.17 27.58 28.75 31.75 29.75 30.75 29.17
Solvent 1 1 2 1 2 2 1 2
Varnish 2 1 2 2 1 3 3 1
Time 27.75 25.83 24.75 21.50 32.08 29.50 24.50 28.50
Solvent 2 1 1 2 1 1

Varnish 3 3 1 1 1 2

Time 28.75 22.75 29.25 31.25 22.08 25.00
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Fig.6.6 Average 32 - 32

dissolving times for the -9~ Varnish 1 -~ Solvent 1
nail varnish experiment ~o- Varnish 2 o S ~©- Solvent 2
30 | [[B- Vamish3 30 . —
B O
528 28 |
%4 7 26 -
24 - <|> 1 24
1 2 1 2 3
Solvent Varnish

¥ =259907 and y, =29.5947.
So the least squares estimate of the difference in the dissolving times for the two solvents is
d] - 6[2 = y]“ - yl. == —36040 5
and the variance of the estimator is 202/(rb) = 202/15. A difference of 3.6 minutes seems quite
substantial, but this needs to be compared with the experimental error via a confidence interval to see
whether such a difference could have occurred by chance (see Examples 6.5.2 and 6.5.3).
The average dissolving times for the three brands of nail varnish are
yi. =28.624, y, =26.734, andy; = 28.020,
and the least squares estimates of the pairwise comparisons are

Bi— B =1890, B —f5=0.604,and 3 — 33 = —1.286,

each with associated variance 202/10. Since levels 1 and 2 of the nail varnish represented French
brands, while level 3 represented an American brand, the difference of averages contrast

%(ﬁl +B2) — B3

would also be of interest. The least squares estimate of this contrast is
1 4 A A 1 _ _ _
5(61 +3) =B = E(” +3,)—¥;3 = —0341,

with associated variance 62 /40. O

Deriving Least Squares Estimators for Equal Sample Sizes (Optional)

We now sketch the derivation (using calculus) of the least squares estimators for the parameters of
the two-way main-effects model (6.2.3), when the sample sizes are all equal to r. A reader without
knowledge of calculus may jump to Sect.6.5.2, p. 165.
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As in Sect. 3.4.3, the least squares estimates of the parameters in a model are those estimates that
give the minimum value of the sum of squares of the estimated errors. For the two-way main-effects
model (6.2.3), the sum of squared errors is

b r

Zulzzr:ezzjtZZQZZZ(Yijt—(N+ai+5j))2~

i=1 j=1 t=1 i=1 j=1 =1

The least squares estimates are obtained by differentiating the sum of squared errors with respect to
each of the parameters p, o; (i = 1,...,a),and 8; (j = 1, ..., b) in turn and setting the derivatives
equal to zero. The resulting set of normal equations is as follows.

y..—abrfi—brY & —ary [ =0, (6.5.29)
i j
i.—brii—bréi—r» B=0, i=1...a, (6.5.30)
j
y_j_—arﬁ—eri—arﬁAij, j=1,...,b. (6.5.31)

1

There are 1 4+ a + b normal equations in 1 + a 4+ b unknowns. However, the equations are not all
distinct (linearly independent), since the sum of the a equations listed in (6.5.30) is equal to the sum
of the b equations listed in (6.5.31), which is equal to (6.5.29). Consequently, there are at most, and,
in fact, exactly, 1 + a 4+ b — 2 distinct equations, and two extra equations are needed in order to obtain
a solution. Many computer packages, including the SAS software, use the extra equations &, = 0 and
Bb = 0, while the R package uses the extra equations &; = 0 and 31 = 0. However, when working by
hand, it is easier to use the equations ) ; & = 0 and Zj Bj = 0, in which case (6.5.29)-(6.5.31) give
the following least squares solutions:

=y ., (6.5.32)

>

jo3Y
Il

=l =l =
I

J
Then the least squares estimate of p1 + «; + ; is
fitéi+ 8= +5, -5, i=1l...a j=1,...b

Deriving Least Squares Estimators for Unequal Sample Sizes (Optional)

If the sample sizes are not equal, then the normal equations for the two-way main-effects model become

a b
Yoo = nfi= D by = D rgfy =0, (6.5.33)
p=1 q=1
h A
Yi.. = Tifl — 1i.G; — Zriqﬂq =0, i=1,...,q, (6.5.34)

q=1
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a
= riii— D ryby — =0, j=1,...b, (6.5.35)
p=1

where n = >, > rj, rp. = > 1pj, and rg = >, rig. As in the equal sample size case, the normal
equations represent @ + b — 1 distinct equations in 1 4+ a + b unknowns, and two extra equations are
needed to obtain a particular solution. Looking at (6.5.33), a sensible choice might be Zp rp.Gp =0
and ) g "aP¢ = 0. Then i =7y asin the equal sample size case. However, obtaining solutions for

the &;’s and Bj’s is not so easy. One can solve for Bj in (6.5.35) and substitute this into (6.5.34), which
gives the following equations in the &;’s:

Vg, fori=1,...a. (6.5.36)

i b
q
Z Z Tpgp = Z
Fqti.

r.qti.

Equations in the ﬂAj’s can be obtained similarly. Algebraic expressions for the individual parameter
estimates are generally complicated, and we will leave the unequal sample size case to a computer
analysis (Sects. 6.8 and 6.9).

6.5.2 Estimation of o2 in the Main-Effects Model

The minimum value of the sum of squares of the estimated errors for the two-way main-effects model
is

a b r
sSE= D> > O —i—a&— ) (6.5.37)

i=1 j=1 t=1

a b r
=33 > i -5~ 5, +5)

i=1 j=1 t=I

Expanding the terms in parentheses in (6.5.37) yields the following formula useful for direct hand
calculation of ssE:

SsE = Z Z Zyizﬁ — br ny —ar Zyi + abri% (6.5.38)
i j ot i J
Now, ssE is the observed value of

SSE=> > > ¥y —Yi. Y, +7.)%
i t

In Exercise 19, the reader will be asked to prove, for the equal sample size case, that
E[SSEl = (n—a—b+1)o?,

where n = abr, so an unbiased estimator of o2 is
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MSE=SSE/(n—a—b+1).

It can be shown that SSE/o? has a chi-squared distribution with (n — a — b + 1) degrees of freedom.
An upper 100(1 — )% confidence bound for o is therefore given by

ssE
2 <

0" /.
Xn—a—h+1,1—a

Example 6.5.2 Nail varnish experiment, continued

The data for the nail varnish experiment are given in Table 6.6 of Example 6.5.1, p. 162, and a = 2,
b =3,r =35, n=30. It can be verified that

DD yi =23,5057976, §_ =27.7927,
ij ot

and
Vi =259907, Yy, =29.5947,

v = 28.624, Y, = 26.734, y 3 = 28.020.
Thus, from (6.5.38),

ssE = 23, 505.7976 — 23,270.3857 — 23, 191.6053 + 23, 172.9696
= 216.7762,

and an unbiased estimate of o2 is
msE = 216.7762/(30 — 2 — 3 + 1) = 8.3375 minutes” .

A 95% upper confidence bound for o2 is

ssE 216.7762

= 153701 = 14.096 minutes? ,

2
X26,.95

and taking square roots, a 95% upper confidence limit for o is 3.7544 minutes. U

6.5.3 Multiple Comparisons for the Main-Effects Model

When the sample sizes are equal, the Bonferroni, Scheffé, Tukey, and Dunnett methods described in
Sect. 4.4 can all be used for obtaining simultaneous confidence intervals for sets of contrasts comparing
the levels of A or of B. A set of 100(1 — &) % simultaneous confidence intervals for contrasts comparing
the levels of factor A is of the form (4.4.20), which for the two-way model becomes

> i € (Zciii_'iw/msEZC?/br), (6.5.39)
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where the critical coefficients for the various methods are, respectively,

WB = Ip—q—b+1,a/2m s WS = \/(a - I)Fa—l,n—a—b+l,u )
. 0.5)
wr = qg,nfaberl,a/\/E , wp2 = |t|a—1,n—a—b+l,a .

Similarly, a set of 100(1 — «)% confidence intervals for contrasts comparing the levels of factor B is

of the form
D kg e (Z kiy ;. & w /msE Zkf/ar) , (6.5.40)

and the critical coefficients are as above after interchanging a and b.

We can also obtain confidence intervals for the treatment means (. + o; + 3; using the least squares
estimators Y; + Y g Y ., each of which has a normal distribution and variance o (a+b—1)/(abr).
We obtain a set of 100(1 — «)% simultaneous confidence intervals for the ab treatment means as

p+ i+ B e {(y,,_ +y, -y + w\/msE (M)] , (6.5.41)

abr

with critical coefficient

WBM = la/Qab),(1—a—b+1) OF Wy = /(@ +b — DFasp—1 n—a—bt1,a

for the Bonferroni and Scheffé methods, respectively.

When confidence intervals are calculated for treatment means and for contrasts in the main effects
of factors A and B, an experimentwise confidence level should be calculated. For example, if intervals
for contrasts for factor A have overall confidence level 100(1 — «1)%, and intervals for B have overall
confidence level 100(1 — a)%, and intervals for means have overall confidence level 100(1 — a3)%,
the experimentwise confidence level for all the intervals combined is at least 100(1 — (a1 + a2 +a3)) %.
Alternatively, wgys could be used in (6.5.39) and (6.5.41), and the overall level for all three sets of
intervals together would be 100(1 — «)%.

Example 6.5.3 Nail varnish experiment, continued

The least squares estimates for the differences in the effects of the two nail varnish solvents and for
the pairwise differences in the effects of the three nail varnishes were calculated in Example 6.5.1,
p. 162. From Table 6.8, msE = 8.3375 with error degrees of freedomn —a — b + 1 = 26. There is
only m = 1 contrast for factor A, and a simple 99% confidence interval of the form (6.5.39) can be
used to give

ar—ay € (yzu ~5, + tn_a_;,_,_l,a/z\/msE(Z/br))
- (3.6040 4 t26,04005~/(8.3375/15)) .

From Table A.4, 126.0.005 = 2.779, so a 99% confidence interval for an — o is

1.5321 < ap — a1 <5.6759.
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The confidence interval indicates that solvent 2 takes between 1.5 and 5.7 minutes longer, on average,
in dissolving the three nail varnishes than does solvent 1.

To compare the nail varnishes in terms of their speed of dissolving, confidence intervals are required
for the three pairwise comparisons 51 — (32, 31 — (33, and 3, — [33. If an overall confidence level of
99% is required, Tukey’s method gives confidence intervals of the form

5 =By € (7.~ . % @r.ac001/¥'D) VmsEQ/ @) -

From Table A.8, g3 26,001 = 4.54. Using the least squares estimates computed in Example 6.5.1, p.
162, and msE = 8.3375 withn —a — b 4+ 1 = 26 as above, the minimum significant difference
is msd = (4.54//2) /83375(2/10) = 4.145. A set of 99% confidence intervals for the pairwise
comparisons for factor B is

B — B € (1.890 + 4.145) = (—2.255, 6.035) ,
Bl — B3 € (=3.541,4.749), o — B3 € (=5.431,2.859).

Each of these intervals includes zero, indicating insufficient evidence to conclude a difference in the
speed at which the nail varnishes dissolve. The overall confidence level for the four intervals for factors A
and B together is at least 98 %. Bonferroni’s method could have been used instead for all four intervals. To
have obtained an overall level of at least 98%, we could have set o = a/m = 0.02/4 = 0.005 for each
of the four intervals. The critical coefficient in (6.5.39) would then have been wp = f9.0025,26 = 3.067.
So the Bonferroni method would have given a longer interval for oy — a» but shorter intervals for

Bi — Bp. U

6.5.4 Unequal Variances

When the variances of the error variables are unequal and no equalizing transformation can be found,
Satterthwaite’s approximation can be used. Since the approximation uses the sample variances of the
observations for each treatment combination individually, and since the least squares estimates of the
main-effect contrasts are the same whether or not interaction terms are included in the model, the
procedure is exactly the same as that illustrated for the bleach experiment in Example 6.4.4, p. 154.

6.5.5 Analysis of Variance for Equal Sample Sizes

Testing Main Effects of B—Equal Sample Sizes

The hypothesis that the levels of B all have the same effect on the response is Hg B =0="--
= [y}, which can be written in terms of estimable contrasts as Hg {8 — ﬁ =0, forallj=1,...,b}.
To obtain a test of Hg against the alternative hypothesis Hf : { at least two of the 3;’s differ}, the sum
of squares for error for the two-way main-effects model is compared with the sum of squares for error
for the reduced model

Yig = p+ o + € . (6.5.42)

This is identical to the one-way analysis of variance model (3.3.1) with y replaced by % = p+ (3 and
with br observations on the ith level of treatment factor A. Thus ssEg is the same as the sum of squares
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for error in a one-way analysis of variance, and can be obtained from (3.4.4), p. 39, by replacing the
subscript ¢ by the pair of subscripts jt, yielding

ssEE = Z Z Z()/g/t — 5% (6.5.43)
it

The sum of squares for testing Hg is ssEg — ssE, where ssE was derived in (6.5.37), p. 165. So,

a b r a b r
SSB=> > > 0 =502 = > > > (i = 5i) — Gy —5.))

i=1 j=1 t=1 i=1 j=1 t=1
= = 2
=ar E 0. —y.)
J

=ar )y —abry’ . (6.5.44)
j

Notice that the formula for ssB is identical to the formula (6.4.25) for testing the equivalent main-effect
hypothesis in the two-way complete model. It can be shown that when Hg is true, the corresponding
random variable SSB/o? has a chi-squared distribution with (b — 1) degrees of freedom, and SSB and
SSE are independent. Therefore, when Hg is true,

SSB/(b — 1)0? _ MSB
SSE/(n—a—b+ 1)o2  MSE

~ Fb—l,n—a—b+l ,
and the decision rule for testing Hg against Hf is

. g .. msB
reject Hy if —— > Fp_1 p—q—p+1,0 - (6.5.45)
msE

Testing Main Effects of A—Equal Sample Sizes

A similar rule is obtained for testing Hg s {a) = ap = --- = a4} against the alternative hypothesis
Hg‘ : {at least two of the «;’s differ}. The decision rule is

A
reject Hé if msA > Fa 1 n—a—b+l,a > (6.5.46)
msE
where msA = ssA/(a — 1), and

sSA = bry (3, —3.)* = br Y 3 —abry* . (6.5.47)
i i

similar to the formula (6.4.22) for testing the equivalent hypothesis in the two-way complete model.
Analysis of Variance Table

The information for testing H{)‘ and H(lf is summarized in the analysis of variance table shown in
Table 6.7. When sample sizes are equal, ssE = sstot — ssA — ssB. When the sample sizes are not equal,
the formulae for the sums of squares are complicated, and the analysis should be done by computer
(Sects. 6.8 and 6.9).
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Table 6.7 Two-Way ANOVA, negligible interaction, equal sample sizes

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio

Factor A a—1 SSA flsf‘? —%ﬁA
ssB ms

Factor B b—1 ssB 1 ‘msE

Error n—a—>b+1 ssE njiEH

Total n—1 sstot

Computational Formulae for Equal Sample Sizes

SSA=bry; y,z — nﬁ%' ssB = ar Zj yz/ - ny2

sstot=Y; Zj > yizjt -y sSE = sstot — sSA — ssB

n = abr

Table 6.8 Analysis of variance for the nail varnish experiment

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio p-value
Solvent 1 97.4161 97.4161 11.68 0.0021

Varnish 2 18.6357 9.3178 1.12 0.3423

Error 26 216.7761 8.3375

Total 29 332.8279

Example 6.5.4 Nail varnish experiment, continued

The analysis of variance table for the nail varnish experiment of Example 6.5.1, p. 162, is given in
Table 6.8. The experimenter selected the Type I error probability as 0.05 for testing each of Hé and H(lf ,
giving an overall error rate of at most 0.1. The ratio msA/msE = 11.68 is larger than F 26.0.05 ~ 4.0,
and therefore, the null hypothesis can be rejected. It can be concluded at individual significance level
0.05 that there is a difference in dissolving times for the two solvents.

The ratio msB/msE = 1.12 is smaller than F3 26 0.05 &~ 3.15. Therefore, the null hypothesis Hg
cannot be rejected at individual significance level 0.05, and it is not possible to conclude that there is
a difference in dissolving time among the three varnishes. g

6.5.6 Model Building

In some experiments, the primary objective is to find a model that gives an adequate representation
of the experimental data. Such experiments are called experiments for model building. If there are
two crossed, fixed treatment factors, it is legitimate to use the two-way complete model (6.2.2) as a
preliminary model. Then, if H§B fails to be rejected, the two-way main effects model (6.2.3) can be
accepted as a reasonable model to represent the same type of experimental data in fufure experiments.

Note that it is not legitimate to adopt the two-way main effects model and to use the corresponding
analysis of variance table, Table 6.7, to test further hypotheses or calculate confidence intervals using
the same set of data. If this is done, the model is changed based on the data, and the quoted significance
levels and confidence levels associated with further inferences will not be correct. Model building
should be regarded as a completely different exercise from confidence interval calculation. They should
be done using different experimental data.
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6.6  Calculating Sample Sizes

In Chaps. 3 and 4, we showed two methods of calculating sample sizes. The method of Sect. 3.6 aims to
achieve a specified power of a hypothesis test, and the method of Sect.4.5 aims to achieve a specified
length of a confidence interval. Both of these techniques rely on knowledge of the largest likely value
of o or msE and can also be used for the two-way complete model.

Alternatively, sample sizes can be calculated to ensure that confidence intervals for main-effect
contrasts are no longer than a stated size, using the formulae (6.4.18) and (6.4.19) or, for the two-way
main-effects model, the formulae (6.5.39) and (6.5.40).

Similarly, the method of Sect.3.6 for choosing the sample size to achieve the required power of
a hypothesis test can be used for each factor separately, with the modification that the sample size
calculation is based on

r=2a0’¢*/(bA3) (6.6.48)

for factor A and
r=2bo*¢?/(ar})

for factor B, where Ay is the smallest difference in the «;’s (or ozl’.‘ ’s) and Ap is the smallest difference
in the 3;’s (or 6}* ’s) that are of interest. The calculation procedure is identical to that in Sect. 3.6, except
that the error degrees of freedom are v, = n — v for the complete model and v, = n—a — b+ 1 for the
main-effects model (with n = abr), and the numerator degrees of freedom are vy = a — 1 for factor A
and v; = b — 1 for factor B.

If several different calculations are done and the calculated values of r differ, then the largest value
should be selected.

6.7 Small Experiments

6.7.1 One Observation Per Cell

When observations are extremely time-consuming or expensive to collect, an experiment may be
designed to have r = 1 observation on each treatment combination. Such experiments are called
experiments with one observation per cell or single replicate experiments. Since the ability to choose
the sample sizes is lost, it should be recognized that confidence intervals may be wide and hypothesis
tests not very powerful.

If it is known in advance that the interaction between the two treatment factors is negligible, then
the experiment can be analyzed using the two-way main-effects model (6.2.3). If this information is
not available, then the two-way complete model (6.2.2) needs to be used. However, there is a problem.
Under the two-way complete model, the number of degrees of freedom for error is ab(r — 1). If r = 1,
then this number is zero, and o2 cannot be estimated.

Thus, a single replicate experiment with a possible interaction between the two factors can be
analyzed only if one of the following is true:

(i) o2 is known in advance.
(i1) The interaction is expected to be of a certain form that can be modeled with fewer than (a—1)(b—1)
degrees of freedom.
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(iii) The number of treatment combinations is large, and only a few contrasts are likely to be nonneg-
ligible (effect sparsity).

If 2 is known in advance, formulae for confidence intervals would be based on the normal distribution,
and hypothesis tests would be based on the chi-squared distribution. However, this situation is unlikely
to occur, and we will not pursue it. The third case tends to occur when the experiment involves a large
number of treatment factors and will be discussed in detail in Chap.7. Here, we look at the second
situation and consider two methods of analysis, the first based on orthogonal contrasts, and the second
known as Tukey’s test for additivity.

6.7.2 Analysis Based on Orthogonal Contrasts

Two estimable contrasts are called orthogonal contrasts if and only if their least squares estimators
are uncorrelated or, equivalently, have zero covariance. For the moment, we recode the treatment
combinations to obtain a single-digit code, as we did in Chap. 3. Two contrasts X¢;7; and Xk, are
orthogonal if and only if

0 = Cov (ZU: Ci?i.’ ZU: k;?;) = ZU: Zv: CiksCOV(Yi.v ??)
i=1 s=1

i=1 s=1

= > cikiCov(Yi,Yi) + D> cikCov(Y;, ¥y)
i i s
= > cikVar(Y;) + 0

i
0'2 Zciki/ri.
i

In the above calculation Cov(Y; , Y ) is zero when s # i, because all the Y;;’s are independent of each
other in the cell-means model. Thus, two contrasts X¢;7; and Xk;7; are orthogonal if and only if

> cikifri=0. (6.7.49)

i

If the sample sizes are equal, then this reduces to
Z Ciki =0.
i

Changing back to two subscripts, we have that two contrasts X Xd;;7;; and X X h;;7; are orthogonal if
and only if

a

b
DD dihy/r =0, (6.7.50)

i=1 j=1

or, for equal sample sizes, the contrasts are orthogonal if and only if
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Table 6.9 Three orthogonal contrasts for the battery experiment

Contrast Coefficients > civi > ssc

Duty 0L 1, =1, -1] 251.00 1 252,004.00
Brand L, =1, 1,-11  -17650 124,609.00
Interaction  [1, —1, =1, 1] —113.25 : 51,302.25

a b
D> dijhy=0. (6.7.51)

i=1 j=1

For equal sample sizes, the trend contrasts provide an illustration of orthogonal contrasts. For
example, it can be verified that any pair of trend contrasts in Table 6.1, p. 148, satisfy (6.7.51). For the
models considered in this book, the contrast estimators are normally distributed, so orthogonality of
contrasts implies that their least squares estimators are independent.

For v treatments, or treatment combinations, a set of v — 1 orthogonal contrasts is called a complete
set of orthogonal contrasts. It is not possible to find more than v — 1 contrasts that are mutually
orthogonal. We write the sum of squares for the gth orthogonal contrast in a complete set as sscy,
where

sscq = (2Tcyy; ) /(EEcg/ry)

is the square of the normalized contrast estimator (see Sect. 4.3.3, p. 77). The sum of squares for
treatments, ssT, can be partitioned into the sums of squares for the v — 1 orthogonal contrasts in a
complete set; that is,

sST = sscy + sscy + - -+ + Sscy—_1 - (6.7.52)

Example 6.7.1 Battery experiment, continued

Main effect and interaction contrasts for the battery experiment were examined in Example 6.3.1, p.
146 and, following that example, were written as columns in a table. Since the sample sizes are all
equal, we need only check that (6.7.51) holds by multiplying corresponding coefficients for any two
contrasts and adding their products. The duty, brand, and interaction contrasts form a complete set of
v — 1 = 3 orthogonal contrasts.

The sums of squares for the three contrasts are shown in Table 6.9. It can be verified that they add
to the treatment sum of squares ssT = 427,915.25 that was calculated in Example 3.5.1, p. 44. 0

We can use the same idea to split the interaction sum of squares ssAB into independent pieces. For
the two-way complete model (6.2.2) with r = 1 observation per cell, the sum of squares for testing
the null hypothesis that a particular interaction contrast, say >_; >; djj(a3);; (with 3, d;j = 0 and
> i dij = 0), is negligible, against the alternative hypothesis that the contrast is not negligible, is

. diivii 2
ssc = Qi 2y i) . (6.7.53)

2
Zi Zj dij

The interaction has (a — 1) (b— 1) degrees of freedom. Consequently, there are (a— 1) (b— 1) orthogonal
interaction contrasts in a complete set, and their corresponding sums of squares add to ssAB, that is,
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Table 6.10 Two-way ANOVA, one observation per cell, e negligible interaction contrasts, and m = (a— 1)(b—1) — e
interaction degrees of freedom

Source of variation Degrees of freedom Sum of squares Mean square
Factor A a—1 SSA msA

Factor B b—1 ssB msB
Interaction m ssAB,, msAB

Error e ssE msE

Total ab—1 sstot

(a=1)(b-1)

SSAB = Z sscy, ,
h=1

where sscy, is the sum of squares for the Ath such contrast.

Suppose it is known in advance that e specific orthogonal interaction contrasts are likely to be
negligible. Then the sums of squares for these e negligible contrasts can be pooled together to obtain
an estimate of error variance, based on e degrees of freedom,

e
ssE = Z ssc, and msE = ssE/e.
h=1

The sums of squares for the remaining interaction contrasts can be used to test the contrasts individually
or added together to obtain an interaction sum of squares

(a=D(b-1)

ssAB,,, = Z sscp, .
h=e+1

Then the decision rule for testing the hypothesis Hg‘B: {the interaction AB is negligible} against the
alternative hypothesis that the interaction is not negligible is

SSAB,,/m

reject Hy B if £/
ssE/e

m,e,q »
where m = (a — 1)(b — 1) — e. Likewise, the main effect test statistics have denominator ssE/e and
error degrees of freedom df = e. The tests are summarized in Table 6.10, which shows a modified
form of the analysis of variance table for the two-way complete model. A worked example is given in
Sect.6.7.4.

To save calculating the sums of squares for all of the contrasts, the error sum of squares is usually
obtained by subtraction, that is,

SsSE = sstot — sSA — ssB — ssAB,, .

The above technique is most often used when the factors are quantitative, since higher-order inter-
action trends are often likely to be negligible. The information about the interaction effects must be
known prior to running the experiment. If this information is not available, then one of the techniques
discussed in Sect. 7.5 must be used instead.
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6.7.3 Tukey's Test for Additivity

Tukey’s test for additivity uses only one degree of freedom to measure the interaction. It tests the null
hypothesis Hg {(aB)j = yo;f; for all i,j} against the alternative hypothesis that the interaction
is not of this form. The test is appropriate only if the size of the interaction effect is expected to
increase proportionally to each of the main effects, and it is not designed to measure any other form
of interaction. The test requires that the normality assumption be well satisfied. The decision rule is

. ~ .. SSAB*
reject Hyy if > Fleas (6.7.54)
e
where 5
ab [Zl 2 Viyiy; — (ssA+ssB+ aby%)j_]
sSAB* =
(ssA)(ssB)
and

ssE = sstot — sSA — ssB — ssAB* .

The analysis of variance table is as in Table 6.10 withm = 1 and withe = (¢ — 1)(b — 1) — 1.

Table 6.11 Data for the air velocity experiment, with factors Rib Height (A) and Reynolds Number (B)

Reynolds Number, j

i 1 2 3 4 5 6 3
Rib 1 —24 -23 1 8 29 23 2333
Height 2 33 28 45 57 74 80 52.833

3 37 79 79 95 101 111 83.667

y, 15333 2800  41.667  53.333  68.000 71333 46278 =7

Source Willke (1962). Copyright ©)1962 Blackwell Publishers. Reprinted with permission

Fig.6.7 Data for the air 150
velocity experiment

—e— Rib height 0.010 in
-©- Rib height 0.015in

@ Rib height 0.020 in =
100 - : o

_50 4

T T T T T

1 2 3 4 5 6
Reynolds number
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6.7.4 A Real Experiment—Air Velocity Experiment

The data given in Table 6.11, and plotted in Fig. 6.7, form part of an experiment described by D. Wilkie
in the 1962 issue of Applied Statistics (volume 11, pages 184-195). The experiment was designed
to examine the position of maximum velocity of air blown down the space between a roughened rod
and a smooth pipe surrounding it. The treatment factors were the height of ribs on the roughened
rod (factor A) at equally spaced heights 0.010, 0.015, and 0.020 inches (coded 1, 2, 3) and Reynolds
number (factor B) at six levels (coded 1-6) equally spaced logarithmically over the range 4.8-5.3. The
responses were measured as y = (d — 1.4) x 103, where d is the distance in inches from the center of
the rod.

Figure 6.7 shows very little interaction between the factors. However, prior to the experiment, the
investigators had thought that the factors would interact to some extent. They wanted to use the set
of orthogonal polynomial trend contrasts for the AB interaction and were reasonably sure that the
contrasts AQBgr, ALBqn, AQBqn Would be negligible. Thus the sum of squares for these three contrasts
could be used to estimate o2 with 3 degrees of freedom. We are using “L, Q, C, qr, qn” as shorthand
notation for linear, quadratic, cubic, quartic, and quintic contrasts, respectively. The coefficients for
these three orthogonal polynomial trend contrasts can be obtained by multiplying the corresponding
main-effect coefficients shown in Table 6.1, p. 148. The coefficients for Ay Bq, are shown in the table
as an example. Also shown are the contrast coefficients for the linearA x linearB contrast, Ap Br. These
are

[5,3,1,-1,-3,-5,0,0,0,0, 0, 0,-5,-3,-1, 1, 3, 5].

The estimate of Ap By, is then

Table 6.12 Analysis of variance for the air velocity experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Rib height (A) 2 20232.111
AL 1 19845.333 19845.333 338.77 0.0003
Aq 1 386.778 386.778 6.60 0.0825
Reynolds number (B) 5 7386.944
Br 1 7262.976 7262.976 123.98 0.0016
Bq 1 65.016 65.016 1.11 0.3695
Bc 1 36.296 36.296 0.62 0.4887
By 1 13.762 13.762 0.23 0.6611
Bgn 1 8.894 8.894 0.15 0.7228
Interaction (AB) 7 616.817
ALBL 1 20.829 20.829 0.36 0.5930
ArLBqg 1 47.149 47.149 0.80 0.4358
ALBc 1 265.225 265.225 4.53 0.1233
ALBg 1 33.018 33.018 0.56 0.5073
AqQBL 1 15.238 15.238 0.26 0.6452
AqQBq 1 170.335 170.335 291 0.1867
AqQBc 1 65.023 65.023 1.11 0.3694
Error 3 175.739 58.580
Total 17 28411.611
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T Edijy; = 5(=24) +3(=23) 4+ - + 3(101) + 5(111) = 54.

Now,
TRd; = (54374 +37+5%) =140,

so the corresponding sum of squares is

ALB 54 20.829
SS(ALBL) = m = £U. .
The sums of squares for the other contrasts are computed similarly, and the error sum of squares is
calculated as the sum of the sums of squares of the three negligible contrasts. The analysis of variance
table is given in Table 6.12.

The hypotheses that the individual contrasts are zero can be tested using Scheffé’s procedure or
Bonferroni’s procedure. If Bonferroni’s procedure is used, each of the 14 hypotheses should be tested
at a very small a-level. Taking o = 0.005, so that the overall level is at most 0.07, we have F 3,0.005 =
55.6, and only the linear A and linear B contrasts appear to be significantly different from zero. The
plot of the data shown in Fig. 6.7 supports this conclusion.

6.8  Using SAS Software

Table 6.13 contains a sample SAS program for analysis of the two-way complete model (6.2.2). For
illustration, we use the data of the reaction time experiment shown in Table4.4, p. 101, but with
the last four observati ons missing, so that rj; = ) = 2,710 = rp = r3 = 3,r3 = 1. In
the data input lines, the levels of each of the two treatment factors A and B are shown together
with the response, the order in which the observations were collected, and the treatment factor level
TRTMT. A two-digit code for each treatment combination TC is easily generated by the statement
TC = 10*A + B following the INPUT statement. This way of coding the treatment combinations
works well for all applications except for drawing plots with TC on one axis. Such a plot would not show
numeric codes 11, 12, ..., 23 as equally spaced. In the statement TC = PUT(10* A + B, 2.),
the function PUT converts the created variable from numeric to character.

6.8.1 Analysis of Variance

The GLM procedure in Table6.13 is used to generate the analysis of variance table, to estimate and
to test contrasts, and for multiple comparisons. As in the one-way analysis of variance, the treatment
factors must be declared as class variables using a CLASS statement. The two-way complete model is
represented as

MODEL Y = A B A*B;

with the main effects listed in either order, but before the interaction. The two-way main-effects
model (6.2.3) would be represented as

MODEL Y = A B;
The program also shows the cell-means model (6.2.1) in a second GLM procedure, using

MODEL Y = TC;
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Table 6.13 SAS program to illustrate aspects of analysis of a two-way complete model (reaction time experiment)

DATA RTIME;
INPUT ORDER TRTMT A B Y;
TC = PUT(10*A + B, 2.); * create TC as a character variable for plots;
LINES;
16 2 3 0.256
2 6 2 3 0.281
14 4 2 1 0.279
PROC GLM;
CLASS A B;
MODEL Y = A B A*B;
LSMEANS A / PDIFF CL ALPHA=0.01;
LSMEANS B / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.01;
CONTRAST ’11-13-21+23’ A*B 1 0 -1 -1 0 1;
CONTRAST 'B1-B2’ B 1 -1 0;

ESTIMATE ‘B1-B2’ B 1 -1 0;
ESTIMATE ‘B1-B3’ B 1 0 -1;
ESTIMATE ‘B2-B3’ B 0 1 -1;
PROC GLM;
CLASS TC;
MODEL Y = TC;
LSMEANS TC / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.01;

/
LSMEANS TC / PDIFF = CONTROL CL ADJUST = DUNNETT ALPHA = 0.01;
LSMEANS TC / PDIFF = CONTROLL CL ADJUST = DUNNETT ALPHA = 0.01;
LSMEANS TC / PDIFF = CONTROLU CL ADJUST = DUNNETT ALPHA = 0.01;
CONTRAST ’11-13-21+23* TC 1 0 -1 -1 0 1;
CONTRAST 'Bl1-B2’ ™™ 1 -1 0 1 -1 0;

The output from the first GLM procedure is shown in Fig.6.8. The analysis of variance table is
organized differently from that in Table 6.4, p. 159. The five “model” degrees of freedom are the
treatment degrees of freedom corresponding to the six treatment combinations. Information concerning
main effects and interactions is provided underneath the table under the heading “Type I and “Type
III” sums of squares.

The Type 111 sums of squares are the values ssA, ssB, and ssAB and are used for hypothesis testing
whether or not the sample sizes are equal. They are calculated by comparing the sum of squares for
error in the full and reduced models as in Sect.6.4.4. The sums of squares listed in the output are
always in the same order as the effects in the MODEL statement, but the hypothesis of no interaction
should be tested first.

The Type I sum of squares for an effect is the additional variation in the data that is explained by
adding that effect to a model containing the previously listed sources of variation. For example, in the
program output, the Type I sum of squares for A is the reduction in the error sum of squares that is
achieved by adding the effect of factor A to a model containing only an intercept term. The reduction in
the error sum of squares is equivalent to the extra variation in the data that is explained by adding A to
the model. Here, the “full model” contains A and the intercept, while the “reduced model” contains only
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Fig.6.8 Some output for [®) Results Viewer - SAS Output = =R
the SAS program for a
two-way complete model The GLM Procedure .
Wl.t h unequal sample sizes, Dependent Variable: Y
using data from the
reaction time experiment
Table4.4, p. 101, omitting Source DF  Sum of Squares Mean Square F Value Pr>F
the last 4 observations Model 5 0.02153160  0.00430632  13.38 0.0010

Error 8 0.00257533 0.00032192

Corrected Total 13 0.02410693

Source DF TypelSS Mean Square F Value Pr>F

A 1 0.02101572 0.02101572  65.28 <.0001

B 2 0.00033302 0.00016651 0.52 06148

A'B 2 0.00018286 0.00009143 0.28 0.7600

Source DF Type lll SS Mean Square F Value Pr>F

A 1 0.01682504 0.01682504 52.27 <.0001

B 2 0.00045773 0.00022887 0.71 05198

A’B 2 0.00018286 0.00009143 0.28 0.7600

4 m L]
[®) Results Viewer - SAS Output [E=8[EoH ==

The GLM Procedure

Dependent Variable: Y

Contrast

1113.21+23 1 0.00013886
B1-B2 1 0.00017340
Parameter

B1-B2 0.00850000
B1-B3 -0.00600000
B2.B3 -0.01450000

0.00013886
0.00017340

Estimate Standard Error tValue Pr> |t

0.01158153 0.73 0.4839
0.01370346 -0.44 06731
0.01268694 -1.14  0.2861

i

DF Contrast SS Mean Square F Value Pr>F
0.43 0.5298
0.54 0.4839

i

1

the intercept. The Type I sum of squares for B is the additional variation in the data that is explained by
adding the effect of factor B to a model that already contains the intercept and the effect of A (so that
the “full model” contains A, B and the intercept, while the “reduced model” contains only the A and
the intercept). The Type I sums of squares (also known as sequential sums of squares) depend upon
the order in which the effects are listed in the MODEL statement. Type I sums of squares are used for
model building, not for hypothesis testing under an assumed model. Consequently, we will use only
the Type III sums of squares.

The Type I and Type III sums of squares are identical when the sample sizes are equal, since
the factorial effects are then estimated independently of one another. But when the sample sizes are
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unequal, as in the illustrated data set, the Type I and Type III sums of squares differ. In the absence of
a sophisticated computer package, each Type I and Type III sum of squares can be calculated as the
difference of the error sums of squares obtained from two analysis of variance tables, one for the full
model and one for the reduced model.

6.8.2 Contrasts and Multiple Comparisons

In the first GLM procedure in Table 6.13, the two-way complete model is used, and the coefficient lists
are entered for each factor separately, rather than for the treatment combinations. The first CONTRAST
statement is used to test the hypothesis that the interaction contrast (a/3) 11 — (@) 13— (aB)21 + ()23 is
negligible, and the second CONTRAST statement is used to test the hypothesis that 3] — 3} is negligible.
These same contrasts are entered as coefficient lists for the treatment combinations in the second GL.M
procedure. In either case, the contrast sum of squares is as shown under Contrast SS in Fig.6.8,
and the p-value for the test is as shown under Pr > F.
The statement

LSMEANS A / PDIFF CL ALPHA = 0.01;

of the first GLM procedure causes generation of a 99% confidence interval for the main effect of A
pairwise comparison, o — o, comparing the effects of A averaged over the levels of B, as well as an
individual 99% confidence interval for each of the A means p + «; + B + (af);.

The statement

LSMEANS B / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.01;

of the first GLM procedure causes generation of Tukey’s simultaneous 99% confidence intervals, com-
paring pairwise the main effects of the three levels of B, each averaged over the levels of A. The option
PDIFF = ALL requests p-values for all pairwise comparisons, the option CL asks for the compar-
isons to be displayed as confidence intervals, and the option ADJUST = TUKEY when coupled with
PDIFF = ALL requests Tukey’s method for the pairwise comparisons. The output for the reaction
time experiment, shown in Fig. 6.9, includes not only the confidence intervals for pairwise compar-
isons, but also p-values for simultaneous hypothesis tests using the Tukey method. Also given are
individual 99% confidence intervals for the B means p + o, + 3; + (a_ﬁ) j- Because sample sizes are
unequal, these least squares means are not simply the corresponding treatment sample means. If CL is
omitted, then only the simultaneous tests and intervals for means are printed. The request TUKEY can
be replaced by BON or SCHEFFE as appropriate.

In the second GLM procedure in Table 6.13, the cell-means model is used, with a treatment effect
7;j associated with each treatment combination #j. The corresponding LSMEANS statements illustrate
multiple comparisons of the effects 7;; of the six treatment combinations, the first LSMEANS statement
generating Tukey’s method for all pairwise comparisons, and the remaining LSMEANS statement
generating Dunnett’s method for comparing all treatments with a control. To generate Dunnett’s method,
the option PDIFF = ALL is replaced by the option PDIFF = CONTROL for two-sided confidence
intervals, and by the option PDIFF = CONTROLL or PDIFF = CONTROLU for upper or lower
confidence bounds on the treatment-versus-control differences, as follows:

LSMEANS TC / PDIFF
LSMEANS TC / PDIFF
LSMEANS TC / PDIFF

CONTROL CL ADJUST = DUNNETT ALPHA = 0.01;
CONTROLL CL ADJUST = DUNNETT ALPHA 0.01;
CONTROLU CL ADJUST = DUNNETT ALPHA 0.01;
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o for s oy 5 Rl Viewer 545 Outpt oo &
complete model with The GLM Procedure a
unequal sample sizes Least Squares Means

(reaction time experiment) Adjustment for Multiple Comparisons: Tukey-Kramer

B | Y LSMEAN | LSMEAN Number

1 0.22750000 1
2 0.21900000 2
3 0.23350000 3

Least Squares Means for effect B
Pr > |t] for HO: LSMean(i)=L SMean(j)
Dependent Variable: Y

ilj 1 2 3
1 07512 0.9010
2 0.7512 0.5166
3 09010 05166

B | Y LSMEAN | 99% Confidence Limits
1 0.227500  0.197399  0.257601
2 0.219000 0.194422  0.243578
3 0233500 0.198742  0.268258

m

Least Squares Means for Effect B

Difference Between | Simultaneous 99% Confidence Limits

i Means for LSMean(i)-L SMean(j)

1|2 0.008500 -0.037650 0.054650
113 -0.006000 -0.060605 0.048605
23 -0.014500 -0.065055 0.036055

Figure 6.10 contains the output for the third set of simultaneous confidence intervals—namely, cor-
responding to the CONTROLU option. This set gives lower bounds for the treatment-minus-control
comparisons, corresponding to upper-tailed inferences. The treatments are renumbered by SAS in
numerical order. In our program, in Table 6.13, we have requested the treatment-versus-control con-
trasts be done for the treatment combinations 11, 12, 13, 21, 22, 23. SAS recodes these as 1-6, and
treatment 1 (our treatment combination 11), as the lowest treatment combination, is taken as the
control by default. One could specify treatment combination 23 as the control, for example, via the
option PDIFF = CONTROL ('23 ‘). We have shown only the simultaneous confidence intervals,
but simultaneous tests are also given by SAS software.

We remind the reader that for unequal sample sizes, it has not yet been proved that the overall
confidence levels achieved by the Tukey and Dunnett methods are at least as great as those stated,
except in some special cases such as the one-way layout.

An alternative method of obtaining simultaneous confidence intervals for pairwise comparisons
can be obtained from the output of the ESTIMATE statement for each contrast. The corresponding
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Fig.6.10 Dunnett’s lower m[:
bound output for a Do oo/
two-way complete model The GLM Procedure i
with unequal sample sizes Least Squares Means
(reaction time experiment) Adjustment for Multiple Comparisons: Dunnett
Least Squares Means for Effect TC
Difference Between Simultaneous 99% Confidence Limits

i) ] Means for LSMean(i)-L SMean(j)

2 -0.008333 -0.070053 Infinity 3

3|1 0.015000 -0.067805 Infinity

41 0.081000 0.013390 Infinity

5|1 0.072333 0.010614 Infinity

61 0.078000 0.016280 Infinity

4 m L3

confidence intervals are of the form
Estimate £ w (Std Error of Estimate) ,

where w is the critical coefficient given in (6.4.18) for the complete model and in (6.5.39) for the
main-effects model.

6.8.3 Plots

Residual plots for checking the error assumptions on the model are generated in the same way as shown
in Chap. 5. If the two-way main-effects model (6.2.3) is used, the assumption of additivity should also
be checked. For this purpose it is useful to plot the standardized residuals against the level of one
factor, using the levels of the other factor for plotting labels (see, for example, Fig. 6.3, p. 144, for the
temperature experiment). A plot of the standardized residuals z against the levels of factor A using the
labels of factor B can be generated using the following SAS program lines:

PROC SGPLOT;
SCATTER X = A Y = Z / GROUP = B;

An interaction plot can be obtained by adding the following statements to the end of the program
in Table 6.13:

PROC SORT DATA = RTIME; BY A B;
PROC MEANS DATA = RTIME NOPRINT MEAN VAR; BY A B;
VAR Y;
OUTPUT OUT = RTIME2 MEAN = AV_Y VAR = VAR_Y;
PROC PRINT;
VAR A B AV_Y VAR_Y;
PROC SGPLOT;
SERIES X = A Y = AV_Y / GROUP = B;

The PROC PRINT statement following PROC MEANS also gives the information about the vari-

ances that would be needed to check the rule of thumb that 52, /s2. < 3.
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In order to check for equal error variances, the residuals or the observations may be plotted against
the treatment combinations using the following SAS code:

PROC SGPLOT;
SCATTER X = TC Y = Z; *or Y = Y for observations;

If the treatment combination codes were created as TC = 10*A + B, they will not be equally spaced
along the axis, since the codes 11, 12, 13, 21, 22, 23 when regarded as 2-digit numbers are not equally
spaced. A simple solution to this problem, as shown in Table 6.13, is to convert the variable TC from
numeric to character via the statement

TC = PUT(10*A + B, 2.);

A plot of the residuals or the observations against the character variable TC will show the character
variable codes evenly spaced along the axis.

When there are not sufficient observations to be able to check equality of error variances for all the
cells, the standardized residuals should be plotted against the levels of each factor. The rule of thumb
may be checked for the levels of each factor by comparing the maximum and minimum variances
of the (nonstandardized) residuals. This is done for factor A by the following lines after creation of
RTIME data set as in Table 6.13.

PROC GLM;
CLASS TC;
MODEL Y = TC;
OUTPUT OUT = RESIDS RESIDUAL = E;
PROC SORT DATA = RESIDS; BY A;
PROC MEANS DATA = RESIDS NOPRINT VAR; BY A;
VAR E;
OUTPUT OUT = RTIME2 VAR = VAR_E;
PROC PRINT;
VAR A VAR_E;

6.8.4 One Observation Per Cell

In order to split the interaction sum of squares into parts corresponding to negligible and nonnegligible
orthogonal contrasts, we can enter the data in the usual manner and obtain the sums of squares for all of
the contrasts via CONTRAST statements in the procedure PROC GLM. The analysis of variance table
can then be constructed with the error sum of squares being the sum of the contrast sums of squares
for the negligible contrasts. It is possible, however, to achieve this in a more direct way, as follows.

First, enter the contrast coefficients as part of the input data as shown in Table 6.14 for the air velocity
experiment. In the air velocity experiment, factor A had @ = 3 levels and factor B had b = 6 levels.
The main-effect trend contrast coefficients are entered via the INPUT statement line by line directly
from Table 6.1, p. 148, and the interaction trend contrast coefficients are obtained by multiplication
following the INPUT statement. In the PROC GLM statement, the CLASS designation is omitted. If it
were included, then A1n, for example, would be interpreted as one factor with three coded levels —1,
0, 1, and Aqgd as a second factor with two coded levels 1, —2, and so on. The model is fitted using those
contrasts that have not been declared to be negligible. The error sum of squares will be based on the
three omitted contrasts A1nBgn, AgqdBqgr, and AgdBgn, and the resulting analysis of variance table
will be equivalent to that in Table 6.12, p. 176.

It is not necessary to input the levels of A and B separately as we have done in columns 2 and 3 of
the data, but these would be needed if plots of the data were required.
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Table 6.14 Fitting a model in terms of contrasts (air velocity experiment)

DATA AIR;
INPUT Y A B Aln Agd Bln Bgd Bcb Bgr Bgn;
AlnBln = Aln*Bln;
AlnBgd = Aln*Bgd;
AlnBcb = Aln*Bcb;
AlnBgr = Aln*Bqgr;
AQdBln = Agd*Bln;
AqgdBgd = Agd*Bqd;
AgdBcb = Agd*Bcb;

LINES;
-24 1 1 -1 1 -5 5 -5 1 -1
-23 1 2 -1 1 -3 -1 7 -3 5
1 1 3 -1 1 -1 -4 4 2 -10
8 1 4 -1 1 1 -4 -4 2 10
29 1 5 -1 1 3 -1 -7 -3 -5
23 1 6 -1 1 5 5 5 1 1
33 2 1 0 -2 -5 5 -5 1 -1
28 2 2 0 -2 -3 -1 7 -3 5
45 2 3 0 -2 -1 -4 4 2 -10
57 2 4 0 -2 1 -4 -4 2 10
74 2 5 0 -2 3 -1 -7 -3 -5
80 2 6 0 -2 5 5 5 1 1
37 3 1 1 1 -5 5 -5 1 -1
79 3 2 1 1 -3 -1 7 -3 5
79 3 3 1 1 -1 -4 4 2 -10
95 3 4 1 1 1 -4 -4 2 10
101 3 5 1 1 3 -1 -7 -3 -5
111 3 6 1 1 5 5 5 1 1

PROC PRINT;

PROC GLM; * omit the class statement;
MODEL Y = Aln Aqd Bln Bgd Bcb Bgr Bgn AlnBln AlnBqgd
AlnBcb AlnBgr AgdBln AgdBgd AgdBcb;

6.9  Using R Software

Table 6.15 contains a sample R program for analysis of the two-way complete model (6.2.2). For
illustration, we use the data of the reaction time experiment shown in Table 4.4, p. 101, but with the
last four observations missing, so that ri; = 1 = 2,r;2 = rp = r3 = 3,r;3 = 1. The data file
includes the levels of each of the two treatment factors A and B, as well as the response, the order in
which the observations were collected, and treatment factor levels 1-6. A more descriptive two-digit
code for each treatment combination TC = 10*A + Bis easily generated and added to the data set
react.data, along with factor variables £TC, £2, and £B, by the statement

react.data = within(react.data,
{TC = 10*A + B; fTC = factor(TC); fA = factor(aA); fB = factor(B)})
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Table 6.15 R program to illustrate aspects of analysis of a two-way complete model (reaction time experiment)

react.data = read.table("data/reaction.time.txt", header=T)
react.data = head(react.data, 14) # Keep first 14 observations
head(react.data, 3)

Order Trtmt A B v
1 1 6 2 3 0.256
2 2 6 2 3 0.281
3 3 212 0.167

# Create trtmt combo vbl TC and factors fTC, fA, and fB within data set
react.data = within(react.data,

{TC = 10*A + B; fTC = factor(TC); fA = factor(A); fB = factor(B)})
summary (react.datal[,c("fA","£fB","fTC","y") 1)

# ANOVA

options (contrasts = c("contr.sum", "contr.poly"))
modelAB = aov(y ~ fA + fB + fA:fB, data = react.data)
anova (modelAB) # Type I ANOVA

dropl (modelAB, ~., test = "F") # Type III ANOVA
modelTC = aov(y ~ fTC, data = react.data)

anova (modelTC) # Model F-test

# Contrasts: estimates, CIs, tests
library (lsmeans)
# Main-effect-of-B contrast: B1-B2

1smB = lsmeans (modelAB, ~ £B)

summary (contrast (1smB, list(Bl2=c( 1,-1, 0))), infer=c(T,T))

# AB-interaction contrast: AB11-AB13-AB21+AB23

1smAB = lsmeans (modelAB, ~ fB:fA) # Using "fB:fA" yields AB lex order
1smAB # Display to see order of AB combos for contrast coefficients
summary (contrast (1smAB, list(AB=c( 1 ,0,-1,-1, 0, 1))), infer=c(T,T))

# Multiple comparisons: B

confint (1lsmB, level=0.99) # lsmeans for B and 99% CIs

# Tukey’s method

summary (contrast (1smB, method="pairwise", adjust="tukey"),
infer=c(T,T), level=0.99)

# Dunnett’s method

summary (contrast (1smB, method="trt.vs.ctrl", adj="mvt", ref=1),
infer=c(T,T), level=0.99)

This way of coding the treatment combinations works well for all applications except for drawing plots
with TC on one axis. Such a plot would not show codes 11, 12, and 21 as equally spaced. An alternative
way of creating the treatment combinations axis for plots will be given in Sect. 6.9.3.
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Table 6.16 Analysis of variance output for the R program for a two-way complete model with unequal sample sizes

(reaction time experiment)

> # ANOVA
> options (contrasts = c("contr.sum", "contr.poly"))
> modelAB = aov(y ~ fA + fB + fA:fB, data = react.data)

> anova (modelAB)

Analysis of Variance Table

Response: y

Df Sum Sg Mean Sg F value

fA 1 0.02102 0.02102
fB 2 0.00033 0.00017
fA: fB 2 0.00018 0.00009
Residuals 8 0.00258 0.00032

> dropl (modelAB, ~., test =
Single term deletions

Model:
v ~ fA + fB + fA:fB

Df Sum of Sg RSS
<none> 0.00258
fA 1 0.01683 0.01940
fB 2 0.00046 0.00303
fA:fB 2 0.00018 0.00276

> modelTC = aov(y ~
> anova (modelTC)

Analysis of Variance Table

Response: y

"F")

# Type I ANOVA

Pr (>F)
65.28 0.000041
0.52 0.61
0.28 0.76

# Type III ANOVA

AIC F value Pr(>F)
-108.4
-82.1 52.27 0.00009
-110.1 0.71 0.52
-111.5 0.28 0.76

fTC, data = react.data)
# Model F-test

Df Sum Sg Mean Sq F value Pr (>F)

£TC 5 0.02153 0.00431 13.4 0.001
Residuals 8 0.00258 0.00032
6.9.1 Analysis of Variance

Referring to the R program in Table 6.15, the block of code under the comment “ANOVA” generates
the analysis of variance output as shown in Table6.16. As in the one-way analysis of variance, the
treatment factors must be factor variables to be modeled as qualitative variables. The statements

modelAB =

modelTC = aov(y ~ fTC, data

aov(y ~ fA + fB + fA:fB, data =

react.data)
react.data)

fit the two-way complete model (6.2.2) and the cell-means model (6.2.1), respectively, saving the
results as modelAB and modelTC. In the first model, the main effects may be listed in either order,
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but before the interaction effects £A: £B. Equivalently, the model could be specified as y ~ fA*£B,
since £A* £B indicates inclusion of all main effects and interactions involving the factors £A and £B.
The two-way main-effects model (6.2.3) would be represented asy ~ fA + £B.

Using the saved information from the fitted models, the three statements

anova (modelAB)
dropl (modelAB, ~., test ="F")
anova (modelTC)

respectively generate the “Type I ANOVA” shown at the top of Table 6.16, the “Type III
ANOVA” shown in the middle of the table, and the “Model F-test” shown at the bottom of the
table. In the first and last portion of the table, “Residuals” is synonymous with error. Totals for the
degrees of freedom and sum of squares are not provided. For technical reasons, the statement

options (contrasts = c("contr.sum", "contr.poly"))

must be executed prior to fitting the two-way complete model for all Type III sum of squares to be
correct. (This option imposes common sum-to-zero constraints on the least squares estimates of the
treatment factors effects, so each &; estimates a main effect of A contrast, each B; estimates a main

effect of B contrast, and each (E,»E) estimates an AB-interaction contrast.)

In the “Type III ANOVA” given in the middle of Table6.16, the (Type III) sums of squares are
the values ssA, ssB, and ssAB and are used for hypothesis testing whether or not the sample sizes are
equal. Each is calculated by comparing the sum of squares for error in the full and reduced models as
in Sect. 6.4.4, where each reduced model is obtained by dropping the corresponding term from the full
model—the two-way complete model in this case. The hypothesis of no interaction should be tested
first, even though its sum of squares is listed last in the output. For each effect, its listed F value
may be computed from its listed sum of squares and degrees of freedom, and from the mean square
for residuals listed in the analysis of variance table at either the top and bottom of Table 6.16. The
corresponding p-value is listed under “Pr (>F) ”. (The reader may ignore the RSS and ATC columns.)

The sums of squares listed in the “Type I ANOVA” shown at the top of Table 6.16 are Type [
sum of squares, or sequential sum of squares. For each effect, this is the additional variation in the data
that is explained by adding that effect to a model containing the previously listed sources of variation.
Type I sum of squares are discussed in more detail in Sect.6.8.1. They are used for model building,
not for hypothesis testing under an assumed model. Consequently, we will use only the Type III sums
of squares. That said, the Type I and Type III sums of squares are identical when the sample sizes are
equal, since the factorial effects are then estimated independently of one another. When the Type I and
IIT analyses are the same, it seems preferable to use the cleaner Type I analysis of variance table as
shown at the top of Table 6.16.

Finally, under “Model F-test” at the bottom of Table 6.16, an analysis of variance table is
provided for testing model significance.

6.9.2 Contrasts and Multiple Comparisons

Information on individual contrasts is generated by coupling the summary and contrast functions
of the 1smeans package, as was illustrated in Chap.4. After loading the 1smeans package, the
statements

1smB = lsmeans (modelAB, ~ £B)
summary (contrast (1smB, list(Bl2=c( 1,-1, 0))), infer=c(T,T))
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Table 6.17 Contrasts output for the R program for a two-way complete model with unequal sample sizes (reaction time
experiment)

> # Main-effect-of-B contrast: B1-B2

> 1smB = lsmeans (modelAB, ~ £fB)

> summary (contrast (1lsmB, list(Bl2=c( 1,-1, 0))), infer=c(T,T))
contrast estimate SE df lower.CL upper.CL t.ratio p.value
B12 0.0085 0.011582 8 -0.018207 0.035207 0.734 0.4839

Results are averaged over the levels of: fA
Confidence level used: 0.95

> # AB-interaction contrast: ABl11-AB13-AB21+AB23
> 1smAB = lsmeans (modelAB, ~ fB:fA) # Using "fB:fA" yields AB lex order
> 1lsmAB # Display to see order of AB combos for contrast coefficients

fB fA 1lsmean SE df lower.CL upper.CL
1 1 0.18700 0.012687 8 0.15774 0.21626
2 1 0.17867 0.010359 8 0.15478 0.20255
3 1 0.20200 0.017942 8 0.16063 0.24337
1 2 0.26800 0.012687 8 0.23874 0.29726
2 2 0.25933 0.010359 8 0.23545 0.28322
3 2 0.26500 0.010359 8 0.24111 0.28889

Confidence level used: 0.95
> summary (contrast (1smAB, list(AB=c( 1 ,0,-1,-1, 0, 1))), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value
AB -0.018 0.027407 8 -0.0812 0.0452 -0.657 0.5298

Confidence level used: 0.95

in Table 6.15 generate information for the main effect of B contrast 3] — /35, comparing the effects of B
averaged over the levels of A, using the two-way complete model previously fit and saved as mode 1 AB.
The following statements generate analogous information for the interaction contrast (a/3) 11 — (@ 3) 13—

(@B)a1 + (af)23.

1smAB = lsmeans (modelAB, ~ fB:fA)
summary (contrast (1smAB, list(AB=c( 1 ,0,-1,-1, 0, 1))), infer=c(T,T))

Using £B: £A rather than £A: £B yields least squares means in the standard lexicographical order, as
can be seen by displaying 1smAB, and the contrast coefficients must be in the corresponding order.
These statements and their output are shown in Table 6.17.

Multiple comparisons procedures are also implemented using functions of the 1 smeans package,
as illustrated for levels of B by sample code at the bottom of Table 6.15. The statements

1smB = lsmeans (modelAB, ~ £B)
confint (lsmB, level = 0.99)
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Table 6.18 Multiple comparisons output for a two-way complete model with unequal sample sizes (reaction time
experiment)

> # Multiple comparisons: B
> confint (lsmB, level=0.99) # lsmeans for B and 99% CIs

fB lsmean SE df lower.CL upper.CL
1 0.2275 0.0089710 8 0.19740 0.25760
2 0.2190 0.0073248 8 0.19442 0.24358
3 0.2335 0.0103588 8 0.19874 0.26826

Results are averaged over the levels of: fA
Confidence level used: 0.99

> # Tukey’s method
> summary (contrast (lsmB, method="pairwise", adjust="tukey"),

+ infer=c(T,T), level=0.99)
contrast estimate SE df 1lower.CL upper.CL t.ratio p.value
1 -2 0.0085 0.011582 8 -0.037650 0.054650 0.734 0.7512
1 -3 -0.0060 0.013703 8 -0.060606 0.048606 -0.438 0.9010
2 -3 -0.0145 0.012687 8 -0.065055 0.036055 -1.143 0.5166

Results are averaged over the levels of: fA

Confidence level used: 0.99

Confidence-level adjustment: tukey method for a family of 3 estimates
P value adjustment: tukey method for a family of 3 tests

in turn (i) compute least squares estimates of the means p + 3; + . + (af) ;j and related information,

saving this information as 1smB; and (ii) display the least squares estimates, standard errors, degrees

of freedom, and individual 99% confidence intervals shown at the top of Table 6.18. Because sample

sizes are unequal, these least squares means are not simply the corresponding treatment sample means.
The statement

summary (contrast (1smB, method = "pairwise", adjust = "tukey"),
infer = c(T, T), level = 0.99)

applies Tukey’s method, comparing pairwise the main effects of the three levels of B, each averaged
over the levels of A. The contrast function coupled with the options method="pairwise" and
adjust="tukey " requests tests including p-values for all pairwise comparisons via Tukey’s method.
Other adjustment options for pairwise comparisons include "Scheffe" for Scheffé’s method,
"Bonf" for the Bonferroni method, and "none" for individual inferences. The summary func-
tion withits infer=c (T, T) and 1evel=0.99 options requests Tukey’s 99% confidence intervals.
Specifically, the option infer=c (T, T) indicates “true” for confidence intervals and tests, respec-
tively. The above statement and the corresponding output are shown in the bottom of Table 6.18.

Implementation of Dunnett’s method for all treatment-versus-control comparisons is similar and
illustrated by the following statement

summary (contrast (1smB, method="trt.vs.ctrl", adj="mvt", ref=1l),
infer=c(T,T), level=0.99)
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Table 6.19 Dunnett’s lower band for a two-way complete model with unequal sample sizes (reaction time experiment)

> # Dunnett’s method comparing cell means

> 1smTC = lsmeans (modelTC, ~ £fTC)
> gsummary (contrast (1smTC, method="trt.vs.ctrl", adj="mvt"),
+ infer=c(T,T), level=0.99, side=">")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
12 - 11 -0.0083333 0.016379 8 -0.070333 Inf -0.509 0.9351
13 - 11 0.0150000 0.021974 8 -0.068181 Inf 0.683 0.5629
21 - 11 0.0810000 0.017942 8 0.013083 Inf 4.515 0.0037
22 - 11 0.0723333 0.016379 8 0.010334 Inf 4.416 0.0042
23 - 11 0.0780000 0.016379 8 0.016000 Inf 4.762 0.0025

Confidence level used: 0.99

Confidence-level adjustment: mvt method for 5 estimates
P value adjustment: mvt method for 5 tests

P values are right-tailed

from the bottom of Table 6.15. The option method="trt.vs.ctrl" yields all treatment-versus-
control comparisons. Here, other levels of B are compared to the first level, which happens tobe "1 ",
averaging over levels of A. Available options include the following, as discussed in Sect. 4.7.2. Dunnett’s
method uses (simulation based) critical values from the multivariate z-distribution, corresponding
to adjust="mvt", but the default option adjust="dunnettx" provides an approximation of
Dunnett’s method for two-sided confidence intervals that runs faster and dependably (but is appropriate
only applicable when the contrast estimates have pairwise correlations of 0.5). The first level of a factor
is the control by default, corresponding to reference level 1 (ref£=1), but one could, for example, specify
the second level as the control by the syntax ref£=2. Also, "two-sided" is the default for confidence
intervals and tests, but one can specify side="<" for the one-sided alternative Hy : 7; < 71 and the
corresponding upper confidence bound for 7; — 71, or side=">" for the alternative H4 : 7; > 71 and
the corresponding lower confidence bound for 7; — 77.

Multiple comparisons of all treatments may be obtained using the cell-means model, as illustrated
for Dunnett’s method by the following code, reproduced with corresponding output in Table 6.19.

1smTC = lsmeans (modelTC, ~ £TC)
summary (contrast (1smTC, method="trt.vs.ctrl", adj="mvt"),
infer=c(T,T), level=0.99, side=">")

The same could be accomplished using 1smAB instead of 1smTC. Note that the default control here
is "11", which is the first level of £TC.

We remind the reader that for unequal sample sizes, it has not yet been proved that the overall
confidence levels achieved by the Tukey and Dunnett methods are at least as great as those stated,
except in some special cases such as the one-way layout.
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6.9.3 Plots

Residual plots for checking the error assumptions on the model are generated in the same way as shown
in Chap. 5. If the two-way main-effects model (6.2.3) is used, the assumption of additivity should also
be checked. For this purpose it is useful to plot the standardized residuals against the level of one
factor, using the levels of the other factor for plotting labels (see, for example, Fig. 6.3, p. 144, for the
temperature experiment). A plot of the standardized residuals z against the levels of factor A using the
labels of factor B can be generated using the following R program lines:

plot(z ~ A, data=react.data, xaxt="n", type="n") # Suppress x-axis, pts
axis(l, at=seqg(l,2,1)) # Add x-axis with tick marks from 1 to 2 by 1
text(z ~ A, B, cex=0.75, data=react.data) # Plot z vs A using B label
mtext ("B=1,2,3", side=3, adj=1, line=1) # Margin text, top-rt, line 1
abline (h=0) # Horizontal line at zero

An interaction plot of treatment means y;;. versus levels of factor A using the labels of factor B can
be generated by adding the following statement to the end of the program in Table 6.15.

interaction.plot (x.factor = react.data$fA, trace.factor = react.dataS$fB,
response = react.dataSy, type ="b",
xlab ="A", trace.label ="B", ylab ="Mean of y")

The option type="b" plots both points and lines.
In order to check for equal error variances, the residuals or observations could be plotted against
the treatment combinations using the following R code:

plot (modelABSres ~ react.data$TC, xlab ="AB", ylab ="Residual")
plot (react.dataSy ~ react.data$TC, xlab ="AB", ylab ="y")

However, since the treatment combination codes TC = 10*A + B are numeric as originally created
in Table 6.13, they will not be equally spaced along the axis, since the codes 11, 12, 13, 21, 22, 23
when regarded as 2-digit numbers are not equally spaced. One solution to this problem is to plot the
residuals or the observations against the treatment variable Trtmt, since its levels 1-6 are equally
spaced, but replace each of the labels 1-6 with the corresponding treatment combination label. This is
accomplished by the following code.

plot (modelABSres react.datas$Trtmt, xaxt="n", xlab="AB", ylab="Residual")
axis(l, at = react.dataSTrtmt, labels = react.data$SfTC)

plot (react.dataSy ~ react.data$Trtmt, xaxt="n", xlab="AB", ylab="y")
axis(l, at = react.dataSTrtmt, labels = react.dataS$SfTC)

In the first plot statement, for example, the residuals are plotted against Trtmt, which has equally
spaced levels 1-6, but the x-axis is suppressed by the option xaxt="n". The axis statement is then
used to create an x-axis, still with tick marks at the equally-spaced Trtmt levels 1-6, but using the
treatment combination labels 11, 12,..., 23 of £TC.

When there are not sufficient observations to be able to check equality of error variances for all the
cells, the standardized residuals should be plotted against the levels of each factor. The rule of thumb
may be checked for the levels of each factor by comparing the maximum and minimum variances of
the (nonstandardized) residuals. The sample variance of the residuals may be computed by level of A,
for example, by augmenting the statements in Table 6.15 with the following by command.

by (modelABSres, react.data$SA, var)
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Table 6.20 Fitting a model in terms of contrasts (air velocity experiment)

air.data = read.table("data/air.velocity.contrasts.txt", header=T)

air.data

y A B Aln Agd Bln Bgd Bcb Bgr Bagn
1 -2411 -1 1 -5 5 -5 1 -1
2 =23 12 -1 1 -3 -1 7 -3 5
3 113 -1 1 -1 -4 4 2 -10
4 814 -1 1 1 -4 -4 2 10
5 29 1 5 -1 1 3 -1 -7 -3 -5
6 2316 -1 1 5 5 5 1 1
7 3321 0 -2 -5 5 -5 1 -1
8 28 2 2 0o -2 -3 -1 7 -3 5
9 45 2 3 o -2 -1 -4 4 2 -10
10 57 2 4 0 -2 1 -4 -4 2 10
11 74 2 5 0 -2 3 -1 -7 -3 -5
12 80 2 6 0 -2 5 5 5 1 1
13 37 31 1 1 -5 5 -5 1 -1
14 79 3 2 1 1 -3 -1 7 -3 5
15 79 3 3 1 1 -1 -4 4 2 -10
16 95 3 4 1 1 1 -4 -4 2 10
17 101 3 5 1 1 3 -1 -7 -3 -5
18 111 3 6 1 1 5 5 5 1 1

# Fit linear regression model, save as modell
modell = Im(y 7 Aln + Agd + Bln + Bgd + Bcb + Bgr + Bagn
+ Aln:Bln + Aln:Bgd + Aln:Bcb + Aln:Bgr
+ Agd:Bln + Agd:Bgd + Agd:Bcb, data=air.data)
# ANOVA
anova (modell)

6.9.4 One Observation Per Cell

In this section we present a direct way to split the interaction sum of squares into parts corresponding to
negligible and nonnegligible orthogonal contrasts. The R program in Table 6.20 illustrates the method,
using the data of the air velocity experiment.

First, the main effect contrast coefficients from Table 6.1, p. 148, are entered as part of the data, as
is evident from the displayed data in Table 6.20. In the air velocity experiment, factor A had a = 3
levels and factor B had b = 6 levels.

The 1m statement in Table 6.20 fits a linear model, including as predictors those contrasts that have
not been declared to be negligible. For example, A1n and B1ln terms contain the coefficients of the
A-linear and B-linear contrasts, respectively, and the term A1n:B1ln contains the coefficients of the
A-linear-by-B-linear interaction trend contrast, which R obtains by multiplication of the corresponding
Aln and Bln contrast coefficients. The results are saved as modell.

Intentionally, none of the predictor variables in the model are factor variables. If they were factor
variables, then A1n would be interpreted as one factor with three coded levels —1, 0, 1, and Agd as a
second factor with two coded levels 1, —2, and so on. The error sum of squares will be based on the
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Table 6.21 Data (beats per 15 seconds) for the weight lifting experiment

A 2 1 1 1 2 2 1 2 1 2 1
B 2 1 3 1 2 3 3 2 2 2 1
Rate 31 27 37 28 32 32 35 30 32 31 27
A 2 1 1 1 2 1 1 2 2 2 2
B 2 3 3 2 1 1 3 1 3 3 3
Rate 34 33 34 31 26 25 35 24 33 31 36
A 1 1 1 1 1 1 1 1 2 1 2
B 3 1 1 2 1 2 2 3 3 2 1
Rate 36 27 30 33 29 32 34 37 32 34 27
A 2 1 1 2 2 1 1 2 2 1 2
B 1 3 1 2 1 2 1 2 1 3
Rate 31 27 38 27 30 29 34 25 34 28 34
A 1 2 1 1 2 1 1 2 2 2
B 1 3 2 2 1 3 2 1 1 1
Rate 31 30 34 35 34 24 35 31 27 26 25
A 2 2 1 2 2 2 2 2 1 1
B 2 3 1 2 1 2 3 3 3 3 3
Rate 32 35 24 33 23 30 34 32 33 37 38

three omitted contrasts A1ln:Bagn, Agd: Bgr, and Agd: Bgn, and the resulting analysis of variance
table generated by the anova (modell) statement will be equivalent to that in Table 6.12, p. 176.
It is not necessary to input the levels of A and B separately as we have done in columns 2 and 3 of

the data, but these would be needed if plots of the data were required.

Exercises

1. Under what circumstances should the two-way main effects model (6.2.3) be used rather than the

two-way complete model (6.2.2)? Discuss the interpretation of main effects in each model.

2. Verify that (1;; — 7;, — 7 ; + 7..) is an interaction contrast for the two-way complete model. Write
down the list of contrast coefficients in terms of the 7;;’s when factor A has a = 3 levels and factor

B has b = 4 levels.

3. Consider the functions {af — o3} and {(a3)11 — (aB)21 — (@f)12 + (F)22} under the two-way
complete model (6.2.2).

(a) Verify that the functions are estimable contrasts.

(b) Discuss the meaning of each of these contrasts for plot (d) of Fig. 6.1, p. 140, and for plot (g) of

Fig.6.2,p. 14

1.

(c) If a = b =3, give the list of contrast coefficients for each contrast, first for the parameters
involved in the contrast, and then in terms of the parameters 7;; of the equivalent cell-means

model.
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4. Show that when the parentheses is expanded in formula (6.4.15) for ssEon p. 151, the computational
formula (6.4.16) is obtained.

5. Weight Lifting Experiment (Gary Mirka 1986)
The experimenter was interested in the effect on pulse rate (heart rate) of lifting different weights
with legs either straight or bent (factor A, coded 1, 2). The selected weights were 50 lb, 75 Ib,
100 1b (factor B, coded 1, 2, 3). He expected to see a higher pulse rate when heavier weights were
lifted. He also expected that lifting with legs bent would result in a higher pulse rate than lifting
with legs straight.

(a) Write out a detailed checklist for running an experiment similar to this. In the calculation of the
number of observations needed, either run your own pilot experiment or use the information that
for a single subject in the above study, the error sum of squares was ssE = 130.909 bpfs? based
on df = 60 error degrees of freedom (where bpfs is beats per 15 seconds).

(b) The data collected for a single subject by the above experimenter are shown in Table6.21 in
the order collected. The experimenter wanted to use a two-way complete model. Check the
assumptions on this model, paying particular attention to the facts that (i) these are count data
and may not be approximately normally distributed, and (ii) the measurements were made in
groups of ten at a time in order to reduce the fatigue of the subject.

(c) Taking account of your answer to part (a), analyze the experiment, especially noting any trends
in the response.

6. Battery experiment, continued

Consider the battery experiment introduced in Sect.2.5.2, p. 24, for whicha = b =2 and r = 4.
Suppose it is of interest to calculate confidence intervals for the four simple effects 711 — 712, 21 —
™2, Ti1 — T21, T12 — T2, With an overall confidence level of 95%.

(a) Determine whether the Tukey or Bonferroni method of multiple comparisons would provide
shorter confidence intervals.

(b) Apply the better method from part (a) and comment on the results. (The data give y;; = 570.75,
Y12, = 860.50, y5; = 433.00, and y,, = 496.25 minutes per unit cost and msE = 2, 367.71.)

(c) Discuss the practical meaning of the contrasts estimated in (b) and explain what you have learned
from the confidence intervals.

7. Weld strength experiment

The data shown in Table 6.22 are a subset of the data given by Anderson and McLean (1974)
and show the strength of a weld in a steel bar. Two factors of interest were gage bar setting (the
distance the weld die travels during the automatic weld cycle) and time of welding (total time of the
automatic weld cycle). Assume that the levels of both factors were selected to be equally spaced.

(a) Using the cell-means model (6.2.1) for these data, test the hypothesis that there is no difference
in the effects of the treatment combinations on weld strength against the alternative hypothesis
that at least two treatment combinations have different effects.

(b) Suppose the experimenters had planned to calculate confidence intervals for all pairwise com-
parisons between the treatment combinations, and also to look at the confidence interval for the
difference between gage bar setting 3 and the average of the other two. Write down the contrasts
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Table 6.22 Strength of weld

Time of welding (j)

i 1 2 3 4 5
Gage 1 10, 12 13,17 21,30 18, 16 17,21
bar 2 15,19 14,12 30, 38 15,11 14,12
setting 3 10, 8 12,9 10,5 14,15 19, 11

Source Reprinted from Anderson and McLean (1974), pp. 62-63, by courtesy of Marcel Dekker, Inc

(©

(d)

(e

in terms of the parameters 7;; of the cell-means model, and suggest a strategy for calculating all
intervals at overall level “at least 98%.”

Consider the intervals in part (b). Give the formulae and calculate the actual interval for 713 — 75
(the difference in the true mean strengths at the 3rd and 5th times of welding for the first gage
bar setting), and explain what this interval tells you. Also calculate the actual interval for the
difference between gage bar setting 3 and the average of the other two, and explain what this
interval tells you.

Calculate an upper 90% confidence limit for o2.

If the experimenters were to repeat this experiment and needed the pairwise comparison intervals
in (b) to be of width at most 8, how many observations should they take on each treatment
combination? How many observations is this in total?

8. Weld strength experiment, continued

For the experiment described in Exercise 7, use the two-way complete model instead of the equiv-
alent cell means model.

()

Test the hypothesis of no interaction between gage bar setting and time of weld and state your
conclusion.

(b) Draw an interaction plot for the two factors Gage bar setting and Time of welding. Does your

©

interaction plot support the conclusion of your hypothesis test? Explain.
In view of your answer to part (b), is it sensible to investigate the differences between the effects
of gage bar setting? Why or why not? Indicate on your plot what would be compared.

(d) Regardless of your answer to (c), suppose the experimenters had decided to look at the linear

trend in the effect of gage bar settings. Test the hypothesis that the linear trend in gage setting is
negligible (against the alternative hypothesis that it is not negligible).

9. Sample size calculation

10.

An experiment is to be run to examine three levels of factor A and four levels of factor B, using the

two-way complete model (6.2.2). Determine the required sample size if the error variance o

2 s

expected to be less than 15 and simultaneous 99% confidence intervals for pairwise comparisons
between treatment combinations should have length at most 10 to be useful.

Bleach experiment, continued

Use the data of the bleach experiment of Example 6.4.4, on p. 154.

(a)

Evaluate the effectiveness of a variance-equalizing transformation.

(b) Apply Satterthwaite’s approximation to obtain 99% confidence intervals for the pairwise com-

parisons of the main effects of factor A using Tukey’s method of multiple comparisons.
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11.

12.

13.

Bleach experiment, continued

The experimenter calculated that she needed r = 5 observations per treatment combination in order
to be able to detect a difference in the effect of the levels of either treatment factor of 5 minutes (300
seconds) with probability 0.9 at significance level 0.05. Verify that her calculations were correct.
She obtained a mean squared error of 43220.8 in her pilot experiment.

Memory experiment (James Bost 1987)

The memory experiment was planned in order to examine the effects of external distractions on
short-term memory and also to examine whether some types of words were easier to memorize
than others. Consequently, the experiment involved two treatment factors, “word type” and “type
of distraction.” The experimenter selected three levels for each factor. The levels of “word type”
were

Level 1  (fruit): words representing fruits and vegetables commonly consumed;

Level 2 (nouns): words selected at random from Webster’s pocket dictionary, representing tangi-
ble (i.e., visualizable) items;

Level 3 (mixed): words of any description selected at random from Webster’s pocket dictionary.

A list of 30 words was prepared for each level of the treatment factor, and the list was not altered
throughout the experiment.
The levels of “type of distraction” were

Level 1 : No distraction other than usual background noise;

Level 2 : Constant distraction, supplied by a regular banging of a metal spoon on a metal pan;

Level 3 :Changing distraction, which included vocal, music, banging and motor noise, and vary-
ing lighting.

The response variable was the number of words remembered (by a randomly selected subject) for
a given treatment combination. The response variable is likely to have approximately a binomial
distribution, with variance 30,(1 — p) where p is the probability that a subject remembers a given
word and 30 is the number of words on the list. It is unlikely that p is constant for all treatment
combinations or for all subjects. However, since np(1 — p) is less than 30(0.5)(0.5) = 7.5, a
reasonable guess for the variance o is that it is less than 7.5.

The experimenter wanted to reject each of the main-effect hypotheses Ha‘: {the memorization rate
for the three word lists is the same} and Hg :{the three types of distraction have the same effect on
memorization} with probability 0.9 if there was a difference of four words in memorization rates
between any two word lists or any two distractions (that is Ay = Ap = 4), using a significance
level of o = 0.05. Calculate the number of subjects that are needed if each subject is to be assigned
to just one treatment combination and measured just once.

Memory experiment, continued

(a) Write out a checklist for the memory experiment of Exercise 12. Discuss how you would obtain

the subjects and how applicable the experiment would be to the general population.

(b) Consider the possibility of using each subject more than once (i.e., consider the use of a blocking

14.

factor). Discuss whether or not an assumption of independent observations is likely to be valid.

Memory experiment, continued

The data for the memory experiment of Exercise 12 are shown in Table 6.23 with three observations
per treatment combination.
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Table 6.23 Data and standardized residuals for the memory experiment

Distraction

Word list None Constant Changing
Fruit 20 14 24 15 22 17 17 13 12
027 -216 1.89 —1.21 1.62 —0.40 1.21 —-040 -0.81
Nouns 19 14 19 12 11 14 12 15 8
0.67 —135 0.67 —-0.13 —-054  0.67 0.13 1.35 —1.48
Mixed 11 12 15 8 8 9 12 7 10
—-0.67 —-027 094 —-0.13 —-0.13  0.27 094 —-1.08 0.13

(a) The experimenter intended to use the two-way complete model. Check the assumptions on the
model for the given data, especially the equal-variance assumption.

(b) Analyze the experiment. A transformation of the data or use of the Satterthwaite approximation
may be necessary.

15. Ink experiment

Teaching associates who give classes in computer labs at the Ohio State University are required
to write on white boards with “dry markers” rather than on chalk boards with chalk. The ink
from these dry markers can stain rather badly, and an experiment was planned by M. Chambers,
Y.-W. Chen, E. Kurali and R. Vengurlekar in 1996 to determine which type of cloth (factor A, 1
= cotton/polyester, 2 = rayon, 3 = polyester) was most difficult to clean, and whether a detergent
plus stain remover was better than a detergent without stain remover (factor B, levels 1, 2) for
washing out such a stain.

Pieces of cloth were to be stained with 0.1 ml of dry marker ink and allowed to air dry for 24 hours.
The cloth pieces were then to be washed in a random order in the detergent to which they were
allocated. The stain remaining on a piece of cloth after washing and drying was to be compared
with a 19 point scale and scored accordingly, where 1 = black and 19 = white.

(a) Make alist of the difficulties that might be encountered in running and analyzing an experiment of
this type. Give suggestions on how these difficulties might be overcome or their effects reduced.

(b) Why should each piece of cloth be washed separately? (Hint: think about the error variability.)

(c) The results of a small pilot study run by the four experimenters are shown in Table 6.24. Plot
the data against the levels of the two treatment factors. Can you learn anything from this plot?
Which model would you select for the main experiment? Why?

(d) Calculate the number of observations that you would need to take on each treatment combination
in order to try to ensure that the lengths of confidence intervals for pairwise differences in the
effects of the levels of each of the factors were no more than 2 points (on the 19-point scale).

Table 6.24 Data for the ink experiment in the order of collection
Cloth type 3 1 3 1 2 1 2 2 2 3 3 1
Stain remover 2 2 2 2 1 1 1 2 2 1 1
Stain score 1 6 1 5 11 9 9 8 6 3 4 8
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Table 6.25 Data for the survival experiment (units of 10 hours)

Treatment

Poison 1 2 3 4

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

11 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

it 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

Source Box and Cox (1964). Copyright 1964 Blackwell Publishers. Reprinted with permission

16. Survival experiment (G.E.P. Box and D.R. Cox, 1964)

The data in Table 6.25 show survival times of animals to whom a poison and a treatment have been
administered. The data were presented by G.E.P. Box and D.R. Cox in an article in the Journal
of the Royal Statistical Society in 1964. There were three poisons (factorA ata = 3levels), four
treatments (factor Batb = 4levels), and r = 4 animals (experimental units) assigned at random to
each treatment combination.

(a) Check the assumptions on a two-way complete model for these data. If the assumptions are
satisfied, then analyze the data and discuss your conclusions.

(b) Take a reciprocal transformation (y_l) of the data. The transformed data values then represent
“rates of dying.” Check the assumptions on the model again. If the assumptions are satisfied,
then analyze the data and discuss your conclusions.

(c) Draw an interaction plot for both the original and the transformed data. Discuss the interaction
between the two factors in each of the measurement scales.

17. Use the two-way main-effects model (6.2.3) witha = b = 3.
(a) Which of the following are estimable?

) p+or+p5.
(i) p+ar+ 3B+ ) .
(iii) B — (B2 + B3) .

(b) ShowthatY;. +7_j_ —Y isanunbiased estimator of p~-a+3; with variance, o2(a+b—1)/(abr).
(c) Show that >, ¢;Y; is an unbiased estimator of the contrast >iciai.
18. Meat cooking experiment, continued

The meat cooking experiment was introduced in Exercise 14 of Chap.3, with the data given in
Table 3.14, p. 68.


http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3

Exercises 199

Table 6.26 Data for the water boiling experiment, in minutes. (Order of observation is in parentheses.)

Salt (teaspoons)

Burner 0 2 4 6
Right back 7(7) 4(13) 7(24) 5(15)
8(21) 7(25) 7(34) 7(33)
7(30) 7(26) 7(41) 7(37)
Right front 4(6) 4(36) 4(1) 4(28)
4(20) 5(44) 4(14) 4(31)
4(27) 4(45) 5(18) 4(38)
Left back 6(9) 6(46) 7(8) 5(35)
7(16) 6(47) 6(12) 6(39)
6(22) 5(48) 7(43) 6(40)
Left front 9(29) 8(5) 8(3) 8(2)
9(32) 8(10) 9(19) 8(4)
9(42) 8(11) 10(23) 7(17)

(a) Using the two-way complete model, conduct an analysis of variance, testing each hypothesis
using a 1% significance level. State your conclusions.

(b) Draw an interaction plot for the two treatment factors. Does your interaction plot support the
conclusion of your hypothesis test concerning interactions? Explain.

(c) Compare the effects of the three levels of fat content pairwise, averaging over cooking methods,
using Scheffé’s method for all treatment contrasts with a 95% confidence level. Interpret the
results.

(d) Give a confidence interval for the average difference in weight after cooking between frying
and grilling 110g hamburgers, using Scheffé’s method for all treatment contrasts with a 95%
confidence level. Interpret the results.

(e) Obtain a 95% confidence interval for comparing the effect on post-cooked weight of the low fat
content versus the average of the two higher fat contents (averaged over cooking method), using
Scheffé’s method.

(f) What is the overall confidence level of the intervals in parts (c), (d) and (e) taken together?

(g) If the contrast in part (¢) had been the only contrast of interest, would your answer to part (e)
have been different? If so, show the new calculation. If not, explain why not.

19. For the two-way main-effects model (6.2.3) with equal sample sizes,

(a) verify the computational formulae for ssE given in (6.5.38),
(b) and, if SSE is the corresponding random variable, show that E[SSE]is(n —a — b + o2 [Hint:
E[X?] = Var(X) + E[X]*.]

20. An experiment is to be run to compare the two levels of factor A and to examine the pairwise
differences between the four levels of factor B, with a simultaneous confidence level of 90%. The
experimenter is confident that the two factors will not interact. Find the required sample size if the
error variance will be at most 25 and the confidence intervals should have length at most 10 to be
useful.
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21. Water boiling experiment (Kate Ellis 1986)

The experiment was run in order to examine the amount of time taken to boil a given amount of
water on the four different burners of her stove, and with 0, 2, 4, or 6 teaspoons of salt added to the
water. Thus the experiment had two treatment factors with four levels each. The experimenter ran
the experiment as a completely randomized design by taking » = 3 observations on each of the
16 treatment combinations in a random order. The data are shown in Table 6.26. The experimenter
believed that there would be no interaction between the two factors.

(a) Check the assumptions on the two-way main-effects model.

(b) Calculate a 99% set of Tukey confidence intervals for pairwise differences between the levels of
salt, and calculate separately a 99% set of intervals for pairwise differences between the levels
of burner.

(c) Test a hypothesis that there is no linear trend in the time to boil water due to the level of salt. Do
a similar test for a quadratic trend.

(d) The experimenter believed that observation number 13 was an outlier, since it has a large stan-
dardized residual and it was an observation taken late on a Friday evening. Using statistical
software, repeat the analysis in (b) removing this observation. (Tukey’s method is approximate
for nearly balanced data.) Also repeat the test in part (c) but for the linear contrast only. (The
formula for the linear contrast coefficients is given in (4.2.4) on p. 73.) Do you prefer the analysis
that uses all the data, or that which removes observation 13?7 Explain your choice.

22. Forv = 5and r = 4, show that the first three “orthogonal polynomial contrasts” listed in Table A.2
are mutually orthogonal. (In fact all four are.) Find a pair of orthogonal contrasts that are not
orthogonal polynomial contrasts. Can you find a third contrast that is orthogonal to each of these?
How about a fourth? (This gets progressively harder!)

23. Air velocity experiment, continued

(a) For the air velocity experiment introduced in Sect.6.7.4 (p. 176), calculate the sum of squares
for each of the three interaction contrasts assumed to be negligible, and verify that these add to
the value ssE = 175.739, as in Table 6.12.

(b) Check the assumptions on the model by plotting the standardized residuals against the predicted
responses, the treatment factor levels, and the normal scores. State your conclusions.
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7.1 Introduction

Experiments that involve more than two treatment factors are designed and analyzed using many of
the same principles that were discussed in Chap. 6 for two-factor experiments. We continue to label the
factors with uppercase Latin letters and their numbers of levels with the corresponding lowercase letters.
An experiment that involves four factors, A, B, C, and D, having a, b, c, and d levels, respectively,
for example, is known as an “a x b x ¢ x d factorial experiment” (read “a by b by ¢ by d”’) and has a
total of v = abcd treatment combinations.

There are several different models that may be appropriate for analyzing a factorial experiment with
several treatment factors, depending on which interactions are believed to be negligible. These models,
together with definitions of interaction between three or more factors, and estimation of contrasts,
form the topic of Sect.7.2. General rules are given in Sect.7.3 for writing down confidence intervals
and hypothesis tests when there are equal numbers of observations on all treatment combinations. In
Sect. 7.5, methods are investigated for analyzing small experiments where there is only one observation
per treatment combination. Finally, SAS and R commands for analyzing experiments with several
treatment factors are given in Sects.7.6 and 7.7, respectively, and can be used for unequal sample
sizes. Problems caused by empty cells are also investigated.

7.2 Models and Factorial Effects
7.2.1 Models

One of a number of different models may be appropriate for describing the data from an experiment
with several treatment factors. The selection of a suitable model prior to the experiment depends upon
available knowledge about which factors do and do not interact. We take as an example an experiment
with three factors. Our first option is to use the cell-means model, which is similar to the one-way
analysis of variance model (3.3.1), p. 33. For example, the cell-means model for three treatment
factors is
Yiike = po+ Tijk + €ijke »
€ijke ~ N(0,02),
€ijk’s mutually independent ,
t=1,...,r; i=1,...,a; j=1,...,b; k=1,...,c.

(7.2.1)
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If there are more than three factors, the cell-means model has correspondingly more subscripts. As
in Chap. 6, use of this model allows all of the formulae presented in Chaps. 3 and 4 for one treatment
factor to be used to compare the effects of the treatment combinations.

Alternatively, we can model the effect on the response of treatment combination ijk to be

Tijk = & + B + % + (@B)ij + (@)ik + (B jx + (@BY)ijk ,

where «;, 3, vk are the effects (positive or negative) on the response of factors A, B, C atlevels i, j,
k, respectively, (a3);j, (ay)ik, and (87) jx are the additional effects of the pairs of factors together at
the specified levels, and («37),j« is the additional effect of all three factors together at levels i, j, k.
The three sets of factorial effects are called the main-effect parameters, the two-factor interaction
parameters, and the three-factor interaction parameter, respectively. The interpretation of a three-factor
interaction is discussed in the next section. If we replace 7; ;1 in model (7.2.1) by the main-effect and
interaction parameters, we obtain the equivalent three-way complete model; that is,

Yijie = p+ ;i + B + e + (@B)ij + (@v)ix + (B7) jk + (@BV)ijk + €ijke »
€ijke ~ N(0, 0%),
€ijk, s mutually independent ,
t=1,...,rj; i=1,...,a; j=1,...,b; k=1,...,c.

(7.2.2)

This form of the model extends in an obvious way to more than three factors by including a main-effect
parameter for every factor and an interaction effect parameter for every combination of two factors,
three factors, etc.

If prior to the experiment certain interaction effects are known to be negligible, the corresponding
parameters can be removed from the complete model to give a submodel. For example, if the factors A
and B are known not to interact in a three-factor experiment, then the AB and ABC interaction effects
are negligible, so the terms (a/3);; and (a37);jx are excluded from model (7.2.2). In the extreme case,
if no factors are expected to interact, then a main-effects model (which includes no interaction terms)
can be used.

When a model includes an interaction between a specific set of m factors, then all interaction terms
involving subsets of those m factors should be included in the model. For example, a model that
includes the effect of the three-factor interaction ABC would also include the effects of the AB, AC,
and BC interactions as well as the main effects A, B, and C.

Use of a submodel, when appropriate, is advantageous, because simpler models generally yield
tighter confidence intervals and more powerful tests of hypotheses. However, if interaction terms
are removed from the model when the factors do, in fact, interact, then the resulting analysis and
conclusions may be totally incorrect.

7.2.2 The Meaning of Interaction

The same type of interaction plot as that used in Sect.6.2.1, p. 139, can be used to evaluate interactions
between pairs of factors in an experiment involving three or more factors. The graphical evaluation
of three-factor interactions can be done by comparing separate interaction plots at the different levels
of a third factor. Such plots will be illustrated for experiments that involve only three factors, but the
methods are similar for experiments with four or more factors, except that the sample means being
plotted would be averages over the levels of all the other factors.
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Fig.7.1 AB-interaction
plot (averaged over levels
of C)
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The following sample means are for a hypothetical 3 x 2 x 2 experiment involving the factors A,
B, and C at 3, 2, and 2 levels, respectively.

ijk @ 111 112 121 122 211 212 221 222 311 312 321 322
Yijk. : 3.0 40 1.5 25 25 35 3.0 40 3.0 40 1.5 25

An AB-interaction plot for these hypothetical data is shown in Fig.7.1. As in the previous chapter, we
must remember that interaction plots give no indication of the size of the experimental error and must
be interpreted with a little caution. The lines of the plot in Fig. 7.1 are not parallel, indicating that the
factors possibly interact. For factor A, level 2 appears to be the best (highest response) on average,
but not consistently the best at each level of B. Likewise, level 1 of factor B appears to be better on
average, but not consistently better at each level of A. The perceived AB interaction is averaged over
the levels of C and may have no practical meaning if there is an ABC interaction. Consequently, the
three-factor interaction should be investigated first.

A three-factor interaction would be indicated if the interaction effect between any pair of factors
were to change as the level of the third factor changes. In Fig. 7.2, a separate AB-interaction plot is
shown for each level of factor C. Each of the two plots suggests the presence of an AB-interaction
effect, but the patterns in the two plots are the same. In other words, the factors A and B apparently
interact in the same way at each level of factor C. This indicates a negligible ABC-interaction effect.
The shift in the interaction plot as the level of C changes from one plot to the other indicates a possible
main effect of factor C. The AB interaction plot in Fig. 7.1 is the average of the two plots in Fig.7.2,
showing the AB interaction averaged over the two levels of C.

Other three-factor interaction plots can be obtained by interchanging the roles of the factors. For
example, Fig.7.3 contains plots of y;;; against the levels i of A for each level j of factor B, using
the levels k of C as labels and the same hypothetical data. Lines are parallel in each plot, indicating
no AC-interaction at either level of B. Although the patterns differ from plot to plot, if there is no
AC-interaction at either of the levels of B, there is no change in the AC-interaction from one level of
B to the other. So, again the ABC-interaction effect appears to be negligible. An AC interaction plot
would show the average of the two plots in Fig. 7.3, and although the plot would again look different,
the lines would still be parallel.

To see what the plots might look like when there is an ABC-interaction present, we look at the
following second set of hypothetical data.

ijk @ 111 112 121 122 211 212 221 222 311 312 321 322
Yijk. + 3.0 2.0 1.5 40 25 35 3.0 40 3.0 50 3.5 6.0
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(a) Level 1 of B

Fig.7.3 ABC-interaction plots with B as the third factor

(b) Level 2 of B

Figure7.4 shows plots of y;;; against the level i of factor A for each level k of factor C, using the
level j of factor B as the plotting label. In each plot, corresponding lines are not all parallel, and the
pattern changes from one plot to the next. In other words, the interaction effect between factors A and
B apparently changes with the level of C, so there appears to be an ABC-interaction effect.

Four-factor interactions can be evaluated graphically by comparing the pairs of plots representing
a three-factor interaction for the different levels of a fourth factor. Clearly, higher-order interactions
are harder to envisage than those of lower order, and we would usually rely solely on the analysis of
variance table for evaluating the higher-order interactions. In general, one should examine the higher-
order interactions first, and work downwards. In many experiments, high-order interactions do tend to
be small, and lower-order interactions can then be interpreted more easily.
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Fig.7.4 ABC-interaction plots showing an ABC-interaction effect

7.2.3 Separability of Factorial Effects

In an experiment involving three factors, A, B, and C, for which it is known in advance that factor C
will not interact with factor A or B, the AC, BC, and ABC interaction effects can be excluded from
the model. Interpretation of the results of the experiment is simplified, because a specific change in
the level of factor C has the same effect on the mean response for every combination ij of levels of A
and B. Likewise, a specific change in the combination of levels of A and B has the same effect on the
mean response regardless of the level of C. If the objective is to find the best treatment combination
ijk, then the task is reduced to two smaller problems involving fewer comparisons, namely choice of
the best combination ij of levels of A and B and, separately, choice of the best level k of C.

When there is such separability of effects, the experimenter should generally avoid the temptation
to run separate experiments, one to determine the best combination ij of levels of factors A and B
and another to determine the best level k of C. A single factorial experiment involving n observations
provides the same amount of information on the A, B, C, and AB effects as would two separate
experiments—a factorial experiment for factors A and B and another experiment for factor C—each
involving n observations!

One way to determine an appropriate model for an experiment is as follows. Suppose that the
experiment involves p factors. Draw p points, labeling one point for each factor (see, for example,
Fig. 7.5 for four factors A—D). Connect each pair of factors that might conceivably interact with a line
to give a line graph. For every pair of factors that are joined by a line in the line graph, a two-factor
interaction should be included in the model. If three factors are joined by a triangle, then it may be
appropriate to include the corresponding three-factor interaction in the model as well as the three two-
factor interactions. Similarly, if four factors are joined by all six possible lines, it may be appropriate to
include the corresponding four-factor interaction as well as the three-factor and two-factor interactions.

The line graphs in Fig.7.5 fall into two pieces. Line graph (a) represents the situation where A
and B are thought to interact, as are C and D. The model would include the AB and CD interaction
effects, in addition to all main effects. Line graph (b) represents an experiment in which it is believed
that A and B interact and also A and C and also B and C. An appropriate model would include all
main effects and the AC, AB, and BC interactions. The three-factor ABC interaction effect might also
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Fig.7.5 Separability plots (a) (b)
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be included in the model depending upon the type of interaction plots expected by the experimenter.
Thus, a possible model would be

Yijkie = o+ i + B + i + 0 + (af)ij
+ (@V)ik + (BY) jk + (@BV)ijk + €ijkir -

7.2.4 Estimation of Factorial Contrasts

For an a x b x ¢ factorial experiment and the three-way complete model, all treatment contrasts are
of the form
2.2 2 hipmje with D> > hiji =0,
i j ok ij ok

and are estimable when there is at least one observation per treatment combination.

A contrast in the main effect of A is any treatment contrast for which the coefficients 4;;; depend
only on the level i of A. For example, if we set h; j; equal to p; /(bc), with Zp; = 0, then the contrast
XX XhijiTijx becomes

Zpﬁi., = Zl’i[ai + (@B, + @Y. + @il = zp"a?'

We notice that a main-effect contrast for factor A can be interpreted only as an average over all of the
interaction effects involving A in the model and, consequently, may not be of interest if any of these
interactions are nonnegligible. The B and C main-effect contrasts are defined in similar ways.

An AB interaction contrast is any treatment contrast for which the coefficients £;;; depend only on
the combination ij of levels of A and B, say h;jx = d;j/c, and for which > di ; = O forall j and
> ;jdij = 0forall i. An AB interaction contrast can be expressed as

D diFiy =D dil@B)ij + @Byl =D > dijep)y;.
- — £ — £

i i Jj i Jj

Thus, the AB interaction contrast can be interpreted only as an average over the ABC interaction and
may not be of interest if the ABC interaction is nonnegligible. The AC and BC interaction contrasts are
defined in similar ways.

An ABC interaction contrast is any contrast of the form
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22202 kg =20 2 D hijk@f i
i j k i j ok

for which > ; h;jx = 0 for all jk, Zj hijx = 0 for all ik, and D, h;jx = O for all ij. When we
investigated the interaction plot for ABC using Figs.7.2-7.4, we compared the AB interaction at two
different levels of factor C. In other words, we looked at contrasts of the type

(T112 — 7122 — 212 + ™222) — (7111 — T121 — 211 + T221) -

If the levels 1 and 2 of A and B interact in the same way at each level of C, then this ABC interaction
contrast is zero. If all interaction contrasts of this type (for all levels of A, B, and C) are zero, then the
ABC interaction is negligible.

When a sub-model, rather than a complete model, is used, parameters for the negligible interactions
are removed from the above expressions. If the experiment involves more than three factors, then the
above definitions can be generalized by including the additional subscripts on #;jx7;jx and averaging
over the appropriate higher-order interactions.

As in Chap. 6, all contrasts can be represented by coefficient lists in terms of the main-effect and
interaction parameters or in terms of the treatment combination parameters. This is illustrated in the
next example.

Example 7.2.1 Coefficient lists for contrasts

Suppose that we have an experiment that involves four factors, A, B, C, and D, each to be examined
at two levels (sothata = b = ¢ = d = 2 and v = 16). Suppose that a model that includes AB, BC,
BD, CD, and BCD interactions is expected to provide a good description of the data; that is,

Yijkie = p+ a; + B+ + 6 + (@fB)ij
+ (B jk + (80) ji + (YO wt + (BY0) jkt + €ijkir »
eijkir ~ N(0, 0%,

€ jkl/s are mutually independent,
t=1,..,ru, =12, j=12, k=12, I=1,2.

The contrast that compares the two levels of C is

where 7;; = % + (6_7),1( + (%)k. +(8~6) k.. This contrast can be represented as a coefficient list
[—1, 1]interms of the parameters ; and 3 or as

%[—1, -1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,—-1,—-1, 1, 1]
in terms of the 7;jx;. These are listed under the heading C in Table 7.1.Coefficient lists for the other
main-effect contrasts in terms of the 7;j4; are also shown in Table7.1. The treatment combinations
in the table are listed in ascending order when regarded as 4-digit numbers. The main-effect contrast
coefficients are —1 when the corresponding factor is at level 1, and the coefficients are +1 when the
corresponding factor is at level 2, although these can be interchanged if contrasts such as yj — 3 are
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Table 7.1 Contrast coefficient lists in terms of treatment combination parameters

Treatment combination A B C D AB BC BD CD BCD
1111 -1 —1 —1 -1 1 1 1 1 —1
1112 —1 —1 —1 1 1 1 —1 —1 1
1121 -1 —1 1 -1 1 -1 1 -1 1
1122 —1 —1 1 1 1 -1 —1 1 —1
1211 -1 1 —1 -1 -1 -1 -1 1 1
1212 -1 1 -1 1 -1 -1 1 -1 -1
1221 —1 1 1 -1 -1 1 —1 —1 —1
1222 -1 1 1 1 -1 1 1 1 1
2111 1 —1 —1 -1 -1 1 1 1 -1
2112 1 —1 —1 1 -1 1 —1 —1 1
2121 1 -1 1 -1 -1 -1 1 -1 1
2122 1 —1 1 1 -1 -1 -1 1 -1
2211 1 1 —1 -1 1 —1 —1 1 1
2212 1 1 —1 1 1 -1 1 -1 -1
2221 1 1 1 -1 1 1 -1 —1 -1
2222 1 1 1 1 1 1 1 1 1

Divisor 8 8 8 8 4 4 4 4 2

required rather than 75 — ;. The divisor shown in the table is the number of observations taken on
each level of the factor.
The two-factor interaction contrast for CD is

(Y01 — (YT, — (v0)3; + ()35,

where (76)}; = (70)x + (876) k- This has coefficient list [ 1, —1, —1, 1]in terms of the interaction
parameters (79);; but has coefficient list

1
Z[ 13_11_17 11 11_17_17 11 11_1a_17 1a 11_1a_17 1]

in terms of the treatment combination parameters 7;;x;. The coefficients are +1 when C and D are
at the same level and —1 when they are at different levels. Notice that these coefficients can easily
be obtained by multiplying together the C and D coefficients in the same rows of Table7.1. The
coefficient lists for some of the other interaction contrasts are also shown in the table, and it can
be verified that their coefficients are also products of the corresponding main-effect coefficients. The
divisors are the numbers of observations on each pair of levels of C and D. To obtain the same precision
(estimator variance) as a main effect contrast, the divisor would need to be changed to 8 (or all contrasts
would need to be normalized).

Contrast coefficients are also shown for the BCD interaction. These are the products of the main-
effect coefficients for B, C, and D. This contrast compares the CD interaction at the two levels of B
(or, equivalently, the BC interaction at the two levels of D, or the BD interaction at the two levels of
O). O
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7.3 Analysis—Equal Sample Sizes

For an experiment involving p factors, we can select a cell-means model or the equivalent p-way
complete model, or any of the possible submodels. When the sample sizes are equal, the formulae
for the degrees of freedom, least squares estimates, and sums of squares for testing hypotheses follow
well-defined patterns. We saw in Chap. 6 that for an experiment with two factors, we obtain similar
formulae for the least squares estimates of the contrasts > ¢;«; in the two-way main-effects model
and >’ c;a} in the two-way complete model. Similarly, the sum of squares for A was of the same form
in both cases. This is also true for experiments with more than two factors.

We now give a series of rules that can be applied to any complete model with equal sample sizes.
The rules are illustrated for the ABD interaction in an experiment involving four treatment factors A,
B, C, and D, with corresponding symbols «, 3, v, and § and subscripts i, j, k, and / to represent their
effects on the response in a four-way complete model with r observations per treatment combination.
The corresponding rules for submodels are obtained by dropping the relevant interaction terms from
the complete model. When the sample sizes are not equal, the formulae are more complicated, and we
will analyze such experiments only via a computer package (see Sects. 7.6 and 7.7).

Rules for Estimation and Hypothesis Testing—Equal Sample Sizes

1. Write down the name of the main effect or interaction of interest and the corresponding numbers
of levels and subscripts.

Example: ABD; numbers of levels a, b, and d; subscripts i, j, and /.

2. The number of degrees of freedom v for a factorial effect is the product of the “number of levels
minus one” for each of the factors included in the effect.

Example: For ABD, v = (a — 1)(b — 1)(d — 1).

3. Multiply out the number of degrees of freedom and replace each letter with the corresponding
subscript.

Example: For ABD, df = abd — ab —ad —bd +a +b+d — 1, which gives ijl —ij —il — jl +
i+j+1-1

4. The sum of squares for testing the hypothesis that a main effect or an interaction is negligible is
obtained as follows. Use each group of subscripts in rule 3 as the subscripts of a term y, averaging
over all subscripts not present and keeping the same signs. Put the resulting estimate in brackets,
square it, and sum over all possible subscripts. To expand the parentheses, square each term in
the parentheses, keep the same signs, and sum over all possible subscripts.
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Example:

SS(ABD) =rc D > "> " (¥ij1. = Vij.. — Vit — V.ju.
i1

Vi AV Y =Y

=rc Z Z Ziizj.l. —red Z Zy}] —rbc z Ziiz“l.
i1 i i1
—rac Z Z?_zj_l_ + rbed ZY? +racd Zyzj
i1 i |

5. The total sum of squares sstot is the sum of all the squared deviations of the data values from their
overall mean. The total degrees of freedom is n — 1, where n is the total number of observations.

=220 2D Vi~ v
i J k 1 t

abedr — 1.

3
|

—_
|

6. The error sum of squares ssE is sstot minus the sums of squares for all other effects in the model.
The error degrees of freedom df'is n — 1 minus the degrees of freedom for all of the effects in the
model. For a complete model, df = n — v, where v is the total number of treatment combinations.

Example:
ssE = sstot — ssA — ssB — ssC — ssD
— $8(AB) — ss(AC) — - - - — ss(BCD) — ss(ABCD) ,
df=n—-1)—-@-1)—-b-1)—---—(@—DbB—-Dc—-1d-1).

7. The mean square for an effect is the corresponding sum of squares divided by the degrees of
freedom.

Example:  ms(ABD) = ss(ABD)/((a — 1)(b — 1)(d — 1)),
msE = ssE/df
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8.

The decision rule for testing the null hypothesis that an effect is zero against the alternative
hypothesis that the effect is nonzero is

ot Ho if ss/v ms F
rejec i =— > fas
) 0" SE /df  msE vdha

where ss is the sum of squares calculated in rule 4, v is the degrees of freedom in rule 2, and
ms = ss/v.

Example : To test H(’)“BD : {the interaction ABD is negligible}
against H QBD : {the interaction ABD is not negligible} ,

the decision rule is

ms(ABD)

reject H{BP if z
ms

> Fla—1(—1)@d-1),df,a-

An estimable contrast for an interaction or main effect is a linear combination of the corresponding
parameters (averaged over all higher-order interactions in the model), where the coefficients add
to zero over each of the subscripts in turn.

Example: All estimable contrasts for the ABD interaction are of the form
2.2 2 hijt(Bo)
iojo
where

D hiji=0 forallj.I; > hyjy=0foralli,l; > hij=0foralli,;,
i j 1

and where (a/30)* is the parameter representing the ABD interaction averaged over all the higher-
order interactions in the model.

. If the sample sizes are equal, the least squares estimate of an estimable contrast in rule 9 is obtained

by replacing each parameter with ¥ having the same subscripts and averaging over all subscripts
not present.

Example: The least squares estimate of the ABD contrast in rule 9 is

> Zhijl(;ﬂ\é);kjl =D "> hiji Viju.-
I i1



212

11.

12.

13.

7 Several Crossed Treatment Factors

The variance of an estimable contrast for a factorial effect is obtained by adding the squared
contrast coefficients, dividing by the product of » and the numbers of levels of all factors not
present in the effect, and multiplying by o2.

Example: Var(zl- 220 hijl(ﬁ)?ﬂ) = (Zl 22 hl.zjl/(cr)) o2,

The “sum of squares” for testing the null hypothesis Hjj that a contrast is zero is the square of the
normalized contrast estimate.

Example: The sum of squares for testing the null hypothesis that the contrast 3 > > hiji (a8
is zero against the alternative hypothesis that the contrast is nonzero is the square of the least

squares estimate of the normalized contrast > > > hij[(aﬁé);"jl/\/z > hl.zjl/(cr) ; that s,

2
(Zi 22 hijl?ij.l.)
DIDNDILEVICIN

S§C =

The decision rule for testing the null hypothesis Hj that an estimable contrast is zero, against the
alternative hypothesis that the contrast is nonzero, is

) .o SSC
reject Hj lfm_sE > Fi.dfa/m

where ssc is the square of the normalized contrast estimate, as in rule 12; msE is the error mean
square; dfis the number of error degrees of freedom; «v is the overall Type I error probability; and
m is the number of preplanned hypotheses being tested.

. Simultaneous confidence intervals for contrasts in the treatment combinations can be obtained

from the general formula (4.4.20), p. 83, with the appropriate critical coefficients for the
Bonferroni, Scheffé, Tukey, and Dunnett methods.

Example: For the four-way complete model, the general formula for simultaneous 100(1 — o) %
confidence intervals for a set of contrasts of the form XX X Xc;jkiiju is

EEEeumu € (EEEDeijuTiju £w \JmsE (EEEEE /),
where the critical coefficient, w, is

WB = ldfaom 3 Ws =+/(V—DFy_1dfa ;

0.5
wr = ‘Zv,df,a/\/z ; Wp2 = |t|£fl),df,a ;

for the four methods, respectively, and v is the number of treatment combinations, and df is the
number of error degrees of freedom.


http://dx.doi.org/10.1007/978-3-319-52250-0_4

7.3

15.

16.

Analysis—Equal Sample Sizes 213
Simultaneous confidence intervals for the true mean effects of the treatment combinations in the
complete model can be obtained from the general formula (4.3.12), p. 76, with the appropriate

critical coefficients for the Bonferroni or Scheffé methods.

Example: For the four-way complete model, the general formula for simultaneous 100(1 — «)%
confidence intervals for true mean effects of the treatment combinations p + 7 is

W+ Tijki € (yijkl.iw \/mST/r) ,
where the critical coefficient, w, is
Wp = ldfa/@v) OF Wy = /v Foda
for the Bonferroni and Scheffé methods, respectively.
Simultaneous 100(1 — «)% confidence intervals for contrasts in the levels of a single factor can
be obtained by modifying the formulae in rule 14. Replace v by the number of levels of the factor

of interest, and r by the number of observations on each level of the factor of interest.

Example: For the four-way complete model, the general formula for simultaneous confidence
intervals for contrasts >, ¢;7;.. = > ; af in Ais

> ciafe Dy w |msE (Zciz/(bcdr)) : (7.3.3)

i i i

where the critical coefficients for the five methods are, respectively,

wg = tdfa/Cm) 5 Ws =+ (@ — DFa1dfa 5 wr = Qa.df.a/V2

_ _ ,(0.5) . _141€0.5) .
Wp1 = WH =1, Y gpq 5 Wp2 = 11,77 44

where df is the number of error degrees of freedom.

7.4 A Real Experiment—Popcorn-Microwave Experiment

The experiment described in this section was run by Jianjian Gong, Chongqing Yan, and Lihua Yang
in 1992 to compare brands of microwave popcorn. The details in the following checklist have been
extracted from the experimenters’ report.

The Design Checklist

(a)

Define the objectives of the experiment.

The objective of the experiment was to find out which brand gives rise to the best popcorn in
terms of the proportion of popped kernels. The experiment was restricted to popcorn produced in
a microwave oven.
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(b) Identify all sources of variation.

(i) Treatment factors and their levels.

The first treatment factor was “brand.” Three levels were selected, including two national
brands (levels 1 and 2) and one local brand (level 3). These brands were the brands most
commonly used by the experimenters and their colleagues. All three brands are packaged for
household consumers in boxes of 3.5 ounce packages, and a random selection of packages
was used in this experiment.

Power of the microwave oven was identified as a possible major source of variation and was
included as a second treatment factor. Three available microwave ovens had power ratings of
500, 600, and 625 W. The experimenters used only one oven for each power level. This means
that their conclusions could be drawn only about the three ovens in the study and not about
power levels in general.

Popping time was taken as a third treatment factor. The usual instructions provided with
microwave popcorn are to microwave it until rapid popping slows to 2 to 3 seconds between
pops. Five preliminary trials using brand 3, a 600 W microwave oven, and times equally spaced
from 3 to 5min suggested that the best time was between 4 and 5 min. Hence, time levels of
4, 4.5, and 5 min were selected for the experiment and coded 1-3, respectively.

(i) Experimental units

The experiment was to be run sequentially over time. The treatment combinations were to be
examined in a completely random order. Consequently, the experimental units were the time
slots that were to be assigned at random to the treatment combinations.

(iii) Blocking factors, noise factors, and covariates.

Instead of randomly ordering the observations on all of the treatment combinations, it might
have been more convenient to have taken the observations oven by oven. In this case, the
experiment would have been a “split-plot design” (see Sect.2.4.4) with ovens representing the
blocks. In this experiment, no blocking factors or covariates were identified by the experi-
menters. The effects of noise factors, such as room temperature, were thought to be negligible
and were ignored.

(c) Choose a rule by which to assign the experimental units to the treatments.

A completely randomized design was indicated. The time-slots were randomly assigned to the
brand—-power—time combinations. Popcorn packages were selected at random from a large batch
purchased by the experimenters to represent each brand. Changes in quality, if any, of the packaged
popcorn over time could not be detected by this experiment.

(d) Specify measurements to be made, the experimental procedure, and the anticipated
difficulties.

A main difficulty for the experimenters was to choose the response variable. They considered
weight, volume, number, and percentage of successfully popped kernels as possible response
variables. In each case, they anticipated difficulty in consistently being able to classify kernels
as popped or not. To help control such variation or inconsistency in the measurement process, a


http://dx.doi.org/10.1007/978-3-319-52250-0_2

74

(e)

®

(a)

(@

(h)

A Real Experiment—Popcorn-Microwave Experiment 215

single experimenter made all measurements. For measuring weight, the experimenters needed a
more accurate scale than was available, since popcorn is very light. They decided against measuring
volume, since brands with smaller kernels would appear to give less volume, as the popcorn would
pack more easily into a measuring cylinder. The percentage, rather than number, of successfully
popped kernels for each package was selected as the response variable.

Run a pilot experiment.

The experimenters ran a very small pilot experiment to check their procedure and to obtain a rough
estimate of the error variance. they collected observations on only 9 treatment combinations. Using
a three-way main-effects model, they found that the overall average popping rate was about 70%
and the error standard deviation was a little less than 10.7%. The highest popping rate occurred
when the popping time was at its middle level (4.5 min), suggesting that the range of popping times
under consideration was reasonable. Results for 600 and 625 W microwave ovens were similar,
with lower response rates for the 500 W microwave oven. However, since all possible interactions
had been ignored for this preliminary analysis, the experimenters were cautious about drawing any
conclusions from the pilot experiment.

Specify the model.

For their main experiment, the experimenters selected the three-way complete model, which
includes all main effects and interactions between the three treatment factors. They assumed that
the packages selected to represent each brand would be very similar, and package variability for
each brand could be ignored.

— revisited. Define the objectives of the experiment.

Having identified the treatment factors, response variables, etc., the experimenters were able to
go back to step (a) and reformalize the objectives of the experiment. They decided that the three
questions of most interest were:

e Which combination of brand, power, and time will produce the highest popping rate? (Thus,
pairwise comparisons of all treatment combinations were required.)

e Which brand of popcorn performs best overall? (Pairwise comparison of the levels of brand,
averaging over the levels of power and time, was required.)

e How do time and power affect response? (Pairwise comparison of time—power combinations,
averaging over brands, was required. Also, main-effect comparisons of power and time were
required.)

Outline the analysis.

Tukey’s method of simultaneous confidence intervals for pairwise comparisons was to be used
separately at level 99% for each of the above five sets of contrasts, giving an experimentwise
confidence level of at least 95%.

Calculate the number of observations that need to be taken.
The data from the pilot study suggested that 10.7% would be a reasonable guess for the error

standard deviation. This was calculated using a main-effects model rather than the three-way
complete model, but we would expect a model with more terms to reduce the estimated error
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variance, not to enlarge it. Consequently, the value msE = 10.7> was used in the sample-size
calculations. The experimenters decided that their confidence intervals for any pairwise main-
effect comparison should be no wider than 15% (that is, the half-width, or minimum significant
difference, should be less than 7.5%). Using rule 16, p. 212, for Tukey’s pairwise comparisons,
a set of 99% simultaneous confidence intervals for the pairwise differences between the brands

(factor A) is
Vi =¥, FTwrymsE (2/(bcr)),

where the critical coefficient is wr = ¢3,27,-27.0.01/ /2. The error degrees of freedom are calcu-
lated for a complete model as df = n — v = 27r — 27. Consequently, using 10.7% as the rough
estimate of msE, we need to solve

msd = (g3.27¢-1.01/v2) { 10.722/9r) =75

Trial and error shows that r = 4 is adequate. Thus a total of n = rv = 108 observations would be
needed.

(1) Review the above decisions. Revise, if necessary.

The experimenters realized that it would not be possible to collect 108 observations in the time
they had available. Since the effects of power levels of 600 and 625 W were comparable in the pilot
study, they decided to drop consideration of the 600 W microwave and to include only power levels
of S00W (level 1) and 625 W (level 2) in the main experiment. Also, they decided to take only
r = 2 observations (instead of the calculated r = 4) on each of the v = 18 remaining treatment
combinations. The effect of this change is to widen the proposed confidence intervals. A set of 99%
simultaneous confidence intervals for pairwise comparisons in the brands using Tukey’s method
and msE=10.7> would have half-width

msd = (qs,ls,.m/ﬁ)\/(10.7)2(2/(6 x2)) =145,

about twice as wide as in the original plan. It was important, therefore, to take extra care in running
the experiment to try to reduce the error variability.

The experiment was run, and the resulting data are shown in Table7.2. Unfortunately, the error
variance does not seem to be much smaller than in the pilot experiment, since the mean squared error
was reduced only to (9.36). A plot of the standardized residuals against fitted values did not show
any pattern of unequal variances or outliers. Likewise, a plot of the standardized residuals against
the normal scores was nearly linear, giving no reason to question the model assumption of normality.
Unfortunately, the experimenters did not keep information concerning the order of observations, so
the independence assumption cannot be checked.

Data Analysis

Table 7.3 contains the analysis of variance for investigating the three-way complete model. If an overall
significance level of o < 0.07 is selected, allowing each hypothesis to be tested at level o* = 0.01, the
only null hypothesis that would be rejected would be HOT :{popping time has no effect on the proportion
of popped kernels}. However, at a slightly higher significance level, the brand—time interaction also
appears to have an effect on the proportion of popped kernels.
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If the equivalent cell-means model is used, the null hypothesis of no difference between the treatment
combinations would be rejected at significance level a = 0.07. This is shown in the row of Table 7.3
labeled “Treatments.” Since the design is equireplicate, the main effects and interactions are estimated
independently, and their sums of squares add to the treatment sum of squares. The corresponding
numbers of degrees of freedom likewise add up.

Figure 7.6 shows an interaction plot for the factors “Brand” and “Time.” The plot suggests that use
of time level 2, namely 4.5 min, generally gives a higher popping rate for all three brands. Using level
2 of time, brands 1 and 2 appear to be better than brand 3. The two national brands thus appear to be
better than the local brand. Brand 1 appears to be less sensitive than brand 2 to the popping time. (We
say that brand 1 appears to be more robust to changes in popping time.) Unless this perceived difference
is due to error variability, which does not show on the plot, brand 1 is the brand to be recommended.

Having examined the analysis of variance table and Fig. 7.6, the most interesting issue seems to
be that the differences in the brands might not be the same at the different popping times. This is not
one of the comparisons that had been preplanned at step (g) of the checklist. It is usually advisable
to include in the plan of the analysis the use of Scheffé’s multiple comparisons for all contrasts that
look interesting after examining the data. If we had done this at overall 99% confidence level, then the
experimentwise error rate would have been at least 94%. Interaction contrasts and their least squares
estimates are defined in rules 9 and 10, p. 211. The interaction contrast of most interest is, perhaps,

Ti2—T13—T22+ 723,

Table 7.2 Percentage y;jx; of kernels popped—popcorn-microwave experiment

Brand (i) Power () Time (k)
1 2 3
1 1 73.8,65.5 70.3,91.0 72.7,81.9
1 2 70.8,75.3 78.7, 88.7 74.1,72.1
2 1 73.7,65.8 93.4,76.3 45.3,47.6
2 2 79.3, 86.5 92.2,84.7 66.3,45.7
3 1 62.5, 65.0 50.1, 81.5 51.4,67.7
3 2 82.1,74.5 71.5, 80.0 64.0,77.0
y.1. = 72.9000 ¥.2. = 79.8667 y.3 = 63.8167

Table 7.3 Three-way ANOVA for the popcorn—microwave experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
B 2 331.1006 165.5503 1.89 0.1801

P 1 455.1111 455.1111 5.19 0.0351

T 2 1554.5756 777.2878 8.87 0.0021

B*P 2 196.0406 98.0203 1.12 0.3485
B*T 4 1433.8578 358.4644 4.09 0.0157
P*T 2 47.7089 23.8544 0.27 0.7648
B*P*T 4 47.3344 11.8336 0.13 0.9673
Treatments 17 4065.7289 239.1605 2.73 0.0206
Error 18 1577.8700 87.6594

Total 35 5643.5989
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Fig.7.6 Interaction plot 90
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which compares the differences in brands 1 and 2 at popping times 2 and 3. This has least squares
estimate

The importance of preplanning will now become apparent. Using Scheffé’s method (rule 14) at overall
level 99%, a confidence interval for this contrast is given by

chikyifﬂ + wg |msE (Zchzk/(br))
i k i k

= —28.45 + /17F17,18 011/87.6594 (4/4)
= —28.45£69.69 = (-96.41, 39.52) .

Our popping rates are percentages, so our minimum significant difference is 69%. This is far too large
to give any useful information. The resulting interval gives the value of the interaction contrast as being
between —96.4% and 39.5%! Had this contrast been preplanned for at individual confidence level 99%,
we would have used the critical value wp = t18,0.005 = 2.878 instead of wg = 7.444, and we would
have obtained a minimum significant difference of about 30%, leading to the interval (—55.40, —1.50).
Although still wide, this interval would have given more information, and in particular, it would have
indicated that the interaction contrast was significantly different from zero.

The other important effect that showed up in the analysis of variance table was the effect of the
different popping times (4, 4.5, or 5 min). Comparisons of popping times did feature as one of the
preplanned sets of multiple comparisons, and consequently, we use Tukey’s method (rule 16) for
pairwise differences v, — 7, at overall level 99%. The minimum significant difference is

msd = wr /msE Sc2/(abr) = (¢3.15.01/+/2) v/(87.6594)(2/12) = 12.703 .

The average percentages of popped kernels for the three popping times are shown in Table 7.2 as
y.1.=72.9000, Yy, =79.8667, Yy 3 =63.8167,

so the three confidence intervals are
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Y1 — 72 € (—6.9667 £12.7030) = (—5.736, 19.670) ,
Y1 =7 € (9.0833£12.7030) = (—3.620, 21.786) ,
Y2 — 3 € (16.0500£12.7030) = (3.347, 28.753) .

We see that at an experimentwise confidence level of at least 94%, use of popping time 2 (4.5 min)
produces on average between 3.35% and 28.75% more popcorn than use of popping time 3 (5 min).

The other questions asked by the experimenters appear to be of less interest, and we will omit these.
The experimentwise confidence level is still at least 94%, even though we have chosen not to calculate
all of the preplanned intervals.

7.5 One Observation per Cell

If the complete model is used for a factorial experiment with one observation per cell, then there are no
degrees of freedom available to estimate the error variance. This problem was discussed in Sect. 6.7,
where one possible method of analysis was described. The method relies on being able to identify a
number of negligible contrasts, which are then excluded from the model. The corresponding sums of
squares and degrees of freedom are used to estimate the error variance. With this approach, confidence
intervals can be constructed and hypothesis tests conducted. An example with four treatment factors
that are believed not to interact with each other is presented in the next section.

Two alternative approaches for the identification of nonnegligible contrasts are provided in the
subsequent sections. In Sect.7.5.2 we show an approach based on the evaluation of a half-normal
probability plot of a set of contrast estimates, and in Sect. 7.5.3 we discuss a more formalized approach.
These two approaches work well under effect sparsity, that is, when most of the treatment contrasts
under examination are negligible.

7.5.1 Analysis Assuming that Certain Interaction Effects are Negligible

For a single replicate factorial experiment, if the experimenter knows ahead of time that certain interac-
tions are negligible, then by excluding those interactions from the model, the corresponding degrees of
freedom can be used to estimate the error variance. It must be recognized, however, that if interactions
are incorrectly assumed to be negligible, then msE will be inflated, in which case the results of the
experiment may be misleading.

Table 7.4 Data for the drill advance experiment

ABCD Advance y = log(advance) ABCD Advance y = log(advance)
1111 1.68 2253 2111 1.98 2967
1112 2.07 .3160 2112 2.44 3874
1121 4.98 .6972 2121 5.70 7559
1122 7.77 .8904 2122 9.43 9745
1211 3.28 5159 2211 3.44 .5366
1212 4.09 6117 2212 4.53 6561
1221 9.97 .9987 2221 9.07 9576
1222 11.75 1.0700 2222 16.30 1.2122

Source Applications of Statistics to Industrial Experimentation, by C. Daniel, Copyright © 1976, John Wiley & Sons,
New York. Reprinted by permission of John Wiley & Sons, Inc
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Table 7.5 Analysis of variance for the drill advance experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
A 1 0.01275 0.01275 7.02 0.0226
B 1 0.25387 0.25387 139.74 0.0001
C 1 1.00550 1.00550 553.46 0.0001
D 1 0.08045 0.08045 44.28 0.0001
Error 11 0.01998 0.00182
Total 15 1.37254

Example 7.5.1 Drill advance experiment

Daniel (1976) described a single replicate 2 x 2 x 2 x 2 experiment to study the effects of four treatment
factors on the rate of advance of a small stone drill. The treatment factors were “load on the drill”
(A), “flow rate through the drill” (B), “speed of rotation” (C), and “type of mud used in drilling”
(D). Each factor was observed at two levels, coded 1 and 2. The author examined several different
transformations of the response and concluded that the log transform was one of the more satisfactory
ones. In the rest of our discussion, y;jx; represents the log (to the base 10) of the units of drill advance,
as was illustrated in the original paper. The data are shown in Table 7.4.

In many experiments with a number of treatment factors, experimenters are willing to believe that
some or all of the interactions are very small. Had that been the case here, the experimenter would
have used the four-way main-effects model. (Analysis of this experiment without assuming negligible
interactions is discussed in Example 7.5.2, p. 222.)

Degrees of freedom and sums of squares are given by rules 2 and 4 in Sect.7.3. For example, the
main effect of B has b — 1 degrees of freedom and

ssB = acd Z (Y.j__ - i....)z = acd Zy?j__ - acba’?....2 .
i i

The sums of squares for the other effects are calculated similarly and are listed in the analysis of
variance table, Table7.5. The error sum of squares shown in Table7.5 is the total of all the eleven
(negligible) interaction sums of squares and can be obtained by subtraction, as in rule 6, p. 210:

ssE = sstot — ssA — ssB — ssC — ssD = 0.01998 .

Similarly, the number of error degrees of freedom is the total of the 15 — 4 = 11 interaction degrees
of freedom. An estimate of ¢ is therefore msE = ssE/11 = 0.0018. Since F1.11,.01 = 9.65, the null
hypotheses of no main effects of B, C, and D would all have been rejected at overall significance level
a < 0.04. Alternatively, from a computer analysis we would see that the p-values for B, C, and D are
each less than or equal to an individual significance level of a* = 0.01.

Confidence intervals for the m = 4 main-effect contrasts using Bonferroni’s method at an overall
level of at least 95% can be calculated from rule 16. From rules 10 and 11 on p. 211, the least squares
estimate for the contrast that compares the effects of the high and low levels of Bisy, — 7y , with
variance 0%(2/8), giving the confidence interval

(F2. = 712w VmsE 2/3)) .
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where the critical coefficient is
wp = 11,.025/4 = 11,.00625 ~ 2 + (27 +2)/(A)(11)) ~ 2911,

from (4.4.22), p. 83, and

msd = wg /msE (2/8) = 2.911 ,/(0.00182)/4 = 0.062..

Now, y, =0.820,y; = 0.568, so the confidence interval for the B contrast is
(0.252+0.062) =~ (0.190, 0.314) ,

where the units are units of log drill advance. Confidence intervals for the other three main effects
comparing high with low levels can be calculated similarly as

A :0.056 £0.062 = (—0.006,0.118),
C :0.501£0.062 = (0.439,0.563),
D :0.142£0.062 = (0.080,0.204) .

We see that the high levels of B, C, D give a somewhat higher response in terms of log drill advance
(with overall confidence level at least 95%), whereas the interval for A includes zero. Il

7.5.2 Analysis Using Half-Normal Probability Plot of Effect Estimates

For a single replicate factorial experiment, with v treatment combinations, one can find a set of v — 1
orthogonal contrasts. When these are normalized, the contrast estimators all have variance o2, If the
assumptions of normality, equal variances, and independence of the response variables are approxi-
mately satisfied, the estimates of negligible contrasts are like independent observations from a normal
distribution with mean zero and variance 2. If we were to plot the normalized contrast estimates
against their normal scores (in the same way that we checked for normality of the error variables in
Chap.5), the estimates of negligible effects would tend to fall nearly on a straight line. Any contrast
for which the corresponding estimate would appear to be far from the line would be considered to be
nonnegligible. The sign of such a nonnegligible contrast could be positive or negative and this depends
upon which level of the factor is labeled as the high level and which is labeled as the low level. For
many factors (especially qualitative factors), these designations are arbitrary, and so it is common to
use a half-normal probability plot for detecting nonnegligible contrasts. This is obtained by plotting
the absolute values of the normalized contrast estimates against their half-normal scores.

Half-normal scores are percentiles of the half-normal distribution with ¢ = 1, corresponding to
the distribution of the absolute value of a standard normal random variable. In particular, the gth
half-normal score for m = v — 1 contrast absolute estimates is the value &, for which

P(Z<&)=05«[14q/(m+1)],
where Z is a standard normal random variable. Hence, the gth half-normal score is

&= @705 % (1+q/(m+ 1)1, (7.5.4)
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where ® is the cumulative distribution function (cdf) of the standard normal distribution.

If the model assumptions are approximately satisfied, and if the estimated effects are all negligible,
then the half-normal plot should show points roughly on a straight line through the origin with slope
equal to 0. However, if any of the effects are large, then their estimates should stand out as relatively
large, creating a nonlinear pattern. Provided that there is effect sparsity—namely, all but a few contrast
estimates are expected to be negligible—it is not difficult to pick out the nonnegligible contrasts. We
note that it is possible to use a half-normal probability plot for non-normalized contrasts provided that
they all have the same variance, so that the line of negligible contrasts still has slope equal to the
common contrast standard deviation.

Example 7.5.2 Drill advance experiment, continued

The data for the drill advance experiment were given in Table 7.4 in Example 7.5.1. The experiment
involved treatment factors “load” (A), “flow” (B), “speed” (C), and “mud” (D) and response “log(drill
advance)” (Y). If we have no information about which factors are likely to be negligible, we would
use the four-way complete model or the equivalent cell-means model:

Yijki = po+ Tijrr + €ijiki s
€ijki ~ N(0,07),
e;j 1S mutually independent
i=12; j=1,2; k=1,2; 1=1,2.

The contrast coefficients for the four main effects and some of the interactions in such a cell-means
model were listed in Table7.1, p. 208. The contrast coefficients for the interactions can be obtained
by multiplying together the corresponding main-effect coefficients. Each contrast is normalized by

dividing the coefficients by /Ecizj w/7 = ~/16 rather than by the divisors of Table7.1. For example,
the normalized BCD interaction contrast has coefficient list

1
Z[—l, ;5 1,-1, 1,-1,-1, 1,-1, 1, 1,-1, 1,-1,—-1, 1].

The least squares estimate of the normalized BCD interaction contrast is then

1
71-(02253) + (03160) + - — (0.9576) + (12122)] = —0.0300.

The 15 normalized factorial contrast estimates are given in Table 7.6, and the half-normal probability
plot of these estimates is shown in Fig. 7.7, with the main effect estimates labeled. Observe that all the
estimates fall roughly on a straight line, except for the estimates for the main-effects of factors D, B,
and C. Hence, these three main effects appear to be nonnegligible.

In the construction of the half-normal probability plot, the contrasts must be scaled to have the
same variance, and normalization is one way to achieve this. When all factors have two levels, and
when the contrasts are written in terms of the treatment combination parameters as in Table 7.1, their
least squares estimators will all have the same variance, as long as the same divisor is used for every
contrast. A popular selection for divisor is v/2, which is the natural divisor for main-effect contrasts
comparing the average treatment combination effects at the two levels of a factor. Thus, rather than
using divisor J/161n Example 7.5.2, we could have used divisor v/2 = 8. If the divisor v/2 is used, the
estimators all have variance 402 /v. If no divisor is used, the estimators all have variance vol. As long
as the variances are all equal, the half-normal probability plot can be used to identify the important
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Table 7.6 Normalized contrast estimates for the drill advance experiment

Effect: A B C D
Estimate: 0.1129 0.5039 1.0027 0.2836
Effect: AB AC AD BC BD CD
Estimate: —0.0298 0.0090 0.0581 —0.0436 —0.0130 0.0852
Effect: ABC ABD ACD BCD ABCD
Estimate: 0.0090 0.0454 0.0462 —0.0300 0.0335
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contrasts. In all other sizes of experiment, the contrast coefficients are not all =1, and we recommend

that all contrasts be normalized so that their estimators all have variance 2.

7.5.3 Analysis Using Confidence Intervals

In this section, an alternative to the half-normal probability plot is presented for the analysis of a
single replicate factorial experiment. As with the half-normal probability plot, we require a set of m
orthogonal contrasts and effect sparsity, and we make no assumptions as to which effects are negligible.
The procedure provides confidence intervals for the m contrasts with a simultaneous confidence level
of at least 100(1 — a)%. For the moment, we recode the treatment combinations as 1, 2, ..., v, their
effects as 7, 72, . .. 7, and we generically denote each of the m contrasts by >_ ¢;7;.

First, let d equal the integer part of (m + 1)/2, which is m /2 if m is even and is (m + 1)/2 if m
is odd. The method requires that there be at least d negligible effects (effect sparsity). In general, this
will be true if at least one of the factors has no effect on the response (and so does not interact with
any of the other factors) or if most of the higher-order interactions are negligible.

We take each of the m contrasts in turn. For the kth contrast > ¢;7;, we calculate its least squares
estimate Y ¢;y; and its sum of squares sscg, using rules 10 and 12, p. 211. We then calculate
the quasi mean squared errormsQ), for the kth contrast by taking the average of the d smallest of
SSC1y « ., SSCk—1, SSCk+1, - - - » SSCyy (that is, the smallest d contrast sums of squares ignoring the kth).

The Voss—Wang method gives simultaneous 100(1 — «))% confidence intervals for the m contrasts,
the confidence interval for the kth contrast being
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ZC,‘Ti € Zciyizl:wv /mstZ:ci2 . (7.5.5)
i

The critical coefficients wy = vy, 4, are provided in Appendix A.11. The critical values vy, 4, o Were
obtained by Voss and Wang (1999) as the square root of the percentile corresponding to « in the
right-hand tail of the distribution of

V? = max {SSC/MSQ,} ,
where the maximum is overk =1,2, ..., m.

Example 7.5.3 Drill advance experiment, continued

Consider again the single replicate drill advance experiment of Examples 7.5.1 and 7.5.2 with four
factors having two levels each. We can find m = 15 orthogonal factorial contrasts, nine of which are
shown in Table7.1, p. 208. The Voss—Wang method of simultaneous confidence intervals, described
above, is reasonably effective as long as there are at least d = 8 negligible contrasts in this set.

For an overall 95% confidence level, the critical coefficient is obtained from Appendix A.11 as
wy = V158,005 = 9.04. Selecting divisors v/2 = 8 for each contrast, we obtain the least squares
estimates in Table7.7.

The sums of squares for the 15 contrasts are also listed in Table7.7 in descending order. For the
contrasts corresponding to each of the seven largest sums of squares, the quasi mean squared error is
composed of the eight smallest contrast sums of squares; that is,

msQ; = (0.0000808 + - - - +0.0020571)/8 = 0.0009004 ,

and the minimum significant difference for each of these seven contrasts is

Table 7.7 Confidence interval information for the drill advance experiment

Effect SSCx msQy Estimate msdj,

C 1.0054957 0.0009004 0.5014 0.1356
B 0.2538674 0.0009004 0.2519 0.1356
D 0.0804469 0.0009004 0.1418 0.1356
A 0.01274383 0.0009004 0.0565 0.1356
CD 0.0072666 0.0009004 0.0426 0.1356
AD 0.0033767 0.0009004 0.0291 0.1356
ACD 0.0021374 0.0009004 0.0231 0.1356
ABD 0.0020571 0.0009105 0.0227 0.1364
BC 0.0019016 0.0009299 —0.0218 0.1378
ABCD 0.0011250 0.0010270 0.0168 0.1449
BCD 0.0008986 0.0010553 —0.0150 0.1468
AB 0.0008909 0.0010563 —0.0149 0.1469
BD 0.0001684 0.0011466 —0.0065 0.1531
ABC 0.0000812 0.0011575 0.0045 0.1538

AC 0.0000808 0.0011575 0.0045 0.1537
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msdy = v15.8.0.057/m50x (16/(8 x 8)) = (9.04)4/0.0009004 x 0.25 ~ 0.1356 .

The quasi mean squared errors for the contrasts corresponding to the eight smallest sums of squares are
modestly larger, leading to slightly larger minimum significant differences and correspondingly wider
intervals. All contrast estimates and minimum significant differences are summarized in Table7.7.

The four largest contrast estimates in absolute value are 0.5014 for C, 0.2519 for B, 0.1418 for D,
and 0.0565 for A, giving the intervals

For C : 0.5014+0.1356 (0.3658,0.6370) ,
For B: 0.2519+0.1356 (0.1163,0.3875),
For D: 0.1418+0.1356 = (0.0062,0.2774),
For A: 0.0565+0.1356 (—=0.0791, 0.1921) .

Thus, in the 95% simultaneous set, the intervals for the main-effect contrasts of C, B, and D exclude
zero and are declared to be the important effects. The intervals for A and for all of the interaction con-
trasts include zero, so we conclude that these contrasts are not significantly different from zero. Notice
that our conclusion agrees with that drawn from the half-normal probability plot. The benefit of the
Voss—Wang method is that we no longer need to guess which contrast estimates lie on the straight
line, and also that we have explicit confidence intervals for the magnitudes of the nonnegligible
contrasts. g

7.6 Using SAS Software

The analysis of experiments with three or more factors and at least one observation per cell uses the
same types of SAS commands as illustrated for two factors in Sect. 6.8. In Sect.7.6.1, we illustrate the
additional commands needed to obtain a half-normal probability plot of the contrast estimates in the
drill advance experiment, and in Sect. 7.6.2, we illustrate computations for the Voss-Wang confidence
intervals. In Sect.7.6.3, we show the complications that can arise when one or more cells are empty.

7.6.1 Half-Normal Probability Plots of Contrast Estimates

In Table 7.8, we show a SAS program for producing a half-normal probability plot similar to that of
Fig.7.7, p. 223, but for the unnormalized contrast estimates of the drill advance experiment. The levels
of A, B, C, and D together with the responses ADVANCE are entered via the INPUT statement in the
first DATA statement. A log transformation is then taken so that the response Y used in the analysis is
the log of the units of drill advance. Note that the function LOG10 () calculates log to the base 10,
whereas LOG () would calculate log to the base e, which is the more usual transformation. The coded
factor levels 1 and 2 are converted to contrast coefficients —0.5 and 4-0.5, respectively (e.g.,A = A
- 1.5). These coefficients could have been entered directly via the INPUT statement, as shown in
Table 6.14, p. 184. The interaction coefficients are obtained by multiplication to also have values £0.5
(e.g., AB = 2*A*B). The contrast coefficients are printed as columns similar to those in Table7.1,
p. 208, but with values +0.5.

The regression procedure, PROC REG, is used to compute regression coefficient estimates, which
are the desired contrast estimates. Though unnormalized, these estimates can be shown to have common
variance o2 /4. The option OUTEST outputs these contrast estimates to a new data set DRILL2, with
one row and many variables. Since the OUTEST option saves more variables than needed, a copy of
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Table 7.8 SAS program for a half-normal probability plot for the drill advance 2* experiment

DATA DRILL;
INPUT A B C D ADVANCE;
Y = LOG1l0 (ADVANCE); * log to base 10;
* Compute contrast coefficients +/-0.5;
A=A-1.5;,; B=B-1.5;,; Cc=C-1.5; D=D - 1.5;
AB = 2*A*B; AC = 2*A*C; AD = 2*A*D; BC = 2*B*C; BD = 2*B*D;
CD = 2*C*D;
ABC = 4*A*B*C; ABD = 4*A*B*D; ACD = 4*A*C*D; BCD = 4*B*C*D;
ABCD = 8*A*B*C*D;
LINES;
1111 1.68
222 2 16.30
PROC PRINT;
* Compute coefficient estimates corresponding to each contrast,
* and output the estimates to a new data set named "drill2";
PROC REG OUTEST = DRILL2 NOPRINT;
MODEL Y = A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;

* Keep only the variables containing effect estimates;
DATA DRIILL2; SET DRILL2; KEEP A--ABCD;

* Transpose the data set "drill2" to get the effect estimates in
* a new data set "drill3" under the variable name "estl";
PROC TRANSPOSE PREFIX = EST OUT = DRILL3;

* Compute absolute estimates and corresponding half-normal scores;
DATA DRILL3; SET DRILL3;

ABS_EST = ABS(EST1l); * ABS_EST = 4*ABS(EST1) would normalize;
PROC SORT; BY ABS_EST;
DATA DRILL3; SET DRILL3; P = _N_/16; HP = 0.5*(1+P);

HNSCORE = PROBIT (HP) ;

* Generate high-resolution half-normal probability plot;

PROC SGPLOT;
SCATTER Y = ABS_EST X = HNSCORE;
TITLE "Half-Normal Probability Plot of Contrast Absolute Estimates";
YAXIS LABEL = "Absolute Estimate"; XAXIS LABEL = "Half-Normal Score";

DRILL?2 is made which only keeps the variables with the contrast estimates. The NOPRINT option
suppresses printing of the procedure’s output. (See Chap. 8 for more information about regression.)

In order to be able to plot the estimates, we need them as the different values of a single variable.
This is achieved by PROC TRANSPOSE, which turns the single row of the data set DRILL2 into a
column in the new data set DRILL3. The resulting least squares estimates are listed as values of the
variable EST1. The absolute estimates are then computed and sorted. The absolute estimates could
have been normalized by multiplying by two, though we have not done so here.

In the final DATA step, the half-normal scores corresponding to the values of EST1 are calculated as
in (7.5.4) the PROBIT function being the inverse cumulative distribution function (cdf) of the standard
normal distribution. This final data set is then printed.

Finally, the last procedure in Table 7.8, the statistical graphics plotting procedure PROC SGPLOT,
draws a high resolution plot of the absolute contrast estimates versus the half-normal scores. Assuming
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Table 7.9 SAS program for the Voss—Wang method for the drill advance experiment

* Use the data set DRILL from the prior program;
DATA DRILL; SET DRILL;

* Fit complete model to obtain the m=15 effect sums of squares;
PROC GLM;
MODEL Y = A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD / SS1;
ODS select ModelANOVA ParameterEstimates;

* The models fit below depend on the results of the above GLM procedure;
* CIs for C, B, D, A, CD, AD, and ACD: compute estimates and standard
* errors by omitting the (other) d=8 effects with the 8 smallest SSs;
PROC GLM;

MODEL Y = C B D A CD AD ACD / SS1;

ODS select OverallANOVA ParameterEstimates;

* CI for ABD: compute est and stde by omitting d=8 other effects;
PROC GLM;

MODEL Y = C B DA CD AD ABD / SS1;

ODS select OverallANOVA ParameterEstimates;

* CI for BC: compute est and stde by omitting d=8 other effects;
PROC GLM;

MODEL Y = C B D A CD AD BC / SS1;

ODS select OverallANOVA ParameterEstimates;

* Continue as above for the six remaining effects;

effect sparsity, the nonnegligible contrasts are those whose estimates do not lie along a straight line
through the origin.

7.6.2 Voss-Wang Confidence Interval Method

The SAS program in Table 7.9 does most of the computations needed to obtain the Voss-Wang simul-
taneous confidence intervals (7.5.5) used for analysis of a single-replicate experiment (Sect.7.5.3).
Using the data of the drill advance experiment, the program starts with the DRILL data set created in
the program in Table 7.8.

The first call of PROC GLM fits the complete model, providing the estimates and sum of squares
for each of the 15 effects, matching the values given in Table7.7 (p. 224). While this is sufficient
information to facilitate applying the Voss-Wang method by hand, the rest of the program provides
additional useful computations based on the results of the first procedure call.

First though, a few comments regarding the calls of PROC GLM. With no CLASS statement, PROC
GLM fits a regression model, as did PROC REG in Sect.7.6.1. Analogously, by again using contrast
coefficients 0.5, the resulting regression coefficient estimates are again the desired contrast estimates
displayed in Table7.7. The option SS1, while unnecessary, requests output of the Type I sums of
squares, thereby suppressing output of the matching Type III sums of squares. The output delivery
system statement ODS, also unnecessary, selectively limits output by ODS table name.

Now, given the results of the first call of PROC GLM, consider using SAS software for additional
computations for formula (7.5.5). For the kth effect, the corresponding quasi mean squared error msQ;,
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is most easily calculated as the error mean square obtained from the submodel that omits the terms
corresponding to the d smallest contrast sums of squares besides ssci. The second and subsequent calls
of PROC GLM illustrate these computations for some of the effects.

The second call of PROC GLM fits the model excluding the d = 8 effects with the smallest sums
of squares from the first call. This yields the value mse = msQ; = 0.00090004 given in Table7.7,
needed to compute the confidence intervals (7.5.5) for the other seven effects C, B, D, A, CD, AD
and ACD. Moreover, for each of these seven effects, the SAS software provides a standard error value
0.01500370. While this is not a standard error per se, since msQ, is not an estimate of o2, it is the

value of ,/msQ, Zi ci2 in formula (7.5.5). The critical values vy, 4, for the Voss—Wang method are
not directly available through SAS, so the intervals must be completed by hand.

The third call of GLM provides the information to compute the confidence interval (7.5.5) for the
effect ABD. Since ABD had one of the eight smallest sums of squares, ABD is included in the model
in place of the term ACD that had the next smallest sum of squares. This call yields mse = msQ;, =
0.00091049, matching the value given in Table 7.7, and standard error value 0.01508716 for ABD.

Similarly, the fourth call of GLM provides the corresponding information to compute the confidence
interval (7.5.5) for the effect BC, and additional calls could be made for the six remaining effects.

7.6.3 Experiments with Empty Cells

We now illustrate the use of SAS software for the analysis of an experiment with empty cells. No
new SAS procedures or commands are introduced, but the empty cells can cause complications. For
illustration, we use the following experiment.

Example 7.6.1 Rail weld experiment

S. M. Wu (1964) illustrated the usefulness of two-level factorial designs using the data listed in the SAS
program of Table 7.10. Under investigation were the effects of three factors—ambient temperature (7'),
wind velocity (V'), and rail steel bar size (.S)—on the ultimate tensile strength of welds. The factor levels
were 0° and 70 °F for temperature, O and 20 miles per hour for wind velocity, and 4/11 and 11/11 in. for
bar size, each coded as levels 1 and 2, respectively. Only six of the possible eight treatment combinations
were observed, but » = 2 observations were taken on each of these six.

Some SAS commands for analyzing the rail weld experiment are presented in Table7.10. Notice
that rather than listing the two observations for each treatment combination on separate lines, we have
listed them as Y1 and Y2 on the same line. We have then combined the observations into the response
variable Y. The new variable REP, which will be ignored in the model, is merely a device to keep the
observations distinct. This method of input is often useful if the data have been stored in a table, with
the observations for the same treatment combinations listed side by side, as in Table 7.2, p. 216.

The three-way complete model is requested in the first call of PROC GLM in Table 7.10. The output
is shown in Fig.7.8. With two cells empty, there are data on only six treatment combinations, so there
are only five degrees of freedom available for comparing treatments. This is not enough to measure the
three main effects, the three two-factor interactions, and the three-factor interaction. This is indicated in
the output, since two effects have zero degrees of freedom. The ESTIMATE statement for the contrast
under the first call of PROC GLM generates no output. Instead, it generates a note in the SAS log
indicating that the contrast is not estimable.

The only model that can be used is one that uses at most five degrees of freedom. Of course, this
should be anticipated ahead of time during step (g) of the checklist (Chap. 2). Figure 7.9 illustrates with
a solid ball at the corresponding corners of the cube the treatment combinations for which data are
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collected. One might guess that the 7'V interaction effect is not estimable, since data are only collected
at three of the four combinations of levels of these two factors.

One possibility is to exclude from the complete model those interactions for which the Type 1
degrees of freedom are zero, namely the 7V and TVS interaction effects. The contrast coefficient lists
for the seven factorial effects are shown in Table7.11. It is clear that the T and V contrasts are not
orthogonal to the TV interaction contrast, and that the S, 7S, and VS contrasts are not orthogonal to
the TVS interaction contrast. Consequently, an incorrect omission of 7V and TVS from the model will
bias the estimates of all the other contrasts. If we do decide to exclude both the 7V and TVS interaction
effects, then the model is of the form

Yijw = p+ o + B + v + (@i + (B7)ji + €ijrt -

We illustrate analysis of this model using the second call of PROC GLM in Table7.10. Some of the
output is shown in Fig.7.10. The contrasts for 7" and V are not orthogonal to each other, but they can
be estimated (although with a small positive correlation). Similar comments apply to the S, 7S, and
VS contrasts. None of the factorial effects appears particularly strong in Fig.7.10.

The ESTIMATE statements under the second call of PROC GLM generate the information shown
in Fig.7.10 for testing or constructing confidence intervals for the usual main effects and two-factor
interaction effects under the given model. O

Table 7.10 SAS program for the rail weld experiment with two empty cells

DATA;
INPUT T V S Y1 Y2;
REP = 1; Y = Y1; OUTPUT; * create SAS observation for y = vyl;
REP = 2; Y = Y2; OUTPUT; * create SAS observation for y = y2;

LINES;

1 1184.0091.0
112 77.7 80.5
2 1 1 95.5 84.0
212 99.7 95.4
221 76.0 98.0
2 22 93.7 81.7

PROC PRINT;

VAR T V S REP Y;
* try to fit a 3-way complete model;
PROC GLM;

CLASS T V S;

MODEL Y = T | V | S;

ESTIMATE 'TEMPERATURE’ T -1 1;
* fit a sub-model using 5 degrees of freedom;
PROC GLM;

CLASS T V S;

MODEL Y = T V S T*S V*S;

ESTIMATE 'TEMPERATURE’ T -1 1;

ESTIMATE ’'VELOCITY’ v -11;
ESTIMATE ’'SIZE’ S -1 1;
ESTIMATE ‘TEMPERATURE*SIZE’ T*S 1 -1 -1 1 / DIVISOR = 2;
ESTIMATE 'VELOCITY*SIZE'’ v*s 1 -1 -1 1 / DIVISOR = 2;

Source Data are from Wu (1964). Copyright © 1964 American Welding Society. Reprinted with permission. (Reprinted
University of Wisconsin Engineering Experiment Station, Reprint 684)
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Fig.7.8 Output from the
first call of PROC GLM for
the rail weld experiment

Fig.7.9 Treatment
combinations included in
the design of the rail weld
experiment

(@) Results Viewer - SAS Output ===

-

The GLM Procedure

Dependent Variable: Y

Source DF | Sum of Squares | Mean Square F Value Pr>F
Model 5 349.5100000 69.9020000 1.00 04877
Error 6 417.7900000 69.6316667

Corrected Total 11 767.3000000

Source DF  Typel SS Mean Square F Value Pr>F

T 1 138.2400000  138.2400000 1.99 1 0.2085

Vv 1 79.3800000 79.3800000 1.14 1 0.3267 1
™V . 0 0.0000000

S 1 0.0033333 0.0033333 0.00 0.9947

S 1 106.6816667  106.6816667 1.53 1 0.2620 Tl
V'S 1 25.2050000 25.2050000 0.36 0.5694

Vs 0 0.0000000

122 222
121 .
! 221
5112 212
R e F- -
111 211

Table 7.11 Contrast coefficients for the observed treatment combinations (T.C.) in the rail weld experiment

TC T Vv A% S N 1A VS
111 -1 -1 1 -1 1 1 -1
112 -1 -1 1 1 -1 -1 1
211 1 -1 -1 -1 -1 1 1
212 1 -1 -1 1 1 -1 -1
221 1 1 1 —1 -1 -1 -1
222 1 1 1 1 1 1 1
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ceoondcallof pROC Gl | NSNS S O E=RE >
The GLM Procedure =
Dependent Variable: Y
Source DF Type lll SS Mean Square F Value Pr>F
T 1214.2450000  214.2450000 3.08 0.1300
Vv 1/ 79.3800000 79.3800000 1.14 | 0.3267
S 1 29.6450000 29.6450000 0.43 0.5383
TS 1/131.2200000  131.2200000 1.88 0.2189
V*S 1 252050000 25.2050000 0.36 0.5694
Parameter Estimate | Standard Error | t Value Pr > |t|
TEMPERATURE 10.3500000 5.90049433 1.75 0.1300 =
VELOCITY -6.3000000 5.90049433  -1.07 0.3267
SIZE -3.8500000 5.90049433  -0.65 0.5383
TEMPERATURE*SIZE | 8.1000000 5.90049433 1.37 0.2189
VELOCITY*SIZE -3.5500000 5.90049433  -0.60 0.5694 3

7.7 Using R Software

The analysis of experiments with three or more factors and at least one observation per cell uses
the same types of R commands as illustrated for two factors in Sect.6.9. In Sect.7.7.1, we illustrate
the additional commands needed to obtain a half-normal probability plot of the normalized contrast
estimates in the drill advance experiment, and in Sect.7.7.2, we illustrate computations for the Voss-
Wang confidence intervals. In Sect. 7.7.3, we show the complications that can arise when one or more
cells are empty.

7.7.1 Half-Normal Probability Plots of Contrast Estimates

In Table7.12, we show an R program for producing a half-normal probability plot similar to that of
Fig.7.7, p. 223, for the normalized contrast estimates of the drill advance experiment. The levels of A,
B, C, and D together with the responses Advance are read from file into the data set drill.data.
A log transformation is then taken so that the response y = 1ogl0 (Advance) used in the analysis
is the log of the units of drill advance. Note that the function 10g10 () calculates log to the base
10, whereas 1og () would calculate log to the base e, which is the more usual transformation. Also
in the second block of code, the coded factor levels 1 and 2 are converted to contrast coefficients —1
and +1, respectively, (e.g. for each factor, 2* (1) - 3 -> -land2*(2) - 3 -> +1). These
coefficients could have been entered directly into and read directly from the data file.

In the second block of code, the linear model function 1m fits the linear regression
model y © A*B*C*D, saving the fitted model coefficient estimates and other information as mode11.
The syntax A*B*C*D causes all main effect and interaction coefficients for A, B, C, and D to be
included in the model as regressors or predictors of y. The interaction coefficients are obtained by
multiplication to also have values £1 (e.g., AB = A*B). The statement modell$coefficients
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Table 7.12 R program for a half-normal probability plot for the drill advance 2* experiment

# Input data for A, B, C, D and Advance
drill.data = read.table("data/drill.advance.txt", header=T)
# Compute log advance, and convert levels 1 and 2 to coeff’s -1 and 1, resp.
drill.data = within(drill.data,

{ v = logl0(Advance); A = 2*A-3; B = 2*B-3; C = 2*C-3; D = 2*D-3 })
head(drill.data, 3)

# Fit regression model with interactions to obtain estimates
modell = lm(y ~ A*B*C*D, data=drill.data)
modellScoefficients # Show estimates

# Generate half-normal plot of effect estimates

# install.packages("gplots™")

library (gplots)

ggnorm.aov (modell, xlab="Half-Normal Scores",
yvlab="Normalized Absolute Estimates")

displays the regression coefficient estimates which are half the value of the contrast estimates, including
the intercept estimate. (See Chap. 8 for more information about regression.)

The last block of code calls the ggnorm. aov function of the gplots package. This function
takes the estimates of the coefficients excluding the intercept, normalizes them, then generates the
desired half-normal plot, plotting the normalized absolute contrast estimates versus the half-normal
scores. Assuming effect sparsity, the nonnegligible contrasts are those whose estimates do not lie along
a straight line through the origin.

7.7.2 Voss-Wang Confidence Interval Method

The R program in Table 7.13 illustrates computation of the Voss-Wang simultaneous confidence inter-
vals (7.5.5) for analysis of a single-replicate experiment (Sect. 7.5.3), using the data of the drill advance
experiment. The levels of A, B, C, and D together with the responses Advance are read from file
into the data set drill.data, and the response y = logl0 (Advance)—the log base 10 of
Advance—is added to the data set. The levels of the factors A—D are then converted from 1 and 2 to
—1 and +1, respectively.

In the second block of code, the linear model function 1m is used to fit the linear regression model
y = A*B*C*D, saving the results as modell. The model is a regression model because the factors
are not factor variables (See Chap. 8). The syntax A*B*C*D causes all main effects and interactions
involving the variables A, B, C and D to be included in the model. The information saved includes
the regression coefficient estimate and corresponding Type I sum of square for each of the 15 effects.
The regression coefficients represent half the corresponding treatment effects of interest, because of
the use of contrast coefficients £ which are 2 units apart. The statement

estimate = 2* (modell$coefficients[2:16])
doubles the coefficient estimates to obtain the usual treatment contrast (effect) estimates (i.e. the

difference of two averages), discards the first coefficient estimate corresponding to the intercept, and
saves the 15 treatment contrast estimates as estimate. If one would display the analysis of variance
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Table 7.13 R program and output for the Voss—Wang method for the drill advance experiment

# Input data for A, B, C, D and Advance
drill.data = read.table("data/drill.advance.txt", header=T)
# Compute log advance, and convert levels 1 and 2 to coeff’s -1 and 1, resp.
drill.data = within(drill.data,
{ v = loglO(Advance); A = 2*A-3; B = 2*B-3; C = 2*C-3; D = 2*D-3 })

# Fit regression model with interactions to get estimates and SS’'s
modell = lm(y ~ A*B*C*D, data=drill.data)

# Save estimates, scaled to be difference of 2 averages

estimate = 2* (modellScoefficients([2:16])

# Save sums of squares for effects

SS = anova(modell) [1:15,2]

# Order estimates and SS’s in deceasing magnitude

estimate = estimate[rev(order(SS))]

SS = SS[rev(order(SS))]

# For each effect, compute msQ, stde, msd, and CIs

msQ = numeric(1l5) # A column with 15 cells

sse = sum(SS[8:15]) # sse = SS(8)+...+SS(15), a scalar

for(i in 1:7) {msQ[i]l=sse/8} # Compute msQ[1l]--msQ[7]

for(i in 8:15) {msQ[i] = (sse - SS[i] + SS[7]1)/8} # msQ[8]--msQ[15]
stde = sqgrt(msQ/4); msd = 9.04*stde

LCL = estimate - msd; UCL = estimate + msd # CIs

# Display results to 5 decimal places

round( cbind(estimate, SS, msQ, stde, msd, LCL, UCL), digits=5)

estimate SS msQ stde msd LCL UCL
C 0.50137 1.00550 0.00090 0.01500 0.13563 0.36574 0.63701
B 0.25193 0.25387 0.00090 0.01500 0.13563 0.11629 0.38756
D 0.14182 0.08045 0.00090 0.01500 0.13563 0.00618 0.27745
A 0.05645 0.01275 0.00090 0.01500 0.13563 -0.07918 0.19209
C:D 0.04262 0.00727 0.00090 0.01500 0.13563 -0.09301 0.17826
A:D 0.02905 0.00338 0.00090 0.01500 0.13563 -0.10658 0.16469
A:C:D 0.02312 0.00214 0.00090 0.01500 0.13563 -0.11252 0.15875
A:B:D 0.02268 0.00206 0.00091 0.01509 0.13639 -0.11371 0.15907
B:C -0.02180 0.00190 0.00093 0.01525 0.13784 -0.15964 0.11603
A:B:C:D 0.01677 0.00113 0.00103 0.01602 0.14485 -0.12808 0.16162
B:C:D -0.01499 0.00090 0.00106 0.01624 0.14683 -0.16182 0.13184
A:B -0.01492 0.00089 0.00106 0.01625 0.14690 -0.16182 0.13198
B:D -0.00649 0.00017 0.00115 0.01693 0.15305 -0.15954 0.14656
A:B:C 0.00451 0.00008 0.00116 0.01701 0.15378 -0.14927 0.15828
A:C 0.00450 0.00008 0.00116 0.01701 0.15378 -0.14929 0.15828

table via the statement anova (modell), one would see that the sums of squares for the treatment
contrasts are in rows 1-15 of column 2 of the table. The statement

SS = anova (modell) [1:15,2]

saves these 15 sums of squares as the column SS. The last two statements in the second block of code
use the reverse order function rev (order () ) to reorder the elements of estimate and SS to be
in decreasing order of magnitude. At this stage, the command cbind (estimate, SS) if given
would display the estimate and SS columns shown in the bottom of Table7.13, where each row
corresponds to the contrast or effect identified by the row label.

The third block of code uses this information saved as estimate and SS to complete the com-
putations. First, msQ is defined to be a numeric column with 15 cells—one for each effect. To help
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compute the ith value msQ[i] for msQ, sse is assigned the value of the sum of the eight smallest
sums of squares. For the ith effect, msQ[1] is the average of the eight smallest sums of squares,
excluding the value SS[i] corresponding to the effect. The first for statement assigns the common
value msQ[i]=sse/8 to each of the first seven cells of msQ, since the corresponding effects do not
have sum of squares SS[1i] in the smallest eight. The second for statement computes msQ [1] for
each of the last eight effects, i.e. fori = 8§, ..., 15, where msQ[1] for the ith effect excludes the
corresponding sum of squares SS[i] but includes the ninth smallest, SS[7]. The estimates were
scaled to correspond to estimators with variance o2 /4 so, using the quasi mean squared error msQ like
an estimate of o2, the standard errors are estimated as stde = sgrt (msQ/4) . While these are not

standard errors per se, they are the values of ,/msQy > ci2 in formula (7.5.5). So, for each effect, the
minimum significant difference ismsd = 9.04*stde, where the critical value v15.35,0.05 = 9.04 is
obtained from Appendix A.11. The lower and upper confidence limit columns LCL and UCL are then
computed as estimatetmsQ. Finally, the pertinent information is column-bound and displayed in
the bottom of Table 7.13, with values rounded to five decimal places.

7.7.3 Experiments with Empty Cells

We now illustrate the use of R software for the analysis of an experiment with empty cells. No new R
procedures or commands are introduced, but the empty cells can cause complications. For illustration,
we use the following experiment.

Example 7.7.1 Rail weld experiment

Wu (1964) illustrated the usefulness of two-level factorial designs using the data listed in Table7.11.
Under investigation were the effects of three factors—ambient temperature (7°), wind velocity (V),
and rail steel bar size (S)—on the ultimate tensile strength of welds. The factor levels were 0° and
70°F for temperature, 0 and 20 miles per hour for wind velocity, and 4/11 and 11/11in. for bar size,
each coded as levels 1 and 2, respectively. Only six of the possible eight treatment combinations were
observed, but » = 2 observations were taken on each of these six.

Some R commands for analyzing the rail weld experiment are presented in Table 7.14. In the first
block of code, the data are read from file into the data set rail . data, factor variables are added to
the data set, then three lines of data are displayed.

In the second block of code, an attempt is made to fit the three-way complete model, and 1 smeans
is used in an attempt to estimate the main effect of temperature T. Partial output is shown in Table 7.15.
With two cells empty, there are data on only six treatment combinations, so there are only five degrees
of freedom available for comparing treatments. This is not enough to measure the three main effects,
the three two-factor interactions, and the three-factor interaction. This is indicated by the analysis of
variance table, since it includes only five degrees of freedom for effects, with the effects £T: £S and
£T: £V: £S unlisted. Also, the estimate of the least squares mean for 7 = 1 is listed as not applicable
(N2) because it is not estimable, due to the lack of data at two of the four VS combinations at level 1
of T. Consequently, the command

summary (contrast (1lsmT, list(T=c(-1,1))), infer=c(T,T))

is also non-applicable so generates no output.

To estimate contrasts, one must use a model with at most five estimable degrees of freedom. Of
course, this should be anticipated ahead of time during step (g) of the checklist (Chap.2). Figure 7.9
(p- 230) illustrates with a solid ball at the corresponding corners of the cube the treatment combinations
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Table 7.14 R program for the rail weld experiment with two empty cells

# Input data for T V S vy
rail.data = read.table("data/rail.weld.txt", header=T)
# Create factor variables, then display first 3 lines of rail.data
rail.data = within(rail.data,

{ £fT = factor(T); fV = factor(Vv); fS = factor(s) })
head(rail.data, 3)

# Try to fit a 3-way complete model

modell = aov(y ~ fT*fv*fS, data=rail.data); anova(modell)

# See main effects non-estimable under complete model if empty cells
library (lsmeans)

1smT = lsmeans (modell, ~ £fT)

1smT; summary (contrast (lsmT, method="pairwise"), infer=c(T,T))

# Fit a model using 5 degrees of freedom

options (contrasts=c("contr.sum", "contr.poly"))

model2 = aov(y ~ fT + fV + fS + fT:fS + fVv:fS, data=rail.data)
anova (model2) # Type I ANOVA

dropl (model2, ~., test="F") # Type III ANOVA

# Estimate main effects of T, V, and S

1smT = lsmeans (model2, ~ f£T); 1lsmT
summary (contrast (1smT, method="pairwise"), infer=c(T,T))
lsmV = lsmeans (model2, ~ £fV); lsmv
summary (contrast (1smV, method="pairwise"), infer=c(T,T))
lsmS = lsmeans (model2, ~ £S); lsmS
summary (contrast (1smS, method="pairwise"), infer=c(T,T))

# Estimating interaction contrasts

1smTS = lsmeans (model2, ~ fT:£S); 1lsmTS
summary (contrast (1smTS, list(TS=c(1,-1,-1,1)/2)), infer=c(T,T))
lsmvVS = lsmeans(model2, ~ £fV:£S); lsmVSs
summary (contrast (1lsmvs, list(VS=c(1l,-1,-1,1)/2)), infer=c(T,T))

# Multiple comparisons of treatment combinations
summary (contrast (1smTS, method="pairwise"), infer=c(T,T))

Source Data is from Wu (1964). Copyright © 1964 American Welding Society. Reprinted with permission. (Reprinted
University of Wisconsin Engineering Experiment Station, Reprint 684)

for which data are collected. One might guess that the 7'V interaction effect is not estimable, since
data are only collected at three of the four combinations of levels of these two factors.

One possibility is to exclude from the complete model those interactions for which the type I degrees
of freedom are zero, namely the TV and TVS interaction effects. The contrast coefficient lists for the
seven factorial effects are shown in Table 7.16. It is clear that the 7" and V contrasts are not orthogonal
to the TV interaction contrast, and that the S, 7S, and VS contrasts are not orthogonal to the TVS
interaction contrast. Consequently, the incorrect omission of 7V and TVS from the model will bias the
estimates of all the other contrasts. If we do decide to exclude both the TV and TVS interaction effects,
then the model is of the form

Yiji = p+ ai + B + v + (@y)ik + (B7) ji + €ijui -

We illustrate analysis of this model beginning with the third block of code in Table 7.14. The aov
function fits the above model, saving the results as mode12. The options statement imposes “sum
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Table 7.15 Output from 3-way complete model for the rail weld experiment

> # Try to fit a 3-way complete model
> modell = aov(y ~ fT*fv*fS, data=rail.data); anova(modell)

Analysis of Variance Table

Response: y
Df Sum Sg Mean Sq F value Pr (>F)

fT 1 138 138.2 1.99 0.21
fv 1 79 79.4 1.14 0.33
fs 1 0 0.0 0.00 0.99
fT:£S 1 107 106.7 1.53 0.26
fv:£fs 1 25 25.2 0.36 0.57
Residuals 6 418 69.6

> library (lsmeans)
> 1smT = lsmeans (modell, ~ £fT)

NOTE: Results may be misleading due to involvement in interactions
> 1lsmT

fT lsmean SE df lower.CL upper.CL

1 NA NA NA NA NA

2 90.5 2.9502 6 83.281 97.719

Results are averaged over the levels of: fVv, fS
Confidence level used: 0.95

Table 7.16 Contrast coefficients for the observed treatment combinations (TC) in the rail weld experiment

TC T Vv A% S N VS VS
111 -1 -1 1 -1 1 1 -1
112 —1 -1 1 1 -1 —1 1
211 1 -1 -1 -1 -1 1 1
212 1 -1 -1 1 1 -1 -1
221 1 1 1 -1 -1 —1 -1
222 1 1 1 1 1 1 1

to zero" constraints on least squares estimates as needed to generate the correct Type III analysis
of variance. The anova and dropl statements generate Type I and Type III analyses, respectively,
shown in the top of Table7.17.

The contrasts for 7 and V are not orthogonal to each other, but they can be estimated (although with
a small positive correlation). Similar comments apply to the S, 7S, and VS contrasts. The 1smeans,
summary, and contrast statements of the 1smeans package are used to estimate least square
means and contrasts, and also for multiple comparisons of the levels of a factor or the combinations of
levels of multiple factors. Appropriate syntax is illustrated by the last three blocks of code in Table 7.14.
Sample output for factor 7', including least squares means and the pairwise contrast, is given in the
bottom of Table7.17.
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Table 7.17 Partial output from the second call of aov

> anova (model2) # Type I ANOVA
Analysis of Variance Table

Response: y

Df Sum Sg Mean Sg F value Pr (>F)
fT 1 138 138.2 1.99 0.21
fv 1 79 79.4 1.14 0.33
fs 1 0 0.0 0.00 0.99
fT:£fSs 1 107 106.7 1.53 0.26
fv:£S 1 25 25.2 0.36 0.57
Residuals 6 418 69.6
> dropl (model2, 7., test="F") # Type III ANOVA

Single term deletions

Model:
vy 7 fT + fv + £S + fT:fS + fV:£fS
Df Sum of Sg RSS AIC F value Pr(>F)

<none> 418 54.6

fT 1 214.2 632 57.6 3.08 0.13
fv 1 79.4 497 54.7 1.14 0.33
fs 1 29.6 447 53.4 0.43 0.54
fT:£S 1 131.2 549 55.9 1.88 0.22
fv:£fs 1 25.2 443 53.3 0.36 0.57
> 1smT = lsmeans (model2, ~ fT); 1lsmT

fT lsmean SE df lower.CL upper.CL

1 80.15 5.1100 6 67.646 92.654
2 90.50 2.9502 6 83.281 97.719

Results are averaged over the levels of: fv, fS
Confidence level used: 0.95

> summary (contrast (1smT, method="pairwise"), infer=c(T,T))
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 -2 -10.35 5.9005 6 -24.788 4.088 -1.754 0.1300

Results are averaged over the levels of: fv, fS
Confidence level used: 0.95

Consistent with the results of the Type III analysis of variance, none of the contrasts estimates
generated by the R program in Table7.14 would appear particularly strong, (only one is shown in
Table7.14). O

Exercises

1. For the following hypothetical data sets of Sect.7.2.2 reproduced below, draw interaction plots to
evaluate the BC and ABC interaction effects, with levels of B on the horizontal axis and levels of C
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for labels. In each case, comment on the apparent presence or absence of BC and ABC interaction
effects.

(@) ijk : 111 112 121 122 211 212 221 222 311 312 321 322
Yijk. © 3.0 40 1.5 25 25 35 3.0 40 3.0 40 1.5 25
(b) ijk : 111 112 121 122 211 212 221 222 311 312 321 322
Yijk. © 3.0 20 1.5 40 25 35 3.0 40 3.0 5.0 3.5 6.0

2. In planning a five-factor experiment, it is determined that the factors A, B, and C might interact
and the factors D and E might interact but that no other interaction effects should be present.
Draw a line graph for this experiment and give an appropriate model.

3. Consider an experiment with four treatment factors, A, B, C, and D, at a, b, c, and d levels,
respectively, with r observations per treatment combination. Assume that the four-way complete
model is a valid representation of the data. Use the rules of Sect. 7.3 to answer the following.

(a) Find the number of degrees of freedom associated with the AC interaction effect.

(b) Obtain an expression for the sum of squares for AC.

(c) Givearule for testing the hypothesis that the AC interaction is negligible against the alternative
hypothesis that it is not negligible. How should the results of the test be interpreted, given the
other terms in the model?

(d) Write down a contrast for measuring the AC interaction. Give an expression for its least squares
estimate and associated variance.

(e) Give a rule for testing the hypothesis that your contrast in part (d) is negligible.

4. Popcorn—-microwave experiment, continued

In the popcorn—microwave experiment of Sect. 7.4 (p. 213), the experimenters studied the effects
of popcorn brand, microwave oven power, and cooking time on the percentage of popped kernels in
packages of microwave popcorn. Suppose that, rather than using a completely randomized design,
the experimenters first collected all the observations for one microwave oven, followed by all
observations for the other microwave oven. Would you expect the assumptions on the three-way
complete model to be satisfied? Why or why not?

5. Weathering experiment

An experiment is described in the paper “Accelerated weathering of marine fabrics”(Moore, M. A.
and Epps, H. H., Journal of Testing and Evaluation 20, 1992, 139-143). The purpose of the
experiment was to compare the effects of different types of weathering on the breaking strength
of marine fabrics used for sails. The factors of interest were

F:  Fabric at 3 levels (1 = polyester, 2 = acrylic, 3 = nylon).

E:  Exposure conditions (1 = continuous light at 62.7 °C, 2 = alternating 30 min light and 15 min
condensation).

A:  Exposure levels (1 = 1200 AFU, 2 = 2400 AFU, 3 = 3600 AFU).

D:  Direction of cut of the fabric (1 = warp direction, 2 = filling direction).

In total there were v = 3 x 2 x 3 x 2 =36 treatment combinations, and r =2 observations were taken
on each. The response variable was “percent change in breaking strength of fabric after exposure to
weathering conditions.” The average response for each of the 36 treatment combinations is shown
in Table 7.18. The error mean square was calculated to be 6.598 with 36 degrees of freedom.
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Table 7.18 Percent change in breaking strength of fabrics after exposure

Exposure AFU Direction Fabric (F)
(E) (A) (D) 1 2 3
1 1 1 —43.0 —1.7 —74.7
2 —46.1 +11.7 —86.7
2 1 —45.3 —4.2 —87.9
2 —51.3 +10.0 -97.9
3 1 —533 —5.1 —98.2
2 —54.5 +7.5 —100.0
2 1 1 —48.1 —6.8 —85.0
2 —43.6 -33 —-91.7
2 1 -52.3 —4.2 —100.0
2 —53.8 -33 —100.0
3 1 —56.5 -59 —100.0
2 —-56.4 —6.7 —100.0

Source Moore and Epps (1992). Copyright © ASTM. Reprinted with permission

(a)

(b)

()

(d)

(e)

)
(€]

How would you decide whether or not the error variables have approximately the same variance
for each fabric?

Using the cell-means model, test the hypothesis Hy : [11 = - - - = T3¢] against the alternative
hypothesis H4 : [at least two 7;’s differ]. What can you conclude?

Write down a contrast in the treatment combinations that compares the polyester fabric with
the nylon fabric. Is your contrast estimable?

If your contrast in (c) is estimable, give a formula for the least squares estimator and its
variance. Otherwise, go to part (e).

Assuming that you are likely to be interested in a very large number of contrasts and you
want your overall confidence level to be 95%, calculate a confidence interval for any pairwise
comparison of your choosing. What does the interval tell you?

Calculate a 90% confidence bound for o2

If you were to repeat this experiment and you wanted your confidence interval in (e) to be of
length at most 20%, how many observations would you take on each treatment combination?

6. Weathering experiment, continued

Suppose you were to analyze the weathering experiment described in Exercise 5 using a four-way
complete model.

(a)
(b)
()

(d)

What conclusions can you draw from the analysis of variance table?

Give an explicit formula for testing that the FA-interaction is negligible.

Would confidence intervals for differences in fabrics be of interest? If not, why not? If so, how
would they be interpreted? Give a formula for such confidence intervals assuming that these
intervals are preplanned and are the only intervals envisaged, and the overall level is to be at
least 99%.

In the original paper, the authors write “Fabric direction (D) had essentially no effect on
percent change in breaking strength for any of the fabrics." Do you agree with this statement?
Explain.
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Table 7.19 Data for the coating experiment

A 2 2 2 2 2 2 2 2
B 2 2 2 2 1 1 1 1
c 2 2 1 1 2 2 1 1
D 2 1 2 1 2 1 2 1

Yijki 5.95 4.57 4.03 2.17 3.43 1.02 425 2.13
A 1 1 1 1 1 1 1 1
B 2 2 2 2 1 | 1 1
c 2 2 1 1 2 2 1 1
D 2 1 2 1 2 1 2 1

Yijki 12.28 9.57 6.73 6.07 8.49 4.92 6.95 531

Source Data adapted from Saravanan et al. (2001). Published by the Journal of Physics D: Applied Physics

7. Coating experiment

P. Saravanan, V. Selvarajan, S. V. Joshi, and G. Sundararajan (2001, Journal of Physics D: Applied
Physics) described an experiment to study the effect of different spray parameters on thermal
spray coating properties. In the experiment, the authors attempted to produce high-quality alumina
(AlLO3) coatings by controlling the fuel ratio (factor A at 1:2.8 and 1:2.0), carrier gas flow rate
(factor B at 1.33 and 3.21L s~ 1), frequency of detonations (factor C at 2 and 4Hz), and spray
distance (factor D at 180 and 220 mm). To quantify the quality of the coating, the researchers
measured multiple response variables. In this example we will examine the porosity (vol. %). The
data are shown in Table 7.19.

(a) Assuming that 3- and 4-factor interactions are negligible, outline an analysis that you would
wish to perform for such an experiment (step (g) of the checklist; see Chap.?2).

(b) Check the assumptions on your model.

(c) Carry out the analysis that you outlined in part (a), including drawing any interaction plots
that may be of interest. State your conclusions clearly.

8. Paper towel strength experiment

Burt Beiter, Doug Fairchild, Leo Russo, and Jim Wirtley, in 1990, ran an experiment to compare
the relative strengths of two similarly priced brands of paper towel under varying levels of moisture
saturation and liquid type. The treatment factors were “amount of liquid” (factor A, with levels 5
and 10 drops coded 1 and 2), “brand of towel” (factor B, with levels coded 1 and 2), and “type of
liquid” (factor C, with levels “beer” and “water” coded 1 and 2). A 2 x 2 x 2 factorial experiment
with » = 3 was run in a completely randomized design. The resulting data, including run order,
are given in Table 7.20.

(a) The experimenters assumed only factors A and B would interact. Specify the corresponding
model.

(b) List all treatment contrasts that are likely to be of primary interest to the experimenters.

(c) Use residual plots to evaluate the adequacy of the model specified in part (a).

(d) Provide an analysis of variance table for this experiment, test the various effects, show plots
of significant main effects and interactions, and draw conclusions.
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Table 7.20 Data for paper towel strength experiment: A = “amount of liquid,” B = “brand of towel,” and C = “liquid

type”
ABC Strength (Order) Strength (Order) Strength (Order)
111 3279.0 3) 4330.7 (15) 3843.7 (16)
112 3260.8 1D 3134.2 (20) 3206.7 (22)
121 2889.6 5) 3019.5 6) 2451.5 2n
122 2323.0 @) 2603.6 ?2) 2893.8 14)
211 2964.5 4 4067.8 (10) 3327.0 (18)
212 3114.2 (12) 3009.3 (13) 3242.0 19)
221 2883.4 9 2581.4 23) 2385.9 24)
222 2142.3 @) 2364.9 8) 2189.9 a7

Table 7.21 Thrust duration (in seconds) for the rocket experiment

- - o O

Co Ci
B Dy Dy D, D3 Dy Dy Dy D3
0 21.60 11.54 19.09 13.11 21.60 11.50 21.08 11.72
1 21.09 11.14 21.31 11.26 22.17 11.32 20.44 12.82
0 21.60 11.75 19.50 13.72 21.86 9.82 21.66 13.03
1 19.57 11.69 20.11 12.09 21.86 11.18 20.24 12.29
Total 83.86 46.12 80.01 50.18 87.49 43.82 83.42 49.86

Source Wood and Hartvigsen (1973). Copyright © 1964 American Society for Quality. Reprinted with permission

(e) Construct confidence intervals for each of the treatment contrasts that you listed in part (b),
using an appropriate method of multiple comparisons. Discuss the results.

. Rocket experiment

S. R. Wood and D. E. Hartvigsen describe an experiment in the 1964 issue of Industrial Quality
Control on the testing of an auxiliary rocket engine. According to the authors, the rocket engine
must be capable of satisfactory operation after exposure to environmental conditions encountered
during storage, transportation, and the in-flight environment. Four environmental factors were
deemed important. These were vibration (Factor A; absent, present, coded 0, 1), temperature
cycling (Factor B; absent, present, coded 0, 1), altitude cycling (Factor C; absent, present, coded
0, 1) and firing temperature/altitude (Factor D, 4 levels, coded 0, 1, 2, 3). The response variable
was “thrust duration,” and the observations are shown in Table 7.21, where C; and D; denote the
kth level of C and the /th level of D, respectively.

The experimenters were willing to assume that the 3-factor and 4-factor interactions were negli-
gible.

(a) State a reasonable model for this experiment, including any assumptions on the error term.

(b) How would you check the assumptions on your model?

(c) Calculate an analysis of variance table and test any relevant hypotheses, stating your choice
of the overall level of significance and your conclusions.

(d) Levels 0 and 1 of factor D represent temperatures —75°F and 170°F, respectively at sea level.
Level 2 of D represents —75°F at 35,000 ft. Suppose the experimenters had been interested in
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Table 7.22 Manganese data for the spectrometer experiment

W W W WRNNN~ =~ =0

Ay As A3
D E B B B B B B>
1 1 0.9331 0.9214 0.8664 0.8729 0.8711 0.8627
1 2 0.9253 0.9399 0.8508 0.8711 0.8618 0.8785
2 1 0.8472 0.8417 0.7948 0.8305 0.7810 0.8009
2 2 0.8554 0.8517 0.7810 0.7784 0.7887 0.7853
1 1 0.9253 0.9340 0.8879 0.8729 0.8618 0.8692
1 2 0.9301 0.9272 0.8545 0.8536 0.8720 0.8674
2 1 0.8435 0.8674 0.7879 0.8009 0.7904 0.7793
2 2 0.8463 0.8526 0.7784 0.7863 0.7939 0.7844
1 1 0.9146 0.9272 0.8769 0.8683 0.8591 0.8683
1 2 0.9399 0.9488 0.8739 0.8729 0.8729 0.8481
2 1 0.8499 0.8417 0.7893 0.8009 0.7893 0.7904
2 2 0.8472 0.8300 0.7913 0.7904 0.7956 0.7827
Total 10.6578 10.6836 9.9331 9.9991 9.9376 9.9172

Source Inman et al. (1992). Reprinted with Permission from Journal of Quality Technology © 1992 ASQ, www.asq.org

10.

(e
()
(2)

()

two preplanned contrasts. The first compares the effects of levels 0 and 1 of D, and the second
compares the effects the levels 0 and 2 of D. Using an overall level of at least 98%, give a set
of simultaneous confidence intervals for these two contrasts.

Test the hypotheses that each contrast identified in part (d) is negligible. Be explicit about
which method you are using and your choice of the overall level of significance.

If the contrasts in part (d) had not been preplanned, would your answer to (d) have been
different? If so, give the new calculations.

Although it may not be of great interest in this particular experiment, draw an interaction plot
for the CD interaction and explain what it shows.

If the experimenters had included the 3-factor and 4-factor interactions in the model, how
could they have decided upon the important main effects and interactions?

Spectrometer experiment

A study to determine the causes of instability of measurements made by a Baird spectrometer
during production at North Star Steel lowa was reported by J. Inman, J. Ledolter, R. V. Lenth, and
L. Niemi in the Journal of Quality Technology in 1992. A brainstorming session with members of
the Quality Assurance and Technology Department of the company produced a list of five factors
that could be controlled and could be the cause of the observed measurement variability. The
factors and their selected experimental levels were:

A:
B:
C.

D:
E:

Temperature of the lab. (67°, 72°, 77°).

Cleanliness of entrance window seal (clean, one week’s use).

Placement of sample (sample edge tangential to edge of disk, sample completely covering
disk, sample partially covering disk).

Wear of boron nitride disk (new, one month old).

Sharpness of counter electrode tip (newly sharpened, one week’s wear).

Spectrometer measurements were made on several different elements. The manganese measure-
ments are shown in Table 7.22, where A; and B; denote the ith level of A and the jth level of B,
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11.

12.

respectively. The experimenters were willing to assume that the 4-factor and 5-factor interactions
were negligible.

(a) Testany relevant hypotheses, at a 0.05 overall level of significance, and state your conclusions.

(b) Draw an interaction plot for the AE interaction. Does the plot show what you expected it to
show? Why or why not? (Mention AE, A, and E.)

(c) The spectrometer manual recommends that the placement of the sample be at level 2. Using
level 2 as a control level, give confidence intervals comparing the other placements with the
control placement. You may assume that these comparisons were preplanned. State which
method you are using and give reasons for your choice. Use an overall confidence level of at
least 98% for these two intervals.

(d) Test the hypotheses of no linear and quadratic trends in the manganese measurements due to
temperature. Use a significance level of 0.01 for each test.

Antifungal antibiotic experiment

M. Gupte and P. Kulkarni (2003, Journal of Chemical Technology and Biotechnology) described
an experiment to maximize the yield of an antifungal antibiotic from the isolate Thermomonospora
sp MTCC 3340. The researchers examined the effect of the three factors temperature of incubation
(factor A at 25,30, and 37 C), concentration of carbon (factor B at2, 5, and 7.5%), and concentration
of nitrogen (factor C at 0.5, 1, and 3%) on the antifungal yield which was measured in terms of
activity against Candida albicans, a type of fungus that can be detrimental to humans. The data
are shown in Table 7.23.

(a) Construct appropriate plots to assess whether any of the main effects seem to have a significant
effect on the response. What do you conclude?

(b) What assumption regarding interactions did you make while drawing your conclusion in part
(2)?

(c) Construct an appropriate plot to asses the significance of two-way interactions. Do any two-
way interactions seem to have a significant effect on the response? If so, does this affect your
conclusions from part (c)?

(d) Suppose there is reason to believe that the three factors do not jointly interact. Fit a model that
includes all main effects and two-way interactions. What effects do you find to be significant?
How does this compare with your conjectures from part (c)?

(e) Do the assumptions of normality and equal error variances hold for the model considered in
part (d)? Are there any outliers?

Antifungal antibiotic experiment, continued

Consider the data from Table 7.23, but without assuming that the three-factor interaction is neg-
ligible. Also, for the purposes of this particular exercise, we change the third levels of factors A
and B to be 35 and 8, respectively, so that their levels are equally spaced.

(a) Make a table similar to that of Table7.1, p. 208, with the first column containing the 27
treatment combinations for the antifungal antibiotic experiment in ascending order. List the
contrast coefficients for the main effect trend contrasts: Linear A, Quadratic A, Linear B, and
Quadratic B. Also list the contrast coefficients for the interaction trend contrasts Linear A x
Linear B, Linear A x Quadratic B, Quadratic Ax Linear B, Quadratic A x Quadratic B.
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Table 7.23 Data for the antifungal antibiotic experiment

A 1 1 1 1 1 1 1 1 1
B 1 1 1 2 2 2 3 3 3
C 1 2 3 1 2 3 1 2 3
Vijk 25.84 51.86 32.59 20.48 25.84 12.87 20.48 25.84 10.20
A 2 2 2 2 2 2 2 2 2
B 1 1 1 2 2 2 3 3 3
C 1 2 3 1 2 3 1 2 3
Vijk 51.86 131.33 41.11 41.11 104.11 32.59 65.42 82.53 51.86
A 3 3 3 3 3 3 3 3 3
B 1 1 1 2 2 2 3 3 3
C 1 2 3 1 2 3 1 2 3

Vijk 41.11 104.11 32.59 32.59 82.53 25.84 51.86 65.42 41.11

Source Gupte and Kulkarni (2003). Journal of Chemical Technology and Biotechnology Published by John Wiley and
Sons. Reprinted with permission

13.

14.

(b) What divisors are needed to normalize each of the contrasts? Calculate, by hand, the least
squares estimates for the normalized contrasts Linear A and Quadratic A.

(c) Thelevels of C are not equally spaced. Select two orthogonal contrasts that compare the levels
of C and add these to your table in part (a).

(d) Use a computer program (similar to that of Table7.8 or 7.12) to calculate the least squares
estimates of a complete set of 26 orthogonal normalized contrasts that measure the main effects
of A, B, and C and their interactions. Prepare a half-normal probability plot of the 26 contrast
estimates. Explain what you can conclude from the plot.

(e) Use the method of Voss and Wang (Sect.7.5.3) to examine a complete set of 26 orthogonal
normalized contrasts that measure the main effects of A, B, and C and their interactions.
Compare your conclusions with those obtained from part 12.

Paper towel experiment, continued

Consider the paper towel strength experiment of Exercise 8. Suppose that only the first ten obser-
vations had been collected. These are labeled (1)—(10) in Table 7.20, p. 240.

(a) Isitpossible to perform an analysis of variance of these data, using a model that includes main
effects and the AB interaction as required by the experimenters? If so, analyze the experiment.
(b) Use a computer program to fit a three-way complete model. Can all of the main effects and
interactions be measured? If not, investigate which models could have been used in the analysis
of such a design with two empty cells and unequal numbers of observations in the other cells.

Abrasive wear experiment

To improve the characteristics of some metals, scientists combine them with another metal or
element. The resulting mixture is called an alloy. Alloys are widely used in engineering applications
in order to reduce cost, improve physical or chemical properties of materials, etc. O. P. Modi, R.
P. Yadav, D. P. Mondal, R. Dasgupta, S. Das, and A. H. Yegneswaran (2001, Journal of Materials
Science) described an experiment to study the effects of three factors on the wear rate (m>/m) of a
zinc-aluminum alloy. The three factors were sliding distance (factor A at 25 and 125 m), applied
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Table 7.24 Data for the abrasive wear experiment

A 1 1 1 1 2 2 2 2
B 1 1 2 2 1 1 2 2
C 1 2 1 2 1 2 1 2
Vijk 0.049 0.041 0.220 0.358 0.044 0.030 0.133 0.192

Source Data adapted from Modi et al. (2001), Journal of Materials Science. Published by Kluwer Academic Publishers

15.

load (factor B at 1 and 7 N), and abrasive size (factor C at 23 and 275 pum). The data were run in
a random order and are listed in Table 7.24.

(a) Calculate the least squares estimates for a set of seven orthogonal contrasts, measuring the
main effects and interactions of the three factors.

(b) Draw a half-normal probability plot of the seven contrast estimates. Although m = 7 contrasts
is too few to be able to draw good conclusions about the main effects and interactions, which
contrasts should be investigated in more detail later?

(c) Use the Voss—Wang procedure to examine the seven contrasts used in part (b).

(d) Based on parts (b) and (c), what conclusions can you draw about the effects of the three factors?

Steel bar experiment

Baten (1956, Industrial Quality Control) described an experiment that investigated the cause of
variability of the length of steel bars in a manufacturing process. Each bar was processed with one
of two different heat treatments (factor A, levels 1, 2) and was cut on one of four different screw
machines (factor B, levels 1, 2, 3, 4) at one of three different times of day (factor C, levels 8 am,
11 am, 3 pm, coded 1, 2, 3). There were considerable differences in the lengths of the bars after
cutting, and a purpose for this experiment was to try to determine whether there were assignable
causes for this variation.

(a) Discuss possible ways to design and analyze this experiment, but assume that it needs to be
run in a working factory. In your discussion, consider using

(1) a completely randomized design,
(i1) a randomized block design,
(iii) a design with times of day (factor C) regarded as a block factor,

(b) The randomization employed by the experimenter is not specified in the published article, and
we proceed as though it were run as a completely randomized design with the three factors A,
B, and C described above. List some of the sources of variation that must have been deemed
as minor and ignored.

(c) The data that were collected by the experimenter are shown in Table7.25. There are r = 4
observations on each of the v = 24 treatment combinations. The data values are “y;jx, =
(length — 4.38) x 1000 in.” Check the assumptions on the three-way complete model for
these data. (You may wish to remove an outlier). If the assumptions are satisfied, calculate an
analysis of variance table. What are your conclusions?

(d) The desired length for each bar was 4.385+0.005 in., which means that the desired value for
the response y;jx, is 5 units. Calculate confidence intervals for the true mean lengths of the
bars cut on the four machines. Which machines appear to give bars closest to specification?
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Table 7.25 Data for the steel bar experiment

ABC Y1jk1 Yijk2 V1jk3 V1jk4 ABC Y2kl Y2jk2 Y2,jk3 V2jk4
111 6 9 1 3 211 4 6 0 1
112 6 3 1 —1 212 3 1 1 -2
113 5 4 9 6 213 6 0 3 7
121 7 9 5 5 221 6 5 3 4
122 8 7 4 8 222 6 4 1 3
123 10 11 6 4 223 8 7 10 0
131 1 2 0 4 231 —1 0 0 1
132 3 2 1 0 232 2 0 -1 1
133 —1 2 6 1 233 0 -2 4 —4
141 6 6 7 3 241 4 5 5 4
142 7 9 11 6 242 9 4 6 3
143 10 5 4 8 243 4 3 7 0

Source Baten (1956). Copyright 1956 American Society for Quality. Reprinted with permission

16. Ice melting experiment

An experiment to gain a better understanding of the role of various substances in melting ice was
run in 2004 by Shuangling He, Mimi Lou, Xiaozhou Xiong, Li Yu, and Yihong Zhao. For each
observation, a 10 ml block of ice was placed into water containing a given concentration of sugar,
or salt, or a sugar and salt mix. The melting time for the ice block was measured in seconds and
then converted to minutes. The three factors of interest were shape of ice block (factor A with
levels 1 - lozenge, 2 - cylinder, and 3 - cube), solute (factor B with levels 1 - sugar, 2 - salt, and
3 - equal parts sugar and salt), and concentration (factor C at 5%, 10% 15%, 20%; coded 1, 2, 3, 4).

The experiment was run as a completely randomized design and the resulting data are shown in
Table 7.26. There are two observations on each treatment combination.

Table 7.26 Data (in minutes) for the ice melting experiment

Concentration Lozenge
Sugar ‘ Salt ‘ Sugar/Salt
5% 54.25 53.33 ‘ 37.17 37.50 ‘ 42.75 43.83
10% 52.50 52.25 ‘ 28.33 28.83 ‘ 39.33 40.00
15% 47.25 48.00 | 21.17 2133 35.83 37.00
20% 43.83 4433 ‘ 15.50 16.33 ‘ 25.50 26.17
Concentration Cylinder
Sugar Salt Sugar/Salt
5% 87.00 85.83 64.33 62.83 76.50 77.17
10% 83.50 82.00 51.83 51.50 67.08 67.33
15% 78.50 79.50 36.00 37.33 55.50 55.67
20% 69.00 67.83 25.00 25.50 45.83 46.50
Concentration Cube
Sugar Salt Sugar/Salt
5% 65.83 65.00 54.00 53.17 55.17 54.83
10% 61.83 62.50 42.50 43.83 47.00 48.50
15% 57.50 58.67 33.00 32.50 43.50 44.83
20% 54.50 55.00 27.50 28.33 36.72 35.15
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(a) Explain briefly what you would randomize if you were running this experiment and why
randomization might be important here.

(b) If the experiment had to be run in two labs with a different technician in each lab, how would
you change the design and the randomization?

(c) Use the three-way complete model (7.2.2) and state the error assumptions on the model. Check
these assumptions are valid.

(d) Test the single hypothesis that lozenge shaped ice blocks melt faster than the other two shapes
on average (averaged over solutes and concentrations). State your null and alternative hypothe-
ses and use significance level 0.01.

(e) Now consider the equivalent cell-means model shown in (7.2.1) with the error assumptions
that you listed in part (c) andi = 1,2,3; j=1,2,3; k=1,2,3,4; t =1,2.

(i) Give a formula for a set of 95% set of confidence intervals for the true differences in the
effects of the treatment combinations. Which method are you using?

(i) Using the method in (i), calculate a confidence interval for the difference between the
melting times for a cylinder-shaped ice block with 5% concentration of sugar, and a cube-
shaped ice block with 20% concentration of salt.

(f) Obtain a 90% upper confidence bound for 2.



8.1 Introduction

In each of the previous chapters we were concerned with experiments that were run as completely
randomized designs for the purpose of investigating the effects of one or more treatment factors on a
response variable. Analysis of variance and methods of multiple comparisons were used to analyze the
data. These methods are applicable whether factor levels are qualitative or quantitative.

In this chapter, we consider an alternative approach for quantitative factors, when the set of possible
levels of each factor is real-valued rather than discrete. We restrict attention to a single factor and denote
its levels by x. The mean response E[Yy;] is modeled as a polynomial function of the level x of the
factor, and the points (x, E[Y,,]) are called the response curve. For example, if E[Y,;] = Bo + (1x for
unknown parameters [y and 31, then the mean response is a linear function of x and the response curve
is a line, called the regression line. Using data collected at various levels x, we can obtain estimates
30 and ﬂAl of the intercept and slope of the line. Then y, = BO + ﬂAlx provides an estimate of E[Y,,]
as a function of x, and it can be used to estimate the mean response or to predict the values of new
observations for any factor level x, including values for which no data have been collected. We call yy
the fitted model or the estimated mean response at the level x.

In Sect. 8.2, we look at polynomial regression and the fit of polynomial response curves to data.
Estimation of the parameters in the model, using the method of least squares, is discussed in the
optional Sect.8.3. In Sect. 8.4, we investigate how well a regression model fits a given set of data via
a “lack-of-fit” test. In Sect. 8.5, we look at the analysis of a simple linear regression model and test
hypotheses about the values of the model parameters. Confidence intervals are also discussed. The
general analysis of a higher-order polynomial regression model using a computer package is discussed
in Sect. 8.6. Investigation of linear and quadratic trends in the data via orthogonal polynomials is the
topic of optional Sect. 8.7. An experiment is examined in detail in Sect. 8.8, and analysis using the SAS
and R software packages is done in Sects. 8.9 and 8.10, respectively.

Polynomial regression methods can be extended to experiments involving two or more quantitative
factors. The mean response E[Y,;] is then a function of several variables and defines a response surface
in three or more dimensions. Specialized designs are usually required for fitting response surfaces, and
consequently, we postpone their discussion to Chap. 16.
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8.2 Models

The standard model for polynomial regression is

Yo =00+ B1x + Box* + - 4 Bpx? 4 €xr (8.2.1)
exi ~ N(0,0%),
€x¢ s are mutually independent

t=1,...,rg X=2X1,...,Xyp.

The treatment factor is observed at v different levels xi, ..., x,. There are r, observations taken
when the treatment factor is at level x, and Y, is the response for the 7th of these. The responses Yy;
are modeled as independent random variables with mean

E[Yy] = Bo+ Bix + ox? + -+ Bpx?

which is a pth-degree polynomial function of the level x of the treatment factor. Since e,; ~ N (0, 02),
it follows that
Yoo ~ N(Bo + Bix + Box” + - + Bpa?, 0?).

Typically, in a given experiment, the exact functional form of the true response curve is unknown.
In polynomial regression, the true response curve is assumed to be well approximated by a polynomial
function. If the true response curve is relatively smooth, then a low-order polynomial function will
often provide a good model, at least for a limited range of levels of the treatment factor.
If p = 1 in the polynomial regression function, we have the case known as simple linear regression,
for which the mean response is
E[Yx]=fo+ Bix,

which is a linear function of x. This model assumes that an increase of one unit in the level of x
produces a mean increase of 3; in the response, and is illustrated in Fig. 8.1. At each value of x, there
is a normal distribution of possible values of the response, the mean of which is the corresponding
point, E[Y,;] = o + f1x, on the regression line and the variance of which is 2.

Consider now the data plotted in Fig. 8.2, for which polynomial regression might be appropriate.
Envisage a normal distribution of possible values of Y, for each level x, and a smooth response curve
connecting the distribution of their means, E[Y,,]. It would appear that a quadratic response curve

Fig.8.1 Simple linear
regression model

E[Y]
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may provide a good fit to these data. This case, for which

E[Yy] = fo + Bix + fax?,

is called quadratic regression. If this model is adequate, the fitted quadratic model can be used to
estimate the value of x for which the mean response is maximized, even though it may not occur at
one of the x values for which data have been collected.

Although regression models can be used to estimate the mean response at values of x that have not
been observed, estimation outside the range of observed x values must be done with caution. There is
no guarantee that the model provides a good fit outside the observed range.

If observations are collected for v distinct levels x of the treatment factor, then any polynomial
regression model of degree p < v — 1 (that is, with v or fewer parameters) can be fitted to the
data. However, it is generally preferable to use the simplest model that provides an adequate fit. So
for polynomial regression, lower-order models are preferred. Higher-order models are susceptible to
overfit, a circumstance in which the model fits the data too well at the expense of having the fitted
response curve vary or fluctuate excessively between data points. Over-fit is illustrated in Fig. 8.3,
which contains plots for a simple linear regression model and a sixth-degree polynomial regression
model, each fitted to the same set of data. The sixth-degree polynomial model provides the better fit
in the sense of providing a smaller value for the sum of squared errors. However, since we may be
looking at natural fluctuation of data around a true linear model, it is arguable that the simple linear
regression model is actually a better model—better for predicting responses at new values of x, for
example. Information concerning the nature of the treatment factor and the response variable may shed
light on which model is more likely to be appropriate.

Least Squares Estimates

Once data are available, we can use the method of least squares to find estimates B ; of the parameters
B; of the chosen regression model. The fitted model is then

$r = fo + Pix + Box? + - + Bpx?,

and the error sum of squares is

ssE = ZZ(yxt — 9%,
X t
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Fig.8.3 Data and fitted
linear and sixth-degree —— Linear

polynomial regression - -~ Degree 6 polynomial
models

The number of error degrees of freedom is the number of observations minus the number of parameters
in the model; that is, n — (p + 1). The mean squared error,

msE= > (yu = $)*/(n—p =1,
X 1

provides an unbiased estimate of 2.

In the following optional section, we obtain the least squares estimates of the parameters 3y and (3
in a simple linear regression model. However, in general we leave the determination of least squares
estimates to a computer, since the formulae are not easily expressed without the use of matrices, and
the hand computations are generally tedious. An exception to this occurs with the use of orthogonal
polynomial models, discussed in Sect. 8.7.

Checking Model Assumptions

Having made an initial selection for the degree of polynomial model required in a given scenario, the
model assumptions should be checked. The first assumption to check is that the proposed polynomial
model for E[Y,;] is indeed adequate. This can done either by examination of a plot of the residuals
versus x or by formally testing for model lack of fit. The standard test for lack of fit is discussed in
Sect. 8.4.

If no pattern is apparent in a plot of the residuals versus x, this indicates that the model is adequate.
Lack of fit is indicated if there is a clear function-like pattern. For example, suppose a quadratic model
is fitted but a cubic model is needed. Any linear or quadratic pattern in the data would then be explained
by the model and would not be evident in the residual plot, but the residual plot would show the pattern
of a cubic polynomial function unexplained by the fitted model (see Fig. 8.4).

Residual plots can also be used to assess the assumptions on the random error terms in the model in
the same way as discussed in Chap. 5. The residuals are plotted versus run order to evaluate indepen-
dence of the error variables, plotted versus fitted values J, to check the constant variance assumption
and to check for outliers, and plotted versus the normal scores to check the normality assumption.

If the error assumptions are not valid, the fitted line still provides a model for mean response.
However, the results of confidence intervals and hypothesis tests can be misleading. Departures from
normality are generally serious problems only when the true error distribution has long tails or when
prediction of a single observation is required. Nonconstant variance can sometimes be corrected via
transformations, as in Chap. 5, but this may also change the order of the model that needs to be fitted.

If no model assumptions are invalidated, then analysis of variance can be used to determine whether
or not a simpler model would suffice than the one postulated by the experimenter (see Sect. 8.6).


http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_5

8.2 Models 253

90 - 24 @)
o

80 1 o
] @] @] o o)

70 ) %
o o o

i O O
. 60 . 5 ©

> N 0 o
50 @] O 1)
o
O O
40 © o o
-1 O

© o)

30 5
20 L T T T T _2 B T T ? T
12 18 24 30 12 18 24 30

X X
(a) Data and fitted model (b) Residual plot

Fig.8.4 Plots for a quadratic polynomial regression model fitted to data from a cubic model

8.3 Least Squares Estimation (Optional)

In this section, we derive the normal equations for a general polynomial regression model. These
equations can be solved to obtain the set of least squares estimates (3; of the parameters 3;. We
illustrate this for the case of simple linear regression.

8.3.1 Normal Equations

For the pth-order polynomial regression model (8.2.1), the normal equations are obtained by differen-
tiating the sum of squared errors

SR =D n o~ ix — - — Bpx?)?

X

with respect to each parameter and setting each derivative equal to zero. For example, if we differentiate
with respect to 3;, set the derivative equal to zero, and replace each 3; with 3;, we obtain the jth normal

equation as
DDy =2 (@o+xél +---+x1’B,,) . (83.2)
X t Py t

We have one normal equation of this form for each value of j, j = 0, 1, ..., p. Thus, in total, we have
p + 1 equations in p + 1 unknowns B ;. Provided that the number of levels of the treatment factor
exceeds the number of parameters in the model (that is, v > p + 1), there is a unique solution to the
normal equations giving a unique set of least squares estimates, with the result that all parameters are
estimable.
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8.3.2 Least Squares Estimates for Simple Linear Regression

For the simple linear regression model, we have p = 1, and there are two normal equations obtained
from (8.3.2) with j = 0, 1. These are

ZZyxz =n50+zzx51,
S w = S b+ > S 2

where n = X, r, denotes the total number of observations in the experiment. Dividing the first equation
by n, we obtain

fo=5.-Hix., (8.33)
where X = > r,x/n. Substituting this into the second equation gives
4 Do 2o XYu — XY
= =, 8.3.4
b1 e (8.3.4)

where ssyx = > ro(x —X.)%

8.4 Test for Lack of Fit

We illustrate the lack-of-fit test via the quadratic regression model

E[Y] = Bo + Bix + fax?.

If data have been collected for only three levels x = x1, x, x3 of the treatment factor, then the fitted
model y, = ﬁo + ﬁAlx + ﬂAzxz will pass through the sample means y, computed at each value of x.
This means that the predicted response y, at the observed values of x is y, =y, (for x = x1, x2, x3).
This is the same fit as would be obtained using the one-way analysis of variance model, so we know
that it is the best possible fit of a model to the data in the sense that no other model can give a smaller
sum of squares for error, ssE.

If observations have been collected at more than three values of x, however, then the model is
unlikely to fit the data perfectly, and in general, y, # y, . If the values y, and y, are too far apart
relative to the amount of variability inherent in the data, then the model does not fit the data well,
and there is said to be model lack of fit. In other words, in our example, the quadratic function is not
sufficient to model the mean response E[Yx;].

If there is replication at one or more of the x-values, and if data are collected at more than three
x-values, then it is possible to conduct a test for lack-of-fit of the quadratic model. The null hypothesis
is that the quadratic model is adequate for modeling mean response; that is,

HE : E[Yu] = fo+ Bix + fax?.

The alternative hypothesis is that a more general model (the one-way analysis of variance model) is
needed; that is,
HY : ElYul=p+7,
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where 7, is the effect on the response of the treatment factor at level x. We fit the quadratic regression
model and obtain ssE and msE = ssE/(n — 3). Now, MSE is an unbiased estimator of the error variance
if the quadratic model is correct, but otherwise it has expected value larger than o,

At each level x where more than one observation has been taken, we can calculate the sample
variance s2 of the responses. Each sample variance s2 is an unbiased estimator of the error variance,

o2, and these can be pooled to obtain the pooled sample variance,

5y = |:Z(rx — l)s§i| /(n —v). (8.4.5)

Provided that the assumption of equal error variances is valid, the pooled sample variance is an unbiased
estimator of o2 even if the model does not fit the data well. This pooled sample variance is called the
mean square for pure error and denoted by msPE. An alternative way to compute msPE is as the mean
square for error obtained by fitting the one-way analysis of variance model.

The test of lack of fit, which is the test of HOQ versus HE, is based on a comparison of the two
fitted models (the quadratic model and the one-way analysis of variance model), using the difference
in the corresponding error sums of squares. We write ssE for the error sum of squares obtained from
the quadratic regression model and ssPE for the error sum of squares from the one-way analysis of
variance model. Then the sum of squares for lack of fit is

ssLOF = ssE — ssPE .

The sum of squares for pure error has n — v degrees of freedom associated with it, whereas the sum
of squares for error has n — (p + 1) = n — 3 (since there are p 4+ 1 = 3 parameters in the quadratic
regression model). The number of degrees of freedom for lack of fitis therefore (n —3) — (n—v) = v—3.
The corresponding mean square for lack of fit,

msLOF = ssLOF /(v — 3),
measures model lack of fit because it is an unbiased estimator of o2 if the null hypothesis is true but

has expected value larger than o2 otherwise.
Under the polynomial regression model (8.2.1) for p = 2, the decision rule for testing HOQ versus

HAQ at significance level « is
reject HZ if msLOF /msPE > Fy_3 .o .
In general, a polynomial regression model of degree p can be tested for lack of fit as long as
v > p+ 1 and there is replication for at least one of the x-levels. A test for lack of fit of the pth-degree
polynomial regression model is a test of the null hypothesis
HY {EYxl=Bo+Bix—+-+Bpxls x=x1,...,x}
versus the alternative hypothesis

HY {EYul=p+7g x=x1,...,% ).

The decision rule at significance level « is
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Table 8.1 Hypothetical data for one continuous treatment factor

X Yxt V. s%

10 69.42 66.07 71.70 69.0633 8.0196
20 79.91 81.45 85.52 82.2933 8.4014
30 88.33 82.01 84.43 84.9233 10.1681
40 62.59 70.98 64.12 65.8967 19.9654
50 25.86 32.73 24.39 27.6600 19.8189

Table 8.2 Test for lack of fit of quadratic regression model for hypothetical data

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Lack of fit 2 30.0542 15.0271 1.13 0.3604
Pure error 10 132.7471 13.2747

Error 12 162.8013

reject Hy if msLOF /msPE > Fy_p_1 n—v,a »

where
msLOF = ssLOF /(v —p —1) and ssLOF = ssE — ssPE.

Here, ssE is the error sum of squares obtained by fitting the polynomial regression model of degree p,
and ssPE is the error sum of squares obtained by fitting the one-way analysis of variance model.

Example 8.4.1 Lack-of-fit test for quadratic regression

In this example we conduct a test for lack of fit of a quadratic polynomial regression model, using the
hypothetical data that were plotted in Fig. 8.2 (p. 251). Table 8.1 lists the r = 3 observations for each
of v = 5 levels x of the treatment factor, together with the sample mean and sample variance. The
pooled sample variance (8.4.5) is

sy =msPE =) 2s7/(15 - 5) = 13.2747,
X

and the sum of squares for pure error is therefore
ssPE = (15 — 5)msPE = 132.7471.

Alternatively, this can be obtained as the sum of squares for error from fitting the one-way analysis of
variance model.

The error sum of squares ssE is obtained by fitting the quadratic polynomial regression model using
a computer program (see Sects. 8.9 and 8.10 for achieving this via SAS and R software, respectively).
We obtain ssE = 162.8013. Thus

sSLOF = ssE — ssPE = 162.8013 — 132.7471 = 30.0542

with
v—p—1=5-2-1=2
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degrees of freedom. The test for lack of fit is summarized in Table 8.2. Since the p-value is large, there
is no significant lack of fit. The quadratic model seems to be adequate for these data. O

8.5 Analysis of the Simple Linear Regression Model

Suppose a linear regression model has been postulated for a given scenario, and a check of the model
assumptions finds no significant violations including lack of fit. Then it is appropriate to proceed with
analysis of the data.

It was shown in the optional Sect.8.3 that the least squares estimates of the intercept and slope
parameters in the simple linear regression model are

Zx Zt XYxt —NX.y.

o=y —Hx, and fi = : (8.5.6)
SSxx

whereX = > ryx/nandssyy = > re(x— f.,)z. The corresponding estimators (random variables),
which we also denote by BO and Bl, are normally distributed, since they are linear combinations of the
normally distributed random variables Yy;. In Exercise 1, the reader is asked to show that the variances
of ﬂAo and ﬁA] are equal to

=2

s ) and Var(ﬁAl) =’ (

) . (8.5.7)

Sxx Sxx

Var(fo) = o> (l +
n

If we estimate o by « N
2 2 G = Bo + Bix))?
N n—2

msE

) (8.5.8)

it follows that R
Bo — Bo by and P

B — B
= ~ th—2.
msE (}l + s);-‘-x) | msE (“L)

Thus, the decision rule at significance level « for testing whether or not the intercept is equal to a
specific value a (Hy™ : {0 = a} versus HY" : {3y # a}) is

~

Bo—a

reject HI™  if —— > In-2.0/2 OF <ln-2,1-0/2 (8.5.9)
msE (% + = )

SSxx

The decision rule at significance level « for testing whether or not the slope of the regression model is
equal to a specific value b (Hglp:{ﬁl = b} versus Hzlp:{ﬂl #b})is
B —b
reject Hglp if Bl— > Ih2,0/2 OF <Iy_21-a/2- (8.5.10)
msE ( !

SSxx

Corresponding one-tailed tests can be constructed by choosing the appropriate tail of the ¢ distribution
and replacing a/2 by a.
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Confidence intervals at individual confidence levels of 100(1 — a))% for By and 3; are, respectively,

SSxx

A | 1
B £ th-2.a/2 msE( ) (8.5.12)
SSxx

We can use the regression line to estimate the expected mean response E[Y,;] at any particular
value of x, say x,; that is,

. 1 %
Bo £ ti—2,a2 |mSE ;—i— = (8.5.11)

and

E[Yxat] = )A’xa = Bo + Bixa .
The variance associated with this estimator is

N 1 Xg — %)%
Var(Yy,) = o (— 4 Bam X ) :
n SSxx
Since Y. ., 1s a linear combination of the normally distributed random variables B() and ﬂA1 , 1t, t0o, has
a normal distribution. Thus, if we estimate o2 by msE given in (8.5.8), we obtain a 100(1 — «a)%
confidence interval for the expected mean response at x, as

7 )2
u) . (8.5.13)

BO + lea + h—2,a/2 \/mSE (1 +

n SSxx
A confidence “band” for the entire regression line can be obtained by calculating confidence intervals
for the mean response at all values of x. Since this is an extremely large number of intervals, we need to
use Scheffé’s method of multiple comparisons. So, a 100(1 — «)% confidence band for the regression
line is given by

A 1 I RY)
Bo+Bixa + 2Fin 24 \/msE (— n M) . (8.5.14)
n

SSxx

The critical coefficient here is w = /2 F2 ,—2 o rather than the value w = \/(v — 1) Fy—1.n—v,q that
we had in the one-way analysis of variance model, since there are only two parameters of interest in
our model (instead of linear combinations of v — 1 pairwise comparisons) and the number of error
degrees of freedom is n — 2 rather than n — v.

Finally, we note that it is also possible to use the regression line to predict a future observation at
a particular value x, of x. The predicted value y,, is the same as the estimated mean response at x,
obtained from the regression line; that is,

)A’xa = BO + /élxa .

The variance associated with this prediction is larger by an amount ¢ than that associated with the
estimated mean response, since the model acknowledges that the data values are distributed around
their mean according to a normal distribution with variance o%>. Consequently, we may adapt (8.5.13)
to obtain a 100(1 — «)% prediction interval for a future observation at x,, as follows:
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Table 8.3 Fluid flow in rpm Liters per minute
liters/minute for the

heart-lung pump 50 1.158 1.128 1.140 1.122
experiment 75 1.740 1.686 1.740

100 2.340 2.328 2.328 2.340
125 2.868 2.982
150 3.540 3.480 3.510 3.504

(xa - )_5)2)

A LA 1
Bo+ Bixa £ th-21-a)2 \/msE (1 + -+
n SSxx

Alternatively, the prediction interval follows, because

A

Yy, — Yy,

\/msE (l + % + (xas;i“ﬂ)

~t(n—2)

under our model.

Example 8.5.1 Heart-lung pump experiment, continued
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1.128
2.298

3.612

(8.5.15)

In Example 4.2.3, p. 73, a strong linear trend was discovered in the fluid flow rate as the number of
revolutions per minute increases in a rotary pump head of an Olson heart—lung pump. Consequently,
a simple linear regression model may provide a good model for the data. The data are reproduced in

Table 8.3. It can be verified that

X, = erx/n = [5(50) + 3(75) + 5(100) + 2(125) + 5(150)]/20 = 98.75,

X

and
y.=22986 and D > xy, =5212.8.
X 1
So,
ssix = [5(—48.75)% 4 3(—23.75)% + 5(1.25)% 4 2(26.25)* + 5(51.25)?]
= 28,093.75,
giving

81 = [5212.8 — 20(98.75)(2.2986)]/[28,093.75]

= 673.065/28,093.75 = 0.02396.

The mean square for error (8.5.8) for the regression model is best calculated by a computer package.

It is equal to msE = 0.001177, so the estimated variance of Bl is

Var(ﬁl) = msE/ssyy = (0.001177)/28,093.75 = 0.000000042 .
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A 95% confidence interval for 3 is then given by (8.5.12), as

0.02396 £ 113,.025+0.000000042 ,
0.02396 £ (2.101)(0.00020466) ,
(0.02353, 0.02439).

To test the null hypothesis Hglp : {81 = 0}, against the one-sided alternative hypothesis Hzlp {B1 > 0}
that the slope is greater than zero at significance level &« = 0.01, we use a one-sided version of the
decision rule (8.5.10) and calculate

3 — 02
-0 0 002396 00
) 0.00020466

msE( 1

SSxx

. .. . . sl
and since this is considerably greater than 715 0,01 = 2.552, we reject HS P We therefore conclude that
the slope of the regression line is greater than zero, and the fluid flow increases as the revolutions per
minute increase. U

8.6 Analysis of Polynomial Regression Models
8.6.1 Analysis of Variance

Suppose a polynomial regression model has been postulated for a given experiment, and the model
assumptions appear to be satisfied, including no significant lack of fit. Then it is appropriate to proceed
with analysis of the data. A common objective of the analysis of variance is to determine whether or
not a lower-order model might suffice. One reasonable approach to the analysis, which we demonstrate
for the quadratic model (p = 2), is as follows.

First, test the null hypothesis HOL : B2 = 0 that the highest-order term (,x2 is not needed in the
model so that the simple linear regression model is adequate. If this hypothesis is rejected, then the
full quadratic model is needed. Otherwise, testing continues and attempts to assess whether an even
simpler model is suitable. Thus, the next step is to test the hypothesis Hy : §; = (» = 0. If this
is rejected, the simple linear regression model is needed and adequate. If it is not rejected, then x is
apparently not useful in modeling the mean response.

Each test is constructed in the usual way, by comparing the error sum of squares of the full (quadratic)
model with the error sum of squares of the reduced model corresponding to the null hypothesis being
true. For example, to test the null hypothesis HOL : B2 = 0 that the simple linear regression model is
adequate versus the alternative hypothesis H ﬁ that the linear model is not adequate, the decision rule
at significance level « is

reject HE  if  ms(32)/msE > Fi y—y.a

where the mean square ms((32) = ss((32)/1 is based on one degree of freedom, and
ss(By) = ssE; — ssE, ,

where ssE; and ssE, are the error sums of squares obtained by fitting the models of degree one and
two, respectively.
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Table 8.4 Analysis of variance table for polynomial regression model of degree p. Here ssE}, denotes the error sum of
squares obtained by fitting the polynomial regression model of degree b

Source of Degrees of freedom Sum of square Mean squares Ratio
variation
Bp 1 ssE,_1 — ssE ms(3p) ms(3p)/msE
ﬂp—l , Bp 2 SSE,—> — ssE ms(ﬁp—h ﬁp) ms(ﬁp—l , ﬂp)/mSE
Ba, s Bp p—1 ssEy — ssE ms(Ba, ..., [Bp) ms(f3a, ..., [p)/msE
Model p ssEy — ssE ms(B, ..., Bp)
ms(Bi, ..., Bp)/msE
Error n—p—1 ssE msE
Total n—1 sstot

Similarly, the decision rule at significance level « for testing Hy : 51 = 3> = 0 versus the alternative
hypothesis that Hy is false is

reject Hy if ms(ﬂla 62)/mSE > FZ,n—v,(y s
where the mean square ms(f31, 52) = ss((31, 52)/2 is based on 2 degrees of freedom, and

s8(B1, B2) = (ssEy — ssEp) /2,

and ssEy and ssE; are the error sums of squares obtained by fitting the models of degree zero and two,
respectively.

The tests are generally summarized in an analysis of variance table, as indicated in Table 8.4 for the
polynomial regression model of degree p. In the table, under sources of variability, “Model” is listed
rather than “f, ..., 8,” for the test of Hp : 81 = --- = (3, = 0, since this is generally included as
standard output in a computer package. Also, to save space, we have written the error sum of squares
as ssE for the full model, rather than indicating the order of the model with a subscript p. Analysis of
variance for quadratic regression (p = 2) is illustrated in the following example.

Example 8.6.1 Analysis of variance for quadratic regression

Consider the hypothetical data in Table8.1, p. 256, with three observations for each of the levels
x = 10, 20, 30, 40, 50. For five levels, the quartic model is the highest-order polynomial model that
can be fitted to the data. However, a quadratic model was postulated for these data, and a test for lack
of fit of the quadratic model, conducted in Example 8.4.1, suggested that this model is adequate.

The analysis of variance for the quadratic model is given in Table 8.5. The null hypothesis HOL :
{B> = 0} is rejected, since the p-value is less than 0.0001. So, the linear model is not adequate, and
the quadratic model is needed. This is no surprise, based on the plot of the data shown in Fig.8.5.
Now, suppose the objective of the experiment was to determine how to maximize mean response.
From the data plot, it appears that the maximum response occurs within the range of the levels x that
were observed. The fitted quadratic regression model can be obtained from a computer program, as
illustrated in Sects. 8.9 and 8.10 for the SAS and R programs, respectively. The fitted model is
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Table 8.5 Analysis of variance for the quadratic model

Source of variation Degrees of freedom Sum of square Mean squares Ratio p-value
52 1 3326.2860 3326.2860 245.18 0.0001
Model 2 6278.6764 3139.3382 231.40 0.0001
Error 12 162.8013 13.5668
Total 14 6441.4777
Fig.8.5 Quadratic 90 o
polynomial regression 80 4 8
model fitted to hypothetical
data 70 o
_ 60+
>
50
40
30
20
10 20 30 40 50

$r = 33.43333 4 4.34754x — 0.08899x2,

and is plotted in Fig. 8.5 along with the raw data. The fitted curve achieves its maximum value when
x is around 24.4, which should provide a good estimate of the level x that maximizes mean response.
Further experimentation involving levels around this value could now be done. g

The adequacy of a regression model is sometimes assessed in terms of the proportion of variability
in the response variable that is explained by the model. This proportion, which is the ratio of the model

sum of squares to the sum of squares total, is called the coefficient of multiple determination, or the
R?-value. In the notation of Table 8.4,

R? = (ssEp — ssE)/sstot = ss(B1, ..., 3p)/sstot. (8.6.1)

For simple linear regression,
R? = ss(f31)/sstot

is called the coefficient of determination, and in this case R* =1, where

T = 8Syy/./SSxxSSyy

is the sample correlation coefficient, or Pearson product-moment correlation coefficient.

8.6.2 Confidence Intervals

When the model is fitted via a computer program, the least squares estimates of B ; and their corre-
sponding standard errors (estimated standard deviations) usually form part of the standard computer
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output. If the model assumptions are satisfied, then

Bj—ﬂj

T
Var (3;)

Individual confidence intervals can be obtained for the model parameters, as we illustrated in Sect. 8.5
for the simple linear regression model. The general form is

Bj + th2,a24 Var (Bj)-

Most programs will also allow calculation of the estimated mean response at any value of x = x,
together with its standard error, and also calculation of the predicted response at x = x, plus its
standard error. Confidence and prediction intervals for these can again be calculated using the #, ;1
distribution. The confidence interval formula for mean response at x = x, is

BO + élxa + -+ Bpxzf + In—p—1,a/2 Var (?xa)

and the prediction interval formula for a new observation at x = x, is

BO+Bl-xa+"'+Bpx5 + thp—t1,0/2/ 0>+ Var Yy,) -

The overall confidence level for all the intervals combined should be computed via the Bonferroni
method as usual. A confidence band for the regression line is obtained by calculating confidence
intervals for the estimated mean response at all values of x, using the critical coefficient for Scheffé’s
method; that is,

ﬁAO + le +- 4+ Bpxp + \/(P +1) Fpiin-p-1,aV Va?(?x) .

8.7 Orthogonal Polynomials and Trend Contrasts (Optional)

The normal equations for polynomial regression were presented in Eq. (8.3.2). It was noted that solving
the equations can be tedious. However, the factor levels can be transformed in such a way that the least
squares estimates have a simple algebraic form and are easily computed. Furthermore, the parameter
estimators become uncorrelated and are multiples of the corresponding trend contrast estimators. This
transformation is illustrated in this section for simple linear regression and for quadratic regression,
when the factor levels x are equally spaced with equal numbers r of observations per level.

8.7.1 Simple Linear Regression
Consider the simple linear regression model, for which

Yo =Bo+Bix+exz; x=x1,....%0 t=1,...,r. (8.7.17)
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When there are r observations on each of the v quantitative levels x of the treatment factor, the average
valueof x isx =r Y  x/n = x/v. The transformation z, = x — X centers the levels x at zero,
so that > z, = 0. This makes the estimates of the slope and intercept parameters uncorrelated (or
orthogonal). We can replace x in model (8.7.17) by z,, so that the “centered” form of the model is

Yi=05+Fizx +exus X=x1,....%5 t=1,...,r. (8.7.18)

A transformation of the independent variable changes the interpretation of some of the parameters.
For example, in the simple linear regression model (8.7.17), By denotes mean response when x = 0,
whereas in the transformed model (8.7.18), ﬁ(’)‘ denotes mean response when z, = 0, which occurs
whenx =Xx .

The normal equations corresponding to j = 0 and j = 1 for the centered model are obtained
from (8.3.2) with z, in place of x. Thus, we have

> Yo = S5 (B +2By) = o
sztzx)?xz = sztzx (BE; + ZXBT) = Zxrz)zféik .

Solving these equations gives the least squares estimates as

N 1
O *
0o = .. and ﬁl = Zx Yxt -
Sor

Cov (Y > szyx,) = > 5 Cov(¥y. Yyy) =ro” D 2, =0,
X t X t X

so the estimators B{; and BT are uncorrelated.

We now consider a special case to illustrate the relationship of the slope estimator with the linear
trend contrast that we used in Sect.4.2.4. Suppose equal numbers of observations are collected at the
three equally spaced levels

x1=95, x=7, and x3=9.

Thenx =17, so
5 = —2, 27 =0, and 29 =2.

These values are twice the corresponding linear trend contrast coefficients (—1, 0, 1) listed in Appen-
dix A.2. Now, r = 2,507 > z2 = 8r, and

A

1 1
*k
By VZXZ?C;Z‘NM 8r(y9 ¥5.)
—1(_ ¥s.)
—4Y9. ¥5.)

which is a quarter of the value of the linear trend contrast estimate. It follows that 37 and the linear
trend contrast have the same normalized estimate and hence also the same sum of squares. Thus, testing
Hy : 3] = 0 under model (8.7.18) is analogous to testing the hypothesis Hy : 73 — 71 = 0 of no linear
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trend effect under the one-way analysis of variance model
Yii=p+7+e; i=1,2,3; t=1,2,

where 7; is the effect on the response of the ith coded level of the treatment factor. The one difference
is that in the first case, the model is the linear regression model (p = 1), while in the second case, the
model is the one-way analysis of variance model, which is equivalent to amodel of order p = v—1 = 2.
Thus the two models will not yield the same mean squared error, so the F-statistics will not be identical.

8.7.2 Quadratic Regression
Consider the quadratic regression model, for which
Yor = B0 + Bix + Box? + €xs . (8.7.19)

Assume that the treatment levels x = xp, ..., x, are equally spaced, with r observations per level.
To achieve orthogonality of estimates, it is necessary to transform both the linear and the quadratic
independent variables.

Let z, = x — X as in the case of simple linear regression, so that again >_ z, = 0. Similarly,

define
2 2 2
P =z - /.
X

Then >, zf) = 0. Also, writing z; for the ith value of z, in rank order, we note that since the levels

x are equally spaced,
) ()

2
Zi = —Zu+1—i and 2 = Zyq1—io

SUp I zxz,(cz) = 0. These conditions give uncorrelated parameter estimators. To see this, consider the
transformed model

vt = By + Bize + B2 + exr . (8.7.20)

The normal equations (8.3.2) become

ZxZ[yxt Z Z; (6() + ZX/B1 + Z(Z)ﬂz) = vr@a“,
z Z;nyxt Z z;zx (/6() + Zxﬁ] + 2(2)ﬂ2) = VZ Zzéik s
Z ZIZX Yxt = Z ZI @ (ﬁo +Zxﬁ1 + Z(2) ) = rz ( (2))23\; .

The least squares estimates, obtained by solving the normal equations, are

2
A% _i B Z ZI Ix Yxt B* _ Z Zt Z)(f ))’xt

0o — Y.» 1= ’ 2 = .
er Zx Vz (Z(Z)

The estimators B(’)* and B]" are unchanged from the simple linear regression model (8.7.18), so they
remain uncorrelated. Similarly, B{; and B;‘ are uncorrelated, because
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Cov(Y“, Z sz) Yx,) =ro? Zz,(cz) =0.
X t X

Observe that Cov(ﬁi‘, B;) is also zero, since it is proportional to

x ot P ~

The transformed variables z, and z,(?) are called orthogonal polynomials, because they are polyno-
mial functions of the levels x and give rise to uncorrelated parameter estimators ﬁAE)", ﬁf, and BAZ‘ It was
illustrated in the previous subsection on simple linear regression that the values z, are multiples of the
coefficients of the linear trend contrast. Likewise, the values z,(cz) are multiples of the coefficients of
the quadratic trend contrast. For example, suppose we have r = 17 observations on the equally spaced
levels

xlzlz, X2218, X3=24, X4=30.

Thenz, =x —X_, so

22=-9, zi8=-3, z224=3, z30=9.

These are 3 times the linear trend contrast coefficients listed in Appendix A.2. Also, > . zﬁ /v =45,
S0

@=s =z =6 =36

which are 36 times the quadratic trend contrasts.

As in the simple linear regression case, one can likewise show that the least squares estimates ﬁAi"
and @‘ are constant multiples of the corresponding linear and quadratic trend contrast estimates 73 — 71
and 7| — 27, + 73 that would be used in the one-way analysis of variance model. Consequently, the
sums of squares for testing no quadratic trend and no linear trend are the same, although again, the
error mean square will differ.

8.7.3 Comments

We have illustrated via two examples the equivalence between the orthogonal trend contrasts in analysis
of variance and orthogonal polynomials in regression analysis for the case of equispaced, equireplicated
treatment levels. While both are convenient tools for data analysis, identification of orthogonal trend
contrasts and orthogonal polynomials can be rather complicated for higher-order trends, unequally
spaced levels, or unequal numbers of observations per level. Fortunately, analogous testing information
can also be generated by fitting appropriate full and reduced models, as was discussed in Sect. 8.6.1.
This is easily accomplished using computer regression software. Use of SAS and R software for such
tests will be illustrated in Sects. 8.9 and 8.10.

8.8 A Real Experiment—Bean-Soaking Experiment

The bean-soaking experiment was run by Gordon Keeler in 1984 to study how long mung bean
seeds ought to be soaked prior to planting in order to promote early growth of the bean sprouts. The
experiment was run using a completely randomized design, and the experimenter used a one-way
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analysis of variance model and methods of multiple comparisons to analyze the data. In Sect. 8.8.2,
we present the one-way analysis of variance, and then in Sect.8.8.3, we reanalyze the data using
polynomial regression methods.

8.8.1

Checklist

The following checklist has been drawn from the experimenter’s report.

(a) Define the objectives of the experiment.

The objective of the experiment is to determine whether the length of the soaking period affects
the rate of growth of mung bean seed sprouts. The directions for planting merely advise soaking
overnight, and no further details are given.

As indicated in Fig. 8.6, I expect to see no sprouting whatsoever for short soaking times, as the
water does not have sufficient time to penetrate the bean coat and initiate sprouting. Then, as the
soaking time is increased, I would expect to see a transition period of sprouting with higher rates
of growth as water begins to penetrate the bean coat. Eventually, the maximum growth rate would
be reached due to complete saturation of the bean. A possible decrease in growth rates could ensue
from even longer soaking times due to bacterial infection and “drowning” the bean.

(b) Identify all sources of variation.

®

(ii)

(iii)

Treatment factors and their levels.

There is just one treatment factor in this experiment, namely soaking time. A pilot experiment
was run to obtain an indication of suitable times to be examined in the main experiment. The
pilot experiment examined soaking times from 0.5 to 16 h. Many beans that had been soaked
for less than 6 h failed to germinate, and at 16 h the saturation point had not yet been reached.
Consequently, the five equally spaced soaking times of 6, 12, 18, 24 and 30 h will be selected as
treatment factor levels for the experiment.

Experimental units.

The experimental units are the mung bean seeds selected at random from a large sack of approx-
imately 10,000 beans.

Blocking factors, noise factors, and covariates.

Sources of variation that could affect growth rates include: individual bean differences; protozoan,
bacterial, fungal, and viral parasitism; light; temperature; humidity; water quality.

Differences between beans will hopefully balance out in the random assignment to soaking
times. Light, temperature, humidity, and water quality will be kept constant for all beans in the
experiment. Thus, no blocking factors or covariates will be needed in the model.

Bacterial infection could differ from one treatment factor level to another due to soaking the
beans in different baths. However, if the beans assigned to different treatment factor levels are
soaked in the same bath, this introduces the possibility of a chemical signal from beans ready to
germinate to the still dormant beans that sprouting conditions are prime. Consequently, separate
baths will be used.

(c) Choose a rule by which to assign experimental units to treatments.

A completely randomized design will be used with an equal number of beans assigned to each
soaking time.
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Soaking time (hrs)

Specify the measurements to be made, the experimental procedure, and the anticipated dif-
ficulties.

The soaking periods will be started at 6-h intervals, so that the beans are removed from the water
at the same time. They will then be allowed to grow in the same environmental conditions for 48
h, when the lengths of the bean sprouts will be measured (in millimeters).

The main difficulty in running the experiment is in controlling all the factors that affect growth. The
beans themselves will be randomly selected and randomly assigned to soaking times. Different
soaking dishes for the different soaking times will be filled at the same time from the same source.
On removal from the soaking dishes, the beans will be put in a growth chamber with no light but
high humidity. During the pilot experiment, the beans were rinsed after 24 h to keep them from
dehydrating. However, the procedure cannot be well controlled from treatment to treatment, and
will not be done in the main experiment.

A further difficulty is that of accurately measuring the shoot length.

Run a pilot experiment.

A pilot study was run and the rest of the checklist was completed. As indicated in step (b), the
results were used to determine the soaking times to be included in the experiment.

Specify the model.

The one-way analysis of variance model (3.3.1) will be used, and the assumptions will be checked
after the data are collected.

Outline the analysis.

Confidence intervals for the pairwise differences in the effects of soaking time on the 48-h shoot
lengths will be calculated. Also, in view of the expected results, linear, quadratic and cubic trends
in the shoot length will be examined. Tukey’s method will be used for the pairwise comparisons

with vy = 0.01, and Bonferroni’s method will be used for the three trend contrasts with overall
level ap < 0.01. The experimentwise error rate will then be at most 0.02.
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Table 8.6 Length of shoots of beans after 48 h for the bean-soaking experiment
Soaking time (h) r Length (mm) Average length Sample variance

12 17 5 11 8 11 4 5.9412 7.0588
8 3 6 4 7 3
5 4 6 9 3

18 17 11 16 18 24 18 18 18.4118 12.6324
21 14 21 19 17 24
14 20 16 20 22

24 17 17 16 26 18 14 24 19.5294 15.6397
18 14 24 26 21 21
22 19 14 19 19

30 17 20 18 22 20 21 17 21.2941 8.5956
16 23 25 19 21 20
27 25 22 23 23

~

Fig.8.7 Plot of sprout 30 4
length y,; against soaking
time x for the bean-soaking 25+

experiment
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(h) Calculate the number of observations that need to be taken.

Using the results of the pilot experiment, a calculation showed that 17 observations should be
taken on each treatment (see Example 4.5.1, p. 93).

(i) Review the above decisions. Revise, if necessary.

Since 17 observations could easily be taken for the soaking time, there was no need to revise the
previous steps of the checklist.

The experiment was run, and the resulting data are shown in Table 8.6. The data for soaking time 6
h have been omitted from the table, since none of these beans germinated.

The data are plotted in Fig. 8.7 and show that the trend expected by the experimenter is approximately
correct. For the soaking times included in the study, sprout length appears to increase with soaking
time, with soaking times of 18, 24, and 30 h yielding similar results, but a soaking of time of only 12
h yielding consistently shorter sprouts.
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8.8.2 One-Way Analysis of Variance and Multiple Comparisons

The experimenter used Tukey’s method with a 99% simultaneous confidence level to compare the
effects of soaking the beans for 12, 18, 24, or 30 h. The formula for Tukey’s method for the one-way
analysis of variance model was given in (4.4.28) as

2
T — Ts € (71 -y, twr (—) msE) s
r
where wr = qv,n,v,a/\/f.

The treatment sample means are shown in Table 8.6. There are r = 17 observations on each of
the v = 4 levels of the treatment factor. The formula for the sum of squares for error in the one-way
analysis of variance model was given in (3.4.5), p. 39. Using the data in Table 8.6 we have

msE = ssE/(n — v) = 10.9816.

From Table A.8, g4,64,0.01 = 4.60. Thus, in terms of the coded factor levels, the 99% simultaneous
confidence intervals for pairwise comparisons are

4 — 1 € (—1.93, 546), ™ —1m € (—2.58, 4.81),
4 —m € (—0.81, 6.58), m—71 € (9.89,17.29),
T4 —1 € (11.66,19.05), m» — 71 € (8.77,16.17).

From these, we can deduce that soaking times of 18, 24, and 30 h yield significantly longer sprouts
on average after 48 h than does a soaking time of only 12 h. The three highest soaking times are not
significantly different in their effects on the sprout lengths, although the plot (Fig.8.7) suggests that
the optimum soaking time might approach or even exceed 30 h.

The one-way analysis of variance for the data is given in Table 8.7 and includes the information
for testing for linear, quadratic, and cubic trends. The coefficients for the trend contrasts, when there
are v = 4 equally spaced levels and equal sample sizes, are listed in Table A.2. The linear contrast is
[—3, —1, 1, 3], and the hypothesis of no linear trend is HOL : {—371 — ™ + 713+ 374 = 0}. Obtaining
the treatment sample means from Table 8.6, the estimate of the linear trend is

D iy = =31 = Vo + V3. + 374 =47.1765,
i

with associated variance
Si(c?/r)o? = /179 + 14+ 1 +9)0? = (20/17)02.

The sum of squares is calculated from (4.3.14), p. 77; that is,

ssc = (Z ciy,-_)z /(Z c,~2/17) .

So, the sum of squares for the linear trend is
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Table 8.7 One-way ANOVA for the bean-soaking experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Soaking time 3 2501.29 833.76 75.92 0.0001
Linear trend 1 1891.78 1891.78 172.27 0.0001
Quadratic trend 1 487.12 487.12 44.36 0.0001
Cubic trend 1 122.40 122.40 11.15 0.0014

Error 64 702.82 10.98

Total 67 3204.12

ssc = (47.1765)%/(20/17) = 1891.78.

The quadratic and cubic trends correspond to the contrasts [ 1, —1, —1, 1]and [-1, 3,-3, 1],
respectively, and their corresponding sums of squares are calculated in a similar way and are listed in
Table 8.7. If we test the hypotheses that each of these three trends is zero with an overall significance
level of a = 0.01 using the Bonferroni method, then, using (4.4.24) on p. 84 for each trend, the
null hypothesis that the trend is zero is rejected if ssc/msE > F1 ¢4,0.01/3. This critical value is not
tabulated, but since F 64,0.0033 = t12’64’0.00166, it can be approximated using (4.4.22) as follows:

1,64,0.00166 ~ 2.935 4 (2.9353 +2.935)/(4 x 64) = 3.0454,

so the critical value is Fi 64.0.0033 & 9.2747. (Alternatively, the critical value could be obtained from
a computer package using the “inverse cumulative distribution function” of the F'-distribution.)

To test the null hypothesis HOL that the linear trend is zero against the alternative hypothesis H j :
—371 — ™ 4+ ™ + 374 # 0 that the linear trend is nonzero, the decision rule is to

reject Hy if ssc/msE = 172.27 > F 64, 0033 ~ 9.2747 .

Thus, using a simultaneous significance level « = 0.01 for the three trends, the linear trend is deter-
mined to be nonzero.

The corresponding test ratios for the quadratic and cubic trends are given in Table8.7. There is
sufficient evidence to conclude that the linear, quadratic, and cubic trends are all significantly different
from zero. The probability that one or more of these hypotheses would be incorrectly rejected by this
procedure is at most o = 0.01.

8.8.3 Regression Analysis

In the previous subsection, the bean-soaking experiment was analyzed using the one-way analysis
of variance and multiple comparison methods. In this subsection, we reanalyze the experiment using
regression analysis. Since there are four levels of the treatment factor “soaking time,” the highest-order
polynomial regression model that can be (uniquely) fitted to the data is the cubic regression model,
namely,
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Table 8.8 Cubic regression ANOVA for the bean-soaking experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
B3 1 122.40 122.40 11.15 0.0014
052, B3 2 609.52 304.76 27.76 0.0001
Model 3 2501.29 833.76 75.92 0.0001
Error 64 702.82 10.98

Total 67 3204.12

Yoo = Bo+ Bix + ox? + B3x° + €y,
ext ~ N(0,07),
€x¢ s are mutually independent ,
x=12,18,24,30; t=1,...,17.

Using the data given in Table 8.6, the fitted model can be obtained from a computer program (see
Sects. 8.9 and 8.10) as

P = —101.058824 + 15.475490x — 0.657680x> + 0.009259x> .

Table 8.8 contains the analysis of variance for the bean experiment data based on the cubic regression
model. The cubic model provides the same fit as does the one-way analysis of variance model, since
p+1=v=4.Thus, j, =y, forx = 12, 18,24, 30, and the number of degrees of freedom, the sum of
squares, and the mean square for the major sources of variation—the treatment factor (“Model”), error,
and total—are the same in the regression analysis of variance as in the one-way analysis of variance.
It is not possible to test for model lack of fit, since the postulated model is of order p =3 = v — 1.
We can, however, test to see whether a lower-order model would suffice.

We first test the null hypothesis HOQ : B3 = 0, or equivalently, that the quadratic regression model
E[Yy] = Bo+01x+ ﬁzxz would provide an adequate fit to the data. The result of the test is summarized
in Table 8.8. The test ratio is 11.15 with a p-value of 0.0014. So, we reject HOQ and conclude that the
cubic model is needed. Since the cubic regression model provides the same fit as the analysis of variance
model, this test is identical to the test that the cubic trend contrast is zero in the one-way analysis of
variance, shown in Table 8.7.

If HOQ : B3 = 0 had not been rejected, then the next step would have been to have tested the null
hypothesis HOL : B2 = 53 = 0, or equivalently, that the simple linear regression model is adequate. If
neither HOQ : 33 = 0 nor HOL : B2 = (3 = 0 had been rejected, the next step would have been to have
tested Hy : 31 = o = (33 = 0.

Based on the previous analysis, the cubic model is needed to provide an adequate fit to the data.
Figure 8.8 illustrates the cubic model fitted to the data. We may now see the dangers of using a model
to predict the value of the response beyond the range of observed x values. The cubic model predicts
that mean sprout length will increase rapidly as soaking time is increased beyond 30 h! Clearly, this
model is extremely unlikely to be reliable for extrapolation beyond 30 h.

Recall that Tukey’s method of multiple comparisons did not yield any significant differences in
mean response between the soaking times of 18, 24, and 30 h. Yet the plot of the data in Fig.8.8
suggests that a trend over these levels might well exist. There is a lot of variability inherent in the data
that prevents significant differences between the soaking times from being detected. Nevertheless, a
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followup experiment examining soaking times from 18 to, say, 48 h might provide the information
needed to determine the best range of soaking times.

8.9 Using SAS Software

Polynomial regression models can be fitted using the SAS regression procedure PROC REG. The
procedure provides least squares estimates of the regression parameters. Predicted (fitted) values and
residuals can be saved to an output data set, as can 95% confidence limits for mean response, 95%
prediction limits for new observations for given treatment levels x, and corresponding standard errors.

A sample SAS program to analyze the data from the bean-soaking experiment of Sect. 8.8 is shown
in Table 8.9 . In the first DATA statement, the variables x2 and x> are created for the cubic regression
model. PROC REG is used to fit the cubic regression model, and the output is shown in Fig. 8.9.

An analysis of variance table is automatically generated and includes information needed for testing
the hypothesis that the treatment factor “soaking time” has no predictive value for mean growth length,
namely, Hy : {#; = $» = (3 = 0}. The information for this test is listed with source of variation
“Model”. We see that the p-value is less than 0.0001, so Hy would be rejected.

Below the analysis of variance table, parameter estimates for the fitted model are given. Using these,
we have the fitted cubic regression model

$ = —101.05882 + 15.47549x — 0.65768x> + 0.00926x° .

The standard error of each estimate is also provided, together with the information for conducting a
t-test of each individual hypothesis Hy : {5; =0},i = 1,2, 3.

Inclusion of the option SS1 in the MODEL statement of PROC REG causes printing of the Type
I (sequential) sums of squares in the output. Each Type I sum of squares is the variation explained
by entering the corresponding variable into the model, given that the previously listed variables are
already in the model. For example, the Type I sum of squares for X is ssEy — ssEj, where ssEy is the
error sum of squares for the model with E[Y,;] = (o, and ssE; is the error sum of squares for the
simple linear regression model E[Y,;] = [y + (1x; that is,

ss(B1150) = ssEy — ssE; = 1891.77647 .

Likewise, the Type I sum of squares for X2 is the difference in error sums of squares for the linear and
quadratic regression models; that is,
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Fig.8.9 Output generated . —
by PROC REG R R [ ][-E- )
The SAS System =

The REG Procedure
Model: MODEL1
Dependent Variable: LENGTH

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 3 2501.29412 833.76471 75.92 <.0001
Error 64 702.82353 10.98162

Corrected Total 67 3204.11765

Root MSE 3.31385 R-Square 0.7806
Dependent Mean 16.29412 Adj R-Sq 0.7704
Coeff Var 20.33772

Parameter Estimates

Parameter Standard

Variable DF Estimate Error tValue Pr>|t Typel SS
Intercept 1 -101.05882 21.87851 -4.62 <.0001 18054
X 1 15.47549  3.49667 4.43 <.0001 1891.77647
X2 1 -0.65768  0.17508 -3.76 0.0004 487.11765
X3 1 0.00926  0.00277 3.34 0.0014 122.40000

Test QUAD Results for Dependent Variable LENGTH

Mean
Source DF Square F Value Pr>F
Numerator 1 122.40000 11.15 0.0014

Denominator 64 10.98162

Test LINEAR Results for Dependent Variable LENGTH

Mean
Source DF Square F Value Pr>F
Numerator 2 304.75882 27.75 =<.0001 E

Denominator 64 10.98162

ss(321B0, B1) = ssEy — ssE, = 487.11765,

and for X3, the Type I sum of squares is the difference in error sums of squares for the quadratic and
cubic regression models; that is,

ss(33150, B1, B2) = ssE, — ssE = 122.40000,

where we have written ssE for the error sum of squares for the full cubic model (rather than ssEj3).
Thus, the ratio used to test the null hypothesis HOQ : {3 = 0} versus sz :{B3 # 0} is

ss(33)/msE = ss(33|5o, B1, P2)/msE = 122.4/10.98162 = 11.1459.
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Table 8.9 SAS program for analysis of the bean-soaking experiment

DATA BEAN;
INPUT X LENGTH;
X2 = X**2,; X3 = X**3;

LINES;
12 5
12 11
12 8
30 23
30 23

* create extra x-values for plotting the fitted curve;
DATA TOPLOT;
DO X = 8 TO 34; X2 = X**2,; X3 = X**3;
LENGTH = .; * "." denotes a missing value;
OUTPUT;
END; * X loop;
* concatenate data sets BEAN and TOPLOT;
DATA; SET BEAN TOPLOT;
* do the analysis;
PROC REG; MODEL LENGTH = X X2 X3 / SS1;
QUAD: TEST X3 = 0; * test adequacy of quadratic model;
LINEAR: TEST X2 = 0, X3 = 0; * test adequacy of linear model;
OUTPUT PREDICTED = LHAT RESIDUAL = E
L95M = L95M U95M = U95M STDP = STDM
L95 = L95T U95 = U95I STDI = STDI;
* plot the data and fitted model, overlayed on one plot;
PROC SGPLOT;

SCATTER Y = LENGTH X = X / LEGENDLABEL = ’'Observed data’
MARKEREATTRS = (SIZE = 0.25cm COLOR = BLACK) ;

SCATTER Y = LHAT X = X / LEGENDLABEL = ’‘Cubic model fit~’
MARKEREATTRS = (SYMBOL = SQUARE SIZE = 0.25cm COLOR = BLACK) ;
YAXIS LABEL = "Sprout length (mm)" VALUES = (-20 TO 30 by 5);
XAXIS LABEL = "Soaking time (hrs)" VALUES = (8 TO 36 by 4);

* 95% confidence intervals and standard errors for mean response;
PROC PRINT; VAR X L95M LHAT U95M STDM;

* 95% prediction intervals and standard errors for new observations;
PROC PRINT; VAR X L95I LHAT U95I STDI;

* generate residual plots;

PROC RANK NORMAL = BLOM; VAR E; RANKS NSCORE;

PROC SGPLOT; SCATTER Y = E X = X;

PROC SGPLOT; SCATTER Y = E X = LHAT;

PROC SGPLOT; SCATTER Y = E X = NSCORE;

The output of the TEST statement labeled QUAD provides the same information, as well as the
p-value 0.0014. The null hypothesis HOQ is thus rejected, so the quadratic model is not adequate—the
cubic model is needed. Hence, there is no reason to test further reduced models, but the information
for such tests will be discussed for illustrative purposes.

To test HOL : B = (B3 = 0, the full model is the cubic model and the reduced model is the linear
model, so the numerator sum of squares of the test statistic is
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s8(52, 33) = ssEy — ssE = ss(52150, B1) + ss(53150, B1, B2)
= 487.117647 + 122.400000 = 609.517647 ,

and the decision rule for testing HOL against the alternative hypothesis H g that the cubic model is
needed is
reject H({‘ if ms(B3,, 53)/msE > 64,0,

where

ms(32, 33) = ss(B2, 53)/2.

The information for this test of adequacy of the linear model is also generated by the TEST statement
labeled LINEAR.

The OUTPUT statement in PROC REG saves into an output data set the upper and lower 95%
confidence limits for mean response and the corresponding standard error under the variable names
L95M, U95M and STDM. This is done for each x-value in the input data set for which all regressors are
available. Similarly, the upper and lower 95% prediction limits for a new individual observation and
the corresponding standard error are saved under the variable names L.95T, U95T and STDI. These
could be printed or plotted, though we do not do so here.

The plot produced by PROC SGPLOT is not shown but is similar to the plot in Fig. 8.8. Overlaid
on the same axes are plots of the raw data and the fitted cubic polynomial regression curve. A trick
was used to generate data to plot the fitted curve. Actual x values range from 12 to 30. In the DATA
TOPLOT step in Table 8.9, additional observations were created in the data set corresponding to the
integer x values ranging from 8 to 34 but with missing values for the dependent variable length. While
observations with missing length values cannot be used to fit the model, the regression procedure does
compute the corresponding predicted values LHAT. The OUTPUT statement includes these fitted values
in the newly created output data set, so they can be plotted to show the fitted model.

In this example, it is not possible to test for lack of fit of the cubic model, since data were collected
at only four x-levels. If we had been fitting a quadratic model, then a lack-of-fit test would have been
possible. An easy way to generate the relevant output using the SAS software is as follows. In line 4
of the program, add a classification variable A, using the statement “A = X;”. Then insert a PROC
GLM procedure before PROC REG as follows.

PROC GLM;
CLASS A;
MODEL LENGTH = X X2 A;

Then the Type I sum of squares for A is the appropriate numerator ssLOF for the test ratio.
Statements for generation of residual plots for checking the error assumptions are included in the
sample SAS program in Table 8.9, but the output is not shown here.

8.10 Using R Software

Polynomial regression models can be fitted using the R function 1m that fits linear models. The function
provides least squares estimates of the regression parameters. Predicted (fitted) values and residuals are
available, as are 95% confidence limits for mean response, 95% prediction limits for new observations
for given treatment levels x, and corresponding standard errors.

A sample R program to analyze the data from the bean-soaking experiment of Sect. 8.8 is shown
in Table 8.10. In the first block of code, the data are read from file into the data set bean.data.
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Subsequently, though the results are not shown here, the head command would display the first six
rows of data, showing for example that the data set contains the two variables x and Length, then the
dimension command would reveal that the data set contains 68 observations, and a scatterplot of the
data would be generated.

In the second block of code, the linear model function 1m is used to fit the cubic, quadratic, and
linear regression models, saving the respective results as mode13, model2 and model1l, and related
commands are used to generate the output shown in Tables 8.11 and 8.12. Since the data set contains
the soaking time, x, the syntax I (x”2) allows inclusion of the quadratic term x? as a predictor variable
in a model without creating a corresponding variable in the data set, and likewise I (x” 3) for the cubic
term x3. The command summary (model3) displays the parameter least squares estimates shown
in the middle of Table 8.11. From these, we have the fitted cubic regression model

$y = —101.05882 + 15.47549x — 0.65768x2 + 0.00926x° .

The standard error of each estimate is also provided, together with the information for conducting a
t-test of each individual hypothesis Hy : {5; = 0},i =1, 2, 3.

The summary command also generates the analysis of variance F'-test of the hypothesis that the
treatment factor “soaking time” has no predictive value for mean growth length, namely, Hy : {§] =
02 = B3 = 0}. The information for this test is listed after “F-statistic”. We see that the p-value
is very small, only 2 x 1071, so Hy would be rejected.

Having saved the results of the cubic fitasmode13, the statement anova (model3) causes display
of the Type I (sequential) sums of squares, provided in an analysis of variance table in the bottom
of Table8.11. Each Type I sum of squares is the variation explained by entering the corresponding
variable into the model, given that the previously listed variables are already in the model. For example,
the Type I sum of squares for x is ssEy — ssEj, where ssEy is the error sum of squares for the
model with E[Y,;] = (o, and ssE; is the error sum of squares for the simple linear regression model
E[Yy:]1 = fo + Bix; that is,

ss(B1108o) = ssEy — ssE; ~ 1892.

Likewise, the Type I sum of squares for x*2 is the difference in error sums of squares for the linear
and quadratic regression models; that is,

ss(B32180, B1) = ssE| — ssEp ~ 487,

and for x” 3, the Type I sum of squares is the difference in error sums of squares for the quadratic and
cubic regression models; that is,

ss(B331B0, B, B2) = ssEp — ssE~ 122,

where we have written ssE for the error sum of squares for the full cubic model (rather than ssEz).
Thus, the ratio used to test the null hypothesis HOQ : {83 = 0} versus HAQ {83 A0} is

ss(B3)/msE = ss(B3150, B, B2)/msE ~ 122/11 ~ 11.2,

with corresponding p-value 0.0014. The null hypothesis HOQ is thus rejected, so the quadratic model
is not adequate—the cubic model is needed. The same information is generated by the statement
anova (model2, model3), which compares the reduced quadratic and full cubic models, with
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Table 8.10 R program for analysis of the bean-soaking experiment

bean.data = read.table("data/bean.txt", header=T)
head (bean.data); dim(bean.data); plot(Length ~ x, data=bean.data)

# Fit regression models and generate ANOVA info

model3 = Im(Length ~ x + I(x"2) + I(x"3), data=bean.data) # Fit cubic model
summary (model3) # Display least squares estimates, overall F test

anova (model3) # Display type 1 SS

# Would a lower order model suffice?

model2 = lm(Length ~ x + I(x"2), data=bean.data) # Fit quadratic model
modell = Im(Length ~ x, data=bean.data) # Fit simple linear reg model

anova (model2, model3) # Can cubic term be dropped?

anova (modell, model3) # Can both cubic and quadratic terms be dropped?

# Compute predicted values, CIs, PIs, and std errors for x=8, 8.01, ..., 34
# Set up a grid of x’s for prediction: x=8, 8.01, 8.02, ..., 34
xPred = data.frame(x=seq(8, 34, 0.01))

# Calculate fitted values, 95% CIs for mean response, se.fit

preds = predict(model3, xPred, se.fit=T, interval=c("confidence"))

# Calculate 95% PIs for new observations

preds2 = predict(model3, xPred, interval = c("prediction"))

# preds; preds2 # (Reader: display preds and preds2 to see contents)
se.fit = predsS$se.fit # to remove "preds$" from column header name
# Compute standard error for prediction

rmse = predsSresidual.scale # used to compute se.pred

se.pred = sqgrt(predsS$se.fit”2 + rmse”2)

# Consolidate results for display

stats = cbind(xPred, preds$fit, se.fit, preds2[,2:3], se.pred)
head(stats) # display first six rows of results

# Plot data (length vs x), plus fitted model for x=8:34
plot (Length ~ x, xlim = c(8, 34), ylim = c¢(-10, 30), data=bean.data)
lines (xPred$x, predsS$fit[, 1])

# Some plots to check model assumptions

bean.data$e = residuals(modell3); # Obtain residuals
bean.datas$pred = fitted(model3) # Obtain predicted values

# Plot residuals vs x

plot(e 7 x, ylab = "Residuals", las=1, xaxt="n", data=bean.data)
axis(l, at = c(12,18,24,30)); abline(h=0)

# Plot residuals vs predicted values

plot (e ~ pred, xlim=c(5,25), las=1, xaxt="n", data=bean.data,

xlab="Predicted Values", ylab = "Residuals")
axis(l, at=seq(5,25,5)); abline(h=0)
# Normal probability plot of residuals
agnorm (model3S$res, ylim=c(-10,10), xlim=c(-4,4)); abline(h=0, v=0)

output shown in the top of Table 8.12. Since the cubic model is needed, there is no reason to test further
reduced models, but the information for such tests will be discussed for illustrative purposes.

To test HOL : o = (53 = 0, the full model is the cubic model and the reduced model is the simple
linear regression model, so the numerator sum of squares of the test statistic computed from the Type
I sums of squares is
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Table 8.11 Output generated for the cubic model

> # Fit regression models and generate ANOVA info
> model3 = Ilm(Length ~ x + I(x"2) + I(x"3), data=bean.data) # Fit cubic model
> summary (model3) # Display least squares estimates, overall F test

Call:
Im(formula = Length ~ x + I(x"2) + I(x"3), data = bean.data)

Residuals:
Min 1Q Median 30 Max
-7.412 -2.029 -0.412 2.059 6.471

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -101.05882 21.87851 -4.62 0.000019

x 15.47549 3.49667 4.43 0.000038
I(x"2) -0.65768 0.17508 -3.76 0.00037
I(x"3) 0.00926 0.00277 3.34 0.00141

Residual standard error: 3.31 on 64 degrees of freedom
Multiple R-squared: 0.781, Adjusted R-squared: 0.77
F-statistic: 75.9 on 3 and 64 DF, p-value: <2e-16

> anova (model3) # Display type 1 SS
Analysis of Variance Table

Response: Length
Df Sum Sqg Mean Sqg F value Pr(>F)

x 1 1892 1892 172.3 < 2e-16
I(x"2) 1 487 487 44.4 7.3e-09
I(x"3) 1 122 122 11.2 0.0014
Residuals 64 703 11

s8(52, 33) = ssEy — ssE = ss(52150, B1) + ss(53150, B1, B2)
487 + 122 = 609,

Q

and the decision rule for testing HOL against the alternative hypothesis H g that the cubic model is
needed is
reject HE if ms(Ba, 33)/msE > Fa64.0 ,

where

ms(32, 33) = ss(B2, 53)/2.

The information for this test of adequacy of the simple linear regression model is also generated by
the statement anova (modell, model3), with results shown in the bottom of Table 8.12. Here,
the numerator sum of squares is rounded to 610, yielding F = 27.8 and p = 2.1 x 1079,

The third block of code in Table 8.10 saves a grid of x values from 8 to 34 in step of 0.011in a data
set xPred, in order to compute confidence and prediction intervals at these x values. The predict
function is called twice, each time using the results of the cubic fit saved asmode13. For each x value in
the grid, the first call of predict computes the predicted length, the standard error for predicting mean
length, and the 95% confidence interval for mean response, saving these results asvadjust preds. By
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Table 8.12 Output generated for the cubic model (continued)

> # Would a lower order model suffice?

> model2 = Im(Length ~ x + I(x"2), data=bean.data) # Fit quadratic model
> modell = Im(Length ~ x, data=bean.data) # Fit simple linear reg model
> anova (model2, model3) # Can cubic term be dropped?

Analysis of Variance Table

Model 1: Length 7~ x + I(x"2)
Model 2: Length ~ x + I(x"2) + I(x"3)

Res.Df RSS Df Sum of Sg F Pr(>F)
1 65 825
2 64 703 1 122 11.2 0.0014

> anova (modell, model3) # Can both cubic and quadratic terms be dropped?
Analysis of Variance Table

Model 1: Length ~ x
Model 2: Length ~ x + I(x72) + I(x"3)

Res.Df RSS Df Sum of Sg F Pr(>F)
1 66 1312
2 64 703 2 610 27.8 2.1e-09

displaying preds, one would see that the predicted values and confidence limits are saved as the three
columns of the object preds$£it, the standard error is saved as the lone column of preds$se.fit,
and the root mean squared error is saved as a scalar as preds$residual.scale. Due to the
“prediction” option, the second call of predict computes the predicted length and the 95%
prediction interval for a new observation for each x = 8, ..., 34, saving these results as the three
columns of preds?2. The standard error for prediction is not provided directly, but is subsequently
computed for each x from the standard error for estimation of mean length for the given x value
and from the common root mean squared error value, both available from preds. The column bind
command cbind is used to combine the desired information into the columns of the object stats.
These could be printed or plotted, though we do not do so here.

The output of the plot function in the fourth block of code is not shown here, but is similar to
the plot show in Fig.8.8. The plot command causes the raw data to be plotted. Then the 1ines
subcommand augments the plot with the line corresponding to the predicted values at the grid points
x = 8,8.01,8.02, ..., 34, giving a sense of the fitted cubic polynomial regression curve.

In this example, it is not possible to test for lack of fit of the cubic model, since data were collected
at only four x-levels. If we had been fitting a quadratic model, then a lack-of-fit test would have been
possible. An easy way to generate the relevant output using the R software is as follows. Anyplace
after saving the fitted quadratic model as mode12 in the second block of code, add the following code.

bean.data$fA = factor (bean.datas$x)

modelA = 1lm(Length ~ fA, data=bean.data)
anova (model2, modelA))

The first command adds a factor variable £A to the data set, the second fits the one-way model with a
different mean for each x value (i.e. for each level of £2), and the third generates the F-test for lack
of fit by comparing the reduced quadratic model to the full one-way model, which is the fullest model
one can fit here.

Statements for generation of residual plots for checking the error assumptions are included in the
sample R program in Table 8.10, but the output is not shown here.
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Table 8.13 Data for the Treatment (mph) Crank rates yy;
bicycle experiment N Yar
5 15 19 22
10 32 34 27
15 44 47 44
20 59 61 61
25 75 73 75

Exercises

1. For the simple linear regression model

E[Yx/] = fo + fix,

the least squares estimators BO and Bl for the parameters 5y and 3 are given in (8.5.6), p. 257.
Show that their variances are

. 1 % A 1
Var(fo) = 02(— + ) and Var(3)) = o? ( ) ,
n SSxx SSxx

where ssyy = > ry(x — f_,)z, as given in (8.5.7).

2. Bicycle experiment, continued

The bicycle experiment was run to compare the crank rates required to keep a bicycle at certain
speeds, when the bicycle (a Cannondale SR400) was in twelfth gear on flat ground. The speeds
chosen were x = 5, 10, 15, 20, and 25 mph. The data are given in Table 8.13. (See also Exercise 6
of Chap.5.)

(a) Fitthe simple linear regression model to the data, and use residual plots to check the assumptions
of the simple linear regression model.

(b) Ifatransformation of the data is needed, choose a transformation, refit the simple linear regression
model, and check for lack of fit.

(c) Using your results from parts (a) and (b), select a model for the data. Use this model to obtain an
estimate for the mean crank rate needed to maintain a speed of 18 mph in twelfth gear on level
ground.

(d) Calculate a 95% confidence interval for the mean crank rate needed to maintain a speed of 18
mph in twelfth gear on level ground.

(e) Find the 95% confidence band for the regression line. Draw a scatter plot of the data and super-
impose the regression line and the confidence band on the plot.

(f) Would you be happy to use your model to estimate the mean crank rate needed to maintain a
speed of 35 mph in twelfth gear on level ground. Why or why not?
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Table 8.14 Systolic blood pressure measurements—(order of collection in parentheses)

Jogging time in seconds (order of collection)

10 20 25 30 40 50
120 (1) 125 2) 127 (10) 128 (3) 137 (5) 143 (6)
118 (9) 126 (4) 131 (7)

123 (8)

Table 8.15 Data for the trout experiment

X Hemoglobin (grams per 100 ml)

00 6.7 7.8 55 8.4 7.0 7.8 8.6 7.4 5.8 7.0
05 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6
10 104 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0
15 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2

Source Gutsell, J.S. (1951). Copyright© 1951 International Biometric Society. Reprinted with permission
3. Systolic blood pressure experiment

A pilot experiment was run by John Spitak in 1987 to investigate the effect of jogging on systolic
blood pressure. Only one subject was used in the pilot experiment, and a main experiment involving
a random sample of subjects from a population of interest would need to be run in order to draw
more general conclusions. The subject jogged in place for a specified number of seconds and then
his systolic blood pressure was measured. The subject rested for at least 5min, and then the next
observation was taken.

The data and their order of observation are given in Table 8.14.

(a) Fit a simple linear regression model to the data and test for model lack of fit.

(b) Use residual plots to check the assumptions of the simple linear regression model.

(c) Give a 95% confidence interval for the slope of the regression line.

(d) Using the confidence interval in part (c), test at significance level & = 0.05 whether the linear
term is needed in the model.

(e) Repeat the test in part (d) but using the formula for the orthogonal polynomial linear trend
coefficients for unequally spaced levels and unequal sample sizes given in Sect.4.2.4. Do these
two tests give the same information?

(f) Estimate the mean systolic blood pressure of the subject after jogging in place for 35 sec and
calculate a 99% confidence interval.

(g) The current experiment was only a pilot experiment. Write out a checklist for the main experiment.

4. Trout experiment, continued

The data in Table 8.15 show the measurements of hemoglobin (grams per 100 ml) in the blood of
brown trout. (The same data were used in Exercise 15 of Chap. 3.) The trout were placed at random
in four different troughs. The fish food added to the troughs contained, respectively, x = 0, 5,
10, and 15 grams of sulfamerazine per 100 pounds of fish. The measurements were made on ten
randomly selected fish from each trough after 35 days.

(a) Fit a quadratic regression model to the data.
(b) Test the quadratic model for lack of fit.


http://dx.doi.org/10.1007/978-3-319-52250-0_4
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(c) Use residual plots to check the assumptions of the quadratic model.

(d) Test whether the quadratic term is needed in the model.

(e) Use the fitted quadratic model to estimate the number of grams of sulfamerazine per 100 pounds
of fish to maximize the mean amount of hemoglobin in the blood of the brown trout.

5. Bean-soaking experiment, continued

Use residual plots to check the assumptions of the cubic regression model for the data of the bean-
soaking experiment. (The data are in Table 8.6, p. 269).

6. Bean-soaking experiment, continued

Suppose the experimenter in the bean-soaking experiment of Sect.8.8 had presumed that the
quadratic regression model would be adequate for soaking times ranging from 12 to 30 h.

(a) Figure8.8, p. 273, shows the fitted response curve and the standardized residuals each plotted
against soaking time. Based on these plots, discuss model adequacy.
(b) Test the quadratic model for lack of fit.

7. Orthogonal polynomials

Consider an experiment in which an equal number of observations are collected for each of the
treatment factor levels x = 10, 20, 30, 40, 50.

(a) Compute the corresponding values z, for the linear orthogonal polynomial, and determine the
rescaling factor by which the z, differ from the coefficients of the linear trend contrast.

(b) Compute the values z)(cz) for the quadratic orthogonal polynomial, and determine the rescaling
factor by which the z)(}) differ from the coefficients of the quadratic trend contrast.

(c) Use the data of Table8.1 and the orthogonal polynomial coefficients to test that the quadratic
and linear trends are zero.

(d) Using the data of Table8.1 and a statistical computing package, fit a quadratic model to the

original values. Test the hypotheses
Hy :{62=0} and Ho:{f = =0}

against their respective two-sided alternative hypotheses. Compare the results of these tests with
those in (c).

8. Orthogonal polynomials

Consider use of the quadratic orthogonal polynomial regression model (8.7.20), p. 265, for the data
at levels 18, 24, and 30 of the bean-soaking experiment—the data are in Table 8.6, p. 269.

(a) Compute the least squares estimates of the parameters.

(b) Why is it not possible to test for lack of fit of the quadratic model?

(c) Give an analysis of variance table and test the hypothesis that a linear model would provide an
adequate representation of the data.
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9. Heart-lung pump experiment, continued

In Example 8.5.1, p. 259, we fitted a linear regression model to the data of the heart-lung pump
experiment. We rejected the null hypothesis that the slope of the line is zero.

(a) Show that the numerator sum of squares for testing Hy : {3; = 0} against the alternative
hypothesis Hy : {81 # 0} is the same as the sum of squares ssc that would be obtained for
testing that the linear trend is zero in the analysis of variance model (the relevant calculations
were done in Example 4.2.3, p. 73).

(b) Obtain a 95% confidence band for the regression line.

(c) Calculate a 99% prediction interval for the fluid flow rate at 100 revolutions per minute.

(d) Estimate the intercept (3. This is not zero, which suggests that the fluid flow rate is not zero at
0 rpm. Since this should not be the case, explain what is happening.


http://dx.doi.org/10.1007/978-3-319-52250-0_4

9.1 Introduction

In Chaps. 37, we used completely randomized designs and analysis of variance to compare the effects
of one or more treatment factors on a response variable. If nuisance factors are expected to be a major
source of variation, they should be taken into account in the design and analysis of the experiment. If
the values of the nuisance factors can be measured in advance of the experiment or controlled during the
experiment, then they can be taken into account at the design stage using blocking factors, as discussed
in Chap. 10. Analysis of covariance, which is the topic of this chapter, is a means of adjusting the
analysis for nuisance factors that cannot be controlled and that sometimes cannot be measured until
the experiment is conducted. The method is applicable if the nuisance factors are related to the response
variable but are themselves unaffected by the treatment factors.

For example, suppose an investigator wants to compare the effects of several diets on the weights of
month-old piglets. The response (weight at the end of the experimental period) is likely to be related to
the weight at the beginning of the experimental period, and these weights will typically be somewhat
variable. To control or adjust for this prior weight variability, one possibility is to use a block design,
dividing the piglets into groups (or blocks) of comparable weight, then comparing the effects of diets
within blocks. A second possibility is to use a completely randomized design with response being the
weight gain over the experimental period. This loses information, however, since heavier piglets may
experience higher weight gain than lighter piglets, or vice versa. It is preferable to include the prior
weight in the model as a variable, called a covariate, that helps to explain the final weight.

The model for a completely randomized design includes the effects of the treatment factors of
interest, together with the effects of any nuisance factors (covariates). Analysis of covariance is the
comparison of treatment effects, adjusting for one or more covariates. Standard analysis of covariance
models and assumptions are discussed in Sect.9.2. Least squares estimates are derived in Sect.9.3.
Sections 9.4 and 9.5 cover analysis of covariance tests and confidence interval methods for the compar-
ison of treatment effects. Analysis using software is illustrated using SAS and R software in Sects. 9.6
and 9.7, respectively.

9.2 Models

Consider an experiment conducted as a completely randomized design to compare the effects of the
levels of v treatments on a response variable Y. Suppose that the response is also affected by a nuisance
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Fig.9.1 Linear and
quadratic parallel response
curves

E[Y]
E[Y]

X X

(a) Linear response curves (b) Quadratic response curves

factor (covariate) whose value x can be measured during or prior to the experiment. Furthermore,
suppose that there is a linear relationship between E[Y] and x, with the same slope for each treatment.
Then, if we plot E[Y] versus x for each treatment separately, we would see parallel lines, as illustrated
for two treatments in Fig.9.1a. A comparison of the effects of the two treatments can be done by
comparison of mean response at any value of x. The model that allows this type of analysis is the
analysis of covariance model:

Yie = p+ 7 + Bxir + €ir (9.2.1)
€ir ~ N0, 0%),
€;;'s are mutually independent ,

t=1,2,...,r;; i=1,...,v.

In this model, the effect of the ith treatment is modeled as 7;, as usual. If there is more than one
treatment factor, then 7; represents the effect of the ith treatment combination and could be replaced
by main-effect and interaction parameters. The value of the covariate on the ¢th time that treatment
i is observed is written as x;;, and the linear relationship between the response and the covariate is
modeled as (x;; as in a regression model. It is important for the analysis that follows that the value
x;¢ of the covariate not be affected by the treatment—otherwise, comparison of treatment effects at a
common x-value would not be meaningful.

A common alternative form of the analysis of covariance model is

Yie = p* + 1 + Bxir — %) +€ir (9.2.2)

in which the covariate values have been “centered.” The two models are equivalent for comparison of
treatment effects. The slope parameter 3 has the same interpretation in both models. In model (9.2.2),
1t + 7; denotes the mean response when x;; = X_, whereas in model (9.2.1), u* + 7; denotes the mean
response when x;; = 0, with the parameter relationship p* = p — Gx_. Model (9.2.2) is often used to
reduce computational problems and is a little easier to work with in obtaining least squares estimates.
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9.2.1 Checking Model Assumptions and Equality of Slopes

In addition to the usual assumptions on the error variables, the analysis of covariance model (9.2.2)
assumes a linear relationship between the covariate and the mean response, with the same slope for
each treatment, as illustrated in Fig.9.1a. It is appropriate to start by checking for model lack of fit.
Lack of fit can be investigated by plotting the residuals versus the covariate for each treatment on
the same scale. If the plot looks nonlinear for any treatment, then a linear relationship between the
response and covariate may not be adequate. If each plot does look linear, one can assess whether the
slopes are comparable. A formal test of equality of slopes can be conducted by comparing the fit of
the analysis of covariance model (9.2.2) with the fit of the corresponding model that does not require
equal slopes, for which
Yie=p+7+Bi(xir —X.) +€ir . (9.2.3)

If there is no significant lack of fit of the model, then plots of the residuals versus run order, predicted
values, and normal scores can be used as in Chap. 5 to assess the assumptions of independence, equal
variances, and normality of the random error terms.

9.2.2 Model Extensions

The analysis of covariance model (9.2.1) can be generalized in various ways that we will mention here
but not consider further.

If the effect of the covariate is not linear, then 5x can be replaced with a higher-order polynomial
function B1x + fox? +--- + Bpx? to adequately model the common shape of the response curves for
each treatment, analogous to the polynomial response curve models of Chap. 8. For example, parallel
quadratic response curves for two treatments are shown in Fig. 9.1b.

If there is more than one covariate, the single covariate term can be replaced by an appropriate
polynomial function of all the covariates. For example, for two covariates x; and x», the second-order
function

Bix1 + Boxa + Praxixa + B11x7 + faoxs

might be used, analogous to the polynomial response surface models of Chap. 16. Centered forms of
these functions can also be obtained (see Sect. 8.7).

9.3 Least Squares Estimates

We now obtain the least squares estimates for the parameters in the analysis of covariance model, and
then illustrate the need to use adjusted means to compare treatment effects.

9.3.1 Normal Equations (Optional)

To obtain the least squares estimates of the parameters in model (9.2.2), we need to minimize the sum

of squared errors,
v ri v ri
S =D i — 7 — Bl — 7))

i=1 t=1 i=1 t=1
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Differentiating this with respect to each parameter in turn and setting the corresponding derivative
equal to zero gives the normal equations as

v
Y. =nj+ > rifi, (9.3.4)

i=1

ri
Vi =r(AR) B (i —%), i=1,...,v, 9.3.5)

t=1

v

DD vl —%) = Zi(ﬁ*l-ﬁ)(xiz —X.) (9.3.6)

i=1 t=1 i=1 t=1
v ri
2 = \2
+D > Bl —x.)*.
i=1 t=1

There are v + 2 normal equations and v + 2 unknown parameters. However, Eq. (9.3.4) is the sum
of the v equations given in (9.3.5), since Xr; = n and XX (x;; —X_) = 0. Thus, the normal equations
are not linearly independent, and the equations do not have a unique solution. However, the v + 1
equations in (9.3.5) and (9.3.6) are linearly independent and can be solved to obtain the unique least
squares estimates for 3, u + 71, . .., it + 7 given in the next subsection.

9.3.2 Least Squares Estimates and Adjusted Treatment Means
Under model (9.2.2) the expected value
E[Yi]=p+7+ B —X.)

is an estimate of the mean response of the ith treatment when the value of the covariate x;; is X;.. So,
unless the covariate means X;, all happen to be equal, the difference of response means y; — 7y, does
not estimate 7; — 7, and cannot be used to compare treatment effects. The least squares estimates of
the parameters in the model are obtained by solving the normal equations in optional Sect.9.3.1 and
are

fi+7i =5, —BE %), i=1,...,0v, 9.3.7)
B = spl,/ssky. (9.3.8)

where

v i v ri
Sphy = > D> (i — T (i —F;) and st = > > (wy —Ti)?

i=1 1=l i=1 =1

In this notation, ss can be read as “sum of squares” and sp as “sum of products.” In Exercise 2, the
reader is asked to verify that E[3] = 3. Consequently,

Elp+7l=p+7.
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Table 9.1 Hypothetical analysis of covariance data

i Xit Vit Xi. Vi,

1 20 44.29 39.51 42.87 35 49.11
30 44.48 48.39 49.14
40 50.24 51.63 46.55
50 57.75 59.23 55.23

2 70 48.67 56.79 52.03 85 61.68
80 57.68 67.25 52.88
90 62.04 66.12 64.39
100 63.54 72.49 76.33

The least squares estimators [1 + 7; therefore estimate the mean response for the ith treatment at the
value of the covariate equal to x . We call the estimates /i + 7; the adjusted means, since they adjust
the response mean y; by the amount ﬂA (x;. —x ), which is equivalent to measuring the responses at the
same point on the covariate scale. The need for this adjustment is illustrated in the following example.

Example 9.3.1 Adjusted versus unadjusted means

Table 9.1 contains hypothetical data arising from two treatments at various values of the covariate.
Using Eqgs. (9.3.7) and (9.3.8), one can show that the corresponding fitted model is

Yir=p+Ti + 0.5372(x;; — 60),

where
i+ 71 =62.5416 and [+ T, = 48.2516.

The data and fitted model are plotted in Fig.9.2. Observe that treatment one has the larger effect, and
correspondingly the higher fitted line. However if the treatment effects were estimated as y; and y, ,
it would appear that treatment two has the larger effect, since it has the larger unadjusted mean:

¥, =61.68 >, =49.11.

This bias in the treatment effect estimates is due to the relative values of X1 and x5 _.
These data provide an exaggerated illustration of the need for adjustment of treatment sample means
in analysis of covariance. g

9.4 Analysis of Covariance

For a completely randomized design and analysis of covariance model (9.2.2), a one-way analysis
of covariance is used to test the null hypothesis Hy : {r] = 7 = --- = 7,} against the alternative
hypothesis H4 that at least two of the 7;’s differ. The test is based on the comparison of error sums of
squares under the full and reduced models. If the null hypothesis is true with common treatment effect
T7; = T, then the reduced model is
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Fig.9.2 Illustration of
bias if unadjusted means
y; are compared
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Yy =p+7+ B —X.)+ €.

This is similar to a simple linear regression model, with constant 3y = u + 7, slope 51 = (3, and with
regressor x;; centered. Thus, if we replace x by x;; — X in the formula (8.5.6), p. 257, and the average
X in (8.5.6) by the averaged centered value 0, the least squares estimates under the reduced model

are

where

~

p+7=y_ and [B=sp,/ssx,

SPyy = ZZ(xi,—)_c__)yi; = ZZ(Xit—)_C..)()’it =-y.)

and

So,

i=1 t=1 i=1t=1

sty = 23 (v = o= 7~ Bl — %)’ (9.4.9)
i t

=" (i = 5. — pyy(ir — ) /552)
i t

2
= SSyy — (pry) /SSxx »

where ssyy, = > > (Vir — ¥ )?. The number of degrees of freedom for error is equal to the number
of observations minus a degree of freedom for the constant 4+ 7 and one for the slope ; that is, n — 2.

Under the full analysis of covariance model (9.2.2), using the least squares estimates given in Egs.
(9.3.7) and (9.3.8), the error sum of squares is
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sE= Zt: (yie = o= 7 = Bl )?,.))2
3 (v = 5.+ A — %) = B - %)
=33 (on =30 = B - )

— ocF A (e _ * * 2 7ok
= sy, — ﬂ(spxy) = 885, — (SPyy)7/SS5y s (9.4.10)

where
Sij = ZZ(xit - fi.)z s
it
SS;V = zz(ylf - yi.)2 )
t

i

Pry = D D i = %) G = Vi)
i t

The values ss}, and ss;y can be obtained from a computer program as the values of ssE fitting the one-

way analysis of variance models with x;; and y;; as the response variables, respectively. The number
of error degrees of freedom is n — v — 1 (one less than the error degrees of freedom under the analysis
of variance model due to the additional parameter [3).

The sum of squares for treatments ss(7'|3) is the difference in the error sums of squares under the
reduced and full models,

ss(T|3) = ssEy — ssE 9.4.11)
= (ssyy — (spxy)2/ssxx) - (ss;‘,y - (spjy)z/ss)tx) .
The difference in the error degrees of freedom for the reduced and full models is
m-2)—n—-v—-1)=v-1.
We denote the corresponding mean square by
ms(T|3) = ss(T|3)/(v—1).
If the null hypothesis is true, then
MS(T|8)/MSE ~ Fy_i n—y1
so we can obtain a decision rule for testing Hy : {71 = 7 = --- = 7} against H,4 : {7; not all equal}
as

reject Hy if ms(T'|3)/msE > Fy_1 n—v—1.a

at chosen significance level a. The information for testing equality of the treatment effects is typically
summarized in an analysis of covariance table such as that shown in Table 9.2.
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Table 9.2 Analysis of covariance for one linear covariate

Source of variation Degrees of freedom Sum of squares Mean squares Ratio

_ SS(T'18) ms(T|3)
T|p v—1 ss(T|B) == msE
BIT 1 ss(BIT) ss(BIT) A n
Error n—v—1 ssE msE
Total n—1 SSyy

Formulae

SS(T1B) = (55 — (5uy)?/5502) — (555 — 60%,02/55%, )
ss(B|T) = (spjy)z/sij ssE = ss}, — (spﬁy)z/sij
SSexe = 2 2, (xig — %) ssyy = > 2, (vie = ¥.)°
SPxy = Z,‘ Z;(Xir =X )it —Y.) 58Y = Z,‘ Z,(xit - ;z‘.)2
Py = 20 2 (ie = Xi) Gie — Vi) sshy =2 2 (i = 3:1)°

The table also includes information for testing the null hypothesis Hy : {# = 0} against the
alternative hypothesis H4 : {5 # 0}. The reduced model for this test is the one-way analysis of
variance model (3.3.1), for which Y;; = p + 77 + €;;. From Chap. 3, the corresponding error sum of

squares is
ssBy = D" D (yir = ¥;)> =55},
i t

and the number of error degrees of freedom is n — v. The error sum of squares for the full model is
given in (9.4.10). Denoting the difference in error sums of squares by ss(3|T"), we have

ss(BIT) = ssEp — ssE = (spﬁy)z/ss)tx = ss* .

The difference in the error degrees of freedom is (n — v) — (n —v — 1) = 1, so the corresponding mean
square, ms(3|T), has the same value ss(3|T). Under the assumptions of the analysis of covariance
model (9.2.2), if Hy : {8 = 0} is true, then

MS(BIT)/MSE ~ Fi 1.
Thus, the decision rule for testing Hy : {3 = 0} against Hy : {3 # 0}, at significance level ¢, is
reject Hy if ms(6|T)/msE > Fi p—y—1.a -

Example 9.4.1 Balloon experiment, continued

Consider the balloon experiment of Meily Lin, in which she compared the effects of four colors on
balloon inflation time. In Example 5.5.1, p. 108, the standardized residuals were plotted against the
run order of the observations. The plot, reproduced in Fig. 9.3, shows a clear linear decreasing trend in
the residuals. This trend indicates a definite lack of independence in the error terms under the one-way
analysis of variance model, but the trend can be eliminated by including the run order as a covariate in
the model.

The analysis of covariance table for this experiment is shown in Table 9.3. Residual plots for checking
the model assumptions will be discussed in Sects. 9.6 and 9.7 and reveal no anomalies.
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Fig.9.3 Residual plot for 3
the balloon experiment
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Table 9.3 Analysis of covariance for the balloon experiment
Source of variation Degrees of freedom Sum of squares Mean squares Ratio
T3 3 127.679 42.560 6.32
BIT 1 120.835 120.835 17.95
Error 27 181.742 6.731
Total 31 430.239
The decision rule for testing equality of the treatment effects is to
reject Hy : {11 = --- =7y} if ms(T|B)/msE=6.32 > F327.,.

Since F3 27,01 = 4.60, the null hypothesis is rejected at significance level & = 0.01, and we can
conclude that there is a difference in inflation times for the different colors of balloon.

Of secondary interest is the test of Hy : {# = 0} against H4 : {3 # 0}. The decision rule is to
reject the null hypothesis if ms(3|T)/msE = 17.95 > F] 27.,. Again, the null hypothesis is rejected
at significance level o = 0.01, since Fi 27,01 = 7.68. We may conclude that the apparent linear trend
in the inflation times due to order is a real trend and not due to random error.

9.5 Treatment Contrasts and Confidence Intervals

9.5.1 Individual Confidence Intervals

Since p + 7; is estimable under model (9.2.2), any treatment contrast Zi CiT; (Zi ¢; = 0)is also
estimable. From (9.3.7), Zi ¢; T has least squares estimator

Zciﬂ = Zci(ﬂ +7) =D a (71'. — B, —i..)) =D ¢ (71'. - B)Ei.) ~

i i

9.5.12)

(The term Eciﬁi_ is zero, since X¢; = 0.) Now, Var (7,) = az/ri, and it can be shown that
Var(B) = az/ss;x and Cov(Y; , B) = 0. Using these results and (9.5.12), the variance of Zi c;Ti 1S
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Var (Z,: c,-%,») = Var (Zl: c,-?,,) + Var (B Z,: c,»)—c,»,)z
() (@) ()

1

So, the estimated variance is

*
S8y x

2 7\2
Var(Seify) = msE(z j— i M) . 9.5.13)

From (9.5.12), the least squares estimator Zi ¢;j7; is a function of Y; and B Since Y;; has a
normal distribution, both ¥; and B are normally distributed. Consequently, > ¢;7; also has a normal
distribution. Also, MSE/o? has a chi-squared distribution with n — v — 1 degrees of freedom. Then,
for any treatment contrast > ; ¢i T, it follows that

Zciﬁ — ZCI'T,'
= =~

— n—v—1 -
,/Var(z Ci7A‘l‘)

So, a 100(1 — a)% confidence interval for > ; ¢;7; is

(9.5.14)

Slamie | Dledi £ tivrap
- -

1

9.5.2 Multiple Comparisons

The multiple comparison methods of Bonferroni and Scheffé are applicable in the analysis of covariance
setting. However, since the adjusted treatment means (i + 7; = Y, — B (x;. — x ) are not independent
unless the X; are all equal, the methods of Tukey and Dunnett are not known to apply. It is believed
that Tukey’s method does still control the experimentwise confidence level in this case, but there is no
known proof of this conjecture.

Confidence intervals are obtained as

Damie| Dt £ w @(Zciﬁ-) , 9.5.15)
i i i

where w is the appropriate critical coefficient. For the Bonferroni method and m predetermined
treatment contrasts, w = I, y_1,a/2m. For the Scheffé method for all treatment contrasts,
w = \/ (v — 1) Fy_1.n—y—1.o- Formulae for the estimate ¥¢;7; and the corresponding estimated vari-
ance are given in Eqs. (9.5.12) and (9.5.13).

Example 9.5.1 Balloon experiment, continued

We now illustrate the Scheffé method of multiple comparisons to obtain simultaneous 95% confidence
intervals for all pairwise treatment comparisons for the balloon experiment of Example 9.4.1. (The data
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Table 9.4 Scheffé pairwise comparisons for the balloon experiment; overall confidence level is 95%

i s - JVar(® — 4) msd

1 2 —4.106 1.298 3.868
1 3 —3.801 1.299 3.871
1 4 0.071 1.297 3.865
2 3 0.304 1.301 3.877
2 4 4.176 1.298 3.868
3 4 3.872 1.298 3.868

are in Table 3.13, p. 68.) For pairwise comparisons, the confidence intervals are obtained from (9.5.15),

T —Ts € (ﬂ' — 7 £ 3F327, 05/ Var(f; — fs)) ,

where 7; — 75 = (V; — ;) — B(Yl; — X;.). The treatment and covariate means are

¥, = 18337, y, =22575, y; =21.875, y, = 18.187,
X1 = 16250, X, = 15.625, X3 = 17.500, X4 = 16.625,

and from (9.3.8), we obtain
B = spjy/sij = —572.59/2713.3 = —0.21103.

Now, msE = 6.731 from Table 9.3, so

Var 1 1 ¥ —7%.)2
Var(7; — 7y) = msE(g + -+ M)

8 SS¥ .
(% — X5.)°
= (6.731)§ 0.25 + ————
( )( + 2713.3
= 1.68275 + (0.00248) (x; — YS_)z .

Using the critical coefficient w = \/ 3F327.05 = +/3 x 2.96, one can obtain the confidence interval
information given in Table 9.4. The estimated difference exceeds the minimum significant difference

msd = wy/ Var(7 — 7)) with w = /3F327_05

for the first two and last two comparisons. One can conclude from the corresponding confidence
intervals that the mean time to inflate balloons is longer for color 2 (yellow) than for colors 1 and 4
(pink and blue), and the mean inflation time for color 3 (orange) is longer than for color 4 (blue). Ata
slightly lower confidence level, we would also detect a difference in mean inflation times for colors 3
and 1 (orange and pink). The corresponding six intervals with overall confidence level 95% are
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-7 €( 0.238,7.974), 73— 11 € (=0.070,7.672), 74 — 7 € (=3.936,3.794),
T — 713 € (=3.573,4.181), T — 1 € ( 0.308,8.044), 13 — 74 € ( 0.004,7.740).

O

Whenever the data are used to determine or modify the model, the confidence levels and error rates
associated with any subsequent analyses of the same data will not be exactly as stated. Such is the case
for the analyses presented in Example 9.5.1 for the balloon experiment, since the covariate “run order”
was included in the model as a result of a trend observed in the residuals from the original analysis of
variance model. Thus, although Scheffé’s method was used, we cannot be certain that the overall level
of the confidence intervals in Example 9.5.1 is exactly 95%.

9.6 Using SAS Software

Table 9.5 contains a sample SAS program for performing a one-way analysis of covariance involving a
single covariate with a linear effect. The program uses the data from the balloon experiment discussed
in Examples 9.4.1 and 9.5.1. The data are given in Table 3.13, p. 68. The experimenter was interested in
comparing the effects of four colors (pink, yellow, orange, and blue) on the inflation time of balloons,
and she collected eight observations per color. The balloons were inflated one after another by the
same person. Residual analysis for the one-way analysis of variance model showed a linear trend in the
residuals plotted against run order (Fig.9.3, p. 293). Hence, run order is included in the model here as
a linear covariate. To obtain the “centered” form of the model, as in model (9.2.2), a centered variable
has been created immediately after the INPUT statement, using the SAS statement

X = RUNORDER - 16.5;

where 16.5 is the average value of RUNORDER.

In Table9.5, PROC GLM is used to generate the analysis of covariance. The output is shown in
Fig.9.4. The treatment factor COLOR has been included in the CLASS statement to generate a parameter
7; for each level of the treatment factor “color,” while the covariate X has been excluded from the class
statement so that it is included in the model as a regressor, or covariate, as in model (9.2.2). To obtain
the “uncentered” form of the model, as in model (9.2.1), the variable RUNORDER would replace X
throughout the program. The output in Fig.9.4 would not change, since only the definition of the
constant in the model has been altered.

The information for testing the null hypotheses HOT 1 {m1 = .- - = 74} against H/{ : {HOT not true}
and Hy : {# = 0} against H4 : {8 # 0} is in Fig. 9.4 under the heading Type III SS. Specifically,
ss(T'|B) = 127.678829 and ss(3|T) = 120.835325. The corresponding ratio statistics and p-values
are listed under F Value and Pr > F, respectively. Since the p-values are very small, both null
hypotheses would be rejected for any reasonable overall significance level. Thus, there are significant
differences in the effects of the four colors on inflation time after adjusting for linear effects of run
order. Also, there is a significant linear trend in mean inflation as a function of run order after adjusting
for the treatment effects. The least squares estimate for (3 is negative (B = —0.211), so the trend is
decreasing, as we saw in Fig.9.3.

The Type I and Type III sums of squares for color are similar but not quite equal, indicating that
the treatment effects and the covariate effect are not independent. This is because the comparison of
treatment effects is a comparison of the adjusted means, which do depend on f3, since the covariate
means X;_ are not all equal for these data.
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Table 9.5 SAS program for analysis of covariance—Balloon experiment

DATA;
INPUT RUNORDER COLOR INFTIME;

X = RUNORDER - 16.5;
LINES;
1 22.
24.
20.

19.

w0 W o O

2
3
4

s R W R

w

30 1 19.
31 1 15.
32 3 20.3

o)

PROC GLM;
CLASS COLOR;
MODEL INFTIME = COLOR X;

ESTIMATE ‘1-2’ COLOR 1 -1 0 O0;
ESTIMATE '1-3’ COLOR 1 0 -1 0;
ESTIMATE ‘1-4’ COLOR 1 0 0 -1;
ESTIMATE ’'2-3’ COLOR 0 1 -1 0;
ESTIMATE ’‘2-4’ COLOR 0 1 0 -1;
ESTIMATE ’'3-4’ COLOR 0o o0 1 -1;
ESTIMATE 'BETA’ X 1;
OUTPUT OUT=B P=PRED R=Z;

PROC STANDARD STD=1;
VAR Z;

PROC RANK NORMAL=BLOM OUT=C;
VAR Z;
RANKS NSCORE;

PROC SGPLOT;
SCATTER Y = Z X = RUNORDER;
YAXIS VALUES = (-2 TO 2 BY 1);
XAXIS LABEL = "Run Order" VALUES = (0 TO 35 BY 5);

PROC SGPLOT; SCATTER Y = Z X = PRED;
PROC SGPLOT; SCATTER Y = Z X = COLOR;
PROC SGPLOT; SCATTER Y Z X NSCORE;

ESTIMATE statements under PROC GLM are used to generate the least squares estimate and es-
timated standard error for each pairwise comparison of treatment effects and for the coefficient § of
the covariate. The standard errors of each 7; — 7; are not quite equal but are all approximately 1.30.
To compare all treatment effects pairwise using Scheffé’s method and a simultaneous 95% confidence
level, the calculations proceed as shown in Example 9.5.1.

The OUTPUT statement under PROC GLM and the procedures PROC STANDARD, PROC RANK,
and PROC SGPLOT are used as they were in Chap. 5 to generate four residual plots. The resulting plots
(not shown) show no problems with the model assumptions. Of special note, the plot of the residuals
against run order in Fig. 9.5 no longer shows any trend, so the linear run order covariate has apparently
adequately modeled any run order dependence in the observations.
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Fig.9.4 Output from SAS ® Results Vi - SAS Outout @@@

PROC GLM

The SAS System A

The GLM Procedure

Dependent Variable: INFTIME

Source DF  Sum of Squares Mean Square FValue Pr>F
Model 4 248.4965749 62.1241437 9.23 <.0001
Error 27 181.7421751 6.7311917

Corrected Total 31 430.2387500

R-Square  Coeff Var Root MSE INFTIME Mean
0.577578 12.81607 2.594454 20.24375

Source DF  Typel SS Mean Square F Value Pr>F
COLOR 3 127.6612500  42.5537500 6.32 0.0022
X 1 120.8353249  120.8353249  17.95 0.0002

Source DF Type lll SS Mean Square F Value Pr>F
COLOR 3 127.6788293 425596098 6.32 0.0022

X 1 120.8353249  120.8353243  17.95 0.0002 v
Parameter Estimate Standard Error tValue Pr> || A
1-2 -4.10560387 1.29760048  -3.16 0.0038

1.3 -3.80129227 1.29872024  -2.93 0.0069

14 0.07086232 1.29736147 0.05 0.9568

23 0.30431160 1.30058436 0.23 0.8168

24 4.17646618 1.29818288 3.22 0.0034

34 3.87215459 1.29795891 2.98 0.0060

BETA -0.21103382 0.04980823  -4.24 0.0002 v
< >

A test for equality of slopes as discussed in Sect.9.2.1 can be generated using the SAS statements

PROC GLM; CLASS COLOR;
MODEL INFTIME = COLOR X COLOR*X;

The interaction term COLOR*X will be significantly different from zero if the linear run order trends
are not the same for each color.
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9.7 Using R Software

Table 9.6 contains a sample R program for performing a one-way analysis of covariance involving a
single covariate with a linear effect. The program uses the data from the balloon experiment discussed
in Examples 9.4.1 and 9.5.1. The data are given in Table 3.13, p. 68. The experimenter was interested in
comparing the effects of four colors (pink, yellow, orange, and blue) on the inflation time of balloons,
and she collected eight observations per color. The balloons were inflated one after another by the
same person. Residual analysis for the one-way analysis of variance model showed a linear trend in the
residuals plotted against run order (Fig.9.3, p. 293). Hence, run order is included in the model here as
a linear covariate. To obtain the “centered” form of the model, as in model (9.2.2), a centered variable
x has been created after reading the data from file, using the R statement

x = Order - 16.5

within balloon.data, where 16.5 is the average value of Order.

In the second block of code in Table 9.6, the linear models function 1m and related functions are
used to generate the analysis of covariance. Selected output is shown in Table9.7. The factor variable
£C has been included in the model to generate a parameter 7; for each level of the treatment factor
“color,” while the covariate x, because it is a numeric variable but not a factor variable, is included
in the model as a regressor, or covariate, as in model (9.2.2). To obtain the “uncentered” form of the
model, as in model (9.2.1), the variable Order would replace x throughout the program. The output
in Table 9.7 would not change, since only the definition of the constant in the model would be altered.

The information for testing the null hypotheses HOT :{r = --- = 74} against HZ : {HOT not true}
and Hy : { = 0} against Hy : {3 # 0} is in Table9.7 under the dropl command that generates it.
Specifically, the Type I sums of squares are ss(T'|0) ~ 128 and ss(G|T) ~ 121. The corresponding
ratio statistics and p-values are listed under F value and PR (>F), respectively. Since the p-values
are very small, both null hypotheses would be rejected for any reasonable overall significance level.
Thus, there are significant differences in the effects of the four colors on inflation time after adjusting
for linear effects of run order. Also, there is a significant linear trend in mean inflation as a function
of run order after adjusting for the treatment effects. The least squares estimate for 3 is negative
(B = —0.2110), so the trend is decreasing, as we saw in Fig.9.3.

The command anova (modell) generates type 3 sums of squares and the corresponding analysis
of variance tables. The p-values for color for the Type I and Type III tests are similar but not identical,
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Table 9.6 R program for analysis of covariance—Balloon experiment

balloon.data = read.table("data/balloon.txt", header=T)
head(balloon.data, 3)
balloon.data = within(balloon.data,

{x = Order - 16.5; fC = factor(Color) 1})

options (contrasts = c("contr.sum", "contr.poly"))
modell = Im(Time ~ fC + x, data=balloon.data)

summary (modell) # LSE etc. for covariate, model F-test
dropl (modell, ~., test="F") # Type 3 tests

anova (modell) # Type 1 tests

# Multiple comparisons: Scheffe’s method

library (lsmeans)

lsmC = lsmeans (modell, ~ £C)

summary (contrast (1smC, method="pairwise", adjust="Scheffe"),
infer=c(T,T))

# Residual plots

balloon.data = within(balloon.data,
{pred=fitted(modell); e=resid(modell); z=e/sd(e);
n=length(e); g=rank(e); nscore=gnorm((g-0.375)/(n+0.25)) 1})

plot (z ~ Order, data=balloon.data); abline(h=0)

plot (z pred, data=balloon.data); abline (h=0)

plot (z ~ Color, data=balloon.data); abline (h=0)

plot (z ~ nscore, data=balloon.data); ggline(balloon.data$z)

indicating that the corresponding Type I and Type III sums of squares are not quite equal, though
both values have rounded to 128. This discrepancy, though minor, indicates that the treatment effects
and the covariate effect are not independent. This is because the comparison of treatment effects is a
comparison of the adjusted means, which do depend on (3, since the covariate means X;_are not all
equal for these data.

The least squares means function 1smeans and the corresponding summary statement in the
third block of code are used to compare all treatment effects pairwise using Scheffé’s method and a
simultaneous 95% confidence level (by default), generating the simultaneous 95% confidence intervals
and related information shown at the bottom of Fig. 9.4. These results correspond to those of Exam-
ple 9.5.1. The standard errors of each 7; — 7; are not quite equal but are all approximately 1.30, so the
widths of the confidence intervals obtained by Scheffé’s method will be similar but not identical.

In the last block of code in Table 9.6, the saved predicted and residual values are used as they were
in Chap.5 to generate four residual plots. The resulting plots (not shown) show no problems with the
model assumptions. Of special note, the plot of the residuals against run order (not shown here; see
Fig.9.5 for the same plot created in SAS) no longer shows any trend, so the linear run order covariate
has apparently adequately modeled any run order dependence in the observations.

A test for equality of slopes as discussed in Sect.9.2.1 can be generated using the R statements

model2 = Im(Time ~ fC + x + fC:x, data=balloon.data)
anova (modell, model2)

The interaction term £C:x will be significantly different from zero if the linear run order trends are
not the same for each color.
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Table 9.7 R selected output for analysis of variance and multiple comparisons

> summary (modell)

Coefficients:
Estimate Std. Error t value Pr(>|t])

X -0.2110 0.0498 -4.24 0.00024
Residual standard error: 2.59 on 27 degrees of freedom
Multiple R-squared: 0.578,Adjusted R-squared: 0.515
F-statistic: 9.23 on 4 and 27 DF, p-value: 0.000078

> dropl (modell, ~., test="F")

Single term deletions
Df Sum of Sg RSS AIC F value Pr(>F)

<none> 182 65.6
fC 3 128 309 76.6 6.32 0.00217
X 1 121 303 79.9 17.95 0.00024

> anova (modell)

Analysis of Variance Table
Response: Time
Df Sum Sg Mean Sg F value Pr(>F)

fC 3 128 42.6 6.32 0.00218
X 1 121 120.8 17.95 0.00024
Residuals 27 182 6.7

> summary (contrast (lsmC, method="pairwise", adjust="Scheffe"),

+ infer=c(T,T))
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 -2 -4.105604 1.2976 27 -7.9725957 -0.238612 -3.164 0.0341
1 -3 -3.801292 1.2987 27 -7.6716211 0.069037 -2.927 0.0557
1 -4 0.070862 1.2974 27 -3.7954172 3.937142 0.055 1.0000
2 -3 0.304312 1.3006 27 -3.5715725 4.180196 0.234 0.9966
2 - 4 4.176466 1.2982 27 0.3077388 8.045194 3.217 0.0304
3 -4 3.872155 1.2980 27 0.0040946 7.740215 2.983 0.0497

Confidence level used: 0.95
Confidence-level adjustment: scheffe method for a family of 4 estimates
P value adjustment: scheffe method for a family of 4 tests

Exercises

1. Consider the hypothetical data of Example 9.3.1, in which two treatments are to be compared.

(a) Fit the analysis of covariance model (9.2.1) or (9.2.2) to the data of Table 9.1, p. 289.

(b) Plot the residuals against the covariate, the predicted values, and normal scores. Use the plots to
evaluate the model assumptions.

(c) Test for inequality of slopes, using a level of significance av = 0.05.
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Table 9.8 Bracket thickness x;; and plating thickness y;; in 1075 inches for three vendors (Hicks 1965)

Vendor
1 2 3
t X1t Vit X2t Yor X3¢ Y3t
1 110 40 60 25 62 27
2 75 38 75 32 90 24
3 93 30 38 13 45 20
4 97 47 140 35 59 13

Source Hicks (1965). Copyright © 1965 American Society for Quality. Reprinted with permission

(d) Test for equality of the treatment effects, using a significance level of o = 0.05. Discuss the
results.

(e) Construct a 95% confidence interval for the difference in treatment effects. Discuss the results.

2. (optional) Assume that the analysis of covariance model (9.2.2) holds, so that Y;; = pu+7; + B(xi; —
X))+ €.

(a) Compute E[Yj;].

(b) Verify that sp, = >, > (xir — X.) Yy, given that spty, = >, > (xiy — %) (Yir — Y.

(c) Show that E[ﬁ] = (3, where ﬁA = sp}y/ssi and sst =D > (xi — x;i)2.

(d) Verify that Var(3) = 02/ss* and Cov(Y;,, () = 0.

(e) Verify that E[fi 4+ 7;] = p+ 7;, where i + 7 = Y; — ﬁA(f,; —X.).

(f) Using the results of (c) and (e), argue that z + 7; and § and all linear combinations of these are
estimable.

3. Zinc plating experiment

The following experiment was used by C.R. Hicks (1965), Industrial Quality Control, to illustrate
the possible bias caused by ignoring an important covariate. The experimental units consisted of 12
steel brackets. Four steel brackets were sent to each of three vendors to be zinc plated. The response
variable was the thickness of the zinc plating, in hundred-thousandths of an inch. The thickness of
each bracket before plating was measured as a covariate. The data are reproduced in Table 9.8.

(a) Plot y;; versus x;;, using the vendor index i as the plotting symbol. Discuss the relationship
between plating thickness and bracket thickness before plating. Based on the plot, discuss ap-
propriateness of the analysis of covariance model. Based on the plot, discuss whether there
appears to be a vendor effect.

(b) Fit the analysis of covariance model (9.2.1) or (9.2.2) to the data.

(c) Plot the residuals against the covariate, predicted values, and normal scores. Use the plots to
evaluate model assumptions.

(d) Test for equality of slopes, using a level of significance o« = 0.05.

(e) Test for equality of the vendor effects, using a significance level o = 0.05.

(f) Fit the analysis of variance model to the data, ignoring the covariate.

(g) Using analysis of variance, ignoring the covariate, test for equality of the vendor effects using a
significance level a = 0.05.
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Table 9.9 Data for the paper tower absorbancy experiment

Run Treatment AB Drops Time Area Rate Absorbancy
1 2 12 89 50 121.00 1.780 0.7355
2 4 22 28 15 99.00 1.867 0.2828
3 2 12 47 22 121.00 2.136 0.3884
4 1 11 82 42 121.00 1.952 0.6777
5 5 31 54 30 123.75 1.800 0.4364
6 1 11 74 37 121.00 2.000 0.6116
7 4 22 29 14 99.00 2.071 0.2929
8 6 32 80 41 123.75 1.951 0.6465
9 3 21 25 11 99.00 2272 0.2525

10 3 21 27 12 99.00 2.250 0.2727
11 6 32 83 40 123.75 2.075 0.6707
12 5 31 41 19 123.75 2.158 0.3313

(h) Compare and discuss the results of parts (e) and (g). For which model is msE smaller? Which
model gives the greater evidence that vendor effects are not equal? What explanation can you
offer for this?

4. Paper towel absorbancy experiment

S. Bortnick, M. Hoffman, K.K. Lewis and C. Williams conducted a pilot experiment in 1996 to
compare the effects of two treatment factors, brand and printing, on the absorbancy of paper towels.
Three brands of paper towels were compared (factor A at 3 levels). For each brand, both white
and printed towels were evaluated (factor B, 1=white, 2=printed). For each observation, water
was dripped from above a towel, which was horizontally suspended between two pairs of books
on a flat surface, until the water began leaking through to the surface below. The time to collect
each observation was measured in seconds. Absorbancy was measured as the number of water
drops absorbed per square inch of towel. The rate at which the water droplets fell to the towel was
measured (in drops per second) as a covariate. The data are reproduced in Table 9.9.

(a) Plot absorbancy versus rate, using the treatment level as the plotting symbol. Based on the plot,
discuss appropriateness of the analysis of covariance model, and discuss whether there appear
to be treatment effects.

(b) Fit the one-way analysis of covariance model to the data.

(c) Plot the residuals against the covariate, run order, predicted values, and normal scores. Use the
plots to evaluate model assumptions.

(d) Test for equality of slopes, using a level of significance ov = 0.05.

(e) Test for equality of treatment effects, using a significance level aw = 0.05.

(f) Conduct a two-way analysis of covariance. Test the main effects and interactions for significance.

5. Catalyst experiment, continued

The catalyst experiment was described in Exercise 5 of Chap. 5. The data were given in Table 5.18,
p. 134. There were twelve treatment combinations consisting of four levels of reagent, which we
may recode as A = 1, B =2, C = 3, D = 4, and three levels of catalyst, which we may recode
as X =1, Y =2, Z = 3, giving the treatment combinations 11, 12, 13, 21,...,43.

The order of observation of the treatment combinations is also given in Table 5.18.
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Fit a two-way complete model to the data and plot the residuals against the time order. If you
are happy about the independence of the error variables, then check the other assumptions on
the model and analyze the data. Otherwise, go to part (b).

Recode the treatment combinations as 1, 2, ..., 12. Fit an analysis of covariance model (9.2.1)
or (9.2.2) to the data, where the covariate x;; denotes the time in the run order at which the ¢th
observation on the ith treatment combination was made. Check all of the assumptions on your
model, and if they appear to be satisfied, analyze the data.

Plot the adjusted means of the twelve treatment combinations in such a way that you can inves-
tigate the interaction between the reagents and catalysts. Test the hypothesis that the interaction
is negligible.

Check the model for lack of fit; that is, investigate the treatment X time interaction. State your
conclusions.



10.1 Introduction

In step (b)(iii) of the checklist in Chap. 2, we raised the possibility that an experiment may involve one
or more nuisance factors that, although not of interest to the experimenter, could have a major effect
on the response. We classified these nuisance factors into three types: blocking factors, noise factors,
and covariates. Different types of nuisance factors lead to different types of analyses, and the choice
between these is revisited in Sect. 10.2.

The cotton-spinning experiment of Sect. 2.3, p. 13, illustrates some of the considerations that might
lead an experimenter to include a blocking factor in the model and to adopt a block design. The most
commonly used block designs are the complete block designs. These are defined in Sect. 10.3 and their
randomization is illustrated. Models, multiple comparisons, and analysis of variance for randomized
complete block designs in which each treatment is observed once in each block are given in Sect. 10.4
and those for more general complete block designs in Sect. 10.6. Model assumption checks are outlined
briefly in Sect. 10.7. An analysis of the cotton-spinning experiment is described in Sect. 10.5 and, in
Sect. 10.8, we illustrate the analysis of a complete block design with factorial treatment combinations.
Analyses of complete block designs using the SAS and R computer packages are discussed in Sects. 10.9
and 10.10, respectively.

10.2 Blocks, Noise Factors or Covariates?

It is not always obvious whether to classify a nuisance factor as a blocking factor, a covariate, or a
noise factor. The decision will often be governed by the goal of the experiment.

Nuisance factors are classified as noise factors if the objective of the experiment is to find settings
of the treatment factors whose response is least affected by varying the levels of the nuisance factors.
Settings of noise factors can usually be controlled during an experiment but are uncontrollable outside
the laboratory. We will give some examples illustrating noise factors in Chap. 15.

Covariates are nuisance factors that cannot be controlled but can be measured prior to, or during,
the experiment. Sometimes covariates are of interest in their own right, but when they are included in
the model as nuisance variables, their effects are used to adjust the responses so that treatments can be
compared as though all experimental units were identical (see Chap.9).

A block design is appropriate when the goal of the experiment is to compare the effects of different
treatments averaged over a range of different conditions. The experimental units are grouped into sets
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in such a way that two experimental units in the same set are similar and can be measured under similar
experimental conditions, but two experimental units in different sets are likely to give rise to quite
different measurements even when assigned to the same treatment. The sets of similar experimental
units are called blocks, and the conditions that vary from block to block form the levels of the blocking
factor. The intent of blocking is to prevent large differences in the experimental units from masking
differences between treatment effects, while at the same time allowing the treatments to be examined
under different experimental conditions.

The levels of a blocking factor may be the values of a covariate that has been measured prior
to the experiment and whose values are used to group the experimental units. More often, however,
the levels of a blocking factor are groupings of characteristics that cannot be conveniently measured.
For example, grouping the time slots in the same day into the same block, as was done for the cotton-
spinning experiment in Sect. 2.3, ensures that environmental conditions within a block are fairly similar
without the necessity of measuring them.

Since the levels of the blocking factor do not necessarily need to be measured, the block design
is very popular. Agricultural experimenters may know that plots close together in a field are alike,
while those far apart are not alike. Industrial experimenters may know that two items produced by one
machine have similar characteristics, while those produced by two different machines are somewhat
different. Medical experimenters may know that measurements taken on the same subject will be alike,
while those taken on different subjects will not be alike. Consequently, blocks may be formed without
actually knowing the precise levels of the blocking factor. Some more examples are given in the next
section and throughout the chapter.

10.3 Design Issues

10.3.1 Block Sizes

Although it is perfectly possible for the numbers of experimental units in each block to be unequal, the
most common setting, and the only one that we will examine here, is when the blocks are of the same
size. We will use b to represent the number of blocks and k to represent the common block sizes.

Sometimes the block sizes are naturally defined, and sometimes they need to be specifically selected
by the experimenter. In a bread-baking experiment, for example, the experimental units are the baking
tins in different positions in the oven. If the temperature cannot be carefully controlled, there may be
a temperature gradient from the top shelf to the bottom shelf of the oven, although the temperature
at all positions within a shelf may be more or less constant. If the measured response is affected by
temperature, then experimental units on the same shelf are alike, but those on different shelves are
different. There is a natural grouping of experimental units into blocks defined by the shelf of the oven.
Thus, the shelves are the blocks of experimental units and represent the levels of the blocking factor
“temperature.” The number b of blocks is the number of shelves in the oven. The block size k is the
number of baking tins that can be accommodated on each shelf.

Block size is not always dictated by the experimental equipment. The size often needs to be deter-
mined by the judgment of the experimenter. For example, the data in Fig. 10.1 were gathered in a
pilot experiment by Bob Belloto in the Department of Pharmacy at The Ohio State University. The
data show the readings obtained by a breathalyzer for a given concentration of alcohol. Notice how the
readings decrease over time. Likely causes for this decrease include changes in atmospheric conditions,
evaporation of alcohol, and deterioration of the breathalyzer filters. In other experiments, such trends
in the data can be caused by equipment heating over time, by variability of batches of raw material, by
experimenter fatigue, etc.
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Fig.10.1 Pilot data for the
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The block sizes for the breathalyzer experiment were chosen to be five, that is, the first five obser-
vations would be in one block, the next five in the next block, and so on. The reason for the choice was
twofold. First, it can be seen from Fig. 10.1 that the observations in the pilot experiment seem to be
fairly stable in groups of five. Secondly, the experiment was to be run by two different technicians, who
alternated shifts, and five observations could be taken per shift. Thus the blocking factor was factorial
in nature, and its levels represented combinations of time and technicians.

It is not uncommon in industry for an experiment to be automatically divided into blocks according
to time of day as a precaution against changing experimental conditions. A pilot experiment using a
single treatment such as that in the breathalyzer experiment is an ideal way of determining the necessity
for blocking. If blocks were to be created when they are not needed, hypothesis tests would be less
powerful and confidence intervals would be wider than those obtained via a completely randomized
design.

10.3.2 Complete Block Design Definitions

Having decided on the block size and having grouped the experimental units into blocks of similar
units, the next step is to assign the units to the levels of the treatment factors. The worst possible
assignment of experimental units to treatments is to assign all the units within a block to one treatment,
all units within another block to a second treatment, and so on. This assignment is bad because it does
not allow the analysis to distinguish block differences from treatment differences. The effects of the
treatment factors and the effects of the blocking factor are said to be confounded.

The best possible assignment is one that allocates to every treatment the same number of experi-
mental units per block. This can be achieved only when the block size k is a multiple of v, the number
of treatments. Such designs are called complete block designs, and in the special case of k = v, they
have historically been called randomized complete block designs or, simply, randomized block designs.
The historical name is unfortunate, since all block designs need to be randomized. Nevertheless, we
will retain the name randomized complete block design for block size k = v and use the name general
complete block design for block size a larger multiple of v.

If the block size is not a multiple of v, then the block design is known as an incomplete block design.
This term is sometimes reserved for the smaller designs where k < v, but we will find it convenient to
classify all designs as either complete or incomplete. Incomplete block designs are more complicated
to design and analyze than complete block designs, and we postpone their discussion to Chap. 11. For
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complete block designs, every treatment is observed s = v/k times in every block, and so is observed
r = bs times in the experiment.

10.3.3 The Randomized Complete Block Design

A randomized complete block design is a design with v treatments (which may be factorial treatment
combinations) and with n = bv experimental units grouped into b blocks of k = v units in such a way
that units within a block are alike and units in different blocks are substantially different. The k = v
experimental units within each block are randomly assigned to the v treatments so that each treatment
is assigned one unit per block. Thus, each treatment appears once in every block (s = 1) and r = b
times in the design.

Example 10.3.1 Bread-baking experiment

An experimenter wishes to compare the shelf life of loaves made from v = 4 different bread doughs,
coded 1, 2, 3, 4. An oven with three shelves will be used, and each shelf is large enough to take four
baking tins. A temperature difference is anticipated between the different shelves but not in different
positions within a shelf. The oven will be used twice, giving a total of six blocks defined by shelf/run
of the oven, and the block size is k = 4 defined by the four positions on each shelf: FL, FR, BL, BR
(front left, front right, back left, back right).

Since the block size is the same as the number of treatments, a randomized complete block design
can be used. The experimental units (positions) in each block (shelf/run) are assigned at random to the
four levels of the treatment factor (doughs) using the procedure described in Sect. 3.2, p. 31, for each
block separately. For example, suppose we obtain the four 2-digit random numbers 74, 11, 39, 68 from
a computer random number generator, or from Table A.1, and associate them in this order with the four
treatments to be observed once each in block 1. If we now sort the random numbers into ascending
order, the treatment codes are sorted into the order 2, 3, 4, 1. We can then allocate the experimental
units in the order FL, FR, BL, BR to the randomly sorted treatments, and we obtain the randomized
block shown in the first row of Table 10.1. The other randomized blocks in Table 10.1 are obtained in
a similar fashion.

Notice that the randomization that we have obtained in Table 10.1 has allowed bread dough 1 to be
observed four times in the back right position, and that dough 2 is never observed in this position. If a
temperature difference in positions is present, then this could cause problems in estimating treatment
differences, and the randomized complete block design is not the correct design to use. Instead, a

row—column design (Chap. 12) should be used within each run of the oven. U

Table 10.1 Example of a Block Run  Shelf FL FR BL BR

randomized complete 1 > 1

block design 1 1 3 1
2 2 1 2 3 4
3 3 4 3 2 1
4 2 1 2 4 3 1
5 2 2 4 1 3
6 3 3 2 4 1
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10.3.4 The General Complete Block Design

A general complete block design is a design with v treatments (which may be factorial treatment
combinations) and with n = bvs experimental units grouped into b blocks of k = vs units in such
a way that units within a block are alike and units in different blocks are substantially different. The
k = vs experimental units within each block are randomly assigned to the v treatments so that each
treatment is assigned s units per block. Thus, each treatment appears s times in every block and r = bs
times in the design.

Example 10.3.2 DCIS experiment

An experiment was run by Matthew Darr, David Holman, Nasser Kashou, and Angela Wendel in 2006
to examine the variability of a Dynamic Inline Conveyor Scale (DCIS). The DCIS is an automated
system for weighing individual pieces of large fruit (for example, watermelons) while they are conveyed
from one location to another. The device uses an optical switch to trigger the weighing system, a load
cell to perform the weighing operation and a computer-based data recording system. The objective
of the experiment was to reduce the variability associated with the recorded weight of each piece of
fruit. The researchers decided to examine the effects of two treatment factors. Treatment factor A was
the length of time during which the weight was recorded (with three levels: 50, 75, 100, milliseconds;
coded 1, 2, 3). Treatment factor B was the position of the optical switch (with two levels; 1 inch
and 2 inches from the end of the scale plate; coded 1, 2). Thus there were six treatments (treatment
combinations), coded as follows:

(50 millisec, 1inch) =1, (50 millisec, 2inch) = 2,
(75 millisec, 1inch) = 3, (75 millisec, 2 inch) = 4,
(100 millisec, 1inch) = 5, (100 millisec, 2 inch) = 6,

The currently employed setting was treatment 4 (time 75 milliseconds, switch at 2 inches from the scale
plate). The experimenters wished to see if there was a better setting, while taking into account a range
of possible lubrication levels of the conveyor system. Changing the lubrication levels was difficult
and time consuming, so the experiment was run in two blocks at the extreme levels of lubrication. In
block 1, the conveyor pan was completely saturated with oil lubricant and, in block 2, all lubricant was
removed from the conveyor pan. In each block, there were s = 2 observations on each treatment. A
random assignment of the k = sv = 12 experimental units (time slots) to the treatments within each
block gave the following observation order:

Blockl: 152415264336
Block2: 312425615436

For each observation on a specified treatment in a block, the response was a function, called “uncer-
tainty”, of the standard deviation of 30 weighings of a watermelon. The data are shown in Table 10.8
and discussed in Example 10.6.1. O

10.3.5 How Many Observations?
If the block size k = sv is pre-determined, we can calculate the number of blocks b that are required

to achieve a confidence interval of given length, or a hypothesis test of desired power, in much the
same way as we calculated sample sizes in Chap. 6. If the number of blocks b is fixed, but the block
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sizes can be large, then the same techniques can be used to calculate s for a general complete block
design. A calculation of the required number of blocks using confidence intervals is illustrated for a
randomized complete block design in Sect. 10.5.2, and a calculation of the required block size using
the power of a test is done in Sect. 10.6.3 for a general complete block design.

10.4 Analysis of Randomized Complete Block Designs
10.4.1 Model and Analysis of Variance

The standard model for a randomized complete block design (with s = 1 observation on each treatment
in each block) is

Ypi = p+0p + 7i + €ni s
eni ~ N(0,0?),
€n;’s are mutually independent ,
h=1,...,b; i=1,...,v,

(10.4.1)

where p is a constant, 6, is the effect of the hth block, 7; is the effect of the ith treatment, Yy; is
the random variable representing the measurement on treatment i observed in block /, and €j; is the
associated random error. We will call this standard model the block—treatment model.

Notice that the block—treatment model does not include a term for the interaction between blocks and
treatments. If interaction effects were to be included in the model, there would be no degrees of freedom
for error with which to estimate the error variance (cf. Sect. 6.7). In many blocked experiments, absence
of block x treatment interaction is a reasonable assumption. However, if interaction is suspected in a
given experiment, then the block size must be increased to allow its estimation (as in Sect. 10.6).

The block—treatment model (10.4.1) looks similar to the two-way main-effects model (6.2.3) for two
treatment factors in a completely randomized design with one observation per cell. Not surprisingly,
then, the analysis of variance table in Table 10.2 for the randomized complete block design looks
similar to the two-way analysis of variance table in Table 6.7, p. 170, for two treatment factors and one
observation per treatment combination. There is, however, an important difference. In a completely
randomized design, the experimental units are randomly assigned to the treatment combinations, and

Table 10.2 Analysis of variance: randomized complete block design

Source of variation Degrees of freedom Sum of squares Mean square Ratio
Block b—1 ss msf = % _
_ ssT msT
Treatment v—1 ssT msT = =5 msE
. _ sSE
Error bv—b—-v+1 SsE msE= ==
Total bv —1 sstot

Computational formulae
ss0= 03, h — bvy? sstot = 3, 3 ¥, — bvy?

ssT=b3; jzi — bvy? sSE = sstot — ssf) — ssT
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so to the levels of both factors. On the other hand, in a block design, although observations are taken
on all combinations of treatments and blocks, the experimental units are randomly assigned to the
levels of the treatment factor only. The levels of the block factor represent intentional groupings of
the experimental units. This leads to some controversy as to whether or not a test of equality of block
effects is valid. However, when blocks represent nuisance sources of variation, we do not need to know
much about the block effects since it is very unlikely that we can use the identical blocks again. So,
rather than testing for equality of block effects, we will merely compare the block mean square msf
with the error mean square msE to determine whether or not blocking was beneficial in the experiment
at hand.

If msf is considerably larger than msE, this suggests that the creation of blocks was worthwhile
in the sense of having reduced the size of the error mean square. If msf is less than msE, then the
creation of blocks was not helpful and, in fact, has lowered the power of hypothesis tests and increased
the lengths of confidence intervals for treatment contrasts. The comparison of msf and msE is not a
significance test. There is no statistical conclusion about the equality of block effects. The comparison
is merely an assessment of the usefulness of having created blocks in this particular experiment and
does provide some information for the planning of future similar experiments. Of course, if msf is less
than mskE, it is not valid to pretend that the experiment was designed as a completely randomized design
and to remove the block effects from the model—the randomization is not correct for a completely
randomized design.

For testing hypotheses about treatment effects, we can use the analogy with the two-way main-
effects model. The decision rule for testing the null hypothesis Hy : {1y = m = --- = 7},
that the treatments have the same effect on the response, against the alternative hypothesis
H, : {at least two of the 7; differ} is

reject Ho if msT/msE > Fy_1 py—b—v+1.a (104.2)
for some chosen significance level o, where msT and msE are defined in Table 10.2.

Example 10.4.1 Resting metabolic rate experiment

In the 1993 issue of Annals of Nutrition and Metabolism, R. C. Bullough and C. L. Melby describe
an experiment that was run to compare the effects of inpatient and outpatient protocols on the in-
laboratory measurement of resting metabolic rate (RMR) in humans. A previous study had indicated
measurements of RMR on elderly individuals to be 8% higher using an outpatient protocol than with an
inpatient protocol. If the measurements depend on the protocol, then comparison of the results of studies
conducted by different laboratories using different protocols would be difficult. The experimenters
hoped to conclude that the effect on RMR of different protocols was negligible.

The experimental treatments consisted of three protocols: (1) an inpatient protocol in which meals
were controlled—the patient was fed the evening meal and spent the night in the laboratory, then RMR
was measured in the morning; (2) an outpatient protocol in which meals were controlled—the patient
was fed the same evening meal at the laboratory but spent the night at home, then RMR was measured
in the morning; and (3) an outpatient protocol in which meals were not strictly controlled—the patient
was instructed to fast for 12 hours prior to measurement of RMR in the morning. The three protocols
formed the v = 3 treatments in the experiment.

Since subjects tend to differ substantially from each other, error variability can be reduced by using
the subjects as blocks and measuring the effects of all treatments for each subject. In this experiment,
there were nine subjects (healthy, adult males of similar age) and they formed the b = 9 levels of a
blocking factor “subject.” Every subject was measured under all three treatments (in a random order),
so the blocks were of size k = 3 = v. RMR readings were taken over a one-hour period shortly after
the subject arrived in the laboratory. The data collected during the second 30 minutes of testing are
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Table 10.3 Data for the resting metabolic rate experiment

Protocol
Subject 1 2 3
1 7131 6846 7095
2 8062 8573 8685
3 6921 7287 7132
4 7249 7554 7471
5 9551 8866 8840
6 7046 7681 6939
7 7715 7535 7831
8 9862 10087 9711
9 7812 7708 8179

Source Bullough and Melby (1993). Copyright © 1993 Karger, Basel. Reprinted with permission
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given in Table 10.3 and are plotted in Fig. 10.2. The figure clearly suggests large subject differences,
but no consistent treatment differences.

The analysis of variance is shown in Table 10.4. The value of msf is 37 times larger than msE,
indicating that blocking by subject has greatly reduced the error variance estimate. So a block design
was a good choice for this experiment.

The null hypothesis of no difference in the protocols cannot be rejected at any reasonable selection
of v, since msT/msE = 0.23. The ratio tells us that the average variability of the measurements from
one protocol to another was four times smaller than the measurement error variability. This is unusual,
since measurements from one protocol to another must include measurement error. The p-value is
0.7950, indicating that there is only a 20% chance that we would see a value this small or smaller when
there is no difference whatsoever in the effects of the protocols. Thus, we should ask how well the model
fits the data—perhaps treatment—block interaction is missing from the model and has been included
incorrectly in the error variability. Even if this were the case, however, there is still no indication that
protocols 2 and 3 provide higher RMR readings than protocol 1—in fact, for six of the nine subjects,
one or both of these outpatient protocols resulted in lower readings than the inpatient protocol.

It is not possible to check the model assumptions of equal error variances for each cell because of
the small amount of data. But we can check the equal-variance assumptions for the different levels
of the treatment factor. We find that the variances of the unstandardized residuals are very similar for
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Table 10.4 Analysis of variance for the resting metabolic rate experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Subject 8 23,117462.30 2.389682.79 - -
Protocol 2 35948.74 17974.37 0.23 0.7950
Error 16 1235483.26 77217.70

Total 26 24388894.30

the three protocols. The normality assumption seems to be reasonable. The only possible outlier is the
observation for protocol 1, subject 5, but its removal does not change the above conclusions.

In their article, the experimenters discuss possible reasons for the fact that their conclusions differ
from those of previous studies. Reasons included the different age of the subjects (27-29 years rather
than 64—67 years) and the fact that they provided transport to the laboratory for the outpatients, whereas
previous studies had not. 0

10.4.2 Multiple Comparisons

Since the block—treatment model (10.4.1) for the randomized complete block design is similar to the
two-way main-effects model (6.2.3) for an experiment with two treatment factors and one observation
per cell, the least squares estimator foreach y + 6, + 7, (h = 1,...,b; i = 1,...,v) is similar to
the estimator foreach p+a; +3; (i =1,...,a; j=1,...,b)in(6.5.26), p. 161, without the third
subscript; that is,

A+0,+7 =Y, +Y;—Y (10.4.3)

It follows that any contrast X¢;7; (with X¢; = 0) in the treatment effects is estimable in the randomized
complete block design and has least squares estimator

Yot = XY,
and least squares estimate Xc;y ; with corresponding variance oz(Eci2 /b). As for the two-way main-

effects model, all of the multiple comparison procedures of Chap.4 are valid for treatment contrasts
in the randomized complete block design. The formulae, adapted from (6.5.39), p. 166, are

>lamn € (Zc,»yiiw/msb“zc?/b), (10.4.4)

where the critical coefficients for the Bonferroni, Scheffé, Tukey, and Dunnett methods are, respec-
tively,

WB = lpy—b—v+1,0/2m 5 WS = \/(U - l)Fv—l,bv—b—v+l,oz ;

0.5
wr = QU,bv—b—v+l,a/\/§; wp2 = |t|£)—1),hv—b—v+1,a . (10.4.5)

Example 10.4.2 Resting metabolic rate experiment, continued

In the resting metabolic rate experiment, described in Example 10.4.1, p. 311, all three pairwise com-
parisons in the v = 3 protocol effects were of interest prior to the experiment, together with the
contrast that compares the inpatient protocol with the two outpatient protocols. This latter contrast
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has coefficient list [1, —%, - %]. Suppose that the experimenters had wished to calculate simultaneous
95% confidence intervals for these four contrasts. The formula is given in (10.4.4) and there are several
possible choices for the critical coefficient. The Bonferroni method could be used for these specific
four contrasts, whereas the Scheffé method would allow for any number of contrasts to be examined.
From (10.4.5), the critical coefficients are

ws = \/2F2’16,_()5 = \/2(3.63) =2.694 and wp = t16,.05/(2m) = 116,.00625 ~ 2.783.

Hence, in this particular situation, the Scheffé method gives slightly tighter intervals as well as being
more flexible. An alternative is to divide o = 0.05 between a ¢ interval for the fourth contrast and
Tukey intervals for the pairwise comparisons. For example, a 99% ¢ interval and 96% Tukey intervals
would have critical coefficients

wy = 116,012 = 2.9208 and wr = g3,16.04/v2 = 3.8117/+/2 = 2.6953,

and again the Scheffé method is prefable in this example.
For each pairwise comparison 7; — 7, we have > cl.2 = 2, so using the Scheffé method of multiple
comparisons and msE = 77217.7 from Table 10.4, the interval becomes

-1y e (y_,. ~y, + 2.694\/(77217.7)(2)/9) = (v, -7, £ 352.89) .

The treatment sample means are obtained from the data in Table 10.3 as
y1=79277, y,=80152, y;=7987.0,

the biggest difference being y , —y ; = 87.5. Since all three intervals contain zero, we can assert with
95% confidence that no two protocols differ significantly in their effects on the resting metabolic rate.
Similarly, the Scheffé confidence interval for 7 — %(TQ + 73) is

- %(Tz ) e (yl - %(yz +y3)) +2.694/(77217.7)(1.5)/9

— (=73.44 +305.62) ,

and again the interval contains zero. These results are expected in light of the failure in Example 10.4.1
to reject equality of treatment effects in the analysis of variance. 0

10.5 A Real Experiment—Cotton-Spinning Experiment
10.5.1 Design Details

The checklist for the cotton-spinning experiment was given in Sect.2.3, p. 13. After considering
several different possible designs, the experimenters settled on a randomized complete block design.
Each experimental unit was the production of one full set of bobbins on a single machine with a single
operator. A block consisted of a group of experimental units with the same machine, the same operator,
and observed in the same week. Thus, the different levels of the blocking factor represented differences
due to combinations of machines, operators, environmental conditions, and raw material. The block
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size was chosen to be six, as this was equal to the number of treatment combinations and also to the
number of observations that could be taken on one machine in one week.

The treatment combinations were combinations of levels of two treatment factors, “flyer” and
“degree of twist.” Flyer had two levels, “ordinary” and “special.” Twist had four levels, 1.63, 1.69,
1.78, and 1.90. For practical reasons, the combinations of flyer and twist equal to (ordinary, 1.63) and
(special, 1.90) were not observed. We will recode the six treatment combinations that were observed

as follows:
(ordinary, 1.69) = 1, (ordinary, 1.78) = 2, (ordinary, 1.90) = 3,

(special, 1.63) =4, (special, 1.69) =5, (special, 1.78) = 6.

The goal of the experiment was to investigate the effects of the flyers and degrees of twist on the
breakage rate of cotton.

10.5.2 Sample-Size Calculation

Since the experimenters were interested in all pairwise comparisons of the effects of the treatment
combinations, as well as some other special treatment contrasts, we will apply the Scheffé method of
multiple comparisons at overall confidence level 95%. The experimenters initially wanted a confidence
interval to indicate a difference in the effects of a pair of treatment combinations if the true difference
was at least 2 breaks per 100 pounds of material. We will calculate the number of blocks that are needed
to obtain a minimum significant difference of at most 2 for the Scheffé simultaneous confidence intervals
for pairwise comparisons. Using (10.4.4) with v = 6, = 0.05, and Ecl.z = 2, we need to find b such
that

V/5Fs 5p—5,005 v/msE(2/b) < 2.

The error variability o> was expected to be about 7 breaks?, so we need to find the smallest value of b
satisfying
4xb 2b

Fssp_ <17 _ =7
5:36=5.005 =37 555 T 35

Trial and error shows that b = 40 will suffice.

Each block took a week to complete, and it was not clear how many machines would be available
at any one time, so the experimenters decided that they would analyze the data after the first 13 blocks
had been observed. With b = 13, v = 6, and a value of ¢ expected to be about 7 breaks?2, the Scheffé
95% confidence intervals for pairwise comparisons have minimum significant difference equal to

msd = \/5Fs s13-1).005 /7 x (2/13) = 357,

nearly twice the target length. Thus, with msE =7 and 13 blocks, a difference in treatment combinations
i and p will be indicated if their observed average difference is more than 3.57 breaks per 100 pounds
(with a probability of 0.95 of no false indications) rather than 2 breaks per 100 pounds.

10.5.3 Analysis of the Cotton-Spinning Experiment

The data for the first » = 13 blocks observed in the experiment were shown in Table 2.3 (p. 16) and
some of the data were plotted in Fig.2.1. There is an indication of block differences over time. The
low number of breaks tend to be in block 1, and the high number of breaks in blocks 11, 12, and 13.
This suggests that blocking was worthwhile. This is also corroborated by the fact that msé is nearly
three times as large as msE (see Table 10.5).
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http://dx.doi.org/10.1007/978-3-319-52250-0_2

316 10 Complete Block Designs

Table 10.5 Analysis of variance for the cotton-spinning experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Block 12 177.155 14.763 -

Treatment 5 231.034 46.207 9.05 0.0001
Error 60 306.446 5.107

Total 77 714.635

The error assumptions for the block—treatment model (10.4.1) are satisfied apart from two outlying
observations for treatment 1 (from blocks 5 and 10). The two outliers cause the variances of the
unstandardized residuals to be unequal. Also, the normality assumption appears to be not quite satisfied.
Since the experiment was run a long time ago, we are not able to investigate possible causes of the
outliers. The best we can do is to run the analysis both with and without them. Here, we will continue
the analysis including the outliers, and in Exercise 17, we ask the reader to verify that the model
assumptions are approximately satisfied when the outliers are removed and that similar conclusions
can be drawn.

The analysis of variance table is shown in Table 10.5. Luckily, the error variance is smaller than
expected (the observed msE is 5.1), and consequently, the confidence intervals will not be as wide as
feared. The null hypothesis of equality of the treatment effects is rejected at significance level « = 0.01,
since the p-value is less than 0.01; equivalently,

msT/msE = 9.05 > F560,.01 = 3.34.

The treatment sample means are

i 1 2 3 4 5 6
y; :10.8000 9.2769 7.1846 6.7538 7.0846 5.6538

With b = 13 blocks and msE = 5.107, the minimum significant difference for a set of Scheffé’s
simultaneous 95% confidence intervals is

msd = /5Fs 60,0.0s\/ msE Tc¢? /13 = /5(2.37),/5.107 £c7/13

= 3.442 x 0.6268,/ £c? = 2.158,/5c?. (10.5.6)

For pairwise comparisons we have E,-cl.z = 2, so msd = 3.052. Comparing this value with differences
in treatment sample means, we see that treatment 1 (ordinary flyer, 1.69 twist) yields significantly
more breaks on average than all other treatment combinations except treatment 2 (ordinary flyer, 1.78
twist), and 2 is significantly worse on average than 6 (special flyer, 1.78 twist). This might lead one to
suspect that the special flyer might be better than the ordinary flyer.

The contrast %(Tl +m) — %(75 + 7T¢) compares the two flyers, averaging over the common levels
(1.69 and 1.78) of twist. The corresponding confidence interval (still using Scheffé’s method at an
overall 95% confidence level and msd (10.5.6)) is

1 1
(E(yl +32) = 55 +Te) * 2158 zcl?) — (3.670 + (2.158 x 1.0))
= (1.512,5.828).
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This confidence interval suggests that averaged over the middle two levels of twist, the ordinary flyer
is worse than the special flyer, producing on average between about 1.5 and 5.8 more breaks per 100
pounds.

In Fig. 10.3, the treatment sample means y ; are plotted against the uncoded twist levels, with the
open symbols (labels 1, 2, 3) indicating those treatments with the ordinary flyer, and the black symbols
(labels 4, 5, 6) indicating the special flyer. This plot reveals informative patterns in the treatment means.
In particular, it appears as if the mean number of breaks per 100 pounds decreases almost linearly as
the amount of twist increases for the ordinary flyer (treatments 1, 2, 3), yielding consistently smaller
means for each amount of twist. Notice that the levels of twist are not equally spaced, so we cannot
use the contrast coefficients in Appendix A.2 to measure trends in the breakage rate due to increasing
twist. We could use the formula (4.2.4) p. 73 to obtain the linear trend coefficients, but since a different
three of the four levels of twist are observed for the two flyers, the analysis of a linear trend would be
more useful if done for each flyer separately. For example, for the three levels of the ordinary flyer, the
coefficients for the linear trend would be calculated as

3
13 x (x; — 1.79) = —1.300, —0.130, 1.430, respectively, wherel.79 =X = Z 13x; /39,
i=1

and these become -10, -1, 11, respectively, when multiplied by the choice of constant 100/13. Using
these integer coefficients, the estimate of the linear trend in the breakage rate due to increasing twist
for the ordinary flyer is Z?=1 ciy; = —38.246 with corresponding estimated standard deviation

3
msE " c?/r; = v/5.107 x 17.0767 = 9.3387,
i=1

giving a ratio of —38.246/9.3387 = —4.0954. If we test, at level o = 0.01, the hypothesis of no linear
trend in the breakages due to increasing amounts of twist using the ordinary flyer against the alternative
hypothesis that there is a decreasing linear trend, we would reject the null hypothesis in favor of the
alternative since —4.0954 < —t60.0.01 = —2.390.

Sections 10.9 and 10.10 illustrate the use of the SAS and R software for obtaining the analyses
presented in this section, together with corresponding analyses using either the factorial main effects
model or the analogous model treating twist as a linear regressor, and also the lack-of-fit test of the
latter model.
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10.6 Analysis of General Complete Block Designs
10.6.1 Model and Analysis of Variance

In this section we discuss general complete block designs with s > 1 observations on each treatment
in each block. Having every level of the treatment factor observed more than once per block gives
sufficient degrees of freedom to be able to measure a block x treatment interaction if one is anticipated.
Therefore, there are two standard models for the general complete block design, the block—treatment
model (without interaction)

Yhie = b+ 0p + 7 + €nis (10.6.7)

and the block—treatment interaction model, which includes the effect of block—treatment interaction:
Yhie = po+ 0p + 7 + (OT)ni + €nir - (10.6.8)
In each case, the model includes the error assumptions

enit ~ N(0,07),
€nit’s are mutually independent ,
t=1,....s; h=1,....,b;i=1,...,v.

The assumptions on these two models should be checked for any given experiment (see Sect. 10.7).

The block—treatment model (10.6.7) for a general complete block design is similar to the two-way
main-effects model (6.2.3), and the block—treatment interaction model (10.6.8) is like the two-way
complete model (6.2.2) for two treatment factors in a completely randomized design, each with s
observations per cell. Analogously, the analysis of variance tables (Tables 10.6 and 10.7) for the block—
treatment models, with and without interaction, look similar to those for the two-way main-effects and
two-way complete models (Tables 6.4 and 6.7, pp. 159 and 170).

The decision rule for testing the null hypothesis HOT :{mm = m» = --- = 7,} that the treatment
effects are equal against the alternative hypothesis Hz that at least two of the treatment effects differ
is given by the decision rule

reject HY if msT/msE > Fy_1 dr.a , (10.6.9)

where « is the chosen significance level, and where msT, msE, and the error degrees of freedom, df,
are obtained from Tables 10.6 or 10.7 as appropriate.

Table 10.6 Analysis of variance for the general complete block design with negligible block x treatment interaction and
block size k = vs

Source of variation Degrees of freedom Sum of squares Mean square Ratio
Block b—1 ss6 - -

s T = 35T msT
Treatment v—1 ssT msT = 75 msE

_ ssE
Error bvs —b—v+1 ssE msE = ==y
Total bvs — 1 sstot
Computational formulae

ss0 = vs 3, 5, — bus 37, sstot = 3, 3 3, Yy — bvs 77,

ssT=bs>; y% — bus yz ssE = sstot — ssf) — ssT
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Table 10.7 Analysis of variance for the general complete block design with block x treatment interaction and block size
k=vs

Source of variation Degrees of freedom Sum of squares Mean square Ratio
Block b—1 ss - -
Treatment v—1 ssT msT = (Ssj) I’Z—?Er
Interaction b-DHw-=1) ssOT msOT = % ’g;fb?
Error bu(s — 1) ssE msE = ﬁﬁn
Total bvs — 1 sstot

Computational formulae
ss0 = vs >, ¥, — bus ¥, sSOT =5 3, 2 Vi — bs 35 77,
ssT=bsy; Yzl —bus 72, —vs >, yﬁ_' + bus 72,
sSE = sstot — ssf — ssT — ssOT sstot=>,>. >, y2. — bvs 32

Table 10.8 Data for the DCIS weighing system

Time, position (treatment)

Block 11 (1) 12(2) 21 (3) 22 (4) 31 (5) 32(6)
1 0.637 0.174 0.886 0.378 0.396 0.386
0.645 0.238 0.655 0.459 0.415 0.453

2 0.675 0.187 0.528 0.270 0.594 0.799
0.480 0.183 0.701 0.426 0.545 0.413

If the block x treatment interaction term is included in the model, a test of the hypothesis H09 T,
{OT)ni — O7T)p. — (07); + (67).. =0 forall i, i} against the alternative hypothesis HﬁT that at least
one interaction contrast is nonzero is given by

reject HOQT if msQT/msE > F(b—l)(v—l),bv(s—l),a (10.6.10)

for some chosen significance level o, where msfT and msE are obtained from Table 10.7. As usual,
if the interaction is significantly different from zero, a test of equality of the treatment effects may not
be of interest (unless done within each block separately). An evaluation of the usefulness of blocking
in the experiment at hand can be made by comparing msf with msE as in Sect. 10.4.1.

Example 10.6.1 DCIS experiment, continued

The objective of the DCIS experiment, described in Example 10.3.2, was to reduce the variability in
the DCIS weighing system. The setting currently employed was treatment 4 (time 75 milliseconds,
and switch at 2 inches from the scale plate). The experiment was run as a general block design with
s = 2 observations per treatment per block (the blocking factor levels were the amounts of conveyor
pan lubrication). The responses (“‘uncertainty” calculated as a function of the standard deviation of 30
repeated weighings of a watermelon) are shown in Table 10.8 and plotted in Fig. 10.4.

A block-treatment interaction model (10.6.8) was fitted, so the block-treatment interaction is exam-
ined first. Figure 10.4 suggests that there might be a small interaction between block and treatment
combination.

The analysis of variance table is shown in Table 10.9, and we see that ms#T = 0.019 and
msE = 0.013. Using (10.6.10), the hypothesis Hg T of negligible interaction would be rejected
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Fig.10.4 Response for the DCIS experiment

Table 10.9 Analysis of variance for the DCIS experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Block 1 0.0003 - -
Treatment 5 0.6132 0.1226 9.41 0.0008
Block x Treatment 5 0.0952 0.0190 1.46 0.2726
Error 12 0.1563 0.0130
Total 23 0.8649

if msdT/msE = 1.46 is larger than Fs 13, for some chosen significance level o. However,

Fs512,01 = 9.89, so there is not sufficient evidence to reject HOQT at level &« = 0.01. Notice that
the p-value for the test is 0.2726, so in fact, no reasonable choice of o would lead to rejection of
H(‘)g T’ So the block xtreatment interaction that appears in Fig. 10.4 could be due to error variability.
From Table 10.9, msT /msE = 9.41 > F5 12,001 = 5.06, and we conclude that, averaged over the two
blocks (levels of pan lubrication), there is a significant difference between the treatment combinations
atlevel o = 0.01. Figure 10.4 suggests that treatment 2 might be the best treatment in both blocks (and
better than the current treatment 4). The overall significance level of the two tests is at most 0.02. [J

10.6.2 Multiple Comparisons for the General Complete Block Design
No Interaction Term in the Model

The Bonferroni, Scheffé, Tukey, and Dunnett methods described in Sect. 4.4 can all be used for obtaining
simultaneous confidence intervals for sets of treatment contrasts in a general complete block design.
Since the block—treatment model (10.6.7), without interaction, is similar to the two-way main-effects
model (6.2.3) with s observations per cell, formulae for multiple comparisons are similar to those given
in (6.5.39), p. 166, with a replaced by v and r replaced by s. Thus, a set of 100(1 — «)% simultaneous
confidence intervals for treatment contrast X¢;7; is of the form

>ar e (Z ¢iyi fw, msEZC?/bS) , (10.6.11)
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where the critical coefficients for the four methods are, respectively,

WB = tafaom 3 Ws =+/(V—DFy_1dra ;

0.5
wr = Qv,df,oz/\/z , Wp2 = |t|5)—])’df’(y s

wheren = bvsanddf=n—b —v + 1.

Interaction Term Included in the Model

The block—treatment interaction model (10.6.8) for the general complete block design is similar
to the two-way complete model (6.2.2), p. 142, for two treatment factors with s observations per
cell. Consequently, formulae for confidence intervals for treatment comparisons, averaging over the
block x treatment interaction, are similar to those given in (6.4.18), p. 152, with a replaced by v and r
replaced by s. The general formula for a set of 100(1 — «)% simultaneous confidence intervals for
treatment contrasts is given by (10.6.11) above, but where the number of error degrees of freedom df
in each of the critical coefficients is

df=@wbs—1)—(b—-1DHw-1)—b-1)—(@w—=1)=bv(s—1)=n—>bv.

Treatment comparisons may not be of interest if treatments do interact with blocks, in which case
within-block comparisons are likely to be preferred instead. These are similar to the simple contrasts
of Sect.6.3.1 and are most easily calculated via a cell-means representation of the model. If we write
Nhi = O + 71 + OT)pi (10.6.12)

then the comparison of treatments i and p in block % is the contrast

i — Map = On + 7 + OT)pi) — On +7p + OT)pp) .

In a general complete block design, there are equal numbers of observations on each treatment in each

block so, for block #, the least squares estimate of Zi ChiNhi 18 Zi chiy ;. With corresponding variance
msE ), c}zu. /s, giving confidence intervals for D ; cpinp; of the form

v v v
Zchmh,- € Zchﬁhi' + msEZcﬁi/s
i=1 i=1 i=1

The critical coefficients are as for (10.6.11) but again with df = n — bv error degrees of freedom.
Example 10.6.2 DCIS experiment, continued

In the analysis of the DCIS experiment in Example 10.6.1, the block-treatment interaction appeared to
be negligible, and so the experimenters had the choice of examining the treatment effects on the weight
“uncertainty” averaged over blocks or examining the difference in the treatment effects for each block
separately. The former would be of most interest if it is not possible to control the level of conveyor
pan lubrication in an industrial setting, while the latter would be of interest if the amount of lubrication
could be fixed. Here, as an example, we investigate the latter. Writing the effect of treatment i in block
h as in (10.6.12), we look at the difference between the effects of treatments 2 (apparent best) and 4
(currently used) for each block separately, which compares times 50 and 75 milliseconds at position 2
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for each pan lubrication level. We also look at the differences in the effect of switch position averaged
over weighing time, again for each block separately; that is,

1 1
Nh2 — N4 and 5(77}:1 + Nh3 + Nas) — 3(77}12 + nna +mpe) for h=1,2.

These have least squares estimates and standard errors as follows:

contrast XChiVni. \/m

block 1, treatment 4-2 0.2125 0.1141
block 2, treatment 4-2 0.1630 0.1141
block 1, switch lin vs 2in 0.2577 0.0659
block 2, switch 1in vs 2in  0.2075 0.0659

Using Bonferroni’s method at overall level at least 96%, the four confidence intervals are

ma — iz € (0.2125 4+ 0.11411,005.12) = (0.2125 +0.1141 x 3.055) = (—.136, .561)
s — o2 € (0.1630 & 0.11417,005.12) = (0.1630 & 0.1141 x 3.055) = (—.186, .512)

1 1
—(m1+m3+ms) — 5(7]12 + n14 + M1e) € (0.2577 £ 0.0659 x 3.055) = (.056, .459)

3
1 1
3 0R1 + 123 +1p3) = 2012 + 114 + 1) € (02075 % 0.0659 x 3.055) = (.06, .409)

Thus at overall confidence level of at least 96%, we cannot detect a difference between the effects
of treatment 2 and the current treatment 4 in either block. However, switch position 2 inches from the
end of the scale plate (averaged over weighing times) reduces “uncertainty” as compared with switch
position 1 inch by up to .41in both blocks, and hence seems to be the better position. U

10.6.3 Sample-Size Calculations

A complete block design hasn = bvs experimental units divided into b blocks of size k = vs. The block
size k and the number of blocks b must be chosen to accommodate the experimental conditions, the
budget constraints, and the requirements on the lengths of confidence intervals or powers of hypothesis
tests in the usual way. If the number of blocks is fixed, one can calculate the number of observations
s per treatment per block needed to achieve a prescribed power of a test of no treatment differences.
Analogous to the sample-size calculation for testing main effects of a factor in a two-way layout, s
must satisfy )y
. 2o

Z AL (10.6.13)

where A is the minimum difference between the treatment effects that is to be detected. The tables for
power w(A) as a function of ¢ are in Appendix Table A.7. In (10.6.13), we can switch the role of s and
b, and instead, calculate the number of blocks needed if the block size is fixed.

For calculation of the sample size needed to achieve confidence intervals of specified length, we
specify the maximum allowed msd in (10.6.11) and solve for s or b.

An example of the calculation of b to achieve confidence intervals of given length was given for
the randomized complete block design in Sect. 10.5.2. In Example 10.6.3, we calculate, for a general
complete block design, the block size required to achieve a given power of a hypothesis test.
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Example 10.6.3 Colorfastness experiment

The colorfastness experiment was planned by D-Y Duan, H. Rhee, and C. Song in 1990 to investigate
the effects of the number of washes on the color change of a denim fabric. The experiment was to be
carried out according to the guidelines of the American Association of Textile Chemists and Colorists
Test 61-1980. The levels of the treatment factor were the number of times of laundering, and these
were selected tobe 1, 2, 3, 4, and 5.

The experimenters anticipated that there would be systematic differences in the way they made their
color determinations, and consequently, they grouped the denim fabric swatches into blocks according
to which experimenter was to make the determination. Thus the levels of the blocking factor denoted
the experimenter, and there were b = 3 blocks. They decided to use a general complete block design
and allowed the block size to be k = vs = Ss, where s could be chosen. Rightly or wrongly, they did
not believe that experimenter fatigue would have a large effect on the results, and they were happy for
the block sizes to be large.

They planned to use a block—treatment interaction model (10.6.8), and they wanted to test the null
hypothesis of no treatment differences whether or not there was block x treatment interaction. Suppose
the test was to be carried out at significance level 0.05, and suppose the experimenters wanted to reject
the null hypothesis with probability 0.99 if there was a true difference of A = 0.5 or more in the effect
of the number of washes on color rating. They expected ¢ to be no larger than about 0.4.

We need to find the minimum value of s that satisfies equation (10.6.13); that is,

2v02¢p? (2)(5)(0.4)%¢?
s > =

_ 2
T bAZ T (3)(0.5)? = 2%

The denominator (error) degrees of freedom for the block—treatment interaction model is v, =
bv(s — 1) = 15(s — 1). First we locate that portion of Appendix Table A.7 corresponding to numerator
degrees of freedom v; = v — 1 = 4 and o = 0.05. Then to achieve power m = 0.99, trial and error
starting with s = 100 gives

s 15(s—1) ¢ s =2.13¢* Action

100 1485 2.25 10.78 Rounduptos = 11
11 150 (use 120) 2.325 11.51 Rounduptos = 12
12 165 (use 120) 2.325 11.51  Stop, and uses = 12

So about s = 12 observations per treatment per block should be taken.
Instead, suppose that s had been fixed at s = 4, so that blocks were to be of size k = vs = 20, then
the roles of b and s in (10.6.13) would have been reversed, so that

_ QG4

_ 2
=T T

with v, = (5)(3)b. Then trial and error would lead to approximately b = 9. O

10.7 Checking Model Assumptions

The assumptions on the block—treatment models (10.4.1) and (10.6.7) and on the block—treatment
interaction model (10.6.8) for complete block designs need to be checked as usual. The assumptions
on the error variables are that they have equal variances, are independent, and have a normal distribution.
The form of the model must also be checked.
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Table 10.10 Checking error assumptions for a complete block design

To check for: Plot residuals against:

Independence Order of observations (in space or time)

Equal variance, and Outliers Predicted values yy;;, levels of treatment factor, levels of block factor
Normality Normal scores (also plot separately for each treatment if r is large and for

each block if « is large)

A visual check of an assumption of no block x treatment interaction can be made by plotting y;,;
against the treatment factor levels i for each block /4 in turn. If the lines plotted for each block are
parallel (as in plots (a)—(d) of Fig. 6.1, p. 140), then block x treatment interaction is likely to be absent,
and error variability is small. If the lines are not parallel, then either block x treatment interaction is
present or error variability is large.

For the block—-treatment model (10.4.1) for the randomized complete block design, the (hi)th
residual is

€hi = Yhi — Yhi = Yhi—Vp. —Yi+ V..

For the block—treatment model (10.6.7) for the general complete block design, the (hit)th residual is
similar; that is,
€hit = Yhit — Yhit = Yhit = Yp. — Vi TV -

For the block—treatment interaction model (10.6.8), the (hit)th residual is
hit = Yhit — Yhit = Yhit — Yhi. -

The error assumptions are checked by residual plots, as summarized in Table 10.10 and described in
Chap. 5.

10.8 Factorial Experiments

When the treatments are factorial in nature, the treatment parameter 7; in the complete block design
models (10.4.1), (10.6.7), and (10.6.8) can be replaced by main-effect and interaction parameters. Sup-
pose, for example, we have an experiment with two treatment factors that is designed as a randomized
complete block design—a situation similar to that of the cotton-spinning experiment of Sect. 10.5. In
order not to confuse the number b of blocks with the number of levels of a treatment factor, we will
label the two treatment factors as C and D with ¢ and d levels respectively. If we retain the two digit
codes for the treatment combinations, then the block—treatment model is

Yhiji = o+ On + 7ij + €nije
with the usual assumptions on the error variables. We can then express 7;;, the effect of treatment
combination i, in terms of ; (the effect of C at level i), § j (the effect of D at level j), and (v9); j (the

effect of their interaction when C is at level i and D at level j); that is,

Yiijr =p+0n+v +9; + (0)ij + €nije - (10.8.14)
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In a general complete block design with s > 1 observations per treatment combination per block,
we may include in the model some or all of the block x treatment interactions. For example, with two
treatment factors, the block—treatment interaction model can be expressed as

Yiije = p+60n + 7 + 6 + (¥0)ij + (0)ni (10.8.15)
+ (00)nj + (OvO)nij + €niji »

In both (10.8.14) and (10.8.15), the model assumptions are

enije ~ N(0, 0?),
€nij:'s are mutually independent ,
t=1,....,s; h=1,....b;i=1,...,c; j=1,...,d.

If there are more than two factors, the additional main effects and interactions can be added to the
model in the obvious way.

Example 10.8.1 Banana experiment

The objectives section of the report of an experiment run in 1995 by K. Collins, D. Marriott, P. Kobrin,
G. Kennedy, and S. Kini reads as follows:

Recently a banana hanging device has been introduced in stores with the purpose of providing a place where
bananas can be stored in order to slow the ripening process, thereby allowing a longer time over which the
consumer has to ingest them. Commercially, bananas are picked from trees while they are fully developed but
quite green and are artificially ripened prior to transport. Once they are purchased and brought into the consumer’s
home, they are typically placed on a counter top and left there until they are either eaten or turn black, after which
they can be thrown away or made into banana bread. Considering that the devices currently being marketed to
hang bananas cost some money and take up counter space, it is of interest to us to determine whether or not they
retard the ripening process.

While there exist many ways to measure the degree of banana ripening, perhaps the simplest method is via visual
inspection. The banana undergoes a predictable transition from the unripened green color to yellow then to yellow
speckled with black and finally to fully black. The percentage of black color can be quantified through computer
analysis of photographs of the skins of the bananas.

The major objective of our experiment, then, is to determine whether or not any differences in the percentage of
black skin exist between bananas that are treated conventionally, i.e., placed on a counter, and bananas that are
hung up. As a minor objective, we would like to determine whether or not any difference exists in the percentage
of black skin between bananas allowed to ripen in a normal day/night cycle versus those ripening in the dark such
as might occur if placed in a pantry.

The unripened bananas were bought as a single batch from a single store. They were assigned
at random to four treatment combinations, consisting of combinations of two 2-level factors. Factor
C was Lighting conditions (1 = day/night cycle, 2 = dark closet). Factor D was Storage method
(1 = hanging, 2 = counter-top). Twelve bananas were assigned at random to each treatment com-
bination. After five days, the bananas were peeled and the skin photographed. The images from the
photographic slides were traced by hand, and the percentage of blackened skin was calculated using
an image analyzer on a computer. Three of the experimenters prepared the images for the image ana-
lyzer and, since they were unskilled, they decided to regard themselves as blocks in order to remove
experimenter differences from the comparisons of the treatment combinations. They selected a general
complete block design and assigned the treated bananas in such a way that s = 4 observations on
each treatment combination were obtained by each experimenter. The treatment combinations were
observed in a random order, and the resulting data are shown in Table 10.11.

Since the experimenters did not anticipate a block xtreatment interaction, they selected block—
treatment model (10.8.14) to represent the data. The decision rule for testing the hypothesis HOCD of
no interaction between the treatment factors Light and Storage (averaged over blocks), using a Type I
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Table 10.11 Percentage blackened banana skin

Experimenter (Block) Light C Storage D Yhijt» percentage of blackened skin

1 1 1 30 30 17 43
1 2 43 35 36 64

2 1 37 38 23 53

2 2 22 35 30 38

1I 1 1 49 60 41 61
1 2 57 46 31 34

2 1 20 63 64 34

2 2 40 47 62 42

1 1 1 21 45 38 39
1 2 42 13 21 26

2 1 41 74 24 51

2 2 38 22 31 55

Table 10.12 Analysis of variance for the banana experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Block (Experimenter) 2 1255.79 627.89 -

C (Light) 1 80.08 80.08 0.42 0.5218
D (Storage) 1 154.08 154.08 0.80 0.3754
CD 1 24.08 24.08 0.13 0.7250
Error 42 8061.88 191.95

Total 47 9575.92

error probability of o = 0.01, is

ms(CD)

reject HSP if 3
ms

> Fle—1)(d—1),df,0.01 »

where ms(CD) = ss(CD)/(c — 1)(d — 1) and both ss(CD) and the number of error degrees of freedom
df are given in Table 10.12. Since there are equal numbers of observations per cell, these values can be
obtained from rule 4 of Chap. 7, p. 209; that is,

sS(CD) = bs » > 3%, —bds D 55 —bes D32, +beds y2, = 24.0833,
i j i j

and

df = (bcds — 1) —(b—1)—(c—=1)—(d—=1)—(c—1d—-1)
—47—2—-1—-1-1=42.

Other sums of squares are obtained similarly. From Table 10.12, we can see that the mean square for
blocks is much larger than the error mean square, so it was worthwhile designing this experiment as
a block design. We also see that the mean square for the Lightx Storage interaction is a lot smaller
than the error mean square. As mentioned in the context of the resting metabolic rate experiment
(Example 10.4.1, p. 311), this is unusual when the model fits well since the Light and Storage
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Fig.10.5 Interaction plot for the banana experiment

measurements include the error measurement. It suggests that the error mean square may have been
inflated by some other source of variability, such as block x treatment interaction, that has been omitted
from the model.

Interaction plots of the two factors Light and Storage (averaged over blocks) are shown in Fig. 10.5.
There is no indication that hanging bananas (Storage level 1) might retard the ripening process. In
fact, Storage level 1 seems to have given a higher percentage of blackened skin on average than
Storage level 2. However, this apparent difference may be due to chance, as the treatment effects
are not significantly different from each other. The experimenters commented that it was difficult to
select the correct threshold levels for the image analysis and also that the bananas themselves seemed
extremely variable. The experimenters felt that rather than draw firm conclusions at this stage, it might
be worthwhile working to improve the experimental procedure to reduce variability and then to repeat
the experiment. g

10.9 Using SAS Software

The analysis of variance table for a complete block design can be obtained from any computer package
that has an analysis of variance routine or a regression routine. It is good practice to enter the block
term into the model before the terms for the treatment factors. Although the order does not matter for
complete block designs, it does matter for the incomplete block designs in the next chapter.

Computer programs do not distinguish between block and treatment factors, so a test for the hypoth-
esis of no block effects will generally be listed in the output. We suggest that the latter be ignored, and
that blocking be considered to have been effective for the current experiment if msf exceeds msE (see
Sect. 10.4.1).

Table 10.13 contains a SAS program illustrating analysis of a complete block design, using the data
of the cotton-spinning experiment (Sect.2.3, p. 13). Following input of the data, the first call of PROC
GLM fits a block—treatment model to the data. Selected output is shown in Fig. 10.6. The TYPE I sums
of squares (not shown) are equal to the TYPE IIT sums of squares since there is an equal number
(s = 1) of observations per block—treatment combination. If the block xtreatment interaction term
had been included in the model, this would have been entered in the usual way as BLOCK* TRTMT.
The first LSMEANS statement in Table 10.13 applies Tukey’s method for comparing pairs of treatment
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Table 10.13 A SAS program for analysis of the cotton-spinning experiment

DATA COTTON;
INPUT BLOCK TRTMT FLYER TWIST BREAK;
LINES;
1 12 1 1.69 6.0
2 12 1 1.69 9.7
13 23 2 1.78 6.4
* Block-treatment model for a complete block design;
PROC GLM;
CLASS BLOCK TRTMT;
MODEL BREAK = BLOCK TRTMT;
LSMEANS TRTMT / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.05;
ESTIMATE 'FLYER 1-2 COMN TWST’ TRTMT 0.5 0.5 0 0 -0.5 -0.5;
ESTIMATE 'LIN TWIST ORD FLYER’ TRTMT -10 -1 11 0 0 O;
* Factorial main effects model plus blocks;
PROC GLM;
CLASS BLOCK FLYER TWIST;
MODEL BREAK = BLOCK FLYER TWIST;
LSMEANS FLYER / PDIFF CL ALPHA=0.05;
LSMEANS TWIST / PDIFF = ALL CL ADJUST = BON ALPHA = 0.05;
Model with twist as a linear regressor variable;
PROC GLM;
CLASS BLOCK FLYER;
MODEL BREAK = BLOCK FLYER TWIST / SOLUTION;
ESTIMATE 'FLYER 1-2° FLYER 1 -1;
* Testing lack of fit of reduced model;
PROC GLM;
CLASS BLOCK FLYER TRTMT;
MODEL BREAK = BLOCK FLYER TWIST TRTMT;

*

Fig.10.6 SAS selected

n s
output for the (8] Results Viewer - SAS Output [E=2 Eon ™=
block—treatment The GLM Procedure -
model—cotton-spinning Dependent Variable: BREAK
expertment Source DF Sum of Squares Mean Square F Value Pr>F

Model 17 408.1892308 24.0111312 4.70 <.0001

Error 60 306.4461538 5.1074359

Corrected Total 77 714.6353846

Source DF  Type lll SS Mean Square FValue Pr>F
BLOCK 12 177.1553846 14.7629487 2.89 0.0033
TRTMT 5 231.0338462  46.2067692 9.05 <.0001

Parameter Estimate Standard Error tValue Pr> |t
FLYER 1-2 COMN TWST  3.6692308 0.62680115 5.85 <.0001
LIN TWIST ORD FLYER -38.2461538 9.33912683 -4.10 0.0001 v

< >
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Fig.10.7 SAS selected
output for the factorial
main-effects
model—cotton-spinning
experiment BLOCK 12 177.1553846  14.7629487 2.94 0.0028
FLYER 1 130.7820513  130.7820513 26.03 <.0001

TWIST 3 100.2241026 33.4080342 6.65 0.0006

[@) Results Viewer - sashtml.htm [re)[-E) [

Source DF  Typel SS Mean Square F Value Pr>F ~

Source DF | Type lll SS Mean Square FValue Pr>F
BLOCK 12 177.1553846 14.7629487 2.94 0.0028
FLYER 1 175.0223077  175.0223077 34.84 <0001
TWIST 3 100.2241026 33.4080342 6.65 0.0006

< >

effects (output not shown). The two ESTIMATE statements reproduce the calculations in Sect. 10.5
for comparing the two flyers at common levels of twist, and evaluating the linear trend in twist for the
ordinary flyer.

The second call of PROC GLM in Table 10.13 replaces the treatment combination factor TRTMT
with main-effects of FLYER and TWI ST; this removes their interaction effect from the model. Selected
output is shown in Fig. 10.7. Since not every combination of FLYER and TWIST was observed, the
TYPE Iand TYPE IIT sums ofsquaresfortheindividual factorsarenotequal. The TYPE IIT sums
of squares are used for hypothesis testing, and LSMEANS statements are used for confidence intervals.
The reader may verify that the Bonferroni method provides tighter simultaneous 95% confidence
intervals for TWIST pairwise comparisons than Scheffé’s method (results not shown).

The plot of the mean response against twist for both flyer types in Fig. 10.3, p. 317, suggested the
possibility that the number of breaks per 100 pounds could be modeled by a flyer effect and a linear
twist effect. This can be evaluated by comparing the fit of the block—treatment model,

Ypi =p+6h+ 7+ eni
(i=1,...,6; h=1,...,13), with the fit of the reduced model,
Yijx = o+ 0p + o +yx + €pjx s

where «; is the effect of flyer j (j = 1, 2) and x is the uncoded amount of twist (cf. Chaps. 8 and 9).
The fit of these models can easily be compared via the SAS software, either using two calls of the GLM
procedure, one for each model, or using one call that sequentially includes both models. The first call
of PROC GLM in Table 10.13 fitted the full block—treatment model, and the third call of PROC GLM
fits the reduced model that includes the flyer effect and a linear regression in the levels of twist. Notice
the similarity of the third call with the factorial main-effects model in the second call. The difference is
that when TWIST is to be regarded as a linear regressor, it is omitted from the CLASS statement. The
reduced model fits parallel linear regression lines, with intercepts adjusted for block and flyer effects.
Selected output for the reduced model is shown in Fig. 10.8. Again, the TYPE I and TYPE ITII sums
of squares are unequal, indicating that FLYER and TWIST cannot be estimated independently. The
fourth call of PROC GLM sequentially includes both models and will be discussed shortly.

In the third call of PROC GLM in Table 10.13, the SOLUTION option requests that the solution to
the normal equations is printed. The NOTE at the bottom of the SAS output in Fig. 10.8 alerts us to
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Fig.10.8 SAS program B T — === FeE |
output for the reduced

model—cotton-spinning

The GLM Procedure A
Dependent Variable: BREAK

experiment
Source DF ' Sum of Squares Mean Square F Value Pr>F
Model 14 394.7810279  28.1986449 5.55 <.0001
Error 63 319.8543567 5.0770533

Corrected Total 77 714.6353846

Source DF  Type | SS Mean Square F Value Pr>F
BLOCK 12 177.1553846 14.7629487 2.91 0.0029
FLYER 130.7820513  130.7820513  25.76 <.0001
TWIST 86.8435920 86.8435920 17.11  0.0001

- | -

Source DF Typelll 55 Mean Square F Value Pr>F
BLOCK 12 177.1553846 14.7629487 2.91 0.0029
FLYER 1 213.2456584  213.2456584  42.00 <.0001
TWIST 1 86.8435920 86.8435920 17.11 0.0001

Parameter  Estimate Standard Error tValue Pr> |t

FLYER 1.2 3.85876832 0.59540773 6.48 <.0001

P Esti Standard Error tValue Pr> |t

FLYER 1 3.85876832 B 0.59540773 6.48 <.0001 (Information has been deleted
for intercept and blocks.)

FLYER 2 0.00000000 B

TWIST -14.10027473 3.40929472  -4.14 0.0001

Note: The XX matrix has been found to be singular, and a generalized inverse was used to solve the
normal equations. Terms whose estimates are followed by the letter ‘B’ are not uniquely estimable. W

£ >

the fact that the individual flyer effect parameters are not estimable, and the numbers given just above
the note and labeled B are nonunique solutions to the normal equations. The contrast representing
the difference in the effects of the two flyers is estimable, and we can obtain its unique least squares
estimate by taking the difference in the two values given for the individual flyers. This gives 3.8587,
which matches the value obtained from the ESTIMATE statement. The difference in the effects of the
two flyers is declared to be significantly different from zero, since the corresponding p-value is at most
0.0001. The slope coefficient of TWIST is estimated to be —14.1003, which, being negative, suggests
that the breakages decrease as the twist increases. This slope is declared to be significantly different
from zero, since the test of Hy : v = 0 versus Hy : v # 0 has p-value at most 0.0001.

To test for lack of fit of the reduced model, the difference in the error sum of squares for the full and
reduced models divided by the difference in the error degrees of freedom is the mean square for lack
of fit, msLF (see Chap. 8). It provides the numerator of the test statistic for testing the null hypothesis
HOR : {the reduced model is adequate} against the alternative hypothesis that the reduced model is not
adequate. The decision rule is

reject HY if msLF/msE > F3 60,0,
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where
msLF = [ssE(reduced) — ssE(full)] / [df(reduced) — df(full)].

For the cotton-spinning experiment,
msLF = (319.854 — 306.446) /(63 — 60) = 4.469.

Since msLF/msE = 4.469/5.10744 = 0.88 < 1, we cannot reject H({" for any reasonable significance
level a. Hence, the reduced model appears to provide an adequate fit to the data, making interpretation
of the parameters in the reduced model meaningful.

One can obtain these calculations from SAS software directly. The model

MODEL BREAK = BLOCK FLYER TWIST TRTMT;

in the fourth call of GLM in Table 10.13 sequentially includes both models, as the first three terms
of the model give the reduced model, then the full model is obtained by inclusion of TRTMT. Since
TRTMT has been entered into the model last, its Type I and III sums of squares will be the same, and
the corresponding F -test

Source DF Type III SS Mean Square F Value Pr > F
TRTMT 3 13.4082028 4.4694009 0.88 0.4591

is the test for lack of fit conducted above.

We note that this has been an exercise in model-building, and we can use the model to predict the
breakage rates with either flyer over a range of values of twist. However, the model may not fit well
for flyer 2 below a twist of 1.69 (see Fig. 10.3).

10.10 Using R Software

The analysis of variance table for a complete block design can be obtained from any computer package
that has an analysis of variance routine or a regression routine. It is good practice to enter the block
term into the model before the terms for the treatment factors. Although the order does not matter for
complete block designs, it does matter for the incomplete block designs in the next chapter.

Computer programs do not distinguish between block and treatment factors, so a test for the hypoth-
esis of no block effects will generally be listed in the output. We suggest that the latter be ignored, and
that blocking be considered to have been effective for the current experiment if msf exceeds msE (see
Sect. 10.4.1).

Tables 10.14, 10.15, 10.16 and 10.17 contain statements of an R program and selected output illus-
trating analysis of a complete block design, using the data of the cotton-spinning experiment (Sect. 2.3,
p. 13). In Table 10.14, following input of the data from the file cotton. spinning. txt and the
creation of factor variables fBlock, fTrtmt, fFlyer, and £Twist, the call of the linear models
function 1m fits a block—treatment model to the data. If the block x treatment interaction term had been
included in the model, this would have been entered in the usual way as £Block: £Trtmt. The
anova statement generates the analysis of variance table shown. A drop1l statement (see Sects. 6.9
and 7.7) would have produced the same results since there is one observation per block—treatment com-
bination. The 1 smeans function and first corresponding summary (contrast...) statement applies
Tukey’s method for comparing the treatment effects pairwise (results not shown). The second corre-
sponding summary (contrast...) statement reproduces the calculations in Sect. 10.5 for comparing
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Table 10.14 An R program and selected output for analysis of the cotton-spinning experiment: data input and analysis
of block—treatment model

> cotton.data = read.table("data/cotton.spinning.txt", header=T)
> head(cotton.data, 3)
Block Trtmt Flyer Twist Break

1 1 12 1 1.69 6.0
2 2 12 1 1.69 9.7
3 3 12 1 1.69 7.4
> tail (cotton.data, 3)

Block Trtmt Flyer Twist Break
78 13 23 2 1.78 6.4

cotton.data = within(cotton.data,
{fBlock = factor (Block); fTrtmt = factor(Trtmt);
+ fFlyer = factor(Flyer); fTwist = factor (Twist) 1})

+ Vv

\

# Analysis for randomized complete block design
modell = Im(Break ~ fBlock + fTrtmt, data=cotton.data)
> anova (modell)

\Y%

Analysis of Variance Table

Response: Break

Df Sum Sg Mean Sg F value Pr (>F)
fBlock 12 177 14.8 2.89 0.0033
fTrtmt 5 231 46.2 9.05 0.0000019
Residuals 60 306 5.1

library (lsmeans)

lsmTrtmt = lsmeans (modell, ~ fTrtmt)

summary (contrast (lsmTrtmt, method="pairwise", infer=c(T,T)))

summary (contrast (lsmTrtmt,

list (Flyerlm2AtComnTwst=c (0.5, 0.5, 0, 0, -0.5, -0.5),
LinTwistOrdFlyer=c(-10, -1, 11, 0, 0, 0))),
infer=c(T,T), level=0.95, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
Flyerlm2AtComnTwst 3.6692 0.6268 60 2.4154 4.923 5.854 <.0001
LinTwistOrdFlyer -38.2462 9.3391 60 -56.9272 -19.565 -4.095 0.0001

+ + + VV VYV

Results are averaged over the levels of: fBlock
Confidence level used: 0.95

the two flyers at common levels of twist, and evaluating the linear trend in twist for the ordinary flyer.

An additional call of 1m, shown in Table 10.15, replaces the treatment combination factor variable
fTrtmt with main-effect factor variables fF1yer and £Twist; this removes their interaction effect
from the model. Since not every combination of flyer and twist was observed, the dropl command
and resulting type 3 sums of squares are used for hypothesis testing. The 1smeans function and
corresponding summary (contrast...) statements again generate multiple comparisons results. The
reader may verify that the Bonferroni method provides tighter simultaneous 95% confidence intervals
for twist pairwise comparisons than Scheffé’s method (results not shown).
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Table 10.15 An R program and selected output, continued, for analysis of the cotton-spinning experiment: analysis of
factorial main-effects model

> # Analysis with additive main effects
> model2 = 1lm(Break ~ fBlock + fFlyer + fTwist, data=cotton.data)

> dropl (model2, ., test="F")
Single term deletions
Model:

Break ~ fBlock + fFlyer + fTwist
Df Sum of Sg RSS AIC F value Pr(>F)

<none> 306 141

fBlock 12 177 484 152 2.94 0.00281

fFlyer 1 175 481 174 34.84 1.7e-07

fTwist 3 100 407 157 6.65 0.00059

> lsmFlyer = lsmeans (model2, ~ fFlyer)

> summary (contrast (lsmFlyer, method="pairwise"), infer=c(T,T))
> lsmTwist = lsmeans (model2, ~ fTwist)

> summary (contrast (lsmTwist, method="pairwise", adjust="bonf"),
+ infer=c(T,T))

The plot of the mean response against twist for both flyer types in Fig. 10.3, p. 317, suggested the
possibility that the number of breaks per 100 pounds could be modeled by a flyer effect and a linear
twist effect. This can be evaluated by comparing the fit of the block—treatment model,

Yhi = po+0p + 70 + eni
(i=1,...,6; h=1,...,13), with the fit of the reduced model,
Yije = p+0p + oj + X + €njx

where o is the effect of flyer j (j = 1, 2) and x is the uncoded amount of twist (cf. Chaps.8 and 9).
Comparing the fit of these models can be done easily in the R software, either using two calls of the
1m function, one for each model, or using one call that sequentially includes both models. The call
of 1m in the center of Table 10.14 fitted the full block—treatment model, and the call of 1m at the
top of Table 10.16 fits the reduced model that includes the flyer effect and a linear regression in the
levels of twist. This second 1m call is similar to that in Table 10.15 for the the factorial main-effects
model. The difference is that when twist is to be regarded as a linear regressor, it is entered as a
numeric variable Twist—not as the factor variable fTwist. The reduced model fits parallel linear
regression lines, with intercepts adjusted for block and flyer effects. Output for the reduced model is
shown in Table 10.16. The type 1 and type 3 sums of squares generated by the respective anova and
dropl commands are unequal, indicating that effects of fFlyer and £Twist cannot be estimated
independently.

The summary command in Table 10.16 causes display of the least squares estimates of the model
parameters. We only show one. The slope coefficient of Twist is estimated to be —14.100, which,
being negative, suggests that the breakages decrease as the twist increases. This slope is declared to
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Table 10.16 An R program and selected output, continued, for analysis of the cotton-spinning experiment: analysis of

reduced model

> # Analysis
> model3
> anova (mode

Im(Break ~ fBlock + fFlyer + Twist,

of covariance: Twist as covariate
data=cotton.data)

13) # to get sse for LOF test

Analysis of Variance Table

Response: Break
Df Sum Sg Mean Sg F value Pr (>F)

fBlock 12 177 14.8 2.91 0.00294
fFlyer 1 131 130.8 25.76 0.0000037
Twist 1 87 86.8 17.11 0.00011
Residuals 63 320 5.1
> dropl (model3, ~., test="F")
Single term deletions
Model :
Break ~ fBlock + fFlyer + Twist

Df Sum of Sg RSS AIC F value Pr(>F)
<none> 320 140
fBlock 12 177.2 497 150 2.91 0.00294
fFlyer 1 213.2 533 178 42.00 1.6e-08
Twist 1 86.8 407 157 17.11 0.00011

> summary (mo

Call:
1m(formula

Coefficients

Twist

> lsmFlyer

> summary (contrast (lsmFlyer,

contrast es
1 -2

Results are
Confidence 1

del3)

Break ~ fBlock + fFlyer + Twist, data cotton.data)

Estimate Std. Error t value Pr(>|t])

-14.100 3.409 -4.14 0.00011
~ fFlyer)

method="pairwise"),

lsmeans (model3,
infer=c(T,T))

timate SE df lower.CL upper.CL t.ratio p.value
3.8588 0.59541 63 2.6689 5.0486 6.481 <.0001
averaged over the levels of: fBlock
evel used: 0.95

be significantly different from zero, since the z-test of Hy : v = 0 versus Hy : v # 0 has p-value

0.00011.

The 1smeans function and corresponding summary (contrast..) command compute and dis-
play the least squares estimate of the pairwise contrast in the flyer effects and related statistics. The
difference in the effects of the two flyers is declared to be significantly different from zero, since the
p-value for the # test is less than 0.0001. Likewise, the 95% confidence interval also excludes zero.

The difference in the error sum of squares for the full and reduced models divided by the difference
in the error degrees of freedom is the mean square for lack of fit, msLF (cf. Chap.8). It provides the
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Table 10.17 An R program and selected output, continued, for analysis of the cotton-spinning experiment: testing for
lack of fit

> # Testing LOF of ancova model: 2 ways
> anova (model3, modell)

Analysis of Variance Table

Model 1: Break ~ fBlock + fFlyer + Twist
Model 2: Break ~ fBlock + fTrtmt

Res.Df RSS Df Sum of Sg F Pr (>F)
1 63 320
2 60 306 3 13.4 0.88 0.46

> modeld = 1lm(Break ~ fBlock + fFlyer + Twist + fTrtmt, data=cotton.data)
> anova (model4)

Analysis of Variance Table

Response: Break
Df Sum Sg Mean Sg F value Pr (>F)

fTrtmt 3 13.4 4.5 0.88 0.45914

numerator of the test statistic for testing the null hypothesis H({e : {the reduced model is adequate}
against the alternative hypothesis that the reduced model is not adequate. The decision rule is

reject HOR if msLF/msE > F3 0.,

where
msLF = [ssE(reduced) — ssE(full)] / [df(reduced) — df(full)].

For the cotton-spinning experiment,
msLF = (320 — 306) /(63 — 60) = 4.667,

although one would obtain the value 4.533 if less rounding of ssE(reduced) and ssE(full) were used.
Since msLF/msE = 4.533/5.1 = 0.88 < 1, we cannot reject HOR for any reasonable significance
level a. Hence, the reduced model appears to provide an adequate fit to the data, making interpretation
of the parameters in the reduced model meaningful.

One can obtain these calculations from R directly in a couple of ways, as illustrated in Table 10.17.
The most direct is the statement

anova(model3, modell)
which provides just the F-test for lack of fit, comparing the fit of the reduced and full models. Alter-
natively, the statement

modeld = Im(Break ~ fBlock + fFlyer + Twist + fTrtmt, data=cotton.data)
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Table 10.18 Respiratory exchange ratio data

Protocol
Subject 1 2 3
1 0.79 0.80 0.83
2 0.84 0.84 0.81
3 0.84 0.93 0.88
4 0.83 0.85 0.79
5 0.84 0.78 0.88
6 0.83 0.75 0.86
7 0.77 0.76 0.71
8 0.83 0.85 0.78
9 0.81 0.77 0.72

Source Bullough and Melby (1993). Copyright © 1993 Karger, Basel. Reprinted with permission

sequentially includes both models, as the first three terms of the model give the reduced model, then
the full model is obtained by inclusion of £Trtmt. Since £Trtmt has been entered into the model
last, its type 1 and 3 sums of squares will be the same, and the corresponding F-test is the desired
lack-of-fit test. The command anova (model4) generates the type 1 sums of squares, including that
for £Trtmt which is the test for lack of fit conducted above.

We note that this has been an exercise in model-building, and we can use the model to predict the
breakage rates with either flyer over a range of values of twist. However, the model may not fit well
for flyer 2 below a twist of 1.69 (see Fig. 10.3).

Exercises

1. Randomization
Conduct a randomization for a randomized complete block design with v = 4 treatments observed
once (s = 1) in each of b = 5 blocks.

2. Randomization
Conduct a randomization for a general complete block design for v = 3 treatments each observed
twice (s = 2) in each of b = 4 blocks.

3. DCIS experiment randomization
Suppose the DCIS experiment of Example 10.3.2, p. 309, had been designed as a randomized
complete block designs with b = 4 blocks of size k = v = 6, so that each treatment is observed

s = 1 time per block. Conduct a randomization of the treatments within each block and present
the final design.

4. Respiratory exchange ratio experiment

In the resting metabolic rate experiment introduced in Example 10.4.1, p. 311, the experimenters
also measured respiratory exchange ratio, which is another measure of energy expenditure. The
data for the second 30 minutes of testing are given in Table 10.18.

(a) Evaluate the assumptions of the block—treatment model (10.4.1) for these data.
(b) Construct an analysis of variance table and test for equality of the effects of the protocols on
respiratory exchange ratio.
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Table 10.19 Resistances for the light bulb experiment. Low resistance implies high illumination. (Order of observations
is shown in parentheses.)

Treatments
Block 1 2 3 4 5 6

1 314 (12) 285 (3) 350 (6) 523 (2) 460 (1) 482 (7)

(60 watt) 300 (13) 296 (9) 339 (8) 497 4) 470 (5) 498 (11)
310 (15) 301 (10) 360 (14) 520 (18) 488 (17) 505 (19)

290 (22) 292 (24) 333 (16) 510 (20) 468 (21) 490 (23)

11 214 (28) 196 (27) 235 (42) 303 (26) 341 (32) 342 (25)
(100 watt) 205 (31 201 (29) 247 (44) 319 (30) 350 (38) 347 (33)
197 (35) 197 (39) 233 (46) 305 (34) 323 (41) 352 (37)

204 (47) 215 (40) 244 (48) 316 (36) 343 (45) 323 (43)

(c) Evaluate the usefulness of blocking.

(d) Use the Scheffé method of multiple comparisons to construct simultaneous 99% confidence
intervals for all pairwise comparisons of the protocols as well as the inpatient versus outpatient
protocols corresponding to the contrast coefficient list [ 1, —%, —% ].

5 Light bulb experiment

P. Bist, G. Deshpande, T.-W. Kung, R. Laifa, and C.-H. Wang ran an experiment in 1995 to compare
the light intensities of three different brands of light bulbs (coded 1, 2, 3), together with the effect
of the percentage capacity (100% and 50%) of the bulb, the latter being controlled by a dimmer
switch. Thus, there were v = 6 treatment combinations in total:

(100%, Brand 1) = 1, (100%, Brand 2) = 2, (100%, Brand 3) = 3,
(50%, Brand 1) = 4, (50%, Brand2) = 5, (50%, Brand 3) = 6.

Two blocks were used (one per day), with all 60 watt bulbs observed in one block, and all 100 watt
bulbs in the other. Four observations were taken on each of the v = 6 treatment combinations in
each block. The response variable was the observed resistance of a photoresistor connected to the
bulb, where high illumination corresponds to low resistance. The data (resistances) are shown in
Table 10.19.

(a) Fit a block-treatment-interaction model to the data and calculate an analysis of variance table.

(b) Show that the null hypothesis of no block x treatment interaction would be rejected at level
a = 0.005.

(c) Calculate a set of confidence intervals for pairwise differences in the treatments for each block
separately. Specify the method that you are using and the overall confidence level.

(d) Interms of the six treatment parameters, write down two contrasts representing the interaction
between brand and percentage capacity (averaged over blocks). Test whether these contrasts
are significantly different from zero.

(e) Suppose that the purpose of the experiment was to determine the best brand (in terms of
illumination) for each percentage capacity and for 100 watt bulbs. Which brand(s) would you
recommend and why?
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Table 10.20 Time in seconds for the water heating experiment; order of observation within each block in parentheses

Treatment combination Block
1 2 3 4
111 261.0 (1) 279.0 (12) 296.7 (6) 282.8 (5)
112 259.4 (12) 2494 (5) 280.7 (10) 259.9 4)
121 300.0 (3) 331.8 (10) 308.3 (12) 314.2 (11)
122 286.6 (10) 281.3 (1) 287.7 (4) 276.3 (7)
211 255.7 (2) 304.4 (7) 286.8 (1) 276.4 (12)
212 245.6 (7) 254.7 (9) 249.1 (2) 263.6 (10)
221 266.1 (4) 291.5 (11) 285.7 (8) 2945 (2)
222 256.4 (6) 262.2 (8) 259.2 (3) 264.0 (8)
311 162.2 (8) 168.1 (4) 147.8 (7) 132.2 (1)
312 137.0 (9) 168.1 (3) 151.9 (9) 169.9 (9)
321 109.6 (5) 109.3 (2) 109.3 (5) 294.5 (3)
322 108.2 (11) 135.3 (6) 111.2 (11) 110.0 (6)

6. Water heating experiment

The purpose of the experiment run by M. Weber, R. Zielinski, J. Y. Lee, S. Xia, and Y. Guo in
2010 was to determine the best way to heat 3 cups of water (for preparation of boxed meals) to
90°F on a kitchen stove as gsuickly as possible. In this experiment, only one stove was used, and
the three treatment factors were

(a)
(b)

(©)

(d)

(e)

C: diameter of pot (5.5, 6.25 and 8.625 inches; coded 1, 2, 3)
D: burner size (small, large; coded 1, 2)

E: cover (no, yes; coded 1, 2).

Write out a checklist for such an experiment. Be careful to think about all sources of variation
and how to control for them.

A pilot experiment suggested that the error variance o> would be no larger than 318.9 sec?.
The experimenters wanted to be able to test the hypothesis of no differences in the effects of
heating time due to the 12 treatments, with a probability of 0.9 of rejecting the hypothesis if
the true difference was A = 60 secs. The test was to be done at level o = 0.05. Calculate the
number of observations that should be taken on each of the 12 treatments.

The experimenters ultimately decided that they would use a randomized complete block design
with b = 4 blocks for the experiment, where each block was defined by experimenter and day.
The data are shown in Table 10.20. Using the block—treatment model (10.4.1), p. 310, for a
randomized complete block design, check the assumptions on the model and test the hypothesis
of no effects on the heating time due to treatments.

Using the factorial form of the block—treatment model similar to (10.8.15), p. 325, but with
three treatment factors, test the hypotheses of no interactions between pairs of treatment factors,
each test done at level 0.01.

Taking into account any interactions discovered in part (d), list the contrasts that are of interest
to you and, using the Scheffé method, calculate a set of 95% confidence intervals for the
contrasts of interest.
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Table 10.21 Number of characters recalled for the memory recall experiment

Cl1 Cc2
D1 D2 D3 D1 D2 D3

Block E1 E2 E1l E2 E1l E2 E1 E2 E1 E2 E1 E2
I F1 5 33 30 34 2 9 7 18 20 1 35 32
F2 22 16 11 10 3 29 21 17 24 23 15 12

F3 27 14 28 13 25 8 36 19 4 31 6 26

II F1 35 3 16 25 6 31 19 14 10 23 13 27
F2 24 5 33 11 8 20 18 34 4 36 9 12

F3 32 30 28 7 15 29 17 1 26 21 22 2

I F1 10 34 18 33 3 4 19 7 6 15 28 24
F2 27 32 26 16 14 22 23 21 11 25 12 36

F3 29 5 2 20 35 7 8 31 17 13 1 30

v F1 24 21 16 36 9 18 23 26 28 31 30 11
F2 13 10 29 34 15 1 35 12 4 19 14 33

F3 5 7 22 2 8 17 27 20 32 7 25 3

v F1 20 12 13 21 34 7 9 4 14 23 24 36
F2 10 28 18 25 29 31 26 4 16 11 6 22

F3 33 2 15 5 30 27 19 8 35 17 32 1

7. Memory recall experiment

The memory recall experiment was run in 2007 by C. Lucas, A. Moczdlowski, M. Salwan,
X. Wang, and J. Williams to investigate effects of various factors that might possibly be important
for reaching consumers through print advertisements. The experiment was run as a randomized
complete block design and involved b = 5 subjects, each of whom formed a block of the design.
For each treatment combination, each subject was shown a grid of 25 characters. After studying
the grid for a specified length of time, each subject was asked to recall the placement of characters
on the grid. The number of characters correctly recalled in the correct location on the grid formed
the response. The treatment factors were:

C: Paper (neon green or white, coded 1, 2)
D: Time for studying the grid (30, 60, 90 seconds, coded 1, 2, 3)
E: Background music (no music or classical music, coded 1, 2)

F: Character type (letters, numbers, or combination of both, coded 1, 2, 3)

The grids were randomly generated with characters according to the level of factor F. The data
are shown in Table 10.21.

(a) Fit a block-treatment model to the data.

(b) Since the data are counts, one should be concerned whether the normality and equal variance
assumptions on the errors are approximately satisfied. Also there may be a time order effect
as the subject tires or gets better at the task (-the time orders are given in the data set on
the website, p. 54, for the book). By examining some relevant residual plots, show that the
assumptions on your model are approximately satisfied.

(c) Calculate an analysis of variance table and explain what conclusions you can draw. Give your
reasons, including explicit hypotheses being tested and your Type I error rates.
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Table 10.22 Data for the hypothetical chemical experiment

Lab (Block) Treatment combinations
111 112 121 122 211 212 221 222
1 7.3 9.5 13.8 15.4 16.0 18.7 11.3 14.5
2 8.8 11.3 15.3 17.7 17.9 20.8 12.0 15.4
3 11.7 14.1 17.2 22.3 22.6 24.8 16.9 18.5
4 6.2 8.3 11.2 15.4 16.8 17.4 8.2 12.5

(d) Atasignificance level of 0.01, test the hypothesis that there is no quadratic trend in the number
of characters recalled as the length of the study time increases.

(e) Suppose that you (pre-)planned to calculate a set of 99% simultaneous confidence intervals
for the pairwise comparisons of the three times of study. Explain whether you would use
Bonferroni, Tukey, Scheffé, or Dunnett’s method.

(f) Calculate a 90% upper bound for the true value of o2

(g) Write down the formula for a 95% confidence interval which compares the effect of no music
versus classical music on the number of symbols recalled (averaged over the other factors).

(h) Suppose now that you wished to design a larger experiment for the future, but with the same
treatment combinations. The design will be a randomized complete block design with each of
subjects seeing all 36 treatment combinations in a random order. If you require the confidence
interval in part (g) to be no wider than 2.0, how many subjects would you recommend?

8. Hypothetical chemical experiment

An experiment to examine the yield of a certain chemical was conducted in b = 4 different
laboratories. The treatment factors of interest were

A : acid strength (80% and 90%, coded 1, 2)
B : time allowed for reaction (15 and 30 min, coded 1, 2)
C : temperature (50° and 75 °C, coded 1, 2)

The experiment was run as a randomized complete block design with the laboratories as the levels
of the blocking factor. The resulting data (yields in grams) are shown in Table 10.22. The goal of
the experiment was to find the treatment combination(s) that give(s) the highest average yield.

(a) Plot the data and comment on your chosen plots.

(b) Fit a block-treatment model to these data and show that the assumptions on the model are
approximately satisfied.

(c) Suppose that the pre-plan was to calculate a 99% set of pairwise comparisons between the
treatment combinations using Tukey’s method, to calculate 99.5% intervals for the comparisons
between the levels of A, B and C if these were not involved in interactions and a set of 99%
intervals using Scheffé’s method for any other contrasts that look interesting. The overall
confidence level would then be at least 96.5%. List any contrasts that you would like to
examine further after looking at the plots in part (a).

(d) Calculate an analysis of variance table and test any hypotheses of interest, each at level 0.01.
State your conclusions clearly.

(e) Calculate confidence intervals for the contrasts specified in part (c), and state your conclusions.

(f) The objective of the experiment was to find the combination that gives the highest yield.
Using all the information that you have gathered, which treatment combination would you
recommend?
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9.

10.

Reaction time experiment, continued, (sample size)

The reaction time pilot experiment was described in Exercise 4, p. 100, and analyzed in Exam-
ples6.4.3 and 6.4.5, pp. 153 and 160. The experiment was run to compare the speed of response
of a human subject to audio and visual stimuli. The two treatment factors were “Cue Stimulus”
at two levels “auditory” and “visual” (Factor A, coded 1, 2), and “Cue Time” at three levels 5,
10, and 15 seconds between cue and stimulus (Factor B, coded 1, 2, 3), giving a total of v = 6
treatment combinations. The pilot experiment used only one subject, for whom msE = 0.00029
seconds? based on 12 degrees of freedom. An upper 95% confidence bound for the error variance
was calculated in Example 6.4.2, p. 151, as o2 < 0.000664 seconds?. To be able to draw con-
clusions about these six treatment combinations, it is important for the main experiment to use a
random sample of subjects from the population.

(a) Consider using a randomized complete block design with b subjects representing blocks for
the main experiment. Let the block sizes be k = 6, so that each treatment combination can be
observed once for each subject. How many subjects are needed if the widths of simultaneous
99% confidence intervals for the pairwise comparisons of the treatment combinations need to
be less than 0.01 seconds to be useful (that is, we require msd < 0.005 seconds)?

(b) If b = 4 subjects were available, and a general complete block design were used with block
size k = 6s, how many observations would be needed on each treatment in each block to
satisfy the requirements of the confidence intervals in part (a)?

Length perception experiment

The experiment was run by B. Millen, R. Shankar, K. Christoffersen, and P. Nevathia in 1996 to
explore subjects’ ability to reproduce accurately a straight line of given length. A 5 cm line (1.9685
inches) was drawn horizontally on an 11 x 8.5 in sheet of plain white paper. The sheet was affixed
at eye level to a white projection screen located four feet in front of a table at which the subject
was asked to sit. The subject was asked to reproduce the line on a sheet of white paper on which a
border had been drawn. Subjects were selected from a population of university students, both male
and female, between 20 and 30 years of age. The subjects were all right-handed and had technical
backgrounds.

There were six different borders representing the combinations of three shapes—square, circle,
equilateral triangle (levels of factor C, coded 1, 2, 3) and two areas—16 inZ and 9 in? (levels of
factor D, coded 1, 2). The purpose of the experiment was not to see how close to the 5cm that
subjects could draw, but rather to compare the effects of the shape and area of the border on the
length of the lines drawn. The subjects were all able to draw reasonably straight lines by hand,
and one of the experimenters measured, to the nearest half millimeter, the distance between the
two endpoints of each line drawn. Data from 14 of the subjects are shown as deviations from the
target 5cm in Table 10.23.

(a) Fit a block—treatment model to the data using subjects as blocks and with six treatments
representing the shape—area combinations. Check the error assumptions on your model.

(b) Draw at least one graph and examine the data.

(c) Write down contrasts in the six treatment combinations representing the following compar-
isons:

(1) differences in the effects of area for each shape separately,
(ii) average difference in the effects of area,
(iii) average difference in the effects of shape.


http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 10.23 Data for the length perception experiment

11.

Subject Treatment combinations (shape, area)

11 12 21 22 31 32
1 0.20 —0.25 0.85 —0.50 0.40 0.05
2 1.70 0.30 1.80 0.40 1.40 1.80
3 —0.60 —0.90 —0.90 —0.50 —-0.70 —0.50
4 0.60 0.10 0.70 0.20 0.70 0.60
5 0.50 0.40 0.30 0.70 0.50 0.60
6 0.20 —0.60 0.00 —1.40 —0.60 —1.20
7 1.30 —0.10 —0.40 0.50 —0.15 0.30
8 —0.85 —1.30 —0.40 —1.55 —0.85 —1.30
9 0.80 0.05 0.55 1.25 1.30 0.20
10 0.10 —0.10 —-0.30 0.95 0.30 —0.95
11 —0.20 —0.40 —0.50 —-0.30 —0.40 —0.40
12 0.05 —0.20 0.55 0.60 0.10 0.10
13 0.80 —0.60 0.20 —0.60 —0.60 —0.30
14 —-0.25 —0.70 0.00 —0.70 —0.10 —0.95

(d) Give a set of 97% simultaneous confidence intervals for the contrasts in (c)(i). State your
conclusions.

(e) Under what conditions would the contrasts in (c)(ii) and (iii) be of interest? Do these conditions
hold for this experiment?

Load-carrying experiment

The purpose of the experiment run by M. Flannery, C. Lee, E. Nelson, and P. Sparto in 1993
was to investigate the load-carrying capability of the human arm. Subjects were selected from a
population of healthy males. The maximum torque generated at the elbow joint was measured (in
newtons) using a dynamometer for each subject in a 5 min exertion for nine different arm positions
(in a random order). The nine arm positions were represented by v = 9 treatment combinations
consisting of levels of the two factors “flex” with levels 0°, 45°, 90° of elbow flexion, coded O, 1,
2, and “rotation” with levels 0°, 45°, 90° of shoulder rotation, coded O, 1, 2.

The experiment was run as a randomized complete block design with four blocks, each block being
defined by a different subject. The subjects were selected from the populations of male students
in the 20-30 year range in a statistics class.

(a) Identify your proposed analysis, including your model, any hypotheses you would propose
testing, and any confidence intervals you would propose calculating. What are your overall
significance level and confidence level?

(b) The experimenters decided that they required Scheffé’s 95% confidence intervals for any
normalized contrast in the main effects of each factor separately to be no wider than 10
newtons. How many subjects would have been needed to satisfy this requirement if the error
variance is similar to the value msE = 670 newtons? that was obtained in the pilot experiment?

(c) The data are shown in the order collected in Table 10.24. Plot the data. Are there any other
contrasts that you would like to examine in addition to any pre-planned contrasts that you
identified in (a)?
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Table 10.24 Data and order of collection for the load-carrying experiment

Order 1 2 3 4 5 6 7 8 9
Treat. Comb. 31 21 23 11 22 13 12 32 33
Subj 1 250 230 170 160 240 160 150 200 180
Treat. Comb. 11 22 31 32 23 21 12 33 13
Subj 2 230 260 260 220 250 270 230 190 210
Treat. Comb. 21 13 31 32 11 22 12 33 23
Subj 3 230 180 210 190 150 190 140 160 180
Treat. Comb. 31 11 33 22 13 32 21 12 23
Subj 4 360 200 380 290 240 310 280 350 210

Table 10.25 Data for the biscuit experiment (percentage of original height)

12.

Treatment combination

Block 11 12 13 21 22 23 31 32 33
1 350.0 375.0 362.5 237.5 237.5 256.3 191.7 216.7 208.3
300.0 362.5 3125 231.3 231.3 243.8 200.0 212.5 225.0
2 362.8 350.0 367.5 250.0 262.5 250.0 245.8 212.5 241.7
412.5 350.0 387.5 268.8 231.3 237.5 225.0 250.0 225.0
3 350.0 387.5 425.0 300.0 275.0 231.3 204.4 187.5 187.5
337.5 362.5 400.0 262.5 206.3 262.5 204.2 204.2 208.3
4 375.0 362.5 400.0 318.8 250.0 243.8 200.0 216.7 212.5

350.0 337.5 350.0 256.3 243.8 250.0 150.0 183.3 187.5

(d) Are the assumptions on block—treatment model (10.4.1) approximately satisfied for these data?
Pay particular attention to outliers. If the assumptions are satisfied, analyze the experiment. If
they are not satisfied, what information can you gather from the data?

(e) Do your conclusions apply to the whole human population? Explain.

Biscuit experiment

The biscuit experiment was run in 1994 by N. Buurma, K. Davis, M. Gross, M. Kresja, and
K. Zitoun in order to determine how to make fluffy biscuits. The two treatment factors of interest
were “height of uncooked biscuit” (0.25, 0.50, or 0.75 inches, coded 1, 2, and 3) and “kneading
time” (number of times: 7, 14, or 21, coded 1, 2, and 3). The design used was a general complete
block design with b = 4 blocks, consisting of the four runs of an oven. The experimental units
consisted of k = 18 positions on a baking pan. Each of the v = 9 treatment combinations was
observed s = 2 times per block. The resulting observations are “percentage of original height”
(so, for example, 362.5 means the height of the cooked biscuit is 3.625 times the height of the
uncooked biscuit). The data are shown in Table 10.25.

(a) State a suitable model for this experiment and check that the assumptions on your model hold
for these data.

(b) Evaluate whether blocking was worthwhile in this experiment.

(c) Use an appropriate multiple comparisons procedure to evaluate which treatment combination
yields the largest percentage increase in height.

(d) Write down the contrast that measures the linear trend in the response as the kneading time
increases. Test whether this contrast is significantly different from zero.
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Table 10.26 Dissolving time for the effervescent experiment (Order of observation in parentheses)

13.

14.

Treatment combination
Block 11 12 13 21 22 23
I 75.525 (8) 68.125 (3) 44.825 (7) 78.350 (1) 40.575 (2) 27.450(18)
70.325 (9) 47.525 (4) 36.200(10) 76.050(12) 40.000 (5) 26.600(19)
69.925(17) 61.475 (6) 39.350(11) 78.425(15) 39.500(20) 24.950(21)
69.800(23) 58.625(14) 37.425(13) 71.525(16) 40.400(22) 26.325(24)
11 83.475(34) 71.759(36) 51.975(28) 92.725(31) 42.275(30) 25.400(25)
86.800(41) 70.825(37) 50.100(29) 77.957(35) 44.425(32) 26.333(26)
83.750(44) 73.925(42) 51.225(33) 85.425(39) 42.475(38) 25.875(27)
79.575(46) 71.550(48) 53.700(47) 87.333(45) 44.300(42) 26.650(40)

Effervescent experiment

The effervescent experiment was run by B. Bailey, J. Lewis, J. Speiser, Z. Thomas, and S. White
in 2011 to compare dissolving times of two different brands (name brand, store brand, coded 1, 2)
of cold medicine tablets in three different equally spaced water temperatures (6°C, 23°C, 40°C,
coded 1, 2, 3). A complete block design with b = 2 blocks was selected with s = 4 observations
on each of the v = 6 treatment combinations in each block. In Block I, the liquid was stirred using
a magnetic sirring plate at 350 revolutions per minute. In Block II, the liquid was not stirred.

The dissolving time was measured from the time a tablet was dropped (from a fixed height) into
60mL of water to the time the tablet was completely dissolved. The recorded observation was
taken as an average of the times as measured by four experimenters and the data are shown in
Table 10.26.

(a) Plot the data and comment on any interesting features.

(b) Fit the block-treatment model to the data and check the assumptions on the model, paying
particular attention to outliers and equal variances.

(c) Investigate the effects on the dissolving time due to the different temperatures, including
pairwise comparisons, and linear and quadratic trends (assuming that these investigations are
pre-planned).

Colorfastness experiment, continued

The colorfastness experiment was described in Example 10.6.3, p. 323. There were 5 levels of the
treatment factor “number of times of laundering” and three blocks formed by the experimenters.
The ideal number of observations was calculated in Example 10.6.3 to be s = 12 observations per
treatment per block so a total of k = vs = 60 swatches of material were evaluated for color by
each experimenter.

The experiment was carried out according to the guidelines of the American Association of Textile
Chemists and Colorists Test 61-1980. The measurements that are given in Table 10.27 were made
using the Gray Scale for Color Change. This scale is measured using the integers 1-5, where 5
represents no change from the original color. Using their own continuous version of the Gray
Scale, each of the b = 3 experimenters made color determinations on s = 12 swatches of fabric
for each of the v = 5 treatments (numbers of washes) in a random order and without knowledge
of which treatment was being evaluated —a “blind study”.
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Table 10.27 Data for the colorfastness experiment

15.

Block (Experimenter) Number of washes yrir (Measurement on the gray scale)
1 3.8,4.0,4.0,3.9,3.8,3.7,3.9, 4.0, 4.0, 4.0,3.9,4.0

—

32,28,2.8,4.0,3.0,3.2,3.8,3.5,4.0,3.2,3.5,34
3.8,4.0,3.8,34,42,34,4.0,3.8,4.2,3.9,3.9,3.1
42,3.8,3.5,34,42,29,35,3.2,3.5,4.0,3.2,39
3.5,38,2.8,42,40,3.8,39,29,3.9,3.2,3.5,3.5

2 3.0,3.7,3.8,3.0,3.7,4.0,2.9,3.5,3.2,3.5,4.0, 3.5

3 3.7,3.3,3.5,3.6,3.1,3.0,3.2,3.7,3.8,3.7, 3.6, 3.6

4 3.0,3.6,39,38,3.8,3.1,3.6,34,4.0,3.2,3.0,3.8

5 3.6,3.1,3.8,34,3.9,34,35,4.0,34,39,3.0,3.3
2 1 45,3.8,3.5,3.5,3.6,3.8,4.6,3.9,4.0,3.9,3.8,4.2

2 3.7,3.6,3.8,3.5,38,4.0,3.6,3.6,3.4,3.7,34,33

3 3.0,3.7,2.8,3.0,3.6,3.4,3.8,3.6,3.4,3.7,3.9, 3.8

4 42,38,3.1,2.8,3.2,3.0,3.7,3.0,3.7,3.5,3.2,3.9

5 3.2,35,3.1,3.3,28,3.5,35,3.2,3.6,3.7,3.2,3.2
3 1 40,4.2,3.8,3.8,4.2,4.2,3.8,4.2,42,3.8,42,3.9

2

3

4

5

(a) Plot the treatment averages for each block. Comment on a possible interaction between exper-
imenter and number of washes, and also on any surprising features of the data.

(b) Fit a block—treatment-interaction model (10.6.8) to these data. Check the assumptions of nor-
mality, equal variance, and independence of the error variables.

(c) Using only the data from experimenters 1 and 2, repeat part (b). Under what circumstances
could you justify ignoring the results of experimenter 3?

(d) Investigate the linear and quadratic trends in the effect on color of the number of washes. If
necessary, use Satterthwaite’s approximation for unequal variances.

Insole cushion experiment

The insole cushion experiment was run in the Gait Laboratory at The Ohio State University by
V. Agresti, S. Decker, T. Karakostas, E. Patterson, S. Schwartz, 1995. The objective of the exper-
iment was to compare the effect on the force with which the foot hits the ground of a regular shoe
insole cushion and a heel cushion (factor C, coded 1, 2, respectively) available both as brand name
and a store name (factor D, coded 1, 2, respectively).

Only one subject (and one pair of shoes) was used. A pilot experiment indicated that fatigue would
not be a factor. The natural walking pace of the subject was measured before the experiment. This
same pace was maintained throughout the experiment by use of a metronome.

The experiment was divided into two days (blocks). On one day, measurements were taken on the
subject’s dominant leg (kicking leg) and the nondominant leg was examined on the second day.
Each of the v = 4 treatment combinations were measured s = 5 times per block in a randomized
order. For each treatment combination, the subject was instructed to walk naturally along the walk-
way of the laboratory without looking down. As the foot hit the “force plate,” an analog signal was
sent to a computer, which then converted the signal to a digital form. The response variable, shown
in Table 10.28, is the maximum deceleration of the vertical component of the ground reaction force
measured in newtons.
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le 10.28 Data for the insole cushion experiment
Block I (Right leg)
C D Response in Newtons (order)
1 1 899.99 (3) 910.81 (5) 927.79 (10) 888.77 (11) 911.93 (16)
1 2 924.92 (2) 900.10 (6) 923.55 (12) 891.56 (17) 885.73 (20)
2 1 888.09 (4) 954.11 (7) 937.41 (9) 911.85 (14) 908.41 (18)
2 2 884.01 (1) 918.36 (8) 880.23 (13) 891.16 (15) 917.16 (19)
Block II (Left Leg)
C D Response in Newtons (order)
1 1 852.94 (22) 866.28 (27) 886.65 (28) 851.14 (33) 869.80 (34)
1 2 882.95 (21) 865.58 (24) 868.15 (25) 893.82 (37) 875.98 (38)
2 1 920.93 (26) 880.26 (31) 897.10 (35) 893.78 (39) 885.80 (40)
2 2 872.50 (23) 892.76 (29) 895.93 (30) 899.44 (32) 912.00 (36)

(a) Fitamodel that includes a block x treatment interaction. Prepare an analysis of variance table.
What can you conclude?

(b) Draw interaction plots for the CD interaction, C x block interaction, D x block interaction, and
Treatment Combination x block interaction. Which contrasts would be of interest to examine?

(c) Calculate confidence intervals for any means or contrasts that you identified in part (b), after
having looked at the data.

(d) Check the assumptions on the model. There are two possible outliers. Re-examine the data
without either or both of these observations. Do any of your conclusions change? Which
analysis would you report?

Yeast experiment

The investigators (K. Blenk, M. Chen, G. Evans, J. Chen Ibinson, J. Lamack, and E. Scott, 2000)
planned an experiment to investigate how rapid rise yeast and regular yeast differ in terms of their
rate of rising. They were also interested in finding out whether temperature had significant effect
on the rising rate. For each observation, 0.3 gm of yeast and 0.45 gm sugar were mixed together
and added to a test tube, together with 6ml of water. The test tube was placed into a water bath of
specified temperature. The level (height) of the mixture in the test tube was recorded immediately
and then again after 15 minutes. Each response is the percentage gain in height of the mixture in
the test tube after the 15 minutes. There were three treatment factors:

Factor C: Initial temperature of water mixed with the yeast and flour
(3 levels: 100°F, 115°F, 130°F)

Factor D: Type of yeast (2 levels: Rapid rise, Regular)

Factor E: Temperature of water bath (2 levels: 70°F, 85°F)

There were b = 3 blocks with each experimenter-team forming a block. Each team took s = 2
observations on each of the v = 12 treatment combinations. The factorial form of the block—
treatment model similar to (10.8.15), but with three treatment factors, was selected.

(a) Explain in at most two sentences why the treatment combinations should be randomly ordered
in each block before they are observed.
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Table 10.29 Data for the yeast experiment (percentage rise). Treatment combinations are the levels of (water temper-
ature, yeast, bath temperature)

17.

Block 1 Block 2 Block 3
water/yeast/bath Yhijk1 Yhijk2 Vhijk1 Yhijk2 Yhijk1 Yhijk2
111 8.2 2.7 10.9 1.8 11.4 4.8
112 30.0 39.8 31.8 36.0 424 20.0
121 12.6 17.7 3.5 34 34 8.5
122 64.7 73.9 42.0 32.6 34.5 30.0
211 18.1 54 12.3 18.3 8.5 8.0
212 63.5 66.3 23.7 57.5 30.6 453
221 4.2 12.2 7.7 8.3 6.0 8.2
222 96.8 71.1 34.1 40.9 49.3 46.0
311 44 .4 16.4 5.0 4.8 8.5 3.3
312 58.2 63.3 29.2 27.8 37.5 18.2
321 19.8 94 4.8 6.7 6.4 12.9
322 99.7 92.3 53.2 58.9 43.9 73.7

(b)

(©)

(d)

(e)

®

Why would you check for normality of the residuals in general, and in this experiment in
particular?

Before the experiment, the experimenters had planned to calculate a set of 99% confidence
intervals for the pairwise comparisons of the treatment combinations (averaged over blocks).
A pilot experiment indicated that the normality assumption is approximately satisfied and that
the error variance would be about 9 percent®. They wished to have confidence intervals of
half-width at most 5 percent. How many observations per treatment combination per block
would this have required?

Due to time considerations, the experimenters were only able to take 2 observations per treat-
ment combination per block as shown in Table 10.29. Calculate an analysis of variance table
and explain what conclusions you can draw from it. Be careful about interpreting main effects
in the presence of interactions, and be careful about your levels of significance.

Ilustrate the main points about the treatment factor effects (averaged over the blocks) that you
mentioned in part (d) by sketching two plots. Choose these plots carefully and explain why
you chose them.

Test at significance level 0.01 whether or not there is a significant linear trend in the “percent-
gain in height” as the level of initial water temperature increases (averaged over all the other
variables). State your conclusions.

Cotton-spinning experiment

In the cotton-spinning experiment of Sect. 10.5, p. 314, the two observations on treatment 1 (ordi-
nary flier, 1.69 twist) arising from blocks 5 and 10 appear to be outliers.

(a)
(b)

©
(@

Using a computer package, repeat the analysis of Sect. 10.5 without these two observations.
Show that the assumptions on the block—treatment model (10.4.1) are approximately satisfied
when these two outliers are omitted.

Draw conclusions about the fliers and degrees of twist from your analysis. Do any of your
conclusions contradict those drawn when the outliers were included?

Which analysis do you prefer and why?



11.1 Introduction

When an experiment needs to be run in blocks but, for practical reasons, the block size cannot be a
multiple of the number of treatments, then a complete block design (Chap. 10) cannot be used—an
incomplete block design needs to be used instead. The incomplete block designs discussed in this
chapter have block size smaller than the number of treatments, but larger block sizes can be obtained
by adding one or more complete set of treatments to every block.

In Sect. 11.2, we discuss basic design issues of block size, randomization and estimability. Then,
in Sect. 11.3, three useful and efficient types of incomplete block designs (balanced incomplete block
designs, group divisible designs, and cyclic designs) are introduced. Analysis of incomplete block
designs is described in Sect. 11.4, including some specific formulae for balanced incomplete block
designs and group divisible designs. In Sect. 11.5, we describe and analyze an experiment that was
designed as a cyclic group divisible design. Sample-size calculations are discussed in Sect. 11.6, and
factorial experiments in incomplete block designs are considered in Sect. 11.7. In general, since not
every combination of treatment and block is observed, incomplete block designs are most easily
analyzed using computer software. [llustrations are given in Sect. 11.8 by SAS software and in Sect. 11.9
by R.

11.2 Design Issues

11.2.1 Block Sizes

Block sizes are dictated by the availability of groups of similar experimental units. For example, in the
breathalyzer experiment examined in Sect. 10.3.1, p. 306, the block size was chosen to be k = 5. This
choice was made because the pilot experiment indicated that experimental conditions were fairly stable
over a time span of five observations taken close together, and also because five observations could be
taken by a single technician in a shift. In other experiments, the block size may be limited by the capacity
of the experimental equipment, the availability of similar raw material, the length of time that a subject
will agree to remain in the study, the number of observations that can be taken by an experimenter
before fatigue becomes a problem, and so on. Such restrictions on the block size may result in the
blocks being too small for every treatment to be observed the same number of times in every block. The
breathalyzer experiment required the comparison of v = 36 treatment combinations (twelve different
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Table 11.1 An incomplete block design withb =8,k =3,v=8,r =3

Block Block

| 1 3 8 A\ 5 7 4
I 2 4 1 VI 6 8 5
1 3 5 2 vil 7 1 6
v 4 6 3 VIII 8 2 7

alcohol concentrations combined with three air-intake ports) of which only five would be observed per
block. Skill was then needed in selecting the best design that would still allow all treatment contrasts
to be estimable with high precision.

11.2.2 Design Plans and Randomization

All the designs that we discuss in this chapter are equireplicate; that is, every treatment (or treatment
combination) is observed r times in the experiment. These tend to be the most commonly used designs,
although nonequireplicate designs are occasionally used in practice.

We use the symbol #n;;, to denote the number of times that treatment i is observed in block 4. In
general, it is better to observe as many different treatments as possible in a block, since this tends to
decrease the average variance of the contrast estimators. Therefore, when the block size is smaller than
the number of treatments, each treatment should usually be observed either once or not at all in a block.
Such block designs are called binary, and every n;;, is either O or 1. For most purposes, the best binary
designs are those in which pairs of treatments occur together in the same number (or nearly the same
number) of blocks. These designs give rise to equal (or nearly equal) lengths of confidence intervals
for pairwise comparisons of treatment effects.

There are three stages in designing an experiment with incomplete blocks. The first stage is to obtain
as even a distribution as possible of treatment labels within the blocks. This results in an experimental
plan. The plan in Table 11.1, for example, shows a design with b = 8 blocks (labeled I, II, . . ., VIII)
each of size k = 3, which can be used for an experiment with v = 8 treatments (labeled 1, ..., 8) each
observed r = 3 times. The treatment labels are evenly distributed in the sense that no label appears
more than once per block and pairs of labels appear together in a block either once or not at all, which
is “as equal as possible”.

The experimental plan is often called the “design,” even though it is not ready for use until the random
assignments have been made. There are three steps to the randomization procedure, as follows.

(1) Randomly assign the block labels in the plan to the levels of the blocking factor(s).
(i) Randomly assign the experimental units in a block to those treatment labels allocated to that block.
(iii)) Randomly assign the treatment labels in the plan to the actual levels of the treatment factor.

The randomization procedure is illustrated in the following example.

Example 11.2.]1 Metal alloy experiment

Suppose an experiment is to be run to compare v = 7 compositions of a metal alloy in terms of tensile
strength. Further, suppose that only three observations can be taken per day, and that the experiment
must be completed within seven days. It may be thought advisable to divide the experiment into blocks,
with each day representing a block, since different technicians may work on the experiment on different
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Table 11.2 Randomization of an incomplete block design

Block label Unrandomized design Block label Day Design after step (i) Design after step (ii)
I 124 VI 1 672 276
I 235 I 2 235 532
I 346 11 3 346 436
v 457 I 4 124 214
v 561 \% 5 561 156
VI 672 v 6 457 457
Vil 713 Vil 7 713 731

days and the laboratory temperature may vary from day to day. Thus, an incomplete block design with
b = 7 blocks of size k = 3 and with v = 7 treatment labels is needed. The plan shown in the first two
columns of Table 11.2 is of the correct size. It is binary, with every treatment appearing O or 1 times
per block and » = 3 times in total. Also, all pairs of treatments occur together in a block exactly once,
so the treatment labels are evenly distributed over the blocks. Randomization now proceeds in three
steps.

Step (i): The block labels need to be randomly assigned to the 7 days. Suppose we obtain the
following pairs of random digits from a random number generator or from Table A.1 and associate

them with the blocks:
Random digits: 71 36 65 93 92 02 97

Block labels: I NMIIIVYV VIVI

Then, sorting the random numbers into ascending order, the blocks of the plan are assigned to the seven
days as in columns 3-5 of Table 11.2.

Step (ii): Now we randomly assign time slots within each day to the treatment labels. Again, using
pairs of random digits either from a random number generator or from where we left off in Table A.1,
we associate the random digits with the treatment labels as we illustrate here for the first three days:

Day: Day 1 Day 2 Day 3

Block: (Block VI) (Block II) (Block III)
Random digits: 50 29 03 65 34 30 74 56 88
Treatment labels: 6 7 2 2 3 5 3 4 6

Sorting the random numbers into ascending order for each day separately gives the treatment label
order 2, 7, 6 for day 1, and 5, 3, 2 for day 2, and 4, 3, 6 for day 3, and so on. The design after step (ii)
is shown in the last column in Table 11.2. A third set of random digits is now required to associate the
treatment numbers in the plan with the 7 compositions of metal alloy. 0

11.2.3 Estimation of Contrasts

The importance of selecting an experimental plan with an even distribution of treatment labels within
the blocks, such as those in Tables 11.1 and 11.2, is to ensure that all treatment contrasts are estimable
and that pairwise comparison estimators have similar variances. The plan shown in Table 11.3 is poor.
Although all treatments appear r = 3 times in the design, some pairs of treatment labels (such as 1
and 3) occur together in two blocks, while other pairs (such as 1 and 2) never appear together. Worse
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Table 11.3 A disconnected incomplete block design withb =8,k =3,v=8,r =3

Block Block

| 1 3 5 v 5 7 1
I 2 4 6 VI 6 8 2
11 3 5 7 VII 7 1 3
v 4 6 8 VIII 8 2 4
Fig.11.1 Connectivity 3 5 2 3

graphs to check
connectedness of designs A
1 7 1 4

Swz 8 5

6 4 7 6
(a) Disconnected design of Table 11.3 (b) Connected design in Table 11.1

still, is that some blocks contain all the even-numbered treatment labels, and the other blocks contain
all the odd-numbered labels. The result is that every pairwise comparison between an even-numbered
and an odd-numbered treatment is not estimable. The design is said to be disconnected.

Disconnectedness can be illustrated through a connectivity graph as follows. Draw a point for each
treatment and then draw a line between every two treatments that occur together in any block of the
design. The connectivity graph for the disconnected design in Table 11.3 is shown in Fig. 11.1a. Notice
that the graph falls into two pieces. There is no line between any of the odd-labeled treatments and the
even-labeled treatments.

A design is connected if every treatment can be reached from every other treatment via lines in
the connectivity graph. The connectivity graph for the connected design in Table 11.1 is shown in
Fig.11.1b and it can be verified that there is a path between every pair of treatments. For example,
although treatments 1 and 5 never occur together in a block and so are not connected by a line, there
is nevertheless a path from 1 to 4 to 5. All contrasts in the treatment effects are estimable in a design
if and only if the design is connected. The connectivity graph therefore provides a simple means of
checking estimability.

Although disconnected designs will be useful in Chap. 13 for single-replicate (r = 1) factorial
experiments arranged in blocks, they need never be used for experiments with at least two observations
per treatment. All balanced incomplete block designs are connected, and so are most group divisible
designs and cyclic designs. These three types of design are described next.

11.3 Some Special Incomplete Block Designs

11.3.1 Balanced Incomplete Block Designs

A balanced incomplete block design is a design with v treatment labels, each occurring r times, and
with bk experimental units grouped into b blocks of size k < v in such a way that the units within a
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Table 11.4 A balanced incomplete block design withv =8, r =7, b =14,k =4, A =3

Block Treatments Block Treatments

I 1 2 3 4 VI 2 3 5 8
II 1 2 5 6 X 2 3 6 7
I 1 2 7 8 X 2 4 5 7
v 1 3 5 7 XI 2 4 6 8
v 1 3 6 8 XII 3 4 5 6
VI 1 4 5 8 X1 3 4 7 8
VII 1 4 6 7 X1V 5 6 7 8

block are alike and units in different blocks are substantially different. The plan of the design satisfies
the following conditions:

(i) Each treatment label appears either once or not at all in a block (that is, the design is binary).
(ii) Each pair of labels appears together in A blocks, where ) is a fixed integer.

Block design randomization is carried out as illustrated in Sect. 11.2.2.

All balanced incomplete block designs have the desirable properties that all treatment contrasts are
estimable and all pairwise comparisons of treatment effects are estimated with the same variance so
that their confidence intervals are all the same length. Balanced incomplete block designs also tend
to give the shortest confidence intervals on the average for any large number of contrasts. For these
reasons, the balanced incomplete block design is a popular choice among experimenters. The main
drawback is that such designs exist only for some choices of v, k, b, and r.

The design in Table 11.2 is a balanced incomplete block design for v = 7 treatments and b = 7
blocks of size k = 3. It can be seen that conditions (i) and (ii) are satisfied, with every pair of labels
appearing together in exactly A = 1 block. A second example of a balanced incomplete block design,
prior to randomization, is shown in Table 11.4 for v = 8 treatments in b = 14 blocks of size k = 4.
Again, conditions (i) and (ii) are satisfied, this time with A = 3.

We can verify that the design in Table 11.1 (p. 350) with v = b = 8, r = k = 3 is not a balanced
incomplete block design. Label 2, for example, appears in one block with each of labels 1, 3, 4, 5,
7, and 8 but never with label 6. The following simple argument shows that no balanced incomplete
block design can possibly exist for this size of experiment. In a balanced incomplete block design with
v=>b=8,r =k = 3, label 2, for example, must appear in » = 3 blocks in the design, and in each
block there are k —1 = 2 other labels. So label 2 must appear in a block with a total of 7 (k—1) = 6 other
treatment labels. Consequently, if label 2 were to appear A times with each of the other v — 1 = 7 labels,
then 7\ would have to be equal to r (k — 1) = 6. This would require that A\ = 6/7 =r(k—1)/(v — 1).
Since A is not an integer, a balanced incomplete block design of this size cannot exist. However, for
the size of design in Table 11.4, X is an integer since A =r(k — 1)/(v — 1) =7(3)/(7) = 3.

There are three necessary conditions for the existence of a balanced incomplete block design, all of
which are easy to check. These are

vr = bk,
rk—1)=XXv-—-1), (11.3.1)

b>v.
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The first condition is satisfied by all block designs with equal replication and equal block sizes.
The second condition is obtained by the argument above, and the third condition is called Fisher’s
inequality. Although the three necessary conditions can be used to verify that a balanced incomplete
block design of a given size may exist, they do not guarantee its existence. Lists of balanced incomplete
block designs can be found in Cochran and Cox (1957, chapter 11) and Fisher and Yates (1973), or
can be obtained by some computer packages (see, for example, PROC OPTEX in the SAS software,
described in Sect. 11.8.1 and the ibd package in R, Sect. 11.9.1).

11.3.2 Group Divisible Designs

A group divisible design is a design with v = g/ treatment labels (for some integers g > 1 and £ > 1),
each occurring r times, and bk experimental units grouped into b blocks of size k < v in such a way
that the units within a block are alike and units in different blocks are substantially different. The plan
of the design satisfies the following conditions:

(i) The v = g/ treatment labels are divided into g groups of £ labels—any two labels within a group
are called first associates and any two labels in different groups are called second associates.
(i1) Each treatment label appears either once or not at all in a block (that is, the design is binary).
(iii) Each pair of first associates appears together in A blocks.
(iv) Each pair of second associates appears together in A» blocks.

Block design randomization is carried out as in Sect. 11.2.2.

It will be seen in Sect. 11.4.5 that the values of A; and )\, govern the lengths of confidence intervals
for treatment contrasts. Generally, it is preferable to have A\; and )\, as close as possible, which ensures
that the confidence intervals of pairwise comparisons are of similar lengths. Group divisible designs
with A and \, differing by one are usually regarded as the best choice of incomplete block design
when no balanced incomplete block design exists.

An example of a group divisible design (prior to randomization) is the experimental plan shown in
Table 11.1, p. 350. It has the following g = 4 groups of ¢ = 2 labels:

(1,5, 2,6), 3,7, 438).

Labels in the same group (first associates) never appear together in a block, so Ay = 0. Labels in
different groups (second associates) appear together in one block, so A\ = 1.
A second example is given by the experimental plan in Table 11.5, and it has g = 4 groups of £ = 3
labels:
(1,2,3), 4,5,6), (7,8,9), (10,11,12),

and A\; = 3, Ap = 1 (which is not ideal since A\| and A, differ by more than 1).
There are four necessary conditions for the existence of a group divisible design with chosen values
of v = g¥, b, k, r namely,

glr = bk,
rk—1D=ML-1D+Xl(Eg—-1),
r> A,

rk > Av,
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Table 11.5 A group divisible design withv = 12,r =3,b =6,k =6, A\ =3, \x =1

Block Treatments

I 1 2 3 5 6
1I 1 2 3 7 8 9
I 1 2 3 10 11 12
v 4 5 6 7 8 9
v 4 5 6 10 11 12
VI 7 8 9 10 11 12

for integers A\| and A;.

All group divisible designs with Ay = 0 should be avoided, since not all of the treatment contrasts
are estimable. (It can be verified that the disconnected design of Table 11.3 is a group divisible design
with groups (1, 3, 5, 7) and (2, 4, 6, 8) and with A\; = 2 and A\, = 0.) Lists of group divisible designs
are given by Clatworthy (1973) and in the more recent references listed by Sinha (1991). Good block
designs (which may or may not be group divisible) can be obtained by some computer packages (see,
for example, PROC OPTEX in SAS software, Sect. 11.8.1 and the ibd package in R, Sect. 11.9.1).

11.3.3 Cyclic Designs

A cyclic design is a design with v treatment labels, each occurring r times, and with bk experimental
units grouped into b = v blocks of size k < v in such a way that the units within a block are alike
and units in different blocks are substantially different. The experimental plan, using treatment labels
1,2, ..., v, can be obtained as follows:

(i) The first block, called the initial block, consists of a selection of k distinct treatment labels.

(i) The second block is obtained from the initial block by cycling the treatment labels—that is, by
replacing treatment label 1 with 2, 2 with 3, ..., v — 1 with v, and v with 1. The third block is
obtained from the second block by cycling the treatment labels once more, and so on until the vth
block is reached.

Block design randomization is carried out as in Sect. 11.2.2.

The group divisible design in Table 11.1 is also a cyclic design and has initial block (1, 3, 8). There
are three cyclic designs in Table 11.6 all with block size & = 4. The first two have initial block (1, 2, 3,
6), but one has v = 7 treatment labels and the other has v = 6. The third design has initial block (1, 2,
3,4) and v = 7. The first design is also a balanced incomplete block design with A = 2. The second
design has pairs of treatments occurring together in either A\ = 2 or A, = 3 blocks, which results
in only two possible lengths of confidence intervals for pairwise comparisons, but it is not a group
divisible design since the treatment labels cannot be divided into groups of first associates. The third
design is less good since pairs of treatments occur in A\; = 1 or Ay = 2 or A3 = 3 blocks, resulting in
three different lengths of confidence interval for pairwise comparisons.

A cyclic design can have as many as v/2 different values of )\;, yielding as many as v/2 different
lengths of confidence intervals for pairwise comparisons of treatment effects. Again, if no balanced
incomplete block design exists, the best designs are usually regarded as those with two values of \;
which differ by one.
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Table 11.6 Cyclic designs with k = 4 generated by (1, 2, 3, 6) for v = 7 and v = 6, and generated by (1, 2, 3, 4) for
v="7

Design 1 Design 2 Design 3
v=7 v==6 v=7
Block Treatments Block Treatments Block Treatments

1 1236 1 1236 1 1234
2 2347 2 2341 2 2345
3 3451 3 3452 3 3456
4 4562 4 4563 4 4567
5 5673 5 5614 5 5671
6 6714 6 6125 6 6712
7 7125 7 7123

Some cyclic designs have duplicate blocks, such as that with v = 8 and initial block (1, 4, 5, 8).
These designs are useful when fewer than v blocks are required, since duplicate blocks can be ignored.
Otherwise, designs with distinct blocks are usually better. Lists of cyclic designs are given by John
et al. (1972), John (1981), and Lamacraft and Hall (1982).

11.4 Analysis of General Incomplete Block Designs
11.4.1 Contrast Estimators and Multiple Comparisons

The standard block—treatment model for the observation on treatment i in block / in a binary incomplete
block design is

Ypi = p+0p +7i + €ni,
eni ~ N(0,0%),
€p;’s are mutually independent ,
h=1,...,b; i=1,...,v; (h,i)inthe design.

(11.4.2)

The model, which assumes no block—treatment interaction, is almost identical to block—treatment
model (10.4.1) for the randomized block design. The only difference is the phrase “(%, i) in the design”,
which means that the model is applicable only to those combinations of block % and treatment i that
are actually observed. The phrase serves as a reminder that not all treatments are observed in each
block.

For every experiment, the assumptions on the model should be checked. However, when blocks do
not contain every treatment, it is difficult to check the assumption of no block—treatment interaction by
plotting the data block by block, as was recommended for complete block designs in Sect. 10.7. Thus,
it is preferable that an incomplete block design be used only when there are good reasons for believing
that treatment differences do not depend on the level of the blocking factor(s).

The least squares estimators for the treatment parameters in the model for an incomplete block
design must include an adjustment for blocks, since some treatments may be observed in “better”
blocks than others. This means that the least squares estimator for the pairwise comparison 7, — 7; is
not the unadjusted estimator Y . p— Y ; as it would be for a randomized complete block design. For
example, if metal alloys 2 and 7 were to be compared via the balanced incomplete block design in the
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last column of Table 11.2, we see that alloy 2 is observed on days 1, 2, and 4, and alloy 7 is observed
on days 1, 6, and 7. If we were to use Y » — Y 7 to estimate m — 77, it would be biased, since

_ — 1 1
E[Y,-Y7] = E[g(le + Y0 +Ya) — g(Y17 + Yo7 + Y77)1

1 1
5(3M+91 4+ 0y + 604+ 3m) — §(3N+91 + 0¢ + 67 + 3717)

1
(o — 1)+ 5(92 + 04— 06 —07)
# (12 — 7).

If the experimental conditions were to change over the course of the experiment in such a way that
observations on the first few days tended to be higher than observations on the last few days, then 6;
and 64 would be larger than 6 and 6. If the two alloys do not differ in their tensile strengths, then
75 = 77, but the above calculation shows that Y » — ¥ 7 would nevertheless be expected to be large.
This could cause the experimenter to conclude erroneously that alloy 2 was stronger than alloy 7.
Consequently, any estimator for 7 — 77 must contain an adjustment for the days on which the alloys
were observed.

A general formula for a set of least squares solutions for the parameters 7; in the block—treatment
model (11.4.2) adjusted for block differences can be shown to be

rtk =17 — D Xpifp =kQ;, fori=1,...,v, (11.4.3)
p#i

when Zi 7, =0, Zh éh = 0 are used as the added equations (similar to Sect.3.4.3). Here, A; is
the number of blocks containing both treatments p and i, and a formula for calculating Q; will be
given in (11.4.7) in the next section. However, except in special cases, such as that of the balanced
incomplete block design, expression (11.4.3) is difficult to solve for the individual 7; and is usually left
for statistical software to calculate. Although the individual 7; are not uniquely estimable, all contrasts
>, ciTi are estimable if the design is connected, (see Sect. 11.2.3).

The Bonferroni and Scheffé methods of multiple comparisons can be used for simultaneous con-
fidence intervals of estimable contrasts in all incomplete block designs. The method of Tukey is
applicable for balanced incomplete block designs, and it is believed to be conservative (true value of
« smaller than stated) for other incomplete block designs, but this has not yet been proven. Dunnett’s
method can be used in balanced incomplete block designs but not in other incomplete block designs
without modification to our tables. For each method, the formula for a set of 100(1 — ) % simultaneous
intervals is

v v v
Same(Santu @(Zciﬂ) (1144
i=l1 i=l1 i=1

exactly as in Sect.4.4. The correct least squares estimate Y ¢;7;, as well as the estimated variance
Var (3, ¢;7;) and the error degrees of freedom can be obtained from computer software for the design
being used.
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Table 11.7 Analysis of variance table for a binary incomplete block design with b blocks of size k, and v treatment
labels appearing r times

Source of variation Degrees of freedom Sum of squares Mean square Ratio
Blocks (adj) b—1 580adj mSOyg; —
Blocks (unadj) b—1 ssf - -
Treatments (adj 1 g Tagi msTa

reatments (adj) v— 58 Tydj msTyy; msE
Error bk—b—v+1 ssE msE
Total bk — 1 sstot

Formulae

ss0 =3, B?/k — G?/(bk) sSE = sstot — ssf — ssTdj
ssTagj = 2= QiTi sstot =37 _ | >0, nhi vy — G*/(bk)
Qi=Ti — >0 nuiBu/k. 580a0j = sstot — ssE — (X0_, T?/r — G?/(bk))

11.4.2 Analysis of Variance

For a connected incomplete block design with block—treatment model (11.4.2), the four rows in the
center section of Table 11.7 show an outline of the analysis of variance obtained when the block factor
is entered into the model before the treatment factor; the formulae are listed in the bottom section of
the table. The unadjusted sum of squares for blocks, ssf, is calculated in a similar way to the block
sum of squares in a complete block design; that is

b
ss0 = " By/k — G*/(bk), (11.4.5)
h=1

where By, is the sum of all observations in block /, and G represents the “grand total” of all the
observations. The sum of squares for treatments adjusted for blocks (i.e. adjusted for the fact that not
all treatments are in every block and some blocks are better than others) is

v
ssTuj = D Qi (11.4.6)
i=1

where 7; is the least squares solution for 7; obtained from (11.4.3), and Q; is the ith adjusted treatment
total; that is,

b
1
Qi =T; =2 > B, (11.47)
h=1

where ny; is 1 if treatment i is observed in block /& and zero otherwise, By, is defined above, and 7; is
the sum of all observations on treatment i. We could write the three quantities 7;, B, and G as y; and
v, and y. in the usual way. The reason for changing notation is as a reminder that some of the yp,; are
not actually observed and the quantities 7;, By and G are more accurately written as

b v b v
T, = Znhiyhi , Bn= Z”hiyhi , and G = Zznhiyhi .
h=1

i=1 h=1i=1
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The sum of squares for error, ssE, is
SSE = sstot — ssf — ssTagj ,

where sstot is defined as usual as

b v
sstot = Z Znh,-y,fl. — G?/(bk).

h=1i=1

Also as usual, the number of degrees of freedom for treatments is v — 1, the number of degrees of
freedom for blocks is b — 1, and the number of degrees of freedom for error can be obtained by
subtraction as

df=(n-1)-0b-1)—@w—-1)=bk—b—-v+1, (11.4.8)

where n = bk is the total number of observations.
A test of HOT :{all 7; are equal } against H; :{at least two of the 7;’s differ} is given by the decision

rule
ms Tadj

reject HOT if > Fy—1.bk—b—v+1.0
for some chosen significance level c, where msT,g; = $sTaqgj/ (v —1), and msE = ssE/(bk—b—v+1).
If evaluation of blocking for the purpose of planning future experiments is required, the quantity
ssf in (11.4.5) is not the correct value to use. It has not been adjusted for the fact that every block
does not contain an observation on every treatment. In order to evaluate blocks, we would need the
adjusted block sum of squares, sst),4j, whose formula is listed as the last entry in Table 11.7. Some
computer packages will give this value under the heading “adjusted” or “Type III” sum of squares. If
the program does not automatically generate the adjusted value, it can be obtained from a “sequential
sum of squares” by entering treatments in the model before blocks.

11.4.3 Analysis of Balanced Incomplete Block Designs

The set of least squares solutions given in (11.4.3) for the treatment parameters 7; in the block—treatment
model (11.4.2) for the balanced incomplete block design have a simple form:

k
F=—Q;, for i=1,...,v, (11.4.9)
Av

where ) is the number of times that every pair of treatments occurs together in a block, and Q; is the
adjusted treatment total, given in (11.4.7). Thus, the sum of squares for treatments adjusted for blocks
in (11.4.6) becomes

v
k
55Togj = ZEQ?, (11.4.10)
i=1

and the least squares estimator of contrast > ¢;7; is

v k v
it = —UZCiQi. (11.4.11)
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It can be shown that the corresponding variance can be calculated as

Var(z ciﬂ») = Zc? (%) o2, (11.4.12)

i=1 i=1

The Bonferroni, Scheffé, Tukey, and Dunnett methods of multiple comparisons can all be used for
balanced incomplete block designs with degrees of freedom for error equal to df = bk — b — v + 1.
The general formula (11.4.4) for simultaneous 100(1 — «)% confidence intervals for a set of contrasts
Y.c;T; becomes

v v v
k k
;:1 ami €| 4o § ci0i tw 2 c? (E) msE | , (11.4.13)

i=1 i=1

where the critical coefficients for the four methods are, respectively,

WB = thk—b—vtl,a2m 5 WS =/ — DFy_i bk—b—vtla
0.5
wr = QU,bk—b—v+1,oz/“/§ ; Wp2 = |t|1()—1)‘bk—b—v+1,a .
For testing m hypotheses of the general form Hy : > ¢;7; = 0 against the corresponding alternative

hypotheses H, : D> c¢i7i # 0, at overall significance level «, the decision rule using Bonferroni’s
method for preplanned contrasts is

SSCadj
reject Hy if — > F} pk b vt l.a/m - (11.4.14)
msE
and the decision rule using Scheffé’s method is
SSCadj
reject Ho if —9 > (v — 1) Fypk—b—vi1.0 (11.4.15)
msE
where o s
sscaj (D ciTi) k(X)) (11.4.16)

msE (L) (A msE WX H)msE’

(cf. Sections4.3.3 and 6.7.2).

As for the case of equireplicate completely randomized designs, two contrasts X¢;7; and Xd;7;
are orthogonal in a balanced incomplete block design if Xc¢;d; = 0. The adjusted treatment sum of
squares can then be written as a sum of adjusted contrast sums of squares for a complete set of (v — 1)
orthogonal contrasts. An example is given in the following section.

11.4.4 A Real Experiment—Detergent Experiment

An experiment to compare dishwashing detergent formulations was described by P. W.M. John in
the journal Technometrics in 1961. The experiment involved three base detergents and an additive.
Detergent I was observed with 3, 2, 1, and 0 parts of the additive, giving four treatments, which we will
code 1, 2, 3, and 4. Likewise, Detergent II was observed with 3, 2, 1, and O parts of the additive, giving
an additional four treatments, which we will code 5, 6, 7, and 8. The standard detergent (Detergent I1I)
with no additive served as a control treatment, which we will code as 9.


http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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The experiment took place in a location where three sinks were available. Three people took part in
the experiment and were instructed to wash plates at a common rate. An observation was the number of
plates washed in a sink before the detergent foam disappeared. A block consisted of three observations,
one per sink. The refilling of the three sinks with water and detergent constituted the beginning of a
new block. The amount of soil on the plates prior to washing was held constant. Differences between
blocks were due to differences in the common washing rates, the water temperature, the experimenter
fatigue, etc.

A design was required with blocks of size k = 3 and v = 9 treatment labels. A balanced incomplete
block design was selected with b = 12 blocks giving r = bk/v = 4 observations per treatment
and every pair of treatment labels occurring in A = r(k — 1)/(v — 1) = 1 block. We have shown a
possible randomization of this design in Table 11.8 together with the data from the original article. The
positions within a block show the allocations of the three basins to treatments. The observations are
plotted against treatment in Fig. 11.2, ignoring the block from which the observation was collected.

Since each pair of treatments occurs together in only one block (A = 1), a graphical approach for
the evaluation of block—treatment interaction cannot be used. However, it appears from Fig. 11.2 that
block differences, block—treatment interaction effects, and random error variability must all be rather
small compared with the large detergent differences. A plot of the adjusted data is described below.

Table 11.8 Design and number of plates washed for the detergent experiment

Block Treatments Plates washed
1 3 8 4 13 20 7
2 4 9 2 6 29 17
3 3 6 9 15 23 31
4 9 5 1 31 26 20
5 2 7 6 16 21 23
6 6 5 4 23 26 6
7 9 8 7 28 19 21
8 7 1 4 20 20 7
9 6 8 1 24 19 20
10 5 8 2 26 19 17
11 5 3 7 24 14 21
12 3 2 1 11 17 19

Source John (1961). Copyright © 1961 American Statistical Association. Reprinted with permission

Fig.11.2 Data plot for the 35
detergent experiment,
ignoring block levels
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Fig.11.3 Plot of adjusted 35
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Block-treatment model (11.4.2) for an incomplete block design was fitted to the data. The residual
plots might lead us to question some of the error assumptions, but there are only 4 observations per
treatment and these are all from different blocks, so it is difficult to make a proper assessment. We will
proceed with the standard analysis for a balanced incomplete block design, recognizing that the stated
significance levels and confidence levels are only approximate.

Plotting the Data Adjusted for Block Effects

In this detergent experiment, the treatment differences are fairly clear from the plot of the raw data in
Fig. 11.2. However, if the block effects had been substantial, such a plot of the raw data could have
painted a muddled picture. In such cases, the picture can be substantially improved by adjusting each
observation for the block effects before plotting. The observation yj; is adjusted for the block effects
as follows,

Vhi = Yhi — On—0.),

where (éh — 0) is the least squares estimate of (6, — 6 ). A SAS program that adjusts the observations
for block effects and plots the adjusted observations is given in Sect. 11.8.3 and a corresponding R
program in Sect. 11.9.3. It should be noted that since the variability due to block effects has been
extracted, a plot of the adjusted observations will appear to exhibit less variability than really exists.

For this particular data set, the block differences are very small, so a plot of the adjusted data
would provide information similar to that provided by the plot of the raw data in Fig. 11.2. In Fig. 11.3,
the observations adjusted for blocks are plotted against “parts of additive” for each base detergent. It
appears that the washing power decreases almost linearly as the amount of additive is decreased and
also that the standard detergent is superior to the two test detergents.

Analysis

The analysis of variance table, given in Table 11.9, shows the treatment sum of squares and its decom-
position into sums of squares for eight orthogonal contrasts. These contrasts are the linear, quadratic,
and cubic trends for each of detergents I and II (as the amount of additive decreases), together with
the “T Versus II” contrast that compares the effects of detergents I and II averaged over the levels of
the additive, and the “control Versus others” contrast comparing the effect of the control detergent and
the average effect of the other eight treatments. For example, the linear trend contrast for detergent I
is =371 — ™ + 73 + 374, where the contrast coefficients are obtained from Table A.2. The contrast
comparing detergents I and II is the difference of averages contrast
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Table 11.9 Analysis of variance table for the detergent experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Blocks (adj) 11 10.06 0.91 - —
Blocks (unadj) 11 412.75 - — -
Treatments(adj) 8 1086.81 135.85 164.85 0.0001
I linear 1 286.02 286.02 347.08 0.0001
I quadratic 1 12.68 12.68 15.38 0.0012
I cubic 1 0.22 0.22 0.27 0.6092
II linear 1 61.34 61.34 74.44 0.0001
II quadratic 1 0.15 0.15 0.18 0.6772
II cubic 1 0.03 0.03 0.04 0.8520
IvsII 1 381.34 381.34 462.75 0.0001
Control vs others 1 345.04 345.04 418.70 0.0001
Error 16 13.19 0.82

Total 35 1512.75

1 1
Z(Tl +7'2+T3+T4)—Z(Ts+76+7*7 +73),

and the contrast comparing the control detergent with the others is the difference of averages contrast

1
Tg—g(T1+Tz+T3 + T4+ 75+ 76+ 77+ T8).

A set of simultaneous 99% confidence intervals for all treatment contrasts using Scheffé’s method of
multiple comparisons is given by (11.4.13) with ws = /8F3 16..01,and F3 16,01 = 3.89,k =3, A =1
and v = 9. Using the data shown in Table 11.8, we have treatment totals and grand total

W, 3Ty Ts Te T7 T3 Ty G
79 67 53 26 102 93 83 77 119 699

and block totals
By B, B3 B4 Bs B¢ B7 Bg B9 Biy B11 B2
40 52 69 77 60 55 68 47 63 62 59 47

Then, from (11.4.7), the first adjusted treatment total is
1 1
o1=T — E[B4 + Bg 4+ Bg + B12] =79 — 3[234] =1.0.

The other adjusted treatment totals are calculated similarly, giving

01 O 03 Os 0Os Qs Q7 08 Qo
1.00 —6.67 —18.67 —38.67 17.67 10.67 5.00 —0.67 30.33

and since k/(Av) = 3/9, the least squares estimate of the contrast X¢;7; given by (11.4.11)is X¢; 7; =
i Qi/3 (@ =1,2,...,9). For example, the least squares estimate for the “control versus others”
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contrast is

8
Zciﬂ =%9—%Z%,- =%(Q9—é2Qi)= 11.375,

i=1
with associated estimated variance
(. ok N /s
Var(; cm) = ;ci (E) msE = (1 + a) (§) (0.82) = 0.3075,

where msE = 0.82 is obtained from Table 11.9. Using Scheffé’s method of multiple comparisons at
overall level 99%, a confidence interval for the control versus others contrast is then

11.375 & /8F 16.0.01v/0.3075 = 11.375 £ 3.093 = (8.282, 14.468),

showing that the control detergent washed between 8.3 and 14.5 more plates than the other detergents
on average.
The sum of squares for treatments adjusted for blocks is obtained from (11.4.6), p. 358, as

k
ssTagj = - > 07 =1086.81,

and since
ms Ty ~ 1086.81/8

msE ~ 0.82

= 164.85 > F3.16.0.01 = 3.89,

we reject the hypothesis of no treatment differences.

The eight orthogonal contrasts can be tested simultaneously using the method of Scheffé. For
example, the confidence interval for the “control versus others” contrast calculated above as part of a
99% simultaneous set of intervals does not contain zero, so the hypothesis that the control treatment
does not differ from the others would be rejected. The overall significance level for all such tests
would be o = 0.01. Equivalently, the contrasts can be tested by the Scheffé method using the decision
rule (11.4.15), p. 360; that is,

v
. . SSCadi
reject Hy : Zcm =0 if msaEJ

i=1

> 8Fg gr01 = 31.12.

The ratios sscaqgj/ms E are provided in Table 11.9. Comparing their values with 31.12, we see that the
linear trends are significantly different from zero for each of the base detergents I and II, as are the
comparison of detergents I and II on average and the comparison of the control detergent with the
average effects of the other 8 treatments. From significance of the linear trend contrasts, coupled with
the direction of the trends, one can conclude that detergents I and II are better with larger amounts of
additive.

We cannot use the unadjusted block sum of squares to evaluate the usefulness of blocking. We
would need to calculate the adjusted block sum of squares as in Table 11.7, p. 358. Using the values in
Table 11.9, this is

1 1
§80,dj = 1512.75 — 13.19 — (2(792 + 677+ +119%) — %6992) = 10.06.
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So the adjusted block mean square is msfl,g; = 10.06/11 = 0.91, which is not much larger than
the error mean square, msE = (.82, so the blocking did not help with increasing the power of the
hypothesis tests. Nevertheless, it was natural to design this experiment as a block design, and the
creation of blocks was a wise precaution against changing experimental conditions.

11.4.5 Analysis of Group Divisible Designs
Group divisible designs were described in Sect.11.3.2, p. 354, and illustrations were shown in

Tables 11.1 and 11.5. The least squares solution (obtained with added equations > ; 7; = 0,>", éh =0)
for the treatment parameters 7; adjusted for blocks can be shown to be

. k
7= |:(r(k— 1)-1-/\1)1))\2] x| A2+ (A1 = A2) Qi + (N —Az)%Qp ,

(11.4.17)

where Q; is the adjusted treatment total as in (11.4.7), p. 358, and where Z(l) Qp denotes the sum of
the O, corresponding to the treatment labels that are the first associates of treatment label i.
The variance of the least squares estimator X¢;7; of an estimable contrast X¢;7; is

v v v—1 v
Var(Z ciﬂ) = chz Var(7;) + ZZ Z cicp Cov(7i, 7p) ,
i=1 i=1

i=1 p=i+l1

where, for a group divisible design,

klvdz + (A1 = )] 5
g

Var(7;) =
vA2[vA2 + (A1 — A2)]
and R
k(A1—\)o i ;
Cov(Fi, 7) = | TRDAFIO ) * %fz and p are first assomatcts,
0, if i and p are second associates.

Using these quantities, the variance of the least squares estimator of the pairwise comparison 7; — 7,
becomes

2ko?
[v A2+ (A —=A2)] °

— 2 . . .
% , if i and p are second associates.

if i and p are first associates,
Var(7; — 7p) =

If A1 and )\, are as close in value as possible, then the variances for the pairwise comparisons will be
as close as possible.

The Bonferroni and Scheffé methods of multiple comparisons can be used for group divisible
designs. The Tukey method is believed to be conservative (true value of o smaller than stated). The
Dunnett method is not available using our tables, since the critical values can be used only for designs
in which Cov(7;, ?p) are equal for all i and p. However, Dunnett intervals can be obtained from
many computer packages (see, for example, Fig 11.7, p. 380, and Table 11.24, p. 387). The analysis of
variance table for the group divisible design is that given in Table 11.7, p. 358, with 7; as in (11.4.17)
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above. An example of an experiment designed as a group divisible design is discussed in Sect. 11.5.
SAS and R programs are illustrated in Sects. 11.8 and 11.9 that can be used to analyze any group
divisible design.

11.4.6 Analysis of Cyclic Designs

Cyclic designs were described in Sect. 11.3.3, p. 355, and illustrated in Tables 11.1 and 11.6. They
are incomplete block designs that may or may not possess the properties of balanced incomplete
block designs or group divisible designs. When they do not possess these properties, the least squares
solutions 7; have no simple form and are most easily obtained from computer software. The Bonferroni
and Scheffé methods of multiple comparisons can be used for all cyclic designs.

In Sect. 11.5 we reproduce the checklist and analysis of an experiment that was designed as a cyclic
group divisible design and, in Sects. 11.8 and 11.9, we illustrate SAS and R computer programs that
can be used to analyze any cyclic incomplete block design.

11.5 A Real Experiment—Plasma Experiment

The plasma experiment was run by Ernesto Barrios, Jin Feng, and Richard Kibombo in 1992 in the
Engineering Research Center at the University of Wisconsin. The following checklist has been extracted
from the experimenters’ report. The design used was a cyclic group divisible design. Notice that the
experimenters moved step (e) of the checklist forward. They had made a list of all potential sources of
variation, but they needed a pilot experiment to help determine which sources they could control and
which they could not.

Checklist

(a) Define the objectives of the experiment.

In physics, plasma is an ionized gas with essentially equal densities of positive and negative
charges. It has long been known that plasma can effect desirable changes in the surface properties
of materials.

The purpose of this experiment is to study the effects of different plasma treatments of plastic
pipet tips on the capillary action of the pipets. Capillary action concerns the movement of a liquid
up the pipet—a small tube. Before a plasma treatment, the capillarity conduct of the tips is too
narrow to permit water to move up. Changes in capillary action effected by plasma treatment can
be measured by suspending the tip of a vertical pipet into a bed of water and measuring the height
of the column of water in the tube.

(e) Run a pilot experiment.

At this stage we decided to make a test run to become familiar with the process of setting up and
running the experiment, to determine the appropriate treatment factor levels, and to help identify
the major sources of variation that could be controlled, and to identify other variables that might
affect the response but which could not be controlled.

(b) Identify all sources of variation.

From the test run, we determined that pressure and voltage could not both be effectively controlled.
More generally, it would be difficult to vary all of the variables initially listed (gas flow rate, type
of gas, pressure, voltage, presence or absence of a ground shield, and exposure time of the pipet
tips to the ionized gas).
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The following factors were potential sources of variation.

e Experimenters. Despite the fact that all of the experimenters were to play certain roles during
each run of the experiment, it was noted that most of the variation due to the personnel could be
attributed to the person who connects the pipet tips to the gas tube in the ionization chamber and
takes the readings of the final response using vernier calipers.

e Room conditions. It was thought that variations in both room temperature and atmospheric
pressure could have an effect on response.

e Water purity. If the water used to measure the capillarity has a substantial amount of impurities,
especially mineral salts, then the response may be greatly affected, either because of variability
in cohesion and adhesion forces of different types of substances, or because of a reaction between
the impurities (salts) and the pipet tips.

e Materials. Variability in the quality of both the pipet tips and the gases used is likely to introduce
some variation in the response. Within an enclosed room such as a laboratory, the composition
of air may vary significantly over time.

Taking into account the results of the pilot run, the following decisions were made.
(i) Treatment factors and their levels.

Scale down the variables of interest to three by keeping both the pressure and voltage constant
at 100mm Torres and 5 volts, respectively, and by keeping the ground shield on. Distilled water
will be used to control for impurities in the water. Pipet tips from a single package will be used, so
the pipets are more likely to be from the same batch and hence more likely to be homogeneous.
The only factors that will make up the various treatment combinations are gas flow rate, type of
gas, and exposure time. No attempt will be made to control for variation in the composition or
purity of the gases used. (This variation will be subsumed into the error variability).
Set the lower and upper levels of each factor far apart in order to make any (linear) effect more
noticeable. Also, we decided to include only 6 of the 8 possible treatment combinations, as shown
in Table 11.10.

(i) Experimental units.
The experimental units are the (combinations of) pipets and time order of observations.

(iii) Blocking factors, noise factors, and covariates.
The two blocking factors are “experimenter” and “day.”
(No covariates or noise factors were included.)

(c) Specify a rule by which to assign the experimental units to the treatments.

The design will be an incomplete block design with blocks of size three, and three blocks of data
will be collected on each of two days. We will use the cyclic designforv =6 =bandk =3 =r
generated by the treatment labels 1, 4, 5. The labels in the design will be randomly assigned to the
six treatment combinations, and the treatments within each block will be randomly ordered.
(The selected cyclic design is shown in Table 11.11 in nonrandomized order so that the cyclic
nature of the design can be seen more easily. The design also happens to be a group divisible
design (see Exercise 14). The smallest balanced incomplete block design with v = 6 and k = 3
has r = 5 and b = 10 and would require more observations.)

(d) Specify the measurements to be made, the experimental procedure, and the anticipated
difficulties.

The height of the water column will be measured for each pipet. In order to make the measurements
as uniform as possible, a device has been constructed consisting of a rectangular sheet of plexiglass
with a small hole in which to place the pipet tip. Placing this pipet holder on a water vessel suspends
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Table 11.10 The six treatment combinations used in the plasma experiment

Treatment Factors and levels
Type of gas exposure time (sec) Gas flow rate (cc/sec)
1 Argon 180 10
2 Air 180 10
3 Argon 180 30
4 Argon 60 30
5 Air 60 30
6 Air 60 10

Table 11.11 Design and data for the plasma experiment

®

(@

(h)

®

Block Day Experimenter Response (Treatment)
1 1 Feng 0.482 (1) 0.459 (4) 0.458 (5)
2 1 Barrios 0.464 (2) 0.465 (5) 0.467 (6)
3 1 Kibombo 0.473 (3) 0.472(6) 0.495(1)
4 2 Feng 0.283 (4) 0.325(1) 0.296 (2)
5 2 Barrios 0.410 (5) 0.390 (2) 0.248 (3)
6 2 Kibombo 0.384 (6) 0.239 (3) 0.350 (4)

about 2mm of the tip of the pipet into the water. After 60 seconds, a mark will be made on the
pipet indicating the water level reached. The distance of the mark from the tip of the pipet will be
measured using a vernier caliper with tenth of a millimeter precision.

The experimental procedure for each observation is as follows: Place a pipet on the tube through
which the plasma will flow, screw in a glass tube, turn on the pump and wait 40 seconds, open the
Baratron, open the gas, turn a controller to auto, set the flow to a specified level, turn the pressure
controller to auto and set the level, set the voltage, time the treatment, turn off flow and shut off
the gas, set the pressure to open, wait until the pressure is less than 20, turn off the Baratron, turn
off the pump, unscrew the glass tube, then (wearing a glove) take out the pipet, place the pipet in
water (using the device for this purpose), and mark the height of the water column, then go on to
the next observation.

Anticipated difficulties: Differences in the way people would mark or measure the water column
heights would cause variation. Running the experiment consistently.

Specify the model.
(The standard block—treatment model (11.4.2), p. 356, for an incomplete block design was speci-
fied.)

Outline the analysis.

An analysis of variance test for equality of the treatment effects will be performed. Then confidence
intervals for all pairwise comparisons will be obtained, with a simultaneous 95% confidence level
using the method of Scheffé. Model assumptions will be evaluated.

Calculate the number of observations to be taken.
(The number of observations was limited by the time available.)

Review the above decisions. Revise if necessary.
(No revisions were made at this stage.)
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Table 11.12 Analysis of variance table for the plasma experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Blocks (adj) 5 0.0805 0.0161 — —
Blocks 5 0.0992 — — —
Treatments (adj) 5 0.0196 0.0039 2.99 0.0932
Error 7 0.0092 0.0013

Total 17 0.1279

Table 11.13 Analysis of variance for the plasma experiment—day one only

Source Degrees of freedom Sum of squares Mean square Ratio p-value
Blocks (adj) 2 0.0001213 0.0000607 364.00 —
Block 2 0.0004029 - — —
Treatments (adj) 5 0.0007112 0.0001422 853.40 0.026
Error 1 0.0000002 0.0000002

Total 8 0.0011142

Results of the Experiment

During the experiment, an unexpected event occurred. A little tube through which the gas passes was
broken, allowing for some leaking of gas. We realized this after our first day’s runs and tried to fix
this problem the next day, using tape, as a new tube was unavailable. As can be seen from the results,
given in Table 11.11, the responses from the last nine runs, corresponding to the second day, were
consistently smaller than those from the first nine runs. This underscores the advantage of using time
as a blocking factor.

Data Analysis

The analysis of variance is given in Table 11.12. It was obtained via a SAS computer program similar
to the one in Table 11.18 in Sect. 11.8. The adjusted block mean square, msf,qj = 0.0161, is twelve
times larger than the error mean square, so blocking was certainly worthwhile.

The ratio msT,qgj/msE = 2.99 does not exceed the critical value Fs 7 o5 = 3.97 for testing equality
of the treatment effects at the 5% significance level (equivalently, the p-valueis greater than 0.05). Based
on this result, examination of any individual treatment contrasts may seem unwarranted. However, the
broken tube discovered after the first day of runs is an important consideration in this experiment. It
is quite possible that the treatments are not the same on day one as on day two, since the broken tube
may change the gas flow rate or the type of gas to which the pipet is exposed. So, one must ask the
question, “Is there anything to be salvaged from this experiment?”

If the broken tube has in fact changed the treatment effects, and if the breakage occurred after the
first day’s runs, then it might be most useful to analyze the data for day one or each day separately.
The design for each day is no longer a cyclic design or a group divisible design, but it is a connected
incomplete block designs and can still be analyzed by computer (see Sects. 11.8 and 11.9).

If a test of the null hypothesis HOT of equal treatment effects is conducted separately for each day’s
data, it can be verified that HOT would not be rejected at the 5% significance level for the data collected
on day two but would be rejected for the data of day one.

The analysis of variance for day one is shown in Table 11.13. The test ratio is 853.40—which is
larger than Fs 1 o5 = 230. The mean square for blocks adjusted for treatments is 0.0000607, which



370 11 Incomplete Block Designs
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Table 11.14 Pairwise comparisons for the plasma experiment using the Scheffé method and confidence level 95%—day
one only

i,p T =Tp JVar(3; — Tp) msd Significant

1,2 0.025500 0.000646 0.0219 yes
1,3 0.021833 0.000553 0.0188 yes
1,4 0.023167 0.000553 0.0188 yes
1,5 0.024333 0.000471 0.0160 yes
1,6 0.022667 0.000471 0.0160 yes
2,3 —0.003667 0.000745 0.0253
2,4 —0.002333 0.000745 0.0253
2,5 —0.001167 0.000553 0.0188
2,6 —0.002833 0.000553 0.0188
3,4 0.001333 0.000745 0.0253
3,5 0.002500 0.000646 0.0219
3,6 0.000833 0.000553 0.0188
4,5 0.001167 0.000553 0.0188
4,6 —0.000500 0.000646 0.0219
5,6 —0.001667 0.000471 0.0160

is 364 times larger than msE, so blocking was helpful for the observations collected on day one. With
only one degree of freedom for error, use of residuals to check model assumptions is of little value.

Figure 11.4 shows the day-one observations adjusted for block effects, y,; — (éh — 5.) plotted against
treatment. It appears that treatment 1 (Argon at 10 cc per second for 180 seconds) is very different from
the other treatments.

Table 11.14 contains information for applying Scheffé’s method of multiple comparisons to the
day-one data, using a simultaneous 95% confidence level. The least squares estimates were obtained
using SAS software (Sect. 11.8, p. 380, and Fig. 11.8). It can be seen that 7; — 7, is larger than the
minimum significant difference for all pairwise comparisons with i = 1, but for none of the others.
Consequently, the only confidence intervals that do not contain zero are those involving treatment 1.
We conclude that based on the first day’s data, treatment 1 is significantly better than each of the other
5 treatments and should be investigated further.
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11.6 Sample Sizes

Given the number of treatments v and the block size k, how many blocks b are required to achieve
confidence intervals of a specified length or a hypothesis test of specified power? Since for most
purposes the balanced incomplete block design is the best incomplete block design when it is available,
we start by calculating b and the treatment replication » = bk /v for this design. Then if a balanced
incomplete block design cannot be found with b and r close to the calculated values, a group divisible,
cyclic, or other incomplete block design can be considered. Since balanced incomplete block designs
are the most efficient, other incomplete block designs would generally require b and r to be a little
larger.

Example 11.6.1 Sample size to achieve confidence interval length

Suppose Tukey’s method for all pairwise comparisons will be used to analyze an experiment with
v = 5 treatments and block size k = 3. It is thought unlikely that msE will be larger than 2.0 units.
Suppose that the experimenters want the length of simultaneous 95% confidence intervals for pairwise
comparisons to be at most 3.0 units (that is, a minimum significant difference of at most 1.5). A
balanced incomplete block design will ensure that the interval lengths will all be the same.

Using the fact that bk = vr for ablock design, the error degrees of freedom (11.4.8) can be written as

df=bk—b—-v+1=vr—vr/k—v+1 = (k- Dr/k)—(v—-1), (11.6.18)
so, here, df = (10r/3) — 4. For a balanced incomplete block design, the minimum significant
difference for a confidence interval for any pairwise treatment comparison, using Tukey’s method with

an overall 95% confidence level, is given in (11.4.13), p. 360 and, if we set A = r(k — 1)/(v — 1)
from (11.3.1), p. 353, this becomes

k(v—1) 12
msd = (qv,ar.05/v2) |2 | ——— | msE = gs,dr,.05\/ = »
rok — 1) Sr

with df = (10r/3) — 4. For the msd to be at most 1.5 units, it is necessary that

124%/5r > 1.5% thatis, r > 1.0667¢3 4 o -

Trial and error shows that around 17-18 observations per treatment would be needed to satisfy the
inequality; that is, 85-90 observations in total, which would require 28-30 blocks of size 3. A balanced
incomplete block design exists with v = 5,k = 3,b = 10, r = 6 (all possible combinations of five
treatments taken three at a time as blocks). Repeating this entire design three times would give a
balanced incomplete block design with » = 18, which will give a minimum significant difference of

about
qs.56,05v 12/(5 x 18) ~ 1.46 < 1.5.

Example 11.6.2 Sample size to achieve specified power

Suppose a test of the null hypothesis Hy : {7; all equal} is required to detect a difference in the
treatment effects of A = 2 units with probability 0.95, using significance level a = 0.05 for a
balanced incomplete block design with v = 5 treatments and block size k = 3.
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The least squares estimator 7; — 7, of a pairwise comparison contrast 7; — 7, for a balanced
incomplete block design has variance given by (11.4.12), p. 360, with Eciz = 2. Also, from (11.3.1),
p-353, A=rk—1)/(v—1)so

. k kv—=1) 17 »
Var(Seifi) = 2—0% =2 | —— | o°. 11.6.19
ar(xeimi) )\UU |:rv(k— 1)i|0 ( )

The number r of observations needed per treatment is calculated via a formula similar to (6.6.48),
p. 171, with @ = v and with 20 /b replaced by the variance (11.6.19); that is,

0ot [k(w—1)]  2x5x0%¢* [3x4
T |:v(k—1)]_ 22 [5xz]'

Suppose that o2 is believed to be at most 1.0 unit?; then » = 3¢?. The power tables in Appendix A.7
can be used to find ¢?. The numerator degrees of freedom are ; = v — 1 and the denominator degrees of
freedom 1/, are the error degrees of freedom (11.6.18). So for our example, v; = 4and v, = (10r/3)—4.
Trial and error shows that about » = 9 observations per treatment are needed to satisfy the equality,
requiring about b = 15 (= vr/k) blocks. A balanced incomplete block design exists with v = 5,
k =3,b =10, r = 6 (all possible selections of three treatments taken as blocks). Repeating the entire
design twice would give a balanced incomplete block design with r = 12, which would give more
precision than required. Alternatively, one could use a computer program to seek a different type of
incomplete block design with r = 9 and b = 15 (see Sects. 11.8.1 and 11.9.1, for example). 0

To meet the requirements of each of Examples 11.6.1 and 11.6.2, the resulting designs needed to be
large. However, in cases when o is expected to be small and the block size can be large, the required
number of blocks may be smaller than a balanced incomplete design or group divisible design can
accommodate. Software such as that illustrated in Sects. 11.8.1 and 11.9.1 can be used to find other
incomplete block designs that satisfy the requirements of the experiment.

11.7 Factorial Experiments
11.7.1 Factorial Structure

Any incomplete block design can be used for a factorial experiment by taking the treatment labels to
represent treatment combinations. The incomplete block designs that are the most suitable for factorial
experiments allow the adjusted treatment sum of squares ssT,q; to be written as a sum of the adjusted
sums of squares for main effects and interactions. Thus, for an experiment with two factors C and D,
for example, we would like to have

58Tagj = $SCadj + $8Dadj + $SCDhygj .

Such block designs are said to have factorial structure.

One benefit of this property is that the computations for, and interpretation of, the analysis of
variance are simplified. A design with factorial structure requires that main-effect and interaction
contrast estimates be adjusted only for block effects. In designs without factorial structure, the contrast
estimates have to be adjusted not only for blocks but also for contrasts in all the other main effects
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Table 11.15 Design and data for the step experiment

Block Treatment combination

11 12 13 21 22 23
1 75 87 84 93 99
2 93 84 96 90 108
3 99 93 96 123 129
4 99 108 99 99 120
5 99 111 90 129 141
6 129 135 120 147 153

and interactions. Although computer software can handle this adjustment, uncorrelated estimates are
much easier to interpret and are, therefore, preferred.

All balanced incomplete block designs have factorial structure, and the features are illustrated in
the following example.

Example 11.7.1 Step experiment

An experiment was run by S. Guerlain, B. Busam, D. Huland, P. Taige, and M. Pavol in 1993 to
investigate the effects on heart rate due to the use of a step machine. The experimenters were interested
in checking the theoretical model that says that heart rate should be a function of body mass, step
height, and step frequency. The experiment involved the two treatment factors “step height” (factor C)
and “step frequency” (factor D). Levels of “step height” were 5.75 and 11.5 inches, coded 1 and 2.
“Step frequency” had three equally spaced levels, 14, 21, and 28 steps per minute, coded 1, 2, 3. The
response variable was pulse rate in beats per minute.

The experiment used b = 6 subjects as blocks, and each subject was measured under k = 5 of
the v = 6 combinations of step height and step frequency. The design was a balanced incomplete
block design with blocks corresponding to different combinations of subject, run timer, and pulse
measurer. All pairs of treatment combinations appeared together in A = 4 blocks. The data are shown
in Table 11.15.

Writing the treatment combinations as two-digit codes, the block—treatment model (11.4.2), p. 356,
becomes

Yiij = p+ 0 + 7ij + €nij

and a set of least squares solutions for the treatment parameters adjusted for subject are given by (11.4.7)
and (11.4.9), p. 358 and 359, with two-digit codes; that is,

b
N k k 1
Tij = EQ” =% |:Tij - E};nhithi| )

where T;; is the total of the r = 5 observations on step height i, step frequency j, By, is the total of the
k =5 observations on the Ath subject; and np;; is 1 if treatment combination i is observed for subject
h and is zero otherwise. We obtain

11 712 713 T T T3
—8.125 —7.625 —4.125 —11.375 12.375 18.875
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Table 11.16 Analysis of variance for the step experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value
Subject (Block) (adj) 5 6685.05 1337.01 — —
Subject (Block) (unadj) 5 7400.40 — - -
Height (C) (adj) 1 1264.05 1264.05 28.63 0.0001
Frequency (D) (adj) 2 1488.90 744.45 16.86 0.0001
HtxFreq (CD) (adj) 2 990.90 495.45 11.22 0.0006
Error 19 838.95 44.16

Total 29 11983.20

For a balanced incomplete block design, the adjusted sums of squares for the main effects of C (step
height) and D (step frequency) and their interaction can be obtained by hand by using the values of 7;;
in place of y;;., and k/(Av) in place of r in the formulae (6.4.20), (6.4.22), and (6.4.25), p. 157-159,
or, equivalently, in Rule 4, p. 209, which leads to

d d

Av |1 ~2 1 ~2 Av 1 ~2

G = [3 2.7 _d} - (7) a2
1= 1=

24\ 1 5 5
[Bpt] = 5 5(—19.875 + 19.875%) = 1264.05.

The adjusted treatment sums of squares, ssT,j, is calculated from (11.4.10), p. 359, and using (11.4.9)
becomes

(K 2 (W) L, 4x6
ssTagj = ) )= > )i = () x 7199688 = 3743.85.

i=1 i=1

The adjusted sums of squares for the main effects of C and D and their interaction are shown in analysis
of variance Table 11.16. It can be verified that

$SCadj + SSDagj + 8SCDygj = $8Tagj -

Using the p-values in the analysis of variance Table 11.16, the experimenters rejected the hypothesis
of negligible interaction. A plot of the data (not shown) suggests that heart rate increases linearly as
the step frequency is increased, but that the linear trend is not the same for the two step heights. The
experimenters wanted to examine the average behavior of the two factors, so despite this interaction,
they decided to examine the main effects. In Exercise 10, the reader is asked to examine the linear
trends at each step height separately.

For simplicity of notation, we now drop the subscript “adj.” However, all estimates and sums of
squares are adjusted for block effects. The experimenters were interested in examining the linear and
quadratic trend contrasts for step frequency, that is,

1 1
DL =-T|+73 = — z(TU + 1) + 5(713 + m3),

1 2 1
Do=-T14+27,—-T3 = — 5(7'11 + 1) + 5(7’12+7’22) - 5(7’13 + 13) .
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For the balanced incomplete block design, the least squares estimate for a contrast ) ¢;;7;; and its
associated variance are given by (11.4.11) and (11.4.12), p. 359-360; that is,

k k
E,Z;CUQU and ZZ;C.?/ (E) o2,

respectively. Using these formulae, we find that the least squares estimates of the linear and quadratic
trend contrasts for step frequency (adjusted for subjects) are

Dy =17.125 and Dq = —7.125.

The linear trend is positive, suggesting that the average pulse rate increases as the step frequency
increases, and the quadratic trend is negative, suggesting that the increase in pulse rate is greater from
14 to 21 steps per minute than it is from 21 to 28 steps per minute. The null hypotheses HOL :{DL = 0}
and HOQ : {Dq = 0} should be tested to check whether the perceived trends are significantly different
from zero. The variances of the contrast estimators are

4 5 ) 2 12 5 ) )
- — ) o = 0.20830° and — — )o° = 0.6250°,
4)\24 4 24

respectively.

The contrast sum of squares for testing the null hypothesis HOL : {DL = 0} is obtained
from (11.4.16), p. 360, as

Dp)? 17.1252
ss(DL) = ( Lz) — = = 1407.675,
>3 (5s) 0.2083
and the contrast sum of squares for testing HOQ :{Dq =0} is
Do)? —7.125)2
ss(Dg) = (Do) _ ¢ " _ 810,

XX () 062

The linear and quadratic contrasts are orthogonal in a balanced incomplete block design even after
adjusting for blocks, and we can now verify that indeed, ssD = ss(Dy.) + ss(Dq),

To test the null hypotheses HOL and HOQ against their respective alternative hypotheses that the
null hypothesis is false, we compare each of ss(Dy)/msE = 31.88 and ss(Dq)/msE = 1.84 with
2F> 19,01 = 7.04 for Scheffé’s method and an overall level of @ = 0.01. We conclude that the
quadratic trend is negligible, but there is a nonnegligible linear trend in the heart rate as the stepping
frequency increases (averaged over step height). g
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Table 11.17 SAS program for generation of an efficient incomplete block design

* Using proc optex to search for an efficient block design with v = 7,
b=7, k=3;
DATA CANDIDATE;
DO TREATMNT = 1 to 7;
OUTPUT;
END;

PROC OPTEX DATA = CANDIDATE SEED = 72145;
CLASS TREATMNT;
MODEL TREATMNT;
* For 7 blocks of size 3;
BLOCKS STRUCTURE = (7)3;
EXAMINE DESIGN;

11.8 Using SAS Software
11.8.1 Generation of Efficient Block Designs

PROC OPTEX within the SAS software allows one to search for efficient incomplete block designs.
Although one cannot specify the type of design to be generated, the software will search for the
design that gives the smallest confidence region for all contrasts using the Scheffé method of multiple
comparisons. If a balanced incomplete block design exists, it will usually be found by PROC OPTEX.

The first set of lines in the SAS program in Table 11.17 specify that there are 7 treatments and these
are stored in a dataset called CANDIDATE. Then, in the second set of lines, PROC OPTEX is run for a
block structure “ () k”. In Table 11.17, there are b = 7 blocks of size k = 3. Since the program is not
guaranteed to find the optimal design, it makes 10 independent searches (—this number can be changed
by the user). The use of a particular “SEED =" always starts the search at the same point, so that
the same set of designs is obtained. This should be removed when starting a new experiment so that
random starts of the search are made. The designs found using the seed given in Table 11.17 are listed
in the first part of the output in Fig. 11.5. Among the designs found, the one which gives the smallest
confidence region for all contrasts is the one with the largest value under the heading “Treatment
D-efficiency”. This will often coincide with the design with the largest “Treatment A-efficiency”
which has the shortest average length of confidence intervals for pairwise comparisons. To search
specifically for the best design under A-efficiency, we insert the statement GENERATE CRITERION
= A; after the BLOCKS STRUCTURE statement, and the designs will then be rank ordered by the
A-efficiency.

The designs found in the 10 searches may or may not be exactly the same, but those listed in Fig. 11.5
are equally good as measured by their efficiencies. The command EXAMINE DESIGN prints out the
best design (the one at the top of the list). It can be seen in Fig. 11.5 that, for this design, Block I (listed
as the first three “points”) consists of treatments 1, 2, 4, while Block II consists of 2, 3, 7, and so on.
It can be checked that this is a balanced incomplete block design, although not the same one as that in
Table 11.2, p. 351. To examine a design which is not listed as the best, say the third design in the list,
replace EXAMINE DESIGN; by EXAMINE NUMBER = 3 DESIGN;.

The quoted value of “A-efficiency” is the ratio of the average variance of the pairwise comparisons in
the design being examined relative to the average variance in a randomized block design with the same
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Fig.11.5 SAS output
from PROC OPTEX [®) Results Viewer - SAS Output == iR =

The OPTEX Procedure ~
Treatment | Treatment Block Design
Design Number D-Efficiency A-Efficiency | D-Efficiency
1 77.7778 T77.7778 100.0000
2 77.7778 T77.7778 100.0000
3 T7.7778 T71.7778 100.0000
10 77.7778 77.7778 100.0000
Log determinant of the information matrix | 1.6759E+01
Average variance of coefficients 6.1224E-02
D-Efficiency 777778
A-Efficiency T7.7778
Point Number Block Number TRT
1 1 1
2 1 2
3 1 4
4 2 2
5 2 3
6 2 7
7 3 6
18 6 3
19 7 6
20 7 7
21 7 4 v

value of r and multiplied by 100%. Since, in this example, the design found is a balanced incomplete
block design, the average variance is given by (11.4.12), p. 360, and the ratio is

202 k—1
T 100% = 21009 = LKD)

A 2 100% = 77.777% .
2ko?/ v rk kw—1 " 7

The quoted “average D-efficiency” is related to the volume of the confidence region for all contrasts in
the design being examined as compared with that for a randomized block design with the same value
of r.
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Table 11.18 SAS program for analysis of a balanced incomplete block design—detergent experiment

DATA ONE;
INPUT BLOCK TRTMT Y;
LINES;
1313
12 1 19
PROC SGPLOT;
SCATTER X = TRTMT Y =Y / GROUP = BLOCK MARKERCHAR = BLOCK;

PROC GLM;
CLASS BLOCK TRTMT;
MODEL Y = BLOCK TRTMT;
OUTPUT OUT = RESIDS PREDICTED = PREDY RESIDUALS = E;

* contrast sums of squares for 8 orthogonal contrasts;

CONTRAST ‘I linear’ TRTMT -3 -1 1 3 0 O 0 0 0;
CONTRAST 'I quadratic’ TRTMT 1 -1 -1 1 0 O 0O O O0;
CONTRAST 'I cubic’ TRTMT -1 3 -3 1 0 0O 0 0 O0;
CONTRAST ’'II linear’ TRTMT O 0 0 0 -3 -1 1 3 0;
CONTRAST ’'II quadratic’ TRTMT O O O O 1 -1 -1 1 0;
CONTRAST 'II cubic’ TRTMT O O O O -1 3 -3 1 0;
CONTRAST 'I vs II’ TRTMT 1 1 1 1 -1 -1 -1 -1 0;

CONTRAST ’'others vs control’ TRTMT 1 1 1 1 1 1 1 1 -8;

* estimation of treatment versus control contrasts via LSMEANS;
LSMEANS TRTMT / PDIFF = CONTROL(’9’) CL ADJUST = DUNNETT;

* estimation of treatment versus control contrast via ESTIMATE;
ESTIMATE ’‘Det 9-1’ TRTMT -1 0 0 0 0 0 0 0 1;

For the requirements of Example 11.6.2, if PROC OPTEX is run with this same seed for v = 5
treatments and b = 15 blocks of size k = 3, the best design found has pairs of treatments appearing
together in either A\; = 4 or A\, = 5 blocks. It consists of the 10-block balanced incomplete block
design together with an additional 5 blocks comprising a cyclic incomplete block design. (A different
seed, or no specified seed, may result in the additional 5 blocks being a non-cyclic incomplete block
design but the best design listed will most likely still have Ay = A; + 1).

11.8.2 Analysis of Variance, Contrasts, and Multiple Comparisons

In this section, sample programs are given to illustrate the analysis of incomplete block designs using
the SAS software. The programs shown are for the detergent experiment of Sect. 11.4.4 and the plasma
experiment of Sect. 11.5, but similar programs can be used to analyze the data collected in any incom-
plete block design.

Table 11.18 contains the first sample program. The data are entered into a data set called ONE, using
the variables BLOCK, TRTMT, and Y for the block, treatment, and response value, respectively.
PROC SGPLOT is used to plot the observations against treatments, analogous to Fig.11.2, p. 361,
and the legend identifies the block labels by color (the plot is not shown here). The block labels are
printed on the plot by inclusion of the command MARKERCHAR = BLOCK. In the next section of
Table 11.18, PROC GLM is used to fit the block—treatment model (11.4.2), generate the analysis of
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Fig.11.6 Partial output

Results Viewer - sashtml. | [@]=
from PROC GLM for I%h eS(L;II‘_MI:’ = da vl =l@][=
. . o rocedure
analysis qf an incomplete Dependent Variable: Y
block design—detergent
experiment Source DF A Sum of Squares Mean Square F Value Pr>F
Model 19 1499.564815 78.924464 95.77 <.0001
Error 16 13.185185 0.824074

Corrected Total 35 1512.750000

Source DF ~ Type | S5 Mean Square F Value Pr>F
BLOCK 11 412750000 37.522727  45.53 <.0001
TRTMT = 8 1086.814815 135851852 164.85 <.0001

Source DF Type lll 55 Mean Square F Value Pr>F
BLOCK 11  10.064815 0.914983 1.11 04127
TRTMT 8 1086.814815 135.851852  164.85 <.0001

Contrast DF Contrast SS  Mean Square F Value Pr>F
I linear 1 286.0166667 286.0166667 347.08 <.0001
| quadratic 1 12.6759259 12.6759259 15.38 0.0012
| cubic 1 0.2240741 0.2240741 0.27 0.6092
Il linear 1 61.3407407 61.3407407 74.44 <0001
Il quadratic 1 0.1481481 0.1481481 0.18 0.6772
Il cubic 1 0.0296296 0.0296296 0.04 0.8520
lvs Il 1 381.3379630  381.3379630 462.75 <.0001

others vs control 1 345.0416667 345.0416667 418.70 <.0001

< >

variance table, and save the predicted values and residuals in the output data set RESIDS. Residuals
can be standardized and plotted as in Chap. 6.

Output from PROC GLM is reproduced in Fig. 11.6. Since BLOCK has been entered before TRTMT
in the model statement, the sum of squares for treatments adjusted for blocks is listed under
Type I (or sequential) sums of squares as well as under the Type III sums of squares. The
adjusted block sum of squares is listed under the Type IITI sums of squares. In order to use the
sequential or Type I sums of squares to obtain the adjusted block sum of squares, one would need to
rerun the program with TRTMT entered before BLOCK in the model statement. In Table 11.18, the sums
of squares corresponding to v — 1 = 8 orthogonal treatment contrasts are requested via the CONTRAST
statements, and it can be verified from Fig. 11.6 that the contrast sums of squares add to the treatment
sum of squares.

Simultaneous confidence intervals for pairwise comparisons can be obtained via the ESTIMATE
statements or via LSMEANS with options as discussed in Sect. 6.8.2, p. 180. Tukey, Scheffé and Dunnett
methods can all be used for a balanced incomplete block design with code such as:

LSMEANS TRTMT / PDIFF=CONTROL(’9’) CL ADJUST=DUNNETT;

Here, the PDIFF=CONTROL (' 9 ') option for Dunnett’s method specifies that level 9 is the control,
as was the case in the detergent experiment. If the designation “ (9 ‘)" had been omitted, then the
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Fig.11.7 Partial output

from ESTIMATE and [) Results Viewer - sashtml.htm (o))
LSMEANS for an The GLM Procedure
incomplete block Dependent Variable: Y

design—detergent
experiment with detergent

9 as the control treatment Det 9-1 97777778 0.74120356  13.19  <.0001
Det9-2 12.3333333 0.74120356  16.64  <.0001

Least Squares Means
Adjustment for Multiple Comparisons: Dunnett-Hsu

Parameter  Estimate  Standard Error tValue Pr> |t

Least Squares Means for Effect TRTMT

Difference Between  Simultaneous 95% Confidence Limits

ilj Means for LSMean(i)-L SMean(j)

1/9 9.777778 -11.981887 -7.573669

2|9 -12.333333 -14.537442 -10.129224

3|9 -16.333333 -18.537442 -14.129224

49 -23.000000 -25.204109 -20.795891

5(9 -4.222222 -6.426331 -2.018113

6 9 -6.555556 -8.759664 -4.351447

7(9 -8.444444 -10.648553 -6.240336

89 -10.333333 -12.537442 -8.129224 N~

~
v

lowest level would have been taken to be the control treatment by default. Partial output is shown in
Fig.11.7. The first section of the table shows the output from the ESTIMATE statements. The second
section of the output gives simultaneous 95% confidence intervals for the treatment-versus-control
comparisons using Dunnett’s method. A word of warning is in order here. If the treatments had been

labeled anything other than 1,2, ..., 9, at this point SAS software would have relabeled them. For
example, if the control treatment had been labeled as 0 and the test treatments as 1, . . . , 8, SAS software
would have relabeled the control as treatment 1 and the test treatments as 2, ..., 9.

Figure 11.8 shows partial output from PROC GLM in the first part of Table 11.19 for day one data
from the plasma experiment (Sect.11.5), which was a nonstandard incomplete block design. The
Type I and Type III sums of squaresare shown, together with partial output from the LSMEANS
statement

LSMEANS TRTMT / PDIFF = ALL CL ADJUST=SCHEFFE;

Output from the above LSMEANS statement, combined with standard error estimates generated by an
ESTIMATE statement for each pairwise treatment contrast like the following one for 71 — 7, were
used to compile Table 11.14 (p. 370):

ESTIMATE 'T1-T2’ TRTMT 1 -1 0 0 0 O;
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Fig.11.8 Partial output

from PROC GLM and (&) Results Viewer - SAS Output E=8EcH =<7
LSMEANS in a SAS The GLM Procedure
program for analyzing an Dependent Variable: Y
1ncgmplete block Source DF = Sum of Squares | Mean Square F Value Pr>F
design—plasma
experiment, day one Model 7 0.00111406 0.00015915  954.90 0.0249

Error 1 0.00000017 0.00000017

Corrected Total 8 0.00111422

Source DF Typel SS Mean Square F Value Pr>F
BLOCK 2 0.00040289 0.00020144 1208.67 0.0203
TRTMT 5 0.00071117 0.00014223  853.40 0.0260

Source DF Type lll SS Mean Square F Value Pr>F
BLOCK 2 0.00012133 0.00006067 364.00 0.0370
TRTMT 5 0.00071117 0.00014223 853.40 0.0260

Least Squares Means
Adjustment for Multiple Comparisons: Scheffe

Least Squares Means for Effect TRTMT

Difference Between Simultaneous 95% Confidence Limits

i} Means for LSMean(i)-L SMean(j)

1|12 0.025500 0.003602 0.047398

113 0.021833 0.003081 0.040585

14 0.023167 0.004415 0.041919

115 0.024333 0.008342 0.040325

1|6 0.022667 0.006675 0.038658

2|13 -0.003667 -0.028952 0.021618

2 4 -0.002333 -0.027618 0.022952 e
< >

11.8.3 Plots

Table 11.19 contains a sample SAS program illustrating how to plot the data adjusted for blocks
against the treatment labels, using the day one data of the plasma experiment, (first three blocks
of Table 11.11, p. 368). The program, as written, must be run in three passes. In successive passes,
information generated by earlier passes must be added as input in later parts of the program. First, the
data are entered into a data set called ONE. Since the block effect estimates are needed to adjust the
observations, the option SOLUTION is included in the MODEL statement of PROC GLM. This causes
a (nonunique) solution to the normal equations for /i, 7;, and 0), to be printed. The solutions will all
be labeled “B” for “biased,” meaning that the corresponding parameters are not individually estimable
(see Fig. 10.8, p. 330, for example).

The least squares solutions 0y, are then entered (as “BHAT”) into the data set TWO by the user in the

second run of the program. PROC MEANS is used to compute and print the average value 6.. Finally,
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Table 11.19 SAS program to plot data adjusted for block effects—plasma experiment, day one only

* This program requires 3 runs, adding more information in each run;
DATA ONE;
INPUT BLOCK TRTMT Y;
LINES;
1 4 0.459
1 5 0.467

3 3 0.473
* Get block effect estimates;
PROC GLM;
CLASS BLOCK TRTMT;
MODEL Y = BLOCK TRTMT / SOLUTION;
LSMEANS TRTMT / PDIFF = ALL CL ADJUST=SCHEFFE;
PROC SORT; BY BLOCK;
* Add the following code for the second run;
* values BHAT are solutions for block parameters from first run;
DATA TWO;
INPUT BLOCK BHAT;
LINES;
1 -.0126666667
2 -.0053333333
3 0.0000000000
PROC MEANS MEAN; * print average of BHAT values;
VAR BHAT;
* Add the following code for the third run;
* The number -0.006 below is average BHAT calculated in second run;
DATA THREE;
MERGE ONE TWO;
BY BLOCK;
Y ADJ = Y - (BHAT - (-0.006));
PROC SGPLOT data = THREE;
SCATTER X = TRTMT Y = Y_ADJ / GROUP = BLOCK;

in the third run of the program, the block-effect estimates and their average value are used to adjust the
data values. The adjusted values are then plotted against treatment. The SAS plot is not shown here,
but it is similar to the plot in Fig. 11.4 (p. 370).

11.9 Using R Software
11.9.1 Generating Efficient Incomplete Block Designs

The R function bibd from the package ibd can be used to construct balanced incomplete block
designs when they exist. The first few lines of the program in Table 11.20 install and load the ibd
package, then ask the program to search for a balanced incomplete block design with v = 7 treatments
each appearing r = 3 times, b = 7 blocks of size k = 3, and pairs of treatments appearing together in
A = 1 block. In general, the bibd function checks that the necessary conditions for an existence of a
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Table 11.20 R code and output for bibd with v = 7 treatments, b = 7 blocks of size k = 3

> # install.packages ("ibd")
> library (ibd)
> bibd(v = 7, r=3, b =7, k = 3, lambda = 1)

Sdesign

[,11 [,21 [,31]
[1,1 1 3 6
[2,] 1 4 5
[3,1] 5 6 7
[4,] 1 2 7
[5,] 3 4 7
[6,] 2 4 6
[7,1] 2 3 5
SAeff

[1] 0.9999999

SDeff
[1] 0.9999999

bibd are satisfied. If so, it will either provide the design or respond with “design not found”. For the
design size in Table 11.20, the design does exist and is shown under the heading $design. The seven
blocks of the design are given by the seven rows of three treatment labels. The quoted SAeff is the
ratio of the average variance of the pairwise comparisons in this incomplete block design relative to
the average variance (11.4.12) in a balanced incomplete block design with the same values of v and
k. The quoted $Def £ is related to the volume of the confidence region for all contrasts in the design
being examined relative to a balanced incomplete block design with the same values of v and k (which
may not actually exist in practice). Since the design found here is, itself, a balanced incomplete block
design, A-eff and D-eff are given as 1 (approximately).

If no balanced incomplete block design exists, as for the requirements of Example 11.6.2, with
v = 5 treatments and b = 15 blocks of size k = 3, then function ibd, whose inputs are v, b,
and k, can be used to construct an incomplete block design. For this example, the best design found
is shown in Table 11.21 and has “A.Efficiency = 0.9975” and “D.Efficiency= 0.9987”, where these
efficiencies are calculated the same way as SAeff and $Deff in the bibd function. It consists of
a balanced incomplete block design with 10 blocks, together with an additional 5 blocks comprising
an incomplete block design with Ay = A; + 1. The entire 15-block design has pairs of treatments
appearing together in either A\; = 4 or A\ = 5 blocks. For a binary design, the values of \; are listed as
the off-diagonal elements in the array called Sconc .mat so, for example, the first row of this array
shows that treatment 1 appears in 4 blocks with treatments 2 and 3, and in 5 blocks with treatments 4
and 5. The diagonal elements of the array are the values of r.

The 1bd function prints out the design with the highest D.Efficiency that it finds in 5 independent
searches. If the design found has low efficiency, ibd may be able to obtain an improved design if the
option ntrial=n is added into the ibd statement, where n is some integer larger than the default
value of 5; for example,

ibd(v =5,b =15,k = 3,ntrial = 20).



384 11 Incomplete Block Designs

Table 11.21 R code and output for an incomplete block design with v = 5 treatments, » = 15 blocks of size k = 3

> library (ibd)
> ibd(v=5, b=15, k=3)

Sdesign
[,11 [,21 [,3]
[1,1] 1 2 3
[2,] 1 4 5
[3,] 1 4 5
[4,1] 3 4 5
[5,] 1 3 5
[6,] 1 3 4
[7,] 2 3 4
[8,1] 1 3 4
[9,] 2 4 5
[10,1] 2 3 4
[11,] 1 2 5
[12,] 1 2 5
[13,] 1 2 4
[14,] 2 3 5
[15,] 2 3 5
Sconc.mat
[,11 [,21 [,3]1 [,4]1 [,5]
[1,] 9 4 4 5 5
[2,] 4 9 5 4 5
[3,1] 4 5 9 5 4
[4,1 5 4 5 9 4
[5,1] 5 5 4 4 9

SA.Efficiency
[1] 0.9975309

$D.Efficiency
[1] 0.9987647

11.9.2 Analysis of Variance, Contrasts, and Multiple Comparisons

In this section, sample programs are given to illustrate the analysis of incomplete block designs using
the R software. The programs shown are for the detergent experiment of Sect. 11.4.4 and the plasma
experiment of Sect. 11.5, but similar programs can be used to analyze the data collected in any incom-
plete block design.

Table 11.22, p. 385, contains the first sample program. The data are read into the data set
detrgnt .data, using the variables Block, Trtmt, and y for the block, treatment, and response
value, respectively. Corresponding factor variables fBlock ad £Trtmt are added to the data set.
In the second block of code, the plot function is used to plot the observations against treatments,
analogous to Fig. 11.2, p. 361, but using block labels as the plotting legend (the plot is not shown here).

In the third block of code, the linear models function 1m is used to fit the block—treatment
model (11.4.2), then corresponding anova and dropl functions generate the Type I (or sequential)
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Table 11.22 R program for analysis of a balanced incomplete block design—detergent experiment

detrgnt.data = read.table("data/detergent.txt", header=T)
head (detrgnt.data)
detrgnt.data = within(detrgnt.data,

{fBlock = factor(Block); fTrtmt = factor (Trtmt) })

# Plot y vs Trtmt using block level as plotting symbol.

plot(y ~ Trtmt, data=detrgnt.data, xaxt="n", type="n") # Suppress x-axis, pts
axis(1l, at=seqg(1l,9,1)) # x-axis labels 1:9
text(y ~ Trtmt, Block, cex=0.75, data=detrgnt.data) # Plot y*Trtmt=Block
mtext ("Block=1,...,12", side=3, adj=1, line=1) # Margin text, TopRt, line 1

# Analysis of variance

modell = Im(y ~ fBlock + fTrtmt, data=detrgnt.data)
anova (modell)

dropl (modell, ~., test="F")

# Contrast estimates

library (lsmeans)

lsmTrtmt = lsmeans (modell, ~ fTrtmt)
cntrsts = summary (contrast (lsmTrtmt,

list(I.linear=c(-3,-1, 1, 3, 0, 0, 0, 0, 0),
I.quad=c( 1,-1,-1, 1, 0, 0, 0, 0, 0),
I.cubic=c(-1, 3,-3, 1, 0, 0, 0, 0, 0),
II.linear=c( O, 0, 0, 0,-3,-1, 1, 3, 0),
IT.quad=c( O, 0, O, O, 1,-1,-1, 1, 0),
IT.cubic=c( O, 0, 0, O0,-1, 3,-3, 1, 0),
I.vs.II=c( 1, 21, 1, 1,-1,-1,-1,-1, 0),
Trt.vs.Ctrl=ec( 1, 1, 1, 1, 1, 1, 1, 1,-8))),

infer=c(T,T))
# Compute and include contrast sums of squares: ss=t"2*mse
mse = anova (modell) [3,3]; mse
cntrsts = cbind(cntrsts, ss=cntrsts[,"t.ratio"] 2*mse)
options (width=75, digits=3, scipen=2)
cntrsts
options (ocoptions)

# Dunnett’s method
summary (contrast (1lsmTrtmt, method="trt.vs.ctrl", adjust="mvt", ref=9),
infer=c(T,T))

and Type III analysis of variance tables, respectively. Predicted values and residuals are available, and
the residuals can be standardized and plotted as in Sect. 6.2.3.

The analysis of variance output from anova and drop1 is reproduced in Table 11.23, p. 386. Since
fBlock has been entered before fTrtmt in the model statement, the sum of squares for treatments
adjusted for blocks are obtained as both Type I and Type III sums of squares. The adjusted block
sum of squares is listed under the Type III sums of squares whereas, to use the sequential or Type I
sums of squares, one would need to rerun the program with £Trtmt entered before £Block in the
model statement. In the center of Table 11.22, the summary (contrast (1smTrtmt.. statement
is used to list eight orthogonal treatment contrasts, producing corresponding least squares estimates,
standard errors, two-sided 7-tests, and individual 95% confidence intervals, as shown in the bottom part
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Table 11.23 Selected ANOVA and contrast output for analysis of an incomplete block design—detergent experiment

> anova (modell)

Analysis of Variance Table
Response: vy
Df Sum Sg Mean Sg F value Pr(>F)

fBlock 11 413 37.5 45.5 6.0e-10
fTrtmt 8 1087 135.9 164.8 6.8e-14
Residuals 16 13 0.8

> dropl (modell, ~., test="F")

Single term deletions
Model:
v 7 fBlock + fTrtmt
Df Sum of Sg RSS AIC F value Pr(>F)

<none> 13 3.8
fBlock 11 10 23 2.3 1.11 0.41
fTrtmt 8 1087 1100 147.1 164.85 6.8e-14

> cntrsts

contrast estimate SE df lower.CL upper.CL t.ratio p.value ss
1 I.linear -43.667 2.34 16 -48.64 -38.70 -18.630 2.85e-12 286.0167
2 I.quad -4.111 1.05 16 -6.33 -1.89 -3.922 1.22e-03 12.6759
3 I.cubic -1.222 2.34 16 -6.19 3.75 -0.521 6.09e-01 0.2241
4 II.linear -20.222 2.34 16 -25.19 -15.25 -8.628 2.05e-07 61.3407
5 II.quad 0.444 1.05 16 -1.78 2.67 0.424 6.77e-01 0.1481
6 II.cubic -0.444 2.34 16 -5.41 4.52 -0.190 8.52e-01 0.0296
7 I.vs.II -31.889 1.48 16 -35.03 -28.75 -21.512 3.10e-13 381.3380
8 Trt.vs.Ctrl -91.000 4.45 16 -100.43 -81.57 -20.462 6.73e-13 345.0417

of Table 11.23. The sum of squares for each contrast is subsequently computed from its corresponding
t-ratio as ss =(t-ratio)? x mse, which follows since (t-ratio)? = ss/mse from (4.3.16)
p. 78, where mse is the mean squared error from the Residuals line in the analysis of variance table.
Simultaneous confidence intervals for pairwise comparisons can be obtained via the 1smeans
function as discussed in Sect. 6.9.2, p. 187. For example, Dunnett’s method is invoked by the following
statements in the bottom of Table 11.22, p. 385.
lsmTrtmt = lsmeans(modell, ~ fTrtmt)

summary (contrast (lsmTrtmt, method="trt.vs.ctrl", adjust="mvt", ref=9),
infer=c(T,T))

The ref=9 option specifies that the 9th level (coincidentally also labeled "9 ") is the control, as was
the case in the detergent experiment. If this designation had been omitted, then the lowest level would
have been taken to be the control treatment by default. Table 11.24, p. 387, contains the resulting
output, including the estimate of each treatment-versus-control comparison 7; — 79, as well as the
corresponding standard error, simultaneous 95% confidence limits by Dunnett’s method, test statistic,
and p value for simultaneous tests for whether or not each of the treatment-versus-control comparisons
T; — T is zero, or equivalently whether 7; = 719, using Dunnett’s method.
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Table 11.24 Dunnett’s method output for an incomplete block design—detergent experiment with detergent 9 as the
control treatment

> # Dunnett’s method

> summary (contrast (1smT, method="trt.vs.ctrl", adjust="mvt", ref=9),

+ infer=c(T,T))
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 -9 -9.7778 0.7412 16 -11.9824 -7.5732 -13.192 <.0001
2 9 -12.3333 0.7412 16 -14.5379 -10.1287 -16.640 <.0001
3 -9 -16.3333 0.7412 16 -18.5379 -14.1287 -22.036 <.0001
4 -9 -23.0000 0.7412 16 -25.2046 -20.7954 -31.031 <.0001
5 -9 -4.2222 0.7412 16 -6.4268 -2.0176 -5.696 0.0002
6 -9 -6.5556 0.7412 16 -8.7601 -4.3510 -8.844 <.0001
7 -9 -8.4444 0.7412 16 -10.6490 -6.2399 -11.393 <.0001
8 -9 -10.3333 0.7412 16 -12.5379 -8.1287 -13.941 <.0001

Results are averaged over the levels of: fB

Confidence level used: 0.95

Confidence-level adjustment: mvt method for 8 estimates
P value adjustment: mvt method for 8 tests

Table 11.25, p. 388, shows an R program and partial output for analysis of the day one data from
the plasma experiment (Table 11.11, p. 368), which used a nonstandard incomplete block design. After
reading the entire set of data, data/plasma. txt, and defining the block and treatment factors, the
subset function is used to create a data set dayl .data containing only day one data. The Type I
and type 3 sums of squares generated by anova and dropl, respectively, are shown at the top of the
table. The bottom of the table contains partial output from the 1 smeans and summary (contrast
statements, comparing treatment effects pairwise via Scheffé’s method. This is one way to obtain
information analogous to that in Table 11.14 (p. 370).

11.9.3 Plots

Table 11.26, p. 389, contains a sample R program illustrating how to plot the data adjusted for blocks
against the treatment labels, using the day one data of the plasma experiment, (first three rows of
Table 11.11, p. 368). The subset function is used to create a data set day1l .data containing only
day one data. Having fit the linear model by the 1m function and saved the results as model2, the
least squares estimates of the model parameters are available as model2$coefficients. If one
were to display these, one would see that the second and third coefficient estimates are the block
effect estimates éz ~ 0.0073333 and 93 ~ 0.0126667, but there is no estimate listed for the first
block effect, so él = 0. These three block effect estimates are saved in the column thetahat, and

the mean estimate 0_is saved as avgest. These values are used to compute adjusted observations,

vadj =y — (éh — 5.), which are then plotted against treatment. The R plot is not shown here, but it
is similar to the plot in Fig. 11.4 (p. 370).
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Table 11.25 R program and partial output from anova, dropl,

design—plasma experiment

and lsmeans, analyzing an incomplete block

anova (model?2)

Analysis of Variance Table

Response: y

Df Sum Sg Mean Sg F value Pr (>F)
fBlock 2 0.000403 0.0002014 1209 0.020
fTrtmt 5 0.000711 0.0001422 853 0.026
Residuals 1 0.000000 0.0000002

> dropl (model2, ., test="F")

Single term deletions

header=T)

})

# Keep data with "Day==1"

> plasma.data = read.table("data/plasma.txt",

> plasma.data = within(plasma.data,

+ {fBlock = factor(Block); fTrtmt = factor (Trtmt)
> head(plasma.data, 3)

> # Analysis of day 1 data

> dayl.data = subset (plasma.data, Day==1)

> model2 = 1lm(y ~ fBlock + fTrtmt, data=dayl.data)
>

Model:
vy 7 fBlock + fTrtmt
Df Sum of Sg RSS AIC F value Pr(>F)

<none> 0.000000 -144.2

fBlock 2 0.000121 0.000121 -88.9 364 0.037

fTrtmt 5 0.000711 0.000711 -79.0 853 0.026

> # Scheffe’s method

> library (lsmeans)

> lsmTrtmt = lsmeans (model2, ~ fTrtmt)

> summary (contrast (lsmTrtmt, method="pairwise", adjust="Scheffe"),

+ infer=c(T,T))
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 -2 0.02550000 0.00064550 1 0.0036024 0.047398 39.504 0.0429
1 -3 0.02183333 0.00055277 1 0.0030814 0.040585 39.498 0.0430
1 -4 0.02316667 0.00055277 1 0.0044147 0.041919 41.910 0.0405
5 -6 -0.00166667 0.00047140 1 -0.0176584 0.014325 -3.536 0.4451

Results are averaged over the levels of: fBlock

Confidence level used: 0.95
Confidence-level adjustment:
P value adjustment:

scheffe method for a family of
scheffe method for a family of 6 tests

6 estimates
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Table 11.26 R program to plot data adjusted for block effects—plasma experiment, day one only

# Create data set of day 1 data
plasma.data = read.table("data/plasma.txt", header=T)
plasma.data = within(plasma.data,
{fBlock = factor(Block); fTrtmt = factor (Trtmt) })
dayl.data = subset(plasma.data, Day==1) # Keep data with "Day==1"

# Fit model to day 1 data
model2 = Im(y ~ fBlock + fTrtmt, data=dayl.data)

# Create columns of block effect estimates, and compute the avg estimate
model2$coefficients # Display all model coefficient estimates

thetahat = c (0, model2S$coefficients[2:3]) # Create col of block effect ests
avgest = mean(thetahat) # Compute average block effect estimate

# Compute adjusted y-values: yvadj = y - (thetahat.h - thetahat.bar)
dayl.data$yadj = dayl.dataSy - (thetahat[dayl.data$Block] - avgest)

# Plotting day 1 data adjusted for block effects
plot(yadj ~ Trtmt, data=dayl.data, xlab="Treatment", ylab="y Adjusted")

Table 11.27 Three incomplete block designs

Design I Design 11 Design I1I
Block Treatments Block Treatments Block Treatments

1 12 1 123 1 126

2 13 2 456 2 345

3 14 3 789 3 268

4 23 4 147 4 457

5 24 5 258 5 168

6 34 6 369 6 357
7 159 7 128
8 267 8 347
9 348

Exercises

1. Connectedness and estimability

(a) For each of the three block designs in Table 11.27, draw the connectivity graph for the design,
and determine whether the design is connected.

(b) If the design is connected, determine whether or not it is a balanced incomplete block design.

(c) For designs II and III, determine graphically whether or not 71 — 75 and 7| — 7¢ are estimable.

(d) For design III, use expected values to show that 71 — 73 is estimable.
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2. Connectedness

(a) Determine whether or not the cyclic design with initial block (1, 3, 5) is a connected design if
v=8orv=09.
(b) Determine whether or not the cyclic design with initial block (1, 4, 7) is a connected design if
v=8orv=09.
3. Randomization
Conduct a block design randomization for design II in Table 11.27.

4. Cyclic designs

Determine whether or not the cyclic design obtained from each initial block below is a balanced
incomplete block design or a group divisible design or neither.

(a) Initial block: 1,3,4; v =17.
(b) Initial block: 1, 2,4, 8; v =8.
(c) Initial block: 1,2, 4; v = 5.

5. Balanced incomplete block design

In the following questions, consider an experiment to compare v = 7 treatments in blocks of size
k=5.

(a) Show that, for this experiment, a necessary condition for a balanced incomplete block design to
exist is that r is a multiple of 5 and b is a multiple of 7.

(b) Show that r must be at least 15.

(c) Taking all possible combinations of five treatments from seven gives a balanced incomplete
block design with r = 15. Calculate the number of blocks that must be in this design.

6. Sample sizes

Consider an experiment to compare 7 treatments in blocks of size 5, with an anticipated error
variance of at most 30 squared units.

(a) Assuming that a balanced incomplete block design will be used, how many observations would
be needed for the minimum significant difference to be about 50 units for a pairwise comparison
using Tukey’s method and a 95% simultaneous confidence level?

(b) Repeat part (a) for a minimum significant difference of 25 units.

(c) Repeat part (a) using Dunnett’s method for treatment versus control comparisons.

7. Least squares estimator, detergent experiment, continued

Consider the balanced incomplete block design in Table 11.8, p. 361, used for the detergent exper-
iment in Sect. 11.4.4.

(a) Show that the least squares estimator 74 — 7¢ is an unbiased estimator of 74 — 7¢ under the
block—treatment model (11.4.2), p. 356 (that is, show that E[7T4 — T¢] = T4 — T¢).

(b) Calculate a confidence interval for 74 — 7¢ as part of a 95% set of simultaneous confidence
intervals for pairwise comparisons, using Tukey’s method.
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Table 11.28 Percentage rust observed for the rust experiment

Temperature (°F) Block
I 11 111 v \% VI VII VIII X X
50 12 19 20 10 21 19
55 18 33 19 18 18 24
60 24 36 35 39 22 28
65 39 45 43 34 42 31
70 45 52 55 48 50 43

8. Rust experiment

The rust experiment investigated the effect of temperature on the percentage of surface area of a
metal sheet exhibiting rust after a given length of time exposed to certain weathering conditions.
Five temperatures were examined in the experiment, but only three could be examined at any
one time under identical experimental conditions. A balanced incomplete block design was used,
formed from two cyclic designs with initial blocks (1, 2, 3) and (1, 2, 4). The data and design are
shown in Table 11.28.

(a) Write down a model for this experiment and test the hypothesis of no difference in the effects
of the temperature on the percentage of rust, against the alternative hypothesis that at least two
temperatures differ. Use a significance level of 0.01.

(b) What does “a significance level of 0.01” in part (a) mean?

(c) Was blocking worthwhile in this experiment?

(d) Give a formula for a 95% set of simultaneous confidence intervals for pairwise comparisons
among the temperatures in this experiment. Calculate, by hand, the interval comparing temper-
atures 5 and 4 (that is, 75 — 74) for illustration. Compare your answer with that obtained from
your computer output.

(e) Test the hypothesis that there is no linear trend in the percentage of rust as the temperature
increases.

9. Balanced incomplete block design

An experiment is to be run to compare the effects of four different formulations of a drug to relieve
an allergy. In a pilot experiment, four subjects are to be used, and each is to be given a sequence of
three of the four drugs. The measurements are the number of minutes that the subject appears to be
free of allergy symptoms. Suppose the design shown in Table 11.29 is selected for the experiment.

(a) Check that this design is a balanced incomplete block design. (Show what you are checking.)

(b) Show a randomization of this design, explaining the steps of your randomization.

(c) The experiment was run as described, and the block—treatment model (11.4.2), p. 356, was used
to analyze it. Some information for the analysis is shown in Table 11.29. Using this informa-
tion and (11.4.7), p. 358, show that Q1, O», O3, Q4 are —79.333, 81.667, —158.667, 156.333,
respectively.

(d) Using the information in part (c), give a confidence interval for 73 — 7 assuming that it is part
of a set of 95% Tukey confidence intervals.

(e) Test the hypothesis that there is no difference between the effects of the drugs.



392 11 Incomplete Block Designs

Table 11.29 Balanced incomplete block design of Exercise 9 and partial information for its analysis

Block Levels of treatment factor Block totals Treatment totals
I 1 2 3 B; =417 Ty =385
1T 1 2 4 By =507 T, =582
1 1 3 4 B3 =469 T3 =329
v 2 3 4 By =577 T, =674
v = 164.1667 msE = 3.683

(f) The typical model and analysis for a balanced incomplete block design is that of parts (c)—(e).
Do you think this is a reasonable model and analysis for the experiment described? Why or why
not? (Hint: think about the terms in, and assumptions on, the model.)

10. Step experiment, continued

The step experiment was described in Example 11.7.1 and the data are shown in Table11.15,
p. 373.

(a) Prepare a plot of the treatment averages and examine the linear trends in the heart rate due to
step frequency at each level of step height.

(b) Fit a block—treatment model to the data with v = 6 treatments representing the six treatment
combinations.

(c) Estimate the linear trends in the heart rate due to step frequency at each level of step height
separately, and calculate confidence intervals for these.

(d) Write down a contrast that compares the linear trends in part (c) and test the hypothesis that the
linear trends are the same against the alternative hypothesis that they are different.

11. Beef experiment

Cochran and Cox (1957) describe an experiment that was run to compare the effects of cold storage
on the tenderness of beef roasts. Six periods of storage (0, 1, 2, 4, 9, and 18 days) were tested and
coded 1-6. It was believed that roasts from similar positions on the two sides of the animal would
be similar, and therefore the experiment was run in b = 15 blocks of size k = 2. The response
yni from treatment i in block /£ is the tenderness score. The maximum score is 40, indicating very
tender beef. The design and responses are shown in Table 11.30.

(a) What is the value of A for this balanced incomplete block design?

(b) What benefit do you think the experimenters expected to gain by using a block design instead of
a completely randomized design?

(c) Calculate the