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Preface to the Third Edition

While the first edition of this textbook was based on a one-year course in

computational physics with a rather limited scope, its extent has been increased

substantially in the third edition, offering the possibility to select from a broader

range of computer experiments and to deepen the understanding of the important

numerical methods. The computer experiments have always been a central part of

my concepts for this book. Since Java applets, which are very convenient otherwise,

have become more or less deprecated and their usage in a browser is no longer

recommended for security issues, I decided to use standalone Java programs instead

and to rewrite all of the old examples. These can also been edited and compiled

with the “netbeans” environment and offer the same possibilities to generate a

graphical user interface in short time.

The major changes in the third edition are as follows.

In the first part, a new chapter is devoted to the time-frequency analysis of

experimental data. While the classical Fourier transform allows the calculation

of the spectrum of a stationary signal, it is not so useful for nonstationary signals

with significant variation of the momentaneous frequency distribution. Application

of the Fourier transformation to short time windows, a method which is known as

short-time Fourier transformation (STFT), allows analyzing the frequency content

of a signal as a function of time. Good time resolution, of course, always comes

together with a loss in frequency resolution (this is well known as “uncertainty

principle”). The STFT method uses the same window for the whole spectrum,

therefore the absolute time and frequency resolution is the same for low- and

high-frequency components and the time resolution is limited by the period of the

lowest frequencies of interest. Analysis of a signal with wavelets, on the other hand,

uses shorter windows for the higher frequencies and keeps the relative frequency

resolution constant while increasing the time resolution of the high-frequency

components. The continuous wavelet transform can be very time consuming since it

involves a convolution integral and is highly redundant. The discrete wavelet
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transform uses a finite number of orthogonal basis function and can be performed

much faster by calculating scalar products. It is closely related to multiresolution

analysis which analyzes a signal in terms of a basic approximation and details

of increasing resolution. Such methods are very popular in signal processing,

especially of audio and image data but also in medical physics and seismology. The

principles of the construction of orthogonal wavelet families are explained in detail,

but without too many mathematical proofs. Several popular kinds of wavelets are

discussed, like those by Haar, Meyer and Daubechies and their application is

explored in a series of computer experiments.

In the second part, two new chapters have been added. First I included a dis-

cussion of the advection equation. Several methods to solve the one-dimensional

problem are discussed from very simple straightforward differencing to quite

sophisticated Galerkin-Taylor methods. The properties of these methods are

demonstrated in computer experiments, as well by programs in the problems section

as by numerous figures in the text. The extension to more dimensions by finite

volume methods and dimensional splitting are discussed. A profound understanding

of the advection equation and its numerical solution is also the basis for the more

complex convection and Navier–Stokes equations.

Another chapter was added to the application of variational methods for quan-

tum systems. The variational principle is very useful to calculate the groundstate

energy. Two different types of computer experiments are performed. First we use

the variational quantum Monte Carlo method (VQMC) for small atomic and

molecular systems like the Helium atom and the Hydrogen molecule. We use trial

functions which treat electron correlation explicitly by introducing a Jastrow factor

which depends on the electron-electron distances. Such trial functions lead to

nonseparable multidimensional integrals which can be efficiently calculated with

the VQMC method. A second series of computer experiments studies

exciton-phonon coupling in molecular aggregates which are of large interest for

energy transfer in artificial and biological systems. The non-Born-Oppenheimer

character of the wavefunction makes it necessary to optimize a large number of

parameters. Different kinds of trial functions are applied to aggregates of up to

100 molecules to study the localization of the lowest state (so called

“self-trapping”).

Apart from these newly added chapters, further improvements have been made

throughout the book. The chapter on random numbers now discusses in more detail

the principles of modern random number generators, especially the xorshift, mul-

tiply with carry (MWC) and complementary multiply with carry (CMWC) methods.

Nonstationary iterative Krylov-space methods for systems of linear equations are

discussed systematically with a focus on the conjugate gradients (CG) and general

minimum residual (GMRES) methods. The QR method for eigenvalue problems is

now discussed in much more detail together with its connection to the power

iteration method and the Krylov-space methods by Arnoldi and Lanczos.
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Finally, I included a computer experiment simulating the transition between two

states with wave packet dynamics, which is very helpful to understand the semi-

classical approximation, especially the Landau–Zener model, which is the subject

of another computer experiment.

Garching, Germany Philipp O.J. Scherer

March 2017
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Preface to the Second Edition

This textbook introduces the main principles of computational physics, which

include numerical methods and their application to the simulation of physical

systems. The first edition was based on a one-year course in computational physics

where I presented a selection of only the most important methods and applications.

Approximately one-third of this edition is new. I tried to give a larger overview

of the numerical methods, traditional ones as well as more recent developments. In

many cases it is not possible to pin down the “best” algorithm, since this may

depend on subtle features of a certain application, the general opinion changes from

time to time with new methods appearing and computer architectures evolving, and

each author is convinced that his method is the best one. Therefore I concentrated

on a discussion of the prevalent methods and a comparison for selected examples.

For a comprehensive description I would like to refer the reader to specialized

textbooks like “Numerical Recipes” or elementary books in the field of the engi-

neering sciences.

The major changes are as follows.

A new chapter is dedicated to the discretization of differential equations and the

general treatment of boundary value problems. While finite differences are a natural

way to discretize differential operators, finite volume methods are more flexible if

material properties like the dielectric constant are discontinuous. Both can be seen

as special cases of the finite element methods which are omnipresent in the engi-

neering sciences. The method of weighted residuals is a very general way to find the

“best” approximation to the solution within a limited space of trial functions. It is

relevant for finite element and finite volume methods but also for spectral methods

which use global trial functions like polynomials or Fourier series.

Traditionally, polynomials and splines are very often used for interpolation.

I included a section on rational interpolation which is useful to interpolate functions

with poles but can also be an alternative to spline interpolation due to the recent

development of barycentric rational interpolants without poles.

The chapter on numerical integration now discusses Clenshaw-Curtis

and Gaussian methods in much more detail, which are important for practical

applications due to their high accuracy.
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Besides the elementary root finding methods like bisection and Newton–

Raphson, also the combined methods by Dekker and Brent and a recent extension

by Chandrupatla are discussed in detail. These methods are recommended in most

text books. Function minimization is now discussed also with derivative free

methods, including Brent’s golden section search method. Quasi-Newton methods

for root finding and function minimizing are thoroughly explained.

Eigenvalue problems are ubiquitous in physics. The QL-method, which is very

popular for not too large matrices is included as well as analytic expressions for

several differentiation matrices.

The discussion of Singular value decomposition was extended and its applica-

tion to low rank matrix approximation and linear fitting is discussed.

For the integration of equations of motion (i.e. of initial value problems) many

methods are available, often specialized for certain applications. For completeness,

I included the predictor-corrector methods by Nordsieck and Gear which have been

often used for molecular dynamics and the backward differentiation methods for

stiff problems.

A new chapter is devoted to molecular mechanics, since this is a very important

branch of current computational physics. Typical force field terms are discussed as

well as the calculation of gradients which are necessary for molecular dynamics

simulations.

The simulation of waves now includes three additional two-variable methods

which are often used in the literature and are based on generally applicable schemes

(leapfrog, Lax–Wendroff, Crank–Nicolson).

The chapter on simple quantum systems was rewritten. Wave packet simulation

has become very important in theoretical physics and theoretical chemistry. Several

methods are compared for spatial discretization and time integration of the

one-dimensional Schroedinger equation. The dissipative two-level system is used to

discuss elementary operations on a Qubit.

The book is accompanied by many computer experiments. For those readers

who are unable to try them out, the essential results are shown by numerous figures.

This book is intended to give the reader a good overview over the fundamental

numerical methods and their application to a wide range of physical phenomena.

Each chapter now starts with a small abstract, sometimes followed by necessary

physical background information. Many references, original work as well as spe-

cialized text books, are helpful for more deepened studies.

Garching, Germany Philipp O.J. Scherer

February 2013
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Preface to the First Edition

Computers have become an integral part of modern physics. They help to acquire,

store and process enormous amounts of experimental data. Algebra programs have

become very powerful and give the physician the knowledge of many mathe-

maticians at hand. Traditionally physics has been divided into experimental physics

which observes phenomena occurring in the real world and theoretical physics

which uses mathematical methods and simplified models to explain the experi-

mental findings and to make predictions for future experiments. But there is also a

new part of physics which has an ever growing importance. Computational physics

combines the methods of the experimentalist and the theoretician. Computer sim-

ulation of physical systems helps to develop models and to investigate their

properties.

Visualisation & presentation

Computer graphics, processing of text and images

Numerical maths

approximative methods

data storage and data management

Communication, data transmission

email,www,ftp

Symbolic Computing

algebra programs

Computers in Physics

approximative solutions
Theoretical Physics Computational Physics

Computer models & experiments

Experimental Physics
data collection, storage and processing

This book is a compilation of the contents of a two-part course on computational

physics which I have given at the TUM (Technische Universität München) for

several years on a regular basis. It attempts to give the undergraduate physics

students a profound background in numerical methods and in computer simulation
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methods but is also very welcome by students of mathematics and computational

science who want to learn about applications of numerical methods in physics. This

book may also support lecturers of computational physics and bio-computing. It

tries to bridge between simple examples which can be solved analytically and more

complicated but instructive applications which provide insight into the underlying

physics by doing computer experiments.

The first part gives an introduction into the essential methods of numerical

mathematics which are needed for applications in physics. Basic algorithms are

explained in detail together with limitations due to numerical inaccuracies.

Mathematical explanations are supplemented by numerous numerical experiments.

The second part of the book shows the application of computer simulation

methods for a variety of physical systems with a certain focus on molecular bio-

physics. The main object is the time evolution of a physical system. Starting from a

simple rigid rotor or a mass point in a central field, important concepts of classical

molecular dynamics are discussed. Further chapters deal with partial differential

equations, especially the Poisson–Boltzmann equation, the diffusion equation,

nonlinear dynamic systems and the simulation of waves on a 1-dimensional string.

In the last chapters simple quantum systems are studied to understand e.g. expo-

nential decay processes or electronic transitions during an atomic collision.

A two-state quantum system is studied in large detail, including relaxation pro-

cesses and excitation by an external field. Elementary operations on a quantum bit

(Qubit) are simulated.

Basic equations are derived in detail and efficient implications are discussed

together with numerical accuracy and stability of the algorithms. Analytical results

are given for simple test cases which serve as a benchmark for the numerical

methods. Many computer experiments are provided realized as Java applets which

can be run in the web browser. For a deeper insight the source code can be studied

and modified with the free “netbeans”1 environment.

Garching, Germany Philipp O.J. Scherer

April 2010

1www.netbeans.org.
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Numerical Methods



Chapter 1

Error Analysis

Several sources of errors are important for numerical data processing:

Experimental uncertainty: Input data from an experiment have a limited precision.

Instead of the vector of exact values x the calculation uses x+∆x, with an uncertainty

∆x. This can lead to large uncertainties of the calculated results if an unstable

algorithm is used or if the unavoidable error inherent to the problem is large.

Rounding errors: The arithmetic unit of a computer uses only a subset of the real

numbers, the so called machine numbers A ⊂ ℜ. The input data as well as the

results of elementary operations have to be represented by machine numbers whereby

rounding errors can be generated. This kind of numerical error can be avoided in

principle by using arbitrary precision arithmetics1 or symbolic algebra programs.

But this is unpractical in many cases due to the increase in computing time and

memory requirements.

Truncation errors: Results from more complex operations like square roots or

trigonometric functions can have even larger errors since series expansions have

to be truncated and iterations can accumulate the errors of the individual steps.

1.1 Machine Numbers and Rounding Errors

Floating point numbers are internally stored as the product of sign, mantissa and a

power of 2. According to the IEEE754 standard [1] single, double and quadruple

precision numbers are stored as 32, 64 or 128 bits (Table 1.1).

The sign bit s is 0 for positive and 1 for negative numbers. The exponent b is

biased by adding E which is half of its maximum possible value (Table 1.2).2 The

value of a number is given by

1For instance the open source GNU MP bignum library.
2In the following the usual hexadecimal notation is used which represents a group of 4 bits by one
of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

© Springer International Publishing AG 2017
P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-61088-7_1
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Table 1.1 Binary floating-point formats

Format Sign Exponent Hidden bit Fraction Precision εM

Float s b0 · · · b7 1 a0 · · · a22 2−24 = 5.96E−8

Double s b0 · · · b10 1 a0 · · · a51 2−53 = 1.11E−16

Quadruple s b0 · · · b14 1 a0 · · · a111 2−113 = 9.63E−35

Table 1.2 Exponent bias E

Decimal value Binary value Hexadecimal value Data type

12710 11111112 $ 3F Single

102310 11111111112 $ 3FF Double

1638310 111111111111112 $3FFF Quadruple

Table 1.3 Special double precision numbers

Hexadecimal value Symbolic value

$ 000 0000000000000 +0

$ 080 00000000000000 −0

$ 7FF 0000000000000 +inf

$ FFF 0000000000000 -inf

$ 7FF 0000000000001 · · · $ 7FF FFFFFFFFFFFFF NAN

$ 001 0000000000000 Min_Normal

$ 7FE FFFFFFFFFFFFF Max_Normal

$ 000 0000000000001 Min_Subnormal

$ 000 FFFFFFFFFFFFF Max_Subnormal

x = (−)s × a × 2b−E . (1.1)

The mantissa a is normalized such that its first bit is 1 and its value is between 1 and 2

1.0002 · · · 0 ≤ a ≤ 1.111 · · · 12 < 10.02 = 210. (1.2)

Since the first bit of a normalized floating point number always is 1, it is not

necessary to store it explicitly (hidden bit or J-bit). However, since not all numbers

can be normalized, only the range of exponents from $001 · · · $7FE is used for

normalized numbers. An exponent of $000 signals that the number is not normalized

(zero is an important example, there exist even two zero numbers with different sign)

whereas the exponent $7FF is reserved for infinite or undefined results (Table 1.3).

The range of normalized double precision numbers is between

Min_Normal = 2.2250738585072014 × 10−308
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and

Max_Normal = 1.7976931348623157E × 10308.

Example

Consider the following bit pattern which represents a double precision number:

$4059000000000000.

The exponent is 100 0000 01012 − 011 1111 11112 = 1102 and the mantissa includ-

ing the J-bit is 1 1001 0000 0000 · · ·2. Hence the decimal value is

1.5625 × 26 = 10010.

Input numbers which are not machine numbers have to be rounded to the nearest

machine number. This is formally described by a mapping ℜ → A

x → rd(x)

with the property3

|x − rd(x)| ≤ |x − g| for all g ∈ A. (1.3)

For the special case that x is exactly in the middle between two successive machine

numbers, a tie-breaking rule is necessary. The simplest rules are to round up always

(round-half-up) or always down (round-half-down). However, these are not sym-

metric and produce a bias in the average round-off error. The IEEE-754 standard

[1] recommends the round-to-nearest-even method, i.e. the least significant bit of

the rounded number should always be zero. Alternatives are round-to-nearest-odd,

stochastic rounding and alternating rounding.

The cases of exponent overflow and exponent underflow need special attention:

Whenever the exponent b has the maximum possible value b = bmax and a =

1.11 · · · 11 has to be rounded to a′ = 10.00 · · · 0, the rounded number is not a

machine number and the result is ± inf.

Numbers in the range 2bmin > |x | ≥ 2bmin−t can be represented with loss of

accuracy by denormalized machine numbers. Their mantissa cannot be normalized

since it is a < 1 and the exponent has the smallest possible value b = bmin. Even

smaller numbers with |x | < 2−t+bmin have to be rounded to ±0.

3Sometimes rounding is replaced by a simpler truncation operation which, however leads to signif-
icantly larger rounding errors.
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1.00x2
−1

1.00 1.01 1.10 1.11 1.00x2
1

Fig. 1.1 (Round to nearest) Normalized machine numbers with t = 3 binary digits are shown.
Rounding to the nearest machine number produces a round-off error which is bounded by half the
spacing of the machine numbers

The maximum rounding error for normalized numbers with t binary digits

a′ = s × 2b−E × 1.a1a2 · · · at−1 (1.4)

is given by (Fig. 1.1)

|a − a′| ≤ 2b−E × 2−t (1.5)

and the relative error is bounded by

∣

∣

∣

∣

rd(x) − x

x

∣

∣

∣

∣

≤
2−t × 2b

|a| × 2b
≤ 2−t . (1.6)

The error bound determines the relative machine precision4

εM = 2−t (1.7)

and the rounding operation can be described by

rd(x) = x(1 + ε) with |ε| ≤ εM . (1.8)

The round-off error takes its maximum value if the mantissa is close to 1. Consider

a number

x = 1 + ε.

If ε < εM then rd(x) = 1 whereas for ε > εM rounding gives rd(x) = 1 + 21−t

(Fig. 1.2). Hence εM is given by the largest number ε for which rd(1.0 + ε) = 1.0

and is therefore also called unit roundoff.

4Also known as machine epsilon.
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Fig. 1.2 (Unit round off)
ε<ε

Μ

ε=ε
Μ

ε>ε
Μ

1.000000     0

0.000000     0 10000001+

1.000000     1

+

1.000000     0

1.000000     0

0.000000     0+ 10000000

1.000000     0

...

0.000000     0... 01111111

...

...

...

...

1.000000     0...

...

...

1.2 Numerical Errors of Elementary Floating Point

Operations

Even for two machine numbers x, y ∈ A the results of addition, subtraction, multi-

plication or division are not necessarily machine numbers. We have to expect some

additional round-off errors from all these elementary operations [2]. We assume

that the results of elementary operations are approximated by machine numbers as

precisely as possible. The IEEE754 standard [1] requires that the exact operations

x + y, x − y, x × y, x ÷ y are approximated by floating point operations A → A

with the property:

f l+(x, y) = rd(x + y)

f l−(x, y) = rd(x − y)

f l∗(x, y) = rd(x × y)

f l÷(x, y) = rd(x ÷ y). (1.9)

1.2.1 Numerical Extinction

For an addition or subtraction one summand has to be denormalized to line up the

exponents (for simplicity we consider only the case x > 0, y > 0)

x + y = ax 2bx −E + ay2by−E = (ax + ay2by−bx )2bx −E . (1.10)

If the two numbers differ much in their magnitude, numerical extinction can happen.

Consider the following case:

y < 2bx −E × 2−t (1.11)

ay2by−bx < 2−t .
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The mantissa of the exact sum is

ax + ay2by−bx = 1.α2 · · ·αt−101β2 · · · βt−1. (1.12)

Rounding to the nearest machine number gives

rd(x + y) = 2bx × (1.α2 · · · αt−1) = x (1.13)

since

|0.01β2 · · · βt−1 − 0| ≤ |0.011 · · · 1| = 0.1 − 0.00 · · · 01

|0.01β2 · · · βt−1 − 1| ≥ |0.01 − 1| = 0.11. (1.14)

Consider now the case

y < x × 2−t−1 = ax × 2bx −E−t−1 < 2bx −E−t . (1.15)

For normalized numbers the mantissa is in the interval

1 ≤ |ax | < 2 (1.16)

hence we have

rd(x + y) = x if
y

x
< 2−t−1 =

εM

2
. (1.17)

Especially for x = 1 we have

rd(1 + y) = 1 if y < 2−t = 0.00 · · · 0t−11t 000 · · · (1.18)

2−t could be rounded to 0 or to 21−t since the distance is the same |2−t − 0| =

|2−t − 21−t | = 2−t .

The smallest machine number with f l+(1, ε) > 1 is either ε = 0.00 · · · 1t 0 · · · =

2−t or ε = 0.00 · · · 1t 0 · · · 012t−1 = 2−t (1 + 21−t ). Hence the machine precision

εM can be determined by looking for the smallest (positive) machine number ε for

which f l+(1, ε) > 1.

1.2.2 Addition

Consider the sum of two floating point numbers

y = x1 + x2. (1.19)
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First the input data have to be approximated by machine numbers:

x1 → rd(x1) = x1(1 + ε1)

x2 → rd(x2) = x2(1 + ε2) (1.20)

The addition of the two summands may produce another error α since the result has

to be rounded. The numerical result is

ỹ = f l+(rd(x1), rd(x2)) = (x1(1 + ε1) + x2(1 + ε2))(1 + α). (1.21)

Neglecting higher orders of the error terms we have in first order

ỹ = x1 + x2 + x1ε1 + x2ε2 + (x1 + x2)α (1.22)

and the relative error of the numerical sum is

ỹ − y

y
=

x1

x1 + x2

ε1 +
x2

x1 + x2

ε2 + α. (1.23)

If x1 ≈ −x2 then numerical extinction can produce large relative errors and uncer-

tainties of the input data can be strongly enhanced.

1.2.3 Multiplication

Consider the multiplication of two floating point numbers

y = x1 × x2. (1.24)

The numerical result is

ỹ = f l∗(rd(x1), rd(x2)) = x1(1+ε1)x2(1+ε2)(1+µ) ≈ x1x2(1+ε1 +ε2 +µ)

(1.25)

with the relative error

ỹ − y

y
= 1 + ε1 + ε2 + µ. (1.26)

The relative errors of the input data and of the multiplication just add up to the total

relative error. There is no enhancement. Similarly for a division

y =
x1

x2

(1.27)
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the relative error is

ỹ − y

y
= 1 + ε1 − ε2 + µ. (1.28)

1.3 Error Propagation

Consider an algorithm consisting of a sequence of elementary operations. From the

set of input data which is denoted by the vector

x = (x1 · · · xn) (1.29)

a set of output data is calculated

y = (y1 · · · ym). (1.30)

Formally this can be denoted by a vector function

y = ϕ(x) (1.31)

which can be written as a product of r simpler functions representing the elementary

operations

ϕ = ϕ(r) × ϕ(r−1) · · ·ϕ(1). (1.32)

Starting with x intermediate results xi = (xi1, · · · xini
) are calculated until the output

data y result from the last step:

x1 = ϕ(1)(x)

x2 = ϕ(2)(x1)

...

xr−1 = ϕ(r−1)(xr−2)

y = ϕ(r)(xr−1). (1.33)

In the following we analyze the influence of numerical errors onto the final results.

We treat all errors as small quantities and neglect higher orders. Due to round-off

errors and possible experimental uncertainties the input data are not exactly given

by x but by

x + ∆x. (1.34)
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The first step of the algorithm produces the result

x̃1 = rd(ϕ(1)(x + ∆x)). (1.35)

Taylor series expansion gives in first order

x̃1 =
(

ϕ(1)(x) + Dϕ(1)∆x
)

(1 + E1) + · · · (1.36)

with the partial derivatives

Dϕ(1) =

(

∂x1i

∂x j

)

=

⎛

⎜

⎜

⎝

∂x11

∂x1
· · · ∂x11

∂xn

...
. . .

...
∂x1n1

∂x1
· · ·

∂x1n1

∂xn

⎞

⎟

⎟

⎠

(1.37)

and the round-off errors of the first step

E1 =

⎛

⎜

⎝

ε
(1)
1

. . .

ε(1)
n1

⎞

⎟

⎠
. (1.38)

The error of the first intermediate result is

∆x1 = x̃1 − x1 = Dϕ(1)∆x + ϕ(1)(x)E1. (1.39)

The second intermediate result is

x̃2 =
(

ϕ(2)(x̃1)
)

(1 + E2) = ϕ(2)(x1 + ∆x1) (1 + E2)

= x2(1 + E2) + Dϕ(2) Dϕ(1)∆x + Dϕ(2)x1 E1 (1.40)

with the error

∆x2 = x2 E2 + Dϕ(2) Dϕ(1)∆x + Dϕ(2)x1 E1. (1.41)

Finally the error of the result is

∆y = yEr + Dϕ(r) · · · Dϕ(1)∆x + Dϕ(r) · · · Dϕ(2)x1 E1 + · · · Dϕ(r)xr−1 Er−1.

(1.42)

The product of the matrices Dϕ(r) · · · Dϕ(1) is the matrix which contains the deriv-

atives of the output data with respect to the input data (chain rule)
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Dϕ = Dϕ(r) · · · Dϕ(1) =

⎛

⎜

⎜

⎝

∂y1

∂x1
· · ·

∂y1

∂xn

...
. . .

...
∂ym

∂x1
· · ·

∂ym

∂xn

⎞

⎟

⎟

⎠

. (1.43)

The first two contributions to the total error do not depend on the way in which the

algorithm is divided into elementary steps in contrary to the remaining summands.

Hence the inevitable error which is inherent to the problem can be estimated as [2]

∆(in)yi = εM |yi | +

n
∑

j=1

∣

∣

∣

∣

∂yi

∂x j

∣

∣

∣

∣

|∆x j | (1.44)

or in case the error of the input data is dominated by the round-off errors |∆x j | ≤

εM |x j |

∆(in)yi = εM |yi | + εM

n
∑

j=1

∣

∣

∣

∣

∂yi

∂x j

∣

∣

∣

∣

|x j |. (1.45)

Additional errors which are smaller than this inevitable error can be regarded as

harmless. If all errors are harmless, the algorithm can be considered well behaved.

1.4 Stability of Iterative Algorithms

Often iterative algorithms are used which generate successive values starting from

an initial value x0 according to an iteration method

x j+1 = f (x j ), (1.46)

for instance to solve a large system of equations or to approximate a time evolution

x j ≈ x( j∆t). Consider first a linear iteration equation which can be written in matrix

form as

x j+1 = Ax j . (1.47)

If the matrix A is the same for all steps we have simply

x j = A j x0. (1.48)

Consider the unavoidable error originating from errors ∆x of the start values:

x j = A j (x0 + ∆x) = A j x0 + A j∆x. (1.49)
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The initial errors ∆x can be enhanced exponentially if A has at least one eigenvalue5

λ with |λ| > 1. On the other hand the algorithm is conditionally stable if for all

eigenvalues |λ| ≤ 1 holds. For a more general nonlinear iteration

x j+1 = ϕ(x j ) (1.50)

the error propagates according to

x1 = ϕ(x0) + Dϕ∆x

x2 = ϕ(x1) = ϕ(ϕ(x0)) + (Dϕ)2∆x

...

x j = ϕ(ϕ · · · ϕ(x0)) + (Dϕ) j∆x . (1.51)

The algorithm is conditionally stable if all eigenvalues of the derivative matrix Dϕ

have absolute values |λ| ≤ 1.

1.5 Example: Rotation

Consider a simple rotation in the complex plane. The equation of motion

ż = iωz (1.52)

obviously has the exact solution

z(t) = z0eiωt . (1.53)

As a simple algorithm for numerical integration we use a time grid

t j = j∆t j = 0, 1, 2 · · · (1.54)

z j = z(t j ) (1.55)

and iterate the function values

z j+1 = z j + ż(t j ) = (1 + iω∆t)z j . (1.56)

Since

|1 + iω∆t | =
√

1 + ω2∆t2 > 1 (1.57)

5The eigenvalues of A are solutions of the eigenvalue equation Ax = λx (Chap. 10).

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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uncertainties in the initial condition will grow exponentially and the algorithm is not

stable. A stable method is obtained by taking the derivative in the middle of the time

interval (p. 296)

ż

(

t +
∆t

2

)

= iωz

(

t +
∆t

2

)

and making the approximation (p. 297)

z

(

t +
∆t

2

)

≈
z(t) + z(t + ∆t)

2
.

This gives the implicit equation

z j+1 = z j + iω∆t
z j+1 + z j

2
(1.58)

which can be solved by

z j+1 =
1 + iω∆t

2

1 − iω∆t
2

z j . (1.59)

Now we have

∣

∣

∣

∣

∣

1 + iω∆t
2

1 − iω∆t
2

∣

∣

∣

∣

∣

=

√

1 + ω2∆t2

4
√

1 + ω2∆t2

4

= 1 (1.60)

and the calculated orbit is stable.

1.6 Truncation Error

The algorithm in the last example is stable but of course not perfect. Each step

produces an error due to the finite time step. The exact solution

z(t + ∆t) = z(t)eiω∆t = z(t)

(

1 + iω∆t −
ω2∆t2

2
+

−iω3∆t3

6
· · ·

)

(1.61)

is approximated by

z(t + ∆t) ≈ z(t)
1 + iω∆t

2

1 − iω∆t
2
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= z(t)

(

1 +
iω∆t

2

)(

1 +
iω∆t

2
−

ω2∆t2

4
−

iω3∆t3

8
+ · · ·

)

(1.62)

= z(t)

(

1 + iω∆t −
ω2∆t2

2
+

−iω3∆t3

4
· · ·

)

(1.63)

which deviates from the exact solution by a term of the order O(∆t3), hence the

local error order of this algorithm is O(∆t3) which is indicated by writing

z(t + ∆t) = z(t)
1 + iω∆t

2

1 − iω∆t
2

+ O(∆t3). (1.64)

Integration up to a total time T = N∆t accumulates a global error of the order

N∆t3 = T ∆t2.

Problems

Problem 1.1 Machine Precision

In this computer experiment we determine the machine precision εM . Starting with a

value of 1.0, x is divided repeatedly by 2 until numerical addition of 1 and x = 2−M

gives 1. Compare single and double precision calculations.

Problem 1.2 Maximum and Minimum Integers

Integers are used as counters or to encode elements of a finite set like characters or

colors. There are different integer formats available which store signed or unsigned

integers of different length (Table 1.4). There is no infinite integer and addition of 1

to the maximum integer gives the minimum integer.

In this computer experiment we determine the smallest and largest integer num-

bers. Beginning with I = 1 we add repeatedly 1 until the condition I + 1 > I

becomes invalid or subtract repeatedly 1 until I − 1 < I becomes invalid. For the

64 bit long integer format this takes too long. Here we multiply alternatively I by 2

until I − 1 < I becomes invalid. For the character format the corresponding ordinal

number is shown which is obtained by casting the character to an integer.

Table 1.4 Maximum and minimum integers

Java format Bit length Minimum Maximum

Byte 8 −128 127

Short 16 −32768 32767

Integer 32 −2147483647 2147483648

Long 64 −9223372036854775808 9223372036854775807

Char 16 0 65535
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Problem 1.3 Truncation Error

This computer experiment approximates the cosine function by a truncated Taylor

series

cos(x) ≈ mycos(x, nmax) =

nmax
∑

n=0

(−)n x2n

(2n)!
= 1 −

x2

2
+

x4

24
−

x6

720
+ · · · (1.65)

in the interval −π/2 < x < π/2. The function mycos(x, nmax) is numerically

compared to the intrinsic cosine function.



Chapter 2

Interpolation

Experiments usually produce a discrete set of data points (xi , fi ) which represent

the value of a function f (x) for a finite set of arguments {x0 . . . xn}. If additional

data points are needed, for instance to draw a continuous curve, interpolation is

necessary. Interpolation also can be helpful to represent a complicated function by a

simpler one or to develop more sophisticated numerical methods for the calculation

of numerical derivatives and integrals. In the following we concentrate on the most

important interpolating functions which are polynomials, splines and rational func-

tions. Trigonometric interpolation is discussed in Chap. 7. An interpolating function

reproduces the given function values at the interpolation points exactly (Fig. 2.1).

The more general procedure of curve fitting, where this requirement is relaxed, is

discussed in Chap. 11.

The interpolating polynomial can be explicitly constructed with the Lagrange

method. Newton’s method is numerically efficient if the polynomial has to be evalu-

ated at many interpolating points and Neville’s method has advantages if the poly-

nomial is not needed explicitly and has to be evaluated only at one interpolation

point.

Polynomials are not well suited for interpolation over a larger range. Spline

functions can be superior which are piecewise defined polynomials. Especially cubic

splines are often used to draw smooth curves. Curves with poles can be represented

by rational interpolating functions whereas a special class of rational interpolants

without poles provides a rather new alternative to spline interpolation.

2.1 Interpolating Functions

Consider the following problem: Given are n + 1 sample points (xi , fi ) , i = 0 · · · n

and a function of x which depends on n + 1 parameters ai :

�(x; a0 · · · an). (2.1)

© Springer International Publishing AG 2017
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Fig. 2.1 (Interpolating

function) The interpolating

function �(x) reproduces a

given data set �(xi ) = fi

and provides an estimate of

the function f (x) between

the data points
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The parameters are to be determined such that the interpolating function has the

proper values at all sample points (Fig. 2.1)

�(xi ; a0 · · · an) = fi i = 0 · · · n. (2.2)

An interpolation problem is called linear if the interpolating function is a linear

combination of functions

�(x; a0 · · · an) = a0�0(x) + a1�1(x) + · · · an�n(x). (2.3)

Important examples are

• polynomials

a0 + a1x + · · · an xn (2.4)

• trigonometric functions

a0 + a1ei x + a2e2i x + · · · anenix (2.5)

• spline functions which are piecewise polynomials, for instance the cubic spline

s(x) = αi + βi (x − xi ) + γi (x − xi )
2 + δi (x − xi )

3 xi ≤ x ≤ xi+1. (2.6)

Important examples for nonlinear interpolating functions are

• rational functions

p0 + p1x + · · · pM x M

q0 + q1x + · · · qN x N
(2.7)
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• exponential functions

a0eλ0x + a1eλ1x + · · · . (2.8)

where amplitudes ai and exponents λi have to be optimized.

2.2 Polynomial Interpolation

For n + 1 sample points (xi , fi ), i = 0 · · · n, xi �= x j there exists exactly one

interpolating polynomial of degree n with

p(xi ) = fi , i = 0 · · · n. (2.9)

2.2.1 Lagrange Polynomials

Lagrange polynomials [3] are defined as

Li (x) =
(x − x0) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
. (2.10)

They are of degree n and have the property

Li (xk) = δi,k . (2.11)

The interpolating polynomial is given in terms of Lagrange polynomials by

p(x) =
n

∑

i=0

fi Li (x) =
n

∑

i=0

fi

n
∏

k=0,k �=i

x − xk

xi − xk

. (2.12)

2.2.2 Barycentric Lagrange Interpolation

With the polynomial

ω(x) =
n

∏

i=0

(x − xi ) (2.13)
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the Lagrange polynomial can be written as

Li (x) =
ω(x)

x − xi

1
∏n

k=0,k �=i (xi − xk)
(2.14)

which, introducing the Barycentric weights [4]

ui =
1

∏n
k=0,k �=i (xi − xk)

(2.15)

becomes the first form of the barycentric interpolation formula

Li (x) = ω(x)
ui

x − xi

. (2.16)

The interpolating polynomial can now be evaluated according to

p(x) =
n

∑

i=0

fi Li (x) = ω(x)

n
∑

i=0

fi

ui

x − xi

. (2.17)

Having computed the weights ui , evaluation of the polynomial only requires O(n)

operations whereas calculation of all the Lagrange polynomials requires O(n2) oper-

ations. Calculation of ω(x) can be avoided considering that

p1(x) =
n

∑

i=0

L i (x) = ω(x)

n
∑

i=0

ui

x − xi

(2.18)

is a polynomial of degree n with

p1(xi ) = 1 i = 0 . . . n. (2.19)

But this is only possible if

p1(x) = 1. (2.20)

Therefore

p(x) =
p(x)

p1(x)
=

∑n
i=0 fi

ui

x−xi
∑n

i=0
ui

x−xi

(2.21)

which is known as the second form of the barycentric interpolation formula.
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2.2.3 Newton’s Divided Differences

Newton’s method of divided differences [5] is an alternative for efficient numerical

calculations [6]. Rewrite

f (x) = f (x0) +
f (x) − f (x0)

x − x0

(x − x0). (2.22)

With the first order divided difference

f [x, x0] =
f (x) − f (x0)

x − x0

(2.23)

this becomes

f [x, x0] = f [x1, x0] +
f [x, x0] − f [x1, x0]

x − x1

(x − x1) (2.24)

and with the second order divided difference

f [x, x0, x1] =
f [x, x0] − f [x1, x0]

x − x1

=
f (x) − f (x0)

(x − x0)(x − x1)
−

f (x1) − f (x0)

(x1 − x0)(x − x1)

=
f (x)

(x − x0)(x − x1)
+

f (x1)

(x1 − x0)(x1 − x)
+

f (x0)

(x0 − x1)(x0 − x)

(2.25)

we have

f (x) = f (x0) + (x − x0) f [x1, x0] + (x − x0)(x − x1) f [x, x0, x1]. (2.26)

Higher order divided differences are defined recursively by

f [x1x2 · · · xr−1xr ] =
f [x1x2 · · · xr−1] − f [x2 · · · xr−1xr ]

x1 − xr

. (2.27)

They are invariant against permutation of the arguments which can be seen from the

explicit formula

f [x1x2 · · · xr ] =
r

∑

k=1

f (xk)
∏

i �=k(xk − xi )
. (2.28)

Finally we have

f (x) = p(x) + q(x) (2.29)



22 2 Interpolation

with a polynomial of degree n

p(x) = f (x0) + f [x1, x0](x − x0) + f [x2x1x0](x − x0)(x − x1) + · · ·

· · · + f [xn xn−1 · · · x0](x − x0)(x − x1) · · · (x − xn−1) (2.30)

and the function

q(x) = f [xxn · · · x0](x − x0) · · · (x − xn). (2.31)

Obviously q(xi ) = 0 , i = 0 · · · n, hence p(x) is the interpolating polynomial.

Algorithm

The divided differences are arranged in the following way:

f0

f1 f [x0x1]
...

...
. . .

fn−1 f [xn−2xn−1] f [xn−3xn−2xn−1] . . . f [x0 . . . xn−1]
fn f [xn−1xn] f [xn−2xn−1xn] · · · f [x1 · · · xn−1xn] f [x0x1 · · · xn−1xn]

(2.32)

Since only the diagonal elements are needed, a one-dimensional data array t[0] · · ·
t[n] is sufficient for the calculation of the polynomial coefficients:

for i:=0 to n do begin

t[i]:=f[i];

for k:=i-1 downto 0 do

t[k]:=(t[k+1]-t[k])/(x[i]-x[k]);

a[i]:=t[0];

end;

The value of the polynomial is then evaluated by

p:=a[n];

for i:=n-1 downto 0 do

p:=p*(x-x[i])+a[i];

2.2.4 Neville Method

The Neville method [7] is advantageous if the polynomial is not needed explicitly

and has to be evaluated only at one point. Consider the interpolating polynomial for

the points x0 · · · xk , which will be denoted as P0,1,···k(x). Obviously
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P0,1,···k(x) =
(x − x0)P1···k(x) − (x − xk)P0···k−1(x)

xk − x0

(2.33)

since for x = x1 · · · xk−1 the right hand side is

(x − x0) f (x) − (x − xk) f (x)

xk − x0

= f (x). (2.34)

For x = x0 we have

−(x0 − xk) f (x)

xk − x0

= f (x) (2.35)

and finally for x = xk

(xk − x
0
) f (x)

xk − x0

= f (x). (2.36)

Algorithm:

We use the following scheme to calculate P0,1···n(x) recursively:

P0

P1 P01

P2 P12 P012

...
...

...
. . .

Pn Pn−1,n Pn−2,n−1,n · · · P01···n

(2.37)

The first column contains the function values Pi (x) = fi . The value P01···n can be

calculated using a 1-dimensional data array p[0] · · · p[n]:

for i:=0 to n do begin

p[i]:=f[i];

for k:=i-1 downto 0 do

p[k]:=(p[k+1]*(x-x[k])-p[k]*(x-x[i]) )/(x[k]-x[i]);

end;

f:=p[0];

2.2.5 Error of Polynomial Interpolation

The error of polynomial interpolation [8] can be estimated with the help of the

following theorem:

If f (x) is n + 1 times differentiable then for each x there exists ξ within the

smallest interval containing x as well as all the xi with
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Fig. 2.2 (Interpolating

polynomial) The interpolated

function (solid curve) and

the interpolating polynomial

(broken curve) for the

example (2.40) are compared
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x

-3

-2

-1

0

1

2

3

q(x) =
n

∏

i=0

(x − xi )
f (n+1)(ξ)

(n + 1)!
. (2.38)

From a discussion of the function

ω(x) =
n

∏

i=0

(x − xi ) (2.39)

it can be seen that the error increases rapidly outside the region of the sample points

(extrapolation is dangerous!). As an example consider the sample points (Fig. 2.2)

f (x) = sin(x) xi = 0,
π

2
,π,

3π

2
, 2π. (2.40)

The maximum interpolation error is estimated by(| f (n+1)| ≤ 1)

| f (x) − p(x)| ≤ |ω(x)|
1

120
≤

35

120
≈ 0.3 (2.41)

whereas the error increases rapidly outside the interval 0 < x < 2π (Fig. 2.3).

2.3 Spline Interpolation

Polynomials are not well suited for interpolation over a larger range. Often spline

functions are superior which are piecewise defined polynomials [9, 10]. The simplest

case is a linear spline which just connects the sampling points by straight lines:

pi (x) = yi +
yi+1 − yi

xi+1 − xi

(x − xi ) (2.42)
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Fig. 2.3 (Interpolation

error) The polynomial ω(x)

is shown for the example

(2.40). Its roots xi are given

by the x values of the sample

points (circles). Inside the

interval x0 · · · x4 the absolute

value of ω is bounded by

|ω(x)| ≤ 35 whereas outside

the interval it increases very

rapidly
0 2 4 6

x

-100

0

100

ω
(x

)
s(x) = pi (x) where xi ≤ x < xi+1. (2.43)

The most important case is the cubic spline which is given in the interval xi ≤ x <

xi+1 by

pi (x) = αi + βi (x − xi ) + γi (x − xi )
2 + δi (x − xi )

3. (2.44)

We want to have a smooth interpolation and assume that the interpolating function

and their first two derivatives are continuous. Hence we have for the inner boundaries:

i = 0, · · · n − 1

pi (xi+1) = pi+1(xi+1) (2.45)

p′
i (xi+1) = p′

i+1(xi+1) (2.46)

p′′
i (xi+1) = p′′

i+1(xi+1). (2.47)

We have to specify boundary conditions at x0 and xn . The most common choice are

natural boundary conditions s ′′(x0) = s ′′(xn) = 0, but also periodic boundary con-

ditions s ′′(x0) = s ′′(xn), s ′(x0) = s ′(xn), s(x0) = s(xn) or given derivative values

s ′(x0) and s ′(xn) are often used. The second derivative is a linear function [2]

p′′
i (x) = 2γi + 6δi (x − xi ) (2.48)

which can be written using hi+1 = xi+1 − xi and Mi = s ′′(xi ) as

p′′
i (x) = Mi+1

(x − xi )

hi+1

+ Mi

(xi+1 − x)

hi+1

i = 0 · · · n − 1 (2.49)

since
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p′′
i (xi ) = Mi

xi+1 − xi

hi+1

= s ′′(xi ) (2.50)

p′′
i (xi+1) = Mi+1

(xi+1 − xi )

hi+1

= s ′′(xi+1). (2.51)

Integration gives with the two constants Ai and Bi

p′
i (x) = Mi+1

(x − xi )
2

2hi+1

− Mi

(xi+1 − x)2

2hi+1

+ Ai (2.52)

pi (x) = Mi+1

(x − xi )
3

6hi+1

+ Mi

(xi+1 − x)3

6hi+1

+ Ai (x − xi ) + Bi . (2.53)

From s(xi ) = yi and s(xi+1) = yi+1 we have

Mi

h2
i+1

6
+ Bi = yi (2.54)

Mi+1

h2
i+1

6
+ Ai hi+1 + Bi = yi+1 (2.55)

and hence

Bi = yi − Mi

h2
i+1

6
(2.56)

Ai =
yi+1 − yi

hi+1

−
hi+1

6
(Mi+1 − Mi ) . (2.57)

Now the polynomial is

pi (x) =
Mi+1

6hi+1

(x − xi )
3 −

Mi

6hi+1

(x − xi − hi+1)
3 + Ai (x − xi ) + Bi

= (x − xi )
3

(

Mi+1

6hi+1

−
Mi

6hi+1

)

+
Mi

6hi+1

3hi+1(x − xi )
2

+(x − xi )

(

Ai −
Mi

6hi+1

3h2
i+1

)

+ Bi +
Mi

6hi+1

h3
i+1. (2.58)

Comparison with

pi (x) = αi + βi (x − xi ) + γi (x − xi )
2 + δi (x − xi )

3 (2.59)

gives

αi = Bi +
Mi

6
h2

i+1 = yi (2.60)
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βi = Ai −
hi+1 Mi

2
=

yi+1 − yi

hi+1

− hi+1

Mi+1 + 2Mi

6
(2.61)

γi =
Mi

2
(2.62)

δi =
Mi+1 − Mi

6hi+1

. (2.63)

Finally we calculate Mi from the continuity of s ′(x). Substituting for Ai in p′
i (x) we

have

p′
i (x) = Mi+1

(x − xi )
2

2hi+1

− Mi

(xi+1 − x)2

2hi+1

+
yi+1 − yi

hi+1

−
hi+1

6
(Mi+1 − Mi )

(2.64)

and from p′
i−1(xi ) = p′

i (xi ) it follows

Mi

hi

2
+

yi − yi−1

hi

−
hi

6
(Mi − Mi−1)

= −Mi

hi+1

2
+

yi+1 − yi

hi+1

−
hi+1

6
(Mi+1 − Mi ) (2.65)

Mi

hi

3
+ Mi−1

hi

6
+ Mi

hi+1

3
+ Mi+1

hi+1

6
=

yi+1 − yi

hi+1

−
yi − yi−1

hi

(2.66)

which is a system of linear equations for the Mi . Using the abbreviations

λi =
hi+1

hi + hi+1

(2.67)

µi = 1 − λi =
hi

hi + hi+1

(2.68)

di =
6

hi + hi+1

(

yi+1 − yi

hi+1

−
yi − yi−1

hi

)

(2.69)

we have

µi Mi−1 + 2Mi + λi Mi+1 = di i = 1 · · · n − 1. (2.70)

We define for natural boundary conditions

λ0 = 0 µn = 0 d0 = 0 dn = 0 (2.71)
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and in case of given derivative values

λ0 = 1 µn = 1 d0 =
6

h1

(

y1 − y0

h1

− y′
0

)

dn =
6

hn

(

y′
n −

yn − yn−1

hn

)

.

(2.72)

The system of equations has the form

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 λ0

µ1 2 λ1

µ2 2 λ2

. . .
. . .

. . .

µn−1 2 λn−1

µn 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M0

M1

M2

...

Mn−1

Mn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d0

d1

d2

...

dn−1

dn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.73)

For periodic boundary conditions we define

λn =
h1

h1 + hn

µn = 1 − λn dn =
6

h1 + hn

(

y1 − yn

h1

−
yn − yn−1

hn

)

(2.74)

and the system of equations is (with Mn = M0)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 λ1 µ1

µ2 2 λ2

µ3 2 λ3

. . .
. . .

. . .

µn−1 2 λn−1

λn µn 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M1

M2

M3

...

Mn−1

Mn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d1

d2

d3

...

dn−1

dn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.75)

All this tridiagonal systems can be easily solved with a special Gaussian elimination

method (Sects. 5.3 and 5.4)

2.4 Rational Interpolation

The use of rational approximants allows to interpolate functions with poles, where

polynomial interpolation can give poor results [2]. Rational approximants without

poles [11] are also well suited for the case of equidistant xi , where higher order

polynomials tend to become unstable. The main disadvantages are additional poles

which are difficult to control and the appearance of unattainable points. Recent

developments using the barycentric form of the interpolating function [11–13] helped

to overcome these difficulties.

http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
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2.4.1 Padé Approximant

The Padé approximant [14] of order [M/N ] to a function f (x) is the rational function

RM/N (x) =
PM(x)

QN (x)
=

p0 + p1x + . . . pM x M

q0 + q1x + . . . qN x N
(2.76)

which reproduces the McLaurin series (the Taylor series at x = 0) of

f (x) = a0 + a1x + a2x2 + . . . (2.77)

up to order M + N , i.e.

f (0) = R(0)

d

dx
f (0) =

d

dx
R(0)

...

d(M+N )

dx (M+N )
f (0) =

d(M+N )

dx (M+N )
R(0). (2.78)

Multiplication gives

p0 + p1x + · · · + pM x M = (q0 + q1x + · · · + qN x N )(a0 + a1x + . . . ) (2.79)

and collecting powers of x we find the system of equations

p0 = q0a0

p1 = q0a1 + q1a0

p2 = q0a2 + a1q1 + a0q2

...

pM = q0aM + aM−1q1 + · · · + a0qM

0 = q0aM+1 + q1aM + · · · + qN aM−N+1

...

0 = q0aM+N + q1aM+N−1 + · · · + qN aM (2.80)

where

an = 0 for n < 0 (2.81)

q j = 0 for j > N . (2.82)
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Example: Calculate the [3, 3] approximant to tan(x).

The Laurent series of the tangent is

tan(x) = x +
1

3
x3 +

2

15
x5 + . . . . (2.83)

We set q0 = 1. Comparison of the coefficients of the polynomial

p0 + p1x + p2x2 + p3x3 = (1 + q1x + q2x2 + q3x3)

(

x +
1

3
x3 +

2

15
x5

)

(2.84)

gives the equations

x0 : p0 = 0

x1: p1 = 1

x2 : p2 = q1

x3 : p3 = q2 + 1
3

x4 : 0 = q3 + 1
3
q1

x5 : 0 = 2
15

+ 1
3
q2

x6 : 0 = 2
15

q1 + 1
3
q3.

(2.85)

We easily find

p2 = q1 = q3 = 0 q2 = −
2

5
p3 = −

1

15
(2.86)

and the approximant of order [3, 3] is

R3,3 =
x − 1

15
x3

1 − 2
5
x2

. (2.87)

This expression reproduces the tangent quite well (Fig. 2.4). Its pole at
√

10/2 ≈
1.581 is close to the pole of the tangent function at π/2 ≈ 1.571.

2.4.2 Barycentric Rational Interpolation

If the weights of the barycentric form of the interpolating polynomial (2.21) are taken

as general parameters ui �= 0 it becomes a rational function

R(x) =
∑n

i=0 fi
ui

x−xi
∑n

i=0
ui

x−xi

(2.88)
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Fig. 2.4 (Padé

approximation to tan(x))

The Padé approximant (2.87,

dash dotted curve)

reproduces the tangent (full

curve) quite well

0 1 2 3
x

-50

-25

0

25

50

ta
n

(x
)

which obviously interpolates the data points since

lim
x→xi

R(x) = fi . (2.89)

With the polynomials1

P(x) =
n

∑

i=0

ui fi

n
∏

j=0; j �=i

(x − x j ) =
n

∑

i=0

ui fi

ω(x)

x − xi

Q(x) =
n

∑

i=0

ui

n
∏

j=0; j �=i

(x − x j ) =
n

∑

i=0

ui

ω(x)

x − xi

a rational interpolating function is given by2

R(x) =
P(x)

Q(x)
.

Obviously there are infinitely different rational interpolating functions which differ

by the weights u = (u0, u1 . . . un) (an example is shown in Fig. 2.5). To fix the

parameters ui , additional conditions have to be imposed.

2.4.2.1 Rational Interpolation of Order [M, N]

One possibility is to assume that P(x) and Q(x) are of order ≤ M and ≤ N ,

respectively with M + N = n. This gives n additional equations for the 2(n + 1)

1ω(x) =
∏n

i=0(x − xi ) as in (2.39).
2It can be shown that any rational interpolant can be written in this form.
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-1 0 1 2 3 4
x

-1

0

1

R
(x

)

Fig. 2.5 (Rational interpolation) The data points (1, 1
2
), (2, 1

5
), (3, 1

10
) are interpolated by several

rational functions. The [1, 1] approximant (2.95) corresponding to u = (5,−20, 15) is shown by

the solid curve, the dashed curve shows the function R(x) = 8x2−36x+38
10(3x2−12x+11)

which is obtained for

u = (1, 1, 1) and the dash dotted curve shows the function R(x) = 4x2−20x+26
10(5−4x+x2)

which follows for

u = (1,−1, 1) and has no real poles

polynomial coefficients. The number of unknown equals n + 1 and the rational inter-

polant is uniquely determined up to a common factor in numerator and denominator.

Example Consider the data points f (1) = 1
2
, f (2) = 1

5
, f (3) = 1

10
.

The polynomials are

P(x) =
1

2
u0(x − 2)(x − 3) +

1

5
u1(x − 1)(x − 3) +

1

10
u2(x − 1)(x − 2)

= 3u0 +
3

5
u1 +

1

5
u2 +

[

−
5

2
u0 −

4

5
u1 −

3

10
u2

]

x +
[

1

2
u0 +

1

5
u1 +

1

10
u2

]

x2

(2.90)

Q(x) = u0(x − 2)(x − 3) + u1(x − 1)(x − 3) + u2(x − 1)(x − 2)

= 6u0 + 3u1 + 2u2 + [−5u0 − 4u1 − 3u2] x + [u0 + u1 + u2] x2. (2.91)

To obtain a [1, 1] approximant we have to solve the equations

1

2
u0 +

1

5
u1 +

1

10
u2 = 0 (2.92)

u0 + u1 + u2 = 0 (2.93)

which gives

u2 = 3u0 u1 = −4u0 (2.94)
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and thus

R(x) =
6
5
u0 − 1

5
u0x

2u0x
=

6 − x

10x
. (2.95)

General methods to obtain the coefficients ui for a given data set are described in

[12, 13]. They also allow to determine unattainable points corresponding to ui = 0

and to locate the poles. Without loss of generality it can be assumed [13] that M ≥ N .3

Let P(x) be the unique polynomial which interpolates the product f (x)Q(x)

P(xi ) = f (xi )Q(xi ) i = 0 . . . M. (2.96)

Then from (2.31) we have

f (x)Q(x) − P(x) = ( f Q)[x0 · · · xM , x](x − x0) · · · (x − xM). (2.97)

Setting

x = xi i = M + 1, . . . n (2.98)

we have

f (xi )Q(xi ) − P(xi ) = ( f Q)[x0 . . . xM , xi ](xi − x0) . . . (x − xM) (2.99)

which is zero if P(xi )/Q(xi ) = fi for i = 0, . . . n. But then

( f Q)[x0 . . . xM , xi ] = 0 i = M + 1, . . . n. (2.100)

The polynomial Q(x) can be written in Newtonian form (2.30)

Q(x) =
N

∑

i=0

νi

i−1
∏

j=0

(x − x j ) = ν0 + ν1(x − x0) + · · · + νN (x − x0) . . . (x − xN−1).

(2.101)

With the abbreviation

g j (x) = x − x j j = 0 . . . N (2.102)

we find

3The opposite case can be treated by considering the reciprocal function values 1/ f (xi ).
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( f g j )[x0 . . . xM , xi ] =
∑

k=0...M,i

f (xk)g(xk)
∏

r �=k(xk − xr )
=

∑

k=0...M,i,k �= j

f (xk)
∏

r �=k,r �= j (xk − xr )

= f [x0 . . . x j−1, x j+1 . . . xM , xi ] (2.103)

which we apply repeatedly to (2.100) to get the system of n − M = N equations for

N + 1 unknowns

N
∑

j=0

ν j f [x j , x j+1 . . . xM , xi ] = 0 i = M + 1 . . . n (2.104)

from which the coefficients ν j can be found by Gaussian elimination up to a scaling

factor. The Newtonian form of Q(x) can then be converted to the barycentric form

as described in [6].

2.4.2.2 Rational Interpolation without Poles

Polynomial interpolation of larger data sets can be ill behaved, especially for the case

of equidistant x−values. Rational interpolation without poles can be a much better

choice here (Fig. 2.6).

Berrut [15] suggested to choose the following weights

uk = (−1)k .

With this choice Q(x) has no real roots. Floater and Horman [11] used the different

choice

Fig. 2.6 (Interpolation of a

step function) A step

function with uniform

x-values (circles) is

interpolated by a polynomial

(full curve), a cubic spline

(dashed curve) and with the

rational Floater–Horman

d = 1 function (2.105,

dash-dotted curve). The

rational function behaves

similar to the spline function

but provides in addition an

analytical function with

continuous derivatives
-4 -2 0 2 4

x

0

1

2

3

4
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Table 2.1 Floater-Horman

weights for uniform data
|uk | d

1, 1, 1 . . . , 1, 1, 1 0

1, 2, 2, 2, . . . , 2, 2, 2, 1 1

1, 3, 4, 4, 4, . . . , 4, 4, 4, 3, 1 2

1, 4, 7, 8, 8, 8, . . . , 8, 8, 8, 7, 4, 1 3

1, 5, 11, 15, 16, 16, 16, . . . , 16, 16,

16, 15, 11, 5, 1

4

uk = (−1)k−1

(

1

xk+1 − xk

+
1

xk − xk−1

)

k = 1 . . . n − 1

u0 = −
1

x1 − x0

un = (−1)n−1 1

xn − xn−1

(2.105)

which becomes very similar for equidistant x-values.

Floater and Horman generalized this expression and found a class of rational

interpolants without poles given by the weights

uk = (−1)k−d

min(k,n−d)
∑

i=max(k−d,0)

i+d
∏

j=i, j �=k

1

|xk − x j |
(2.106)

where 0 ≤ d ≤ n and the approximation order increases with d. In the uniform case

this simplifies to (Table 2.1)

uk = (−1)k−d

max(k,n−d)
∑

i=min(k−d,0)

(

d

k − i

)

. (2.107)

2.5 Multivariate Interpolation

The simplest 2-dimensional interpolation method is bilinear interpolation.4 It uses

linear interpolation for both coordinates within the rectangle xi ≤ x ≤ xi+1 yi ≤
yi ≤ yi+1:

p(xi + hx , yi + h y) = p(xi + hx , yi ) + h y

p(xi + hx , yi+1) − p(xi + hx , yi )

yi+1 − yi

= f (xi , yi ) + hx

f (xi+1, yi ) − f (xi , yi )

xi+1 − xi

(2.108)

4Bilinear means linear interpolation in two dimensions. Accordingly linear interpolation in three

dimensions is called trilinear.
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Fig. 2.7 Bispline

interpolation

x

y

+h y

f (xi , yi+1) + hx
f (xi+1,yi+1)− f (xi ,yi+1)

xi+1−xi
− f (xi , yi ) − hx

f (xi+1,yi )− f (xi ,yi )

xi+1−xi

yi+1 − yi

which can be written as a two dimensional polynomial

p(xi + hx , yi + h y) = a00 + a10hx + a01h y + a11hx h y (2.109)

with

a00 = f (xi , yi )

a10 =
f (xi+1, yi ) − f (xi , yi )

xi+1 − xi

a01 =
f (xi , yi+1) − f (xi , yi )

yi+1 − yi

a11

f (xi+1, yi+1) − f (xi , yi+1) − f (xi+1, yi ) + f (xi , yi )

(xi+1 − xi )(yi+1 − yi )
. (2.110)

Application of higher order polynomials is straightforward. For image processing

purposes bicubic interpolation is often used.

If high quality is needed more sophisticated interpolation methods can be applied.

Consider for instance two-dimensional spline interpolation on a rectangular mesh of

data to create a new data set with finer resolution5

fi, j = f (ihx , jh y) with 0 ≤ i < Nx 0 ≤ j < Ny . (2.111)

First perform spline interpolation in x-direction for each data row j to calculate new

data sets

fi ′, j = s(xi ′ , fi j , 0 ≤ i < Nx ) 0 ≤ j ≤ Ny 0 ≤ i ′ < N ′
x (2.112)

and then interpolate in y direction to obtain the final high resolution data (Fig. 2.7)

fi ′, j ′ = s(y j ′ , fi ′ j , 0 ≤ j < Ny) 0 ≤ i ′ < N ′
x 0 ≤ j ′ < N ′

y . (2.113)

5A typical task of image processing.
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Problems

Problem 2.1 Polynomial Interpolation

This computer experiment interpolates a given set of n data points by

• a polynomial

p(x) =
n

∑

i=0

fi

n
∏

k=0,k �=i

x − xk

xi − xk

, (2.114)

• a linear spline which connects successive points by straight lines

si (x) = ai + bi (x − xi ) for xi ≤ x ≤ xi+1 (2.115)

• a cubic spline with natural boundary conditions

s(x) = pi (x) = αi + βi (x − xi ) + γi (x − xi )
2 + δi (x − xi )

3 xi ≤ x ≤ xi+1

(2.116)

s ′′(xn) = s ′′(x0) = 0 (2.117)

• a rational function without poles

R(x) =
∑n

i=0 fi
ui

x−xi
∑n

i=0
ui

x−xi

(2.118)

with weights according to Berrut

uk = (−1)k (2.119)

or Floater–Hormann

uk = (−1)k−1

(

1

xk+1 − xk

+
1

xk − xk−1

)

k = 1 . . . n − 1 (2.120)

u0 = −
1

x1 − x0

un = (−1)n−1 1

xn − xn−1

. (2.121)

Table 2.2 Zener diode voltage/current data

Voltage −1.5 −1.0 −0.5 0.0

Current −3.375 −1.0 −0.125 0.0
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Table 2.3 Additional voltage/current data

Voltage 1.0 2.0 3.0 4.0 4.1 4.2 4.5

Current 0.0 0.0 0.0 0.0 1.0 3.0 10.0

Table 2.4 Pulse and step function data

x −3 −2 −1 0 1 2 3

ypulse 0 0 0 1 0 0 0

ystep 0 0 0 1 1 1 1

Table 2.5 Data set for two-dimensional interpolation

x 0 1 2 0 1 2 0 1 2

y 0 0 0 1 1 1 2 2 2

f 1 0 −1 0 0 0 −1 0 1

• Interpolate the data (Table 2.2) in the range

−1.5 < x < 0.

• Now add some more sample points (Table 2.3) for −1.5 < x < 4.5

• Interpolate the function f (x) = sin(x) at the points x = 0, π
2
,π, 3π

2
, 2π. Take

more sample points and check if the quality of the fit is improved.

• Investigate the oscillatory behavior for a discontinuous pulse or step function as

given by the data (Table 2.4)

Problem 2.3 Two-dimensional Interpolation

This computer experiment uses bilinear interpolation or bicubic spline interpolation

to interpolate the data (Table 2.5)

on a finer grid �x = �y = 0.1.



Chapter 3

Numerical Differentiation

For more complex problems analytical derivatives are not always available and have

to be approximated by numerical methods. Numerical differentiation is also very

important for the discretization of differential equations (Sect.12.2). The simplest

approximation uses a forward difference quotient (Fig. 3.1) and is not very accurate. A

symmetric difference quotient improves the quality. Even higher precision is obtained

with the extrapolation method. Approximations to higher order derivatives can be

obtained systematically with the help of polynomial interpolation.

3.1 One-Sided Difference Quotient

The simplest approximation of a derivative is the ordinary difference quotient which

can be taken forward

d f

dx
(x) ≈

∆ f

∆x
=

f (x + h) − f (x)

h
(3.1)

or backward

d f

dx
(x) ≈

∆ f

∆x
=

f (x) − f (x − h)

h
. (3.2)

Its truncation error can be estimated from the Taylor series expansion

f (x + h) − f (x)

h
=

f (x) + h f ′(x) + h2

2
f ′′(x) + · · · − f (x)

h

= f ′(x) +
h

2
f ′′(x) + · · · . (3.3)

The error order is O(h). The step width should not be too small to avoid rounding

errors. Error analysis gives

© Springer International Publishing AG 2017
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f(x)

x

∆x

∆ f

x0

Fig. 3.1 (Numerical differentiation) Numerical differentiation approximates the differential

quotient by a difference quotient
d f
dx

≈ ∆ f
∆x

. However, approximation by a simple forward difference
d f
dx

(x0) ≈ f (x0+h)− f (x0)
h

, is not very accurate

∆̃ f = f l− ( f (x + h)(1 + ε1), f (x)(1 + ε2))

= (∆ f + f (x + h)ε1 − f (x)ε2)(1 + ε3)

= ∆ f + ∆ f ε3 + f (x + h)ε1 − f (x)ε2 + · · · (3.4)

f l÷(∆̃ f , h(1 + ε4)) =
∆ f + ∆ f ε3 + f (x + h)ε1 − f (x)ε2

h(1 + ε4)
(1 + ε5)

=
∆ f

h
(1 + ε5 − ε4 + ε3) +

f (x + h)

h
ε1 −

f (x)

h
ε2. (3.5)

The errors are uncorrelated and the relative error of the result can be estimated by

∣∣∣ ∆̃ f

∆x
− ∆ f

∆x

∣∣∣
∆ f

∆x

≤ 3εM +

∣∣∣∣∣
f (x)
∆ f

∆x

∣∣∣∣∣ 2
εM

h
. (3.6)

Numerical extinction produces large relative errors for small step width h. The opti-

mal value of h gives comparable errors from rounding and truncation. It can be found

from

h

2
| f ′′(x)| = | f (x)|

2εM

h
. (3.7)

Assuming that the magnitude of the function and the derivative are comparable, we

have the rule of thumb

ho =
√

εM ≈ 10−8

(double precision). The corresponding relative error is of the same order.



3.2 Central Difference Quotient 41

Fig. 3.2 (Difference

quotient) The central

difference quotient (Right

side) approximates the

derivative (dotted) much

more accurately than the

one-sided difference quotient

(Left side) h
2

h
2

x x+h

f’(x)
f(x)

f’(x)
f(x)

x x+x−

3.2 Central Difference Quotient

Accuracy is much higher if a symmetric central difference quotient is used (Fig. 3.2):

∆ f

∆x
=

f (x + h
2
) − f (x − h

2
)

h

=
f (x) + h

2
f ′(x) + h2

8
f ′′(x) + · · · −

(
f (x) − h

2
f ′(x) + h2

8
f ′′(x) + · · ·

)

h

= f ′(x) +
h2

24
f ′′′(x) + · · · . (3.8)

The error order is O(h2). The optimal step width is estimated from

h2

24
| f ′′′(x)| = | f (x)|

2εM

h
(3.9)

again with the assumption that function and derivatives are of similar magnitude as

h0 =3
√

48εM ≈ 10−5. (3.10)

The relative error has to be expected in the order of
h2

0

24
≈ 10−11.

3.3 Extrapolation Methods

The Taylor series of the symmetric difference quotient contains only even powers

of h:

D(h) =
f (x + h) − f (x − h)

2h
= f ′(x) +

h2

3!
f ′′′(x) +

h4

5!
f (5)(x) + · · · .

(3.11)
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Fig. 3.3 (Numerical

differentiation) The

derivative d
dx

sin(x) is

calculated numerically using

algorithms with increasing

error order (3.1, 3.8, 3.14,

3.18). For very small step

sizes the error increases as

h−1 due to rounding errors

(Problem 3.1)
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The Extrapolation method [16] uses a series of step widths, e.g.

hi+1 =
hi

2
(3.12)

and calculates an estimate of D(0) by polynomial interpolation (Fig. 3.3). Consider

D0 = D(h0) and D1 = D( h0

2
). The polynomial of degree 1 (with respect to h2)

p(h) = a + bh2 can be found by the Lagrange method

p(h) = D0

h2 − h2
0

4

h2
0 − h2

0

4

+ D1

h2 − h2
0

h2
0

4
− h2

0

. (3.13)

Extrapolation for h = 0 gives

p(0) = −
1

3
D0 +

4

3
D1. (3.14)

Taylor series expansion shows

p(0) = −
1

3

(
f ′(x) +

h2
0

3!
f ′′′(x) +

h4
0

5!
f (5)(x) + · · ·

)
+

+
4

3

(
f ′(x) +

h2
0

4 · 3!
f ′′′(x) +

h4
0

16 · 5!
f (5)(x) + · · ·

)
(3.15)

= f ′(x) −
1

4

h4
0

5!
f (5)(x) + · · · (3.16)

that the error order is O(h4
0). For 3 step widths h0 = 2h1 = 4h2 we obtain the poly-

nomial of second order (in h2)
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p(h) = D0

(h2 − h2
0

4 )(h2 − h2
0

16 )

(h2
0 − h2

0
4 )(h2

0 − h2
0

16 )

+ D1

(h2 − h2
0)(h2 − h2

0
16 )

(
h2

0
4 −h2

0)(
h2

0
4 −

h2
0

16 )

+ D2

(h2 − h2
0)(h2 − h2

0
4 )

(
h2

0
16 − h2

0)(
h2

0
16 − h2

0
4 )

(3.17)

and the improved expression

p(0) = D0

1
64

3
4

· 15
16

+ D1

1
16

−3
4

· 3
16

+ D2

1
4

−15
16

· −3
16

=

=
1

45
D0 −

4

9
D1 +

64

45
D2 = f ′(x) + O(h6

0). (3.18)

Often used is the following series of step widths:

h2
i =

h2
0

2i
. (3.19)

The Neville method

Pi ···k(h
2) =

(h2 − h2
0

2i )Pi+1···k(h
2) − (h2 − h2

0

2k )Pi ···k−1(h
2)

h2
0

2k − h2
0

2i

(3.20)

gives for h=0

Pi ···k =
Pi ···k−1 − 2k−i Pi+1···k

1 − 2k−i
(3.21)

which can be written as

Pi ···k = Pi+1···k +
Pi ···k−1 − Pi+1···k

1 − 2k−i
(3.22)

and can be calculated according to the following scheme:

P0 = D(h2) P01 P012 P0123

P1 = D( h2

2
) P12 P123

P2 = D( h2

4
P23

...
...

...
. . .

(3.23)

Here the values of the polynomials are arranged in matrix form

Pi ···k = Ti,k−i = Ti, j (3.24)
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with the recursion formula

Ti, j = Ti+1, j−1 +
Ti, j−1 − Ti+1, j

1 − 2 j
. (3.25)

3.4 Higher Derivatives

Difference quotients for higher derivatives can be obtained systematically using

polynomial interpolation. Consider equidistant points

xn = x0 + nh = · · · x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h, · · · . (3.26)

From the second order polynomial

p(x) = y−1

(x − x0)(x − x1)

(x−1 − x0)(x−1 − x1)
+ y0

(x − x−1)(x − x1)

(x0 − x−1)(x0 − x1)

+ y1

(x − x−1)(x − x0)

(x1 − x−1)(x1 − x0)
=

= y−1

(x − x0)(x − x1)

2h2
+ y0

(x − x−1)(x − x1)

−h2

+ y1

(x − x−1)(x − x0)

2h2
(3.27)

we calculate the derivatives

p′(x) = y−1

2x − x0 − x1

2h2
+ y0

2x − x−1 − x1

−h2
+ y1

2x − x−1 − x0

2h2
(3.28)

p′′(x) =
y−1

h2
− 2

y0

h2
+

y1

h2
(3.29)

which are evaluated at x0:

f ′(x0) ≈ p′(x0) = −
1

2h
y−1 +

1

2h
y1 =

f (x0 + h) − f (x0 − h)

2h
(3.30)

f ′′(x0) ≈ p′′(x0) =
f (x0 − h) − 2 f (x0) + f (x0 + h)

h2
. (3.31)

Higher order polynomials can be evaluated with an algebra program. For five sample

points

x0 − 2h, x0 − h, x0, x0 + h, x0 + 2h
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we find

f ′(x0) ≈
f (x0 − 2h) − 8 f (x0 − h) + 8 f (x0 + h) − f (x0 + 2h)

12h
(3.32)

f ′′(x0) ≈
− f (x0 − 2h) + 16 f (x0 − h) − 30 f (x0) + 16 f (x0 + h) − f (x0 + 2h)

12h2

(3.33)

f ′′′(x0) ≈
− f (x0 − 2h) + 2 f (x0 − h) − 2 f (x0 + h) + f (x0 + 2h)

2h3
(3.34)

f (4)(x0) ≈
f (x0 − 2h) − 4 f (x0 − h) + 6 f (x0 + h) − 4 f (x0 + h) + f (x0 + 2h)

h4
.

3.5 Partial Derivatives of Multivariate Functions

Consider polynomials of more than one variable. In two dimensions we use the

Lagrange polynomials

L i, j (x, y) =
∏

k �=i

(x − xk)

(xi − xk)

∏

j �=l

(y − yl)

(y j − yl)
. (3.35)

The interpolating polynomial is

p(x, y) =
∑

i, j

fi, j L i, j (x, y). (3.36)

For the nine sample points

(x−1, y1) (x0, y1) (x1, y1)

(x−1, y0) (x0, y0) (x1, y0)

(x−1, y−1) (x0, y−1) (x1, y−1)

(3.37)

we obtain the polynomial

p(x, y) = f−1,−1

(x − x0)(x − x1)(y − y0)(y − y1)

(x−1 − x0)(x−1 − x1)(y−1 − y0)(y−1) − y1)
+ · · · (3.38)

which gives an approximation to the gradient

grad f (x0 y0) ≈ gradp(x0 y0) =

(
f (x0+h,y0)− f (x0−h,y0)

2h

f (x0,y0+h)− f (x0,y0−h)

2h

)
, (3.39)
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the Laplace operator

(
∂2

∂x2
+

∂2

∂y2

)
f (x0, y0) ≈

(
∂2

∂x2
+

∂2

∂y2

)
p(x0, y0)

=
1

h2
( f (x0, y0 + h) + f (x0, y0 − h) + f (x0, y0 + h) + f (x0, y0 − h) − 4 f (x0, y0))

(3.40)

and the mixed second derivative

∂2

∂x∂y
f (x0, y0) ≈

∂2

∂x∂y
p(x0, y0)

=
1

4h2
( f (x0 + h, y0 + h) + f (x0 − h, y0 − h) − f (x0 − h, y0 + h) − f (x0 + h, y0 − h)) .

(3.41)

Problems

Problem 3.1 Numerical Differentiation

In this computer experiment we calculate the derivative of f (x) = sin(x)numerically

with

• the single sided difference quotient

d f

dx
≈

f (x + h) − f (x)

h
, (3.42)

• the symmetrical difference quotient

d f

dx
≈ Dh f (x) =

f (x + h) − f (x − h)

2h
, (3.43)

• higher order approximations which can be derived using the extrapolation method

−
1

3
Dh f (x) +

4

3
Dh/2 f (x) (3.44)

1

45
Dh f (x) −

4

9
Dh/2 f (x) +

64

45
Dh/4 f (x). (3.45)

The error of the numerical approximation is shown on a log-log plot as a function of

the step width h.



Chapter 4

Numerical Integration

Physical simulations often involve the calculation of definite integrals over

complicated functions, for instance the Coulomb interaction between two electrons.

Integration is also the elementary step in solving equations of motion.

An integral over a finite interval [a, b] can always be transformed into an integral

over [0, 1] or [−1, 1]

∫ b

a

f (x)dx =
∫ 1

0

f (a + (b − a)t) (b − a)dt

=
∫ 1

−1

f

(
a + b

2
+

b − a

2
t

)
b − a

2
dt. (4.1)

An Integral over an infinite interval may have to be transformed into an integral

over a finite interval by substitution of the integration variable, for example

∫ ∞

0

f (x)dx =
∫ 1

0

f

(
t

1 − t

)
dt

(1 − t)2
(4.2)

∫ ∞

−∞
f (x)dx =

∫ 1

−1

f

(
t

1 − t2

)
t2 + 1

(t2 − 1)2
dt. (4.3)

In general a definite integral can be approximated numerically as the weighted

average over a finite number of function values

∫ b

a

f (x)dx ≈
∑

xi

wi f (xi ). (4.4)

Specific sets of quadrature points xi and quadrature weights wi are known as “inte-

gral rules”. Newton–Cotes rules like the trapezoidal rule, the midpoint rule or

Simpson’s rule, use equidistant points xi and are easy to apply. Accuracy can

be improved by dividing the integration range into sub-intervals and applying
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P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,

DOI 10.1007/978-3-319-61088-7_4

47



48 4 Numerical Integration

composite Newton–Cotes rules. Extrapolation methods reduce the error almost to

machine precision but need many function evaluations. Equidistant sample points

are convenient but not the best choice. Clenshaw–Curtis expressions use non uniform

sample points and a rapidly converging Chebyshev expansion. Gaussian integration

fully optimizes the sample points with the help of orthogonal polynomials.

4.1 Equidistant Sample Points

For equidistant points

xi = a + ih i = 0 . . . N h =
b − a

N
(4.5)

the interpolating polynomial of order N with p(xi ) = f (xi ) is given by the Lagrange

method

p(x) =
N∑

i=0

fi

N∏

k=0,k �=i

x − xk

xi − xk

. (4.6)

Integration of the polynomial gives

∫ b

a

p(x)dx =
N∑

i=0

fi

∫ b

a

N∏

k=0,k �=i

x − xk

xi − xk

dx . (4.7)

After substituting

x = a + hs

x − xk = h(s − k)

xi − xk = (i − k)h (4.8)

we have

∫ b

a

N∏

k=0,k �=i

x − xk

xi − xk

dx =
∫ N

0

N∏

k=0,k �=i

s − k

i − k
hds = hαi (4.9)

and hence

∫ b

a

p(x)dx = (b − a)

N∑

i=0

fiαi . (4.10)
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The weight factors are given by

wi = (b − a)αi = Nhαi . (4.11)

4.1.1 Closed Newton–Cotes Formulae

For N = 1 the polynomial is

p(x) = f0

x − x1

x0 − x1

+ f1

x − x0

x1 − x0

(4.12)

and the integral is

∫ b

a

p(x)dx = f0

∫ 1

0

s − 1

0 − 1
hds + f1

∫ 1

0

s − 0

1 − 0
hds

= − f0h

(
(1 − 1)2

2
−

(0 − 1)2

2

)
+ f1h

(
12

2
−

02

2

)

= h
f0 + f1

2
(4.13)

which is known as the trapezoidal rule (Fig. 4.1). N = 2 gives Simpson’s rule

2h
f0 + 4 f1 + f2

6
. (4.14)

Larger N give further integration rules

3h
f0 + 3 f1 + 3 f2 + f3

8
3/8 − rule

4h
7 f0 + 32 f1 + 12 f2 + 32 f3 + 7 f4

90
Milne − rule

5h
19 f0 + 75 f1 + 50 f2 + 50 f3 + 75 f4 + 19 f5

288

6h
41 f0 + 216 f1 + 27 f2 + 272 f3 + 27 f4 + 216 f5 + 41 f6

840
Weddle − rule.

(4.15)

For even larger N negative weight factors appear and the formulas are not

numerically stable.
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a b

f(a) f(b)

x
a b

x

f(     )a+b
2

Fig. 4.1 (Trapezoidal rule and midpoint rule) The trapezoidal rule (Left) approximates the integral

by the average of the function values at the boundaries. The midpoint rule (Right) evaluates the

function in the center of the interval and has the same error order

4.1.2 Open Newton–Cotes Formulae

Alternatively, the integral can be computed from only interior points

xi = a + ih i = 1, 2, . . . N h =
b − a

N + 1
. (4.16)

The simplest case is the midpoint rule (Fig. 4.1)

∫ b

a

f (x)dx ≈ 2h f1 = (b − a) f

(
a + b

2

)
. (4.17)

The next two are

3h

2

(
f1 + f2

)
(4.18)

4h

3

(
2 f1 − f2 + 2 f3

)
. (4.19)

4.1.3 Composite Newton–Cotes Rules

Newton–Cotes formulas are only accurate, if the step width is small. Usually the

integration range is divided into small sub-intervals

[xi , xi+1] xi = a + ih i = 0 . . . N (4.20)
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for which a simple quadrature formula can be used. Application of the trapezoidal

rule for each interval

Ii =
h

2

(
f (xi ) + f (xi+1)

)
(4.21)

gives the composite trapezoidal rule

T = h

(
f (a)

2
+ f (a + h) + · · · f (b − h) +

f (b)

2

)
(4.22)

with error order O(h2). Repeated application of Simpson’s rule for [a, a + 2h], [a +
2h, a + 4h] . . . gives the composite Simpson’s rule

S =
h

3

(
f (a) + 4 f (a + h) + 2 f (a + 2h) + 4 f (a + 3h)+

· · · + 2 f (b − 2h) + 4 f (b − h) + f (b)

)
(4.23)

with error order O(h4).1

Repeated application of the midpoint rule gives the composite midpoint rule

M = 2h

(
f (a + h) + f (a + 3h) + · · · f (b − h)

)
(4.24)

with error order O(h2).

4.1.4 Extrapolation Method (Romberg Integration)

For the trapezoidal rule the Euler–McLaurin expansion exists which for a 2m times

differentiable function has the form

∫ xN

x0

f (x)dx − T = α2h2 + α4h4 + · · ·α2m−2h2m−2 + O(h2m). (4.25)

Therefore extrapolation methods are applicable. From the composite trapezoidal rule

for h and h/2 an approximation of error order O(h4) results:

1The number of sample points must be even.
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∫ xN

x0

f (x)dx − T (h) = α2h2 + α4h4 + · · · (4.26)

∫ xN

x0

f (x)dx − T (h/2) = α2

h2

4
+ α4

h4

16
+ · · · (4.27)

∫ xN

x0

f (x)dx −
4T (h/2) − T (h)

3
= −α4

h4

4
+ · · · (4.28)

More generally, for the series of step widths

hk =
h0

2k
(4.29)

the Neville method gives the recursion for the interpolating polynomial

Pi ···k(h
2) =

(h2 − h2
0

22i )Pi+1···k(h
2) − (h2 − h2

0

22k )Pi ···k−1(h
2)

h2
0

22k − h2
0

22i

(4.30)

which for h = 0 becomes the higher order approximation to the integral (Fig. 4.2)

Pi ···k =
2−2k Pi ···k−1 − 2−2i Pi+1···k

2−2k − 2−2i
=

Pi ···k−1 − 22k−2i Pi+1···k

1 − 22k−2i

= Pi+1···k +
Pi ···k−1 − Pi+1···k

1 − 22k−2i
. (4.31)

10
-6

10
-4

10
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10
0

step width h

10
-16
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h
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h
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h
10
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h
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Fig. 4.2 (Romberg integration) The integral
∫ π2

0
sin(x2)dx is calculated numerically. Circles show

the absolute error of the composite trapezoidal rule (4.22) for the step size sequence hi+1 = hi /2.

Diamonds show the absolute error of the extrapolated value (4.31). The error order of the trapezoidal

rule is O(h2) whereas the error order of the Romberg method increases by factors of h2. For very

small step sizes the rounding errors dominate which increase as h−1
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The polynomial values can again be arranged in matrix form

P0 P01 P012 · · ·
P1 P12

P2

...

(4.32)

with

Ti, j = Pi ···i+ j (4.33)

and the recursion formula

Ti,0 = Pi = Ts

(
h0

2i

)
(4.34)

Ti, j = Ti+1, j−1 +
Ti, j−1 − Ti+1, j−1

1 − 22 j
. (4.35)

4.2 Optimized Sample Points

The Newton–Cotes method integrates polynomials of order up to N − 1 exactly,

using N equidistant sample points. Unfortunately the polynomial approximation

converges slowly, at least for not so well behaved integrands. The accuracy of the

integration can be improved by optimizing the sample point positions. Gaussian

quadrature determines the N positions and N weights such, that a polynomial of order

2N − 1 is integrated exactly. The Clenshaw–Curtis and the related Fejer methods

use the roots or the extrema of the Chebyshev polynomials as nodes and determine

the weights to integrate polynomials of order N . However, since the approximation

by Chebyshev polynomials usually converges very fast, the accuracy is in many

cases comparable to the Gaussian method [17, 18]. In the following we restrict the

integration interval to [−1, 1]. The general case [a, b] is then given by a simple

change of variables.

4.2.1 Clenshaw–Curtis Expressions

Clenshaw and Curtis [19] make the variable substitution

x = cos θ dx = − sin θ dθ (4.36)
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for the integral

∫ 1

−1

f (x)dx =
∫ π

0

f (cos t) sin t dt (4.37)

and approximate the function by the trigonometric polynomial (7.19 with

N = 2M, T = 2π )

f (cos t) =
1

2M
c0 +

1

M

M−1∑

j=1

c j cos ( j t) +
1

2M
cM cos(Mt) (4.38)

which interpolates (Sect. 7.2.1 ) f (cos t) at the sample points

tn = n∆t = n
π

M
withn = 0, 1, . . . M (4.39)

xn = cos tn = cos
(

n
π

M

)
(4.40)

and where the Fourier coefficients are given by (7.17 )

c j = f0 + 2

M−1∑

n=1

f (cos(tn)) cos(
π

M
jn) + fM cos( jπ). (4.41)

The function cos( j t) is related to the Chebyshev polynomials of the first kind

which for −1 ≤ x ≤ 1 are given by the trigonometric definition

T j (x) = cos( j arccos(x)) (4.42)

and can be calculated recursively

T0(x) = 1 (4.43)

T1(x) = x (4.44)

T j+1(x) = 2x T j (x) − T j−1(x). (4.45)

Substituting x = cos t we find

T j (cos t) = cos( j t). (4.46)

Hence the Fourier series (4.38) corresponds to a Chebyshev approximation

http://dx.doi.org/10.1007/978-3-319-61088-7_7
http://dx.doi.org/10.1007/978-3-319-61088-7_7
http://dx.doi.org/10.1007/978-3-319-61088-7_7
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f (x) =
M∑

j=0

a j T j (x) =
c0

2M
T0(x) +

M−1∑

j=1

c j

M
T j (x) +

cM

2M
TM(x) (4.47)

and can be used to approximate the integral

∫ 1

−1

f (x)dx ≈
∫ π

0

⎧
⎨
⎩

1

2M
c0 +

1

M

M−1∑

j=1

c j cos ( j t) +
1

2M
cM cos(Mt)

⎫
⎬
⎭ sin θ dθ

(4.48)

=
1

M
c0 +

1

M

M−1∑

j=1

c j

cos( jπ) + 1

1 − j2
+

1

2M
cM

cos(Mπ) + 1

1 − M2
(4.49)

where, in fact, only the even j contribute.

Example Clenshaw Curtis quadrature for M = 5

The function has to be evaluated at the sample points xk = cos(π
5

k) = (1, 0.80902,

0.30902,−0.30902,−0.80902,−1). The Fourier coefficients are given by

⎛
⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

c3

c4

c5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 2 2 2 1

1 1.618 0.618 −0.618 −1.618 −1

1 0.618 −1.618 −1.618 0.618 1

1 −0.618 −1.618 1.618 0.618 −1

1 −1.618 0.618 0.618 −1.618 1

1 −2 2 −2 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

f0

f1

f2

f3

f4

f5

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.50)

and the integral is approximately

∫ 1

−1

f (x)dx ≈
(

1
5

0 − 2
15

0 − 2
75

0
)

⎛
⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

c3

c4

c5

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.0400 f0 + 0.3607 f1 + 0.5993 f2 + 0.5993 f3 + 0.3607 f4 + 0.0400 f5.

(4.51)

Clenshaw Curtis weights of very high order can be calculated efficiently [20, 21]

using the FFT algorithm (fast Fourier transformation, Sect. 7.3.2).

http://dx.doi.org/10.1007/978-3-319-61088-7_7
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4.2.2 Gaussian Integration

Now we will optimize the positions of the N quadrature points xi to obtain the

maximum possible accuracy. We approximate the integral by a sum

∫ b

a

f (x)dx ≈
N∑

i=1

f (xi )wi (4.52)

and determine the 2N parameters xi and wi such that a polynomial of order 2N − 1

is integrated exactly. This can be achieved with the help of a set of polynomials which

are orthogonal with respect to the scalar product

< f g >=
∫ b

a

f (x)g(x)w(x)dx (4.53)

where the weight function w(x) and the interval [a, b] determine a particular set of

orthogonal polynomials.

4.2.2.1 Gauss–Legendre Integration

Again we restrict the integration interval to [−1, 1] in the following. For integrals

with one or two infinite boundaries see Sect. 4.2.2. The simplest choice for the weight

function is

w(x) = 1. (4.54)

An orthogonal system of polynomials on the interval [−1, 1] can be found using the

Gram–Schmidt method:

P0 = 1 (4.55)

P1 = x −
P0

< P0 P0 >

∫ 1

−1

x P0(x)dx = x (4.56)

P2 = x2 −
P1

< P1 P1 >

∫ 1

−1

x2 P1(x)dx −
P0

< P0 P0 >

∫ 1

−1

x2 P0(x)dx

= x2 −
1

3
(4.57)
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Pn = xn −
Pn−1

< Pn−1 Pn−1 >

∫ 1

−1

xn Pn−1(x)dx

−
Pn−2

< Pn−2 Pn−2 >

∫ 1

−1

xn Pn−2(x)dx − · · · . (4.58)

The Pn are known as Legendre-polynomials. Consider now a polynomial p(x) of

order 2N − 1. It can be interpolated at the N quadrature points xi using the Lagrange

method by a polynomial p̃(x) of order N − 1:

p̃(x) =
N∑

j=1

L j (x)p(x j ). (4.59)

Then p(x) can be written as

p(x) = p̃(x) + (x − x1)(x − x2) . . . (x − xN )q(x). (4.60)

Obviously q(x) is a polynomial of order (2N − 1) − N = N − 1. Now choose the

positions xi as the roots of the Legendre polynomial of order N

(x − x1)(x − x2) . . . (x − xN ) = PN (x). (4.61)

Then we have

∫ 1

−1

(x − x1)(x − x2) . . . (x − xN )q(x)dx = 0 (4.62)

since PN is orthogonal to the polynomial of lower order. But now

∫ 1

−1

p(x)dx =
∫ 1

−1

p̃(x)dx =
∫ 1

−1

N∑

j=1

p(x j )L j (x)dx =
N∑

j=1

w j p(x j ) (4.63)

with the weight factors

w j =
∫ 1

−1

L j (x)dx . (4.64)

Example (Gauss–Legendre integration with two quadrature points) The 2nd order

Legendre polynomial

P2(x) = x2 −
1

3
(4.65)

has two roots
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x1,2 = ±
√

1

3
. (4.66)

The Lagrange polynomials are

L1 =
x −

√
1
3

−
√

1
3

−
√

1
3

L2 =
x +

√
1
3√

1
3

+
√

1
3

(4.67)

and the weights

w1 =
∫ 1

−1

L1dx = −
√

3

2

(
x2

2
−

√
1

3
x

)1

−1

= 1 (4.68)

w2 =
∫ 1

−1

L2dx =
√

3

2

(
x2

2
+

√
1

3
x

)1

−1

= 1. (4.69)

This gives the integral rule

∫ 1

−1

f (x)dx ≈ f

(
−

√
1

3

)
+ f

(√
1

3

)
. (4.70)

For a general integration interval we substitute

x =
a + b

2
+

b − a

2
u (4.71)

and find the approximation

∫ b

a

f (x)dx =
∫ 1

−1

f

(
a + b

2
+

b − a

2
u

)
b − a

2
du

≈
b − a

2

(
f

(
a + b

2
−

b − a

2

√
1

3

)
+ f

(
a + b

2
+

b − a

2

√
1

3

))
. (4.72)

The next higher order Gaussian rule is given by

n = 3 : w1 = w3 = 5/9, w2 = 8/9, x3 = −x1 = 0.77459 . . . , x2 = 0. (4.73)
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4.2.2.2 Other Types of Gaussian Integration

Further integral rules can be obtained by using other sets of orthogonal polynomials,

for instance

Chebyshev Polynomials

w(x) =
1

√
1 − x2

(4.74)

∫ 1

−1

f (x)dx =
∫ 1

−1

f (x)
√

1 − x2w(x)dx (4.75)

Tn+1(x) = 2x Tn(x) − Tn−1(x) (4.76)

xk = cos

(
2k − 1

2N
π

)
wk =

π

N
. (4.77)

Hermite Polynomials

w(x) = e−x2

(4.78)

∫ ∞

−∞
f (x)dx =

∫ ∞

−∞
f (x)ex2

w(x)dx (4.79)

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2x Hn(x) − 2nHn−1(x).

Laguerre Polynomials

w(x) = e−x (4.80)

∫ ∞

0

f (x)dx =
∫ ∞

0

f (x)exw(x)dx (4.81)

L0(x) = 1, L1(x) = 1 − x, Ln+1(x) =
1

n + 1

(
(2n + 1 − x)Ln(x) − nLn−1(x)

)
.

(4.82)
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4.2.2.3 Connection with an Eigenvalue Problem

The determination of quadrature points and weights can be formulated as an eigen-

value problem [22, 23]. Any set of orthogonal polynomials Pn(x) with

∫ b

a

Pm(x)Pn(x)w(x)dx = δm,n (4.83)

satisfies a three term recurrence relation

Pn+1(x) = (an+1x + bn+1) Pn(x) − cn+1 Pn−1(x) (4.84)

with an > 0, cn > 0 which can be written in matrix form [24]

x

⎛
⎜⎜⎜⎜⎜⎜⎝

P0(x)

P1(x)

PN−1(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− b1
a1

1
a1

c2
a2

− b2
a2

1
a2

. . .
. . .

. . .

. . .
. . .

. . .
cN−1
aN−1

− bN−1
aN−1

1
aN−1

cN
aN

− bN
aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

P0(x)

P1(x)

PN−1(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

.

.

.

.

.

.

0
1

aN
PN (x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.85)

or shorter

xP(x) = T P(x) +
1

aN

PN (x)eN−1 (4.86)

with a tridiagonal matrix T . Obviously PN (x) = 0 if and only if

x j P(x j ) = T P(x j ), (4.87)

hence the roots of PN (x) are given by the eigenvalues of T . The matrix T is symmetric

if the polynomials are orthonormal, otherwise it can be transformed into a symmet-

ric tridiagonal matrix by an orthogonal transformation [24]. Finally the quadrature

weight corresponding to the eigenvalue x j can be calculated from the first component

of the corresponding eigenvector u j [22] as

w j = u2
j,1 ×

∫ b

a

w(x)dx . (4.88)
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Problems

Problem 4.1 Romberg Integration

Use the trapezoidal rule

T (h) = h

(
1

2
f (a) + f (a + h) + · · · f (b − h) +

1

2
f (b)

)
=

∫ b

a
f (x)dx + · · ·

(4.89)

with the step sequence

hi =
h0

2i
(4.90)

and calculate the elements of the triangular matrix

T (i, 0) = T (hi ) (4.91)

T (i, k) = T (i + 1, k − 1) +
T (i, k − 1) − T (i + 1, k − 1)

1 − h2
i

h2
i+k

(4.92)

to obtain the approximations

T01 = P01, T02 = P012, T03 = P0123, . . . (4.93)

• calculate

∫ π2

0

sin(x2)dx = 0.6773089370468890331 . . . (4.94)

and compare the absolute error of the trapezoidal sums T (hi ) = Ti,0 and the extrap-

olated values T0,i .

• calculate

∫ 1

ε

dx
√

x
(4.95)

for ε = 10−3. Compare with the composite midpoint rule

T (h) = h

(
f

(
a +

h

2

)
+ f

(
a +

3h

2

)
+ · · · + f

(
b −

3h

2

)
+ f

(
b −

h

2

))

(4.96)



Chapter 5

Systems of Inhomogeneous Linear Equations

Many problems in physics and especially computational physics involve systems of

linear equations

a11x1 + · · · + a1n xn = b1

...
...

...

an1x1 + · · · + ann xn = bn

(5.1)

or shortly in matrix form

Ax = b (5.2)

which arise e.g. from linearization of a general nonlinear problem like (Sect. 22.2)

0 =

⎛

⎜

⎝

F1(x1 . . . xn)

.

.

.

Fn(x1 . . . xn)

⎞

⎟

⎠
=

⎛

⎜

⎜

⎝

F1(x
(0)
1 . . . x

(0)
n )

.

.

.

Fn(x
(0)
1 . . . x

(0)
n )

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

∂F1
∂x1

. . .
∂F1
∂xn

.

.

.
. . .

.

.

.
∂Fn
∂x1

. . .
∂Fn
∂xn

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x1 − x
(0)
1

.

.

.

xn − x
(0)
n

⎞

⎟

⎟

⎠

+ . . .

(5.3)

or from discretization of differential equations like

0 =
∂ f

∂x
− g(x) →

⎛

⎜

⎜

⎝

...
f (( j+1)∆x)− f ( j∆x)

∆x
− g( j∆x)

...

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .

− 1
∆x

1
∆x

− 1
∆x

1
∆x

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

...

f j

f j+1

...

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎝

...

g j

g j+1

...

⎞

⎟

⎟

⎟

⎟

⎠

. (5.4)
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If the matrix A is non singular and has full rank, (5.2) can be formally solved by

matrix inversion

x = A−1b. (5.5)

If the matrix is singular or the number of equations smaller than the number of vari-

ables, a manifold of solutions exists which can be found efficiently by singular value

decomposition (Sect. 11.2). The general solution is given by a particular solution

and the nullspace of A

x = xp + z wi th Axp = b and Az = 0. (5.6)

If the number of equations is larger than the number of variables there exists no

unique solution. The “best possible solution” can be determined by minimizing the

residual

|Ax − b| = min (5.7)

which leads to a least squares problem (Sect. 11.1.1).

In the following we discuss several methods to solve non singular systems. If

the dimension is not too large, direct methods like Gaussian elimination or QR

decomposition are sufficient. Systems with a tridiagonal matrix are important for

cubic spline interpolation and numerical second derivatives. They can be solved

very efficiently with a specialized Gaussian elimination method. Practical applica-

tions often involve very large dimensions and require iterative methods. Station-

ary methods apply a simple iteration scheme repeatedly. The slow convergence of

the methods by Jacobi and Gauss-Seidel can be improved with relaxation or over-

relaxation. Non-stationary methods construct a sequence of improved approxima-

tions within a series of increasing subspaces of R
N . Modern Krylov-space meth-

ods minimize the residual r = Ax − b within the sequence of Krylov-spaces

Kn(A, r(0)) = span(r(0), Ar(0), . . . An−1r(0)). We discuss the conjugate gradients

method (CG [25]) for symmetric positive definite matrices and the method of gen-

eral minimal residuals (GMRES [26]) for non symmetric matrices. Other popular

methods are the methods of bi-conjugate gradients (BiCG [27] BiCGSTAB [28]),

conjugate residuals (CR [29]) , minimal residual (MINRES [30]), quasi-minimal

residual (QMR [31]), the symmetric LQ-method (SYMMLQ [32]) and Lanzcos type

product methods (LTPM [33–35]).

5.1 Gaussian Elimination Method

A series of linear combinations of the equations transforms the matrix A into an

upper triangular matrix. Start with subtracting ai1/a11 times the first row from rows

2 · · · n

http://dx.doi.org/10.1007/978-3-319-61088-7_11
http://dx.doi.org/10.1007/978-3-319-61088-7_11
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⎛

⎜

⎜

⎜

⎝

aT
1

aT
2
...

aT
n

⎞

⎟

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎝

aT
1

aT
2 − l21aT

1
...

aT
n − ln1aT

1

⎞

⎟

⎟

⎟

⎠

(5.8)

which can be written as a multiplication

A(1) = L1 A (5.9)

with the Frobenius matrix

L1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

−l21 1

−l31 1
...

. . .

−ln1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

li1 =
ai1

a11

. (5.10)

The result has the form

A(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 · · · a1n−1 a1n

0 a
(1)
22 · · · a

(1)
2n−1 a

(1)
2n

0 a
(1)
32 · · · · · · a

(1)
3n

0
...

...

0 a
(1)
n2 · · · · · · a(1)

nn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.11)

Now subtract ai2

a22
times the second row from rows 3 · · · n. This can be formulated as

A(2) = L2 A(1) = L2 L1 A (5.12)

with

L2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

0 1

0 −l32 1
...

...
. . .

0 −ln2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

li2 =
a

(1)

i2

a
(1)
22

. (5.13)

The result is
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A(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a
(2)
11 a

(2)
12 a

(2)
13 · · · a

(2)
1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(2)
33 · · · a

(2)
3n

...
...

...
...

0 0 a
(2)
n3 · · · a(2)

nn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.14)

Continue until an upper triangular matrix results after n−1 steps:

A(n−1) = Ln−1 A(n−2) (5.15)

Ln−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

. . .

1

−ln,n−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

ln,n−1 =
a

(n−2)
n,n−1

a
(n−2)
n−1,n−1

(5.16)

A(n−1) = Ln−1Ln−2 · · · L2 L1 A = U (5.17)

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

u11 u12 u13 · · · u1n

u22 u23 · · · u2n

u33 · · · u3n

. . .
...

unn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.18)

The transformed system of equations

Ux = y y = Ln−1Ln−1 · · · L2 L1b (5.19)

can be solved easily by backward substitution:

xn =
1

unn

yn (5.20)

xn−1 =
yn−1 − xnun−1,n

un−1,n−1

(5.21)

... (5.22)

Alternatively the matrices L i can be inverted:
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L−1
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

l21 1

l31 1
...

. . .

ln1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

· · · L−1
n−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1

. . .

1

ln,n−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.23)

This gives

A = L−1
1 L−1

2 · · · L−1
n−1U. (5.24)

The product of the inverted matrices is a lower triangular matrix:

L−1
1 L−1

2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

l21 1

l31 l32 1
...

...
. . .

ln1 ln2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

...

L = L−1
1 L−1

2 · · · L−1
n−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

l21 1
...

...
. . .

ln−1,1 ln−1,2 · · · 1

ln1 ln2 · · · ln,n−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.25)

Hence the matrix A becomes decomposed into a product of a lower and an upper

triangular matrix

A = LU (5.26)

which can be used to solve the system of (5.2).

Ax = LUx = b (5.27)

in two steps:

Ly = b (5.28)

which can be solved from the top

y1 = b1 (5.29)

y2 = b2 − l21 y1 (5.30)

... (5.31)
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and

Ux = y (5.32)

which can be solved from the bottom

xn =
1

unn

yn (5.33)

xn−1 =
yn−1 − xnun−1,n

un−1,n−1

. (5.34)

... (5.35)

5.1.1 Pivoting

To improve numerical stability and to avoid division by zero pivoting is used. Most

common is partial pivoting. In every step the order of the equations is changed

in order to maximize the pivoting element ak,k in the denominator. This gives LU

decomposition of the matrix P A where P is a permutation matrix. P is not needed

explicitly. Instead an index vector is used which stores the new order of the equations

P

⎛

⎜

⎝

1
...

N

⎞

⎟

⎠
=

⎛

⎜

⎝

i1

...

iN

⎞

⎟

⎠
. (5.36)

Total pivoting exchanges rows and columns of A. This can be time consuming for

larger matrices.

If the elements of the matrix are of different orders of magnitude it can be necessary

to balance the matrix, for instance by normalizing all rows of A. This can be also

achieved by selecting the maximum of

aik
∑

j |ai j |
(5.37)

as the pivoting element.

5.1.2 Direct LU Decomposition

LU decomposition can be also performed in a different order [36]. For symmetric

positive definite matrices there exists the simpler and more efficient Cholesky method

decomposes the matrix into the product L LT of a lower triangular matrix and its

transpose [37].
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5.2 QR Decomposition

The Gaussian elimination method can become numerically unstable [38]. An alter-

native method to solve a system of linear equations uses the decomposition [39]

A = Q R (5.38)

with a unitary matrix Q† Q = 1 (an orthogonal matrix QT Q = 1 if A is real) and

an upper right triangular matrix R. The system of linear equations (5.2) is simplified

by multiplication with Q† = Q−1

Q Rx = Ax = b (5.39)

Rx = Q†b. (5.40)

Such a system with upper triangular matrix is easily solved (see 5.32).

5.2.1 QR Decomposition by Orthogonalization

Gram-Schmidt orthogonalization [2, 39] provides a simple way to perform a QR

decomposition. It is used for symbolic calculations and also for least square fitting

(11.1.2) but can become numerically unstable.

From the decomposition A = Q R we have

aik =
k

∑

j=1

qi jr jk (5.41)

ak =
k

∑

j=1

r jkq j (5.42)

which gives the k-th column vector ak of A as a linear combination of the orthonormal

vectors q1 · · · qk . Similarly qk is a linear combination of the first k columns of A.

With the help of the Gram-Schmidt method r jk and q j are calculated as follows:

r11 := |a1| (5.43)

q1 :=
a1

r11

(5.44)

For k = 2, · · · n:

http://dx.doi.org/10.1007/978-3-319-61088-7_11
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rik := qi ak i = 1 · · · k − 1 (5.45)

bk := ak − r1kq1 − · · · rk−1,kqk−1 (5.46)

rkk := |bk | (5.47)

qk :=
bk

rkk

. (5.48)

Obviously now

ak = rkkqk + rk−1,kqk−1 + · · · r1kq1 (5.49)

since per definition

qi ak = rik i = 1 · · · k (5.50)

and

r2
kk = |bk |2 = |ak |2 + r2

1k + · · · r2
k−1,k − 2r2

1k − · · · − 2r2
k−1,k . (5.51)

Hence

qkak =
1

rkk

(ak − r1kq1 · · · rk−1,kqk−1)ak =
1

rkk

(|ak |2 − r2
1k · · · − r2

k−1,k) = rkk .

(5.52)

Orthogonality gives

qi ak = 0 i = k + 1 · · · n. (5.53)

In matrix notation we have finally

A = (a1 · · · an) = (q1 · · · qn)

⎛

⎜

⎜

⎜

⎝

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

⎞

⎟

⎟

⎟

⎠

. (5.54)

If the columns of A are almost linearly dependent, numerical stability can be

improved by an additional orthogonalization step

bk → bk − (q1bk)q1 − · · · (qk−1bk)qk−1 (5.55)

after (5.46) which can be iterated several times to improve the results [2, 40].
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Fig. 5.1 (Householder

transformation)

Geometrically the

Householder transformation

(5.56) is a mirror operation

with respect to a plane with

normal vector u

u

r

u r

r−2u(ur)

5.2.2 QR Decomposition by Householder Reflections

Numerically stable algorithms use a series of transformations with unitary matrices,

mostly Householder reflections (Fig. 5.1) [2]1 which have the form

P = PT = 1 − 2uuT (5.56)

with a unit vector

|u| = 1. (5.57)

Obviously P is an orthogonal matrix since

PT P = (1 − 2uuT )(1 − 2uuT ) = 1 − 4uuT + 4uuT uuT = 1. (5.58)

In the first step we try to find a vector u such that the first column vector of A

a1 =

⎛

⎜

⎝

a11

...

an1

⎞

⎟

⎠
(5.59)

1Alternatively Givens rotations [39] can be employed which need slightly more floating point

operations.
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is transformed into a vector along the 1-axis

Pa1 =
(

1 − 2uuT
)

a1 = ke1 =

⎛

⎜

⎜

⎜

⎝

k

0
...

0

⎞

⎟

⎟

⎟

⎠

. (5.60)

Multiplication with the transpose vector gives

k2 = (Pa1)
T Pa1 = aT

1 PT Pa1 = |a1|2 (5.61)

and

k = ±|a1| (5.62)

can have both signs. From (5.60) we have

a1 − 2u(ua1) = ke1. (5.63)

Multiplication with aT
1 gives

2(ua1)
2 = |a1|2 − k(a1e1) (5.64)

and since

|a1 − ke1|2 = |a1|2 + k2 − 2k(a1e1) = 2|a1|2 − 2k(a1e1) (5.65)

we have

2(ua1)
2 =

1

2
|a1 − ke1|2 (5.66)

and from (5.63) we find

u =
a1 − ke1

2ua1

=
a1 − ke1

|a1 − ke1|
. (5.67)

To avoid numerical extinction the sign of k is chosen such that

σ = sign(k) = −sign(a11). (5.68)

Then,
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u =
1

√

2(a2
11 + · · · + a2

n1) + 2|a11|
√

a2
11 + · · · + a2

n1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

sign(a11)

(

|a11| +
√

a2
11 + a2

21 + . . . a2
n1

)

a21

...

an1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5.69)

2uuT a1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

sign(a11)

(

|a11| +
√

a2
11 + a2

21 + . . . a2
n1

)

a21

.

.

.

an1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

×
1

(a2
11 + · · · + a2

n1) + |a11|
√

a2
11 + · · · + a2

n1

(

a2
11 + |a11|

√

a2
11 + . . . a2

n1 + a2
21 + · · · + a2

n1

)

(5.70)

and the Householder transformation of the first column vector of A gives

(1 − 2uuT )a1 =

⎛

⎜

⎜

⎜

⎜

⎝

−sign(a11)

√

a2
11 . . . a2

n1

0
...

0

⎞

⎟

⎟

⎟

⎟

⎠

. (5.71)

Thus after the first step a matrix results of the form

A(1) = P1 A =

⎛

⎜

⎜

⎜

⎝

a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 a

(1)
2n

...
...

...

0 a
(1)
n2 . . . a(1)

nn

⎞

⎟

⎟

⎟

⎠

.

In the following (n-2) steps further Householder reflections are applied in the sub-

space k ≤ i, j ≤ n to eliminate the elements

ak+1,k . . . an,k

of the k − th row vector below the diagonal of the matrix:



74 5 Systems of Inhomogeneous Linear Equations

A(k−1) = Pk−1 . . . P1 A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a
(1)
11 . . . a

(1)

1,k−1 a
(1)

1,k . . . a
(1)
1,n

0
. . .

...
...

...
...

. . . a
(k−1)

k−1,k−1 a
(k−1)

k−1,k a
(k−1)

k−1,n

...
... 0 a

(k−1)

k,k a
(k−1)

k,n

...
...

... a
(k−1)

k+1,k a
(k−1)

k+1,n

...
...

...
...

...

0 . . . 0 a
(k−1)

n,k . . . a(k−1)
n,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.72)

Pk =

⎛

⎜

⎜

⎜

⎝

11

. . .

1k−1

1 − 2uuT

⎞

⎟

⎟

⎟

⎠

.

Finally an upper triangular matrix results

A(n−1) = (Pn−1 . . . P1)A = R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a
(1)
11 a

(1)
12 . . . a

(1)
1,n−1 a

(1)
1,n

0 a
(2)
22 . . . a

(2)
2,n−1 a

(2)
2,n

... 0
. . .

...
...

...
...

... a
(n−1)
n−1,n−1 a

(n−1)
n−1,n

0 0 . . . 0 a(n−1)
n,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.73)

If the orthogonal matrix Q is needed explicitly additional numerical operations are

necessary to form the product

Q = (Pn−1 . . . P1)
T . (5.74)

5.3 Linear Equations with Tridiagonal Matrix

Linear equations with the form

b1x1 + c1x2 = r1 (5.75)

ai xi−1 + bi xi + ci xi+1 = ri i = 2 · · · (n − 1) (5.76)

an xn−1 + bn xn = rn (5.77)
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can be solved very efficiently with a specialized Gaussian elimination method.2

They are important for cubic spline interpolation or second derivatives. We begin by

eliminating a2. To that end we multiply the first line with a2/b1 and subtract it from

the first line. The result is the equation

β2x2 + c2x3 = ρ2 (5.78)

with the abbreviations

β2 = b2 −
c1a2

b1

ρ2 = r2 −
r1a2

b1

. (5.79)

We iterate this procedure

βi xi + ci xi+1 = ρi (5.80)

βi = bi −
ci−1ai

βi−1

ρi = ri −
ρi−1ai

βi−1

(5.81)

until we reach the n-th equation, which becomes simply

βn xn = ρn (5.82)

βn = bn −
cn−1an

βn−1

ρn = rn −
ρn−1an

βn−1

. (5.83)

Now we immediately have

xn =
ρn

βn

(5.84)

and backward substitution gives

xi−1 =
ρi−1 − ci−1xi

βi−1

(5.85)

and finally

x1 =
r1 − c1x2

β2

. (5.86)

This algorithm can be formulated as LU decomposition: Multiplication of the

matrices

2This algorithm is only well behaved if the matrix is diagonal dominant |bi | > |ai | + |ci |.
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L =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

l2 1

l3 1

. . .
. . .

ln 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

β1 c1

β2 c2

β3 c3

. . .

βn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5.87)

gives

LU =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

β1 c1

. . .
. . .

. . .
. . .

liβi−1 (li ci−1 + βi ) ci

. . .
. . .

. . .

lnβn−1 (lncn−1 + βn)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.88)

which coincides with the matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 c1

a2

. . .
. . .

. . .
. . .

. . .

ai bi ci

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.89)

if we choose

li =
ai

βi−1

(5.90)

since then from (5.81)

bi = βi + li ci−1 (5.91)

and

liβi−1 = ai . (5.92)
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5.4 Cyclic Tridiagonal Systems

Periodic boundary conditions lead to a small perturbation of the tridiagonal matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 c1 a1

a2

. . .
. . .

. . .
. . .

. . .

ai bi ci

. . .
. . .

. . .

an−1 bn−1 cn−1

cn an bn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.93)

The system of equations

Ax = r (5.94)

can be reduced to a tridiagonal system [41] with the help of the Sherman–Morrison

formula [42], which states that if A0 is an invertible matrix and u, v are vectors and

1 + vT A−1
0 u �= 0 (5.95)

then the inverse of the matrix3

A = A0 + uvT (5.96)

is given by

A−1 = A−1
0 −

A−1
0 uvT A−1

0

1 + vT A−1
0 u

. (5.97)

We choose

uvT =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

α

0
...

0

cn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

1 0 · · · 0 a1

α

)

=

⎛

⎜

⎜

⎜

⎜

⎝

α a1

cn
a1cn

α

⎞

⎟

⎟

⎟

⎟

⎠

. (5.98)

3Here uvT is the outer or matrix product of the two vectors.
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Then

A0 = A − uvT =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(b1 − α) c1 0

a2

. . .
. . .

. . .
. . .

. . .

ai bi ci

. . .
. . .

. . .

an−1 bn−1 cn−1

0 an (bn − a1cn

α
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5.99)

is tridiagonal. The free parameter α has to be chosen such that the diagonal elements

do not become too small. We solve the system (5.94) by solving the two tridiagonal

systems

A0x0 = r

A0q = u (5.100)

and compute x from

x = A−1r = A−1
0 r −

(A−1
0 u)vT (A−1

0 r)

1 + vT (A−1
0 u)

= x0 − q
vT x0

1 + vTq
. (5.101)

5.5 Linear Stationary Iteration

Discretized differential equations often lead to systems of equations with large sparse

matrices, which have to be solved by iterative methods which, starting from an initial

guess x0 (often simply x0 = 0 or x0 = b ) construct a sequence of improved vectors

by the iteration

x(n+1) = Φ(x(n), b) (5.102)

which under certain conditions converges to the fixed point

xF P = Φ(xF P , b) (5.103)

which solves the system of equations

Ax = b. (5.104)
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A linear iterative method is called stationary, if it has the form

x(n+1) = Bx(n) + Cb (5.105)

where the matrices B (the so called iteration matrix) and C are constant and do not

depend on the iteration count n. A fixed point of (5.105) solves (5.104) and hence

the method is consistent, if

x = Bx + Cb = Bx + C Ax (5.106)

and hence

B = I − C A (5.107)

which brings the iteration to the general form

x(n+1) = (I − C A)x(n) + Cb = x(n) − C(Ax(n) − b) (5.108)

r(n+1) = (1 − AC)r(n). (5.109)

5.5.1 Richardson-Iteration

The simplest of these methods uses C = ω I with a damping parameter ω. It iterates

according to

x(n+1) = x(n) − ω(Ax(n) − b) (5.110)

r(n+1) = (1 − ωA)r(n). (5.111)

The Richardson iteration is not of much practical use. It serves as the prototype

of a linear stationary method. To improve convergence (5.104) usually has to be

preconditioned by multiplication with a suitable matrix P

P Ax = Pb (5.112)

for which the Richardson iteration

x(n+1) = x(n) − ωP(Ax(n) − b) (5.113)

is of the general form (5.108).



80 5 Systems of Inhomogeneous Linear Equations

5.5.2 Matrix Splitting Methods

Let us divide the matrix A into two (non singular) parts [2]

A = A1 + A2 (5.114)

where A1 can be easily inverted and rewrite (5.104) as

A1x = b − A2x (5.115)

which defines the iteration

Φ(x) = −A−1
1 A2x + A−1

1 b (5.116)

= −A−1
1 (A − A1)x + A−1

1 b = x − A−1
1 (Ax − b). (5.117)

5.5.3 Jacobi Method

Jacobi divides the matrix A into its diagonal and two triangular matrices [43]:

A = L + U + D. (5.118)

For A1 the diagonal part is chosen

A1 = D (5.119)

giving

x(n+1) = −D−1(A − D)x(n) + D−1b (5.120)

which reads explicitly

x
(n+1)

i = −
1

ai i

∑

j �=i

ai j x
(n)

j +
1

ai i

bi . (5.121)

This method is stable but converges rather slowly. Reduction of the error by a factor

of 10−p needs about
pN

2
iterations. N grid points have to be evaluated in each iteration

and the method scales with O(N 2) [44].
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5.5.4 Gauss-Seidel Method

With

A1 = D + L (5.122)

the iteration becomes

(D + L)x(n+1) = −Ux(n) + b (5.123)

which has the form of a system of equations with triangular matrix [45]. It reads

explicitly

∑

j≤i

ai j x
(n+1)

j = −
∑

j>i

ai j x
(n)

j + bi . (5.124)

Forward substitution starting from x1 gives

i = 1 : x
(n+1)
1 =

1

a11

⎛

⎝−
∑

j≥2

ai j x
(n)

j + b1

⎞

⎠

i = 2 : x
(n+1)
2 =

1

a22

⎛

⎝−a21x
(n+1)
1 −

∑

j≥3

ai j x
(n)

j + b2

⎞

⎠

i = 3 : x
(n+1)
3 =

1

a33

⎛

⎝−a31x
(n+1)
1 − a32x

(n+1)
2 −

∑

j≥4

ai j x
(n)

j + b3

⎞

⎠

...

x
(n+1)

i =
1

ai i

⎛

⎝−
∑

j<i

ai j x
(n+1)

j −
∑

j>i

ai j x
(n)

j + bi

⎞

⎠ . (5.125)

This looks very similar to the Jacobi method. But here all changes are made immedi-

ately. Convergence is slightly better (roughly a factor of 2) and the numerical effort

is reduced [44].

5.5.5 Damping and Successive Over-relaxation

Convergence can be improved [44] by combining old and new values. Starting from

the iteration
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A1x(n+1) = (A1 − A)x(n) + b (5.126)

we form a linear combination with

Dx(n+1) = Dx(n) (5.127)

giving the new iteration equation

((1 − ω)D + ωA1)x
(n+1) = ((1 − ω)D + ωA1 − ωA)x(n) + ωb. (5.128)

In case of the Jacobi method with D = A1 we have

Dx(n+1) = (D − ωA)x(n) + ωb (5.129)

x(n+1) = x(n) − ωD−1(Ax − b) (5.130)

which can be also obtained directly from (5.113).

Explicitly,

x
(n+1)

i = (1 − ω)x
(n)

i +
ω

ai i

⎛

⎝−
∑

j �=i

ai j x
(n)

j + bi

⎞

⎠ . (5.131)

The changes are damped (0 < ω < 1) or exaggerated (1 < ω < 2).

In case of the Gauss-Seidel method with A1 = D + L the new iteration4 (5.128)

is

(D + ωL)x(n+1) = (D + ωL − ωA)x(n) + ωb = (1 − ω)Dx(n) − ωUx(n) + ωb

(5.132)

x(n+1) = x(n) −
(

1

ω
D + L

)−1

(Ax(n) − b) (5.133)

or explicitly

x
(n+1)

i = (1 − ω)x
(n)

i +
ω

ai i

⎛

⎝−
∑

j<i

ai j x
(n+1)

j −
∑

j>i

ai j x
(n)

j + b

⎞

⎠ . (5.134)

4This is also known as the method of successive over-relaxation (SOR) and differs from the damped

Gauss-Seidel method which follows from (5.113).
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It can be shown that the successive over-relaxation method converges only for 0 <

ω < 2. For optimal choice of ω about 1
3

p
√

N iterations are needed to reduce the

error by a factor of 10−p. The order of the method is O(N
3
2 ) which is comparable

to the most efficient matrix inversion methods [44].

5.6 Non Stationary Iterative Methods

Non stationary methods use a more general iteration

x(n+1) = Φn(xn) (5.135)

where the iteration function differs from step to step. The method can be formulated

as a direction search

x(n+1) = x(n) + λnsn (5.136)

with direction vectors sn and step lengths λn . The residual

r(n+1) = Ax(n+1) − b = r(n) + λn Asn (5.137)

is used as a measure of the remaining error since the exact solution xF P together

with the error vector

d(n) = x(n) − xF P (5.138)

are unknown. Both are, however, related by

Ad(n) = Ax(n) − AxF P = Ax(n) − b = r(n). (5.139)

5.6.1 Krylov Space Methods

Solution of the linear system

Ax = b (5.140)

can be formulated as a search for the minimum

minx∈RN ||Ax − b||. (5.141)
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General iterative methods look for the minimum residual in a subspace of R
N

which is increased at each step. The Richardson iteration, e.g. iterates

x(n+1) = (1 − ωA)x(n) + ωb = x(n) − ωr(n) (5.142)

r(n+1) = A(x(n) − ωr(n)) − b = (1 − ωA)r(n)

r0 = Ax0 − b

x(1) = x(0) − ωr(0)

r(1) = r(0) − ωAr(0)

x(2) = x(1) − ωr(1) = x(0) − 2ωr(0) + ω2 Ar(0)

r(2) = (1 − ωA)r(1) = r(0) − 2ωAr(0) + ω2 A2r(0)

...

Obviously,

x(n) − x0 ∈ Kn(A, r(0)) r(n) ∈ Kn+1(A, r(0))

with the definition of the n-th Krylov subspace5

Kn(A, r(0)) = span{r(0), Ar(0), A2r(0), . . . An−1r(0)}. (5.143)

5.6.2 Minimization Principle for Symmetric Positive Definite

Systems

If the matrix A is symmetric and positive definite, we consider the quadratic form

defined by

h(x) = h0 − xT b +
1

2
xT Ax. (5.144)

At a local minimum the gradient

∇h(x) = Ax − b = r (5.145)

is zero and therefore the minimum of h is also a solution of the linear system of

equations

Ax = b. (5.146)

5For the most common choice x0 = 0 we have r(0) = −b and x0 + Kn(A, r(0)) = Kn(A, r(0)) =
Kn(A, b).
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5.6.3 Gradient Method

The simple Richardson iteration (Sect. 5.5.1) uses

x(n+1) = x(n) − ωr(n) (5.147)

with a constant value of ω.

r(n+1) = r(n) − ωAr(n). (5.148)

Let us now optimize the step width along the direction of the gradient vector. From

0 =
d

dω
|r(n+1)|2 = r(n)T (1 − ωA)(1 − ωA)r(n)

= r(n)T (−2A + 2ωA2)r(n) = −2r(n)T Ar(n) + 2ω|Ar(n)|2 (5.149)

r = 2r(n)T (−1 + ωA)Ar(n)

we find the optimum value

ω(n) =
r(n)T Ar(n)

|Ar(n)|2
. (5.150)

The residuals6

r0 = −b (5.151)

r(1) = −b + ω(1) Ab (5.152)

r(2) = −b + (ω(1) + ω(2))Ab − ω(2)ω(1) A2b (5.153)

...

etc. obviously are in the Krylov subspace

r(n) ∈ Kn+1(A, b) (5.154)

and so are the approximate solutions

x(1) = ω(1)b (5.155)

x(2) = (ω(1) + ω(2))b − ω(2)ω(1) Ab (5.156)

...

x(n) ∈ Kn(A, b). (5.157)

6We assume x0 = 0.
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5.6.4 Conjugate Gradients Method

The gradient method gives an approximate solution

x(n+1) = x(0) − ω(0)r(0) − ω(1)r(1) · · · − ω(n)r(n) (5.158)

but the previously chosen ω(0) . . . ω(n−1)are not optimal since the gradient vectors

r(0) . . . r(n)are not orthogonal. We want to optimize the solution within the space

spanned by the gradients for which a new basis s(0) . . . s(n)is introduced which will

be determined later

Kn+1 = span(r(0) . . . r(n)) = span(s(0) . . . s(n)). (5.159)

Using s(n)as search direction the iteration becomes

x(n+1) = x(n) + λ(n)s(n) (5.160)

r(n+1) = r(n) + λ(n) As(n). (5.161)

After n+1 steps

r(n+1) = r(0) +
∑

λ( j) As(j) = A(d(0) +
∑

λ( j)s( j)). (5.162)

Multiplication with s(m) gives

s(m)T r(n+1) = s(m)T Ad(0) +
∑

λ( j)s(m)T As( j) (5.163)

which, after introduction of the A−scalar product which is defined for a symmetric

and positive definite matrix A as

(x, y)A = xT Ay (5.164)

becomes

s(m)T r(n+1) = (s(m), d(0))A +
n

∑

j=0

λ( j)(s(m), s( j))A

which simplifies considerably if we assume A-orthogonality of the search directions

(s(m), s( j)) = 0 for m �= j (5.165)

because then



5.6 Non Stationary Iterative Methods 87

s(m)T r(n+1) = (s(m), d(0))A + λ(m)(s(m), s(m))A = s(m)T r(0) + λ(m)s(m)T As(m).

(5.166)

If we choose

λ(m) = −
s(m)T r(0)

s(m)T As(m)
(5.167)

the projection of the new residual r(n+1)onto Kn+1 vanishes, i.e. this is the optimal

choice of the parameters λ(0) . . . λ(n).

Obviously the first search vector must have the direction of r(0) to span the same

one-dimensional space. Therefore we begin the iteration with

s(0) = r(0) (5.168)

λ(0) = −
|r(0)|2

r(0)T Ar(0)
(5.169)

x(1) = x(0) + λ(0)s(0). (5.170)

For the next step we apply Gram-Schmidt orthogonalization

s(1) = r(1) − s(0) (r
(1), s(0))A

(s(0), s(0))A

. (5.171)

For all further steps we have to orthogonalize s(n+1)with respect to all of s(n) . . . s(0).

But, fortunately, the residual r(n+1)is already A−orthogonal to s(n−1) . . . s(0). This can

be seen from (5.161)

r( j+1) − r( j) = λ( j) As( j) (5.172)

(r(n+1), s( j))A = r(n+1)T As( j) =
1

λ( j)
r(n+1)T (r( j+1) − r( j)). (5.173)

We already found, that r(n+1) is orthogonal to Kn+1 , hence to all r(n), . . . r(0).

Therefore we conclude

(r(n+1), s( j))A = 0 for j + 1 ≤ n. (5.174)

Finally we end up with the following procedure

x(n+1) = x(n) + λ(n)s(n) with λ(n) = −
s(n)T r(0)

s(n)T As(n)
(5.175)

r(n+1) = r(n) + λ(n) As(n) (5.176)
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s(n+1) = r(n+1) − β(n)s(n) with β(n) =
r(n+1)T As(n)

s(n)T As(n)
. (5.177)

This method [25] solves a linear system without storing the matrix A itself. Only

the product As is needed. In principle the solution is reached after N = dim(A)

steps, but due to rounding errors more steps can be necessary and the method has to

be considered as an iterative one.

The expressions for λ and β can be brought to numerically more efficient form.

From (5.162) we find

s(n)T r(0) = s(n)T

⎛

⎝r(n) −
n−1
∑

j=0

λ( j) As(j)

⎞

⎠ . (5.178)

But due to A-orthogonality of the search directions

s(n)T r(0) = s(n)T r(n) = r(n)T r(n) (5.179)

which simplifies

λ(n) = −
r(n)T r(n)

s(n)T As(n)
. (5.180)

Furthermore, from (5.176) and orthogonality of the residual vectors

r(n+1)T r(n+1) = λ(n)r(n+1)T As(n) (5.181)

from which

β(n) =
r(n+1)T As(n)

s(n)T As(n)
=

− 1
λ(n) r(n+1)T r(n+1)

s(n)T As(n)

= −
r(n+1)T r(n+1)

r(n)T r(n)
. (5.182)

The conjugate gradients method is not useful for non symmetric systems. It can

be applied to the normal equations (11.32)

AT Ax = AT b (5.183)

which, for a full-rank non singular matrix have the same solution. The condition

number (Sect. 5.7), however, is

cond(AT A) = (condA)2 (5.184)

and the problem may be ill conditioned.

http://dx.doi.org/10.1007/978-3-319-61088-7_11
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5.6.5 Non Symmetric Systems

The general minimum residual method (GMRES) searches directly for the minimum

of ||Ax−b|| in the Krylov spaces of increasing order Kn(A, r(0)). To avoid problems

with linear dependency, first an orthogonal basis

Kn(A, r(0)) = span(q1, q2, . . . qn) (5.185)

is constructed with Arnoldi’s method, a variant of Gram-Schmidt orthogonalization.

Starting from the normalized vector

q1 =
r(0)

|r(0)|
(5.186)

the dimension is iteratively increased by orthogonalizing the vector Aqnwith respect

to Kn(A, r(0))7

q̃n+1 = Aqn −
n

∑

j=1

(q j , qn)Aq j = Aqn −
n

∑

j=1

(qT
j Aqn)q j = Aqn −

n
∑

j=1

h jnq j

(5.187)

and normalizing this vector

hn+1,n = |q̃n+1| qn+1 =
q̃n+1

hn+1,n

. (5.188)

Then

Aqn = hn+1,nqn+1 +
n

∑

j=1

h jnq j (5.189)

which explicitly reads

Aq1 = h21q2 + h11q1 = (q1, q2)

(

h11

h21

)

(5.190)

Aq2 = h32q3 + h12q1 + h22q2 = (q1, q2, q3)

⎛

⎝

h12

h22

h32

⎞

⎠ (5.191)

...

7q2 is a linear combination of q1 and Aq1, q3 one of q1, q2 and Aq2 hence also of q1, Aq1,

A2q1 etc. which proves the validity of (5.185).
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Aqn = hn+1,nqn+1 + h1nq1 + . . . hnnqn. (5.192)

The new basis vectors are orthogonal8 since

qT
1 q̃2 = qT

1

[

Aq1 − (qT
1 Aq1)q1

]

= (qT
1 Aq1)(1 − |q1|2) = 0

and induction shows for k = 1 . . . n

qT
k q̃n+1 = qT

k Aqn −
n

∑

j=1

(qT
j Aqn)(q

T
k q j ) = qT

k Aqn −
n

∑

j=1

(qT
j Aqn)δk, j = 0.

We collect the new basis vectors q1 . . . qn into a matrix

Un = (q1, . . . qn) (5.193)

and obtain from (5.190) to (5.192)

AUn = Un+1 H (5.194)

with the (n + 1) × n upper Hessenberg matrix

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h11 h12 . . . h1n

h21 h22 h2n

h32

. . .
...

. . . hnn

hn+1,n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.195)

Since

x(n) − x0 ∈ Kn(A, r(0)) (5.196)

it can be written as a linear combination of q1 . . . qn

x(n) − x0 = (q1 . . . qn)v. (5.197)

The residual becomes

r(n) = A(q1 . . . qn)v + Ax0 − b = A(q1 . . . qn)v + r(0)

= Un+1 Hv + |r(0)|q1

8If qn+1 = 0 the algorithm has to stop and the Krylov space has the full dimension of the matrix.
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= Un+1

⎡

⎢

⎢

⎢

⎣

Hv + |r(0)|

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

(5.198)

hence

|r(n)|2 =

⎡

⎢

⎢

⎢

⎣

Hv + |r(0)|

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

T

U T
n+1Un+1

⎡

⎢

⎢

⎢

⎣

Hv + |r(0)|

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

. (5.199)

But since

U T
n+1Un+1 =

⎛

⎜

⎝

q1
T

...

qT
n

⎞

⎟

⎠
(q1 . . . qn) =

⎛

⎜

⎝

1

. . .

1

⎞

⎟

⎠
(5.200)

is a n × n unit matrix, we have to minimize

|r(n)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hv + |r(0)|

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.201)

which is a least square problem, since there are n + 1 equations for the n unknown

components of v. It can be solved efficiently with the help of QR decomposition

(11.36)

H = Q

(

R

0

)

R =

⎛

⎜

⎝

r11 · · · r1n

. . .
...

rnn

⎞

⎟

⎠
(5.202)

with a (n + 1) × (n + 1) orthogonal matrix Q. The norm of the residual vector

becomes

|r(n)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q

(

R

0

)

v + |r(0)|

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Rv

0

)

+ |r(0)|QT

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (5.203)

http://dx.doi.org/10.1007/978-3-319-61088-7_11
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Substituting

|r(0)|QT

⎛

⎜

⎜

⎜

⎝

1

0
...

0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

y1

...

yn

yn+1

⎞

⎟

⎟

⎟

⎠

=
(

y

yn+1

)

(5.204)

we have

|r(n)| =
√

y2
n+1 + |Rv + y|2 (5.205)

which is obviously minimized by solving the triangular system

Rv + y = 0. (5.206)

The GMRES method usually has to be preconditioned (cf.5.112) to improve con-

vergence. Often it is restarted after a small number (e.g.20) of iterations which avoids

the necessity to store a large orthogonal basis.

5.7 Matrix Inversion

LU and QR decomposition can be also used to calculate the inverse of a non singular

matrix

AA−1 = 1. (5.207)

The decomposition is performed once and then the column vectors of A−1 are cal-

culated similar to (5.27)

L
(

U A−1
)

= 1 (5.208)

or (5.40)

R A−1 = Q†. (5.209)

Consider now a small variation of the right hand side of (5.2)

b + ∆b. (5.210)

Instead of

A−1b = x (5.211)
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the resulting vector is

A−1(b + ∆b) = x + ∆x (5.212)

and the deviation can be measured by9

||∆x|| = ||A−1|| ||∆b|| (5.213)

and since

||A|| ||x|| = ||b|| (5.214)

the relative error becomes

||∆x||
||x||

= ||A|| ||A−1||
||∆b||
||b||

. (5.215)

The relative error of b is multiplied by the condition number for inversion

cond(A) = ||A|| ||A−1||. (5.216)

Problem

Problem 5.1 (Comparison of different direct Solvers, Fig. 5.2) In this computer

experiment we solve the system of equations

Ax = b (5.217)

with several methods:

• Gaussian elimination without pivoting (Sect. 5.1),

• Gaussian elimination with partial pivoting (Sect. 5.1.1),

• QR decomposition with Householder reflections (Sect. 5.2.2),

• QR decomposition with Gram-Schmidt orthogonalization (Sect. 5.2.1),

• QR decomposition with Gram-Schmidt orthogonalization with extra orthogonal-

ization step (5.55).

The right hand side is chosen as

9The vector norm used here is not necessarily the Euclidean norm.
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Fig. 5.2 (Comparison of different direct solvers) Gaussian elimination without (circles) and with

(x) pivoting, QR decomposition with Householder reflections (squares), with Gram-Schmidt orthog-

onalization (diamonds) and including extra orthogonalization (+) are compared. The maximum dif-

ference maxi=1...n(|xi − xexact
i |) increases only slightly with the dimension n for the well behaved

matrix (5.224,a) but quite dramatically for the ill conditioned Hilbert matrix (5.226,b)

b = A

⎛

⎜

⎜

⎜

⎝

1

2
...

n

⎞

⎟

⎟

⎟

⎠

(5.218)

hence the exact solution is

x =

⎛

⎜

⎜

⎜

⎝

1

2
...

n

⎞

⎟

⎟

⎟

⎠

. (5.219)

Several test matrices can be chosen:

• Gaussian elimination is theoretically unstable but is stable in many practical cases.

The instability can be demonstrated with the example [38]

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1

−1 1 1

−1 −1 1 1
...

...
...

. . .
...

−1 −1 −1 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (5.220)

No pivoting takes place in the LU decomposition of this matrix and the entries in

the last column double in each step:
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A(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1

1 2

−1 1 2

.

.

.
.
.
.

. . .
.
.
.

−1 −1 −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1

1 2

1 4

.

.

.
. . .

.

.

.

−1 −1 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. . . A(n−1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1

1 2

. . . 4

. . .
.
.
.

2n−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(5.221)

Since the machine precision is ǫM = 2−53 for double precision calculations we

have to expect numerical inaccuracy for dimension n > 53.

• Especially well conditioned are matrices [46] which are symmetric

Ai j = A j i (5.222)

and also diagonal dominant

∑

j �=i

|Ai j | < |Ai i |. (5.223)

We use the matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

n 1 . . . 1 1

1 n . . . 1 1
...

. . .
...

1 1 1 n 1

1 1 1 1 n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5.224)

which can be inverted explicitly by

A−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a b . . . b b

b a b b
...

. . .

b b b a b

b b b b a

⎞

⎟

⎟

⎟

⎟

⎟

⎠

a =
1

n − 1
2

, b = −
1

2n2 − 3n + 1
(5.225)

and has a condition number10 which is proportional to the dimension n (Fig. 5.3).

• The Hilbert matrix [47, 48]

10Using the Frobenius norm ||A|| =
√

∑

i j A2
i j .
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Fig. 5.3 (Condition

numbers) The condition

number cond(A) increases

only linearly with the

dimension n for the well

behaved matrix (5.224, full

circles) but exponentially for

the ill conditioned Hilbert

matrix (5.226, open circles)
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(5.226)

is especially ill conditioned [49] even for moderate dimension. It is positive definite

and therefore the inverse matrix exists and even can be written down explicitly

[50]. Its column vectors are very close to linearly dependent and the condition

number grows exponentially with its dimension (Fig. 5.3). Numerical errors are

large for all methods compared (Fig. 5.2).

• random matrices

Ai j = ξ ∈ [−1, 1]. (5.227)



Chapter 6

Roots and Extremal Points

In computational physics very often roots of a function, i.e. solutions of an equation

like

f (x1 · · · xN ) = 0 (6.1)

have to be determined. A related problem is the search for local extrema (Fig. 6.1)

max f (x1 · · · xN ) min f (x1 · · · xN ) (6.2)

which for a smooth function are solutions of the equations

∂ f (x1 · · · xN )

∂xi

= 0, i = 1 . . . N . (6.3)

In one dimension bisection is a very robust but rather inefficient root finding method.

If a good starting point close to the root is available and the function smooth enough,

the Newton–Raphson method converges much faster. Special strategies are necessary

to find roots of not so well behaved functions or higher order roots. The combination

of bisection and interpolation like in Dekker’s and Brent’s methods provides gener-

ally applicable algorithms. In multidimensions calculation of the Jacobian matrix is

not always possible and Quasi-Newton methods are a good choice. Whereas local

extrema can be found as the roots of the gradient, at least in principle, direct optimiza-

tion can be more efficient. In one dimension the ternary search method or Brent’s

more efficient golden section search method can be used. In multidimensions the

class of direction set search methods is very popular which includes the methods

of steepest descent and conjugate gradients, the Newton–Raphson method and, if

calculation of the full Hessian matrix is too expensive, the Quasi-Newton methods.
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Fig. 6.1 Roots and local

extrema of a function

x0 xmaxxmin

fmin

fmax

x

0

f(x)

6.1 Root Finding

If there is exactly one root in the interval a0 < x < b0 then one of the following

methods can be used to locate the position with sufficient accuracy. If there are

multiple roots, these methods will find one of them and special care has to be taken

to locate the other roots.

6.1.1 Bisection

The simplest method [51] to solve

f (x) = 0 (6.4)

uses the following algorithm (Fig. 6.2):

(1) Determine an interval [a0, b0], which contains a sign change of f (x). If

no such interval can be found then f (x) does not have any zero crossings

(2) Divide the interval into [a0, a0 + b0−a0

2
] [a0 + b0−a0

2
, b0] and choose that

interval [a1, b1], where f (x) changes its sign.

(3) repeat until the width bn − an < ε is small enough.1

The bisection method needs two starting points which bracket a sign change of

the function. It converges but only slowly since each step reduces the uncertainty by

a factor of 2.

1Usually a combination like ε = 2εM + |bn |εr of an absolute and a relative tolerance is taken.
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Fig. 6.2 Root finding by

bisection
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6.1.2 Regula Falsi (False Position) Method

The regula falsi [52] method (Fig. 6.3) is similar to the bisection method [51].

However, polynomial interpolation is used to divide the interval [xr , ar ] with

f (xr ) f (ar ) < 0. The root of the linear polynomial

p(x) = f (xr ) + (x − xr )
f (ar ) − f (xr )

ar − xr

(6.5)

is given by

ξr = xr − f (xr )
ar − xr

f (ar ) − f (xr )
=

ar f (xr ) − xr f (ar )

f (xr ) − f (ar )
(6.6)

which is inside the interval [xr , ar ]. Choose the sub-interval which contains the sign

change:
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f (xr ) f (ξr ) < 0 → [xr+1, ar+1] = [xr , ξr ]
f (xr ) f (ξr ) > 0 → [xr+1, ar+1] = [ξr , ar ]. (6.7)

Then ξr provides a series of approximations with increasing precision to the root of

f (x) = 0.

6.1.3 Newton–Raphson Method

Consider a function which is differentiable at least two times around the root ξ.

Taylor series expansion around a point x0 in the vicinity

f (x) = f (x0) + (x − x0) f ′(x0) +
1

2
(x − x0)

2 f ′′(x0) + · · · (6.8)

gives for x = ξ

0 = f (x0) + (ξ − x0) f ′(x0) +
1

2
(ξ − x0)

2 f ′′(x0) + · · · . (6.9)

Truncation of the series and solving for ξ gives the first order Newton–Raphson

[51, 53] method (Fig. 6.4)

xr+1 = xr −
f (xr )

f ′(xr )
(6.10)

and the second order Newton–Raphson method (Fig. 6.4)

xr+1 = xr −
f ′(xr ) ±

√

f ′(xr )2 − 2 f (xr ) f ′′(xr )

f ′′(xr )
. (6.11)

Fig. 6.4 Newton–Raphson

method

x

2     order NR 

1    order NRst

nd

x
0

f(x)
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Fig. 6.5 Secant method f(x)

x
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The Newton–Raphson method converges fast if the starting point is close enough

to the root. Analytic derivatives are needed. It may fail if two or more roots are

close by.

6.1.4 Secant Method

Replacing the derivative in the first order Newton Raphson method by a finite dif-

ference quotient gives the secant method [51] (Fig. 6.5) which has been known for

thousands of years before [54]

xr+1 = xr − f (xr )
xr − xr−1

f (xr ) − f (xr−1)
. (6.12)

Round-off errors can become important as | f (xr ) − f (xr−1)| gets small. At the

beginning choose a starting point x0 and determine

x1 = x0 − f (x0)
2h

f (x0 + h) − f (x0 − h)
(6.13)

using a symmetrical difference quotient.

6.1.5 Interpolation

The secant method is also obtained by linear interpolation

p(x) =
x − xr

xr−1 − xr

fr−1 +
x − xr−1

xr − xr−1

fr . (6.14)
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The root of the polynomial p(xr+1) = 0 determines the next iterate xr+1

xr+1 =
1

fr−1 − fr

(xr fr−1 − xr−1 fr ) = xr − fr

xr − xr−1

fr − fr−1

. (6.15)

Quadratic interpolation of three function values is known as Muller’s method [55].

Newton’s form of the interpolating polynomial is

p(x) = fr + (x − xr ) f [xr , xr−1] + (x − xr )(x − xr−1) f [xr , xr−1, xr−2] (6.16)

which can be rewritten

p(x) = fr + (x − xr ) f [xr , xr−1] + (x − xr )
2 f [xr , xr−1, xr−2]

+ (xr − xr−1)(x − xr ) f [xr , xr−1, xr−2]

= fr + (x − xr )
2 f [xr , xr−1, xr−2] + (x − xr ) ( f [xr , xr−1] + f [xr , xr−2] − f [xr−1, xr−2])

= fr + A(x − xr ) + B(x − xr )
2 (6.17)

and has the roots

xr+1 = xr −
A

2B
±

√

A2

4B2
−

fr

B
. (6.18)

To avoid numerical cancellation, this is rewritten

xr+1 = xr +
1

2B

(

−A ±
√

A2 − 4B fr

)

= xr +
−2 fr

A2 − (A2 − 4B fr )

(

A ∓
√

A2 − 4B fr

)

= xr +
−2 fr

A ±
√

A2 − 4B fr

. (6.19)

The sign in the denominator is chosen such that xr+1 is the root closer to xr . The

roots of the polynomial can become complex valued and therefore this method is

useful to find complex roots.

6.1.6 Inverse Interpolation

Complex values of xr can be avoided by interpolation of the inverse function

instead

x = f −1(y). (6.20)
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Fig. 6.6 Root finding by

interpolation of the inverse

function
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Using the two points xr , xr−1 the Lagrange method gives

p(y) = xr−1

y − fr

fr−1 − fr

+ xr

y − fr−1

fr − fr−1

(6.21)

and the next approximation of the root corresponds again to the secant

method (6.12)

xr+1 = p(0) =
xr−1 fr − xr fr−1

fr − fr−1

= xr +
(xr−1 − xr )

fr − fr−1

fr . (6.22)

Inverse quadratic interpolation needs three starting points xr , xr−1, xr−2 together

with the function values fr , fr−1, fr−2 (Fig. 6.6). The inverse function x = f −1(y)

is interpolated with the Lagrange method

p(y) =
(y − fr−1)(y − fr )

( fr−2 − fr−1)( fr−2 − fr )
xr−2 +

(y − fr−2)(y − fr )

( fr−1 − fr−2)( fr−1 − fr )
xr−1

+
(y − fr−1)(y − fr−2)

( fr − fr−1)( fr − fr−2)
xr . (6.23)

For y = 0 we find the next iterate

xr+1 = p(0) =
fr−1 fr

( fr−2 − fr−1)( fr−2 − fr )
xr−2 +

fr−2 fr

( fr−1 − fr−2)( fr−1 − fr )
xr−1

+
fr−1 fr−2

( fr − fr−1)( fr − fr−2)
xr . (6.24)
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(f1 ,x1)
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Fig. 6.7 (Validity of inverse quadratic interpolation) Inverse quadratic interpolation is only applica-

ble if the interpolating polynomial p(y) is monotonous in the range of the interpolated function

values f1 . . . f3. (a) and (b) show the limiting cases where the polynomial has a horizontal tangent

at f1 or f3. (c) shows the case where the extremum of the parabola is inside the interpolation range

and interpolation is not feasible

Inverse quadratic interpolation is only a good approximation if the interpolating

parabola is single valued and hence if it is a monotonous function in the range of

fr , fr−1, fr−2. For the following discussion we assume that the three values of x are

renamed such that x1 < x2 < x3.

Consider the limiting case (a) in Fig. 6.7 where the polynomial has a horizontal

tangent at y = f3 and can be written as

p(y) = x3 + (x1 − x3)
(y − f3)

2

( f1 − f3)2
. (6.25)

Its value at y = 0 is

p(0) = x3 + (x1 − x3)
f 2
3

( f1 − f3)2
= x1 + (x3 − x1)

(

1 −
f 2
3

( f1 − f3)2

)

. (6.26)

If f1 and f3 have different sign and | f1| < | f3| (Sect. 6.1.7.2) we find

1 −
f 2
3

( f1 − f3)2
<

3

4
. (6.27)

Brent [56] used this as a criterion for the applicability of the inverse quadratic

interpolation. However, this does not include all possible cases where interpolation is

applicable. Chandrupatla [57] gave a more general discussion. The limiting condition

is that the polynomial p(y) has a horizontal tangent at one of the boundaries x1,3.

The derivative values are
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dp

dy
(y = f1) =

x2( f1 − f3)

( f2 − f1)( f2 − f3)
+

x3( f1 − f2)

( f3 − f1)( f3 − f2)
+

x1

f1 − f2
+

x1

f1 − f3

(6.28)

=
( f2 − f1)

( f3 − f1)( f3 − f2)

[

x2( f3 − f1)2

( f2 − f1)2
− x3 −

x1( f3 − f1)2 − x1( f2 − f1)2

( f2 − f1)2

]

=
( f2 − f1)(x2 − x1)

( f3 − f1)( f3 − f2)

[

Φ−2 − ξ−1
]

dp

dy
(y = f3) =

x2( f3 − f1)

( f2 − f1)( f2 − f3)
+

x1( f3 − f2)

( f1 − f2)( f1 − f3)
+

x3

f3 − f2
+

x3

f3 − f1
(6.29)

=
( f3 − f2)

( f2 − f1)( f3 − f1)

[

−
x2( f3 − f1)2

( f3 − f2)2
+ x3

( f3 − f1)2

( f3 − f2)2
− x3

( f3 − f2)2

( f3 − f2)2
+ x1

]

=
( f3 − f2)(x3 − x2)

( f2 − f1)( f3 − f1)

[

(

1

Φ − 1

)2

−
1

1 − ξ

]

with [57]

ξ =
x2 − x1

x3 − x1

Φ =
f2 − f1

f3 − f1

(6.30)

ξ − 1 =
x2 − x3

x3 − x1

Φ − 1 =
f2 − f3

f3 − f1

. (6.31)

Since for a parabola either f1 < f2 < f3 or f1 > f2 > f3 the conditions for applica-

bility of inverse interpolation finally become

Φ2 < ξ (6.32)

1 − ξ > (1 − Φ)2 (6.33)

which can be combined into

1 −
√

1 − ξ < |Φ| <
√

ξ. (6.34)

This method is usually used in combination with other methods (Sect. 6.1.7.2).

6.1.7 Combined Methods

Bisection converges slowly. The interpolation methods converge faster but are less

reliable. The combination of both gives methods which are reliable and converge

faster than pure bisection.
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Fig. 6.8 Dekker’s method
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6.1.7.1 Dekker’s Method

Dekker’s method [58, 59] combines bisection and secant method. The root is brack-

eted by intervals [cr , br ] with decreasing width where br is the best approximation to

the root found and cr is an earlier guess for which f (cr ) and f (br ) have different sign.

First an attempt is made to use linear interpolation between the points (br , f (br ))

and (ar , f (ar )) where ar is usually the preceding approximation ar = br−1 and is

set to the second interval boundary ar = cr−1 if the last iteration did not lower the

function value (Fig. 6.8).

Starting from an initial interval [x0, x1] with sign( f (x0)) �= sign( f (x1)) the

method proceeds as follows [59]:

initialization

f1 = f (x1) f0 = f (x0)

if | f1| < | f0| then {
b = x1 c = a = x0

fb = f1 fc = fa = f0}
else{
b = x0 c = a = x1

fb = f0 fc = fa = f1}

iteration

xs = b − fb
b−a
fb− fa

xm = c+b
2

.

If xs is very close to the last b then increase the distance to avoid too small steps

else choose xs if it is between b and xm , otherwise choose xm (thus choosing the

smaller interval)

xr =

⎧

⎨

⎩

b + δsign(c − b) if abs(xs − b) < δ

xs if b + δ < xs < xm or b − δ > xs > xm

xm else

.
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Determine xk as the latest of the previous iterates x0 . . . xr−1 for which

sign( f (xk)) �= sign( f (xr )).

If the new function value is lower update the approximation to the root

fr = f (xr )

if | fr | < | fk | then {
a = b b = xr c = xk

fa = fb fb = fr fc = fk}

otherwise keep the old approximation and update the second interval boundary

if | fr | ≥ | fk | then {
b = xk a = c = xr

fb = fk fa = fc = fr }
repeat until |c − b| < ε or fr = 0.

6.1.7.2 Brent’s Method

In certain cases Dekker’s method converges very slowly making many small steps of

the order ǫ. Brent [56, 59, 60] introduced some modifications to reduce such problems

and tried to speed up convergence by the use of inverse quadratic interpolation

(Sect. 6.1.6). To avoid numerical problems the iterate (6.24) is written with the help

of a quotient

xr+1 =
fb fc

( fa − fb)( fa − fc)
a +

fa fc

( fb − fa)( fb − fc)
b

+
fb fa

( fc − fb)( fc − fa)
c (6.35)

= b +
p

q

with

p =
fb

fa

(

(c − b)
fa

fc

(

fa

fc

−
fb

fc

)

− (b − a)

(

fb

fc

− 1

))

= (c − b)
fb( fa − fb)

f 2
c

− (b − a)
fb( fb − fc)

fa fc

=
a fb fc( fb − fc) + b [ fa fb( fb − fa) + fb fc( fc − fb)] + c fa fb( fa − fb)

fa f 2
c

(6.36)
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q = −
(

fa

fc

− 1

) (

fb

fc

− 1

) (

fb

fa

− 1

)

= −
( fa − fc)( fb − fc)( fb − fa)

fa f 2
c

.

(6.37)

If only two points are available, linear interpolation is used. The iterate (6.22)

then is written as

xr+1 = b +
(a − b)

fb − fa

fb = b +
p

q
(6.38)

with

p = (a − b)
fb

fa

q =
(

fb

fa

− 1

)

. (6.39)

The division is only performed if interpolation is appropriate and division by zero

cannot happen. Brent’s method is fast and robust at the same time. It is often recom-

mended by text books. The algorithm is summarized in the following [61].

Start with an initial interval [x0, x1] with f (x0) f (x1) ≤ 0

initialization

a = x0 b = x1 c = a

fa = f (a) fb = f (b) fc = fa

e = d = b − a

iteration

If c is a better approximation than b exchange values

if | fc| < | fb| then{
a = b b = c c = a

fa = fb fb = fc fc = fa}

calculate midpoint relative to b

xm = 0.5(c − b)

stop if accuracy is sufficient

if |xm | < ε or fb = 0 then exit

use bisection if the previous step width e was too small or the last step did not improve

if |e| < ε or | fa| ≤ | fb| then{
e = d = xm}
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otherwise try interpolation

else {
if a = c then {

p = 2xm

fb

fa

q =
fb − fa

fa

}

else {

p = 2xm

fb( fa − fb)

f 2
c

− (b − a)
fb( fb − fc)

fa fc

q =
(

fa

fc

− 1

) (

fb

fc

− 1

) (

fb

fa

− 1

)

}

make p a positive quantity

if p > 0 then {q = −q} else {p = −p}

update previous step width

s = e e = d

use interpolation if applicable, otherwise use bisection

if 2p < 3xmq − |εq| and p < |0.5 sq| then{
d = p

q
}

else{e = d = xm}
a = b fa = fb

if |d| > ε then {
b = b + d}
else {b = b + εsign (xm)}

calculate new function value

fb = f (b)

be sure to bracket the root

if sign( fb) = sign( fc) then {
c = a fc = fa

e = d = b − a}

6.1.7.3 Chandrupatla’s Method

In 1997 Chandrupatla [57] published a method which tries to use inverse quadratic

interpolation whenever possible according to (6.34). He calculates the relative posi-

tion of the new iterate as (Fig. 6.9).

t =
x − c

b − c
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Fig. 6.9 Chandrupatla’s

method

xt
x

f

b ca

f(x)

=
1

b − c

[

fc fb

( fa − fb)( fa − fc)
a +

fa fc

( fb − fa)( fb − fc)
b +

fb fa

( fc − fb)( fc − fa)
c − c

]

=
a − c

b − c

fc

fc − fa

fb

fb − fa
+

fa fc

( fb − fa)( fb − fc)
. (6.40)

The algorithm proceeds as follows:

Start with an initial interval [x0, x1] with f (x0) f (x1) ≤ 0.

initialization

b = x0 a = c = x1

fb = f (b) fa = fc = f (c)

t = 0.5

iteration

xt = a + t (b − a)

ft = f (xt )

if sign( ft ) = sign( fa){
c = a fc = fa

a = xt fa = Ft }
else{
c = b b = a a = xt

fc = fb fb = fa fa = ft }
xm = a fm = fa

if abs ( fb) < abs( fa){
xm = b fm = fb}
tol = 2ǫM |xm | + ǫa

tl = tol
|b−c|
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if tl > 0.5 or fm = 0 exit

ξ = a−b
c−b

Φ = fa− fb

fc− fb

if 1 −
√

1 − ξ < Φ <
√

ξ{
t = fa

fb− fa

fc

fb− fc
+ c−a

b−a

fa

fc− fa

fb

fc− fb
}

else {t = 0.5}
if t < tl{t = tl}
if t > (1 − tl){t = 1 − tl}

Chandrupatla’s method is more efficient than Dekker’s and Brent’s, especially for

higher order roots (Figs. 6.10, 6.11 and 6.12).

6.1.8 Multidimensional Root Finding

The Newton–Raphson method can be easily generalized for functions of more than

one variable. We search for the solution of a system of n nonlinear equations in n

variables xi

f(x) =

⎛

⎜

⎝

f1(x1 · · · xn)
...

fn(x1 · · · xn)

⎞

⎟

⎠
= 0. (6.41)

The first order Newton–Raphson method results from linearization of
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Fig. 6.10 (Comparison of different solvers) The root of the equation f (x) = x2 − 2 is determined

with different methods: Newton–Raphson (a) (black squares), Chandrupatla (b) (indigo circles),

Brent (c) (red triangles up), Dekker (d) (green diamonds), regula falsi (e) (blue stars), pure bisection

(f) (black dots). Starting values are x1 = −1, x2 = 2. The absolute error is shown as function of

the number of iterations. For x1 = −1, the Newton–Raphson method converges against −
√

2
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Fig. 6.11 (Comparison of different solvers for a third order root) The root of the equation f (x) =
(x − 1)3 is determined with different methods: Newton–Raphson (a) (magenta), Chandrupatla

(b) (orange), Brent (c) (blue), Dekker (d) (red), regula falsi (e) (black), pure bisection (f) (green).

Starting values are x1 = 0, x2 = 1.8. The absolute error is shown as function of the number of

iterations
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Fig. 6.12 (Comparison of different solvers for a high order root) The root of the equation f (x) =
x25 is determined with different methods: Newton–Raphson (a) (orange), Chandrupatla (b) (blue

circles), Brent (c) (black), Dekker (d) (green), regula falsi (e) (magenta), pure bisection (f) (red

dots). Starting values are x1 = −1, x2 = 2. The absolute error is shown as function of the number

of iterations

0 = f(x) = f(x0) + J (x0)(x − x0) + · · · (6.42)

with the Jacobian matrix

J =

⎛

⎜

⎜

⎝

∂ f1

∂x1
· · · ∂ f1

∂xn

...
. . .

...
∂ fn

∂x1
· · · ∂ fn

∂xn

⎞

⎟

⎟

⎠

. (6.43)
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If the Jacobian matrix is not singular the equation

0 = f(x0) + J (x0)(x − x0) (6.44)

can be solved by

x = x0 −
(

J (x0)
)−1

f(x0). (6.45)

This can be repeated iteratively

x(r+1) = x(r) − (J (x(r)))−1f(x(r)). (6.46)

6.1.9 Quasi-Newton Methods

Calculation of the Jacobian matrix can be very time consuming. Quasi-Newton meth-

ods use instead an approximation to the Jacobian which is updated during each

iteration. Defining the differences

d(r) = x(r+1) − x(r) (6.47)

y(r) = f(x(r+1)) − f(x(r)) (6.48)

we obtain from the truncated Taylor series

f(x(r+1)) = f(x(r)) + J (x(r))(x(r+1) − x(r)) (6.49)

the so called Quasi-Newton or secant condition

y(r) = J (x(r))d(r). (6.50)

We attempt to construct a family of successive approximation matrices Jr so that, if

J were a constant, the procedure would become consistent with the quasi-Newton

condition. Then for the new update Jr+1 we have

Jr+1d(r) = y(r). (6.51)

Since d(r), y(r) are already known, these are only n equations for the n2 elements of

Jr+1. To specify Jr+1 uniquely, additional conditions are required. For instance, it is

reasonable to assume, that

Jr+1u = Jr u for all u ⊥ d(r). (6.52)

Then Jr+1 differs from Jr only by a rank one updating matrix
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Jr+1 = Jr + u d(r)T . (6.53)

From the secant condition we obtain

Jr+1d(r) = Jr d(r) + u(d(r)d(r)T ) = y(r) (6.54)

hence

u =
1

|d(r)|2
(

y(r) − Jr d(r)
)

. (6.55)

This gives Broyden’s update formula [62]

Jr+1 = Jr +
1

|d(r)|2
(

y(r) − Jr d(r)
)

d(r)T . (6.56)

To update the inverse Jacobian matrix, the Sherman–Morrison formula [42]

(A + uvT )−1 = A−1 −
A−1uvT A−1

1 + vT A−1u
(6.57)

can be applied to have

J−1
r+1 = J−1

r −
J−1

r
1

|d(r)|2
(

y(r) − Jr d(r)
)

d(r)T J−1
r

1 + 1
|d(r)|2 d(r)T J−1

r

(

y(r) − Jr d(r)
)

= J−1
r −

(

J−1
r y(r) − d(r)

)

d(r)T J−1
r

d(r)T J−1
r y(r)

. (6.58)

6.2 Function Minimization

Minimization or maximization of a function2 is a fundamental task in numerical

mathematics and closely related to root finding. If the function f (x) is continuously

differentiable then at the extremal points the derivative is zero

d f

dx
= 0. (6.59)

Hence, in principle root finding methods can be applied to locate local extrema of

a function. However, in some cases the derivative cannot be easily calculated or the

2In the following we consider only a minimum since a maximum could be found as the minimum

of − f (x).
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function even is not differentiable. Then derivative free methods similar to bisection

for root finding have to be used.

6.2.1 The Ternary Search Method

Ternary search is a simple method to determine the minimum of a unimodal function

f (x). Initially we have to find an interval [a0, b0] which is certain to contain the

minimum. Then the interval is divided into three equal parts [a0, c0], [c0, d0], [d0, b0]
and either the first or the last of the three intervals is excluded (Fig. 6.13). The

procedure is repeated with the remaining interval [a1, b1] = [a0, d0] or [a1, b1] =
[c0, b0].

Each step needs two function evaluations and reduces the interval width by a

factor of 2/3 until the maximum possible precision is obtained. It can be determined

by considering a differentiable function which can be expanded around the minimum

x0 as

f (x) = f (x0) +
(x − x0)

2

2
f ′′(x0) + · · · . (6.60)

Numerically calculated function values f (x) and f (x0) only differ, if

(x − x0)
2

2
f ′′(x0) > εM f (x0) (6.61)

which limits the possible numerical accuracy to

Fig. 6.13 Ternary search

method

f(x)

ba c d
x
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Fig. 6.14 (Ternary search method) The minimum of the function f (x) = 1 + 0.01 x2 + 0.1 x4 is

determined with the ternary search method. Each iteration needs two function evaluations. After

50 iterations the function minimum fmin = 1 is reached to machine precision εM ≈ 10−16. The

position of the minimum xmin cannot be determined with higher precision than
√

εM ≈ 10−8 (6.63)

ε(x0) = min|x − x0| =

√

2 f (x0)

f ′′(x0)
εM (6.62)

and for reasonably well behaved functions (Fig. 6.14) we have the rule of thumb [63]

ε(x0) ≈
√

εM . (6.63)

However, it may be impossible to reach even this precision, if the quadratic term

of the Taylor series vanishes (Fig. 6.15).

The algorithm can be formulated as follows:

iteration

if(b − a) < δ then exit

c = a + 1
3
(b − a) d = a + 2

3
(b − a)

fc = f (c) fd = f (d)

if fc < fd then b = d else a = c

6.2.2 The Golden Section Search Method (Brent’s Method)

To bracket a local minimum of a unimodal function f (x) three points a, b, c are

necessary (Fig. 6.16) with

f (a) > f (b) f (c) > f (b). (6.64)
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Fig. 6.15 (Ternary search method for a higher order minimum) The minimum of the function

f (x) = 1 + 0.1 x4 is determined with the ternary search method. Each iteration needs two function

evaluations. After 30 iterations the function minimum fmin = 1 is reached to machine precision

εM ≈ 10−16. The position of the minimum xmin cannot be determined with higher precision than
4
√

εM ≈ 10−4

fξ

x

f(x)

a b c

fa

fb

fc

ξ

Fig. 6.16 (Golden section search method) A local minimum of the function f (x) is bracketed by

three points a, b, c. To reduce the uncertainty of the minimum position a new point ξ is chosen in

the interval a < ξ < c and either a or c is dropped according to the relation of the function values.

For the example shown a has to be replaced by ξ

The position of the minimum can be determined iteratively by choosing a new

value ξ in the interval a < ξ < c and dropping either a or c, depending on the ratio

of the function values. A reasonable choice for ξ can be found as follows (Fig. 6.17)

[63, 64]. Let us denote the relative positions of the middle point and the trial point as

b − a

c − a
= β

c − b

c − a
= 1 − β

b − a

c − b
=

β

1 − β

ξ − b

c − a
= t.

ξ − a

c − a
=

ξ − b + b − a

c − a
= t + β. (6.65)
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Fig. 6.17 Golden section search method

The relative width of the new interval will be

c − ξ

c − a
= (1 − β − t) or

b − a

c − a
= β if a < ξ < b (6.66)

ξ − a

c − a
= (t + β) or

c − b

c − a
= (1 − β) if b < ξ < c. (6.67)

The golden search method requires that

t = 1 − 2β =
c + a − 2b

c − a
=

(c − b) − (b − a)

c − a
. (6.68)

Otherwise it would be possible that the larger interval width is selected many times

slowing down the convergence. The value of t is positive if c − b > b − a and

negative if c − b < b − a, hence the trial point always is in the larger of the two

intervals. In addition the golden search method requires that the ratio of the spacing

remains constant. Therefore we set

β

1 − β
= −

t + β

t
= −

1 − β

t
if a < ξ < b (6.69)

β

1 − β
=

t

1 − β − t
=

t

β
if b < ξ < c. (6.70)

Eliminating t we obtain for a < ξ < b the equation

(β − 1)

β
(β2 + β − 1) = 0. (6.71)
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Besides the trivial solution β = 1 there is only one positive solution

β =
√

5 − 1

2
≈ 0.618. (6.72)

For b < ξ < c we end up with

β

β − 1
(β2 − 3β + 1) = 0 (6.73)

which has the nontrivial positive solution

β =
3 −

√
5

2
≈ 0.382. (6.74)

Hence the lengths of the two intervals [a, b], [b, c] have to be in the golden ratio

ϕ = 1+
√

5
2

≈ 1.618 which gives the method its name. Using the golden ratio the

width of the interval bracketing the minimum reduces by a factor of 0.618 (Figs. 6.18

and 6.19).
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Fig. 6.18 (Golden section search method) The minimum of the function f (x) = 1 + 0.01 x2 +
0.1 x4 is determined with the golden section search method. Each iteration needs only one function

evaluation. After 40 iterations the function minimum fmin = 1 is reached to machine precision

εM ≈ 10−16. The position of the minimum xmin cannot be determined to higher precision than√
εM ≈ 10−8 (6.63)
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Fig. 6.19 (Golden section search for a higher order minimum) The minimum of the function

f (x) = 1 + 0.1 x4 is determined with the golden section search method. Each iteration needs only

one function evaluation. After 28 iterations the function minimum fmin = 1 is reached to machine

precision εM ≈ 10−16. The position of the minimum xmin cannot be determined to higher precision

than 4
√

εM ≈ 10−4

The algorithm can be formulated as follows:

if c − a < δ then exit

if (b − a) ≥ (c − b) then {
x = 0.618 b + 0.382 a

fx = f (x)

if fx < fb then {c = b b = x fc = fb fb = fx }
else a = x fa = fx }
if (b − a) < (c − b) then {
x = 0.618 b + 0.382 c

fx = f (x)

if fx < fb then {a = b b = x fa = fb fb = fx }
else c = x fc = fx }

To start the method we need three initial points which can be found by Brent’s

exponential search method (Fig. 6.20). Begin with three points

a0, b0 = a0 + h, c0 + 1.618 h (6.75)

where h0 is a suitable initial step width which depends on the problem. If the minimum

is not already bracketed then if necessary exchange a0 and b0 to have

f (a0) > f (b0) > f (c0). (6.76)

Then replace the three points by
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Fig. 6.20 Brent’s

exponential search

a0 b0
a1

c0
b1

c1
a2 b2

c2

a3 b3
c3

x

f(x)

a1 = b0 b1 = c0 c1 = c0 + 1.618 (c0 − b0) (6.77)

and repeat this step until

f (bn) < f (cn) (6.78)

or n exceeds a given maximum number. In this case no minimum can be found and

we should check if the initial step width was too large.

Brent’s method can be improved by making use of derivatives and by combining

the golden section search with parabolic interpolation [63].

6.2.3 Minimization in Multidimensions

We search for local minima (or maxima) of a function

h(x)

which is at least two times differentiable. In the following we denote the gradient

vector by

gT (x) =
(

∂h

∂x1

, · · ·
∂h

∂xn

)

(6.79)

and the matrix of second derivatives (Hessian) by

H =
(

∂2

∂xi∂x j

h

)

. (6.80)
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Fig. 6.21 (Direction set

minimization) Starting from

an initial guess x0 a local

minimum is approached by

making steps along a set of

direction vectors sr
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The very popular class of direction set methods proceeds as follows (Fig. 6.21).

Starting from an initial guess x0 a set of direction vectors sr and step lengths λr is

determined such that the series of vectors

xr+1 = xr + λr sr (6.81)

approaches the minimum of h(x). The method stops if the norm of the gradient

becomes sufficiently small or if no lower function value can be found.

6.2.4 Steepest Descent Method

The simplest choice, which is known as the method of gradient descent or steepest

descent3 is to go in the direction of the negative gradient

sr = −gr (6.82)

and to determine the step length by minimizing h along this direction

h(λ) = h(xr − λgr ) = min. (6.83)

Obviously two consecutive steps are orthogonal to each other since

0 =
∂

∂λ
h(xr+1 − λgr )|λ=0 = −gT

r+1gr . (6.84)

3Which should not be confused with the method of steepest descent for the approximate calculation

of integrals.
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Fig. 6.22 (Function

minimization) The minimum

of the Rosenbrock

function h(x, y) =
100(y − x2)2 + (1 − x)2 is

determined with different

methods. Conjugate (CG)

gradients converge much

faster than steepest descent

(SD). Starting at

(x, y) = (0, 2),

Newton–Raphson (NR)

reaches the minimum at

x = y = 1 within only 5

iterations to machine

precision

10
0

10
1

10
2

10
3

10
4

10
5

number of iterations

10
-28

10
-21

10
-14

10
-7

10
0

fu
n
ct

io
n
 v

al
u
e

NR CG SD

10
0

10
1

10
2

10
3

10
4

10
5

number of iterations

10
-14

10
-7

10
0

ab
so

lu
te

 g
ra

d
ie

n
t

NR CG SD

10
0

10
1

10
2

10
3

10
4

10
5

number of iterations

10
-14

10
-7

10
0

ab
so

lu
te

 e
rr

o
r 

o
f 

m
in

im
u

m
 p

o
si

ti
o

n

NR CG SD

This can lead to a zig-zagging behavior and a very slow convergence of this method

(Figs. 6.22 and 6.23).
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Fig. 6.23 (Minimization of the Rosenbrock function) Left Newton–Raphson finds the minimum

after 5 steps within machine precision. Middle conjugate gradients reduce the gradient to 4 × 10−14

after 265 steps. Right The steepest descent method needs 20000 steps to reduce the gradient to

5 × 10−14. Red lines show the minimization pathway. Colored areas indicate the function value

(light blue < 0.1, grey 0.1…0.5, green 5…50, pink > 100). Screen shots taken from problem 6.2

6.2.5 Conjugate Gradient Method

This method is similar to the steepest descent method but the search direction is

iterated according to

s0 = −g0 (6.85)

xr+1 = xr + λr sr (6.86)

sr+1 = −gr+1 + βr+1sr (6.87)

where λr is chosen to minimize h(xr+1) and the simplest choice for β is made by

Fletcher and Rieves [65]

βr+1 =
g2

r+1

g2
r

. (6.88)

This method was devised to minimize a quadratic function and to solve the related

system of linear equations, but it is also very efficient for more complicated functions

(Sect. 5.6.4).

6.2.6 Newton–Raphson Method

The first order Newton–Raphson method uses the iteration

xr+1 = xr − H(xr )
−1g(xr ). (6.89)

http://dx.doi.org/10.1007/978-3-319-61088-7_5
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The search direction is

s = H−1g (6.90)

and the step length is λ = 1. This method converges fast if the starting point is close

to the minimum. However, calculation of the Hessian can be very time consuming

(Fig. 6.22).

6.2.7 Quasi-Newton Methods

Calculation of the full Hessian matrix as needed for the Newton–Raphson method

can be very time consuming. Quasi-Newton methods use instead an approximation

to the Hessian which is updated during each iteration. From the Taylor series

h(x) = h0 + bT x +
1

2
xT Hx + · · · (6.91)

we obtain the gradient

g(xr ) = b + Hxr + · · · = g(xr−1) + H(xr − xr−1) + · · · . (6.92)

Defining the differences

dr = xr+1 − xr (6.93)

yr = gr+1 − gr (6.94)

and neglecting higher order terms we obtain the quasi-Newton or secant condition

Hdr = yr . (6.95)

We want to approximate the true Hessian by a series of matrices Hr which are updated

during each iteration to sum up all the information gathered so far. Since the Hessian

is symmetric and positive definite, this also has to be demanded for the Hr .4 This

cannot be achieved by a rank one update matrix. Popular methods use a symmetric

rank two update of the form

Hr+1 = Hr + αuuT + βvvT . (6.96)

The Quasi-Newton condition then gives

Hr+1dr = Hr dr + α(uT dr )u + β(vT dr )v = yr (6.97)

4This is a major difference to the Quasi Newton methods for root finding (6.1.9).
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hence Hr dr − yr must be a linear combination of u and v. Making the simple choice

u = yr v = Hr dr (6.98)

and assuming that these two vectors are linearly independent, we find

β = −
1

(vT dr )
= −

1

(dT
r Hr dr )

(6.99)

α =
1

(uT dr )
=

1

(yT
r dr )

(6.100)

which together defines the very popular BFGS (Broyden, Fletcher, Goldfarb, Shanno)

method [66–69]

Hr+1 = Hr +
yryT

r

yT
r dr

−
(Hr dr )(Hr dr )

T

dT
r Hr dr

. (6.101)

Alternatively the DFP method by Davidon, Fletcher and Powell, directly updates the

inverse Hessian matrix B = H−1 according to

Br+1 = Br +
dr dT

r

yT
r dr

−
(Br yr )(Br yr )

T

yT
r Br yr

. (6.102)

Both of these methods can be inverted with the help of the Sherman–Morrison

formula to give

Br+1 = Br +
(dr − Br yr )d

T
r + dr (dr − Byr )

T

yT
r dr

−
(dr − Br yr )

T y

(yT
r d)2

ddT (6.103)

Hr+1 = Hr +
(yr − Hr dr )y

T
r + yr (yr − Hr dr )

T

yT
r dr

−
(yr − Hr dr )dr

(yT
r dr )2

yr yT
r .

(6.104)

Problems

Problem 6.1 Root Finding Methods

This computer experiment searches roots of several test functions:

f (x) = xn − 2 n = 1, 2, 3, 4 (Fig. 6.10)

f (x) = 5 sin(5x)

f (x) = (cos(2x))2 − x2

f (x) = 5
(√

|x + 2| − 1
)

f (x) = e−x ln x
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f (x) = (x − 1)3 (Fig. 6.11)

f (x) = x25 (Fig. 6.12)

You can vary the initial interval or starting value and compare the behavior of

different methods:

• bisection

• regula falsi

• Dekker’s method

• Brent’s method

• Chandrupatla’s method

• Newton–Raphson method

Problem 6.2 Stationary Points

This computer experiment searches a local minimum of the Rosenbrock function5

h(x, y) = 100(y − x2)2 + (1 − x)2. (6.105)

• The method of steepest descent minimizes h(x, y) along the search direction

s(n)
x = −g(n)

x = −400x(x2
n − yn) − 2(xn − 1) (6.106)

s(n)
y = −g(n)

y = −200(yn − x2
n ). (6.107)

• Conjugate gradients make use of the search direction

s(n)
x = −g(n)

x + βns(n−1)
x (6.108)

s(n)
y = −g(n)

y + βns(n−1)
y . (6.109)

• The Newton–Raphson method needs the inverse Hessian

H−1 =
1

det(H)

(

h yy −hxy

−hxy hxx

)

(6.110)

det(H) = hxx h yy − h2
xy (6.111)

hxx = 1200x2 − 400y + 2 h yy = 200 hxy = −400x (6.112)

and iterates according to

(

xn+1

yn+1

)

=
(

xn

yn

)

− H−1

(

gn
x

qn
y

)

. (6.113)

You can choose an initial point (x0, y0). The iteration stops if the gradient norm

falls below 10−14 or if the line search fails to find a lower function value.

5A well known test function for minimization algorithms.



Chapter 7

Fourier Transformation

Fourier transformation is a very important tool for signal analysis but also helpful

to simplify the solution of differential equations or the calculation of convolution

integrals. In this chapter we discuss the discrete Fourier transformation as a numer-

ical approximation to the continuous Fourier integral. It can be realized efficiently

by Goertzel’s algorithm or the family of fast Fourier transformation methods. Com-

puter experiments demonstrate trigonometric interpolation and nonlinear filtering

as applications.

7.1 Fourier Integral and Fourier Series

We use the symmetric definition of the Fourier transformation:

f̃ (ω) = F[ f ](ω) = 1√
2π

∫ ∞

−∞
f (t)e−iωt dt. (7.1)

The inverse Fourier transformation

f (t) = F
−1[ f̃ ](t) = 1√

2π

∫ ∞

−∞
f̃ (ω)eiωt dω (7.2)

decomposes f (t) into a superposition of oscillations. The Fourier transform of a

convolution integral

g(t) = f (t) ⊗ h(t) =
∫ ∞

−∞
f (t ′)h(t − t ′)dt ′ (7.3)

becomes a product of Fourier transforms:

g̃(ω) = 1√
2π

∫ ∞

−∞
dt ′ f (t ′)e−iωt ′

∫ ∞

−∞
h(t − t ′)e−iω(t−t ′)d(t − t ′)
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=
√

2π f̃ (ω)̃h(ω). (7.4)

A periodic function with f (t + T ) = f (t)1 is transformed into a Fourier series

f (t) =
∞∑

n=−∞
eiωn t f̂ (ωn) with ωn = n

2π

T
, f̂ (ωn) = 1

T

∫ T

0

f (t)e−iωn t dt. (7.5)

For a periodic function which in addition is real valued f (t) = f (t)∗ and even

f (t) = f (−t), the Fourier series becomes a cosine series

f (t) = f̂ (ω0) + 2

∞∑

n=1

f̂ (ωn) cos ωnt (7.6)

with real valued coefficients

f̂ (ωn) = 1

T

∫ T

0

f (t) cos ωnt dt. (7.7)

7.2 Discrete Fourier Transformation

We divide the time interval 0 ≤ t < T by introducing a grid of N equidistant points

tn = n∆t = n
T

N
with n = 0, 1, . . . N − 1. (7.8)

The function values (samples)

fn = f (tn) (7.9)

are arranged as components of a vector

f =

⎛
⎜⎝

f0

...

fN−1

⎞
⎟⎠ .

With respect to the orthonormal basis

en =

⎛
⎜⎝

δ0,n

...

δN−1,n

⎞
⎟⎠ , n = 0, 1, . . . N − 1 (7.10)

1This could also be the periodic continuation of a function which is only defined for 0 < t < T .
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f is expressed as a linear combination

f =
N−1∑

n=0

fnen. (7.11)

The discrete Fourier transformation is the transformation to an orthogonal base in

frequency space

eω j
=

N−1∑

n=0

eiω j tn en =

⎛
⎜⎜⎜⎝

1

ei 2π
N

j

...

ei 2π
N

j (N−1)

⎞
⎟⎟⎟⎠ (7.12)

with

ω j = 2π

T
j. (7.13)

These vectors are orthogonal

eω j
e∗
ω j ′

=
N−1∑

n=0

ei( j− j ′) 2π
N

n =
{

1−ei( j− j ′)2π

1−ei( j− j ′)2π/N
= 0 f or j − j ′ �= 0

N f or j − j ′ = 0
(7.14)

eω j
e∗
ω j ′

= Nδ j, j ′ . (7.15)

Alternatively a real valued basis can be defined:

cos

(
2π

N
jn

)
j = 0, 1, . . . jmax

sin

(
2π

N
jn

)
j = 1, 2 . . . jmax

jmax = N
2

(even N) jmax = N−1
2

(odd N). (7.16)

The components of f in frequency space are given by the scalar product

f̃ω j
= feω j

=
N−1∑

n=0

fne−iω j tn =
N−1∑

n=0

fne−i j 2π
T

n T
N =

N−1∑

n=0

fne−i 2π
N

jn. (7.17)

From

N−1∑

j=0

f̃ω j
eiω j tn =

∑

n′

∑

ω j

fn′e−iω j tn′ eiω j tn = N fn (7.18)
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we find the inverse transformation

fn = 1

N

N−1∑

j=0

f̃ω j
eiω j tn = 1

N

N−1∑

j=0

f̃ω j
ei 2π

N
nj . (7.19)

7.2.1 Trigonometric Interpolation

The last equation can be interpreted as an interpolation of the function f (t) at the

sampling points tn by a linear combination of trigonometric functions

f (t) = 1

N

N−1∑

j=0

f̃ω j

(
ei 2π

T
t
) j

(7.20)

which is a polynomial of

q = ei 2π
T

t . (7.21)

Since

e−iω j tn = e−i 2π
N

jn = ei 2π
N

(N− j)n = eiωN− j tn (7.22)

the frequencies ω j and ωN− j are equivalent (Fig. 7.1)

f̃ωN− j
=

N−1∑

n=0

fne−i 2π
N

(N− j)n =
N−1∑

n=0

fnei 2π
N

jn = f̃ω− j
. (7.23)

Fig. 7.1 (Equivalence of ω1

and ωN−1) The two functions

cos ωt and cos(N − 1)ωt

have the same values at the

sample points tn but are very

different in between

0 0.2 0.4 0.6 0.8 1

t/T

-1

-0.5

0

0.5

1
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6

Fig. 7.2 (Trigonometric interpolation) For trigonometric interpolation the high frequencies have

to be replaced by the corresponding negative frequencies to provide meaningful results between the

sampling points. The circles show sampling points which are fitted using only positive frequencies

(full curve) or replacing the unphysical high frequency by its negative counterpart (broken curve).

The squares show the calculated Fourier spectrum. See also Problem 7.1

If we use trigonometric interpolation to approximate f (t) between the grid points,

the two frequencies are no longer equivalent and we have to restrict the frequency

range to avoid unphysical high frequency components (Fig. 7.2):

− 2π
T

N−1
2

≤ ω j ≤ 2π
T

N−1
2

N odd

− 2π
T

N
2

≤ ω j ≤ 2π
T

(
N
2

− 1

)
N even.

(7.24)

The interpolating function (N even) is

f (t) = 1

N

N
2
−1∑

j=− N
2

f̃ω j
eiω j t even N (7.25)

f (t) = 1

N

N−1
2∑

j=− N−1
2

f̃ω j
eiω j t odd N . (7.26)

The maximum frequency is
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ωmax = 2π

T

N

2
(7.27)

and hence

fmax = 1

2π
ωmax = N

2T
= fs

2
. (7.28)

This is known as the sampling theorem which states that the sampling frequency fs

must be larger than twice the maximum frequency present in the signal.

7.2.2 Real Valued Functions

For a real valued function

fn = f ∗
n (7.29)

and hence

f̃ ∗
ω j

=
(

N−1∑

n=0

fne−iω j tn

)∗

=
N−1∑

n=0

fneiω j tn = f̃ω− j
. (7.30)

Here it is sufficient to calculate the sums for j = 0, . . . N/2. If the function is real

valued and also even

f−n = fn (7.31)

f̃ω j
=

N−1∑

n=0

f−ne−iω j tn =
N−1∑

n=0

fne−i(−ω j )tn = f̃ω− j
(7.32)

and the Fourier sum (7.19) turns into a cosine sum

fn = 1

2M − 1
f̃ω0

+ 2

2M − 1

M−1∑

j=1

f̃ω j
cos

(
2π

2M − 1
jn

)
odd N = 2M − 1

(7.33)

fn = 1

2M
f̃ω0

+ 1

M

M−1∑

j=1

f̃ω j
cos

( π

M
jn

)
+ 1

2M
f̃ωM

cos(nπ) even N = 2M

(7.34)

which correspond to two out of eight different versions [70] of the discrete cosine

transformation [71, 72].
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Equation 7.34 can be used to define the interpolating function

f (t) = 1

2M
f̃ω0

+ 1

M

M−1∑

j=1

f̃ω j
cos

(
ω j t

)
+ 1

2M
f̃ωM

cos

(
2πM

T
t

)
. (7.35)

The real valued Fourier coefficients are given by

f̃ω j
= f0 + 2

M−1∑

n=1

fn cos(ω j tn) odd N = 2M − 1 (7.36)

f̃ω j
= f0 + 2

M−1∑

n=1

fn cos(ω j tn) + fM cos( jπ) even N = 2M. (7.37)

7.2.3 Approximate Continuous Fourier Transformation

We continue the function f (t) periodically by setting

fN = f0 (7.38)

and write

f̃ω j
=

N−1∑

n=0

fne−iω j n = 1

2
f0 + e−iω j f1 + · · · e−iω j (N−1) fN−1 + 1

2
fN . (7.39)

Comparing with the trapezoidal rule (4.13) for the integral

∫ T

0

e−iω j t f (t)dt ≈ T

N

(
1

2
e−iω j 0 f (0) + e−iω j

T
N f

(
T

N

)

+ · · · + e−iω j
T
N

(N−1) f

(
T
N

(N − 1)

)
+ 1

2
f (T )

) (7.40)

we find

f̂ (ω j ) = 1

T

∫ T

0

e−iω j t f (t)dt ≈ 1

N
f̃ω j

(7.41)

which shows that the discrete Fourier transformation is an approximation to the

Fourier series of a periodic function with period T which coincides with f (t) in the

interval 0 < t < T . The range of the integral can be formally extended to ±∞ by

introducing a windowing function

http://dx.doi.org/10.1007/978-3-319-61088-7_4
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W (t) =
{

1 f or 0 < t < T

0 else
. (7.42)

The discrete Fourier transformation approximates the continuous Fourier transforma-

tion but windowing leads to a broadening of the spectrum (see p. 145). For practical

purposes smoother windowing functions are used like a triangular window or one of

the following [73]:

W (tn) = e
− 1

2

(
n−(N−1)/2

σ(N−1)/2

)2

σ ≤ 0.5 Gaussian window

W (tn) = 0.53836 − 0.46164 cos
(

2πn
N−1

)
Hamming window

W (tn) = 0.5
(
1 − cos

(
2πn
N−1

))
Hann window.

7.3 Fourier Transform Algorithms

Straight Forward evaluation of the sum

f̃ω j
=

N−1∑

n=0

cos

(
2π

N
jn

)
fn + i sin

(
2π

N
jn

)
fn (7.43)

needs O(N 2) additions, multiplications and trigonometric functions.

7.3.1 Goertzel’s Algorithm

Goertzel’s method [74] is very useful if not the whole Fourier spectrum is needed

but only some of the Fourier components, for instance to demodulate a frequency

shift key signal or the dial tones which are used in telephony.

The Fourier transform can be written as

N−1∑

n=0

fne−i 2π
N

jn = f0 + e− 2πi
N

j

(
f1 + e− 2πi

N
j f2 . . .

(
fN−2 + e− 2πi

N
j fN−1

)
. . .

)

(7.44)

which can be evaluated recursively

yN−1 = fN−1

yn = fn + e− 2πi
N

j yn+1 n = N − 2, . . . 0
(7.45)
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to give the result

f̂ω j
= y0. (7.46)

Equation (7.45) is a simple discrete filter function. Its transmission function is

obtained by application of the z-transform [75]

u(z) =
∞∑

n=0

unz−n (7.47)

(the discrete version of the Laplace transform) which yields

y(z) = f (z)

1 − ze− 2πi
N

j
. (7.48)

One disadvantage of this method is that it uses complex numbers. This can be avoided

by the following more complicated recursion

uN+1 = uN = 0

un = fn + 2un+1 cos 2π
N

k − un+2 for n = N − 1, . . . 0

(7.49)

with the transmission function

u(z)

f (z)
= 1

1−z
(

e
2πi
N

j +e
− 2πi

N
j
)
+z2

= 1(
1−ze

− 2πi
N

j
)(

1−ze
2πi
N

j
) .

(7.50)

A second filter removes one factor in the denominator

y(z)

u(z)
=

(
1 − ze

2πi
N

j
)

(7.51)

which in the time domain corresponds to the simple expression

yn = un − e
2πi
N

j un+1.

The overall filter function finally again is (7.48).

y(z)

f (z)
= 1

1 − ze− 2πi
N

j
. (7.52)
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Hence the Fourier component of f is given by

f̂ω j
= y0 = u0 − e

2πi
N

j u1. (7.53)

The order of the iteration (7.44) can be reversed by writing

f̂ω j
= f0 . . . e

2πi
N

(N−1) fN−1 = e− 2πi
N

j (N−1)

(
f0e

2πi
N

j (N−1) . . . fN−1

)
(7.54)

which is very useful for real time filter applications.

7.3.2 Fast Fourier Transformation

If the number of samples is N = 2p, the Fourier transformation can be performed

very efficiently by this method.2 The phase factor

e−i 2π
N

jm = W
jm

N (7.55)

can take only N different values. The number of trigonometric functions can be

reduced by reordering the sum. Starting from a sum with N samples

FN ( f0 . . . fN−1) =
N−1∑

n=0

fn W
jn

N (7.56)

we separate even and odd powers of the unit root

FN ( f0 . . . fN−1) =
N
2
−1∑

m=0

f2m W
j2m

N +
N
2
−1∑

m=0

f2m+1W
j (2m+1)

N

=
N
2
−1∑

m=0

f2me
−i 2π

N/2
jm + W

j

N

N
2
−1∑

m=0

f2m+1e
−i 2π

N/2
jm

= FN/2( f0, f2 . . . fN−2) + W
j

N FN/2( f1, f3 . . . fN−1).

(7.57)

This division is repeated until only sums with one summand remain

F1( fn) = fn. (7.58)

2There exist several Fast Fourier Transformation algorithms [76, 77]. We consider only the simplest

one here [78].
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For example, consider the case N = 8:

F8( f0 . . . f7) = F4( f0 f2 f4 f6) + W
j

8 F4( f1 f3 f5 f7)

− − −
F4( f0 f2 f4 f6) = F2( f0 f4) + W

j

4 F2( f2 f6)

F4( f1 f3 f5 f7) = F2( f1 f5) + W
j

4 F2( f3 f7)

− − −
F2( f0 f4) = f0 + W

j

2 f4

F2( f2 f6) = f2 + W
j

2 f6

F2( f1 f5) = f1 + W
j

2 f5

F2( f3 f7) = f3 + W
j

2 f7.

Expansion gives

F8 = f0 + W
j

2 f4 + W
j

4 f2 + W
j

4 W
j

2 f6

+W
j

8 f1 + W
j

8 W
j

2 f5 + W
j

8 W
j

4 f3 + W
j

8 W
j

4 W
j

2 f7.

(7.59)

Generally a summand of the Fourier sum can be written using the binary

representation of n

n =
∑

li li = 1, 2, 4, 8 . . . (7.60)

in the following way:

fne−i 2π
N

jn = fne−i 2π
N

(l1+l2+··· ) j = fn W
j

N/ l1
W

j

N/ l2
. . . . (7.61)

The function values are reordered according to the following algorithm

(i) count from 0 to N-1 using binary numbers m = 000, 001, 010, . . .

(ii) bit reversal gives the binary numbers n = 000, 100, 010, . . .

(iii) store fn at the position m. This will be denoted as sm = fn

As an example for N=8 the function values are in the order

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0

s1

s2

s3

s4

s5

s6

s7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0

f4

f2

f6

f1

f5

f3

f7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.62)

Now calculate sums with two summands. Since W
j

2 can take only two different values
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W
j

2 =
{

1 f or j = 0, 2, 4, 6

−1 f or j = 1, 3, 5, 7
(7.63)

a total of 8 sums have to be calculated which can be stored again in the same

workspace:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 + f4

f0 − f4

f2 + f6

f2 − f6

f1 + f5

f1 − f5

f3 + f7

f3 − f7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 + W 0
2 s1

s0 + W 1
2 s1

s2 + W 2
2 s3

s2 + W 3
2 s3

s4 + W 4
2 s5

s4 + W 5
2 s5

s6 + W 6
2 s7

s6 + W 7
2 s7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.64)

Next calculate sums with four summands. W
j

4 can take one of four values

W
j

4 =

⎧
⎪⎪⎨
⎪⎪⎩

1 f or j = 0, 4

−1 f or j = 2, 6

W4 f or j = 1, 5

−W4 f or j = 3, 7

. (7.65)

The following combinations are needed:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 + f4 + ( f2 + f6)

f0 + f4 − ( f2 + f6)

( f0 − f4) + W4( f2 − f6)

( f0 − f4) − W4( f2 − f6)

f1 + f5 + ( f3 + f7)

f1 + f5 − ( f3 + f7)

( f1 − f5) ± W4( f3 − f7)

( f1 − f5) ± W4( f3 − f7)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 + W 0
4 s2

s1 + W 1
4 s3

s0 + W 2
4 s2

s1 + W 3
4 s3

s4 + W 4
4 s6

s5 + W 5
4 s7

s4 + W 6
4 s6

s5 + W 7
4 s7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.66)

The next step gives the sums with eight summands. With

W
j

8 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 j = 0

W8 j = 1

W 2
8 j = 2

W 3
8 j = 3

−1 j = 4

−W8 j = 5

−W 2
8 j = 6

−W 3
8 j = 7

(7.67)



7.3 Fourier Transform Algorithms 141

we calculate

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 + f4 + ( f2 + f6) + ( f1 + f5 + ( f3 + f7))

f0 + f4 − ( f2 + f6) + W8( f1 + f5 − ( f3 + f7))

( f0 − f4) + W4( f2 − f6) + W 2
8 ( f1 − f5) ± W4( f3 − f7)

( f0 − f4) − W4( f2 − f6) + W 3
8 (( f1 − f5) ± W4( f3 − f7))

f0 + f4 + ( f2 + f6) − ( f1 + f5 + ( f3 + f7))

f0 + f4 − ( f2 + f6) − W8( f1 + f5 − ( f3 + f7))

( f0 − f4) + W4( f2 − f6) − W 2
8 (( f1 − f5) ± W4( f3 − f7))

( f0 − f4) − W4( f2 − f6) − W 3
8 (( f1 − f5) ± W4( f3 − f7))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0 + W 0
8 s4

s1 + W 1
8 s5

s2 + W 2
8 s6

s3 + W 3
8 s7

s0 + W 4
8 s4

s1 + W 5
8 s5

s2 + W 6
8 s6

s3 + W 7
8 s7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7.68)

which is the final result.

The following shows a simple Fast Fourier Transformation algorithm. The number

of trigonometric function evaluations can be reduced but this reduces the readability.

At the beginning Data[k] are the input data in bit reversed order.

size:=2

first:=0

While first < Number_of_Samples do begin

for n:=0 to size/2-1 do begin

j:=first+n

k:=j+size/2-1

T:=exp(-2*Pi*i*n/Number_of_Samples)*Data[k]

Data[j]:=Data[j]+T

Data[k]:=Data[k]-T

end;

first:=first*2

size:=size*2

end;

Problems

Problem 7.1 Discrete Fourier Transformation

In this computer experiment for a given set of input samples

fn = f (n
T

N
) n = 0 . . . N − 1 (7.69)

• the Fourier coefficients

f̃ω j
=

N−1∑

n=0

fne−iω j tn ω j = 2π

T
j, j = 0 . . . N − 1 (7.70)



142 7 Fourier Transformation

are calculated with Görtzel’s method 7.3.1.

• The results from the inverse transformation

fn = 1

N

N−1∑

j=0

f̃ω j
ei 2π

N
nj (7.71)

are compared with the original function values f (tn).

• The Fourier sum is used for trigonometric interpolation with only positive

frequencies

f (t) = 1

N

N−1∑

j=0

f̃ω j

(
ei 2π

T
t
) j

. (7.72)

• Finally the unphysical high frequencies are replaced by negative frequencies

(7.24). The results can be studied for several kinds of input data.

Fig. 7.3 (Screenshot from computer exercise 7.2) Top The input signal is rectangular with Gaussian

noise. Middle The Components of the Fourier spectrum (red) below the threshold (green line) are

dropped. Bottom the filtered signal is reconstructed (blue)
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Problem 7.2 Noise Filter

This computer experiment demonstrates a nonlinear filter.

First a noisy input signal is generated.

The signal can be chosen as

• monochromatic sin(ωt)

• the sum of two monochromatic signals a1 sin ω1t + a2 sin ω2t

• a rectangular signal with many harmonic frequencies sign(sin ωt)

Different kinds of white noise can be added

• dichotomous ±1

• constant probability density in the range [−1, 1]
• Gaussian probability density

The amplitudes of signal and noise can be varied. All Fourier components are

removed which are below a threshold value and the filtered signal is calculated

by inverse Fourier transformation. Figure 7.3 shows a screenshot from the program.



Chapter 8

Time-Frequency Analysis

Fourier-analysis provides a description of a given data set in terms of monochromatic

oscillations without any time information. It is thus mostly useful for stationary sig-

nals. If the spectrum changes in time it is desirable to obtain information about the

time at which certain frequencies appear. This can be achieved by applying Fourier

analysis to a short slice of the data (short time Fourier analysis) which is shifted along

the time axis. The frequency resolution is the same for all frequencies and therefore it

can be difficult to find a compromise between time and frequency resolution. Wavelet

analysis uses a frequency dependent window and keeps the relative frequency reso-

lution constant. This is achieved by scaling and shifting a prototype wavelet - the so

called mother wavelet. Depending on the application wavelets can be more general

and need not be sinusoidal or even continuous functions. Multiresolution analysis

provides orthonormal wavelet bases which simplify the wavelet analysis. The fast

wavelet transform connects a set of sampled data with its wavelet coefficients and is

very useful for processing audio and image data.

8.1 Short Time Fourier Transform (STFT)

Fourier analysis transforms a function in the time domain f (t) into its spectrum

f̃ (ω) = F[ f ](ω) = 1√
2π

∫ ∞

−∞
f (t)e−iωt dt (8.1)

thereby losing all time information. Short time Fourier analysis applies a windowing

function1 (p. 133) e.g. a simple rectangle (Fig. 8.1)2

1Also known as apodization function or tapering function.
2There are two different definitions of the sinc function in the literature.
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Fig. 8.1 (Rectangular window) The rectangular (uniform) window and its Fourier transform are

shown for d = 1
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Fig. 8.2 (Triangular window) The triangular (Bartlett) window and its Fourier transform are shown

for d = 1

WR(t) =
{

1 for |t | ≤ d

0 else
(8.2)

W̃R(ω) = 2d√
2π

sin ωd

ωd
= 2d√

2π
sinc(ωd) (8.3)

or triangle (Fig. 8.2)

WT r (t) =
{(

1 − |t |
d

)
for t ≤ d

0 else
(8.4)

W̃T r (ω) = d√
2π

2(1 − cos ωd)

ω2d2
== d√

2π

(
sinc

(
ωd

2

))2

. (8.5)
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Fig. 8.3 (Gaussian window) The Gaussian window and its Fourier transform are shown for d = 1

A smoother window is the Gaussian (p. 192) (Fig. 8.3)

WG(t) = 1

d
√

2π
exp

{
− t2

2d2

}
(8.6)

with

W̃G(ω) = 1√
2π

exp

{
−ω2d2

2

}
. (8.7)

For the Gaussian window the standard deviations3

σt = d σω = 1

d
(8.8)

obey the uncertainty relation4

σtσω = 1. (8.9)

Since the Gaussian extends to infinity, it has to be cut off for practical calculations.

Quite popular are the Hann(ing) and Hamming windows (Fig. 8.4)

WHann(t) = cos2

(
πt

2d

)
=
(

1

2
+ 1

2
cos

πt

d

)
(8.10)

3Here we use the definition σ2 =
∫∞
−∞ dt W (t)t2. If instead σ2 =

∫∞
−∞ dt |W (t)|2t2 is used then

σt = d√
2

and σω = 1√
2d

.

4For a Gaussian the time-bandwidth product is minimal.
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Fig. 8.4 (Hann and Hamming window) The Hann (full curves) and Hamming (dashed curves)

windows together with their Fourier transforms are shown for ∆t = 1. The Hamming window is

optimized to reduce the side lobes in the spectrum

W̃Hann(ω) = d√
2π

sincωd

1 − ω2d2

π2

(8.11)

WHamm(t) =
(

27

54
+ 23

54
cos

πt

d

)
(8.12)

W̃Hamm(ω) = d√
2π

1 − 4
27

ω2d2

π2

1 − ω2d2

π2

sincωd. (8.13)

For a general real valued function

W̃ (ω)∗ =
(

1√
2π

∫ ∞

−∞
W (t)e−iωt dt

)∗
= 1√

2π

∫ ∞

−∞
W (t)eiωt dt = W̃ (−ω)

(8.14)

and for an even function

W̃ (ω) = 1√
2π

∫ ∞

−∞
W (t)e−iωt dt = 1√

2π

∫ −∞

∞
W (t)eiωt d(−t) = W̃ (−ω).

(8.15)
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If W (t) is real and even than this holds also for its Fourier transform

W̃ (−ω) = W̃ (ω) = W̃ (ω)∗ = 1√
2π

∫ ∞

−∞
W (t) cos(ωt)dt. (8.16)

The short time Fourier Transform

X (t0,ω) = F[W ∗(t − t0) f (t)](ω) = 1√
2π

∫ ∞

−∞
W ∗(t − t0) f (t)e−iωt dt (8.17)

depends on two variables t0 and ω. Since it has the form of a convolution integral it

becomes a product in Fourier space, where

1√
2π

∫
dt0e−iω0t0 X (t0,ω) = 1√

2π

∫ ∞

−∞
dt0e−iω0t0

1√
2π

∫ ∞

−∞
dt W ∗(t − t0) f (t)e−iωt

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
dt d(t − t0)e

iω0(t−t0) W ∗(t − t0) f (t)e−iω0t e−iωt

= 1

2π

(∫ ∞

−∞
d(t − t0)e

−iω0(t−t0)W (t − t0)

∫ ∞

−∞

)∗
dt f (t)e−iω0t e−iωt

= W̃ ∗(ω0) f̃ (ω + ω0). (8.18)

For a real valued an even windowing function like the Gaussian (8.6) the STFT can

therefore be calculated from

X (t0,ω) = 1√
2π

∫
dω0eiω0t0 W̃ (ω0) f̃ (ω0 + ω). (8.19)

Alternatively, the STFT can be formulated as

X (t0,ω) = 1√
2π

eiωt0

∫ ∞

−∞
f (t) W ∗(t − t0)e

−iω(t−t0)dt (8.20)

= 1√
2π

eiωt0

∫ ∞

−∞
f (t)Ω∗(t − t0)dt

which involves a convolution of f (t) with the wave packet (Fig. 8.5)

Ω(t − t0) = W (t − t0)e
iω(t−t0) (8.21)

which is localized around t0. In frequency space the wave packet becomes a band

pass filter
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Fig. 8.5 (Gabor wave packet) Left Real (full curve) and imaginary (dashed curve) part of the wave

packet (8.21) are shown for a Gaussian windowing function with ω = 5 and 2d2 = 3. Right In the

frequency domain the wave packet acts as a bandpass filter at ω0 = ω

Ω̃(ω0) = 1√
2π

∫ ∞

−∞
dte−iω0t W (t)eiωt

= 1√
2π

∫ ∞

−∞
dte−i(ω0−ω)t W (t)

= W̃ (ω0 − ω)

1

2π

∫ ∞

−∞
dt0e−iω0t0

∫ ∞

−∞
f (t)Ω∗(t − t0)dt

= 1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
d(t − t0) f (t)e−iω0t Ω∗(t − t0)e

iω0(t−t0)

= f̃ (ω0)Ω̃
∗(ω0) (8.22)

X (t0,ω) = 1√
2π

eiωt0

∫ ∞

−∞
dω0eiω0t0 f̃ (ω0)Ω̃

∗(ω0)

= 1√
2π

∫ ∞

−∞
dω0ei(ω+ω0)t0 f̃ (ω0)Ω̃

∗(ω0)

= 1√
2π

∫ ∞

−∞
dω0eiωt0 f̃ (ω0 − ω)Ω̃∗(ω0 − ω).
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The STFT can be inverted by

∫
dωX (t0, ω)eiωt0 = 1√

2π

∫
dt

∫
dωeiωt0 W∗(t − t0) f (t)e−iωt

= 1√
2π

∫
dtW∗(t − t0) f (t)2πδ(t − t0) =

√
2πW∗(0) f (t0) (8.23)

or alternatively

∫
dt0

∫
dωX (t0, ω)eiωt =

∫
dt0

∫
dω

1√
2π

eiωt

∫ ∞

−∞
W∗(t ′ − t0) f (t ′)e−iωt ′dt ′

=
∫

dt0
1√
2π

∫ ∞

−∞
2πδ(t − t ′)W∗(t ′ − t0) f (t ′)dt ′

=
∫

dt0
1√
2π

2πW∗(t − t0) f (t) =
√

2π f (t)

∫
W∗(t ′)dt ′. (8.24)

STFT with a Gaussian window is also known as Gabor transform [79] which is

conventionally defined as

G[ f ](t0,ω) =
∫ ∞

−∞
dt e−απ(t−t0)

2

e−iωt f (t). (8.25)

Example: Spectrogram

The STFT is often used to analyze audio signals. Let us consider as a simple example

a monochromatic signal, which is switched on at time t = 0

f (t) =
{

0 t < 0

sin(ωs t) t ≥ 0.
(8.26)

Using a Gaussian window, the Fourier transform can be calculated explicitly (an

algebra program is very helpful)

X (t0,ω) = 1

2π∆t

∫ ∞

0

dt e−iωt e−(t−t0)
2/2d2

sin(ωs t)

= − i

4
√

2π
e−it0(ω−ωs )e−d2(ω−ωs )

2/2

(
erf

(
i∆t2(ω − ωs) − t0√

2d

)
− 1

)

+ i

4
√

2π
e−it0(ω+ωs )e−d2(ω+ωs )

2/2

(
erf

(
id2(ω + ωs) − t0√

2d

)
− 1

)
. (8.27)
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Fig. 8.6 (3-d spectrogram) The squared magnitude of the STFT (8.27) is shown for ωs = 5 and

2d = 1

There are two contributions since the real function f (t) contains oscillations with

±ωs . The squared magnitude5 |X (t0,ω)|2 is shown as a 3-d spectrogram in Fig. 8.6.

The width of the window determines the resolution both in time and frequency.

Neglecting interference terms, at resonance ω = ωs the squared magnitude rises

according to

|X (t0,ωs)|2 = 1

32π

(
erf

t0√
2d

− 1

)2

(8.28)

and reaches its stationary value within a time of ≈2d, whereas in the stationary state

at t0 ≫ d, the dependency on the frequency mismatch ∆ω = ω − ωs is given by a

Gaussian with a width of 2σω =
√

2/d. The dependence of time and frequency res-

olution on the window width is shown qualitatively by 2-dimensional spectrograms

in Fig. 8.7.

8.2 Discrete Short Time Fourier Transform

The continuous STFT is very redundant and not useful for the analysis of data which

are sampled at discrete times. Therefore we introduce a series of overlapping windows

centered at equidistant times tn = n∆t (Fig. 8.8)

Wn(t) = W (n∆t − t). (8.29)

5This is a measure of the spectral power distribution.
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Fig. 8.7 (Spectrograms with different window width ∆t) The squared magnitude of the STFT

(8.27) is shown for ωs = 5 and 2d2 = 0.25, 0.5, 1.0, 2.0. For larger values of the time window d

the frequency resolution becomes higher but the time resolution lower

Assuming that the windowing function Wn(t) = 0 outside the interval [tn −
d, tn+d] we apply (7.5) and expand Wn(t) f (t) inside the interval as a Fourier series

gn(t) = Wn(t) f (t) =
∞∑

m=−∞
eiωm t ĝnm with ωm = m

π

d
|t − tn| ≤ d. (8.30)

We extend this expression to all times t by introducing the characteristic function

of the interval

χn(t) =
{

1 for |t − tn| ≤ d

0 else
(8.31)

gn(t) = Wn(t) f (t) = χn(t)

∞∑

m=−∞
eiωm t ĝnm . (8.32)

The Fourier coefficients, given by the integral

Fig. 8.8 (Discrete STFT)

Assuming that the

windowing function

Wn(t) = 0 outside the

interval [tn − d, tn + d] we

apply (7.5) and expand

Wn(t) f (t) inside the interval

as a Fourier series

tn tn+1tn−1

Wn(t) Wn+1   (t)Wn−1   (t)

t

2d

http://dx.doi.org/10.1007/978-3-319-61088-7_7
http://dx.doi.org/10.1007/978-3-319-61088-7_7
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ĝnm = 1

2d

∫ tn+d

tn−d

W (t − tn) f (t)e−iωm t dt (8.33)

obviously correspond to the STFT at times tnand frequencies ωm

X (tn, ωm) = 1√
2π

∫ ∞

−∞
W (t − tn) f (t)e−iωm t dt = 1√

2π

∫ tn+d

tn−d

W (t − tn) f (t)e−iωm t dt

= 2d√
2π

ĝnm . (8.34)

If the windows are dense enough such that there union spans all times, the signal can

be reconstructed by summation

∑

n

gn(t) = f (t)
∑

n

Wn(t) =
∑

nm

χn(t)e
iωm t ĝnm . (8.35)

This expression simplifies, if

∑

n

Wn(t) = const (8.36)

which is e.g. the case for triangular windows as well as the Hann and Hamming

windows with ∆t = d (Fig. 8.9).

For practical applications, we assume that the function g(t) has been sampled at

N equidistant times within the interval [tn − d, tn + d]

τn,s = tn − d + s
2d

N
s = 0, 1, . . . N − 1 (8.37)
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Fig. 8.9 (Window functions with constant sum) For the triangular (Left) and the Hann and Ham-

ming (Right) window the sum
∑

n Wn(t) becomes constant (dotted lines) if the windows are shifted

by half their width ∆t = d



8.2 Discrete Short Time Fourier Transform 155

ω j = π

d
j, ω j (τn,s − tn + d) = js

2π

N
(8.38)

and apply the discrete Fourier transformation method (p. 131)

g̃n,ω j
=

N−1∑

s=0

gn,se−iω j (τns−tn+d) =
N−1∑

s=0

gn,se−i js 2π
N (8.39)

1

N

N−1∑

j=0

g̃n,ω j
ei js 2π

N = 1

N

N−1∑

j=0

N−1∑

s=0

gn,s ′e−i js ′ 2π
N ei js 2π

N = gn,s . (8.40)

Example: FM Signal

Figures 8.10 and 8.11 show the STFT analysis of a frequency modulated signal

f (t) = sin Φ(t) = sin

(
ω0t + aω0

ω1

(1 − cos ω1t)

)
(8.41)

with a momentaneous frequency of

ω(t) = ∂Φ

∂t
= ω0(1 + a sin ω1t) (8.42)

for carrier frequency ω0

2π
= 10 kHz, modulation frequency ω1

2π
= 25 Hz(100 Hz) and

modulation depth a = 0.3.

500

f [kHz] t [ms]
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Fig. 8.10 (STFT analysis of a FM signal) The figure shows screenshots from Problem 8.1. Left

spectrogram Right STFT spectra. Sampling frequency is 44100 Hz, number of samples 512, Hann

windows are used with a shift of 8 samples (0.18 ms) between neighbor windows. 6 ms time res-

olution and 1.1 kHz frequency resolution are sufficient to resolve the 25 Hz modulation. The time

dependent spectra have their smallest width at the stationary points of the momentaneous frequency
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Fig. 8.11 (STFT analysis of a FM signal) The figure shows screenshots from Problem 8.1. Left

spectrogram Right STFT spectra. Sampling frequency is 44100 Hz, number of samples 512, Hann

windows are used with a shift of 2 samples (0.045 ms) between neighbor windows. 6 ms time

resolution and 1.1 kHz frequency resolution are not sufficient to resolve the 100 Hz modulation.

Only minimum and maximum frequencies are observed

8.3 Gabor Expansion

For the special case of rectangular windows with distance ∆t = 2d6

Wn(t) = WR(t − 2d n) = χn(t) (8.43)

∑

n

Wn(t) = 1 = const (8.44)

we have

f (t) =
∑

n

gn(t) (8.45)

=
∑

n

∞∑

m=−∞
χn(t)e

iωm t ĝnm . (8.46)

This equation expands f (t) and its Fourier transform as linear combinations of

elementary “signals” which are located at tn in time and ωm in frequency

hn,m = χneiωm t . (8.47)

6For simplicity, we do not normalize the window here.
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h̃n,m = 2d√
2π

e−itn(ω−ωm ) sinc d(ω − ωm) (8.48)

f (t) =
∑

nm

hn,m ĝn,m f̃ (ω) =
∑

nm

h̃nm ĝnm . (8.49)

A similar expansion is obtained if we use rectangular windows in Fourier space with

width and distance ∆ω [80]

h̃nm(ω) = χme−itn(ω−ωm )

hnm(t) = 2∆ω√
2π

sinc ((t − tn)∆ω)eiωm t

and sample the spectrum at times

tn = n
π

∆ω
(8.50)

to obtain

f̃ (ω) =
∑

χm(ω) f̃m(ω) =
∞∑

n=−∞
χm(ω)eiωtn f̂nm (8.51)

f̂nm = 1

2∆ω

∫ ωm+∆ω

ωm−∆ω

f̃ (ω)eiωtn dω. (8.52)

Gabor [79] discussed an expansion with Gaussian signals (Fig. 8.5). In general, how-

ever, the elementary signals are not orthogonal which makes the determination of the

coefficients an,m complicated. Bastiaans [80, 81] introduced another auxiliary set of

elementary signals

γn,m = γ(t − n∆t)eiωm t (8.53)

which are biorthogonal, i.e.

∫
γ∗

n′,m ′(t)hn,m(t)dt = δn,n′δm,m ′ (8.54)

and allow the calculation of the Gabor expansion coefficients from a scalar product

∫
γ∗

n,m(t) f (t)dt =
∑

nm

∫
anmγ∗

n,mhnm(t)dt = anm . (8.55)
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Determination of γ for a given windowing function can be simplified by application

of the Zak transform [82]. Discrete versions of the Gabor transform [83] are popular

in signal, speech and image processing.

8.4 Wavelet Analysis

The STFT method uses constant frequency and time resolution. Therefore the lowest

frequency of interest determines the minimum width of the window whereas at

higher frequencies shorter time windows could be more appropriate to increase time

resolution while keeping the relative uncertainty in frequency constant (Fig. 8.12).

This is the basic idea of the wavelet transform. Whereas STFT uses wave packets of

the form (8.21)

Ωt0,ω(t) = W (t − t0)e
iω(t−t0) (8.56)

-3 -2 -1 0 1 2 3
time

-3 -2 -1 0 1 2 3
time

-3 -2 -1 0 1 2 3
time

-3 -2 -1 0 1 2 3
time

-3 -2 -1 0 1 2 3
time

-3 -2 -1 0 1 2 3
time

Fig. 8.12 (Morlet wavelets and STFT wave packets) Top STFT uses the same window for all

frequencies Bottom wavelets use a variable window width to keep the form of the wave packet and

the relative frequency resolution constant (only the real part is shown)
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where only the oscillating part is scaled with frequency ω, wavelets scale the whole

function like in

Ωt0,s(t) = W

(
t − t0

s

)
eiω0(t−t0)/s (8.57)

or, more generally

Ωt0,s(t) = 1√
|s|

Ψ

(
t − t0

s

)
(8.58)

Ω̃(ω) = 1√
2π

∫ ∞

−∞
e−iωt 1√

|s|
Ψ

(
t − t0

s

)
dt

= 1√
2π

∫ ∞sign s

−∞signs

e−iω(st ′+t0)
1√
|s|

Ψ (t ′)d(st ′ + t0)

=
√

|s|e−iωt0
1√
2π

∫ ∞

−∞
e−iωst ′

Ψ (t ′)dt ′ =
√

|s|e−iωt0 Ψ̃ (sω) (8.59)

where a whole family of wavelets is derived from the “mother wavelet” Ψ (t) by

shifting and rescaling. The prefactor has been introduced to keep the norm invariant

∫
|Ωt0,s(t)|2dt = 1

|s|

∫
|Ψ
(

t − t0

s

)
|2dt

= 1

|s|

∫ ∞ signs

−∞signs

|Ψ (t ′)|2d(st ′ + t0) =
∫

|Ψ (t ′)|2dt ′. (8.60)

Closely related to the short time Fourier analysis is the Morlet (or Gabor) wavelet,

which is also very useful in quantum physics [84]. It is defined as7

Ψ (t) = WG(t)eiω0t = 1

π1/4
√

d
exp

{
− t2

2d2

}
eiω0t (8.61)

Ψ̃ (ω) = W̃G(ω − ω0) =
√

d

π1/4
exp

{
−d2

2
(ω − ω0)

2

}
. (8.62)

The similarity of a signal f (t) to a wavelet with scale s centered at t0 is measured

by the correlation integral

C(t0, s) =
∫ ∞

−∞
f (t)Ω∗

t0,s
(t)dt = 1√

|s|

∫ ∞

−∞
Ψ ∗

(
t − t0

s

)
f (t)dt (8.63)

7The conventional normalization is
∫

dt |Ψ (t)|2 = 1.
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which becomes a product after Fourier transformation with respect to t0

C̃(ω, s) = 1√
2π

∫
C(t0, s)e−iωt0 dt0

= 1√
2π

∫
dt0e−iωt0

∫
dt

1

2π

∫
dω′√|s|Ψ̃ ∗(sω′)e−iω′(t−t0)

∫
dω′′ f̃ (ω′′)eiω′′t

=
√

2π|s|
∫

dt

∫
dω′Ψ̃ ∗(sω′)e−iω′t

∫
dω′′ f̃ (ω′′)eiω′′tδ(ω − ω′)δ(ω′ − ω′′)

=
√

2π|s|
∫

dω′Ψ̃ ∗(sω′)e−iω′t f̃ (ω′)eiω′t

=
√

2π|s|Ψ̃ ∗(sω) f̃ (ω). (8.64)

For the Morlet wavelet this becomes

C̃(ω, s) = π1/4
√

2|s|d exp

{
−d2

2
(sω − ω0)

2

}
f̃ (ω)

= π1/4
√

2|s|d exp

{
− (sd)2

2

(
ω − ω0

s

)2
}

f̃ (ω) (8.65)

i.e. C̃(ω, s) averages the spectrum f̃ over a range with a width of σω = 1/sd around

ω = ω0/s and a constant ratio

σω

ω
= 1

ω0d
. (8.66)

8.5 Wavelet Synthesis

For data processing it is necessary to reconstruct the data from the wavelet coefficients

C(t0s). This can be achieved with the help of the integral8

∫ ∞

−∞

∫ ∞

−∞

1

s2
C(t0, s)Ωt0,s(t)dt0ds =

∫
1

s2
dt0ds

1√
|s|

Ψ

(
t − t0

s

)
C(t0, s)

= 1√
2π

∫
1

s2
ds

∫
dt0

∫
dωeiω(t−t0)/s Ψ̃ (ω)

∫
dω′eiω′t0 Ψ̃ ∗(sω) f̃ (ω)

= 1√
2π

∫
1

s2
ds

∫
dt0

∫
sdω′′eiω′′(t−t0)Ψ̃ (ω′′s)

∫
dω′eiω′t0 Ψ̃ ∗(sω′) f̃ (ω′)

= 1√
2π

∫
1

s
ds

∫
dω′′eiω′′t Ψ̃ (ω′′s)

∫
dω′Ψ̃ ∗(sω′) f̃ (ω′)2πδ(ω′ − ω′′)

=
√

2π

∫
1

s
ds

∫
sdω′′eiω′′t Ψ̃ (ω′′s)Ψ (sω′′) f̃ (ω′′)

=
√

2π

∫
1

s
ds

∫
dω′′eiω′′t Ψ̃ (ω′′s)Ψ̃ ∗(sω′′) f̃ (ω′′). (8.67)

8A more rigorous treatment introducing the concept of frames in Hilbert space can be found in [85].



8.5 Wavelet Synthesis 161

If the admissibility condition is fulfilled, which states that the integral

CΨ =
∫ ∞

−∞

|Ψ̃ (ω)|2
ω

dω < ∞ (8.68)

exists and is final, then

∫ ∞

−∞

1

s
dsΨ̃ (ωs)Ψ̃ ∗(ωs) =

∫ ∞

−∞

1

ω′ dω′Ψ̃ (ω′)Ψ̃ ∗(ω′) = CΨ

and we obtain

f (t) = 1

2πCΨ

∫ ∞

−∞

∫ ∞

−∞

1

s2
C(t0, s)Ωt0,s(t)dt0ds.

The admissibility condition implies that Ψ̃ (0) = 0 and thus
∫

dtΨ (t) = 0. Hence,

the Morlet wavelet (8.61) has to be modified9

Ψ (t) = 1

π1/4
√

d
Nd exp

{
− t2

2d2

}[
eiω0t − exp

{
−ω2

0d2

2

}]
(8.69)

Ψ̃ (ω) =
√

d

π1/4
Nd

[
exp

{
−d2

2
(ω − ω0)

2

}
− exp

{
−d2

2
(ω2 + ω2

0)

}]
(8.70)

Nd =
[(

1 + exp
{
−ω2d2

}
− 2 exp

{
−3

4
ω2d2

})]−1/2

. (8.71)

Another popular (continuous) wavelet is the “Mexican hat” (also known as Ricker

wavelet or Marr wavelet) which is given by the normalized negative second derivative

of a Gaussian (Fig. 8.13)

Ψ (t) = 2

π1/4
√

3d

(
1 − t2

d2

)
exp

{
− t2

2d2

}
(8.72)

Ψ̃ (ω) = 2
√

d

π1/4
√

3
ω2 exp

{
−ω2d2

2

}
. (8.73)

Example: Wavelet Analysis of a Nonstationary Signal

The following example shows screen shots from Problem 8.2. The signal consists of

two sweeps with linearly increasing frequency of the form

f1,2(t) = sin
[
ω1,2t + α1,2

2
t2
]

(8.74)

9This correction is often neglected, if the width is large.
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Fig. 8.13 (Mexican hat wavelet) Left The mexican hat wavelet is essentially the second derivative

of a Gaussian. Right Its Fourier transform is a band pass filter around ωmax = ±2/d

and another component which switches between a 5 kHz oscillation and the sum of

a 300 Hz and a 20 kHz oscillation at a rate of 20 Hz

f3(t) =
{

sin(ω20k H z t) + sin(ω300H z t) if sin(ω20H z t) < 0

sin(ω5k H zt) else.
(8.75)

The signal is sampled with a rate of 44 kHz and analyzed with Morlet wavelets

over 6 octaves (Fig. 8.14). The parameter d of the mother wavelet (8.61) determines

frequency and time resolution. The frequency ω0 of the mother wavelet is taken as

the Nyquist frequency which is half the sampling rate. The convolution with the

daughter wavelets

Ψm,n(t) = 1
√

sm

Ψ

(
t − tn

sm

)
(8.76)

is calculated at 400 times with a step size of 0.726 ms (corresponding to 32 samples)

tn = t0 + n∆t (8.77)

and for 300 different values of the scaling parameter

sm = 1.015m . (8.78)

In a logarithmic plot, the relative frequency uncertainty has the same size for all

stationary signals.



8.5 Wavelet Synthesis 163

Fig. 8.14 (Wavelet analysis)

Top for d = 1 ms the

frequency resolution is high

for the stationary parts of the

signal. Time resolution is

low. Middle for d = 0.25 ms

the pulsating component at

300 Hz can be resolved but

time resolution is still poor.

Bottom For d = 0.0625 ms

time resolution is sufficient

to show all the modulations

while frequency resolution is

rather poor
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8.6 Discrete Wavelet Transform and Multiresolution

Analysis

The continuous wavelet transform is very redundant and time consuming. Multires-

olution analysis provides a way to define a discrete set of orthogonal wavelets, for

which the wavelet transform can be calculated very efficiently from a scalar product.

A discrete wavelet transform uses discrete values of shift and scaling parameters

s = a−m t0 = na−mb (8.79)

to define the daughter wavelets10

Ψm,n(t) = am/2Ψ
(
am t − nb

)
. (8.80)

For integer a, in most cases a = 2, this equation defines wavelets of a multireso-

lution analysis (Fig. 8.15) where m corresponds to the resolution 2m .

8.6.1 Scaling Function and Multiresolution Approximation

At the basic resolution 20 the function f (t) is approximated as a linear combination

f (t) ≈ f (t)(0) =
∑

n

f0,nΦ0,n(t) (8.81)

of a scaling function and its translations,

Fig. 8.15 (Multiresolution

analysis) Data are analyzed

with decreasing time

window ∆t = b/2m

21

20

22

23

24

s−1

0 tb

10Equation 8.76, in contrast, describes the continuous wavelet transform, which has to be discretized

for numerical calculations.
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Φ0,n = Φ(t − nb) , n = 0,±1 . . . (8.82)

which is chosen [86, 87] such, that the Φ0,nform an orthonormal basis of the space

of linear combinations

V0 = span{Φ0,n, n = 0,±1, . . . } (8.83)

∫
Φ∗

0,n(t)Φ0,n′(t)dt = δn,n′ . (8.84)

The best approximation is found by minimizing the norm

|| f (t) −
∑

n

f0,nΦ0n(t)||2 =
∫

( f ∗(t) −
∑

n

f ∗
0,nΦ∗

0n(t))( f (t) −
∑

n′
f0,n′Φ0n′ (t))dt

=
∫

| f (t)|2dt −
∑

n′
f0n′

∫
f ∗(t)Φ0n′ (t)dt −

∑

n

f ∗
0n(t)

∫
Φ∗

0n(t) f (t)dt +
∑

n

| f0n |2 (8.85)

hence by choosing

f0n =
∫

Φ∗
0n(t) f (t)dt (8.86)

i.e., the orthogonal projection of f (t) onto V0. Approximation at the higher resolution

2m similarly is given by linear combination

f (t) ≈ f (t)(m) =
∑

n

fm,nΦm,n(t) (8.87)

of the scaled functions

Φm,n = 2m/2Φ(2m t − nb) (8.88)

which form an orthonormal basis for the space

Vm = span{Φm,n, n = 0,±1, . . . } (8.89)

since

∫
Φ∗

m,n(t)Φm,n′(t)dt = 2m

∫
Φ∗(2m t − nb)Φ(2m t − n′b)dt

= 2m

∫
Φ∗(t ′ − nb)Φ(t ′ − n′b)

dt ′

2m
= δn,n′ . (8.90)

The sequence of spaces Vm is called a multiresolution approximation to the space of

square integrable functions L2(R), if [86]
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(i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . (8.91)

(ii)

∞⋃

m=−∞
Vm is dense in L2(R) (8.92)

(iii)

∞⋂

m=−∞
Vm = {0}. (8.93)

Property (ii) has as a consequence, that the approximations f (m)(t) converge to f (t)

for large m. Hence, due to orthonormality

f (m)(t) =
∑

n

Φm,n(t)

∫ ∞

−∞
Φ∗

m,n(t
′) f (t ′)dt ′ → f (t) (8.94)

and the projection operator onto Vm

Pm =
∑

n

Φm,n(t)Φ
∗
m,n(t

′) = 2m
∑

n

Φ(2m t − nb)Φ∗(2m t ′ − nb) → 1 (8.95)

converges to the unit operator. Now, with a > 0 choose the function

fa(t) =
{

1 if − a ≤ x ≤ a

0 else.
(8.96)

Then,

(Pm fab)(t) =
∑

n

Φ(2m t − nb)

∫ a

−a

2mdt ′Φ∗(2m t ′ − nb)

=
∑

n

Φ(2m t − nb)

∫ 2m a

−2m a

Φ∗(t ′ − nb)dt ′. (8.97)

For large a, the integrals become more and more independent on n, and

(∫ ∞

−∞
Φ∗(t ′)dt ′

)∑

n

Φ(2m t − nb) → 1. (8.98)

Now we integrate the sum over one period 0 ≤ t ≤ 2−mb and find

∫ 2−m b

0

∑

n

Φ(2m t − nb)dt =
∑

n

∫ (1−n)b

−nb

Φ(t) 2−mdt = 2−m

∫ ∞

−∞
Φ(t)dt

(8.99)
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and therefore

(∫ ∞

−∞
Φ∗(t ′)dt ′

)(∫ ∞

−∞
Φ(t ′)dt ′

)
= b (8.100)

or

∣∣∣∣
∫ ∞

−∞
Φ(t ′)dt ′

∣∣∣∣ =
√

b (8.101)

as well as

|Φ̃(0)| = 1√
2π

∣∣∣∣
∫ ∞

−∞
Φ(t ′)dt ′

∣∣∣∣ =
√

b

2π
. (8.102)

Fourier transformation of (8.84) gives

δnn′ =
∫

Φ∗(t − nb)Φ(t − n′b)dt

= 1

2π

∫
dt

∫
Φ̃∗(ω)e−iω(t−nb)dω

∫
Φ̃(ω′)eiω′(t−n′b)dω′

=
∫

dωdω′Φ̃∗(ω)Φ̃(ω′)ei(ωn−ω′n′)bδ(ω − ω′) =
∫

dω|Φ̃(ω)|2eiω(n−n′)b

=
∞∑

j=−∞

∫ 2π( j+1)/b

2π j/b

dω|Φ̃(ω)|2eiω(n−n′)b =
∫ 2π/b

0

dω

∞∑

j=−∞
|Φ̃(ω + 2π j/b)|2e−iω∆nb

=
∫ 2π/b

0

dωF(ω)e−iω∆nb. (8.103)

F(ω) is periodic with period Ω0 = 2π/b and can be represented as a Fourier sum

F(ω) =
∞∑

n=−∞
Fnei2πnω/Ω0 =

∞∑

n=−∞
Fneinbω (8.104)

where the Fourier coefficients

Fn = 1

Ω0

∫ Ω0

0

F(ω)e−i2πnω/Ω0 = b

2π

∫ 2π/b

0

F(ω)e−inbω (8.105)

are found from comparison with (8.103)

Fn = b

2π
δn,0. (8.106)
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Finally, evaluation of the Fourier sum (8.104) gives

F(ω) =
∑

j

|Φ̃(ω + jΩ0)|2 = 1

Ω0

(8.107)

which is the equivalent of the orthonormality of Φ0n in Fourier space.

Equation 8.91 implies that Φm,ncan be represented as linear combination of the

Φm+1,n . Starting from

Φ(t) = Φ0,0(t) =
∑

n

hnΦ1,n(t) =
√

2
∑

n

hnΦ(2t − nb) (8.108)

scaling and translation gives

Φm,n(t) =
∑

n′

hn′−2nΦm+1,n′(t). (8.109)

Fourier transformation of (8.88) gives

Φ̃m,n(ω) = e−2nπiω/Ωm Φ̃m,0(ω) = 1√
2m

e−2nπiω/Ωm Φ̃(ω/2m) (8.110)

Φ̃m+1,n(ω) = 1√
2
Φ̃mn(ω/2) (8.111)

with

Ωm = 2m 2π

b
= 2mΩ0 (8.112)

and (8.108) becomes

Φ̃(ω) =
∑

n

hn√
2

e−2nπiω/Ω1Φ̃(ω/2m) = M0(ω/2)Φ̃(ω/2) (8.113)

where

M0(ω/2) =
∑

n

hn√
2

e−2nπi(ω/2)/Ω0 (8.114)
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is Ω0−periodic. Similarly, we find

Φ̃m0(ω) =
∑

n

hnΦ̃m+1n(ω) =
∑

n

hn√
2m+1

e−2nπi(ω/2m+1)/Ω0Φ̃(ω/2m+1)

= 1√
2m

M0(ω/2m+1)Φ̃(ω/2m+1). (8.115)

Equation 8.113 can be iterated to obtain

Φ̃(ω) = M0(ω/2)Φ̃(ω/2) = M0(ω/2)M0(ω/4)Φ̃(ω/4) = . . .

=
∞∏

j=1

M0(ω/2 j )Φ̃(0) =
∞∏

j=1

M0(ω/2 j )

√
b

2π
. (8.116)

This equation shows that knowledge of M0 is sufficient to determine the scaling

function (see also p. 182).

From the orthogonality condition (8.107) we obtain

1

Ω0

=
∑

j

|Φ̃(ω + jΩ0)|2 =
∑

j

∣∣∣∣M0

(
ω/2 + j

Ω

2

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 + j

Ω

2

) ∣∣∣∣
2

=
∑

j

|M0(ω/2 + jΩ0)|2|Φ̃(ω/2 + jΩ0)|2

+
∑

j

∣∣∣∣M0

(
ω/2 +

(
j + 1

2

)
Ω0

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 +

(
j + 1

2

)
Ω0

) ∣∣∣∣
2

= |M0(ω/2)|2
∑

j

|Φ̃(ω/2 + jΩ0)|2

+
∣∣∣∣M0

(
ω/2 + Ω0

2

) ∣∣∣∣
2 ∑

j

|Φ̃((ω + Ω0)/2 + jΩ0)|2

= 1

Ω0

[
|M0(ω/2)|2 +

∣∣∣∣M0

(
ω/2 + Ω0

2

) ∣∣∣∣
2
]

. (8.117)

Example: Rectangular Scaling Function

The simplest example of a scaling function is the rectangular function

Φ(t) =
{

1√
b

for

∣∣∣t − b
2

∣∣∣ ≤ b
2

0 else
(8.118)
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with the scaled and translated functions

Φ0,n(t) = Φ(t − nb) =
{

1√
b

for

∣∣∣t −
(
n + 1

2

)
b

∣∣∣ ≤ b
2

0 else
(8.119)

Φ1,n(t) =
√

2Φ(2t − nb) =
{

1√
b/2

for

∣∣∣t −
(
n + 1

2

)
b
2

∣∣∣ ≤ b
4

0 else
(8.120)

...

Φm,n(t) =
√

2mΦ(2m t − nb) =
{

1√
b/2m for

∣∣∣t −
(
n + 1

2

)
b

2m

∣∣∣ < b
2m+1

0 else
.

(8.121)

Obviously, the Φmn(t) for fixed m are orthonormal and can be represented as linear

combination

Φm,n(t) = 1√
2
Φm+1,2n(t) + 1√

2
Φm+1,2n+1(t). (8.122)

Vm is the space of functions which are piecewise constant on intervals |t − (n +
1/2)b/2m | < b/2m+1. Figure 8.16 shows the approximation of the parabola f (t) =
t2 by functions in V0 . . . V3.

The Fourier transform of the scaling function is

Φ̃(ω) = 1√
2π

2 sin
(

ωb
2

)

ω
√

b
e−iωb/2 =

√
b√

2π
sinc

(
ωb

2

)
e−iωb/2 (8.123)

Fig. 8.16 (Approximation

by piecewise constant

functions) The parabola

f (t) = t2 (dashed curve) is

approximated by linear

combination of orthonormal

rectangular functions (8.121)

fm(t) =
∑

n Φmn(t)∫∞
−∞ Φ∗

mn(t) f (t)dt for

m = 0 (black) m = 1 (red)

m = 2 (blue) m = 3 (green)

0 0.5 1 1.5 2

t/b

0

2

4

f(
t)
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and from

Φ̃(ω) = 1√
2π

2
[
2 sin

(
ωb
4

)
cos

(
ωb
4

)]

ω
√

b
e−iωb/2 = Φ̃

(
ωb

2

)
cos

(
ωb

4

)
e−iωb/4

(8.124)

we find

M0

(ω

2

)
= cos

(
ωb

4

)
e−iωb/4. (8.125)

8.6.2 Construction of an Orthonormal Wavelet Basis

The approximation f (m+1)(t) contains more details than f (m)(t). We would like to

extract these details by dividing the space

Vm+1 = Vm + Wm (8.126)

into the sum of Vm and an orthogonal complement Wm ⊥ Vm . The approximation

f (m+1)(t) then can be divide into the approximation f (m) plus the projection onto

Wm , which provides the details. In the following we will construct an orthonormal

basis of Wm in terms of wavelet functions Ψ (t) which have the properties

(i) Ψ ∈ Vm+1 (8.127)

or

Ψ =
∑

n

CnΦm+1,n (8.128)

and

(ii) Ψ ⊥ Vm (8.129)

or

∫ ∞

−∞
Ψ ∗(t)Φmn(t)dt = 0 ∀n (8.130)

which is equivalent to

∫ ∞

−∞
Ψ̃ ∗(ω)Φ̃mn(ω)dω = 0 ∀n. (8.131)
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Fig. 8.17 (Haar wavelet) The rectangular scaling function (a) can be written as a linear combination

of translated scaling functions at the next higher resolution (b). This is also the case for the wavelet

function (c) which is orthogonal to the scaling function

Example: Haar Wavelet

With the rectangular scaling function

Φ(t) =
{

1 if 0 ≤ x ≤ 1

0 else
(8.132)

the Haar wavelet [88] (Fig. 8.17)

Ψ (t) = 1√
2
Φ1,0(t) − 1√

2
Φ1,0(t) (8.133)

is a linear combination of the translated functions Φ1,n and orthogonal to all Φ0,n .

The family of scaled and translated daughter wavelets

Ψm,n(t) = 1√
2
Φm,n(t) − 1√

2
Φm,n+1(t)

obeys

Ψm,n ∈ Vm+1 Ψm,n ⊥ Vm . (8.134)

Orthogonality Condition

After Fourier transformation, (8.131) becomes

0 =
∫

Ψ̃ ∗(ω)e−niω2π/Ωm Φ̃m0(ω)dω

=
∑

j

∫ ( j+1)Ωm

jΩm

Ψ̃ ∗(ω)e−niω2π/Ωm Φ̃m0(ω)dω
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=
∑

j

∫ Ωm

0

Ψ̃ ∗(ω + jΩm)e−ni(ω+ j2π/tm )tm Φ̃m0(ω + jΩm)dω

=
∫ Ωm

0

e−niω2π/Ωm

∑

j

Ψ̃ ∗(ω + jΩm)Φ̃m0(ω + jΩm)dω

=
∫ Ωm

0

e−niω2π/Ωm G(ω)dω = Ωm Ĝ(tn). (8.135)

This expression looks like the Fourier coefficient of an Ωm-periodic function with

the Fourier sum (7.5 with ω and t exchanged)

G(ω) =
∞∑

n=−∞
eitnωĜ(tn) with tn = n

2π

Ωm

. (8.136)

But, since Ĝ(t) = 0, we obtain the orthogonality condition

∑

j

Ψ̃ ∗(ω + jΩm)Φ̃m0(ω + jΩm) = 0. (8.137)

Construction of the Wavelet

Now, Ψ and Φm0 both are in Vm+1, therefore (8.113)

Φ̃m0 = Mm0(ω/2m+1)Φ̃(ω/2m+1) (8.138)

Ψ̃ = MΨ (ω/2m+1)Φ̃(ω/2m+1) (8.139)

whereMm,0 and MΨ are Ω0−periodic.
Hence, from (8.137)

0 =
∑

j

M∗
Ψ ((ω + jΩm)/2m+1)Mm0((ω + jΩm)/2m+1)|Φ̃((ω + jΩm)/2m+1)|2

=
∑

j

M∗
Ψ (ω/2m+1 + jΩ0/2)Mm0(ω/2m+1 + jΩ0/2)|Φ̃(ω/2m+1 + jΩ0/2)|2

=
∑

j even

M∗
Ψ (ω/2m+1)Mm0(ω/2m+12)|Φ̃(ω/2m+1 + Ω0 j/2)|2

+
∑

j odd

M∗
Ψ

(
ω/2m+1 + Ω0

2

)
Mm0

(
ω/2m+1 + Ω0

2

)
|Φ̃(ω/2m+1 + Ω0 j/2)|2

= M∗
Ψ (ω/2m+1)Mm0(ω/2m+12)

∑

j even

|Φ̃(ω/2m+1 + Ω0 j/2)|2

+ M∗
Ψ

(
ω/2m+1 + Ω0

2

)
Mm0

(
ω/2m+1 + Ω0

2

) ∑

j odd

|Φ̃(ω/2m+1 + Ω0 j/2)|2.

(8.140)

http://dx.doi.org/10.1007/978-3-319-61088-7_7
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From orthogonality of Φm+1,n

∑

j

|Φ̃(ω/2m+1 + jΩ0)|2 = 1

Ω0

(8.141)

we see that both sums have the same value

∑

j even

|Φ̃(ω/2m+1 + Ω0 j/2)|2 =
∑

k

|Φ̃(ω/2m+1 + kΩ0)|2 = 1

Ω0

(8.142)

∑

j odd

|Φ̃(ω/2m+1 + Ω0 j/2)|2 =
∑

k

|Φ̃(ω/2m+1 + kΩ0 + Ω0/2)|2 = 1

Ω0

(8.143)

and therefore

M∗
Ψ (ω/2m+1)Mm0(ω/2m+12) + M∗

Ψ

(
ω/2m+1 + Ω0

2

)
Mm0

(
ω/2m+1 + Ω0

2

)
= 0

(8.144)

which can be satisfied by choosing [86]

MΨ (ω/2m+1) = M∗
m0

(
ω/2m+1 + Ω0

2

)
eiω2π/Ωm+1 (8.145)

which implies

MΨ

(
ω/2m+1 + Ω0

2

)
= M∗

m0(ω/2m+1 + Ω0)e
i(ω+Ωm+1/2)2π/Ωm+1

= −M∗
m0(ω/2m+1)eiω2π/Ωm+1 . (8.146)

Hence we obtain the solution

Ψ̃m(ω) = eiω2π/Ωm+1 M∗
m0

(
ω/2m+1 + Ω0

2

)
Φ̃(ω/2m+1)

=
∑

n′

h∗
n′√

2m+1
ein′πei(n′+1)ω2π/Ωm+1Φ̃(ω/2m+1) (8.147)

which becomes in the time domain
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Ψm(t) =
∑

n′

h∗
n′√

2m+1
(−1)n′ 1√

2π

∫
dωeiωt ei(n′+1)ω2π/Ωm+1Φ̃(ω/2m+1)

=
∑

n′

(−1)n′
h∗

n′

√
2m+1Φ(2m+1t + (n′ + 1)b)

=
∑

n′

(−1)n′
h∗

n′Φm+1,−n′−1(t) (8.148)

=
∑

n

(−1)−n−1h∗
−n−1Φm+1,n(t). (8.149)

From the orthogonality condition (8.107) we obtain

∑

j

|Ψ̃0(ω + jΩ0)|2 =
∑∣∣∣∣M00

(
ω/2 + ( j + 1)

Ω0

2

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 + j

Ω0

2

) ∣∣∣∣
2

=
∑∣∣∣∣M00

(
ω/2 + (2 j + 1)

Ω0

2

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 + 2 j

Ω0

2

) ∣∣∣∣
2

+
∑∣∣∣∣M00

(
ω/2 + (2 j + 2)

Ω0

2

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 + (2 j + 1)

Ω0

2

) ∣∣∣∣
2

=
∣∣∣∣M00

(
ω/2 + Ω0

2

) ∣∣∣∣
2 ∑

|Φ̃(ω/2 + jΩ0)|2

+ |M00(ω/2)|2
∑

|Φ̃((ω + Ω0)/2 + jΩ0)|2

= 1

Ω0

(∣∣∣∣M00

(
ω/2 + Ω0

2

) ∣∣∣∣
2

+ |M00(ω/2)|2
)

. (8.150)

But, since the scaling function obeys the orthonormality condition (8.107),

1

Ω0

=
∑

|Φ̃(ω + jΩ0)|2 =
∑∣∣∣∣M00

(
ω/2 + j

Ω

2

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 + j

Ω

2

) ∣∣∣∣
2

=
∑

|M00(ω/2 + jΩ0)|2|Φ̃(ω/2 + jΩ0)|2

+
∑∣∣∣∣M00

(
ω/2 +

(
j + 1

2

)
Ω0

) ∣∣∣∣
2∣∣∣∣Φ̃

(
ω/2 +

(
j + 1

2

)
Ω0

) ∣∣∣∣
2

= |M00(ω/2)|2
∑

|Φ̃(ω/2 + jΩ0)|2

+
∣∣∣∣M00

(
ω/2 + Ω0

2

) ∣∣∣∣
2 ∑

|Φ̃((ω + Ω0)/2 + jΩ0)|2

= 1

Ω0

[
|M00(ω/2)|2 +

∣∣∣∣M00

(
ω/2 + Ω0

2

) ∣∣∣∣
2
]

(8.151)

hence the wavelet also fulfills the orthonormality condition
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∑

j

|Ψ̃0(ω + jΩ0)|2 = 1

Ω0

. (8.152)

Therefore the translated wavelet functions

Ψmn(t) = Ψm(t − n2−mb) =
∑

n′
(−1)−n′−1h∗

−n′−1

√
2m+1Φ(2m+1(t − n2−mb) − n′b)

=
∑

n′
(−1)−n′−1h∗

−n′−1Φm+1,2n+n′ (t) (8.153)

are orthonormal

∫
Ψ ∗

mn(t)Ψmn′(t)dt = δn.n′ . (8.154)

Wavelets for different resolution m are orthogonal since they are by construction

in orthogonal spaces. The Ψmn(t) with m, n = −∞ . . . ∞ provide an orthonormal

basis of

L2(R) =
∞⋃

m=−∞
Wm . (8.155)

Alternatively, (8.155) is replaced by

L2(R) = V0 +
∞⋃

m=0

Wm (8.156)

which is more useful for practical applications with limited total observation time.

According to (8.156), starting from a basic approximation in V0, more and more

details are added to obtain approximations with increasing accuracy.

Example: Meyer Wavelet

Meyer introduced the first non trivial wavelet (Fig. 8.18) which, in contrast to the Haar

wavelet is differentiable [89, 90]. It was originally defined by its scaling function in

Fourier space11 (here, b = 1)

Φ̃(ω) =

⎧
⎪⎨
⎪⎩

1√
2π

if ω ≤ 2π
3

1√
2π

cos
(

π
2

(
3|ω|
2π

− 1
))

if 2π
3

< |ω| < 4π
3

0 if |ω| > 4π
3

(8.157)

from which the mother wavelet can be derived

11There are different variants of the Meyer wavelet in the literature.
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Fig. 8.18 (Meyer wavelet in frequency space) Left scaling function Right magnitude of the wavelet

function

Ψ̃ (ω) =

⎧
⎪⎪⎨
⎪⎪⎩

1√
2π

sin
(

π
2

(
3|ω|
2π

− 1
))

eiω/2 if 2π
3

≤ |ω| ≤ 4π
3

1√
2π

cos
(

π
2

(
3|ω|
4π

− 1
))

eiω/2 if 4π
3

≤ |ω| ≤ 8π
3

0 else.

(8.158)

Explicit expressions in the time domain (Fig. 8.19) were given in 2015 [91]

Φ(t) =

⎧
⎨
⎩

2
3

+ 4
3π

if t = 0

sin 2π
3

t+ 4
3

t cos 4π
3

t

πt− 16π
9

t3
else

(8.159)
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Fig. 8.19 (Meyer wavelet in the time domain) Left scaling function Right wavelet function
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Ψ (t) =
4

3π

(
t − 1

2

)
cos

[
2π
3

(
t − 1

2

)]
− 1

π
sin
[

4π
3

(
t − 1

2

)]
(
t − 1

2

)
− 16

9

(
t − 1

2

)3

+
8

3π

(
t − 1

2

)
cos

[
8π
3

(
t − 1

2

)]
+ 1

π
sin
[

4π
3

(
t − 1

2

)]
(
t − 1

2

)
− 64

9

(
t − 1

2

)3
. (8.160)

8.7 Discrete Data and Fast Wavelet Transform

Mallet’s algorithm [87] starts with function values

fn = f (n∆ts) (8.161)

sampled at multiples of

∆ts = 1/ fs = b/2mmax . (8.162)

We do not really approximate the function but from the series of sample values we

construct the linear combination

∑

n

fnΦmmax ,n(t) (8.163)

which is an element of

Vmmax
= V0 +

mmax −1⋃

m=0

Wm (8.164)

and can therefore be represented as a coarse approximation in V0 and a series of

details with increasing resolution

∑

n

fnΦmmax ,n(t) =
∑

n

cnΦ0,n(t) +
mmax −1∑

m=0

∑

n

dmnΨmn(t). (8.165)

8.7.1 Recursive Wavelet Transformation

The approximation coefficients cn and detail coefficients dmn are determined recur-

sively which avoids the calculation of scalar products.

Starting with

cmmax ,n = fn (8.166)
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the details are extracted by expanding

∑

n

cmmax ,nΦmmax ,n(t) =
∑

n

cmmax −1,nΦmmax −1,n(t) +
∑

n

dmmax −1,nΨmmax −1,n(t).

(8.167)

Due to orthogonality, the coefficients at the next lower resolution can be determined

from

cmmax −1,n′ =
∑

n

cmmax ,n < Φmmax −1,n′ |Φmmax ,n >=
∑

n

cmmax ,nh∗
n−2n′

=
∑

n

cmmax ,n+2n′ h∗
n (8.168)

dmmax −1,n′ =
∑

n

cmmax ,n < Ψmmax −1,n′ |Φmmax ,n >=
∑

n

cmmax ,n(−1)n−1h2n′−n−1

(8.169)

which can be written as

dmmax −1,n′ =
∑

n

cmmax ,ng
∗
n−2n′ =

∑

n

cmmax ,n+2n′g∗
n with g∗

n = (−1)n−1h−n−1.

(8.170)

Iterating this recursion allows the calculation of the wavelet coefficients even with-

out explicit knowledge of the scaling and wavelet functions. Equations (8.168) and

(8.170) have the form of discrete digital filter functions with subsequent downsam-

pling by a factor of two (dropping samples with odd n′).12 This can be seen by

defining the down sampled coefficients

c
↓
n′/2 =

∑

n

cnh∗
n−n′ (8.171)

d
↓
n′/2 =

∑
cn(−1)n−1hn′−n−1 (8.172)

and applying the z-transform to (8.168) and (8.170). For the approximation filter we

obtain

12For the more general class of bi-orthogonal wavelets, a different filter pair is used for reconstruc-

tion.
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fc(z) =
∞∑

n′=−∞

∞∑

n=−∞
h∗

ncn+n′ z−n′

=
∑

n

h∗
nzn

∑

n′

cn+n′ z−n′−n =
(
∑

n

hnz−n

)∗∑

n′

cn′ z−n′ = h∗(z) c(z) (8.173)

hence in frequency space the signal is multiplied with the filter function

h(eiω∆t ) =
∑

n

hne−niω∆t =
√

2M0(ω). (8.174)

Similar we obtain for the detail filter

fd(z) =
∑

nn′

cn(−1)n−1hn′−n−1z−n′ =
∑

cnz−n(−1)n−1hn′−n−1zn−n′
. (8.175)

Since only even values of n’ are relevant, we may change the sign by (−1)n′
to obtain

∑
cnz−n(−1)n′−n−1hn′−n−1zn−n′ = z∗h(−z) c(z) = g∗(z) c(z) (8.176)

where

g(z) =
∑

n

(−1)n−1h∗
−n−1z−n =

∑

n

(−1)−n−2h∗
nzn+1 = z

∑

n

h∗
n(−z)n

= z

(
∑

n

hn(−z)−n

)∗

= zh∗(−z). (8.177)

8.7.2 Example: Haar Wavelet

For the Haar wavelet with13

h0 = h1 = 1√
2

hn = 0 else (8.178)

g−1 = 1√
2

g−2 = − 1√
2

gn = 0 else (8.179)

13The standard form of the Haar wavelet with g0 = 1/
√

2, g1 = −1/
√

2 differs from (8.179) by a

shift and time reversal. The resulting wavelet basis, however, is the same.
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Fig. 8.20 Haar filter pair
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we obtain the filter functions

h(z) = 1√
2

(
1 + 1

z

)
g(z) = 1√

2
(z − z2). (8.180)

On the unit circle,

|h(eiω∆t )|2 = 1 + cos ω∆t (8.181)

|g(eiω∆t )|2 = 1 − cos ω∆t (8.182)

which describes a low and a high pass forming a so called quadrature mirror filter

pair (Fig. 8.20) [92].

8.7.3 Signal Reconstruction

The wavelet transformation can be inverted using the expansion

∑

n

cm,nΦm,n(t) =
∑

n

cm−1,nΦm−1,n(t) +
∑

n

dm−1,nΨm−1,n(t) (8.183)

where the coefficients at the higher level of approximation are obtained from

cm,n′ =
∑

n

cm−1,n < Φm,n′ |Φm−1,n > +
∑

n

dm−1,n < Φm,n′ |Ψm−1,n >

=
∑

n

cm−1,nhn′−2n +
∑

n

dm−1,n(−1)n′−1h∗
2n−n′−1

=
∑

n

cm−1,nhn′−2n +
∑

n

dm−1,n(−1)n′−1h∗
2n−n′−1. (8.184)
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This can be formulated as upsampling and subsequent filtering. Formally, we insert

zeros and define the up sampled coefficients

c
↑
2n = cm−1,n c

↑
2n+1 = 0 (8.185)

d
↑
2n = dm−1,n d

↑
2n+1 = 0. (8.186)

Then,

∑

n

cm−1,nhn′−2n =
∑

n

c
↑
2nhn′−2n =

∑

n

c↑
n hn′−n (8.187)

∑

n

dm−1,n(−1)n′−1h∗
2n−n′−1 = (−1)n′−1

∑

n

d
↑
2nh∗

2n−n′−1

= (−1)n′−1
∑

n

d↑
n h∗

n−n′−1 =
∑

(−1)ndngn′−n (8.188)

where due to (8.186) the alternating sign can be omitted. Z-transformation then gives

∑

n,n′

cnhn′−nz−n′ =
∑

n,n′

cnz−nhn′−nzn−n′ = h(z) c(z) (8.189)

∑

nn′

dngn′−n = g(z)d(z) = zh∗(−z) d(z). (8.190)

8.7.4 Example: Analysis with Compactly Supported Wavelets

Wavelet analysis has become quite popular for processing of audio and image data.

In Problem 8.3 we use Daubechies wavelets [93] to analyze a complex audio signal

consisting of a mixture of short tones, sweeps and noise (Figs. 8.23, 8.24). Daubechies

satisfies (8.117) by taking

M0(ω/2) =
[

1

2

(
1 + e−iω/2

)]N

Q(e−iω/2) (8.191)

with a trigonometric polynomial Q. This leads to a class of compactly supported

orthonormal wavelet bases, which for N = 1 include the Haar wavelet as the simplest

member. For N = 2,

M0(ω/2) =
[

1

2

(
1 + e−iω/2

)]2
1

2

[(
1 +

√
3
)

+
(

1 −
√

3
)

e−iω/2
]

(8.192)
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= 1

8

[(
1 +

√
3
)

+
(

3 +
√

3
)

e−iω/2 +
(

3 −
√

3
)

e−2iω/2 +
(

1 −
√

3
)

e−3iω/2
]

(8.193)

with the four nonzero scaling parameters

h0 =
√

2

8
(1 +

√
3) ≈ 0.48296 (8.194)

h1 =
√

2

8
(3 +

√
3) ≈ 0.83652 (8.195)

h2 =
√

2

8
(3 −

√
3) ≈ 0.22414 (8.196)

h3 =
√

2

8
(1 −

√
3) ≈ −0.12941. (8.197)

This defines the wavelet basis which is known as Daubechies 2. There are no analytic

expressions for the scaling and wavelet functions available. They can be calculated

numerically from the infinite product (8.116) or a corresponding (infinitely) nested

convolution in real space. Figures 8.21 and 8.22 show the fast convergence.
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Fig. 8.21 (Daubechies 2 scaling function) The scaling function is calculated numerically in the

time domain from the Fourier transform of (8.116) with a finite number of factors. The blue curve

shows the result for jmax = 7, red dots show results for jmax = 5, black dots for jmax = 3. Delta

functions are replaced by rectangular functions of equal area
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Fig. 8.22 (Daubechies 2 wavelet function) The wavelet function is calculated numerically in the

time domain from the Fourier transform of (8.116) and (8.147) with a finite number of factors.

The blue curve shows the result for jmax = 7, red dots show results for jmax = 5, black dots for

jmax = 3. Delta functions are replaced by rectangular functions of equal area

Problems

Problem 8.1 Short Time Fourier Transformation

In this computer experiment STFT analysis of a frequency modulated signal

f (t) = sin Φ(t) = sin

(
ω0t + aω0

ω1

(1 − cos ω1t)

)
(8.198)

with a momentaneous frequency of

ω(t) = ∂Φ

∂t
= ω0(1 + a sin ω1t) (8.199)

is performed and shown as a spectrogram (Figs. 8.10, 8.11). Sampling frequency is

44100 Hz, number of samples 512.

You can vary the carrier frequency ω0, modulation frequency ω1 and depth a as

well as the distance between the windows. Study time and frequency resolution

Problem 8.2 Wavelet Analysis of a Nonstationary Signal

In this computer experiment, a complex signal is analyzed with Morlet wavelets over

6 octaves (Fig. 8.14). The signal is sampled with a rate of 44 kHz. The parameter d of

the mother wavelet (8.61) determines frequency and time resolution. The frequency

ω0 of the mother wavelet is taken as the Nyquist frequency which is half the sampling

rate. The convolution with the daughter wavelets (8.76) is calculated at 400 times

with a step size of 0.726 ms (corresponding to 32 samples)
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tn = t0 + n∆t (8.200)

and for 300 different values of the scaling parameter

sm = 1.015m . (8.201)

The signal consists of two sweeps with linearly increasing frequency of the form

f1,2(t) = sin
[
ω1,2t + α1,2

2
t2
]

(8.202)

and another component which switches between a 5 kHz oscillation and the sum of

a 300 Hz and a 20 kHz oscillation at a rate of 20 Hz

f3(t) =
{

sin(ω20k H z t) + sin(ω300H z t) if sin(ω20H z t) < 0

sin(ω5k H z t) else.
(8.203)

Study time and frequency resolution as a function of d

Problem 8.3 Discrete Wavelet Transformation

In this computer experiment the discrete wavelet transformation is applied to a com-

plex audio signal. You can switch on and off different components like sweeps, dial

tones and noise. The wavelet coefficients and the reconstructed signals are shown.

(see Figs. 8.23, 8.24).
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Fig. 8.23 (Wavelet coefficients of a complex audio signal) From Top to Bottom The black curve

shows the input signal. The finest details in light green, red and blue correspond to a high fre-

quency sweep from 5000–15000 Hz starting at 0.7 s plus some time dependent noise. Cyan, orange

and maroon represent a sequence of dial tones around 1000 Hz, dark green and magenta show

the signature of several rectangular 100 Hz bursts with many harmonics. The black curve at the

Bottom shows the coefficients of the coarse approximation, which essentially describes random

low frequency fluctuations. The curves are vertically shifted relative to each other
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Fig. 8.24 (Wavelet reconstruction) The different contributions to the signal are reconstructed from

the wavelet coefficients. Color code as in Fig. 8.23. The original signal (Top black curve) is exactly

the sum of the coarse approximation (Bottom black curve) and all details (colored curves). The

curves are vertically shifted relative to each other



Chapter 9

Random Numbers and Monte-Carlo
Methods

Many-body problems often involve the calculation of integrals of very high dimension

which can not be treated by standard methods. For the calculation of thermodynamic

averages Monte Carlo methods [94–97] are very useful which sample the integration

volume at randomly chosen points. In this chapter we discuss algorithms for the

generation of pseudo-random numbers with given probability distribution which are

essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo

integration can be improved by sampling preferentially the important configurations.

Finally the famous Metropolis algorithm is applied to classical many-particle systems

and nonlinear optimization problems.

9.1 Some Basic Statistics

In the following we discuss some important concepts which are used to analyze

experimental data sets [98]. Repeated measurements of some observable usually

give slightly different results due to fluctuations of the observable in time and errors

of the measurement process. The distribution of the measured data is described by a

probability distribution, which in many cases approximates a simple mathematical

form like the Gaussian normal distribution. The moments of the probability density

give important information about the statistical properties, especially the mean and

the standard deviation of the distribution. If the errors of different measurements

are uncorrelated, the average value of a larger number of measurements is a good

approximation to the “exact” value.

9.1.1 Probability Density and Cumulative Probability

Distribution

Consider an observable ξ, which is measured in a real or a computer experiment.

Repeated measurements give a statistical distribution of values.

© Springer International Publishing AG 2017
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Fig. 9.1 (Cumulative

probability distribution of

transition energies) The

figure shows schematically

the distribution of transition

energies for an atom which

has a discrete and a

continuous part

x

1

0
x

F
 (

x
)

The cumulative probability distribution (Fig. 9.1) is given by the function

F(x) = P{ξ ≤ x} (9.1)

and has the following properties:

• F(x) is monotonously increasing

• F(−∞) = 0, F(∞) = 1

• F(x) can be discontinuous (if there are discrete values of ξ)

The probability to measure a value in the interval x1 < ξ ≤ x2 is

P(x1 < ξ ≤ x2) = F(x2) − F(x1). (9.2)

The height of a jump gives the probability of a discrete value

P(ξ = x0) = F(x0 + 0) − F(x0 − 0). (9.3)

In regions where F(x) is continuous, the probability density can be defined as

f (x0) = F ′(x0) = lim
∆x→0

1

∆x
P(x0 < ξ ≤ x0 + ∆x). (9.4)

9.1.2 Histogram

From an experiment F(x) cannot be determined directly. Instead a finite number N

of values xi are measured. By

ZN (x)
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Fig. 9.2 (Histogram) The

cumulative distribution of

100 Gaussian random

numbers is shown together

with a histogram with bin

width ∆x = 0.6 0

20
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we denote the number of measurements with xi ≤ x. The cumulative probability

distribution is the limit

F(x) = lim
N→∞

1

N
ZN (x). (9.5)

A histogram (Fig. 9.2) counts the number of measured values which are in the interval

xi < x ≤ xi+1:

1

N
(ZN (xi+1) − ZN (xi)) ≈ F(xi+1) − F(xi) = P(xi < ξ ≤ xi+1). (9.6)

Contrary to ZN (x) itself, the histogram depends on the choice of the intervals.

9.1.3 Expectation Values and Moments

The expectation value of the random variable ξ is defined by

E[ξ] =
∫ ∞

−∞
xdF(x) = lim

a→−∞,b→∞

∫ b

a

xdF(x) (9.7)

with the Riemann-Stieltjes-Integral [99]

∫ b

a

xdF(x) = lim
N→∞

N
∑

i=1

xi(F(xi) − F(xi−1))|xi=a+ b−a
N

i. (9.8)

Higher moments are defined as
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E[ξk] =
∫ ∞

−∞
xkdF(x) (9.9)

if these integrals exist. Most important are the expectation value

x = E[ξ] (9.10)

and the variance, which results from the first two moments

σ2 =
∫ ∞

−∞
(x − x)2dF =

∫

x2dF +
∫

x2dF − 2x

∫

xdF

= E[ξ2] − (E[ξ])2. (9.11)

The standard deviation σ is a measure of the width of the distribution. The expectation

value of a function ϕ(x) is defined by

E[ϕ(x)] =
∫ ∞

−∞
ϕ(x)dF(x). (9.12)

For continuous F(x) we have with dF(x) = f (x)dx the ordinary integral

E[ξk] =
∫ ∞

−∞
xkf (x)dx (9.13)

E[ϕ(x)] =
∫ ∞

−∞
ϕ(x)f (x)dx (9.14)

whereas for a pure step function F(x) (only discrete values xi are observed with

probabilities p(xi) = F(xi + 0) − F(xi − 0))

E[ξk] =
∑

xk
i p(xi) (9.15)

E[ϕ(x)] =
∑

ϕ(xi)p(xi). (9.16)

9.1.4 Example: Fair Die

When a six-sided fair die is rolled, each of its sides shows up with the same probability

of 1/6. The cumulative probability distribution F(x) is a pure step function (Fig. 9.3)

and

x =
∫ ∞

−∞
xdF =

6
∑

i=1

xi(F(xi + 0) − F(xi − 0)) =
1

6

6
∑

i=1

xi =
21

6
= 3.5 (9.17)
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Fig. 9.3 Cumulative

probability distribution of a

fair die

x6543210

0

F
 (

x
)

1

x2 =
6

∑

i=1

x2
i (F(xi + 0) − F(xi − 0)) =

1

6

6
∑

i=1

x2
i =

91

6
= 15.1666 · · · (9.18)

σ =
√

x2 − x2 = 2.9. (9.19)

9.1.5 Normal Distribution

The Gaussian normal distribution is defined by the cumulative probability distribution

Φ(x) =
1

√
2π

∫ x

−∞
e−t2/2dt (9.20)

and the probability density

ϕ(x) =
1

√
2π

e−x2/2 (9.21)

with the properties

∫ ∞

−∞
ϕ(x)dx = Φ(∞) = 1 (9.22)

x =
∫ ∞

−∞
xϕ(x)dx = 0 (9.23)

σ2 = x2 =
∫ ∞

−∞
x2ϕ(x)dx = 1. (9.24)
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Since Φ(0) = 1
2

and with the definition

Φ0(x) =
1

√
2π

∫ x

0

e−t2/2dt (9.25)

we have

Φ(x) =
1

2
+ Φ0(x) (9.26)

which can be expressed in terms of the error function1

erf(x) =
2

√
π

∫ x

0

e−t2dtdt = 2Φ0(
√

2x) (9.27)

as

Φ0(x) =
1

2
erf(

x
√

2
). (9.28)

A general Gaussian distribution with mean value x and standard deviation σ has the

probability distribution

ϕx,σ =
1

σ
√

2π
exp

(

−
(x′ − x)2

2σ2

)

(9.29)

and the cumulative distribution

Φx,σ(x) = Φ

(

x − x

σ

)

=
∫ x

−∞
dx′ 1

σ
√

2π
exp

(

−
(x′ − x)2

2σ2

)

(9.30)

=
1

2

(

1 + erf

(

x − x

σ
√

2

))

. (9.31)

9.1.6 Multivariate Distributions

Consider now two quantities which are measured simultaneously. ξ and η are the

corresponding random variables. The cumulative distribution function is

F(x, y) = P(ξ ≤ x and η ≤ y). (9.32)

1erf(x) is an intrinsic function in FORTRAN or C.
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Expectation values are defined as

E[ϕ(x, y)] =
∫ ∞

−∞

∫ ∞

−∞
ϕ(x, y)d2F(x, y). (9.33)

For continuous F(x, y) the probability density is

f (x, y) =
∂2F

∂x∂y
(9.34)

and the expectation value is simply

E[ϕ(x, y)]
∫ ∞

−∞
dx

∫ ∞

−∞
dyϕ(x, y)f (x, y). (9.35)

The moments of the distribution are the expectation values

Mk,l = E[ξkηl]. (9.36)

Most important are the averages

x = E[ξ] y = E[η] (9.37)

and the covariance matrix

(

E[(ξ − x)2] E[(ξ − x)(η − y)]
E[(ξ − x)(η − y)] E[(η − y)2]

)

=

(

x2 − x2 xy − x y

xy − x y y2 − y2

)

. (9.38)

The correlation coefficient is defined as

ρ =
xy − x y

√

(

x2 − x2
) (

y2 − y2
)

. (9.39)

If there is no correlation then ρ = 0 and F(x, y) = F1(x)F2(y).

9.1.7 Central Limit Theorem

Consider N independent random variables ξi with the same cumulative distribution

function F(x), for which E[ξ] = 0 and E[ξ2] = 1. Define a new random variable

ηN =
ξ1 + ξ2 + · · · ξN√

N
(9.40)



194 9 Random Numbers and Monte-Carlo Methods

Fig. 9.4 (Central limit

theorem) The cumulative

distribution function of η

(9.42) is shown for N = 4

and compared to the normal

distribution (9.20)
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with the cumulative distribution function FN (x). In the limit N → ∞ this distribution

approaches (Fig. 9.4) a cumulative normal distribution [100]

lim
N→∞

FN (x) = Φ(x) =
1

√
2π

∫ x

−∞
e−t2/2dt. (9.41)

9.1.8 Example: Binomial Distribution

Toss a coin N times giving ξi = 1 (heads) or ξi = −1 (tails) with equal probability

P = 1
2
. Then E[ξi] = 0 and E[ξ2

i ] = 1. The distribution of

η =
1

√
N

N
∑

i=1

ξi (9.42)

can be derived from the binomial distribution

1 =
[

1

2
+

(

−
1

2

)]N

= 2−N

N
∑

p=0

(−1)N−p

(

N

N − p

)

(9.43)

where p counts the number of tosses with ξ = +1. Since

n = p · 1 + (N − p) · (−1) = 2p − N ∈ [−N, N] (9.44)
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the probability of finding η = n√
N

is given by the binomial coefficient

P(η =
2p − N

√
N

) = 2−N

(

N

N − p

)

(9.45)

or

P(η =
n

√
N

) = 2−N

(

N
N−n

2

)

. (9.46)

9.1.9 Average of Repeated Measurements

A quantity X is measured N times. The results X1 · · · XN are independent ran-

dom numbers with the same distribution function f (Xi). Their expectation value

is the exact value E[Xi] =
∫

dXi Xi f (Xi) = X and the standard deviation due to

measurement uncertainties is σX =
√

E[X2
i ] − X2. The new random variables

ξi =
Xi − X

σX

(9.47)

have zero mean

E[ξi] =
E[Xi] − X

σX

= 0 (9.48)

and unit standard deviation

σ2
ξ = E[ξ2

i ] − E[ξi]2 = E

[

X2
i + X2 − 2XXi

σ2
X

]

=
E[X2

i ] − X2

σ2
X

= 1. (9.49)

Hence the quantity

η =
∑N

1 ξi√
N

=
∑N

1 Xi − NX
√

NσX

=
√

N

σX

(X − X) (9.50)

obeys a normal distribution

f (η) =
1

√
2π

e−η2/2. (9.51)
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From

f (X)dX = f (η)dη = f (η(X))

√
N

σX

dX (9.52)

we obtain

f (X) =
√

N
√

2πσX

exp

{

−
N

2σ2
X

(X − X)2

}

. (9.53)

The average of N measurements obeys a Gaussian distribution around the exact

value X with a reduced standard deviation of

σX =
σX√

N
. (9.54)

9.2 Random Numbers

True random numbers of high quality can be generated using physical effects like

thermal noise in a diode or atmospheric noise [101]. Computers very often make

use of pseudo random numbers which have comparable statistical properties but

are not totally unpredictable. For cryptographic purposes sophisticated algorithms

are available which are slow but cryptographically secure, e.g. the Yarrow [102]

and Fortuna [103] algorithms. In computational physics, usually simpler methods

are sufficient which are not cryptographically secure, but pass important statistical

tests like Marsaglia’s DIEHARD collection [104, 105] and TestU01 [106, 107].

Most methods use an iterated function (Sect. 22.1). A set of numbers Z (e.g. 32-bit

integers) is mapped onto itself by an invertible function f (r) and, starting from a

random seed number r0 ∈ Z , the sequence

ri+1 = f (ri) (9.55)

is calculated to provide a series of pseudo random numbers [105]. Using 32-bit

integers there are 232 different numbers, hence the period cannot exceed 232. The

method can be improved by taking Z to be the set of m-tuples of 32-bit integers

r = {z1, z2 . . . zm} and f (r) a function that converts one m-tuple into another. An

m-tuple of successive function values defines the iteration

ri = {zi, zi−1, . . . zi−m+1} (9.56)

ri+1 = {zi+1, zi, . . . zi−m+2} = {f (zi, . . . zi−m+1), zi, . . . zi−m+2}. (9.57)

http://dx.doi.org/10.1007/978-3-319-61088-7_22
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Table 9.1 Addition modulo 2

0 + 0 = 0

1 + 0 = 1

0 + 1 = 1

1 + 1 = 0

Using 32-bit integers, (9.57) has a maximum period of 232m (Example: for m = 2

and generating 106 numbers per second the period is 584942 years). For the initial

seed, here m independent random numbers have to be provided.

The special case of a lagged RNG simply uses

ri+1 = {zi+1, zi, . . . zi−m+2} = {f (zi−m+1), zi, . . . zi−m+2}. (9.58)

Popular kinds of functions f (r) include linear congruent mappings, xorshift,

lagged Fibonacci, multiply with carry (MWC), complimentary multiply with carry

(CMWC) methods and combinations of these like the famous Mersenne Twister

[108] and KISS [105] algorithms. We discuss briefly some important principles.

9.2.1 Linear Congruent Mapping (LC)

A simple algorithm, mainly of historical importance due to some well known

problems [109], is the linear congruent mapping

ri+1 = (ari + c) mod b (9.59)

with multiplier a and base b which is usually taken to be b = 232 for 32-bit integers

since this can be implemented most easily. The maximum period is given by b.

9.2.2 Xorshift

A 32-Bit integer2 can be viewed as a vector r = (b0, b1 . . . b31) of elements bi in the

field F2 = {0, 1}. Addition of two such vectors (modulo 2) can be implemented with

the exclusive-or operation as can be seen from comparison with the table (Table 9.1).

An invertible linear transformation of the vector r can be described by multipli-

cation with a nonsingular 32 × 32 matrix T

f (r) = rT . (9.60)

2This method can be easily extended to 64-Bit integers.
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Fig. 9.5 Multiply with carry

method using 64-bit integer

arithmetic

t  mod 2 32xk+1=32[t / 2  ]ck+1=

00 3131

063
t=ax  +ck k

To simplify the numerical calculation, Marsaglia [105] considers matrices of the

special form3

T = (1 + La)(1 + Rb)(1 + Lc) (9.61)

where L (R) is a matrix that produces a left (right) shift by one. For properly chosen

numbers a, b, c the matrix T is of order 232 − 1 and the random numbers have the

maximum possible period. There are many possible choices, one of them leads to

the sequence

y = y xor (y ≪ 13)

y = y xor(y ≫ 17)

y = y xor (y ≪ 5). (9.62)

9.2.3 Multiply with Carry (MWC)

This method is quite similar to the linear congruent mapping. However, instead of

the constant c in (9.59) a varying carry is used.

For base b = 232 and multiplier a = 698769069 consider pairs of integers r =
[x, c] with 0 ≤ c < a, 0 ≤ x < b excluding [0, 0]and [a − 1, b − 1] and the

iteration function4

f ([x, c]) = [ax + c mod b, (ax + c)/b]. (9.63)

Starting with a random seed [x0, c0] the sequence [xk, ck] = f ([xk−1, ck−1]) has

a period of about 260 [105]. If one calculates t = axk + ck in 64 bits, then for

b = 232,ck+1is given by the top 32 bits and xk+1by the bottom 32 bits (Fig. 9.5).

3At least three factors are necessary for 32 and 64-Bit integers.
4Using integer arithmetics.
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9.2.4 Complementary Multiply with Carry (CMWC)

The simple MWC method has some inherent problems which can be overcome by a

slight modification. First, the base is taken to be b = 232 − 1 and second the iteration

is changed to use the (b − 1)-complement

xk = (b − 1) − (axk−1 + ck−1) mod b. (9.64)

This method can provide random numbers which pass many tests and have very large

periods.

9.2.5 Random Numbers with Given Distribution

Assume we have a program that generates random numbers in the interval [0,1] like

in C:

rand()/(double)RAND_MAX.

The corresponding cumulative distribution function is

F0(x) =

⎧

⎨

⎩

0 for x < 0

x for 0 ≤ x ≤ 1

1 for x > 1

. (9.65)

Random numbers with cumulative distribution F(x) can be obtained as follows:

choose a RN r ∈ [0, 1] with P(r ≤ x) = F0(x)

let ξ = F−1(r)

F(x) increases monotonously and therefore

P(ξ ≤ x) = P(F(ξ) ≤ F(x)) = P(r ≤ F(x)) = F0(F(x)) (9.66)

but since 0 ≤ F(x) ≤ 1 we have

P(ξ ≤ x) = F(x). (9.67)

This method of course is applicable only if F−1 can be expressed analytically.
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9.2.6 Examples

9.2.6.1 Fair Die

A six-sided fair die can be simulated as follows:

choose a random number r ∈ [0, 1]

Let ξ = F−1(r) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 for 0 ≤ r < 1
6

2 for 1
6

≤ r < 2
6

3 for 2
6

≤ r < 3
6

4 for 3
6

≤ r < 4
6

5 for 4
6

≤ r < 5
6

6 for 5
6

≤ r < 1

9.2.6.2 Exponential Distribution

The cumulative distribution function

F(x) = 1 − e−x/λ (9.68)

which corresponds to the exponential probability density

f (x) =
1

λ
e−x/λ (9.69)

can be inverted by solving

r = 1 − e−x/λ (9.70)

for x:

choose a random number r ∈ [0, 1]
Let x = F−1(r) = −λ ln(1 − r).

9.2.6.3 Random Points on the Unit Sphere

We consider the surface element

1

4π
R2dϕ sin θdθ. (9.71)

Our aim is to generate points on the unit sphere (θ,ϕ) with the probability density
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f (θ,ϕ)dϕdθ =
1

4π
dϕ sin θdθ = −

1

4π
dϕd cos θ. (9.72)

The corresponding cumulative distribution is

F(θ,ϕ) = −
1

4π

∫ cos θ

1

d cos θ

∫ ϕ

0

dϕ =
ϕ

2π

1 − cos θ

2
= FϕFθ. (9.73)

Since this factorizes, the two angles can be determined independently:

choose a first random number r1 ∈ [0, 1]
Let ϕ = F−1

ϕ (r1) = 2πr1

choose a second random number r2 ∈ [0, 1]
Let θ = F−1

θ (r2) = arccos(1 − 2r2)

9.2.6.4 Gaussian Distribution (Box Muller)

For a Gaussian distribution the inverse F−1 has no simple analytical form. The

famous Box Muller method [110] is based on a 2-dimensional normal distribution

with probability density

f (x, y) =
1

2π
exp

{

−
x2 + y2

2

}

(9.74)

which reads in polar coordinates

f (x, y)dxdy = fp(ρ,ϕ)dρdϕ
1

2π
e−ρ2/2ρdρdϕ. (9.75)

Hence

fp(ρ,ϕ) =
1

2π
ρe−ρ2/2 (9.76)

and the cumulative distribution factorizes:

Fp(ρ,ϕ) =
1

2π
ϕ ·

∫ ρ

0

ρ′e−ρ′2/2dρ′ =
ϕ

2π
(1 − e−ρ2

) = Fϕ(ϕ)Fρ(ρ). (9.77)

The inverse of Fρ is

ρ =
√

− ln(1 − r) (9.78)
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and the following algorithm generates Gaussian random numbers:

r1 = RN ∈ [0, 1]
r2 = RN ∈ [0, 1]
ρ =

√
− ln(1 − r1)

ϕ = 2πr2

x = ρ cos ϕ.

9.3 Monte-Carlo Integration

Physical problems often involve high dimensional integrals (for instance path inte-

grals, thermodynamic averages) which cannot be evaluated by standard methods.

Here Monte Carlo methods can be very useful. Let us start with a very basic

example.

9.3.1 Numerical Calculation of π

The area of a unit circle (r = 1) is given by r2π = π. Hence π can be calculated by

numerical integration. We use the following algorithm:

choose N points randomly in the first quadrant, for instance N independent

pairs x, y ∈ [0, 1]
Calculate r2 = x2 + y2

Count the number of points within the circle, i.e. the number of points

Z(r2 ≤ 1).
π
4

is approximately given by Z(r2≤1)

N

The result converges rather slowly (Figs. 9.6, 9.7).

9.3.2 Calculation of an Integral

Let ξ be a random variable in the interval [a, b] with the distribution

P(x < ξ ≤ x + dx) = f (x)dx =
{

1
b−a

for x ∈ [a, b]
0 else

. (9.79)

The expectation value of a function g(x) is

E[g(x)] =
∫ ∞

−∞
g(x)f (x)dx =

∫ b

a

g(x)dx (9.80)
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Fig. 9.6 Convergence of the

numerical integration
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hence the average of N randomly taken function values approximates the integral

∫ b

a

g(x)dx ≈
1

N

N
∑

i=1

g(ξi) = g(ξ). (9.81)

To estimate the error we consider the new random variable

γ =
1

N

N
∑

i=1

g(ξ). (9.82)

Its average is

γ = E[γ] =
1

N

N
∑

i=1

E[g(x)] = E[g(x)] =
∫ b

a

g(x)dx (9.83)
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and the variance follows from

σ2
γ = E[(γ − γ)2] = E[(

1

N

∑

g(ξi) − γ)2] = E[(
1

N

∑

(g(ξi) − γ))2] (9.84)

=
1

N2
E[

∑

(g(ξi) − γ)2] =
1

N
(g(ξ)2 − g(ξ)

2
) =

1

N
σ2

g(ξ). (9.85)

The width of the distribution and hence the uncertainty falls off as 1/
√

N .

9.3.3 More General Random Numbers

Consider now random numbers ξ ∈ [a, b] with arbitrary (but within [a, b] not

vanishing) probability density f (x). The integral is approximated by

1

N

N
∑

i=1

g(ξi)

f (ξi)
= E

[

g(x)

f (x)

]

=
∫ b

a

g(x)

f (x)
f (x)dx =

∫ b

a

g(x)dx. (9.86)

The new random variable

τ =
1

N

N
∑

i=1

g(ξi)

f (ξi)
(9.87)

according to (9.85) has a standard deviation given by

στ =
1

√
N

σ(
g(ξ)

f (ξ)
) (9.88)

which can be reduced by choosing f similar to g. Then preferentially ξ are generated

in regions where the integrand is large (importance sampling).

9.3.4 Configuration Integrals

Consider a system which is described by a ndim dimensional configuration space

q1 . . . qndim where a certain configuration has the normalized probability density

̺(q1, . . . qndim) (9.89)

∫

. . .

∫

̺(q1, . . . qndim)dqndim = 1. (9.90)
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The average of an observable A(q1 . . . qndim) has the form

< A >=
∫

. . .

∫

A(q1 . . . qndim)̺(q1, . . . qndim)dqndim (9.91)

which will be calculated by MC integration.

Classical Thermodynamic Averages

Consider a classical N particle system with potential energy

V (q1 . . . q3N ). (9.92)

The probability of a certain configuration is given by its normalized Boltzmann-factor

̺(q1 . . . q3N ) =
e−βV (q1...q3N )

∫

dq3N e−βV (q1...q3N )
(9.93)

and the thermal average of some observable quantity A(q1 . . . q3N ) is given by the

configuration integral

< A >=
∫

A(q1 . . . qndim)̺(q1 . . . q3N )dq3N

=
∫

dq3N A(q1 . . . qndim)e−βV (q1...q3N )

∫

dq3N e−βV (q1...q3N )
. (9.94)

Variational Quantum Monte Carlo method

Consider a quantum mechanical N particle system with Hamiltonian

H = T + V (q1 . . . q3N ). (9.95)

According to Ritz’s variational principle, the ground state energy is a lower bound

to the energy expectation value of any trial wavefunction

EV =
< Ψtrial|H|Ψtrial >

< Ψtrial|Ψtrial >
≥ E0. (9.96)

Energy and wavefunction of the ground state can be approximated by minimizing

the energy of the trial wavefunction, which is rewritten in the form
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EV =
∫

Ψ ∗
trial(q1 . . . q3N )HΨtrial(q1 . . . q3N )dq3N

∫

|Ψtrial(q1 . . . q3N )|2dq3N

=
∫

̺(q1 . . . q3N )EL(q1 . . . q3N )dq3N

∫

̺(q1 . . . q3N )dq3N
(9.97)

with the probability density

̺(q1 . . . q3N ) = |Ψtrial(q1 . . . q3N )|2 (9.98)

and the so called local energy

EL =
HΨtrial(q1 . . . q3N )

Ψtrial(q1 . . . q3N )
. (9.99)

9.3.5 Simple Sampling

Let ξ be a random variable which is equally distributed over the range qmin · · · qmax,

i.e. a probability distribution

P(ξ ∈ [q, q + dq]) = f (q)dq (9.100)

f (q) =
{

1
qmax−qmin

q ∈ [qmin, qmax]
0 else

(9.101)

∫

f (q)dq = 1. (9.102)

Repeatedly choose ndim random numbers ξ
(m)
1 , . . . ξ

(m)

ndim and calculate the expectation

value

E (A(ξ1 · · · ξndim)̺(ξ1, . . . ξndim)) = lim
M→∞

1

M

M
∑

m=1

A(ξ
(m)
1 . . . ξ

(m)

ndim
)̺(ξ

(m)
1 . . . ξ

(m)

ndim
)

=
∫

A(q1 . . . qndim)̺(q1 . . . qndim)f (q1) · · · f (qndim)dq1 · · · dqndim

=
1

(qmax − qmin)ndim

∫ qmax

qmin

· · ·
∫ qmax

qmin

A(q1 . . . qndim)̺(q1 . . . qndim)dqndim.
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Hence

E (A(ξ1 · · · ξndim)̺(ξ1, . . . ξndim))

E (̺(ξ1, . . . ξndim))

=

∫ qmax

qmin
· · ·

∫ qmax

qmin
A(q1 . . . qndim)̺(q1 . . . qndim)dqndim

∫ qmax

qmin
· · ·

∫ qmax

qmin
̺(q1 . . . qndim)dqndim

≈< A > . (9.103)

Each set of random numbers ξ1 . . . ξndim defines one sample configuration. The

average over a large number M of samples gives an approximation to the average

< A >, if the range of the qi is sufficiently large. However, many of the samples will

have small weight and contribute only little.

9.3.6 Importance Sampling

Let us try to sample preferentially the most important configurations. Choose the

distribution function as

f (q1 · · · qndim) = ̺(q1 . . . qndim). (9.104)

The expectation value of A now directly approximates the configurational average

E (A(ξ1 · · · ξndim)) = lim
M→∞

1

M

M
∑

m=1

A(ξ
(m)
1 . . . ξ

(m)

ndim)

=
∫

A(q1 . . . qndim)̺(q1 . . . qndim)dqndim =< A > . (9.105)

9.3.7 Metropolis Algorithm

The algorithm by Metropolis [111] can be used to select the necessary configurations.

Starting from an initial configuration q0 = (q
(0)
1 · · · q

(0)
3N ) a chain of configurations is

generated. Each configuration depends only on its predecessor, hence the configura-

tions form a Markov chain.

The transition probabilities

Wi→j = P(qi → qj) (9.106)

are chosen to fulfill the condition of detailed balance (Fig. 9.8)
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Fig. 9.8 Principle of

detailed balance
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Wi→j
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=
̺(qj)

̺(qi)
. (9.107)

This is a sufficient condition that the configurations are generated with probabilities

given by their Boltzmann factors. This can be seen from consideration of an ensemble

of such Markov chains: Let Nn(qi) denote the number of chains which are in the

configuration qi after n steps. The changes during the following step are

∆N(qi) = Nn+1(qi) − Nn(qi) =
∑

qj∈conf .

Nn(qj)Wj→i − Nn(qi)Wi→j. (9.108)

In equilibrium

Neq(qi) = N0̺(qi) (9.109)

and the changes (9.108) vanish:

∆N(qi) = N0

∑

qj

̺(qj)Wj→i − ̺(qi)Wi→j

= N0

∑

qj

̺(qj)Wj→i − ̺(qi)

[

Wj→i

̺(qj)

̺(qi)

]

= 0. (9.110)

A solution of

∆N(qi) =
∑

qj∈conf .

Nn(qj)Wj→i − Nn(qi)Wi→j = 0 (9.111)

corresponds to a zero eigenvalue of the system of equations

∑

qj

N(qj)Wj→i − N(qi)
∑

qj

Wi→j = λN(qi). (9.112)
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One solution of this eigenvalue equation is given by

Neq(qj)

Neq(qi)
=

̺(qj)

̺(qi)
. (9.113)

However, there may be other solutions. For instance if not all configurations are

connected by possible transitions and some isolated configurations are occupied

initially.

Metropolis Algorithm

This famous algorithm consists of the following steps:

(a) choose a new configuration randomly (trial step) with probability

T(qi → qtrial) = T(qtrial → qi)

(b) calculate

R =
̺(qtrial)

̺(qi)

(c) if R ≥ 1 the trial step is accepted qi+1 = qtrial

(d) if R < 1 the trial step is accepted only with probability R. choose a random

number ξ ∈ [0, 1] and the next configuration according to

qi+1 =
{

qtrial if ξ < R

qi if ξ ≥ R.

The transition probability is the product

Wi→j = Ti→jAi→j (9.114)

of the probability Ti→j to select i → j as a trial step and the probability Ai→j to accept

the trial step. Now we have

for R ≥ 1 → Ai→j = 1, Aj→i = R−1

for R < 1 → Ai→j = R, Aj→i = 1
. (9.115)

Since Ti→j = Tj→i, in both cases

Neq(qj)

Neq(qi)
=

Wi→j

Wj→i

=
Ai→j

Aj→i

= R =
̺(qj)

̺(qi)
. (9.116)
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The size of the trial steps has to be adjusted to produce a reasonable acceptance

ratio of

Naccepted

Nrejected

≈ 1. (9.117)

Multiple Walkers

To scan the relevant configurations more completely and reduce correlation between

the samples, usually a large number of “walkers” is used (e.g. several hundred) which,

starting from different initial conditions, represent independent Markov chains. This

also offers a simple possibility for parallelization.

Problems

Problem 9.1 Central Limit Theorem

This computer experiment draws a histogram for the random variable τ , which is

calculated from N random numbers ξ1 · · · ξN :

τ =
∑N

i=1 ξi√
N

. (9.118)

The ξi are random numbers with zero mean and unit variance and can be chosen as

• ξi = ±1 (coin tossing)

• Gaussian random numbers

Investigate how a Gaussian distribution is approached for large N.

Problem 9.2 Nonlinear Optimization

MC methods can be used for nonlinear optimization (Traveling salesman problem,

structure optimization etc.) [112]. Consider an energy function depending on many

coordinates

E(q1, q2 · · · qN ). (9.119)

Introduce a fictitious temperature T and generate configurations with probabilities

P(q1 · · · qN ) =
1

Z
e−E(q1···qN )/T . (9.120)

Slow cooling drives the system into a local minimum. By repeated heating and

cooling other local minima can be reached (simulated annealing)
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In this computer experiment we try to find the shortest path which visits each of

N up to 50 given points. The fictitious Boltzmann factor for a path with total length

L is

P(L) = e−L/T . (9.121)

Starting from an initial path S = (i1, i2, · · · iN ) n < 5 and p are chosen randomly and

a new path S′ = (i1, · · · ip−1, ip+n, · · · ip, ip+n+1, · · · iN ) is generated by reverting the

sub-path

ip · · · ip+n → ip+n · · · ip.

Start at high temperature T > L and cool down slowly.



Chapter 10

Eigenvalue Problems

Eigenvalue problems are omnipresent in physics. Important examples are the time

independent Schrödinger equation in a finite orthogonal basis (Chap.10)

M
∑

j=1

< φj′ |H|φj > Cj = ECj′ (10.1)

or the harmonic motion of a molecule around its equilibrium structure (Sect. 15.4.1)

ω2mi(ξi − ξ
eq

i ) =
∑

j

∂2U

∂ξi∂ξj

(ξj − ξ
eq

j ). (10.2)

Most important are ordinary eigenvalue problems,1 which involve the solution of

a homogeneous system of linear equations

N
∑

j=1

aijxj = λxi (10.3)

with a Hermitian (or symmetric, if real) matrix [113]

aji = a∗
ij. (10.4)

The couple (λ, x) consisting of an eigenvector x and the corresponding eigenvalue

λ is called an eigenpair.

1We do not consider general eigenvalue problems here.
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Matrices of small dimension can be diagonalized directly by determining the

roots of the characteristic polynomial and solving a homogeneous system of linear

equations. The Jacobi method uses successive rotations to diagonalize a matrix with

a unitary transformation. A very popular method for not too large symmetric matrices

reduces the matrix to tridiagonal form which can be diagonalized efficiently with the

QL algorithm. Some special tridiagonal matrices can be diagonalized analytically.

Special algorithms are available for matrices of very large dimension, for instance

the famous Lanczos method.

10.1 Direct Solution

For matrices of very small dimension (2, 3) the determinant

det
∣

∣aij − λδij

∣

∣ = 0 (10.5)

can be written explicitly as a polynomial of λ. The roots of this polynomial are the

eigenvalues. The eigenvectors are given by the system of equations

∑

j

(aij − λδij)uj = 0. (10.6)

10.2 Jacobi Method

Any symmetric 2 × 2 matrix

A =
(

a11 a12

a12 a22

)

(10.7)

can be diagonalized by a rotation of the coordinate system. Rotation by the angle ϕ

corresponds to an orthogonal transformation with the rotation matrix

Rϕ =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)

. (10.8)

In the following we use the abbreviations

c = cos ϕ, s = sin ϕ, t = tan ϕ (10.9)



10.2 Jacobi Method 215

The transformed matrix is

RAR−1 =
(

c −s

s c

) (

a11 a12

a12 a22

)(

c s

−s c

)

=
(

c2a11 + s2a22 − 2csa12 cs(a11 − a22) + (c2 − s2)a12

cs(a11 − a22) + (c2 − s2)a12 s2a11 + c2a22 + 2csa12

)

. (10.10)

It is diagonal if

0 = cs(a11 − a22) + (c2 − s2)a12 =
a11 − a22

2
sin(2ϕ) + a12 cos(2ϕ) (10.11)

or

tan(2ϕ) =
2a12

a22 − a11

. (10.12)

Calculation of ϕ is not necessary since only its cosine and sine appear in (10.10).

From [113]

1 − t2

t
=

c2 − s2

2cs
= cot(2ϕ) =

a22 − a11

2a12

(10.13)

we see that t is a root of

t2 +
a22 − a11

a12

t − 1 = 0 (10.14)

hence

t = −
a22 − a11

2a12

±

√

1 +
(

a22 − a11

2a12

)2

=
1

a22−a11

2a12
±

√

1 +
(

a22−a11

2a12

)2
. (10.15)

For reasons of convergence [113] the solution with smaller magnitude is chosen

which can be written as

t =
sign

(

a22−a11

2a12

)

∣

∣

∣

a22−a11

2a12

∣

∣

∣ +
√

1 +
(

a22−a11

2a12

)2
. (10.16)
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Again for reasons of convergence the smaller solution ϕ is preferred and therefore

we take

c =
1

√
1 + t2

s =
t

√
1 + t2

. (10.17)

The diagonal elements of the transformed matrix are

ã11 = c2a11 + s2a22 − 2csa12 (10.18)

ã22 = s2a11 + c2a22 + 2csa12. (10.19)

The trace of the matrix is invariant

ã11 + ã22 = a11 + a22 (10.20)

whereas the difference of the diagonal elements is

ã11 − ã22 = (c2 − s2)(a11 − a22) − 4csa12 =
1 − t2

1 + t2
(a11 − a22) − 4

a12t

1 + t2

= (a11 − a22) + (−a12

1 − t2

t
)

−2t2

1 + t2
− 4

a12t

1 + t2
= (a11 − a22) − 2ta12

(10.21)

and the transformed matrix has the simple form

(

a11 − a12t

a22 + a12t

)

. (10.22)

For larger dimension N > 2 the Jacobi method uses the following algorithm:

(1) look for the dominant non-diagonal element max i �=j|aij|
(2) Perform a rotation in the (ij)-plane to cancel the element ãij of the transformed

matrix Ã = R(ij) · A · R(ij)−1. The corresponding rotation matrix has the form

R(ij) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

c s
. . .

−s c
. . .

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10.23)

(3) repeat (1–2) until convergence (if possible).



10.2 Jacobi Method 217

The sequence of Jacobi rotations gives the over all transformation

RAR−1 = · · · R2R1AR−1
1 R−1

2 · · · =

⎛

⎝

λ1

. . .

λN

⎞

⎠ . (10.24)

Hence

AR−1 = R−1

⎛

⎝

λ1

. . .

λN

⎞

⎠ (10.25)

and the column vectors of R−1 = (v1, v2 · · · vN ) are the eigenvectors of A:

A (v1, v2 · · · vN ) = (λ1v1,λ2v2, · · · λN vN ) . (10.26)

10.3 Tridiagonal Matrices

A tridiagonal matrix has nonzero elements only in the main diagonal and the first

diagonal above and below. Many algorithms simplify significantly when applied to

tridiagonal matrices.

10.3.1 Characteristic Polynomial of a Tridiagonal Matrix

The characteristic polynomial of a tridiagonal matrix

PA(λ) = det

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12

a21 a22 − λ
. . . aN−1N

aNN−1 aNN − λ

∣

∣

∣

∣

∣

∣

∣

∣

(10.27)

can be calculated recursively:

P0 = 1

P1(λ) = a11 − λ

P2(λ) = (a22 − λ)P1(λ) − a12a21

...

PN (λ) = (aNN − λ)PN−1(λ) − aN,N−1aN−1,N PN−2(λ). (10.28)
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10.3.2 Special Tridiagonal Matrices

Certain classes of tridiagonal matrices can be diagonalized exactly [114–116].

10.3.2.1 Discretized Second Derivatives

Discretization of a second derivative involves, under Dirichlet boundary conditions

f (x0) = f (xN+1) = 0, the differentiation matrix (Sect. 20.2)

M =

⎛

⎜

⎜

⎜

⎜

⎝

−2 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −2

⎞

⎟

⎟

⎟

⎟

⎠

. (10.29)

Its eigenvectors have the form

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1
...

fn
...

fN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

sin k
...

sin(nk)
...

sin(Nk)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10.30)

This can be seen by inserting (10.30) into the n-th line of the eigenvalue (10.31)

Mf = λf (10.31)

(Mf )n = (sin ((n − 1)k) + sin ((n + 1)k) − 2 sin(nk))

= 2 sin(nk) (cos(k) − 1) = λ (f )n (10.32)

with the eigenvalue

λ = 2 (cos k − 1) = −4 sin2

(

k

2

)

. (10.33)

The first line of the eigenvalue (10.31) reads

(Mf )1 = (−2 sin(k) + sin(2k))

= 2 sin(k)(cos(k) − 1) = λ(f )n (10.34)

http://dx.doi.org/10.1007/978-3-319-61088-7_20
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and from the last line we have

(Mf )N = (−2 sin(Nk) + sin([N − 1]k))

= λ(f )N = 2(cos(k) − 1) sin(Nk) (10.35)

which holds if

sin((N − 1)k) = 2 sin(Nk) cos(k). (10.36)

This simplifies to

sin(Nk) cos(k) − cos(Nk) sin(k) = 2 sin(Nk) cos(k)

sin(Nk) cos(k) + cos(Nk) sin(k) = 0

sin((N + 1)k) = 0. (10.37)

Hence the possible values of k are

k =
π

(N + 1)
l with l = 1, 2, · · · N (10.38)

and the eigenvectors are explicitly (Fig. 10.1)

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

sin
(

π
N+1

l
)

...

sin
(

π
N+1

l n
)

...

sin
(

π
N+1

l N
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10.39)

For Neumann boundary conditions
∂f

∂x
(x1) = ∂f

∂x
(xN ) = 0 the matrix is slightly

different (Sect. 20.2)

Fig. 10.1 (Lowest

eigenvector) Top for fixed

boundaries fn = sin(nk)

which is zero at the

additional points x0, xN+1.

Bottom for open boundaries

fn = cos((n − 1)k) with

horizontal tangent at x1, xN

due to the boundary

conditions

f2 = f0, fN−1 = fN+1
x

0
x

2
x

1
x

N x
N+1

x
N−1

x
0

x
2

x
1

x
N x

N+1
x

N−1

x

x

http://dx.doi.org/10.1007/978-3-319-61088-7_20
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M =

⎛

⎜

⎜

⎜

⎜

⎝

−2 2

1 −2 1
. . .

. . .
. . .

1 −2 1

2 −2

⎞

⎟

⎟

⎟

⎟

⎠

. (10.40)

Its eigenvalues are also given by the expression (10.33). To obtain the eigenvectors,

we try a more general ansatz with a phase shift

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

sin Φ1
...

sin(Φ1 + (n − 1)k)
...

sin(Φ1 + (N − 1)k)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10.41)

Obviously

sin(Φ1 + (n − 1)k − k) + sin(Φ1 + (n − 1)k + k) − 2 sin(Φ1 + (n − 1)k)

= 2 (cos k − 1) sin(Φ1 + (n − 1)k). (10.42)

The first and last lines of the eigenvalue equation give

0 = −2 sin(Φ1) + 2 sin(Φ1 + k) − 2(cos k − 1) sin(Φ1)

= 2 cos Φ1 sin k (10.43)

and

0 = −2 sin(Φ1 + (N − 1)k) + 2 sin(Φ1 + (N − 1)k − k)

− 2(cos k − 1) sin(Φ1 + (N − 1)k) = 2 cos(Φ1 + (N − 1)k) sin k (10.44)

which is solved by

Φ1 =
π

2
k =

π

N − 1
l, l = 1, 2 . . . N (10.45)

hence finally the eigenvector is (Fig. 10.1)

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
...

cos
(

n−1
N−1

πl
)

...

(−1)l

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10.46)
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Even simpler is the case of the corresponding cyclic tridiagonal matrix

M =

⎛

⎜

⎜

⎜

⎜

⎝

−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 1 −2

⎞

⎟

⎟

⎟

⎟

⎠

(10.47)

which has eigenvectors

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

eik

...

eink

...

eiNk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(10.48)

and eigenvalues

λ = −2 + e−ik + eik = 2 (cos(k) − 1) = −4 sin2

(

k

2

)

(10.49)

where the possible k − values again follow from the first and last line

−2eik + ei2k + eiNk =
(

−2 + e−ik + eik
)

eik (10.50)

eik + ei(N−1)k − 2eiNk =
(

−2 + e−ik + eik
)

eiNk (10.51)

which both lead to

eiNk = 1 (10.52)

k =
2π

N
l, l = 0, 1, · · · N − 1. (10.53)

10.3.2.2 Discretized First Derivatives

Using symmetric differences to discretize a first derivative in one dimension leads

to the matrix2

2This matrix is skew symmetric, hence iT is Hermitian and has real eigenvalues iλ.
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D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

−1 1
. . .

. . .
. . .

. . .

−1 1

−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10.54)

The characteristic polynomial of the Hermitian matrix iD is given by the recursion

Sect. 10.3.1

P0 = 1

P1 = −λ

...

PN = −λPN−1 − PN−2 (10.55)

which after the substitution x = −λ/2 is exactly the recursion for the Chebyshev

polynomial of the second kind UN (x). Hence the eigenvalues of D are given by the

roots xk of UN (x) as

λD = 2ixk = 2i cos

(

kπ

N + 1

)

k = 1, 2 . . . N . (10.56)

The eigenvalues of the corresponding cyclic tridiagonal matrix

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1

−1 1
. . .

. . .
. . .

. . .

−1 1

1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10.57)

are easy to find. Inserting the ansatz for the eigenvector

⎛

⎝

exp ik
...

exp iNk

⎞

⎠ (10.58)

we find the eigenvalues

ei(m+1)k − ei(m−1)k = λeimk (10.59)

λ = 2i sin k (10.60)
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and from the first and last equation

1 = eiNk (10.61)

eik = ei(N+1)k (10.62)

the possible k-values

k =
2π

N
l, l = 0, 1, . . . N − 1. (10.63)

10.4 Reduction to a Tridiagonal Matrix

Eigenproblem algorithms work especially efficient if the matrix is first transformed

to tridiagonal form (for real symmetric matrices, upper Hessian form for real non-

symmetric matrices) which can be achieved by a series of Householder transforma-

tions (5.56)

A′ = PAP with P = PT = 1 − 2
uuT

|u|2
. (10.64)

The following orthogonal transformation P1 brings the first row and column to tridi-

agonal form. We divide the matrix A according to

A =
(

a11 α
T

α Arest

)

(10.65)

with the (N − 1)- dimensional vector

α =

⎛

⎝

a12
...

a1n

⎞

⎠ .

Now let

u =

⎛

⎜

⎜

⎝

0

a12 + λ
...

a1N

⎞

⎟

⎟

⎠

=
(

0

α

)

+ λe(2) with e(2) =

⎛

⎜

⎜

⎜

⎜

⎝

0

1

0
...

0

⎞

⎟

⎟

⎟

⎟

⎠

. (10.66)

http://dx.doi.org/10.1007/978-3-319-61088-7_5
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Then

|u|2 = |α|2 + λ2 + 2λa12 (10.67)

and

uT

(

a11

α

)

= |α|2 + λa12. (10.68)

The first row of A is transformed by multiplication with P1 according to

P1

(

a11

α

)

=
(

a11

α

)

− 2
|α|2 + λa12

|α|2 + λ2 + 2λa12

[(

0

α

)

+ λe(2)

]

. (10.69)

The elements number 3 . . . N are eliminated if we choose3

λ = ±|α| (10.70)

because then

2
|α|2 + λa12

|α|2 + λ2 + 2λa12

= 2
|α|2 ± |α|a12

|α|2 + |α|2 ± 2|α|a12

= 1 (10.71)

and

P1

(

a11

α

)

=
(

a11

α

)

−
(

0

α

)

− λe(2) =

⎛

⎜

⎜

⎜

⎜

⎝

a11

∓|α|
0
...

0

⎞

⎟

⎟

⎟

⎟

⎠

. (10.72)

Finally we have

A(2) = P1AP1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a
(2)
12 0 · · · 0

a
(2)
12 a

(2)
22 a

(2)
23 · · · a

(2)
2N

0 a
(2)
23

. . . a
(2)
3N

...
...

. . .
...

0 a
(2)
2N a

(2)
3N · · · a

(2)
NN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10.73)

as desired.

3To avoid numerical extinction we choose the sign to be that of a12.
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For the next step we choose

α =

⎛

⎜

⎝

a
(2)
22
...

a
(2)
2N

⎞

⎟

⎠
, u =

⎛

⎝

0

0

α

⎞

⎠ ± |α|e(3) (10.74)

to eliminate the elements a24 . . . a2N . Note that P2 does not change the first row and

column of A(2) and therefore

A(3) = P2A(2)P2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a
(2)
12 0 · · · · · · 0

a
(2)
12 a

(2)
22 a

(3)
23 0 · · · 0

0 a
(3)
23 a

(3)
33 · · · · · · a

(3)
3N

... 0
...

...
...

...
...

...

0 0 a
(3)
3N · · · · · · a

(3)
NN

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10.75)

After N − 1 transformations finally a tridiagonal matrix is obtained.

10.5 The Power Iteration Method

A real symmetric N × N matrix with (orthonormal) eigenvectors and eigenvalues4

Aui = λiui (10.76)

can be expanded as

A =
∑

i

uiλiu
T
i . (10.77)

The sequence of powers

An =
∑

i

uiλ
n
i uT

i (10.78)

converges to

An → umaxλ
n
maxuT

max

4We do not consider degenerate eigenvalues explicitly here.



226 10 Eigenvalue Problems

where5

|λmax| = max. (10.79)

Hence for any initial vector v1 (which is arbitrary but not perpendicular to umax) the

sequence

vn+1 = Avn (10.80)

converges to a multiple of umax. To obtain all eigenvectors simultaneously, we could

use a set of independent start vectors, e.g. the N unit vectors and iterate simultaneously

for all of them

(v
(1)
1 , . . . v

(N)
1 ) = (e1, . . . eN ) =

⎛

⎝

1
. . .

1

⎞

⎠ (10.81)

(v
(1)
2 , . . . v

(N)
2 ) = A(v

(1)
1 , . . . v

(N)
1 ) = A. (10.82)

Most probably, all column vectors of A then converge to multiples of the same

eigenvector. To assure linear independence, an orthogonalization step has to follow

each iteration. This can be done (QR decomposition, Sect. 5.2) by decomposing the

matrix into the product of an upper triangular6 matrix R and an orthogonal matrix

QT = Q−1 (Sect. 5.2)

A = QR. (10.83)

For symmetric tridiagonal matrices this factorization can be efficiently realized by

multiplication with a sequence of Givens rotation matrices which eliminate the off-

diagonal elements in the lower part one by one7

Q = R(N−1,N)
αN−1

. . . R(2,3)
α2

R(1,2)
α1

(10.84)

beginning with

R(1,2)
α1

A =

⎛

⎜

⎜

⎜

⎜

⎝

c s

−s c

1
. . .

1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

a11 a12

a12 a22 a23

. . .
. . .

. . .

aN−2,N−1 aN−1,N−1 aN−1,N

aN−1,N aN,N

⎞

⎟

⎟

⎟

⎟

⎠

5For simplicity we do not consider eigenvalues which are different but have the same absolute value.
6The equivalent QL method uses a lower triangular matrix.
7This is quite different from the Jacobi method since it is not an orthogonal transformation.

http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
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=

⎛

⎜

⎜

⎜

⎜

⎝

ca11 + sa12 ca12 + sa22 sa23

0 −sa12 + ca22 ca23

a34 a33 a34

. . .
. . .

. . .

aN−1,N aN,N

⎞

⎟

⎟

⎟

⎟

⎠

(10.85)

where the rotation angle α1 has to be chosen such that

tan α1 =
s

c
=

a12

a11

. (10.86)

Finally, this leads to a method known as orthogonal simultaneous power iteration

W (1) = A = Q(1)R(1) (10.87)

W (n+1) = AQ(n) (10.88)

Q(n+1)R(n+1) = W (n+1). (10.89)

This method calculates a sequence of orthogonal matrices Q(n) which converge to a

set of independent eigenvectors. Moreover, from (10.88) and (10.89)

A = W (n+1)Q(n)T = Q(n+1)R(n+1)Q(n)T (10.90)

and therefore powers of A are given by

An =
(

Q(n)R(n)Q(n−1)T
) (

Q(n−1)R(n−1)Q(n−2)T
)

. . .
(

Q(2)R(2)Q(1)T
) (

Q(1)R(1)
)

= Q(n)R(n)R(n−1) . . . R(1). (10.91)

The product of two upper triangular matrices is upper triangular again which can be

seen from

(R(m)R(n))i,k =
∑

j: i≤j≤k

R
(m)
i,j R

(n)

jk = 0 if i > k. (10.92)

Therefore the QR decomposition of An is

An = Q(n)R
(n)

(10.93)

with

R
(n) = R(n) . . . R(1). (10.94)
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To obtain other than the dominant eigenvalues, the inverse power iteration method

with shift is useful. Consider the matrix

Ã = (A − σ)−1 (10.95)

where µ is not an eigenvalue λiof A. Obviously it has the same eigenvectors as A

and eigenvalues given by

Ãui = λ̃iui =
1

λi − σ
ui. (10.96)

Hence, if σ is close to λi, the power iteration method will converge to a multiple of ui.

For practical calculations, an equivalent formulation of the power iteration method

is used which is known as the QR (or QL) method.

10.6 The QR Algorithm

The QR algorithm [117] is an iterative algorithm. It uses a series of orthogonal trans-

formations which conserve the eigenvalues. Starting from the decomposition of A

A = Q1R1 (10.97)

A2 = R1Q1 = QT
1 AQ1 (10.98)

we iterate

...

An = QnRn (10.99)

An+1 = RnQn = QT
n AnQn. (10.100)

From (10.99) and (10.100)

Qn+1Rn+1 = RnQn

and the n-th power of A is

An = AA . . . A = Q1R1Q1R1 . . . Q1R1 = Q1(Q2R2 . . . Q2R2)R1

= Q1Q2(Q3R3 . . . Q3R3)R2R1 · · · = QnRn (10.101)

Qn = Q1 . . . Qn Rn = Rn . . . R1. (10.102)
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But since QR decomposition is unique, comparison of (10.93) and (10.101) shows

Qn = Q(n) Rn = R
(n)

(10.103)

i.e. the column vectors of Qn converge to a set of eigenvectors and the transformed

matrix

An+1 = QT
n AnQn = QT

n QT
n−1An−1Qn−1Qn = · · · = Q

T

n AQn (10.104)

converges to a diagonal matrix. Now consider the inverse power

A−n = R
−1

n Q
T

n . (10.105)

The inverse of a symmetric matrix is also symmetric and

A−n = Qn

(

R
−1

n

)T

(10.106)

shows, that the QR algorithm uses the same orthogonal transformations as ordinary

and also inverse power iteration. The inverse of an upper triangular matrix is also

upper triangular but the transpose is lower triangular. Therefore we modify (10.106)

by multiplying with a permutation matrix

P =

⎛

⎝

1

. .
.

1

⎞

⎠ P2 = 1 (10.107)

from the right side, which reverses the order of the columns and

A−nP = QnPP
(

R
−1

n

)T

P = Q̃ R̃ (10.108)

is the QR decomposition of A−nP. This shows the close relationship between the QR

algorithm8 and the inverse power iteration method.

To improve convergence, a shift σ is introduced and the QR factorization applied

to An − σ. The modified iteration then reads

An − σ = QnRn (10.109)

An+1 = RnQn + σ = QT
n (An − σ)Qn + σ = QT

n AnQn. (10.110)

8Or the equivalent QL algorithm.
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Symmetry and tridiagonal form are conserved by this algorithm. The simplest

choice for the shift is to take a diagonal element σm = am,m = (An)m,m corresponding

to the Rayleigh quotient method. An even more robust and very popular choice [113]

is Wilkinson’s shift

σm = am,m + δ − sign(δ)

√

δ2 + a2
m,m−1 δ =

am−1,m−1 − am,m

2
(10.111)

which is that eigenvalue of the matrix

(

am−1,m−1 am−1,m

am−1,m am,m

)

which is closer to an,n.

The calculation starts with σN and iterates until the off-diagonal element aN−1,N

becomes sufficiently small.9 Then the transformed matrix has the form

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12

a12 a22
. . .

. . .
. . . aN−2,N−1

aN−2,N−1 aN−1,N−1 0

0 aNN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (10.112)

Now the last column and row can be discarded (deflation method) and the next

iteration performed with the shift σN−1 on a tridiagonal matrix of dimension N − 1.

This procedure has to be repeated N times to obtain all eigenvalues. Convergence is

usually cubic (or at least quadratic if there are degenerate eigenvalues).

10.7 Hermitian Matrices

In quantum mechanics often Hermitian matrices have to be diagonalized (which

have real valued eigenvalues). To avoid complex arithmetics, an Hermitian eigen-

problem can be replaced by a symmetric real valued problem of double dimension

by introducing

B = ℜ(A) C = ℑ(A) x = u + iv (10.113)

where, for Hermitian A

A = B + iC = AH = BT − iCT (10.114)

hence

B = BT C = −CT (10.115)

9For the QL method, it is numerically more efficient to start at the upper left corner of the matrix.
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and the eigenvalue problem can be rewritten as

0 = (Ax − λx) = (Bu − Cv − λu) + i(Bv + Cu − λv) (10.116)

or finally in the real symmetric form

(

B CT

C B

) (

u

v

)

= λ

(

u

v

)

. (10.117)

Each eigenvalue of the N-dimensional Hermitian problem corresponds to two eigen-

vectors of the 2N-dimensional problem since for any solution of (10.117)

(

B −C

C B

)(

−v

u

)

=
(

−Bv − Cu

−Cv + Bu

)

= λ

(

−v

u

)

(10.118)

provides a different solution, while the complex vectors u + iv and i(u + iv) =
−v + iu only differ by a phase factor.

10.8 Large Matrices

Many problems in computational physics involve very large matrices, for which

standard methods are not applicable. It might be even difficult or impossible to keep

the full matrix in memory. Here methods are used which only involve the product of

the matrix with a vector which can be computed on the fly. Krylov methods are very

similar to power iteration but diagonalize only the projection of the matrix onto a

Krylov space of much smaller dimension n ≪ N which is constructed by multiplying

a normalized start vector q1 repeatedly with A

Kn(A, q1) = span{q1, Aq1, A2q1, . . . An−1q1}. (10.119)

We use the Arnoldi method (Sect. 5.6.5) to construct an orthonormalized basis of this

space. For a symmetric matrix this simplifies to a three-term recursion also known

as symmetric Lanczos algorithm [118]. Applying the Arnoldi method

hj,n = (qT
j Aqn) j ≤ n (10.120)

q̃n+1 = Aqn −
n

∑

j=1

hjnqj (10.121)

hn+1,n = |q̃n+1| qn+1 =
q̃n+1

hn+1,n

(10.122)

http://dx.doi.org/10.1007/978-3-319-61088-7_5
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to a symmetric matrix A, we find

h2
n+1,n = qT

n A2qn − 2
∑

j

(qT
n Aqj)(q

T
j Aqn) +

∑

jj′

(qT
j Aqn)(q

T
j′ Aqn)δjj′

= qT
n A

⎡

⎣hn+1,nqn+1 +
∑

j

hjnqj

⎤

⎦ −
∑

j

h2
jn = hn+1,nhn,n+1 (10.123)

hence

hn+1,n = hn,n+1. (10.124)

Furthermore,

hn−2,n = qT
n−2Aqn = qT

n−2A
1

hn,n−1

⎡

⎣Aqn−1 −
n−1
∑

j=1

hjn−1qj

⎤

⎦

=
1

hn.n−1

⎡

⎣−
n−2
∑

j=1

hjn−1hj,n−2 − hn−1,n−1hn−2,n−1 + qT
n−1A

⎛

⎝hn−1,n−2qn−1 +
n−2
∑

j=1

hjn−2qj

⎞

⎠

⎤

⎦

=
1

hn.n−1

⎡

⎣−
n−2
∑

j=1

hjn−1hj,n−2 − hn−1,n−1hn−2,n−1 + hn−1,n−1hn−1,n−2 +
n−2
∑

j=1

hjn−1hjn−2

⎤

⎦ = 0

(10.125)

and similar for s > 2

hn−s,n = qT
n−sAqn = qT

n−sA
1

hn,n−1

⎡

⎣Aqn−1 −
n−1
∑

j=1

hjn−1qj

⎤

⎦

=
1

hn.n−1

⎡

⎣−
n−2
∑

j=1

hjn−1hj,n−s − hn−1,n−1hn−s,n−1 + qT
n−1A

⎛

⎝hn−s+1,n−sqn−s+1 +
n−s
∑

j=1

hjn−sqj

⎞

⎠

⎤

⎦

=
1

hn.n−1

⎡

⎣−
n−2
∑

j=1

hjn−1hj,n−s − hn−1,n−1hn−s,n−1 + hn−s+1,n−shn−1,n−s+1 +
n−s
∑

j=1

hjn−1hjn−s

⎤

⎦

=
1

hn,n−1

⎡

⎣−
n−2
∑

j=n−s+1

hj,n−1hj,n−s − hn−1,n−1hn−s,n−1 + hn−s,n−s+1hn−s+1,n−1

⎤

⎦ (10.126)

hn−s,n =
1

hn,n−1

⎡

⎣−
n−2
∑

j=n−s+2

hj,n−1hj,n−s − hn−1,n−1hn−s,n−1

⎤

⎦ . (10.127)

Starting from (10.125) for s = 2 we increment s repeatedly and find

hn−2,n = hn−3,n = . . . h1,n = 0 (10.128)
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since (10.127) only involves smaller values of s, for which (10.128) already has been

shown. The Arnoldi decomposition produces an upper Hessenberg matrix Sect. 5.6.5,

Un = (q1, . . . qn) (10.129)

AUn = Un+1H = (Un, qn+1)

(

Hn

hn+1,neT
n

)

= UnHn + hn+1qn+1eT
n (10.130)

which for symmetric A becomes tridiagonal

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

h11 h12 . . . h1n

h21 h22 . . . h2n

h32
. . .
. . . hnn

hn+1,n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 b1

b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1

bn−1 an

bn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

T

bneT
n

)

(10.131)

with a symmetric tridiagonal matrix T , which is the desired projection of A into the

Krylov space Kn

U T
n AUn = U T

n Un+1 H = U T
n

(

Un, qn+1

)

(

T

bneT
n

)

= (En, 0)

(

T

bneT
n

)

= T . (10.132)

For an eigenpair (λ, v) of T

A(Unv) = Un+1Hv =
(

Un, qn+1

)

(

T

bneT
n

)

v

=
(

UnT + bnqn+1eT
n

)

v = λ(Unv) + bnqn+1eT
n v. (10.133)

Hence, an approximate eigenpair of A is given by the Ritz pair (λ, Unv) and the error

can be estimated from the residual norm

|(A − λ)Unv|
|v|

= |bn||eT
n v|. (10.134)

Due to numerical errors, orthogonality of the Lanczos vectors qn can get lost and

reorthogonalization is necessary [119, 120]. If this takes to much time or if memory

limits do not allow to store enough Lanczos vectors, the procedure has to be restarted

with a new initial vector which is usually taken as a linear combination of selected

eigenvectors which have already been found [121, 122]. Furthermore, special care

has to be taken to determine possible degeneracies of the eigenvalues.

http://dx.doi.org/10.1007/978-3-319-61088-7_5
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10.9 Non-symmetric Matrices

Eigenvalue problems with non-symmetric matrices are more complicated. Left and

right eigenvectors have to be distinguished and the eigenvalues can be complex valued

even if the matrix is real. The QR method [117] is applicable also to a non-symmetric

matrix but very expensive unless the matrix is first brought to upper triangular (instead

of tridiagonal) form, which can be achieved by a series of similarity transformations

with Householder reflections (5.2.2). The implicit QR method with double shift

avoids complex arithmetics by treating pairs of complex conjugated eigenvalues

simultaneously. For very large matrices the Arnoldi method brings a non-symmetric

matrix to upper Hessenberg form, which provides the projection onto the Krylov

space as an upper triangular matrix.

Problems

Problem 10.1 Computer Experiment: Disorder in a Tight-Binding Model

We consider a two-dimensional lattice of interacting particles. Pairs of nearest neigh-

bors have an interaction V and the diagonal energies are chosen from a Gaussian

distribution

P(E) =
1

∆
√

2π
e−E2/2∆2

. (10.135)

The wave function of the system is given by a linear combination

ψ =
∑

ij

Cijψij (10.136)

where on each particle (i, j) one basis function ψij is located. The nonzero elements

of the interaction matrix are given by

H(ij|ij) = Eij (10.137)

H(ij|i ± 1, j) = H(ij|i, j ± 1) = V . (10.138)

The Matrix H is numerically diagonalized and the amplitudes Cij of the lowest

state are shown as circles located at the grid points. As a measure of the degree of

localization the quantity

∑

ij

|Cij|4 (10.139)

is evaluated. Explore the influence of coupling V and disorder ∆.

http://dx.doi.org/10.1007/978-3-319-61088-7_5


Chapter 11

Data Fitting

Often a set of data points has to be fitted by a continuous function, either to obtain

approximate function values in between the data points or to describe a functional

relationship between two or more variables by a smooth curve, i.e. to fit a certain

model to the data. If uncertainties of the data are negligibly small, an exact fit is

possible, for instance with polynomials, spline functions or trigonometric functions

(Chap. 2). If the uncertainties are considerable, a curve has to be constructed that

fits the data points approximately. Consider a two-dimensional data set

(xi, yi) i = 1 . . . m (11.1)

and a model function

f (x, a1 . . . an) m ≥ n (11.2)

which depends on the variable x and n ≤ m additional parameters aj. The errors of

the fitting procedure are given by the residuals

ri = yi − f (xi, a1 . . . an). (11.3)

The parameters aj have to be determined such, that the overall error is minimized,

which in most practical cases is measured by the mean square difference1

Ssd(a1 . . . an) =
1

m

m∑

i=1

r2
i . (11.4)

The optimal parameters are determined by solving the system of normal equations.

If the model function depends linearly on the parameters, orthogonalization offers a

numerically more stable method. The dimensionality of a data matrix can be reduced

1Minimization of the sum of absolute errors
∑

|ri| is much more complicated.
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with the help of singular value decomposition, which allows to approximate a matrix

by another matrix of lower rank and is also useful for linear regression, especially

if the columns of the data matrix are linearly dependent.

11.1 Least Square Fit

A (local) minimum of (11.4) corresponds to a stationary point with zero gradient.

For n model parameters there are n, generally nonlinear, equations which have to be

solved [123]. From the general condition

∂Ssd

∂aj

= 0 j = 1 . . . n (11.5)

we find

m∑

i=1

ri

∂f (xi, a1 . . . an)

∂aj

= 0 (11.6)

which can be solved with the methods discussed in Chap. 6. For instance, the

Newton–Raphson method starts from a suitable initial guess of parameters

(a0
1 . . . a0

n) (11.7)

and tries to improve the fit iteratively by making small changes to the parameters

as+1
j = as

j + ∆as
j . (11.8)

The changes ∆as
j are determined approximately by expanding the model function

f (xi, as+1
1 . . . as+1

n ) = f (xi, as
1 . . . as

n) +
n∑

j=1

∂f (xi, as
1 . . . as

n)

∂aj

∆as
j + . . . (11.9)

to approximate the new residuals

rs+1
i = rs

i −
n∑

j=1

∂f (xi, as
1 . . . as

m)

∂aj

∆as
j (11.10)

and the derivatives

∂rs
i

∂aj

= −
∂f (xi, as

1 . . . as
m)

∂aj

. (11.11)

http://dx.doi.org/10.1007/978-3-319-61088-7_6
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Equation (11.6) now becomes

m∑

i=1

⎛
⎝rs

i −
n∑

j=1

∂f (xi)

∂aj

∆as
j

⎞
⎠ ∂f (xi)

∂ak

(11.12)

which is a system of n (usually overdetermined) linear equations for the ∆aj, the

so-called normal equations:

m∑

i=1

n∑

j=1

∂f (xi)

∂aj

∂f (xi)

∂ak

∆as
j =

m∑

i=1

rs
i

∂f (xi)

∂ak

. (11.13)

With the definition

Akj =
1

m

m∑

i=1

∂f (xi)

∂ak

∂f (xi)

∂aj

(11.14)

bk =
1

m

m∑

i=1

yi

∂f (xi)

∂ak

(11.15)

the normal equations can be written as

n∑

j=1

Akj∆aj = bk . (11.16)

11.1.1 Linear Least Square Fit

Especially important are model functions which depend linearly on all parameters

(Fig. 11.1 shows an example which is discussed in problem 11.1)

f (x, a1 . . . an) =
n∑

j=1

ajfj(x). (11.17)

The derivatives are

∂f (xi)

∂aj

= fj(xi) (11.18)

and the minimum of (11.4) is given by the solution of the normal equations
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Fig. 11.1 (Least square fit)

The polynomial

C(T) = aT + bT3 (full

curve) is fitted to a set of data

points which are distributed

randomly around the “exact”

values C(T) = a0T + b0T3

(dashed curve). For more

details see problem 11.1
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1

m

n∑

j=1

m∑

i=1

fk(xi)fj(xi)aj =
1

m

m∑

i=1

yifk(xi) (11.19)

which for a linear fit problem become

n∑

j=1

Akjaj = bk (11.20)

with

Akj =
1

m

m∑

i=1

fk(xi)fj(xi) (11.21)

bk =
1

m

m∑

i=1

yifk(xi). (11.22)

Example: Linear Regression

For a linear fit function

f (x) = a0 + a1x (11.23)

the mean square difference is

Ssd =
1

m

m∑

i=1

(yi − a0 − a1xi)
2 (11.24)

and we have to solve the equations
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0 =
∂Ssd

∂a0

=
1

m

m∑

i=1

(yi − a0 − a1xi) = y − a0 − a1x

0 =
∂Ssd

∂a1

=
1

m

m∑

i=1

(yi − a0 − a1xi)xi = xy − a0x − a1x2 (11.25)

which can be done here with determinants

a0 =

∣∣∣∣
y x

xy x2

∣∣∣∣
∣∣∣∣
1 x

x x2

∣∣∣∣
=

y x2 − x xy

x2 − x2
(11.26)

a1 =

∣∣∣∣
1 y

x xy

∣∣∣∣
∣∣∣∣
1 x

x x2

∣∣∣∣
=

xy − x y

x2 − x2
. (11.27)

11.1.2 Linear Least Square Fit with Orthogonalization

With the definitions

x =

⎛
⎜⎝

a1

...

an

⎞
⎟⎠ b =

⎛
⎜⎝

y1

...

ym

⎞
⎟⎠ (11.28)

and the m × n matrix

A =

⎛
⎜⎝

a11 · · · a1n

...
. . .

...

am1 · · · amn

⎞
⎟⎠ =

⎛
⎜⎝

f1(x1) · · · fn(x1)
...

. . .
...

f1(xm) · · · fn(xm)

⎞
⎟⎠ (11.29)

the linear least square fit problem (11.20) can be formulated as a search for the

minimum of

|Ax − b| =
√

(Ax − b)T (Ax − b). (11.30)

In the last section we calculated the gradient

∂|Ax − b|2

∂x
= AT (Ax − b) + (Ax − b)T A = 2AT Ax − 2AT b (11.31)
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and solved the normal equations

AT Ax = AT b. (11.32)

This method can become numerically unstable. Alternatively we use orthogonaliza-

tion of the n column vectors ak of A to have

A = (a1 · · · an) = (q1 · · · qn)

⎛
⎜⎜⎜⎝

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

⎞
⎟⎟⎟⎠ (11.33)

where ak and qk are now vectors of dimension m. Since the qk are orthonormal

qT
i qk = δik we have

⎛
⎜⎝

qT
1
...

qT
n

⎞
⎟⎠ A =

⎛
⎜⎜⎜⎝

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

⎞
⎟⎟⎟⎠ . (11.34)

The qk can be augmented by another (m−n) vectors to provide an orthonormal basis

of R
m. These will not be needed explicitly. They are orthogonal to the first n vectors

and hence to the column vectors of A. All vectors qk together form an orthogonal

matrix

Q =
(

q1 · · · qn qn+1 · · · qm

)
(11.35)

and we can define the transformation of the matrix A:

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

qT
1
...

qT
n

qT
n+1
...

qT
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a1 · · · an) = QT A =
(

R

0

)
R =

⎛
⎜⎝

r11 · · · r1n

. . .
...

rnn

⎞
⎟⎠ . (11.36)

The vector b transforms as

b̃ = QT b =
(

bu

bl

)
bu =

⎛
⎜⎝

qT
1
...

qT
n

⎞
⎟⎠ b bl =

⎛
⎜⎝

qT
n+1
...

qT
m

⎞
⎟⎠ b. (11.37)
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Since the norm of a vector is not changed by unitary transformations

|b − Ax| =
√

(bu − Rx)2 + b2
l (11.38)

which is minimized if

Rx = bu. (11.39)

The error of the fit is given by

|b − Ax| = |bl|. (11.40)

Example: Linear Regression

Consider again the fit function

f (x) = a0 + a1x (11.41)

for the measured data (xi, yi). The fit problem is to determine

∣∣∣∣∣∣∣

⎛
⎜⎝

1 x1

...
...

1 xm

⎞
⎟⎠

(
a0

a1

)
−

⎛
⎜⎝

y1

...

ym

⎞
⎟⎠

∣∣∣∣∣∣∣
= min. (11.42)

Orthogonalization of the column vectors

a1 =

⎛
⎜⎝

1
...

1

⎞
⎟⎠ a2 =

⎛
⎜⎝

x1

...

xm

⎞
⎟⎠ (11.43)

with the Schmidt method gives:

r11 =
√

m (11.44)

q1 =

⎛
⎜⎜⎝

1√
m

...
1√
m

⎞
⎟⎟⎠ (11.45)

r12 =
1

√
m

m∑

i=1

xi =
√

m x (11.46)

b2 = (xi − x) (11.47)
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r22 =
√∑

(xi − x)2 =
√

mσx (11.48)

q2 = (
xi − x
√

mσx

). (11.49)

Transformation of the right hand side gives

(
qT

1

qT
2

)
⎛
⎜⎝

y1

...

ym

⎞
⎟⎠ =

( √
m y√

m
xy−x y

σx

)
(11.50)

and we have to solve the system of linear equations

Rx =
(√

m
√

m x

0
√

mσ

) (
a0

a1

)
=

( √
m y√

m
xy−x y

σx

)
. (11.51)

The solution

a1 =
xy − x y

(x − x)2
(11.52)

a0 = y − xa1 =
y x2 − x xy

(x − x)2
(11.53)

coincides with the earlier results since

(x − x)2 = x2 − x2. (11.54)

11.2 Singular Value Decomposition

Computational physics often has to deal with large amounts of data. Singular value

decomposition is a very useful tool to reduce redundancies and to extract the most

important information from data. It has been used for instance for image compression

[124], it is very useful to extract the essential dynamics from molecular dynamics

simulations [125, 126] and it is an essential tool of Bio-informatics [127].
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11.2.1 Full Singular Value Decomposition

For m ≥ n,2 any real3 m × n matrix A of rank r ≤ n can be decomposed into a

product

A = U Σ V T (11.55)

⎛
⎜⎝

a11 . . . a1n

...
. . .

...

am1 . . . amn

⎞
⎟⎠ =

⎛
⎜⎝

u11 . . . u1m

...
. . .

...

um1 . . . umm

⎞
⎟⎠

⎛
⎜⎜⎜⎝

s1

. . .

sn

0 . . . 0

⎞
⎟⎟⎟⎠

⎛
⎜⎝

v11 . . . vn1

...
. . .

...

v1n . . . vnn

⎞
⎟⎠ (11.56)

where U is a m × m orthogonal matrix, Σ is a m × n matrix, in which the upper part

is a n × n diagonal matrix and V is an orthogonal n × n matrix.

The diagonal elements si are called singular values. Conventionally, they are sorted

in descending order and the last n − r of them are zero. For a square n × n matrix

singular value decomposition (11.56) is equivalent to diagonalization

A = USU T . (11.57)

11.2.2 Reduced Singular Value Decomposition

We write

U = (Un, Um−n) (11.58)

with the m × n matrix Un and the m × (m − n) matrix Um−n and

Σ =
(

S

0

)
(11.59)

with the diagonal n × n matrix S. The singular value decomposition then becomes

A = (Un, Um−n)

(
S

0

)
V T = UnSV T (11.60)

which is known as reduced singular value decomposition. Un (usually simply denoted

by U ) is not unitary but its column vectors, called the left singular vectors, are

orthonormal

2Otherwise consider the transpose matrix.
3Generalization to complex matrices is straightforward.
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m∑

i=1

ui,rui,s = δr,s (11.61)

as well as the column vectors of V which are called the right singular vectors

n∑

i=1

vi,rvi,s = δr,s. (11.62)

Hence the products

U T
n Un = V T V = En (11.63)

give the n × n unit matrix.

In principle, U and V can be obtained from diagonalization of AT A and AAT ,

since

AT A = (V ΣT U T )(UΣV T ) = V (S, 0)

(
S

0

)
V T = V S2V T (11.64)

AAT = (UΣV T )(V ΣT U T ) = U

(
S

0

)
(S, 0)U T = UnS2U T

n . (11.65)

However, calculation of U by diagonalization is very inefficient, since usually only

the first n rows are needed (i.e. Un ). To perform a reduced singular value decompo-

sition, we first diagonalize

AT A = V D V T (11.66)

which has positive eigenvalues di ≥ 0, sorted in descending order and obtain the

singular values

S = D
1/2 =

⎛
⎜⎝

√
d1

. . . √
dn

⎞
⎟⎠ . (11.67)

Now we determine a matrix U such, that

A = USV T (11.68)

or, since V is unitary

Y = AV = US. (11.69)



11.2 Singular Value Decomposition 245

The last n − r singular values are zero if r < n. Therefore we partition the matrices

(indices denote the number of rows)

(
Yr 0n−r

)
=

(
Ur Un−r

) (
Sr

0n−r

)
=

(
UrSr 0

)
. (11.70)

We retain only the first r columns and obtain a system of equations

⎛
⎜⎝

y11 . . . y1r

...
. . .

...

ym1 . . . ymr

⎞
⎟⎠ =

⎛
⎜⎝

u11 . . . u1r

...
. . .

...

um1 . . . umr

⎞
⎟⎠

⎛
⎜⎝

s1

. . .

sr

⎞
⎟⎠ (11.71)

which can be easily solved to give the first r rows of U

⎛
⎜⎝

u11 . . . u1r

...
. . .

...

um1 . . . umr

⎞
⎟⎠ =

⎛
⎜⎝

y11 . . . y1n

...
. . .

...

ym1 . . . ymn

⎞
⎟⎠

⎛
⎜⎝

s−1
1

. . .

s−1
r

⎞
⎟⎠ . (11.72)

The remaining n−r column vectors of U have to be orthogonal to the first r columns

but are otherwise arbitrary. They can be obtained for instance by the Gram Schmidt

method.

For larger matrices direct decomposition algorithms are available, for instance

[128], which is based on a reduction to bidiagonal form and a variant of the QL

algorithm as first introduced by Golub and Kahan [129].

11.2.3 Low Rank Matrix Approximation

Component-wise (11.60) reads

ai,j =
r∑

k=1

ui,kskvj,k . (11.73)

Approximations to A of lower rank are obtained by reducing the sum to only the

largest singular values (the smaller singular values are replaced by zero). It can be

shown [130] that the matrix of rank l ≤ r

a
(l)
i,j =

l∑

k=1

ui,kskvj,k (11.74)



246 11 Data Fitting

is the rank-l matrix which minimizes

∑

i,j

|ai,j − a
(l)
i,j |2. (11.75)

If only the largest singular value is taken into account, A is approximated by the

rank−1 matrix

a
(1)
i,j = s1ui,1vj,1. (11.76)

As an example, consider a m × n matrix

A =

⎛
⎜⎝

x1(t1) . . . xn(t1)
...

...

x1(tm) . . . xn(tm)

⎞
⎟⎠ (11.77)

which contains the values of certain quantities x1 . . . xn observed at different times

t1 . . . tm. For convenience, we assume that the average values have been subtracted,

such that
∑m

j=1 xi = 0. Approximation (11.76) reduces the dimensionality to 1,

i.e. a linear relation between the data. The i-th row of A,

(
x1(ti) . . . xn(ti)

)
(11.78)

is approximated by

s1 ui,1

(
v1,1 . . . vn,1

)
(11.79)

which describes a direct proportionality of different observables

1

vj,1

xj(ti) =
1

vk,1

xk(ti). (11.80)

According to (11.75) this linear relation minimizes the mean square distance

between the data points (11.78) and their approximation (11.79).

Example: Linear approximation [131]

Consider the data matrix

AT =
(

1 2 3 4 5

1 2.5 3.9 3.5 4.0

)
. (11.81)

First subtract the row averages

x = 3 y = 2.98 (11.82)
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to obtain

AT =
(

−2 −1 0 1 2

−1.98 −0.48 0.92 0.52 1.02

)
. (11.83)

Diagonalization of

AT A =
(

10.00 7.00

7.00 6.308

)
(11.84)

gives the eigenvalues

d1 = 15.393 d2 = 0.915 (11.85)

and the eigenvectors

V =
(

0.792 −0.610

0.610 −0.792

)
. (11.86)

Since there are no zero singular values we find

U = AV S−1 =

⎛
⎜⎜⎜⎜⎝

−0.181 −0.380

−0.070 0.252

0.036 0.797

0.072 −0.217

0.143 −0.451

⎞
⎟⎟⎟⎟⎠

. (11.87)

This gives the decomposition4

A =
(

u1 u2

) (
s1

s2

) (
vT

1

vT
2

)
= s1u1vT

1 + s2u2vT
2

=

⎛
⎜⎜⎜⎜⎝

−2.212 −1.704

−0.860 −0.662

0.445 0.343

0.879 0.677

1.748 1.347

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0.212 −0.276

−0.140 0.182

−0.445 0.577

0.121 −0.157

0.252 −0.327

⎞
⎟⎟⎟⎟⎠

. (11.88)

If we neglect the second contribution corresponding to the small singular value s2 we

have an approximation of the data matrix by a rank − 1 matrix. The column vectors

of the data matrix, denoted as x and y, are approximated by

4uiv
T
i is the outer or matrix product of two vectors.
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-2 -1 0 1 2

x

-2

-1

0

1

2

y

Fig. 11.2 (Linear approximation by singular value decomposition) The data set (11.81) is shown as

circles. The linear approximation which is obtained by retaining only the dominant singular value

is shown by the squares and the full line. It minimizes the mean square distance to the data points.

Stars and the dashed line show the approximation by linear regression, which minimizes the mean

square distance in vertical direction

x = s1v11u1 y = s1v21u1 (11.89)

which describes a proportionality between x and y (Fig. 11.2).

11.2.4 Linear Least Square Fit with Singular Value

Decomposition

The singular value decomposition can be used for linear regression [131]. Consider

a set of data, which have to be fitted to a linear function

y = c0 + c1x1 · · · + cnxn (11.90)

with the residual

ri = c0 + c1xi,1 · · · + cnxi,n − yi. (11.91)

Let us subtract the averages

ri − r = c1(xi,1 − x1) · · · + cn(xi,n − xn) − (yi − y) (11.92)

which we write in matrix notation as
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⎛
⎜⎝

r1 − r
...

rm − r

⎞
⎟⎠ =

⎛
⎜⎝

x1,1 − x1 . . . x1,n − xn

...

xm,1 − x1 . . . xm,n − xn

⎞
⎟⎠

⎛
⎜⎝

c1

...

cn

⎞
⎟⎠ −

⎛
⎜⎝

y1 − y
...

ym − y

⎞
⎟⎠ (11.93)

or shorter

r = Xc − y. (11.94)

Now let us insert the full decomposition of X

r = UΣV T c − y. (11.95)

Since U is orthogonal

U T r = ΣV T c − U T y = Σa − b (11.96)

where we introduce the abbreviations

a = V T c b = U T y. (11.97)

The sum of squared residuals has the form

|r|2 = |U T r|2 =
∣∣∣∣
(

Sr 0

0 0

) (
ar

an−r

)
−

(
br

bn−r

)∣∣∣∣
2

= |Srar − br |2 + b2
n−r ≤ |Srar − br |2. (11.98)

Hence an−r is arbitrary and one minimum of SD is given by

ar = S−1
r br an−r = 0 (11.99)

which can be written more compactly as

a = Σ+b (11.100)

with the Moore-Penrose pseudoinverse [132] of Σ

Σ+ =

⎛
⎜⎜⎜⎝

s−1
1

. . .

s−1
r

0

⎞
⎟⎟⎟⎠ . (11.101)
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Finally we have

c = V Σ+U T y = X+y (11.102)

where

X+ = V Σ+U T (11.103)

is the Moore-Penrose pseudoinverse of X.

Example

The following data matrix has rank 2

X =

⎛
⎜⎜⎜⎜⎝

−3 −4 −5

−2 −3 −4

0 0 0

2 3 4

3 4 5

⎞
⎟⎟⎟⎟⎠

y =

⎛
⎜⎜⎜⎜⎝

1.0

1.1

0

−1.0

−1.1

⎞
⎟⎟⎟⎟⎠

. (11.104)

A solution to the linear fit problem is given by

c = X+y =

⎛
⎝

−0.917 1.167 0 −1.167 0.917

−0.167 0.167 0 −0.167 0.167

0.583 −0.833 0 0.833 −0.583

⎞
⎠

⎛
⎜⎜⎜⎜⎝

1.0

1.1

0

−1.0

−1.1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎝

0.525

0.000

−0.525

⎞
⎠ .

(11.105)

The fit function is

y = 0.525(x1 − x3) (11.106)

and the residuals are

Xc − y =

⎛
⎜⎜⎜⎜⎝

0.05

−0.05

0

−0.05

0.05

⎞
⎟⎟⎟⎟⎠

. (11.107)
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11.2.5 Singular and Underdetermined Linear Systems

of Equations

SVD is also very useful to solve linear systems with a singular or almost singular

matrix. Consider a system

⎛
⎜⎝

a11 . . . a1n

...
. . .

...

am1 . . . amn

⎞
⎟⎠

⎛
⎜⎝

x1

...

xn

⎞
⎟⎠ =

⎛
⎜⎝

b1

...

bm

⎞
⎟⎠ (11.108)

with n > m, i.e. more unknowns than equations. SVD transforms this system into

⎛
⎜⎝

u11 . . . u1m

...
. . .

...

um1 . . . umm

⎞
⎟⎠

⎛
⎜⎝

s1 0 . . . 0

. . .
...

sm 0 . . . 0

⎞
⎟⎠

⎛
⎜⎝

v11 . . . vn1

...
. . .

...

v1n . . . vnn

⎞
⎟⎠

⎛
⎜⎝

x1

...

xn

⎞
⎟⎠ =

⎛
⎜⎝

b1

...

bm

⎞
⎟⎠ .

(11.109)

Substituting

⎛
⎜⎝

y1

...

yn

⎞
⎟⎠ =

⎛
⎜⎝

v11 . . . vn1

...
. . .

...

v1n . . . vnn

⎞
⎟⎠

⎛
⎜⎝

x1

...

xn

⎞
⎟⎠ and

⎛
⎜⎝

c1

...

cm

⎞
⎟⎠ =

⎛
⎜⎝

u11 . . . u1m

...
. . .

...

um1 . . . umm

⎞
⎟⎠

−1 ⎛
⎜⎝

b1

...

bm

⎞
⎟⎠

(11.110)

it remains to solve

⎛
⎜⎝

s1 0 . . . 0

. . .
...

sm 0 . . . 0

⎞
⎟⎠

⎛
⎜⎝

y1

...

yn

⎞
⎟⎠ =

⎛
⎜⎝

c1

...

cm

⎞
⎟⎠ . (11.111)

For y1 . . . ym the solution is

yi = s−1
i ci i = 1, . . . m (11.112)

whereas ym+1 . . . yn are arbitrary and parametrize the solution manifold. Back

substitution gives

x = xp + z (11.113)
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with the particular solution

xp =

⎛
⎜⎝

v11 . . . v1m

...
. . .

...

vn1 . . . vnm

⎞
⎟⎠

⎛
⎜⎝

s−1
1

. . .

s−1
m

⎞
⎟⎠

⎛
⎜⎝

u11 . . . u1m

...
. . .

...

um1 . . . umm

⎞
⎟⎠

−1 ⎛
⎜⎝

b1

...

bm

⎞
⎟⎠ (11.114)

and

z =

⎛
⎜⎝

v1,m+1 . . . v1n

...
. . .

...

vn,m+11 . . . vnn

⎞
⎟⎠

⎛
⎜⎝

ym+1

...

yn

⎞
⎟⎠ (11.115)

which is in the nullspace of A

Az = UΣV T V

⎛
⎜⎜⎜⎝

0

ym+1

...

yn

⎞
⎟⎟⎟⎠ = U

(
S 0

)

⎛
⎜⎜⎜⎝

0

ym+1

...

yn

⎞
⎟⎟⎟⎠ = 0. (11.116)

If m − r singular values are zero (or if the smallest singular values are set to zero)

(11.111) becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 0 . . . 0

. . .
...

sr 0 . . . 0

0 . . . 0 0 . . . 0
...

...
...

0 . . . 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

y1

...

yn

⎞
⎟⎠ =

⎛
⎜⎝

c1

...

cm

⎞
⎟⎠ (11.117)

which gives on the one hand

yi = s−1
i ci i = 1 . . . r (11.118)

yi = arbitrary i = r + 1 . . . m (11.119)

but also requires

ci = 0 i = r + 1 . . . m. (11.120)

If this condition is not fulfilled, the equations are contradictory and no solution exists

(e.g. if two rows of A are the same but the corresponding elements of b are different).
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Problems

Problem 11.1 Least Square Fit

At temperatures far below Debye and Fermi temperatures the specific heat of a metal

contains contributions from electrons and lattice vibrations and can be described by

C(T) = aT + bT 3. (11.121)

The computer experiment generates data

Tj = T0 + j∆t (11.122)

Cj = (a0Tj + b0T 3
j )(1 + εj) (11.123)

with relative error

εj = ε ξj. (11.124)

Random numbers ξj are taken from a Gaussian normal distribution function

(Sect. 9.2.6).

The fit parameters a, b are determined from minimization of the sum of squares

S =
1

n

n∑

j=1

(Cj − aTi − bT 3
i )2. (11.125)

Compare the “true values” a0, b0 with the fitted values a, b.

http://dx.doi.org/10.1007/978-3-319-61088-7_9


Chapter 12

Discretization of Differential Equations

Many processes in science and technology can be described by differential equations

involving the rate of changes in time or space of a continuous variable, the unknown

function. While the simplest differential equations can be solved exactly, a numer-

ical treatment is necessary in most cases and the equations have to be discretized

to turn them into a finite system of equations which can be solved by computers

[133–135]. In this chapter we discuss different methods to discretize differential

equations. The simplest approach is the method of finite differences, which replaces

the differential quotients by difference quotients (Chap. 3). It is often used for the

discretization of time. Finite difference methods for the space variables work best

on a regular grid. Finite volume methods are very popular in computational fluid

dynamics. They take averages over small control volumes and can be easily used

with irregular grids. Finite differences and finite volumes belong to the general class

of finite element methods which are prominent in the engineering sciences and use

an expansion in piecewise polynomials with small support. Spectral methods, on the

other hand, expand the solution as a linear combination of global basis functions

like polynomials or trigonometric functions. A general concept for the discretization

of differential equations is the method of weighted residuals which minimizes the

weighted residual of a numerical solution. Most popular is Galerkin’s method which

uses the expansion functions also as weight functions. Simpler are the point colloca-

tion and subdomain collocation methods which fulfill the differential equation only

at certain points or averaged over certain control volumes. More demanding is the

least-squares method which has become popular in computational fluid dynamics

and computational electrodynamics. The least-square integral provides a measure

for the quality of the solution which can be used for adaptive grid size control.

If the Green’s function is available for a problem, the method of boundary elements

is an interesting alternative. It reduces the dimensionality and is, for instance, very

popular in chemical physics to solve the Poisson–Boltzmann equation.

© Springer International Publishing AG 2017
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12.1 Classification of Differential Equations

An ordinary differential equation (ODE) is a differential equation for a function of

one single variable, like Newton’s law for the motion of a body under the influence

of a force field

m
d2

dt2
x(t) = F(x, t), (12.1)

a typical initial value problem where the solution in the domain t0 ≤ t ≤ T is

determined by position and velocity at the initial time

x(t = t0) = x0

d

dt
x(t = t0) = v0. (12.2)

Such equations of motion are discussed in Chap. 13. They also appear if the spatial

derivatives of a partial differential equation have been discretized. Usually this kind

of equation is solved by numerical integration over finite time steps ∆t = tn+1 − tn .

Boundary value problems, on the other hand, require certain boundary conditions1 to

be fulfilled, for instance the linearized Poisson–Boltzmann equation in one dimension

(Chap. 18).

d2

dx2
Φ − κ2Φ = −

1

ε
ρ(x) (12.3)

where the value of the potential is prescribed on the boundary of the domain x0 ≤
x ≤ x1

Φ(x0) = Φ0 Φ(x1) = Φ1. (12.4)

Partial differential equations (PDE) finally involve partial derivatives with respect

to at least two different variables, in many cases time and spatial coordinates.

Linear Second Order PDE

A very important class are second order linear partial differential equations of the

general form

⎡

⎣

N
∑

i=1

N
∑

j=1

ai j

∂2

∂xi∂x j

+
N
∑

i=1

bi

∂

∂xi

+ c

⎤

⎦ f (x1 . . . xN ) + d = 0 (12.5)

1Dirichlet b.c concern the function values, Neumann b.c. the derivative, Robin b.c. a linear combi-
nation of both, Cauchy b.c the function value and the normal derivative and mixed b.c. have different
character on different parts of the boundary.

http://dx.doi.org/10.1007/978-3-319-61088-7_13
http://dx.doi.org/10.1007/978-3-319-61088-7_18
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where the coefficients ai j , bi , c, d are functions of the variables x1 . . . xN but do not

depend on the function f itself. The equation is classified according to the eigenvalues

of the coefficient matrix ai j as [136]

Elliptical

If all eigenvalues are positive or all eigenvalues are negative, like for the Poisson

equation (Chap. 18)

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Φ(x, y, z) = −
1

ε
̺(x, y, z), (12.6)

Hyperbolic

If one eigenvalue is negative and all the other eigenvalues are positive or vice versa,

for example the wave equation in one spatial dimension (Chap. 20).

∂2

∂t2
f − c2 ∂2

∂x2
f = 0, (12.7)

Parabolic

If at least one eigenvalue is zero, like for the diffusion equation (Chap. 21)

∂

∂t
f (x, y, z, t) − D

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

f (x, y, z, t) = S(x, y, z, t), (12.8)

Ultra-Hyperbolic

If there is no zero eigenvalue and more than one positive as well as more than one

negative eigenvalue. Obviously the dimension then must be 4 at least.

Conservation Laws

One of the simplest first order partial differential equations is the 1D advection

equation

∂

∂t
f (x, t) + u

∂

∂x
f (x, t) = 0 (12.9)

which describes transport of a conserved quantity with density f (for instance mass,

number of particles, charge etc.) in a medium streaming with velocity u. This is a

special case of the class of conservation laws (also called continuity equations)

∂

∂t
f (x, t) + divJ(x, t) = g(x, t) (12.10)

which are very common in physics. Here J describes the corresponding flux and g

is an additional source (or sink) term. For instance the advection-diffusion equation

http://dx.doi.org/10.1007/978-3-319-61088-7_18
http://dx.doi.org/10.1007/978-3-319-61088-7_20
http://dx.doi.org/10.1007/978-3-319-61088-7_21
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(also known as convection equation) has this form which describes quite general

transport processes:

∂

∂t
C = div (D grad C − uC) + S(x, t) = − div J + S(x, t) (12.11)

where one contribution to the flux

J = −D grad C + uC (12.12)

is proportional to the gradient of the concentration C (Fick’s first law) and the second

part depends on the velocity field u of a streaming medium. The source term S

represents the effect of chemical reactions. Equation (12.11) is also similar to the

drift-diffusion equation in semiconductor physics and closely related to the Navier

Stokes equations which are based on the Cauchy momentum equation [137]

̺
du

dt
= ̺

(

∂u

∂t
+ u grad u

)

= divσ + f (12.13)

where σ denotes the stress tensor. Equation (12.10) is the strong or differential form of

the conservation law. The requirements on the smoothness of the solution are reduced

by using the integral form which is obtained with the help of Gauss’ theorem

∫

V

(

∂

∂t
f (x, t) − g(x, t)

)

dV +
∮

∂V

J(x, t)dA = 0. (12.14)

An alternative integral form results from Galerkin’s [138] method of weighted

residuals which introduces a weight function w(x) and considers the equation

∫

V

(

∂

∂t
f (x, t) + divJ(x, t) − g(x, t)

)

w(x) dV = 0 (12.15)

or after applying Gauss’ theorem

∫

V

{(

∂

∂t
f (x, t) − g(x, t)

)

w(x) − J(x, t) gradw(x)

}

dV

+
∮

∂V

w(x)J(x, t)dA = 0. (12.16)

The so called weak form of the conservation law states that this equation holds for

arbitrary weight functions w.
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12.2 Finite Differences

The simplest method to discretize a differential equation is to introduce a grid of

equidistant points and to discretize the differential operators by finite differences

(FDM) as described in Chap. 3. For instance, in one dimension the first and second

derivatives can be discretized by

x → xm = m∆x m = 1 . . . M (12.17)

f (x) → fm = f (xm) m = 1 . . . M (12.18)

∂ f

∂x
→

(

∂

∂x
f

)

m

=
fm+1 − fm

∆x
or

(

∂

∂x
f

)

m

=
fm+1 − fm−1

2∆x
(12.19)

∂2 f

∂x2
→

(

∂2

∂x2
f

)

m

=
fm+1 + fm−1 − 2 fm

∆x2
. (12.20)

These expressions are not well defined at the boundaries of the grid m = 1, M unless

the boundary conditions are taken into account. For instance, in case of a Dirichlet

problem f0 and fM+1 are given boundary values and

(

∂

∂x
f

)

1

=
f2 − f0

2∆x

(

∂2

∂x2
f

)

1

=
f2 − 2 f1 + f0

∆x2
(12.21)

(

∂

∂x
f

)

M

=
fM+1 − fM

∆x
or

fM+1 − fM−1

2∆x

(

∂2

∂x2
f

)

M

=
fM−1 − 2 fM + fM+1

∆x2
.

(12.22)

Other kinds of boundary conditions can be treated in a similar way.

12.2.1 Finite Differences in Time

Time derivatives can be treated similarly using an independent time grid

t → tn = n∆t n = 1 . . . N (12.23)

f (t, x) → f n
m = f (tn, xm) (12.24)

and finite differences like the first order forward difference quotient

∂ f

∂t
→

f n+1
m − f n

m

∆t
(12.25)

http://dx.doi.org/10.1007/978-3-319-61088-7_3
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or the symmetric difference quotient

∂ f

∂t
→

f n+1
m − f n−1

m

2∆t
(12.26)

to obtain a system of equations for the function values at the grid-points f n
m . For

instance for the diffusion equation in one spatial dimension

∂ f (x, t)

∂t
= D

∂2

∂x2
f (x, t) + S(x, t) (12.27)

the simplest discretization is the FTCS (forward in time, centered in space) scheme

( f n+1
m − f n

m) = D
∆t

∆x2
( f n

m+1 + f n
m−1 − 2 f n

m) + Sn
m∆t (12.28)

which can be written in matrix notation as

fn+1 − fn = D
∆t

∆x2
Mfn + Sn∆t (12.29)

with

fn =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f n
1

f n
2

f n
3
...

f n
M

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2 1

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (12.30)

12.2.2 Stability Analysis

Fully discretized linear differential equations provide an iterative algorithm of the

type2

fn+1 = Afn + Sn∆t (12.31)

which propagates numerical errors according to

fn+1 + ǫn+1 = A(fn + ǫn) + Sn∆t (12.32)

2Differential equations which are higher order in time can be always brought to first order by
introducing the time derivatives as additional variables.
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ǫ j+1 = Aǫ j . (12.33)

Errors are amplified exponentially if the absolute value of at least one eigenvalue of

A is larger than one. The algorithm is stable if all eigenvalues of A are smaller than

one in absolute value (1.4). If the eigenvalue problem is difficult to solve, the von

Neumann analysis is helpful which decomposes the errors into a Fourier series and

considers the Fourier components individually by setting

fn = gn(k)

⎛

⎜

⎝

eik

...

eik M

⎞

⎟

⎠
(12.34)

and calculating the amplification factor

∣

∣

∣

∣

f n+1
m

f n
m

∣

∣

∣

∣

= |g(k)| . (12.35)

The algorithm is stable if |g(k)| ≤ 1 for all k.

Example For the discretized diffusion equation (12.28) we find

gn+1(k) = gn(k) + 2D
∆t

∆x2
gn(k) (cos k − 1) (12.36)

g(k) = 1 + 2D
∆t

∆x2
(cos k − 1) = 1 − 4D

∆t

∆x2
sin2

(

k

2

)

(12.37)

1 − 4D
∆t

∆x2
≤ g(k) ≤ 1 (12.38)

hence stability requires

D
∆t

∆x2
≤

1

2
. (12.39)

12.2.3 Method of Lines

Alternatively time can be considered as a continuous variable. The discrete values

of the function then are functions of time (so called lines)

fm(t) (12.40)

and a set of ordinary differential equations has to be solved. For instance for diffusion

in one dimension (12.27) the equations

http://dx.doi.org/10.1007/978-3-319-61088-7_1
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d fm

dt
=

D

h2
( fm+1 + fm−1 − 2 fm) + Sm(t) (12.41)

which can be written in matrix notation as

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1

f1

f2

...

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
D

∆x2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2 1

1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1

f2

f3

...

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S1 + D
h2 f0

S2

S3

...

SM + D
h2 fM+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(12.42)

or briefly

d

dt
f(t) = Af(t) + S(t). (12.43)

Several methods to integrate such a semi-discretized equation will be discussed in

Chap. 13. If eigenvectors and eigenvalues of A are easy available, an eigenvector

expansion can be used.

12.2.4 Eigenvector Expansion

A homogeneous system

d

dt
f(t) = Af(t) (12.44)

where the matrix A is obtained from discretizing the spatial derivatives, can be solved

by an eigenvector expansion. From the eigenvalue problem

Af = λf (12.45)

we obtain the eigenvalues λ and eigenvectors fλ which provide the particular solu-

tions:

f(t) = eλt fλ (12.46)

d

dt
(eλt fλ) = λ(eλt fλ) = A(eλt fλ). (12.47)

http://dx.doi.org/10.1007/978-3-319-61088-7_13
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These can be used to expand the general solution

f(t) =
∑

λ

Cλeλt fλ. (12.48)

The coefficients Cλ follow from the initial values by solving the linear equations

f(t = 0) =
∑

λ

Cλfλ. (12.49)

If the differential equation is second order in time

d2

dt2
f(t) = Af(t) (12.50)

the particular solutions are

f(t) = e±t
√

λ fλ (12.51)

d2

dt2
(e±t

√
λ fλ) = λ(e±t

√
λ fλ) = A(e±t

√
λ fλ) (12.52)

and the eigenvector expansion is

f(t) =
∑

λ

(

Cλ+et
√

λ + Cλ−e−t
√

λ
)

fλ. (12.53)

The coefficients Cλ± follow from the initial amplitudes and velocities

f(t = 0) =
∑

λ

(Cλ+ + Cλ−)fλ

d

dt
f(t = 0) =

∑

λ

√
λ(Cλ+ − Cλ−)fλ. (12.54)

For a first order inhomogeneous system

d

dt
f(t) = Af(t) + S(t) (12.55)

the expansion coefficients have to be time dependent

f(t) =
∑

λ

Cλ(t)e
λt fλ (12.56)
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and satisfy

d

dt
f(t) − Af(t) =

∑

λ

dCλ

dt
eλt fλ = S(t). (12.57)

After taking the scalar product with fμ
3

dCμ

dt
= e−μt

(

fμS(t)
)

(12.58)

can be solved by a simple time integration. For a second order system

d2

dt2
f(t) = Af(t) + S(t) (12.59)

we introduce the first time derivative as a new variable

g =
d

dt
f (12.60)

to obtain a first order system of double dimension

d

dt

(

f

g

)

=
(

0 1

A 0

)(

f

g

)

+
(

S

0

)

(12.61)

where eigenvectors and eigenvalues can be found from those of A (12.45)

(

0 1

A 0

)(

fλ

±
√

λfλ

)

=
(

±
√

λfλ

λfλ

)

= ±
√

λ

(

fλ

±
√

λfλ

)

(12.62)

(

±
√

λ fT
λ fT

λ

)

(

0 1

A 0

)

=
(

λ fT
λ ±

√
λfT

λ

)

= ±
√

λ
(

±
√

λ fT
λ fT

λ

)

. (12.63)

Insertion of

∑

λ

Cλ+e
√

λt

(

fλ√
λfλ

)

+ Cλ−e−
√

λt

(

fλ

−
√

λfλ

)

gives

∑

λ

dCλ+

dt
e
√

λt

(

fλ√
λfλ

)

+
dCλ−

dt
e
√

λt

(

fλ

−
√

λfλ

)

=
(

S(t)

0

)

(12.64)

3If A is not Hermitian we have to distinguish left- and right-eigenvectors.
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and taking the scalar product with one of the left-eigenvectors we end up with

dCλ+

dt
=

1

2
(fλS(t)) e−

√
λt (12.65)

dCλ−

dt
= −

1

2
(fλS(t)) e

√
λt . (12.66)

12.3 Finite Volumes

Whereas the finite differences method uses function values

fi, j,k = f (xi , y j , zk) (12.67)

at the grid points

ri jk = (xi , y j , zk), (12.68)

the finite volume method (FVM) [139] averages function values and derivatives over

small control volumes Vr which are disjoint and span the domain V (Fig. 12.1)

V =
⋃

r

Vr Vr

⋂

Vr ′ = Ø∀r �= r ′. (12.69)

x

y

x

y

Fig. 12.1 (Finite volume method) The domain V is divided into small control volumes Vr , in the
simplest case cubes around the grid points ri jk
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The averages are

fr =
1

Vr

∫

Vr

dV f (r) (12.70)

or in the simple case of cubic control volumes of equal size h3

f i jk =
1

h3

∫ xi +h/2

xi −h/2

dx

∫ y j +h/2

y j −h/2

dy

∫ zk+h/2

zk−h/2

dz f (x, y, z). (12.71)

Such average values have to be related to discrete function values by numerical

integration (Chap. 4). The midpoint rule (4.17), for instance replaces the average by

the central value

f i jk = f (xi , y j , zk) + O(h2) (12.72)

whereas the trapezoidal rule (4.13) implies the average over the eight corners of the

cube

f i jk =
1

8

∑

m,n,p=±1

f (xi+m/2, y j+n/2, zk+p/2) + O(h2). (12.73)

In (12.73) the function values refer to a dual grid (Fig. 12.2) [139] centered around

the vertices of the original grid (12.68).

ri+1/2, j+1/2,k+1/2 =
(

xi +
h

2
, y j +

h

2
, zk +

h

2

)

. (12.74)

Fig. 12.2 (Dual grid) The
dual grid (black) is centered
around the vertices of the
original grid (red)

xi−1/2 xi+1/2

xi+1xi

xi  y j+1

 j+1/2  y  y j+1/2

xi−1/2 y j−1/2 xi+1/2 y j−1/2 

   y
i+1 x

   y

  j+1  

 y j    j

http://dx.doi.org/10.1007/978-3-319-61088-7_4
http://dx.doi.org/10.1007/978-3-319-61088-7_4
http://dx.doi.org/10.1007/978-3-319-61088-7_4
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The average gradient can be rewritten using the generalized Stokes’ theorem as

grad fi jk =
1

V

∫

Vi jk

dV grad f (r) =
∮

∂Vi jk

f (r) dA. (12.75)

For a cubic grid we have to integrate over the six faces of the control volume

grad fi jk =
1

h3

⎛

⎜

⎜

⎝

∫ zk+h/2

zk−h/2
dz
∫ y j +h/2

y j −h/2
dy

(

f (xi + h
2
, y, z) − f (xi − h

2
, y, z)

)

∫ zk+h/2

zk−h/2
dz
∫ xi +h/2

xi −h/2
dx

(

f (xi , y + h
2
, z) − f (xi , y − h

2
, z)

)

∫ xi +h/2

xi −h/2
dx

∫ y j +h/2

y j −h/2
dy

(

f (xi , y, z + h
2
) − f (xi , y, z − h

2
)
)

⎞

⎟

⎟

⎠

.

(12.76)

The integrals have to be evaluated numerically. Applying as the simplest approxi-

mation the midpoint rule (4.17)

∫ xi +h/2

xi −h/2

dx

∫ y j +h/2

y j −h/2

dy f (x, y) = h2
(

f (xi , y j ) + O(h2)
)

(12.77)

this becomes

grad fi jk =
1

h

⎛

⎜

⎝

f (xi + h
2
, y j , zk) − f (xi − h

2
, y j , zk)

f (xi , y j + h
2
, zk) − f (xi , y j − h

2
, zk)

f (xi , y j , zk + h
2
) − f (xi , y j , zk − h

2
)

⎞

⎟

⎠
(12.78)

which involves symmetric difference quotients. However, the function values in

(12.78) refer neither to the original nor to the dual grid. Therefore we interpolate

(Fig. 12.3).

f (xi ±
h

2
, y j , zk) ≈

1

2

(

f (xi+1, y j , zi ) + f (xi−1, y j , zi )
)

(12.79)

1

2

(

f (xi +
h

2
, y j , zk) − f (xi −

h

2
, y j , zk

)

≈
1

2h

(

f (xi+1, y j , zk) − f (xi−1, y j , zk

)

(12.80)

or

f

(

xi ±
h

2
, y j , zk

)

≈
1

4

∑

m,n=±1

f

(

xi ±
h

2
, y j + m

h

2
, zk + n

h

2

)

. (12.81)

The finite volume method is capable of treating discontinuities and is very flexible

concerning the size and shape of the control volumes.

http://dx.doi.org/10.1007/978-3-319-61088-7_4
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Fig. 12.3 (Interpolation
between grid points)
Interpolation is necessary to
relate the averaged gradient
(12.78) to the original or
dual grid

xi−1/2

xi−1/2

xi+1/2

xi+1/2 y j+1/2  y j+1/2

 y j−1/2  y j−1/2

x i
   y

  j

12.3.1 Discretization of fluxes

Integration of (12.10) over a control volume and application of Gauss’ theorem gives

the integral form of the conservation law

1

V

∮

JdA +
∂

∂t

1

V

∫

f dV =
1

V

∫

g dV (12.82)

which involves the flux J of some property like particle concentration, mass, energy

or momentum density or the flux of an electromagnetic field. The total flux through

a control volume is given by the surface integral

Φ =
∮

∂V

JdA (12.83)

which in the special case of a cubic volume element of size h3 becomes the sum over

the six faces of the cube (Fig. 12.4).

Φ =
6
∑

r=1

∫

Ar

JdA

=
∫ xi +h/2

xi −h/2

dx

∫ y j +h/2

y j −h/2

dy

(

Jz

(

x, y, zk +
h

2

)

− Jz

(

x, y, zk −
h

2

)

+
∫ xi +h/2

xi −h/2

dx

∫ zk+h/2

zk−h/2

dz

(

Jy

(

x, y j +
h

2
, z

)

− Jz

(

x, y j −
h

2
, z

)

+
∫ zk+h/2

zk−h/2

dz

∫ y j +h/2

y j −h/2

dy

(

Jx

(

xi +
h

2
, y, z

)

− Jz

(

xi −
h

2
, y, z

)

.

(12.84)
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Fig. 12.4 Flux through a
control volume

J (x−h/2)x J (x+h/2)
x

y y( )2/h−J

y y( )2/h+J

z z( )2/h+J

z z( )2/h−J

The surface integral can be evaluated numerically (Chap. 4). Using the midpoint

approximation (12.77) we obtain

1

V
Φ(xi , yi , zi ) =

1

h

(

Jz(xi , y j , zk+1/2 − Jz(xi , y j , zk−1/2)

+Jy(xi y j+1/2, zk) − Jy(xi , y j−1/2, zk) + Jx (xi+1/2, y j , zk) − Jx (xi−1/2, y j , zk)
)

.

(12.85)

The trapezoidal rule (4.13) introduces an average over the four corners (Fig. 12.3)

∫ xi +h/2

xi −h/2

dx

∫ y j +h/2

y j −h/2

dy f (x, y)

= h2

(

1

4

∑

m,n=±1

f (xi+m/2, y j+n/2) + O(h2)

)

(12.86)

which replaces the flux values in (12.85) by the averages

Jx (xi±1/2, y j , zk) =
1

4

∑

m,n=±1

Jz(xi±1/2, y j+m/2, zk+n/2) (12.87)

Jy(xi , y j±1/2, zk) =
1

4

∑

m,n=±1

Jz(xi+m/2, y j±1/2, zk+n/2) (12.88)

Jz(xi , y j , zk±1/2) =
1

4

∑

m,n=±1

Jz(xi+m/2, y j+n/2, zk±1/2). (12.89)

One advantage of the finite volume method is that the flux is strictly conserved.

http://dx.doi.org/10.1007/978-3-319-61088-7_4
http://dx.doi.org/10.1007/978-3-319-61088-7_4
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12.4 Weighted Residual Based Methods

A general method to discretize partial differential equations is to approximate the

solution within a finite dimensional space of trial functions.4 The partial differential

equation is turned into a finite system of equations or a finite system of ordinary

differential equations if time is treated as a continuous variable. This is the basis of

spectral methods which make use of polynomials or Fourier series but also of the

very successful finite element methods. Even finite difference methods and finite

volume methods can be formulated as weighted residual based methods.

Consider a differential equation5 on the domain V which is written symbolically

with the differential operator T

T [u(r)] = f (r) r ∈ V (12.90)

and corresponding boundary conditions which are expressed with a boundary oper-

ator B6

B[u(r)] = g(r) r ∈ ∂V . (12.91)

The basic principle to obtain an approximate solution ũ(r) is to choose a linear

combination of expansion functions Ni (r) i = 1 . . . r as a trial function which

fulfills the boundary conditions7

ũ =
r
∑

i=1

ui Ni (r) (12.92)

B[ũ(r)] = g(r). (12.93)

In general (12.92) is not an exact solution and the residual

R(r) = T
[

ũ
]

(r) − f (r) (12.94)

will not be zero throughout the whole domain V . The function ũ has to be deter-

mined such that the residual becomes “small” in a certain sense. To that end weight

functions8 w j j = 1 . . . r are chosen to define the weighted residuals

4Also called expansion functions.
5Generalization to systems of equations is straightforward.
6One or more linear differential operators, usually a combination of the function and its first deriv-
atives.
7This requirement can be replaced by additional equations for the ui , for instance with the tau
method [140].
8Also called test functions.
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R j (u1 . . . ur ) =
∫

dV w j (r)
(

T
[

ũ
]

(r) − f (r)
)

. (12.95)

The optimal parameters ui are then obtained from the solution of the equations

R j (u1 . . . ur ) = 0 j = 1 . . . r. (12.96)

In the special case of a linear differential operator these equations are linear

r
∑

i=1

ui

∫

dV w j (r)T [Ni (r)] −
∫

dV w j (r) f (r) = 0. (12.97)

Several strategies are available to choose suitable weight functions.

12.4.1 Point Collocation Method

The collocation method uses the weight functions w j (r) = δ(r − r j ), with certain

collocation points r j ∈ V . The approximation ũ obeys the differential equation at

the collocation points

0 = R j = T [ũ](r j ) − f (r j ) (12.98)

and for a linear differential operator

0 =
r
∑

i=1

ui T [Ni ](r j ) − f (r j ). (12.99)

The point collocation method is simple to use, especially for nonlinear problems.

Instead of using trial functions satisfying the boundary conditions, extra collocation

points on the boundary can be added (mixed collocation method).

12.4.2 Sub-domain Method

This approach uses weight functions which are the characteristic functions of a set

of control volumes Vi which are disjoint and span the whole domain similar as for

the finite volume method

V =
⋃

j

V j V j

⋂

V j ′ = Ø∀ j �= j ′ (12.100)
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w j (r) =
{

1 r ∈ V j

0 else.
(12.101)

The residuals then are integrals over the control volumes and

0 = R j =
∫

V j

dV
(

T
[

ũ
]

(r) − f (r)
)

(12.102)

respectively

0 =
∑

i

ui

∫

V j

dV T [Ni ] (r) −
∫

V j

dV f (r). (12.103)

12.4.3 Least Squares Method

Least squares methods have become popular for first order systems of differential

equations in computational fluid dynamics and computational electrodynamics [141,

142].

The L2-norm of the residual (12.94) is given by the integral

S =
∫

V

dV R(r)2. (12.104)

It is minimized by solving the equations

0 =
∂S

∂u j

= 2

∫

V

dV
∂R

∂u j

R(r) (12.105)

which is equivalent to choosing the weight functions

w j (r) =
∂R

∂u j

R(r) =
∂

∂u j

T

[

∑

i

ui Ni (r)

]

(12.106)

or for a linear differential operator simply

w j (r) = T
[

N j (r)
]

. (12.107)

Advantages of the least squares method are that boundary conditions can be

incorporated into the residual and that S provides a measure for the quality of the

solution which can be used for adaptive grid size control. On the other hand S involves

a differential operator of higher order and therefore much smoother trial functions

are necessary.
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12.4.4 Galerkin Method

Galerkin’s widely used method [138, 143] chooses the basis functions as weight

functions

w j (r) = N j (r) (12.108)

and solves the following system of equations

∫

dV N j (r)T

[

∑

i

ui Ni (r)

]

−
∫

dV N j (r) f (r) = 0 (12.109)

or in the simpler linear case

∑

ui

∫

V

dV N j (r)T [Ni (r)] =
∫

V

dV N j (r) f (r). (12.110)

12.5 Spectral and Pseudo-Spectral Methods

Spectral methods use basis functions which are nonzero over the whole domain, the

trial functions being mostly polynomials or Fourier sums [144]. They can be used to

solve ordinary as well as partial differential equations. The combination of a spectral

method with the point collocation method is also known as pseudo-spectral method.

12.5.1 Fourier Pseudo-Spectral Methods

Linear differential operators become diagonal in Fourier space. Combination of

Fourier series expansion and point collocation leads to equations involving a dis-

crete Fourier transformation, which can be performed very efficiently with the Fast

Fourier Transform methods.

For simplicity we consider only the one-dimensional case. We choose equidistant

collocation points

xm = m∆x m = 0, 1 . . . M − 1 (12.111)

and expansion functions

N j (x) = eik j x k j =
2π

M∆x
j j = 0, 1 . . . M − 1. (12.112)

For a linear differential operator
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L[eik j x ] = l(k j )e
ik j x (12.113)

and the condition on the residual becomes

0 = Rm =
M−1
∑

j=0

u j l(k j )e
ik j xm − f (xm) (12.114)

or

f (xm) =
M−1
∑

j=0

u j l(k j )e
i2πmj/M (12.115)

which is nothing but a discrete Fourier back transformation (Sect. 7.2, 7.19) which

can be inverted to give

u j l(k j ) =
1

N

M−1
∑

m=0

f (xm) e−i2πmj/M . (12.116)

Instead of exponential expansion functions, sine and cosine functions can be used

to satisfy certain boundary conditions, for instance to solve the Poisson equation

within a cube (Sect. 18.1.2).

12.5.2 Example: Polynomial Approximation

Let us consider the initial value problem (Fig. 12.5)

d

dx
u(x) − u(x) = 0 u(0) = 1 for 0 ≤ x ≤ 1 (12.117)

with the well known solution

u(x) = ex . (12.118)

We choose a polynomial trial function with the proper initial value

ũ(x) = 1 + u1x + u2x2. (12.119)

The residual is

R(x) = u1+2u2x−
(

1 + u1x + u2x2
)

= (u1−1)+(2u2−u1)x−u2x2. (12.120)

http://dx.doi.org/10.1007/978-3-319-61088-7_7
http://dx.doi.org/10.1007/978-3-319-61088-7_18
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Fig. 12.5 (Approximate
solution of a simple
differential equation) The
initial value problem
d

dx
u(x) − u(x) = 0

u(0) = 1 for 0 ≤ x ≤ 1 is
approximately solved with a
polynomial trial function
ũ(x) = 1 + u1x + u2x2. The
parameters u1,2 are
optimized with the method
of weighted residuals using
point collocation (full curve),
sub-domain collocation
(dotted curve), Galerkin’s
method (dashed curve) and
least squares (dash-dotted

curve). The absolute error
ũ(x) − ex (Top) and the
residual
R(x) = d

dx
ũ(x) − ũ(x) =

(u1−1)+(2u2 −u1)x −u2x2

both are smallest for the least
squares and sub-domain
collocation methods
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12.5.2.1 Point Collocation Method

For our example we need two collocation points to obtain two equations for the two

unknowns u1,2. We choose x1 = 0, x2 = 1
2
. Then we have to solve the equations

R(x1) = u1 − 1 = 0 (12.121)

R(x2) =
1

2
u1 +

3

4
u2 − 1 = 0 (12.122)

which gives

u1 = 1 u2 =
2

3
(12.123)

uc = 1 + x +
2

3
x2. (12.124)
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12.5.2.2 Sub-domain Method

We need two sub-domains to obtain two equations for the two unknowns u1,2. We

choose V1 = {x, 0 < x < 1
2
}, V2 = {x, 1

2
< x < 1}. Integration gives

R1 =
3

8
u1 +

5

24
u2 −

1

2
= 0 (12.125)

R2 =
1

8
u1 +

11

24
u2 −

1

2
= 0 (12.126)

u1 = u2 =
6

7
(12.127)

usdc = 1 +
6

7
x +

6

7
x2. (12.128)

12.5.2.3 Galerkin Method

Galerkin’s method uses the weight functions w1(x) = x, w2(x) = x2. The equations

∫ 1

0

dx w1(x)R(x) =
1

6
u1 +

5

12
u2 −

1

2
= 0 (12.129)

∫ 1

0

dx w2(x)R(x) =
1

12
u1 +

3

10
u2 −

1

3
= 0 (12.130)

have the solution

u1 =
8

11
u2 =

10

11
(12.131)

uG = 1 +
8

11
x +

10

11
x2. (12.132)

12.5.2.4 Least Squares Method

The integral of the squared residual

S =
∫ 1

0

dx R(x)2 = 1 − u1 −
4

3
u2 +

1

3
u2

1 +
1

2
u1u2 +

8

15
u2

2 (12.133)

is minimized by solving

∂S

∂u1

=
2

3
u1 +

1

2
u2 − 1 = 0 (12.134)
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∂S

∂u2

=
1

2
u1 +

16

15
u2 −

4

3
= 0 (12.135)

which gives

u1 =
72

83
u2 =

70

83
(12.136)

uL S = 1 +
72

83
x +

70

83
x2. (12.137)

12.6 Finite Elements

The method of finite elements (FEM) is a very flexible method to discretize partial

differential equations [145, 146]. It is rather dominant in a variety of engineering

sciences. Usually the expansion functions Ni are chosen to have compact support.

The integration volume is divided into disjoint sub-volumes

V =
r
⋃

i=1

Vi Vi

⋂

Vi ′ = Ø∀i �= i ′. (12.138)

The Ni (x) are piecewise continuous polynomials which are nonzero only inside Vi

and a few neighbor cells.

12.6.1 One-Dimensional Elements

In one dimension the domain is an interval V = {x; a ≤ x ≤ b} and the sub-volumes

are small sub-intervals Vi = {x; xi ≤ x ≤ xi+1}. The one-dimensional mesh is the

set of nodes {a = x0, x1 . . . xr = b}. Piecewise linear basis functions (Fig. 12.6) are

in the 1-dimensional case given by

Ni (x) =

⎧

⎪

⎨

⎪

⎩

xi+1−x

xi+1−xi
for xi < x < xi+1

x−xi−1

xi −xi−1
for xi−1 < x < xi

0 else

(12.139)

and the derivatives are (except at the nodes xi )

N ′
i (x) =

⎧

⎪

⎨

⎪

⎩

− 1
xi+1−xi

for xi < x < xi+1

1
xi −xi−1

for xi−1 < x < xi

0 else

. (12.140)
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xi xi+1

Ni−1 Ni

xi−2 xi−1

N0 NN−1

x

......

Fig. 12.6 (Finite elements in one dimension) The basis functions Ni are piecewise continuous
polynomials and have compact support. In the simplest case they are composed of two linear
functions over the sub-intervals xi−1 ≤ x ≤ xi and xi ≤ x ≤ xi+1

Fig. 12.7 (Triangulation of
a two dimensional domain)
A two-dimensional mesh is
defined by a set of node
points which can be regarded
to form the vertices of a
triangulation

x

y

12.6.2 Two-and Three-Dimensional Elements

In two dimensions the mesh is defined by a finite number of points (xi , yi ) ∈ V (the

nodes of the mesh). There is considerable freedom in the choice of these points and

they need not be equally spaced.

12.6.2.1 Triangulation

The nodes can be regarded as forming the vertices of a triangulation9 of the domain

V (Fig. 12.7).

The piecewise linear basis function in one dimension (12.139) can be generalized

to the two-dimensional case by constructing functions Ni (x, y) which are zero at all

nodes except (xi , yi )

Ni (x j , y j ) = δi, j . (12.141)

9The triangulation is not determined uniquely by the nodes.
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x

y

x

y

Fig. 12.8 (Finite elements in two dimensions) The simplest finite elements in two dimensions are
piecewise linear functions Ni (x, y) which are non-vanishing only at one node (xi , yi ) (Right side).
They can be constructed from small pyramids built upon one of the triangles that contains this node
(Left side)

These functions are linear over each triangle which contains the vertex i and can

be combined as the sum of small pyramids (Fig. 12.8). Let one of the triangles be

denoted by its three vertices as Ti jk .10 The corresponding linear function then is

ni jk(x, y) = α + βx (x − xi ) + βy(y − yi ) (12.142)

where the coefficients follow from the conditions

ni jk(xi , yi ) = 1 ni jk(x j , y j ) = ni jk(xk, yk) = 0 (12.143)

as

α = 1 βx =
y j − yk

2Ai jk

βy =
xk − x j

2Ai jk

(12.144)

with

Ai jk =
1

2
det

∣

∣

∣

∣

x j − xi xk − xi

y j − yi yk − yi

∣

∣

∣

∣

(12.145)

which, apart from sign, is the area of the triangle Ti jk . The basis function Ni now is

given by

Ni (x, y) =
{

ni jk(x, y) (x, y) ∈ Ti jk

0 else
.

In three dimensions we consider tetrahedrons (Fig. 12.9) instead of triangles. The

corresponding linear function of three arguments has the form

ni, j,k,l(x, y, z) = α + βx (x − xi ) + βy(y − yi ) + βz(z − zi ) (12.146)

10The order of the indices does matter.



280 12 Discretization of Differential Equations

Fig. 12.9 (Tetrahedron) The
tetrahedron is the
three-dimensional case of an
Euclidean simplex, i.e. the
simplest polytop

x

y

z

i

j

l

k

and from the conditions ni, j,k,l(xi , yi , zi ) = 1 and ni, j,k,l = 0 on all other nodes we

find (an algebra program is helpful at that point)

α = 1

βx =
1

6Vi jkl

det

∣

∣

∣

∣

yk − y j yl − y j

zk − z j zl − z j

∣

∣

∣

∣

βy =
1

6Vi jkl

det

∣

∣

∣

∣

zk − z j zl − z j

xk − x j xl − x j

∣

∣

∣

∣

βz =
1

6Vi jkl

det

∣

∣

∣

∣

xk − x j xl − x j

yk − y j yl − y j

∣

∣

∣

∣

(12.147)

where Vi jkl is, apart from sign, the volume of the tetrahedron

Vi jkl =
1

6
det

∣

∣

∣

∣

∣

∣

x j − xi xk − xi xl − xi

y j − yi yk − yi yl − yi

z j − zi zk − zi zl − zi

∣

∣

∣

∣

∣

∣

. (12.148)

12.6.2.2 Rectangular Elements

For a rectangular grid rectangular elements offer a practical alternative to triangles.

Since equations for four nodes have to be fulfilled, the basic element needs four

parameters, which is the case for a bilinear expression. Let us denote one of the

rectangles which contains the vertex i as Ri, j,k,l . The other three edges are

(x j , y j ) = (xi + bx , yi ) (xk, yk) = (xi , yi + by) (xl, yl) = (xi + bx , yi + by)

(12.149)

where bx = ±hx , by = ±h y corresponding to the four rectangles with the common

vertex i (Fig. 12.10).
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xj xj

xk yk

i
yx i

xl yl

Fig. 12.10 (Rectangular elements around one vertex) The basis function Ni is a bilinear function
on each of the four rectangles containing the vertex (xi , yi )

i−1x
ix i+1x

i−1y

i+1y

iy

i−1x
ix i+1x

i−1y

i+1y

iy

y

x x

Fig. 12.11 (Bilinear elements on a rectangular grid) The basis functions Ni (x, y) on a rectangular
grid (Right side) are piecewise bilinear functions (Left side), which vanish at all nodes except
(xi , yi )

The bilinear function (Fig. 12.11) corresponding to Ri jkl is

ni, j,k,l(x, y) = α + β(x − xi ) + γ(y − yi ) + η(x − xi )(y − yi ). (12.150)

It has to fulfill

ni, j,k,l(xi , yi ) = 1 ni, j,k,l(x j , y j ) = ni, j,k,l(xk, yk) = ni, j,k,l(xl , yl) = 0

(12.151)

from which we find

α = 1 β = −
1

bx

γ = −
1

by

η =
1

bx by

(12.152)

ni. j.k.l(x, y) = 1 −
x − xi

bx

−
y − yi

by

+
(x − xi )

bx

(y − yi )

by

. (12.153)
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Fig. 12.12 (Three-
dimensional rectangular
grid) The basis function Ni

is trilinear on each of the
eight cuboids containing the
vertex i . It vanishes on all
nodes except (xi , yi , zi )

The basis function centered at node i then is

Ni (x, y) =
{

ni, j,k,l(x, y) (x, y) ∈ Ri, j,k,l

0 else
. (12.154)

Generalization to a three dimensional grid is straightforward (Fig. 12.12). We

denote one of the eight cuboids containing the node (xi , yi , zi ) as Ci, j1... j7 with

(x j1 , y j1 , z j1) = (xi + bx , yi , zi ) . . . (x j7 , y j7 , z j7) = (xi + bx , yi + by, zi + bz).

The corresponding trilinear function is

ni, j1... j7 = 1 −
x − xi

bx

−
y − yi

by

−
z − zi

bz

+
(x − xi )

bx

(y − yi )

by

+
(x − xi )

bx

(z − zi )

bz

+
(z − zi )

bz

(y − yi )

by

−
(x − xi )

bx

(y − yi )

by

(z − zi )

bz

. (12.155)

12.6.3 One-Dimensional Galerkin FEM

As an example we consider the one dimensional linear differential equation (12.5)

(

a
∂2

∂x2
+ b

∂

∂x
+ c

)

u(x) = f (x) (12.156)

in the domain 0 ≤ x ≤ 1 with boundary conditions

u(0) = u(1) = 0. (12.157)
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We use the basis functions from (12.139) on a one-dimensional grid with

xi+1 − xi = hi (12.158)

and apply the Galerkin method [147]. The boundary conditions require

u0 = uN−1 = 0. (12.159)

The weighted residual is

0 = R j =
∑

i

ui

∫ 1

0

dx N j (x)

(

a
∂2

∂x2
+ b

∂

∂x
+ c

)

Ni (x)−
∫ 1

0

dx N j (x) f (x).

(12.160)

First we integrate

∫ 1

0

N j (x)Ni (x) dx =
∫ xi+1

xi−1

N j (x)Ni (x)dx =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

hi +hi−1

3
j = i

hi

6
j = i + 1

hi−1

6
j = i − 1

0 |i − j | > 1

. (12.161)

Integration of the first derivative gives

∫ 1

0

dx N j (x)N ′
i (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 j = i

1
2

j = i − 1

− 1
2

j = i+1

0 else

. (12.162)

For the second derivative partial integration gives

∫ 1

0

dx N j (x)
∂2

∂x2
Ni (x)

= N j (1)N ′
i (1 − ε) − N j (0)N ′

i (0 + ε) −
∫ 1

0

dx N ′
j (x)N ′

i (x) (12.163)

where the first two summands are zero due to the boundary conditions. Since

Ni and N ′
i are nonzero only for xi−1 < x < xi+1 we find

∫ 1

0

dx N j (x)
∂2

∂x2
Ni (x) = −

∫ xi+1

xi−1

dx N ′
j (x) N ′

i (x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
hi−1

j = i − 1

− 1
hi

− 1
hi−1

i = j

1
hi

j = i + 1

0 else

.

(12.164)
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Integration of the last term in (12.160) gives

∫ 1

0

dx N j (x) f (x) =
∫ xi+1

xi−1

dx N j (x) f (x)

=
∫ x j

x j−1

dx
x − x j−1

x j − x j−1

f (x) +
∫ x j+1

x j

dx
x j+1 − x

x j+1 − x j

f (x). (12.165)

Applying the trapezoidal rule11 for both integrals we find

∫ x j+1

x j−1

dx N j (x) f (x) ≈ f (x j )
h j + h j−1

2
. (12.166)

The discretized equation finally reads

a

{

1

h j−1

u j−1 −
(

1

h j

+
1

h j−1

)

u j +
1

h j

u j+1

}

+ b

{

−
1

2
u j−1 +

1

2
u j+1

}

+ c

{

h j−1

6
u j−1 +

h j + h j−1

3
u j +

h j

6
u j+1

}

= f (x j )
h j + h j−1

2
(12.167)

which can be written in matrix notation as

Au = Bf (12.168)

where the matrix A is tridiagonal as a consequence of the compact support of the

basis functions

A = a

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 1
h1

− 1
h0

, 1
h1

. . .
1

h j−1
, − 1

h j
− 1

h j−1
, 1

h j

. . .
1

hN−3
, − 1

hN−2
− 1

hN−3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

11Higher accuracy can be achieved, for instance, by Gaussian integration.
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+ b

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0, 1
2

. . .

− 1
2
, 0, 1

2
. . .

− 1
2
, 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ c

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(h1+h0)

3
, h1

6
. . .

h j−1

6
,

(h j +h j−1)

3
,

h j

6
. . .

hN−3

6
,

(hN−2+hN−3)

3
,

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h0+h1

2
. . .

h j−1+h j

2
. . .

hN−2+hN−3

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12.169)

For equally spaced nodes hi = hi−1 = h and after division by h (12.169) reduces to

a system of equations where the derivatives are replaced by finite differences (12.20)

{

a
1

h2
M2 + b

1

h
M1 + cM0

}

u = f (12.170)

with the so called consistent mass matrix

M0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .

. . .
. . .

. . .
1
6

2
3

1
6

. . .
. . .

. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(12.171)
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and the derivative matrices

M1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .

. . .
. . .

. . .

− 1
2

0 1
2

. . .
. . .

. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

M2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .

. . .
. . .

. . .

1 −2 1
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12.172)

The vector u is replaced by

M0u =
[

1 +
1

6
M2

]

u. (12.173)

Within the framework of the finite differences method

u j +
1

6

(

u j−1 − 2u j + u j+1

)

= u j +
h2

6

(

d2u

dx2

)

j

+ O(h4) (12.174)

hence replacing it by u j (this is called mass lumping) introduces an error of the order

O(h2).

12.7 Boundary Element Method

The boundary element method (BEM) [148, 149] is a method for linear partial differ-

ential equations which can be brought into boundary integral form12 like Laplace’s

equation (Chap. 18)13

−△Φ(r) = 0 (12.175)

for which the fundamental solution

△G(r, r′) = −δ(r − r′)

is given by

G(r − r′) =
1

4π|r − r′|
in three dimensions (12.176)

12This is only possible if the fundamental solution or Green’s function is available.
13The minus sign is traditionally used.

http://dx.doi.org/10.1007/978-3-319-61088-7_18
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G(r − r′) =
1

2π
ln

1

|r − r′|
in two dimensions. (12.177)

We apply Gauss’s theorem to the expression [150]

div
[

G(r − r′)grad(Φ(r)) − Φ(r)grad(G(r − r′))
]

= −Φ(r)△(G(r − r′)). (12.178)

Integration over a volume V gives

∮

∂V

d A

(

G(r − r′)
∂

∂n
(Φ(r)) − Φ(r)

∂

∂n
(G(r − r′))

)

= −
∫

V

dV
(

Φ(r)△(G(r − r′)) = Φ(r′). (12.179)

This integral equation determines the potential self-consistently by its value and

normal derivative on the surface of the cavity. It can be solved numerically by dividing

the surface into a finite number of boundary elements. The resulting system of linear

equations often has smaller dimension than corresponding finite element approaches.

However, the coefficient matrix is in general full and not necessarily symmetric.



Chapter 13

Equations of Motion

Simulation of a physical system means to calculate the time evolution of a model

system in many cases. We consider a large class of models which can be described

by a first order initial value problem

dY

dt
= f (Y(t), t) Y(t = 0) = Y0 (13.1)

where Y is the state vector (possibly of very high dimension) which contains all

information about the system. Our goal is to calculate the time evolution of the state

vector Y(t) numerically. For obvious reasons this can be done only for a finite number

of values of t and we have to introduce a grid of discrete times tn which for simplicity

are assumed to be equally spaced1:

tn+1 = tn + ∆t. (13.2)

Advancing time by one step involves the calculation of the integral

Y(tn+1) − Y(tn) =

∫ tn+1

tn

f (Y(t′), t′)dt′ (13.3)

which can be a formidable task since f (Y(t), t) depends on time via the time depen-

dence of all the elements of Y(t). In this chapter we discuss several strategies for the

time integration. The explicit Euler forward difference has low error order but is use-

ful as a predictor step for implicit methods. A symmetric difference quotient is much

more accurate. It can be used as the corrector step in combination with an explicit

Euler predictor step and is often used for the time integration of partial differen-

tial equations. Methods with higher error order can be obtained from a Taylor series

expansion, like the Nordsieck and Gear predictor-corrector methods which have been

often applied in molecular dynamics calculations. Runge–Kutta methods are very

important for ordinary differential equations. They are robust and allow an adaptive

1Control of the step width will be discussed later.

© Springer International Publishing AG 2017

P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,

DOI 10.1007/978-3-319-61088-7_13

289



290 13 Equations of Motion

control of the step size. Very accurate results can be obtained for ordinary differential

equations with extrapolation methods like the famous Gragg-Bulirsch-Stoer method.

If the solution is smooth enough, multistep methods are applicable, which use infor-

mation from several points. Most known are Adams-Bashforth–Moulton methods

and Gear methods (also known as backward differentiation methods), which are

especially useful for stiff problems. The class of Verlet methods has been developed

for molecular dynamics calculations. They are symplectic and time reversible and

conserve energy over long trajectories.

13.1 The State Vector

The state of a classical N-particle system is given by the position in phase space, or

equivalently by specifying position and velocity for all the N particles

Y = (r1, v1, . . . , rN , vN ) . (13.4)

The concept of a state vector is not restricted to a finite number of degrees of free-

dom. For instance a diffusive system can be described by the particle concentrations

as a function of the coordinate, i.e. the elements of the state vector are now indexed

by the continuous variable x

Y = (c1(x), . . . cM(x)) . (13.5)

Similarly, a quantum particle moving in an external potential can be described by

the amplitude of the wave function

Y = (Ψ (x)). (13.6)

Numerical treatment of continuous systems is not feasible since even the ultimate

high end computer can only handle a finite number of data in finite time. Therefore

discretization is necessary (Chap. 12), by introducing a spatial mesh (Sects. 12.2,

12.3, 12.6), which in the simplest case means a grid of equally spaced points

xijk = (ih, jh, kh) i = 1..imax, j = 1..jmax, k = 1..kmax (13.7)

Y =
(

c1(xijk) . . . cM(xijk)
)

(13.8)

Y =
(

Ψ (xijk)
)

(13.9)

or by expanding the continuous function with respect to a finite set of basis functions

(Sect. 12.5). The elements of the state vector then are the expansion coefficients

http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_12


13.1 The State Vector 291

|Ψ > =

N
∑

s=1

Cs|Ψs > (13.10)

Y = (C1, . . . , CN ) . (13.11)

If the density matrix formalism is used to take the average over a thermodynamic

ensemble or to trace out the degrees of freedom of a heat bath, the state vector instead

is composed of the elements of the density matrix

ρ =

N
∑

s=1

N
∑

s′=1

ρss′ |Ψs >< Ψs′ | =

N
∑

s=1

N
∑

s′=1

C∗
s′Cs|Ψs >< Ψs′ | (13.12)

Y = (ρ11 · · · ρ1N , ρ21 · · · ρ2N , . . . , ρN1 · · · ρNN ) . (13.13)

13.2 Time Evolution of the State Vector

We assume that all information about the system is included in the state vector. Then

the simplest equation to describe the time evolution of the system gives the change

of the state vector

dY

dt
= f (Y , t) (13.14)

as a function of the state vector (or more generally a functional in the case of a

continuous system). Explicit time dependence has to be considered for instance to

describe the influence of an external time dependent field.

Some examples will show the universality of this equation of motion:

• N-particle system

The motion of N interacting particles is described by

dY

dt
= (ṙ1, v̇1 · · · ) = (v1, a1 · · · ) (13.15)

where the acceleration of a particle is given by the total force acting upon this particle

and thus depends on all the coordinates and eventually time (velocity dependent

forces could be also considered but are outside the scope of this book)

ai =
Fi(r1 · · · rN , t)

mi

. (13.16)
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• Diffusion

Heat transport and other diffusive processes are described by the diffusion equation

∂f

∂t
= D∆f + S(x, t) (13.17)

which in its simplest spatially discretized version for 1-dimensional diffusion reads

∂f (xi)

∂t
=

D

∆x2
(f (xi+1) + f (xi−1) − 2f (xi)) + S(xi, t). (13.18)

• Waves

Consider the simple 1-dimensional wave equation

∂2f

∂t2
= c2 ∂2f

∂x2
(13.19)

which by introducing the velocity g(x) = ∂
∂t

f (x) as an independent variable can be

rewritten as

∂

∂t
(f (x), g(x)) =

(

g(x), c2 ∂2

∂x2
f (x)

)

. (13.20)

Discretization of space gives

∂

∂t
(f (xi), g(xi)) =

(

g(xi),
c2

∆x2
(f (xi+1) + f (xi−1) − 2f (xi))

)

. (13.21)

• two-state quantum system

The Schroedinger equation for a two level system (for instance a spin-1/2 particle in

a magnetic field) reads

d

dt

(

C1

C2

)

=

(

H11(t) H12(t)

H21(t) H22(t)

) (

C1

C2

)

. (13.22)

13.3 Explicit Forward Euler Method

The simplest method which is often discussed in elementary physics textbooks

approximates the integrand by its value at the lower bound (Fig. 13.1):

Y(tn+1) − Y(tn) ≈ f (Y(tn), tn)∆t. (13.23)
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Fig. 13.1 Explicit Euler

method
f(t)

n

t
n

t
n+1

t

f(t   )

The truncation error can be estimated from a Taylor series expansion

Y(tn+1) − Y(tn) = ∆t
dY

dt
(tn) +

∆t2

2

d2Y

dt2
(tn) + · · ·

= ∆tf (Y(tn), tn) + O(∆t2). (13.24)

The explicit Euler method has several serious drawbacks

• low error order

Suppose you want to integrate from the initial time t0 to the final time t0 + T . For a

time step of ∆t you have to perform N = T/∆t steps. Assuming comparable error

contributions from all steps the global error scales as N∆t2 = O(∆t). The error gets

smaller as the time step is reduced but it may be necessary to use very small ∆t to

obtain meaningful results.

• loss of orthogonality and normalization

The simple Euler method can produce systematic errors which are very inconvenient

if you want, for instance, to calculate the orbits of a planetary system. This can be

most easily seen from a very simple example. Try to integrate the following equation

of motion (see Example 1.5 on p. 13):

dz

dt
= iωz. (13.25)

The exact solution is obviously given by a circular orbit in the complex plane:

z = z0eiωt (13.26)

|z| = |z0| = const. (13.27)

http://dx.doi.org/10.1007/978-3-319-61088-7_1
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Fig. 13.2 Systematic errors

of the Euler method

v  dtntn+1

t n

Application of the Euler method gives

z(tn+1) = z(tn) + iω∆t z(tn) = (1 + iω∆t)z(tn) (13.28)

and you find immediately

|z(tn)| =
√

1 + ω2∆t2 |z(tn−1)| =
(

1 + ω2∆t2
)n/2

|z(t0)| (13.29)

which shows that the radius increases continually even for the smallest time step

possible (Fig. 13.2).

The same kind of error appears if you solve the Schroedinger equation for a

particle in an external potential or if you calculate the rotational motion of a rigid

body. For the N-body system it leads to a violation of the conservation of phase space

volume. This can introduce an additional sensitivity of the calculated results to the

initial conditions. Consider a harmonic oscillator with the equation of motion

d

dt

(

x(t)

v(t)

)

=

(

v(t)

−ω2x(t)

)

. (13.30)

Application of the explicit Euler method gives

(

x(t + ∆t)

v(t + ∆t)

)

=

(

x(t)

v(t)

)

+

(

v(t)

−ω2x(t)

)

∆t. (13.31)

The change of the phase space volume (Fig. 13.3) is given by the Jacobi determinant

J =

∣

∣

∣

∣

∂(x(t + ∆t), v(t + ∆t))

∂(x(t), v(t))

∣

∣

∣

∣

=

∣

∣

∣

∣

1 ∆t

−ω2∆t 1

∣

∣

∣

∣

= 1 + (ω∆t)2. (13.32)

In this case the phase space volume increases continuously.
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Fig. 13.3 Time evolution of

the phase space volume

p

p
0

∆x
0

x

∆p +   p
0

x +   x
0

Fig. 13.4 Implicit backward

Euler method
f(t)

t
n

t
n+1

t

n+1f(t      )

13.4 Implicit Backward Euler Method

Alternatively let us make a step backwards in time

Y(tn) − Y(tn+1) ≈ −f (Y(tn+1), tn+1)∆t (13.33)

which can be written as (Fig. 13.4)

Y(tn+1) ≈ Y(tn) + f (Y(tn+1), tn+1)∆t. (13.34)

Taylor series expansion gives

Y(tn) = Y(tn+1) −
d

dt
Y(tn+1)∆t +

d2

dt2
Y(tn+1)

∆t2

2
+ · · · (13.35)

which shows that the error order again is O(∆t2). The implicit method is sometimes

used to avoid the inherent instability of the explicit method. For the examples in
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Sect. 13.3 it shows the opposite behavior. The radius of the circular orbit as well

as the phase space volume decrease in time. The gradient at future time has to be

estimated before an implicit step can be performed.

13.5 Improved Euler Methods

The quality of the approximation can be improved significantly by employing the

midpoint rule (Fig. 13.5)

Y(tn+1) − Y(tn) ≈ f

(

Y

(

t +
∆t

2

)

, tn +
∆t

2

)

∆t. (13.36)

The error is smaller by one order of ∆t:

Y(tn) + f

(

Y

(

t +
∆t

2

)

, tn +
∆t

2

)

∆t

= Y(tn) +

(

dY

dt
(tn) +

∆t

2

d2Y

dt2
(tn) + · · ·

)

∆t

= Y(tn + ∆t) + O(∆t3). (13.37)

The future value Y(t + ∆t
2

) can be obtained by two different approaches:

• predictor-corrector method

Since f (Y(t + ∆t
2

), tn + ∆t
2

) is multiplied with ∆t, it is sufficient to use an approxi-

mation with lower error order. Even the explicit Euler step is sufficient. Together the

following algorithm results:

Fig. 13.5 Improved Euler

method

∆

f(t)

t
n

t
n+1

t

∆f(t  +    )n 2
t
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Fig. 13.6 Improved polygon

(or Heun) method
∆

t
n

t
n+1

t

f(t)

f(t   )n

tf(t  +     )n

predictor step: Y (p) = Y(tn) + ∆t
2

f (Y(tn), tn)

corrector step: Y(tn + ∆t) = Y(tn) + ∆t f (Y (p), tn + ∆t
2

).
(13.38)

• averaging (Heun method)

The average of f (Y(tn), tn) and f (Y(tn + ∆t), t + ∆t) is another approximation to

the midpoint value of comparable quality (Fig. 13.6).

Expansion around tn + ∆t/2 gives

1

2
(f (Y(tn), tn) + f (Y(tn + ∆t), t + ∆t))

= f

(

Y

(

tn +
∆t

2

)

, tn +
∆t

2

)

+ O(∆t2). (13.39)

Inserting the average in (13.36) gives the following algorithm, which is also known

as improved polygon method and corresponds to the trapezoidal rule for the integral

(4.13) or to a combination of explicit and implicit Euler step:

Y(tn + ∆t) = Y(tn) +
∆t

2
(f (Y(tn), tn) + f (Y(tn + ∆t), t + ∆t)) . (13.40)

In the special case of a linear function f (Y(t), t) = F Y(t) (for instance rotational

motion or diffusion) this can be solved formally by

Y(tn + ∆t) =

(

1 −
∆t

2
F

)−1 (

1 +
∆t

2
F

)

Y(tn). (13.41)

Numerically it is not necessary to perform the matrix inversion. Instead a linear

system of equations is solved:

(

1 −
∆t

2
F

)

Y(tn + ∆t) =

(

1 +
∆t

2
F

)

Y(tn). (13.42)

http://dx.doi.org/10.1007/978-3-319-61088-7_4
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In certain cases the Heun method conserves the norm of the state vector, for instance

if F has only imaginary eigenvalues (as for the 1-dimensional Schroedinger equation,

see p. 526).

In the general case a predictor step has to be made to estimate the state vector at

tn + ∆t before the Heun expression (13.40) can be evaluated:

Y (p) = Y(tn) + ∆t f (Y(tn), tn). (13.43)

13.6 Taylor Series Methods

Higher order methods can be obtained from a Taylor series expansion

Y(tn + ∆t) = Y(tn) + ∆t f (Y(tn), tn) +
∆t2

2

df (Y(tn), tn)

dt
+ · · · . (13.44)

The total time derivative can be expressed as

df

dt
=

∂f

∂Y

dY

dt
+

∂f

∂t
= f ′f + ḟ (13.45)

where the partial derivatives have been abbreviated in the usual way by
∂f

∂t
= ḟ and

∂f

∂Y
= f ′. Higher derivatives are given by

d2f

dt2
= f ′′f 2 + f ′2f + 2ḟ ′f + f̈ (13.46)

d3f

dt3
=

∂3f

∂t3
+ f ′′′f 3 + 3ḟ ′′f 2 + f̈ f ′ + 3f ′′ ḟ f

+ 3ḟ ′ + 4f ′′f ′f 2 + 5ḟ ′f ′f + f ′3f + f ′2 ḟ . (13.47)

13.6.1 Nordsieck Predictor-Corrector Method

Nordsieck [151] determines an interpolating polynomial of degree m. As variables

he uses the 0th to mth derivatives2 evaluated at the current time t, for instance for

m = 5 he uses the variables

2In fact the derivatives of the interpolating polynomial which exist even if higher derivatives of f

do not exist.
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Y(t) (13.48)

g(t) =
d

dt
Y(t) (13.49)

a(t) =
∆t

2

d2

dt2
Y(t) (13.50)

b(t) =
∆t2

6

d3

dt3
Y(t) (13.51)

c(t) =
∆t3

24

d4

dt4
Y(t) (13.52)

d(t) =
∆t4

120

d5

dt5
Y(t). (13.53)

Taylor expansion gives approximate values at t + ∆t

Y(t + ∆t) = Y(t) + ∆t [g(t) + a(t) + b(t) + c(t) + d(t) + e(t)]

= Yp(t + ∆t) + e(t)∆t (13.54)

g(t+∆t) = g(t)+2a(t)+3b(t)+4c(t)+5d(t)+6e(t) = gp(t+∆T)+6e(t) (13.55)

a(t + ∆t) = a(t) + 3b(t) + 6c(t) + 10d(t) + 15e(t) = ap(t + ∆t) + 15e(t) (13.56)

b(t + ∆t) = b(t) + 4c(t) + 10d(t) + 20e(t) = bp(t + ∆t) + 20e(t) (13.57)

c(t + ∆t) = c(t) + 5d(t) + 15e(t) = cp(t + ∆t) + 15e(t) (13.58)

d(t + ∆t) = d(t) + 6e(t) = dp(t + ∆t) + 6e(t) (13.59)

where the next term of the Taylor series e(t) = ∆t5

6!
d6

dt6 Y(t) has been introduced as

an approximation to the truncation error of the predicted values Y p, gp, etc. It can be

estimated from the second equation

e =
1

6

[

f (Y p(t + ∆t), t + ∆t) − gp(t + ∆t)
]

=
1

6
δf . (13.60)
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This predictor-corrector method turns out to be rather unstable. However, stability

can be achieved by slightly modifying the coefficients of the corrector step. Nordsieck

suggested to use

Y(t + ∆t) = Y p(t + ∆t) +
95

288
δf (13.61)

a(t + ∆t) = ap(t + ∆t) +
25

24
δf (13.62)

b(t + ∆t) = bp(t + ∆t) +
35

72
δf (13.63)

c(t + ∆t) = cp(t + ∆t) +
5

48
δf (13.64)

d(t + ∆t) = dp(t + ∆t) +
1

120
δf . (13.65)

13.6.2 Gear Predictor-Corrector Methods

Gear [152] designed special methods for molecular dynamics simulations (Chap. 15)

where Newton’s law (13.15) has to be solved numerically. He uses again a truncated

Taylor expansion for the predictor step

r(t + ∆t) = r(t) + v(t)∆t + a(t)
∆t2

2
+ ȧ(t)

∆t3

6
+ ä(t)

∆t4

24
+ · · · (13.66)

v(t + ∆t) = v(t) + a(t)∆t + ȧ(t)
∆t2

2
+ ä(t)

∆t3

6
+ · · · (13.67)

a(t + ∆t) = a(t) + ȧ(t)∆t + ä(t)
∆t2

2
+ · · · (13.68)

ȧ(t + ∆t) = ȧ(t) + ä(t)∆t + · · · (13.69)

...

to calculate new coordinates etc. r
p

n+1, v
p

n+1, a
p

n+1 . . . (Fig. 13.7). The difference

between the predicted acceleration and that calculated using the predicted coor-

dinates

δan+1 = a(rP
n+1, t + ∆t) − a

p

n+1 (13.70)

http://dx.doi.org/10.1007/978-3-319-61088-7_15
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Fig. 13.7 (Gear Predictor

Corrector Method) The

difference between predicted

acceleration ap and

acceleration calculated for

the predicted coordinates

a(rp) is used as a measure of

the error to estimate the

correction δr

a(rp) ap

rp

tt∆

r(t)

a(t)
aδ

δr

r

is then used as a measure of the error to correct the predicted values according to

rn+1 = r
p

n+1 + c1δan+1 (13.71)

vn+1 = v
p

n+1 + c2δan+1 (13.72)

...

The coefficients ci were determined to optimize stability and accuracy. For instance

the fourth order Gear corrector reads

rn+1 = r
p

n+1 +
∆t2

12
δan+1 (13.73)

vn+1 = v
p

n+1 +
5∆t

12
δan+1 (13.74)

ȧn+1 = ȧn +
1

∆t
δan+1. (13.75)

Gear methods are generally not time reversible and show systematic energy drifts.

A reversible symplectic predictor-corrector method has been presented recently by

Martyna and Tuckerman [153].

13.7 Runge–Kutta Methods

If higher derivatives are not so easily available, they can be approximated by numer-

ical differences. f is evaluated at several trial points and the results are combined to

reproduce the Taylor series as close as possible [154].
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13.7.1 Second Order Runge–Kutta Method

Let us begin with two function values. As common in the literature we will denote

the function values as K1, K2, . . .. From the gradient at time tn

K1 = fn = f (Y(tn), tn) (13.76)

we estimate the state vector at time tn + ∆t as

Y(tn + ∆t) ≈ ∆t K1. (13.77)

The gradient at time tn + ∆t is approximately

K2 = f (Y(tn) + ∆t K1, tn + ∆t) (13.78)

which has the Taylor series expansion

K2 = fn + (ḟn + f ′
nfn)∆t + · · · (13.79)

and application of the trapezoidal rule (4.13) gives the 2nd order Runge–Kutta method

Yn+1 = Yn +
∆t

2
(K1 + K2) (13.80)

which in fact coincides with the improved Euler or Heun method. Taylor series

expansion shows how the combination of K1 and K2 leads to an expression of higher

error order:

Yn+1 = Yn +
∆t

2
(fn + fn + (ḟn + f ′

nfn)∆t + · · · )

= Yn + fn∆t +
dfn

dt

∆t2

2
+ · · · . (13.81)

13.7.2 Third Order Runge–Kutta Method

The accuracy can be further improved by calculating one additional function value

at mid-time. From (13.76) we estimate the gradient at mid-time by

K2 = f

(

Y(t) +
∆t

2
K1, t +

∆t

2

)

= fn + (ḟn + f ′
nfn)

∆t

2
+ (f̈n + f ′′

n f 2
n + 2ḟ ′

nfn)
∆t2

8
+ · · · . (13.82)

http://dx.doi.org/10.1007/978-3-319-61088-7_4
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The gradient at time tn + ∆t is then estimated as

K3 = f (Y(tn) + ∆t(2K2 − K1), tn + ∆t)

= fn + ḟn∆t + f ′
n(2K2 − K1)∆t + f̈n

∆t2

2

+ f ′′
n

(2K2 − K1)
2∆t2

2
+ 2ḟ ′

n

(2K2 − K1)∆t2

2
+ · · · . (13.83)

Inserting the expansion (13.82) gives the leading terms

K3 = fn + (ḟn + f ′
nfn)∆t + (2f ′

n
2fn + f ′′

n f 2
n + f̈n + 2f ′

n ḟn + 2ḟ 2
n )

∆t2

2
+ · · · . (13.84)

Applying Simpson’s rule (4.14) we combine the three gradients to get the 3rd order

Runge–Kutta method

Yn+1 = Y(tn) +
∆t

6
(K1 + 4K2 + K3) (13.85)

where the Taylor series

Yn+1 = Y(tn) +
∆t

6

(

6fn + 3(ḟn + fnf ′
n)∆t

+(f ′
n

2fn + f ′′
n f 2

n + 2ḟ ′
nfn + ¨fn + ˙

nf ′
n)∆t2 + · · ·f

)

= Y(tn + ∆t) + O(∆t4) (13.86)

recovers the exact Taylor series (13.44) including terms of order O(∆t3).

13.7.3 Fourth Order Runge–Kutta Method

The 4th order Runge–Kutta method (RK4) is often used because of its robustness

and accuracy. It uses two different approximations for the midpoint

K1 = f (Y(tn), tn)

K2 = f

(

Y(tn) +
K1

2
∆t, tn +

∆t

2

)

K3 = f

(

Y(tn) +
K2

2
∆t, tn +

∆t

2

)

K4 = f (Y(tn) + K3∆t, tn + ∆t)

http://dx.doi.org/10.1007/978-3-319-61088-7_4
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and Simpson’s rule (4.14) to obtain

Yn+1 = Y(tn) +
∆t

6
(K1 + 2K2 + 2K3 + K4) = Y(tn + ∆t) + O(∆t5).

Expansion of the Taylor series is cumbersome but with the help of an algebra program

one can easily check that the error is of order ∆t5.

13.8 Quality Control and Adaptive Step Size Control

For practical applications it is necessary to have an estimate for the local error and to

adjust the step size properly. With the Runge Kutta method this can be achieved by

a step doubling procedure. We calculate yn+2 first by two steps ∆t and then by one

step 2∆t. This needs 11 function evaluations as compared to 8 for the smaller step

size only (Fig. 13.8). For the 4th order method we estimate the following errors:

∆

(

Y
(∆t)
n+2

)

= 2a∆t5 (13.87)

∆

(

Y
(2∆t)
n+2

)

= a(2∆t)5. (13.88)

The local error can be estimated from

|Y
(∆t)
n+2 − Y

(2∆t)
n+2 | = 30|a|∆t5

Fig. 13.8 Step doubling

with the fourth order

Runge–Kutta method

t n tn+2

t n tn+2
t
n+1

http://dx.doi.org/10.1007/978-3-319-61088-7_4
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∆

(

Y
(∆t)
n+1

)

= a∆t5 =
|Y

(∆t)
n+2 − Y

(2∆t)
n+2 |

30
.

The step size ∆t can now be adjusted to keep the local error within the desired limits.

13.9 Extrapolation Methods

Application of the extrapolation method to calculate the integral
∫ tn+1

tn
f (t)dt produces

very accurate results but can also be time consuming. The famous Gragg-Bulirsch-

Stoer method [2] starts from an explicit midpoint rule with a special starting proce-

dure. The interval ∆t is divided into a sequence of N sub-steps

h =
∆t

N
. (13.89)

First a simple Euler step is performed

u0 = Y(tn)

u1 = u0 + h f (u0, tn) (13.90)

and then the midpoint rule is applied repeatedly to obtain

uj+1 = uj−1 + 2h f (uj, tn + jh) j = 1, 2 . . . N − 1. (13.91)

Gragg [155] introduced a smoothing procedure to remove oscillations of the leading

error term by defining

vj =
1

4
uj−1 +

1

2
uj +

1

4
uj+1. (13.92)

He showed that both approximations (13.91, 13.92) have an asymptotic expansion in

powers of h2 and are therefore well suited for an extrapolation method. The modified

midpoint method can be summarized as follows:

u0 = Y(tn)

u1 = u0 + h f (u0, tn)

uj+1 = uj−1 + 2h f (uj, tn + jh) j = 1, 2, . . . N − 1

Y(tn + ∆t) ≈
1

2
(uN + uN−1 + h f (uN , tn + ∆t)) . (13.93)
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The number of sub-steps N is increased according to a sequence like

N = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64 . . . Nj = 2Nj−2 Bulirsch-Stoer sequence

(13.94)

or

N = 2, 4, 6, 8, 10, 12 . . . Nj = 2j Deuflhard sequence.

After each successive N is tried, a polynomial extrapolation is attempted. This extrap-

olation returns both the extrapolated values and an error estimate. If the error is still

too large then N has to be increased further. A more detailed discussion can be found

in [156, 157].

13.10 Linear Multistep Methods

All methods discussed so far evaluated one or more values of the gradient f (Y(t), t)

only within the interval tn · · · tn + ∆t. If the state vector changes sufficiently smooth

then multistep methods can be applied. Linear multistep methods use a combination

of function values Yn and gradients fn from several steps

Yn+1 =

k
∑

j=1

(

αjYn−j+1 + βjfn−j+1∆t
)

+ β0fn+1∆t (13.95)

where the coefficients α,β are determined such, that a polynomial of certain order

r is integrated exactly. The method is explicit if β0 = 0 and implicit otherwise.

Multistep methods have a small local error and need fewer function evaluations. On

the other hand, they have to be combined with other methods (like Runge–Kutta) to

start and end properly and it can be rather complicated to change the step size during

the calculation. Three families of linear multistep methods are commonly used:

explicit Adams-Bashforth methods, implicit Adams-Moulton methods and backward

differentiation formulas (also known as Gear formulas [158]).

13.10.1 Adams-Bashforth Methods

The explicit Adams-Bashforth method of order r uses the gradients from the last

r − 1 steps (Fig. 13.9) to obtain the polynomial

p(tn) = f (Yn, tn), . . . p(tn−r+1) = f (Yn−r+1, tn−r+1) (13.96)



13.10 Linear Multistep Methods 307

Fig. 13.9 Adams-Bashforth

method
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∆

f(t   )n

t
n−1
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∆ )−t(f t

f(t  +    )n

n

and to calculate the approximation

Yn+1 − Yn ≈

∫ tn+1

tn

p(t)dt

which is generally a linear combination of fn · · · fn−r+1. For example, the Adams-

Bashforth formulas of order 2, 3, 4 are:

Yn+1 − Yn =
∆t

2
(3fn − fn−1) + O(∆t3)

Yn+1 − Yn =
∆t

12
(23fn − 16fn−1 + 5fm−2) + O(∆t4)

Yn+1 − Yn =
∆t

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3) + O(∆t5). (13.97)

13.10.2 Adams-Moulton Methods

The implicit Adams-Moulton method also uses the yet not known value Yn+1

(Fig. 13.10) to obtain the polynomial

p(tn+1) = fn+1, . . . p(tn−r+2) = fn−r+2. (13.98)

The corresponding Adams-Moulton formulas of order 2 to 4 are:

Yn+1 − Yn =
∆t

2
(fn+1 + fn) + O(∆t3)

Yn+1 − Yn =
∆t

12
(5fn+1 + 8fn − fn−1) + O(∆t4) (13.99)

Yn+1 − Yn =
∆t

24
(9fn+1 + 19fn − 5fn−1 + fn−2) + O(∆t5). (13.100)
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Fig. 13.10 Adams-Moulton

method
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13.10.3 Backward Differentiation (Gear) Methods

Gear methods [158] are implicit and usually combined with a modified Newton

method. They make use of previous function values Yn, Yn−1 . . . and the gradient

fn+1 at time t + ∆t. Only methods of order r ≤ 6 are stable and useful. The general

formula (13.95) is

Yn+1 =

r
∑

j=1

αjYn−j+1 + β0fn+1∆t. (13.101)

For r = 1 this becomes

Yn+1 = α1Yn + β0f1∆t (13.102)

and all linear polynomials

p = p0 + p1(t − tn),
dp

dt
= p1 (13.103)

are integrated exactly if

p0 + p1∆t = α1p0 + β0p1 (13.104)

which is the case for

α1 = 1, β0 = ∆t. (13.105)

Hence the first order Gear method is

Yn+1 = Yn + fn+1∆t + O(∆t2) (13.106)
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which coincides with the implicit Euler method. The higher order stable Gear meth-

ods are given by

r = 2 : Yn+1 =
4

3
Yn −

1

3
Yn−1 +

2

3
fn+1∆t + O(∆t3) (13.107)

r = 3 : Yn+1 =
18

11
Yn −

9

11
Yn−1 +

2

11
Yn−2 +

6

11
fn+1∆t +O(∆t4) (13.108)

r = 4 : Yn+1 =
48

25
Yn −

36

25
Yn−1 +

16

25
Yn−2 −

3

25
Yn−3 +

12

25
fn+1∆t + O(∆t5)

(13.109)

r = 5 : Yn+1 =
300

137
Yn −

300

137
Yn−1 +

200

137
Yn−2 −

75

137
Yn−3

+
12

137
Yn−4 +

60

137
fn+1∆t + O(∆t6) (13.110)

r = 6 : Yn+1 =
120

49
Yn −

150

49
Yn−1 +

400

147
Yn−2 −

75

49
Yn−3

+
24

49
Yn−4 −

10

147
Yn−5 +

20

49
fn+1∆t + O(∆t7). (13.111)

This class of algorithms is useful also for stiff problems (differential equations with

strongly varying eigenvalues).

13.10.4 Predictor-Corrector Methods

The Adams-Bashforth–Moulton method combines the explicit method as a predictor

step to calculate an estimate y
p

n+1 with a corrector step using the implicit method of

same order. The general class of linear multistep predictor corrector methods [159]

uses a predictor step

Y
(0)
n+1 =

k
∑

j=1

(

α
(p)

j Yn−j+1 + β
(p)

j fn−j+1∆t
)

(13.112)

which is corrected using the formula

Y
(1)
n+1 =

k
∑

j=1

(

α
(c)
j Yn−j+1 + β

(c)
j fn−j+1∆t

)

+ β0f (Y
(0)
n+1, tn+1)∆t (13.113)
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and further iterations

Y
(m+1)
n+1 = Y

(m)
n+1 − β0

[

f (Y
(m−1)
n+1 , tn+1) − f (Y

(m)
n+1, tn+1)

]

∆t m = 1 . . . M − 1

(13.114)

Yn+1 = Y
(M)
n+1, Ẏn+1 = f (Y

(M−1)
n+1 , tn+1). (13.115)

The coefficients α,β have to be determined to optimize accuracy and stability.

13.11 Verlet Methods

For classical molecular dynamics simulations it is necessary to calculate very long

trajectories. Here a family of symplectic methods often is used which conserve the

phase space volume [160–165]. The equations of motion of a classical interacting

N-body system are

miẍi = Fi (13.116)

where the force acting on atom i can be calculated once a specific force field is

chosen. Let us write these equations as a system of first order differential equations

(

ẋi

v̇i

)

=

(

vi

ai

)

(13.117)

where x(t) and v(t) are functions of time and the forces ma(x(t)) are functions of

the time dependent coordinates.

13.11.1 Liouville Equation

We rewrite (13.117) as

(

ẋ

v̇

)

= L

(

x

v

)

(13.118)

where the Liouville operator L acts on the vector containing all coordinates and

velocities:

L

(

x

v

)

=

(

v
∂

∂x
+ a

∂

∂v

) (

x

v

)

. (13.119)
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The Liouville equation (13.118) can be formally solved by

(

x(t)

v(t)

)

= eLt

(

x(0)

v(0)

)

. (13.120)

For a better understanding let us evaluate the first members of the Taylor series of

the exponential:

L

(

x

v

)

=

(

v
∂

∂x
+ a

∂

∂v

) (

x

v

)

=

(

v

a

)

(13.121)

L
2

(

x

v

)

=

(

v
∂

∂x
+ a

∂

∂v

)(

v

a(x)

)

=

(

a

v ∂
∂x

a

)

(13.122)

L
3

(

x

v

)

=

(

v
∂

∂x
+ a

∂

∂v

)(

a

v ∂
∂x

a

)

=

(

v ∂
∂x

a

a ∂
∂x

a + vv ∂
∂x

∂
∂x

a

)

. (13.123)

But since

d

dt
a(x(t)) = v

∂

∂x
a (13.124)

d2

dt2
a(x(t)) =

d

dt

(

v
∂

∂x
a

)

= a
∂

∂x
a + vv

∂

∂x

∂

∂x
a (13.125)

we recover

(

1 + tL +
1

2
t2

L
2 +

1

6
t3

L
3 + · · ·

) (

x

v

)

=

(

x + vt + 1
2
t2a + 1

6
t3ȧ + · · ·

v + at + 1
2
t2ȧ + 1

6
t3ä + · · ·

)

.

(13.126)

13.11.2 Split Operator Approximation

We introduce a small time step ∆t = t/N and write

eLt =
(

eL∆t
)N

. (13.127)

For the small time step∆t the split-operator approximation can be used which approx-

imately factorizes the exponential operator. For example, write the Liouville operator

as the sum of two terms
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LA = v
∂

∂x
LB = a

∂

∂v

and make the approximation

eL∆t = eLA∆teLB∆t + · · · . (13.128)

Each of the two factors simply shifts positions or velocities

eLA∆t

(

x

v

)

=

(

x + v∆t

v

)

eLB∆t

(

x

v

)

=

(

x

v + a∆t

)

(13.129)

since these two steps correspond to either motion with constant velocities or constant

coordinates and forces.

13.11.3 Position Verlet Method

Often the following approximation is used which is symmetrical in time

eL∆t = eLA∆t/2eLB∆teLA∆t/2 + · · · . (13.130)

The corresponding algorithm is the so called position Verlet method (Fig. 13.11):

xn+1/2 = xn + vn

∆t

2
(13.131)

vn+1 = vn + an+1/2∆t = v(tn + ∆t) + O(∆t3) (13.132)

xn+1 = xn+1/2 +vn+1

∆t

2
= xn +

vn + vn+1

2
∆t = x(tn +∆t)+O(∆t3). (13.133)

Fig. 13.11 (Position Verlet

method) The exact

integration path is

approximated by two

half-steps with constant

velocities and one step with

constant coordinates
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v
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n

x
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Fig. 13.12 (Velocity Verlet

method) The exact

integration path is

approximated by two

half-steps with constant

coordinates and one step

with constant velocities
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v
n+1

v
n
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n
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13.11.4 Velocity Verlet Method

If we exchange operators A and B we have

eL∆t = eLB∆t/2eLA∆teLB∆t/2 + · · · (13.134)

which produces the velocity Verlet algorithm (Fig. 13.12):

vn+1/2 = vn + an

∆t

2
(13.135)

xn+1 = xn +vn+1/2∆t = xn +vn∆t +an

∆t2

2
= x(tn +∆t)+O(∆t3) (13.136)

vn+1 = vn+1/2 + an+1

∆t

2
= vn +

an + an+1

2
∆t = v(tn + ∆t) + O(∆t3).

(13.137)

13.11.5 Stoermer-Verlet Method

The velocity Verlet method is equivalent to Stoermer’s version [166] of the Verlet

method which is a two step method given by

xn+1 = 2xn − xn−1 + an∆t2 (13.138)

vn =
xn+1 − xn−1

2∆t
. (13.139)

To show the equivalence we add two consecutive position vectors

xn+2 + xn+1 = 2xn+1 + 2xn − xn − xn−1 + (an+1 + an)∆t2 (13.140)
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which simplifies to

xn+2 − xn − (xn+1 − xn) = (an+1 + an)∆t2. (13.141)

This can be expressed as the difference of two consecutive velocities:

2(vn+1 − vn) = (an+1 + an)∆t. (13.142)

Now we substitute

xn−1 = xn+1 − 2vn∆t (13.143)

to get

xn+1 = 2xn − xn+1 + 2vn∆t + an∆t2 (13.144)

which simplifies to

xn+1 = xn + vn∆t +
an

2
∆t2. (13.145)

Thus the equations of the velocity Verlet algorithm have been recovered. However,

since the Verlet method is a 2-step method, the choice of initial values is important.

The Stoermer-Verlet method starts from two coordinate sets x0, x1. The first step is

x2 = 2x1 − x0 + a1∆t2 (13.146)

v1 =
x2 − x0

2∆t
=

x1 − x0

∆t
+

a1

2
∆t2. (13.147)

The velocity Verlet method, on the other hand, starts from one set of coordinates and

velocities x1, v1. Here the first step is

x2 = x1 + v1∆t + a1

∆t2

2
(13.148)

v2 = v1 +
a1 + a2

2
∆t. (13.149)

The two methods give the same resulting trajectory if we choose

x0 = x1 − v1∆t +
a1

2
∆t2. (13.150)

If, on the other hand, x0 is known with higher precision, the local error order of

Stoermer’s algorithm changes as can be seen from addition of the two Taylor series
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x(tn + ∆t) = xn + vn∆t +
an

2
∆t2 +

ȧn

6
∆t3 + · · · (13.151)

x(tn − ∆t) = xn − vn∆t +
an

2
∆t2 −

ȧn

6
∆t3 + · · · (13.152)

which gives

x(tn + ∆t) = 2x(tn) − x(tn − ∆t) + an∆t2 + O(∆t4) (13.153)

x(tn + ∆t) − x(tn − ∆t)

2∆t
= vn + O(∆t2). (13.154)

13.11.6 Error Accumulation for the Stoermer-Verlet Method

Equation (13.153) gives only the local error of one single step. Assume the start

values x0 and x1 are exact. The next value x2 has an error with the leading term

∆x2 = α∆t4. If the trajectory is sufficiently smooth and the time step not too large

the coefficient α will vary only slowly and the error of the next few iterations is given

by

∆x3 = 2∆x2 − ∆x1 = 2α∆t4

∆x4 = 2∆x3 − ∆x2 = 3α∆t4

...

∆xn+1 = nα∆t4. (13.155)

This shows that the effective error order of the Stoermer-Verlet method is only O(∆t3)

similar to the velocity Verlet method.

13.11.7 Beeman’s Method

Beeman and Schofield [167, 168] introduced a method which is very similar to the

Stoermer-Verlet method but calculates the velocities with higher precision. This is

important if, for instance, the kinetic energy has to be calculated. Starting from the

Taylor series

xn+1 = xn + vn∆t + an

∆t2

2
+ ȧn

∆t3

6
+ än

∆t4

24
+ · · · (13.156)
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the derivative of the acceleration is approximated by a backward difference

xn+1 = xn + vn∆t + an

∆t2

2
+

an − an−1

∆t

∆t3

6
+ O(∆t4)

= xn + vn∆t +
4an − an−1

6
∆t2 + O(∆t4). (13.157)

This equation can be used as an explicit step to update the coordinates or as a predictor

step in combination with the implicit corrector step

xn+1 = xn + vn∆t + an

∆t2

2
+

an+1 − an

∆t

∆t3

6
+ O(∆t4)

= xn + vn∆t +
an+1 + 2an

6
∆t2 + O(∆t4) (13.158)

which can be applied repeatedly (usually two iterations are sufficient). Similarly, the

Taylor series of the velocity is approximated by

vn+1 = vn + an∆t + ȧn

∆t2

2
+ än

∆t3

6
+ · · ·

= vn + an∆t +

(

an+1 − an

∆t
+ O(∆t)

)

∆t2

2
+ · · ·

= vn +
an+1 + an

2
∆t + O(∆t3). (13.159)

Inserting the velocity from (13.158) we obtain the corrector step for the velocity

vn+1 =
xn+1 − xn

∆t
−

an+1 + 2an

6
∆t +

an+1 + an

2
∆t + O(∆t3)

=
xn+1 − xn

∆t
+

2an+1 + an

6
∆t + O(∆t3). (13.160)

In combination with (13.157) this can be replaced by

vn+1 = vn +
4an − an−1

6
∆t +

2an+1 + an

6
∆t + O(∆t3)

= vn +
2an+1 + 5an − an−1

6
∆t + O(∆t3). (13.161)

Together, (13.157) and (13.161) provide an explicit method which is usually

understood as Beeman’s method. Inserting the velocity (13.160) from the previous

step

vn =
xn − xn−1

∆t
+

2an + an−1

6
∆t + O(∆t3) (13.162)
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into (13.157) gives

xn+1 = 2xn − xn−1 + an∆t2 + O(∆t4) (13.163)

which coincides with the Stoermer-Verlet method (13.138). We conclude that Bee-

man’s method should produce the same trajectory as the Stoermer-Verlet method if

numerical errors can be neglected and comparable initial values are used. In fact, the

Stoermer-Verlet method may suffer from numerical extinction and Beeman’s method

provides a numerically more favorable alternative.

13.11.8 The Leapfrog Method

Closely related to the Verlet methods is the so called leapfrog method [165]. It uses

the simple decomposition

eL∆t ≈ eLA∆teLB∆t (13.164)

but introduces two different time grids for coordinates and velocities which are shifted

by ∆t/2 (Fig. 13.13).

The leapfrog algorithm is given by

vn+1/2 = vn−1/2 + an∆t (13.165)

xn+1 = xn + vn+1/2∆t. (13.166)

Due to the shifted arguments the order of the method is increased as can be seen

from the Taylor series:

x(tn) +

(

v(tn) +
∆t

2
a(tn) + · · ·

)

∆t = x(tn + ∆t) + O(∆t3) (13.167)

Fig. 13.13 (Leapfrog

method) The exact

integration path is

approximated by one step

with constant coordinates

and one step with constant

velocities. Two different

grids are used for

coordinates and velocities

which are shifted by ∆t/2

n+1

v

v
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v

(

tn +
∆t

2

)

− v

(

tn −
∆t

2

)

= a(tn)∆t + O(∆t3). (13.168)

One disadvantage of the leapfrog method is that some additional effort is necessary

if the velocities are needed. The simple expression

v(tn) =
1

2

(

v

(

tn −
∆t

2

)

+ v

(

tn +
∆t

2

))

+ O(∆t2) (13.169)

is of lower error order than (13.168).

Problems

Problem 13.1 Circular Orbits

In this computer experiment we consider a mass point moving in a central field. The

equation of motion can be written as the following system of first order equations:

⎛

⎜

⎜

⎝

ẋ

ẏ

v̇x

v̇y

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0 0 1 0

0 0 0 1

− 1

(x2+y2)
3/2

0 0 0

0 − 1

(x2+y2)
3/2

0 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x

y

vx

vy

⎞

⎟

⎟

⎠

. (13.170)

For initial values

⎛

⎜

⎜

⎝

x

y

vx

vy

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1

0

0

1

⎞

⎟

⎟

⎠

(13.171)

the exact solution is given by

x = cos t y = sin t. (13.172)

The following methods are used to calculate the position x(t), y(t) and the energy

Etot = Ekin + Epot =
1

2
(v2

x + v2
y ) −

1
√

x2 + y2
. (13.173)

• The explicit Euler method (13.3)
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x(tn+1) = x(tn) + vx(tn)∆t

y(tn+1) = y(tn) + vy(tn)∆t

vx(tn+1) = vx(tn) −
x(tn)

R(tn)3 ∆t

vy(tn+1) = vy(tn) −
y(tn)

R(tn)3 ∆t.

(13.174)

• The 2nd order Runge–Kutta method (13.7.1)

which consists of the predictor step

x(tn + ∆t/2) = x(tn) +
∆t

2
vx(tn) (13.175)

y(tn + ∆t/2) = y(tn) +
∆t

2
vy(tn) (13.176)

vx(tn + ∆t/2) = vx(tn) −
∆t

2

x(tn)

R(tn)3
(13.177)

vy(tn + ∆t/2) = vy(tn) −
∆t

2

y(tn)

R(tn)3
(13.178)

and the corrector step

x(tn+1) = x(tn) + ∆t vx(tn + ∆t/2) (13.179)

y(tn+1) = y(tn) + ∆t vy(tn + ∆t/2) (13.180)

vx(tn+1) = vx(tn) − ∆t
x(tn + ∆t/2)

R3(tn + ∆t/2)
(13.181)

vy(tn+1) = vy(tn) − ∆t
y(tn + ∆t/2)

R3(tn + ∆t/2)
. (13.182)

• The fourth order Runge–Kutta method (13.7.3)

• The Verlet method (13.11.5)

x(tn+1) = x(tn) + (x(tn) − x(tn−1)) − ∆t
x(tn)

R3(tn)
(13.183)

y(tn+1) = y(tn) + (y(tn) − y(tn−1)) − ∆t
y(tn)

R3(tn)
(13.184)

vx(tn) =
x(tn+1) − x(tn−1)

2∆t
=

x(tn) − x(tn−1)

∆t
−

∆t

2

x(tn)

R3(tn)
(13.185)

vy(tn) =
y(tn+1) − y(tn−1)

2∆t
=

y(tn) − y(tn−1)

∆t
−

∆t

2

y(tn)

R3(tn)
. (13.186)
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To start the Verlet method we need additional coordinates at time −∆t which can be

chosen from the exact solution or from the approximation

x(t−1) = x(t0) − ∆t vx(t0) −
∆t2

2

x(t0)

R3(t0)
(13.187)

y(t−1) = y(t0) − ∆t vy(t0) −
∆t2

2

y(t0)

R3(t0)
. (13.188)

• The leapfrog method (13.11.8)

x(tn+1) = x(tn) + vx(tn+1/2)∆t (13.189)

y(tn+1) = y(tn) + vy(tn+1/2)∆t (13.190)

vx(tn+1/2) = vx(tn−1/2) −
x(tn)

R(tn)3
∆t (13.191)

vy(tn+1/2) = vy(tn−1/2) −
y(tn)

R(tn)3
∆t (13.192)

where the velocity at time tn is calculated from

vx(tn) = vx(tn+1/2) −
∆t

2

x(tn+1)

R3(tn+1)
(13.193)

vy(tn) = vy(tn+1/2) −
∆t

2

y(tn+1)

R3(tn+1)
. (13.194)

To start the leapfrog method we need the velocity at time t−1/2 which can be taken

from the exact solution or from

vx(t−1/2) = vx(t0) −
∆t

2

x(t0)

R3(t0)
(13.195)

vy(t−1/2) = vy(t0) −
∆t

2

y(t0)

R3(t0)
. (13.196)

Compare the conservation of energy for the different methods as a function of the

time step ∆t. Study the influence of the initial values for leapfrog and Verlet methods.

Problem 13.2 N-body System

In this computer experiment we simulate the motion of three mass points under the

influence of gravity. Initial coordinates and velocities as well as the masses can be

varied. The equations of motion are solved with the 4th order Runge–Kutta method

with quality control for different step sizes. The local integration error is estimated
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using the step doubling method. Try to simulate a planet with a moon moving round

a sun!

Problem 13.3 Adams-Bashforth Method

In this computer experiment we simulate a circular orbit with the Adams-Bashforth

method of order 2 . . . 7. The absolute error at time T

∆(T) = |x(T)− cos(T)|+ |y(t)− sin(T)|+ |vx(T)+ sin(T)|+ |vy(T)− cos(T)|

(13.197)

is shown as a function of the time step ∆t in a log-log plot. From the slope

s =
d(log10(∆))

d(log10(∆t))
(13.198)

the leading error order s can be determined. For very small step sizes rounding errors

become dominating which leads to an increase ∆ ∼ (∆t)−1.

Determine maximum precision and optimal step size for different orders of the

method. Compare with the explicit Euler method.
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Chapter 14

Rotational Motion

An asymmetric top under the influence of time dependent external forces is a rather

complicated subject in mechanics. Efficient methods to describe the rotational motion

are important as well in astrophysics as in molecular physics. The orientation of a

rigid body relative to the laboratory system can be described by a 3 × 3 matrix.

Instead of solving nine equations for all its components, the rotation matrix can

be parametrized by the four real components of a quaternion. Euler angles use the

minimum necessary number of three parameters but have numerical disadvantages.

Care has to be taken to conserve the orthogonality of the rotation matrix. Omelyan’s

implicit quaternion method is very efficient and conserves orthogonality exactly.

In computer experiments we compare different explicit and implicit methods for a

free rotor, we simulate a rotor in an external field and the collision of two rotating

molecules.

14.1 Transformation to a Body Fixed Coordinate System

Let us define a rigid body as a set of mass points mi with fixed relative orientation

(described by distances and angles).

The position of mi in the laboratory coordinate system CS will be denoted by ri.

The position of the center of mass (COM) of the rigid body is

R =
1∑
i mi

∑

i

miri (14.1)

and the position of mi within the COM coordinate system CSc (Fig. 14.1) is ρi:

ri = R + ρi. (14.2)

Let us define a body fixed coordinate system CScb, where the position ρib of mi is

time independent d
dt

ρib = 0. ρi and ρib are connected by a linear vector function
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Fig. 14.1 (Coordinate

systems) Three coordinate

systems will be used: The

laboratory system CS, the

center of mass system CSc

and the body fixed system

CScb ρ

CS

R

r
i

mi

i

CS
c

CS
cb

ρi = Aρib (14.3)

where A is a 3 × 3 matrix

A =

⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ . (14.4)

14.2 Properties of the Rotation Matrix

Rotation conserves the length of ρ
1:

ρ
T
ρ = (Aρ)T (Aρ) = ρ

T AT Aρ. (14.5)

Consider the matrix

M = AT A − 1 (14.6)

for which

ρ
T Mρ = 0 (14.7)

holds for all vectors ρ. Let us choose the unit vector in x-direction: ρ =

⎛
⎝

1

0

0

⎞
⎠. Then

we have

1
ρ

T
ρ denotes the scalar product of two vectors whereas ρρ

T is the outer or matrix product.
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0 =
(

1 0 0
)
⎛
⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠

⎛
⎝

1

0

0

⎞
⎠ = M11. (14.8)

Similarly by choosing a unit vector in y or z direction we find M22 = M33 = 0.

Now choose ρ =

⎛
⎝

1

1

0

⎞
⎠:

0 =
(

1 1 0
)
⎛
⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠

⎛
⎝

1

1

0

⎞
⎠

=
(

1 1 0
)
⎛
⎝

M11 + M12

M21 + M22

M31 + M32

⎞
⎠ = M11 + M22 + M12 + M21. (14.9)

Since the diagonal elements vanish we have M12 = −M21. With ρ =

⎛
⎝

1

0

1

⎞
⎠ ,ρ =

⎛
⎝

0

1

1

⎞
⎠ we find M13 = −M31 and M23 = −M32, hence M is skew symmetric and has

three independent components

M = −MT =

⎛
⎝

0 M12 M13

−M12 0 M23

−M13 −M23 0

⎞
⎠ . (14.10)

Inserting (14.6) we have

(AT A − 1) = −(AT A − 1)T = −(AT A − 1) (14.11)

which shows that AT A = 1 or equivalently AT = A−1. Hence (det(A))2 = 1 and A

is an orthogonal matrix. For a pure rotation without reflection only det(A) = +1 is

possible.

From

ri = R + Aρib (14.12)

we calculate the velocity

dri

dt
=

dR

dt
+

dA

dt
ρib + A

dρib

dt
(14.13)
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but since ρib is constant by definition, the last summand vanishes

ṙi = Ṙ + Ȧρib = Ṙ + ȦA−1
ρi (14.14)

and in the center of mass system we have

d

dt
ρi = ȦA−1

ρi = Wρi (14.15)

with the matrix

W = ȦA−1. (14.16)

14.3 Properties of W, Connection with the Vector

of Angular Velocity

Since rotation does not change the length of ρi, we have

0 =
d

dt
|ρi|2 → 0 = ρi

d

dt
ρi = ρi(Wρi) (14.17)

or in matrix notation

0 = ρ
T
i Wρi. (14.18)

This holds for arbitrary ρi. Hence W is skew symmetric and has three independent

components

W =

⎛
⎝

0 W12 W13

−W12 0 W23

−W13 −W23 0

⎞
⎠ . (14.19)

Now consider an infinitesimal rotation by the angle dϕ (Fig. 14.2).

Fig. 14.2 Infinitesimal

rotation

ρ 

ρ 

ϕd ω dt= 

ρ ρ 

= 

+d

ρ d d xϕ
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Then we have (the index i is suppressed)

dρ =
dρ

dt
dt =

⎛
⎝

0 W12 W13

−W12 0 W23

−W13 −W23 0

⎞
⎠

⎛
⎝

ρ1

ρ2

ρ3

⎞
⎠ dt =

⎛
⎝

W12ρ2 + W13ρ3

−W12ρ1 + W23ρ3

−W13ρ1 − W23ρ2

⎞
⎠ dt

(14.20)

which can be written as a cross product:

dρ = dϕ × ρ (14.21)

with

dϕ =

⎛
⎝

−W23dt

W13dt

−W12dt

⎞
⎠ . (14.22)

But this can be expressed in terms of the angular velocity ω as

dϕ = ωdt (14.23)

and finally we have

dϕ = ωdt =

⎛
⎝

ω1

ω2

ω3

⎞
⎠ dt W =

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ (14.24)

and the more common form of the equation of motion

d

dt
ρ = Wρ = ω × ρ. (14.25)

Example:Rotation Around the z-axis

For constant angular velocity ω the equation of motion

d

dt
ρ = Wρ (14.26)

has the formal solution

ρ = eW t
ρ(0) = A(t)ρ(0). (14.27)

The angular velocity vector for rotation around the z-axis is
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ω =

⎛
⎝

0

0

ω3

⎞
⎠ (14.28)

and

W =

⎛
⎝

0 −ω3 0

ω3 0 0

0 0 0

⎞
⎠ . (14.29)

Higher powers of W can be easily calculated since

W 2 =

⎛
⎝

−ω2
3 0 0

0 −ω2
3 0

0 0 0

⎞
⎠ (14.30)

W 3 = −ω2
3

⎛
⎝

0 −ω3 0

ω3 0 0

0 0 0

⎞
⎠ (14.31)

etc., and the rotation matrix is obtained from the Taylor series

A(t) = eW t = 1 + W t +
1

2
W 2t2 +

1

6
W 3t3 + · · ·

= 1 +

⎛
⎝

ω2
3 t2 0 0

0 ω2
3 t2 0

0 0 0

⎞
⎠

(
−

1

2
+

ω2
3 t2

24
+ · · ·

)
+

⎛
⎝

0 −ω3t 0

ω3t 0 0

0 0 0

⎞
⎠

(
1 −

ω2
3 t2

6
+ · · ·

)

=

⎛
⎝

cos(ω3t) − sin(ω3t)

sin(ω3t) cos(ω3t)

1

⎞
⎠ . (14.32)

14.4 Transformation Properties of the Angular Velocity

Now imagine we are sitting on the rigid body and observe a mass point moving

outside. Its position in the laboratory system is r1. In the body fixed system we

observe it at

ρ1b = A−1(r1 − R) (14.33)

and its velocity in the body fixed system is
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ρ̇1b = A−1(ṙ1 − Ṙ) +
dA−1

dt
(r1 − R). (14.34)

The time derivative of the inverse matrix follows from

0 =
d

dt
(A−1A) = A−1Ȧ +

dA−1

dt
A (14.35)

dA−1

dt
= −A−1ȦA−1 = −A−1W (14.36)

and hence

dA−1

dt
(r1 − R) = −A−1W (r1 − R). (14.37)

Now we rewrite this using the angular velocity as it is observed in the body fixed

system

−A−1W (r1 − R) = −WbA−1(r1 − R) = −Wbρ1b = −ωb × ρ1b (14.38)

where W transforms as like a rank−2 tensor

Wb = A−1W A. (14.39)

From this equation the transformation properties of ω can be derived. We consider

only rotation around one axis explicitly, since a general rotation matrix can always

be written as a product of three rotations around different axes. For instance, rotation

around the z-axis gives:

Wb =

⎛
⎝

0 −ωb3 ωb2

ωb3 0 −ωb1

−ωb2 ωb1 0

⎞
⎠ =

⎛
⎝

cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

⎞
⎠

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠

⎛
⎝

cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

⎞
⎠ =

=

⎛
⎝

0 −ω3 ω2 cos ϕ − ω1 sin ϕ

ω3 0 −(ω1 cos ϕ + ω2 sin ϕ)

−(ω2 cos ϕ − ω1 sin ϕ) ω1 cos ϕ + ω2 sin ϕ 0

⎞
⎠

(14.40)

which shows that
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⎛
⎝

ω1b

ω2b

ω3b

⎞
⎠ =

⎛
⎝

cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

⎞
⎠

⎛
⎝

ω1

ω2

ω3

⎞
⎠ = A−1

ω (14.41)

i.e. ω transforms like a vector under rotations. However, there is a subtle difference

considering general coordinate transformations involving reflections. For example,

under reflection at the xy-plane W is transformed according to

Wb =

⎛
⎝

1 0 0

0 1 0

0 0 −1

⎞
⎠

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠

⎛
⎝

1 0 0

0 1 0

0 0 −1

⎞
⎠

=

⎛
⎝

0 −ω3 −ω2

ω3 0 ω1

ω2 −ω1 0

⎞
⎠ (14.42)

and the transformed angular velocity vector is

⎛
⎝

ω1b

ω2b

ω3b

⎞
⎠ = −

⎛
⎝

1 0 0

0 1 0

0 0 −1

⎞
⎠

⎛
⎝

ω1

ω2

ω3

⎞
⎠ . (14.43)

This is characteristic of a so called axial or pseudo-vector. Under a general coordinate

transformation it transforms as

ωb = det(A)Aω. (14.44)

14.5 Momentum and Angular Momentum

The total momentum is

P =
∑

i

miṙi =
∑

i

miṘ = MṘ (14.45)

since by definition we have
∑

i miρi = 0.

The total angular momentum can be decomposed into the contribution of the

center of mass motion and the contribution relative to the center of mass

L =
∑

i

miri × ṙi = MR × Ṙ +
∑

i

miρi × ρ̇i = LCOM + Lint . (14.46)

The second contribution is
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Lint =
∑

i

miρi × (ω × ρi) =
∑

i

mi

(
ωρ2

i − ρi(ρiω)
)
. (14.47)

This is a linear vector function of ω, which can be expressed simpler by introducing

the tensor of inertia

I =
∑

i

miρ
2
i 1 − miρiρ

T
i (14.48)

or component-wise

Im,n =
∑

i

miρ
2
i δm,n − miρi,mρi,n (14.49)

as

Lint = Iω. (14.50)

14.6 Equations of Motion of a Rigid Body

Let Fi be an external force acting on mi. Then the equation of motion for the center

of mass is

d2

dt2

∑

i

miri = MR̈ =
∑

i

Fi = Fext . (14.51)

If there is no total external force Fext , the center of mass moves with constant velocity

R = R0 + V(t − t0). (14.52)

The time derivative of the angular momentum equals the total external torque

d

dt
L =

d

dt

∑

i

miri × ṙi =
∑

i

miri × r̈i =
∑

i

ri × Fi =
∑

i

Ni = Next (14.53)

which can be decomposed into

Next = R × Fext +
∑

i

ρi × Fi. (14.54)

With the decomposition of the angular momentum
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d

dt
L =

d

dt
LCOM +

d

dt
Lint (14.55)

we have two separate equations for the two contributions:

d

dt
LCOM =

d

dt
MR × Ṙ = MR × R̈ = R × Fext (14.56)

d

dt
Lint =

∑

i

ρi × Fi = Next − R × Fext = Nint (14.57)

14.7 Moments of Inertia

The angular momentum (14.50) is

LRot = Iω = AA−1IAA−1
ω = AIbωb (14.58)

where the tensor of inertia in the body fixed system is

Ib = A−1IA = A−1

(
∑

i

miρ
T
i ρi − miρiρ

T
i

)
A

=
∑

i

miA
T
ρ

T
i ρiA − miA

T
ρiρ

T
i A

=
∑

i

miρ
2
ib − miρibρ

T
ib. (14.59)

Since Ib does not depend on time (by definition of the body fixed system) we will

use the principal axes of Ib as the axes of the body fixed system. Then Ib takes the

simple form

Ib =

⎛
⎝

I1 0 0

0 I2 0

0 0 I3

⎞
⎠ (14.60)

with the principle moments of inertia I1,2,3.

14.8 Equations of Motion for a Rotor

The following equations describe pure rotation of a rigid body:

d

dt
A = W A = AWb (14.61)
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d

dt
Lint = Nint (14.62)

W =

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ Wij = −εijkωk (14.63)

Lint = ALint,b = Iω = AIbωb (14.64)

ωb = I−1
b Lint,b =

⎛
⎝

I−1
1 0 0

0 I−1
2 0

0 0 I−1
3

⎞
⎠ Lint,b ω = Aωb (14.65)

Ib = const. (14.66)

14.9 Explicit Methods

Equation (14.61) for the rotation matrix and (14.62) for the angular momentum have

to be solved by a suitable algorithm. The simplest integrator is the explicit Euler

method (Fig. 14.3) [169]:
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Fig. 14.3 (Global error of the explicit methods) The equations of a free rotor (14.8) are solved

using the explicit first order (full curves) and second order (dashed curves) method. The deviations

| det(A) − 1| (diamonds) and |Ekin − Ekin(0)| (circles) at t=10 are shown as a function of the time

step ∆t. Full circles show the energy deviation of the first order method with reorthogonalization.

The principal moments of inertia are Ib = diag(1, 2, 3) and the initial angular momentum is

L = (1, 1, 1). See also Problem 14.1
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A(t + ∆t) = A(t) + A(t)Wb(t)∆t + O(∆t2) (14.67)

Lint(t + ∆t) = Lint(t) + Nint(t)∆t + O(∆t2). (14.68)

Expanding the Taylor series of A(t) to second order we have the second order approx-

imation (Fig. 14.3)

A(t + ∆t) = A(t) + A(t)Wb(t)∆t +
1

2

(
A(t)W 2

b (t) + A(t)Ẇb(t)
)
∆t2 + O(∆t3).

(14.69)

A corresponding second order expression for the angular momentum involves the

time derivative of the forces and is usually not practicable.

The time derivative of W can be expressed via the time derivative of the angular

velocity which can be calculated as follows:

d

dt
ωb =

d

dt

(
I−1
b A−1Lint

)
= I−1

b

(
d

dt
A−1

)
Lint + I−1

b A−1Nint =

= I−1
b

(
−A−1W

)
Lint + I−1

b A−1Nint = −I−1
b WbLint,b + I−1

b Nint,b. (14.70)

Alternatively, in the laboratory system

d

dt
ω =

d

dt
(Aωb) = W Aωb − AI−1

b A−1W Lint + AI−1
b A−1Nint

= AI−1
b A(Nint − W Lint) (14.71)

where the first summand vanishes due to

W Aωb = AWbωb = Aωb × ωb = 0. (14.72)

Substituting the angular momentum we have

d

dt
ωb = I−1

b Nint,b − I−1
b WbIbωb (14.73)

which reads in components:

⎛
⎝

ω̇b1

ω̇b2

ω̇b3

⎞
⎠ =

⎛
⎝

I−1
b1 Nb1

I−1
b2 Nb2

I−1
b3 Nb3

⎞
⎠

−

⎛
⎝

I−1
b1

I−1
b2

I−1
b3

⎞
⎠

⎛
⎝

0 −ωb3 ωb2

ωb3 0 −ωb1

−ωb2 ωb1 0

⎞
⎠

⎛
⎝

Ib1ωb1

Ib2ωb2

Ib3ωb3

⎞
⎠ (14.74)
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Evaluation of the product gives a set of equations which are well known as Euler’s

equations:

ω̇b1 = Ib2−Ib3

Ib1
ωb2ωb3 + Nb1

Ib1

ω̇b2 = Ib3−Ib1

Ib2
ωb3ωb1 + Nb2

Ib2

ω̇b3 = Ib1−Ib2

Ib3
ωb1ωb2 + Nb3

Ib3
(14.75)

14.10 Loss of Orthogonality

The simple methods above do not conserve the orthogonality of A. This is an effect

of higher order but the error can accumulate quickly. Consider the determinant of A.

For the simple explicit Euler scheme we have

det(A + ∆A) = det(A + W A∆t) = det A det(1 + W∆t) = det A (1 + ω2∆t2).

(14.76)

The error is of order ∆t2, but the determinant will continuously increase, i.e. the

rigid body will explode. For the second order integrator we find

det(A + ∆A) = det

(
A + W A∆t +

∆t2

2
(W 2A + Ẇ A)

)

= det A det

(
1 + W∆t +

∆t2

2
(W 2 + Ẇ )

)
. (14.77)

This can be simplified to give

det(A + ∆A) = det A (1 + ω̇ω∆t3 + · · · ). (14.78)

The second order method behaves somewhat better since the product of angular

velocity and acceleration can change in time. To assure that A remains a rotation

matrix we must introduce constraints or reorthogonalize A at least after some steps

(for instance every time when | det(A) − 1| gets larger than a certain threshold). The

following method with a symmetric correction matrix is a very useful alternative

[170]. The non-singular square matrix A can be decomposed into the product of an

orthonormal matrix Ã and a positive semi-definite matrix S

A = ÃS (14.79)

with the positive definite square root of the symmetric matrix AT A

S = (AT A)
1/2 (14.80)
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and

Ã = AS−1 = A(AT A)−
1/2 (14.81)

which is orthonormal as can be seen from

ÃT Ã = (S−1)T AT AS−1 = S−1S2S−1 = 1. (14.82)

Since the deviation of A from orthogonality is small, we make the approximations

S = 1 + s (14.83)

AT A = S2 ≈ 1 + 2s (14.84)

s ≈
AT A − 1

2
(14.85)

S−1 ≈ 1 − s ≈ 1 +
1 − AT A

2
+ · · · (14.86)

which can be easily evaluated.

14.11 Implicit Method

The quality of the method can be significantly improved by taking the time derivative

at midstep (Fig. 14.4) (13.5):

Fig. 14.4 (Global error of

the implicit method) The

equations of a free rotor

(14.8) are solved using the

implicit method. The

deviations | det(A) − 1|
(diamonds) and

|Ekin − Ekin(0)| (circles) at

t = 10 are shown as a

function of the time step ∆t.

Initial conditions as in

Fig. 14.3. See also
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A(t + ∆t) = A(t) + A

(
t +

∆t

2

)
W

(
t +

∆t

2

)
∆t + · · · (14.87)

Lint(t + ∆t) = Lint(t) + Nint

(
t +

∆t

2

)
∆t + · · · . (14.88)

Taylor series expansion gives

A

(
t +

∆t

2

)
W

(
t +

∆t

2

)
∆t

= A(t)W (t)∆t + Ȧ(t)W (t)
∆t2

2
+ A(t)Ẇ (t)

∆t2

2
+ O(∆t3) (14.89)

= A(t)W (t)∆t + (A(t)W 2(t) + A(t)Ẇ (t))
∆t2

2
+ O(∆t3) (14.90)

which has the same error order as the explicit second order method. The matrix

A(t + ∆t
2

) at mid-time can be approximated by

1

2
(A(t) + A(t + ∆t))

= A

(
t +

∆t

2

)
+

∆t2

4
Ä

(
t +

∆t

2

)
+ · · · = A

(
t +

∆t

2

)
+ O(∆t2) (14.91)

which does not change the error order of the implicit integrator which now becomes

A(t + ∆t) = A(t) +
1

2
(A(t) + A(t + ∆t)) W

(
t +

∆t

2

)
∆t + O(∆t3). (14.92)

This equation can be formally solved by

A(t + ∆t) = A(t)

(
1 +

∆t

2
W

(
t +

∆t

2

)) (
1 −

∆t

2
W

(
t +

∆t

2

))−1

= A(t)Tb

(
∆t

2

)
.

(14.93)

Alternatively, using angular velocities in the laboratory system we have the similar
expression

A(t + ∆t) =
[

1 −
∆t

2
W

(
t +

∆t

2

)]−1 [
1 +

∆t

2
W

(
t +

∆t

2

)]
A(t) = T

(
∆t

2

)
A(t).

(14.94)

The angular velocities at midtime can be calculated with sufficient accuracy from

W

(
t +

∆t

2

)
= W (t) +

∆t

2
Ẇ (t) + O(∆t2). (14.95)
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With the help of an algebra program we easily prove that

det

(
1 +

∆t

2
W

)
= det

(
1 −

∆t

2
W

)
= 1 +

ω2∆t2

4
(14.96)

and therefore the determinant of the rotation matrix is conserved. The necessary

matrix inversion can be easily done:

[
1 −

∆t

2
W

]−1

=

⎛
⎜⎝

1 + ω2
1∆t2

4
−ω3

∆t
2

+ ω1ω2
∆t2

4
ω2

∆t
2

+ ω1ω3
∆t2

4

ω3
∆t
2

+ ω1ω2
∆t2

4
1 + ω2

2∆t2

4
−ω1

∆t
2

+ ω2ω3
∆t2

4

−ω2
∆t
2

+ ω1ω3
∆t2

4
ω1

∆t
2

+ ω2ω3
∆t2

4
1 + ω2

3∆t2

4

⎞
⎟⎠

1

1 + ω2 ∆t2

4

.

(14.97)

The matrix product is explicitly

Tb =
[

1 +
∆t

2
Wb

] [
1 −

∆t

2
Wb

]−1

=

⎛
⎜⎝

1 + ω2
b1−ω2

b2−ω2
b3

4
∆t2 −ωb3∆t + ωb1ωb2

∆t2

2
ωb2∆t + ωb1ωb3

∆t2

2

ωb3∆t + ωb1ωb2
∆t2

2
1 + −ω2

b1+ω2
b2−ω2

b3

4
∆t2 −ωb1∆t + ωb2ωb3

∆t2

2

−ωb2∆t + ωb1ωb3
∆t2

2
ωb1∆t + ωb2ωb3

∆t2

2
1 + −ω2

b1−ω2
b2+ω2

b3

4
∆t2

⎞
⎟⎠

×
1

1 + ω2
b

∆t2

4

. (14.98)

With the help of an algebra program it can be proved that this matrix is even orthog-

onal

TT
b Tb = 1 (14.99)

and hence the orthonormality of A is conserved. The approximation for the angular

momentum

Lint(t) + Nint

(
t +

∆t

2

)
∆t

= Lint(t) + Nint(t)∆t + Ṅint(t)
∆t2

2
+ · · · = Lint(t + ∆t) + O(∆t3) (14.100)
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can be used in an implicit way

Lint(t + ∆t) = Lint(t) +
Nint(t + ∆t) + Nint(t)

2
∆t + O(∆t3). (14.101)

Alternatively Euler’s equations can be used in the form [171, 172]

ωb1

(
t +

∆t

2

)
= ωb1

(
t −

∆t

2

)
+

Ib2 − Ib3

Ib1

ωb2(t)ωb3(t)∆t +
Nb1

Ib1

∆t etc.

(14.102)

where the product ωb2(t)ωb3(t) is approximated by

ωb2(t)ωb3(t) =
1

2

[
ωb2

(
t −

∆t

2

)
ωb3

(
t −

∆t

2

)
+ ωb2

(
t +

∆t

2

)
ωb3

(
t +

∆t

2

)]
.

(14.103)

ωb1(t + ∆t
2

) is determined by iterative solution of the last two equations. Starting

with ωb1(t − ∆t
2

) convergence is achieved after few iterations.

14.12 Example: Free Symmetric Rotor

For the special case of a free symmetric rotor (Ib2 = Ib3, Nint = 0) Euler’s equations

simplify to:

ω̇b1 = 0 (14.104)

ω̇b2 =
Ib2(3) − Ib1

Ib2(3)

ωb1ωb3 = λωb3 (14.105)

ω̇b3 =
Ib1 − Ib2(3)

Ib2(3)

ωb1ωb2 = −λωb2 (14.106)

λ =
Ib2(3) − Ib1

Ib2(3)

ωb1. (14.107)

Coupled equations of this type appear often in physics. The solution can be found

using a complex quantity

Ω = ωb2 + iωb3 (14.108)

which obeys the simple differential equation
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Ω̇ = ω̇b2 + iω̇b3 = −i(iλωb3 + λωb2) = −iλΩ (14.109)

with the solution

Ω = Ω0e−iλt . (14.110)

Finally

ωb =

⎛
⎝

ωb1(0)

ℜ(Ω0e−iλt)

ℑ(Ω0e−iλt)

⎞
⎠ =

⎛
⎝

ωb1(0)

ωb2(0) cos(λt) + ωb3(0) sin(λt)

ωb3(0) cos(λt) − ωb2(0) sin(λt)

⎞
⎠ (14.111)

i.e. ωb rotates around the 1-axis with frequency λ.

14.13 Kinetic Energy of a Rotor

The kinetic energy of the rotor is

Ekin =
∑

i

mi

2
ṙ2

i =
∑

i

mi

2
(Ṙ + Ȧρib)

2

=
∑

i

mi

2
(ṘT + ρ

T
ibȦT )(Ṙ + Ȧρib) =

M

2
Ṙ2 +

∑

i

mi

2
ρ

T
ibȦT Ȧρib. (14.112)

The second part is the contribution of the rotational motion. It can be written as

Erot =
∑

i

mi

2
ρ

T
ibW T

b AT AWbρib = −
∑

i

mi

2
ρ

T
ibW 2

b ρib =
1

2
ωT

b Ibωb (14.113)

since

−W 2
b =

⎛
⎝

ω2
b3 + ω2

b2 −ωb1ωb2 −ωb1ωb3

−ωb1ωb2 ω2
b1 + ω2

b3 −ωb2ωb3

−ωb1ωb3 −ωb2ωb3 ω2
b1 + ω2

b2

⎞
⎠ = ω2

b − ωbω
T
b . (14.114)

14.14 Parametrization by Euler Angles

So far we had to solve equations for all 9 components of the rotation matrix. But there

are six constraints since the column vectors of the matrix have to be orthonormalized.

Therefore the matrix can be parametrized with less than 9 variables. In fact it is

sufficient to use only three variables. This can be achieved by splitting the full rotation
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into three rotations around different axis. Most common are Euler angles defined by

the orthogonal matrix [173]

⎛
⎝

cos ψ cos φ − cos θ sin φ sin ψ − sin ψ cos φ − cos θ sin φ cos ψ sin θ sin φ

cos ψ sin φ + cos θ cos φ sin ψ − sin ψ sin φ + cos θ cos φ cos ψ − sin θ cos φ

sin θ sin ψ sin θ cos ψ cos θ

⎞
⎠

(14.115)

obeying the equations

φ̇ = ωx

sin φ cos θ

sin θ
+ ωy

cos φ cos θ

sin θ
+ ωz (14.116)

θ̇ = ωx cos φ + ωy sin φ (14.117)

ψ̇ = ωx

sin φ

sin θ
− ωy

cos φ

sin θ
. (14.118)

Different versions of Euler angles can be found in the literature, together with

the closely related cardanic angles. For all of them a sin θ appears in the denomi-

nator which causes numerical instabilities at the poles. One possible solution to this

problem is to switch between two different coordinate systems.

14.15 Cayley–Klein-Parameters, Quaternions,

Euler Parameters

There exists another parametrization of the rotation matrix which is very suitable for

numerical calculations. It is connected with the algebra of the so called quaternions.

The vector space of the complex 2 × 2 matrices can be spanned using Pauli matrices

by

1 =
(

1 0

0 1

)
σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
. (14.119)

Any complex 2 × 2 matrix can be written as a linear combination

c01 + cσ. (14.120)

Accordingly any vector x ∈ R3 can be mapped onto a complex 2 × 2 matrix:

x → P =
(

z x − iy

x + iy −z

)
. (14.121)

Rotation of the coordinate system leads to the transformation

P′ = QPQ† (14.122)
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where

Q =
(

α β

γ δ

)
(14.123)

is a complex 2×2 rotation matrix. Invariance of the length (|x| =
√

− det(P)) under

rotation implies that Q must be unitary, i.e. Q† = Q−1 and its determinant must be

1. Explicitly

Q† =
(

α∗ γ∗

β∗ δ∗

)
= Q−1 =

1

αδ − βγ

(
δ −β

−γ α

)
(14.124)

and Q has the form

Q =
(

α β

−β∗ α∗

)
with |α|2 + |β|2 = 1. (14.125)

Setting x± = x ± iy, the transformed matrix has the same form as P:

QPQ†

=
(

α∗βx+ + β∗αx− + (|α|2 − |β|2)z −β2x+ + α2x− − 2αβz

α∗2x+ − β∗2x− − 2α∗β∗z −α∗βx+ − αβ∗x− − (|α|2 − |β|2)z

)

=
(

z′ x′
−

x′
+ −z′

)
. (14.126)

From comparison we find the transformed vector components:

x′ =
1

2
(x′

+ + x′
−) =

1

2
(α∗2 − β2)x+ +

1

2
(α2 − β∗2)x− − (αβ + α∗β∗)z

=
α∗2 + α2 − β∗2 − β2

2
x +

i(α∗2 − α2 + β∗2 − β2)

2
y − (αβ + α∗β∗)z (14.127)

y′ =
1

2i
(x′

+ − x′
−) =

1

2i
(α∗2 + β2)x+ +

1

2i
(−β∗2 − α2)x− +

1

i
(−α∗β∗ + αβ)z

=
α∗2 − α2 − β∗2 + β2

2i
x +

α∗2 + α2 + β∗2 + β2

2
y + i(α∗β∗ − αβ)z (14.128)

z′ = (α∗β + αβ∗)x + i(α∗β − αβ∗)y + (|α|2 − |β|2)z. (14.129)

This gives us the rotation matrix in terms of the Cayley–Klein parameters α and β:

A =

⎛
⎜⎝

α∗2+α2−β∗2−β2

2

i(α∗2−α2+β∗2−β2)

2
−(αβ + α∗β∗)

α∗2−α2−β∗2+β2

2i

α∗2+α2+β∗2+β2

2
1
i
(−α∗β∗ + αβ)

(α∗β + αβ∗) i(α∗β − αβ∗) (|α|2 − |β|2)

⎞
⎟⎠ . (14.130)
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For practical calculations one often prefers to have four real parameters instead of

two complex ones. The so called Euler parameters q0, q1, q2, q3 are defined by

α = q0 + iq3 β = q2 + iq1. (14.131)

Now the matrix Q

Q =
(

q0 + iq3 q2 + iq1

−q2 + iq1 q0 − iq3

)
= q01 + iq1σx + iq2σy + iq3σz (14.132)

becomes a so-called quaternion which is a linear combination of the four matrices

U = 1 I = iσz J = iσy K = iσx (14.133)

which obey the following multiplication rules:

I2 = J2 = K2 = −U

IJ = −JI = K

JK = −KJ = I

KI = −IK = J. (14.134)

In terms of Euler parameters the rotation matrix reads

A =

⎛
⎝

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞
⎠ (14.135)

and from the equation Ȧ = W A we derive the equation of motion for the quaternion
⎛
⎜⎜⎝

q̇0

q̇1

q̇2

q̇3

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝

0 ω1 ω2 ω3

−ω1 0 −ω3 ω2

−ω2 ω3 0 −ω1

−ω3 −ω2 ω1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q0

q1

q2

q3

⎞
⎟⎟⎠ (14.136)

or from Ȧ = AWb the alternative equation

⎛
⎜⎜⎝

q̇0

q̇1

q̇2

q̇3

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝

0 ω1b ω2b ω3b

−ω1b 0 ω3b −ω2b

−ω2b −ω3b 0 ω1b

−ω3b ω2b −ω1b 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q0

q1

q2

q3

⎞
⎟⎟⎠ . (14.137)

Both of these equations can be written briefly in the form

q̇ = W̃ q. (14.138)



346 14 Rotational Motion

Example: Rotation Around the z-axis

Rotation around the z-axis corresponds to the quaternion with Euler parameters

q =

⎛
⎜⎜⎝

cos ωt
2

0

0

− sin ωt
2

⎞
⎟⎟⎠ (14.139)

as can be seen from the rotation matrix

A =

⎛
⎜⎝

(
cos ωt

2

)2 −
(
sin ωt

2

)2 −2 cos ωt
2

sin ωt
2

0

2 cos ωt
2

sin ωt
2

(
cos ωt

2

)2 −
(
sin ωt

2

)2
0

0 0
(
cos ωt

2

)2 +
(
sin ωt

2

)2

⎞
⎟⎠

=

⎛
⎝

cos ωt − sin ωt 0

sin ωt cos ωt 0

0 0 1

⎞
⎠ . (14.140)

The time derivative of q obeys the equation

q̇ =
1

2

⎛
⎜⎜⎝

0 0 0 ω

0 0 −ω 0

0 ω 0 0

−ω 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

cos ωt
2

0

0

− sin ωt
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−ω
2

sin ωt

0

0

−ω
2

cos ωt

⎞
⎟⎟⎠ . (14.141)

After a rotation by 2π the quaternion changes its sign, i.e. q and −q parametrize the

same rotation matrix!

14.16 Solving the Equations of Motion with Quaternions

As with the matrix method we can obtain a simple first or second order algorithm

from the Taylor series expansion

q(t + ∆t) = q(t) + W̃ (t)q(t)∆t + ( ˙̃W (t) + W̃ 2(t))q(t)
∆t2

2
+ · · · . (14.142)

Now only one constraint remains, which is the conservation of the norm of the

quaternion. This can be taken into account by rescaling the quaternion whenever its

norm deviates too much from unity.

It is also possible to use Omelyan’s [174] method:

q(t + ∆t) = q(t) + W̃

(
t +

∆t

2

)
1

2
(q(t) + q(t + ∆t)) (14.143)
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gives

q(t + ∆t) =
(

1 −
∆t

2
W̃

)−1 (
1 +

∆t

2
W̃

)
q(t) (14.144)

where the inverse matrix is

(
1 −

∆t

2
W̃

)−1

=
1

1 + ω2 ∆t2

16

(
1 +

∆t

2
W̃

)
(14.145)

and the matrix product

(
1 −

∆t

2
W̃

)−1 (
1 +

∆t

2
W̃

)
=

1 − ω2 ∆t2

16

1 + ω2 ∆t2

16

+
∆t

1 + ω2 ∆t2

16

W̃ . (14.146)

This method conserves the norm of the quaternion and works quite well.

Problems

Problem 14.1 Free Rotor

In this computer experiment we compare different methods for a free rotor (Sect. 14.8,

Fig. 14.5):

• explicit first order method (14.67)

A(t + ∆t) = A(t) + A(t)Wb(t)∆t + O(∆t2) (14.147)

• explicit second order method (14.69)

Fig. 14.5 Free asymmetric

rotor

S

ω(t)
L=const
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Fig. 14.6 Rotor in an

electric field

p

E

A(t + ∆t) = A(t) + A(t)Wb(t)∆t +
1

2

(
A(t)W 2

b (t) + A(t)Ẇb(t)
)
∆t2 + O(∆t3)

(14.148)

• implicit second order method (14.93)

A(t +∆t) = A(t)

(
1 +

∆t

2
W

(
t +

∆t

2

))(
1 −

∆t

2
W

(
t +

∆t

2

))−1

+O(∆t3).

(14.149)

The explicit methods can be combined with reorthogonalization according to

(14.79) or with the Gram-Schmidt method. Reorthogonalization threshold and time

step can be varied and the error of kinetic energy and determinant are plotted as a

function of the total simulation time.

Problem 14.2 Rotor in a Field

In this computer experiment we simulate a molecule with a permanent dipole moment

in a homogeneous electric field E (Fig. 14.6). We neglect vibrations and describe the

molecule as a rigid body consisting of nuclei with masses mi and partial charges Qi.

The total charge is
∑

i Qi = 0. The dipole moment is

p =
∑

i

Qiri (14.150)

and external force and torque are

Fext =
∑

i

QiE = 0 (14.151)

Next =
∑

i

Qiri × E = p × E. (14.152)
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Fig. 14.7 Molecular

collision L 1

v b

L 2

The angular momentum changes according to

d

∆t
Lint = p × E (14.153)

where the dipole moment is constant in the body fixed system. We use the implicit

integrator for the rotation matrix (14.93) and the equation

ω̇b(t) = −I−1
b Wb(t)Lint,b(t) + I−1

b A−1(t)(p(t) × E) (14.154)

to solve the equations of motion numerically.

Obviously the component of the angular momentum parallel to the field is con-

stant. The potential energy is

U = −
∑

i

QiEri = −pE. (14.155)

Problem 14.3 Molecular Collision

This computer experiment simulates the collision of two rigid methane molecules

(Fig. 14.7). The equations of motion are solved with the implicit quaternion method

(14.143) and the velocity Verlet method (13.11.4). The two molecules interact by a

standard 6–12 Lennard-Jones potential (15.24) [163]. For comparison the attractive

r−6 part can be switched off. The initial angular momenta as well as the initial

velocity v and collision parameter b can be varied. Total energy and momentum are

monitored and the decomposition of the total energy into translational, rotational and

potential energy are plotted as a function of time.

Study the exchange of momentum and angular momentum and the transfer of

energy between translational and rotational degrees of freedom.

http://dx.doi.org/10.1007/978-3-319-61088-7_13
http://dx.doi.org/10.1007/978-3-319-61088-7_15


Chapter 15

Molecular Mechanics

Classical molecular mechanics simulations have become a very valuable tool for

the investigation of atomic and molecular systems [175–179], mainly in the area of

materials science and molecular biophysics. Based on the Born–Oppenheimer sep-

aration which assumes that the electrons move much faster than the nuclei, nuclear

motion is described quantum mechanically by the Hamiltonian

H =
[

T Nuc + U
(

rNuc
j

)]

. (15.1)

Molecular mechanics uses the corresponding classical energy function

T Nuc + U
(

rNuc
j

)

=
∑

j

(pNuc
j )2

2m j

+ U
(

rNuc
j

)

(15.2)

which treats the atoms as mass points interacting by classical forces

Fi = −gradri
U

(

rNuc
j

)

. (15.3)

Stable structures, i.e. local minima of the potential energy can be found by the

methods discussed in Chap. 6. Small amplitude motions around an equilibrium geom-

etry are described by a harmonic normal mode analysis. Molecular dynamics (MD)

simulations solve the classical equations of motion

mi

d2ri

dt2
= Fi = −gradri

U (15.4)

numerically.

The potential energy function U
(

rNuc
j

)

can be calculated with simplified quan-

tum methods for not too large systems [180, 181]. Classical MD simulations for

larger molecules use empirical force fields, which approximate the potential energy

surface of the electronic ground state. They are able to describe structural and con-

formational changes but not chemical reactions which usually involve more than one

© Springer International Publishing AG 2017
P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-61088-7_15

351

http://dx.doi.org/10.1007/978-3-319-61088-7_6


352 15 Molecular Mechanics

Fig. 15.1 (Molecular
coordinates) Cartesian
coordinates (Left) are used
to solve the equations of
motion whereas the potential
energy is more conveniently
formulated in internal
coordinates (Right)
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electronic state. Among the most popular classical force fields are AMBER [182],
CHARMM [183] and GROMOS [184, 185].

In this chapter we discuss the most important interaction terms, which are con-

veniently expressed in internal coordinates, i.e. bond lengths, bond angles and di-

hedral angles. We derive expressions for the gradients of the force field with respect

to Cartesian coordinates. In a computer experiment we simulate a glycine dipeptide

and demonstrate the principles of energy minimization, normal mode analysis and

dynamics simulation.

15.1 Atomic Coordinates

The most natural coordinates for the simulation of molecules are the Cartesian co-
ordinates (Fig. 15.1) of the atoms,

ri = (xi , yi , zi ) (15.5)

which can be collected into a 3N -dimensional vector

(ξ1, ξ2 · · · ξ3N ) = (x1, y1, z1, x2 · · · xN , yN , zN ). (15.6)

The second derivatives of the Cartesian coordinates appear directly in the equations
of motion (15.4)

mr ξ̈r = Fr r = 1 · · · 3N . (15.7)

Cartesian coordinates have no direct relation to the structural properties of molecules.
For instance a protein is a long chain of atoms (the so called backbone) with additional
side groups (Fig. 15.2).

The protein structure can be described more intuitively with the help of atomic dis-
tances and angles. Internal coordinates are (Fig. 15.3) distances between two bonded
atoms (bond lengths)
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Fig. 15.2 (Conformation of
a protein) The relative
orientation of two successive
protein residues can be
described by three angles
(Ψ,Φ,ω)
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Fig. 15.3 (Internal
coordinates) The structure of
a molecule can be described
by bond lengths, bond angles
and dihedral angles i

j

bij
φ

i

j

k

ijk

i

j

k

l

θ
ijkl

bi j = |ri j | = |ri − r j |, (15.8)

angles between two bonds (bond angles)

φi jk = arccos

(

ri j rk j
∣

∣ri j

∣

∣

∣

∣rk j

∣

∣

)

(15.9)

and dihedral angles which describe the planarity and torsions of the molecule. A
dihedral angle (Fig. 15.4) is the angle between two planes which are defined by three
bonds

θi jkl = sign(θi jkl) arccos(ni jkn jkl) (15.10)
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Fig. 15.4 Dihedral angle

i
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Fig. 15.5 (Glycine
dipeptide model) The
glycine dipeptide is the
simplest model for a peptide.
It is simulated in
Problem 15.1. Optimized
internal coordinates are
shown in Table 15.1

N1 C2

C3 N4

C5 C6
O7

H13
H10

H11

H12
H14

H16H15
H17

O8

O9

ni jk =
ri j × rk j
∣

∣ri j × rk j

∣

∣

n jkl =
rk j × rkl
∣

∣rk j × rkl

∣

∣

(15.11)

where the conventional sign of the dihedral angle [186] is determined by

signθi jkl = sign
(

rk j (ni jk × n jkl)
)

. (15.12)

Internal coordinates are very convenient for the formulation of a force field. On the
other hand, the kinetic energy (15.2) becomes complicated if expressed in internal
coordinates. Therefore both kinds of coordinates are used in molecular dynamics
calculations. The internal coordinates are usually arranged in Z-matrix form. Each
line corresponds to one atom i and shows its position relative to three atoms j, k, l in
terms of the bond length bi j , the bond angle φi jk and the dihedral angle θi jkl (Fig. 15.5
and Table 15.1).
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Table 15.1 (Z-matrix) The optimized values of the internal coordinates from Problem 15.1 are
shown in Z-matrix form. Except for the first three atoms the position of atom i is given by its
distance bi j to atom j , the bond angle φi jk and the dihedral angle θi jkl

Number i Label j k l Bond
length
bi j (Å)

Bond
angle φi jk

Dihedral
θi jkl

1 N1

2 C2 1 1.45

3 C3 2 1 1.53 108.6

4 N4 3 2 1 1.35 115.0 160.7

5 C5 4 3 2 1.44 122.3 −152.3

6 C6 5 4 3 1.51 108.7 −153.1

7 O7 3 2 1 1.23 121.4 −26.3

8 O8 6 5 4 1.21 124.4 123.7

9 O9 6 5 4 1.34 111.5 −56.5

10 H10 1 2 3 1.02 108.7 −67.6

11 H11 1 2 3 1.02 108.7 49.3

12 H12 2 3 4 1.10 109.4 −76.8

13 H13 2 3 4 1.10 109.4 38.3

14 H14 4 3 2 1.02 123.1 27.5

15 H15 5 4 3 1.10 111.2 −32.5

16 H16 5 4 3 1.10 111.1 86.3

17 H17 9 6 5 0.97 106.9 −147.4

15.2 Force Fields

Classical force fields are usually constructed as an additive combination of many
interaction terms. Generally these can be divided into intramolecular contributions
Ubonded which determine the configuration and motion of a single molecule and
intermolecular contributions Unon−bonded describing interactions between different
atoms or molecules

U = Ubonded + Unon−bonded . (15.13)

15.2.1 Intramolecular Forces

The most important intramolecular forces depend on the deviation of bond lengths,
bond angles and dihedral angles from their equilibrium values. For simplicity a sum
of independent terms is used as for the CHARMM force field [183, 187, 188]
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Fig. 15.6 Intramolecular forces

Uintra =
∑

U bond
i j +

∑

U
angle

i jk +
∑

UU B
i jk +

∑

U dihedral
i jkl +

∑

U
improper

i jkl .

(15.14)

The forces are derived from potential functions which are in the simplest case ap-
proximated by harmonic oscillator parabolas (Fig. 15.6), like the bond stretching
energy

U bond
i j =

1

2
ki j (bi j − b0

i j )
2 (15.15)

angle bending terms

U
angle

i jk =
1

2
ki jk(φi jk − φ0

i jk)
2 (15.16)

together with the Urey-Bradly correction

UU B
i jk =

1

2
ki jk(bik − b0

ik)
2 (15.17)
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and “improper dihedral” terms which are used to keep planarity

U
improper

i jkl =
1

2
ki jkl(θi jkl − θ0

i jkl)
2. (15.18)

Torsional energy contributions are often described by a cosine function1

U dihedral
i jkl = ki jkl

(

1 − cos(mθi jkl − θ0
i jkl)

)

(15.19)

where m = 1, 2, 3, 4, 6 describes the symmetry. For instance m = 3 for the three
equivalent hydrogen atoms of a methyl group. In most cases the phase shift θ0

i jkl = 0
or θ0

i jkl = π. Then the dihedral potential can be expanded as a polynomial of cos θ,
for instance

m=1: U dihedral
i jkl = k(1 ± cos θi jkl) (15.20)

m=2: U dihedral
i jkl = k ± k(1 − 2(cos θi jkl)

2) (15.21)

m=3: U dihedral
i jkl = k(1 ± 3 cos θi jkl ∓ 4(cos θi jkl)

3). (15.22)

For more general θ0
i jkl the torsional potential can be written as a polynomial of

cos θi jkl and sin θi jkl .
The atoms are classified by element and bonding environment. Atoms of the same

atom type are considered equivalent and the parameters transferable (for an example
see Tables 15.2, 15.3, 15.4).

15.2.2 Intermolecular Interactions

Interactions between non-bonded atoms

Unon−bonded = U Coul + U vdW (15.23)

include the Coulomb interaction and the weak attractive van der Waals forces which
are usually combined with a repulsive force at short distances to account for the Pauli
principle. Very often a sum of pairwise Lennard-Jones potentials is used (Fig. 15.7)
[163]

1Some force-fields like Desmond [189] or UFF [190] use a more general sum k
∑M

m=0 cm cos(mθ −
θ0).
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U vdw =
∑

A �=B

∑

i∈A, j∈B

U vdw
i, j =

∑

A �=B

∑

ij

4εi j

(

σ12
i j

r12
i j

−
σ6

i j

r6
i j

)

. (15.24)

The charge distribution of a molecular system can be described by a set of multi-
poles at the position of the nuclei, the bond centers and further positions (lone pairs
for example). Such distributed multipoles can be calculated quantum chemically for
not too large molecules. In the simplest models only partial charges are taken into
account giving the Coulomb energy as a sum of atom-atom interactions

U Coul =
∑

A �=B

∑

i∈A, j∈B

qi q j

4πε0ri j

. (15.25)

More sophisticated force fields include higher charge multipoles and polarization
effects.

15.3 Gradients

The equations of motion are usually solved in Cartesian coordinates and the gradients
of the potential are needed in Cartesian coordinates. Since the potential depends only
on relative position vectors ri j , the gradient with respect to a certain atom position
rk can be calculated from

Table 15.2 (Atom types of the glycine dipeptide) Atom types for glycine oligopeptides according
to Bautista and Seminario [191]. The atoms are classified by element and bonding environment.
Atoms of the same atom type are considered equivalent

Atom type Atoms

C C3

C1 C2, C5

C2 C6

N N4

N2 N1

O O7

O1 O9

O2 O8

H H14

H1 H12, H13, H15, H16

H2 H17

H3 H10,H11
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Table 15.3 (Bond stretching parameters) Equilibrium bond lengths (Å) and force constants
(kcal mol−1Å−2) for the glycine dipeptide from [191]

Bond type b0 k Bonds

rC,N 1.346 1296.3 C3-N4

rC1,N 1.438 935.5 N4-C5

rC1,N2 1.452 887.7 N1-C2

rC2,C1 1.510 818.9 C5-C6

rC,C1 1.528 767.9 C2-C3

rC2,O2 1.211 2154.5 C6-O8

rC,O 1.229 1945.7 C3-O7

rC2,O1 1.339 1162.1 C6-O9

rN ,H 1.016 1132.4 N4-H14

rN2,H3 1.020 1104.5 N1-H10, N1-H11

rC1,H1 1.098 900.0 C2-H12, C2-H13,
C5-H15,C5-H16

rO1,H2 0.974 1214.6 O9-H17

Fig. 15.7 (Lennard-Jones
potential) The 6–12 potential
(15.24) has its minimum at
rmin = 6

√
2σ ≈ 1.12σ with

Umin = −ǫ

1 1.2 1.4 1.6 1.8 2
r/σ

-1

0

1

2

U
/ε

gradrk
=

∑

i< j

(δik − δ jk)gradri j
. (15.26)

Therefore it is sufficient to calculate gradients with respect to the difference vectors.
Numerically efficient methods to calculate first and second derivatives of many force
field terms are given in [192–194]. The simplest potential terms depend only on
the distance of two atoms. For instance bond stretching terms, Lennard-Jones and
Coulomb energies have the form

Ui j = U (ri j ) = U (|ri j |) (15.27)
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Table 15.4 (Bond angle parameters) Equilibrium bond angles (deg) and force constants
(kcal mol−1rad−2) for the glycine dipeptide from [191]

Angle type φ0 k Angles

φN ,C,C1 115.0 160.0 C2-C3-N4

φC1,N ,C 122.3 160.1 C3-N4-C5

φC1,C2,O1 111.5 156.0 C5-C6-O9

φC1,C2,O2 124.4 123.8 C5-C6-O8

φC1,C,O 121.4 127.5 C2-C3-O7

φO2,C2,O1 124.1 146.5 O8-C6-O9

φN ,C,O 123.2 132.7 N4-C3-O7

φC,C1,H1 110.1 74.6 H12-C2-C3,
H13-C2-C3

φC2,C1,H1 109.4 69.6 H16-C5-C6,
H15-C5-C6

φC,N ,H 123.1 72.0 C3-N4-H14

φC1,N ,H 114.6 68.3 C5-N4-H14

φC1,N2,H3 108.7 71.7 H10-N1-C2,
H11-N1-C2

φH1,C1,H1 106.6 48.3 H13-C2-H12,H15-C5-
H16

φH3,N2,H3 107.7 45.2 H10-N1-H11

φC,C1,N2 109.0 139.8 N1-C2-C3

φC2,C1,N 108.6 129.0 N4-C5-C6

φC2,O1,H2 106.9 72.0 H17-O9-C6

φN ,C1,H1 111.1 73.3 H15-C5-N4,
H16-C5-N4

φN2,C1,H1 112.6 80.1 H13-C2-N1,
H12-C2-N1

where the gradient is

gradri j
Ui j =

dU

dr

ri j

|ri j |
. (15.28)

The most important gradients of this kind are

gradri j
U bond

i, j = k(ri j − b0)
ri j

ri j

= k

(

1 −
b0

ri j

)

ri j (15.29)

gradri j
U vdw

i, j = 24εi j

(

−2
σ12

i j

r14
i j

+
σ6

i j

r8
i j

)

ri j (15.30)
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gradri j
U Coul

i j = −
qi q j

4πε0r3
i j

ri j . (15.31)

The gradient of the harmonic bond angle potential is

gradrU
angle

i, j,k = k(φi jk − φ0)gradrφi jk (15.32)

where the gradient of the angle can be calculated from the gradient of its cosine

gradri j
φi jk = −

1

sin φi jk

gradri j
cos φi jk = −

1

sin φi jk

(

rk j

|ri j ||rk j |
−

ri j rk j

|ri j |3|rk j |
ri j

)

= −
1

sin φi jk

(

rk j

|ri j ||rk j |
−

cos φi jk

|ri j |2
ri j

)

(15.33)

gradrk j
φi jk = −

1

sin φi jk

(

ri j

|ri j ||rk j |
−

cos φi jk

|rk j |2
rk j

)

. (15.34)

In principle, the sine function in the denominator could lead to numerical problems
which can be avoided by treating angles close to 0 or π separately or using a function
of cos φi jk like the trigonometric potential

U
angle

i jk =
1

2
ki jk(cos φi jk − cos φ0

i jk)
2 (15.35)

instead [190, 195, 196]. Alternatively, the gradient of φ can be brought to a form
which is free of singularities by expressing the sine in the denominator by a cosine
[197]

grad ri j
φi jk = −

1
√

r2
i jr

2
k j (1 − cos2 φi jk)

(

rk j −
ri j rk j

r2
i j

ri j

)

= −
r2

i j rk j − (ri j rk j )ri j

ri j

√

(r2
i j rk j − (ri j rk j )ri j )2

= −
1

ri j

ri j × (rk j × ri j )
∣

∣ri j × (rk j × ri j )
∣

∣

(15.36)

and similarly

grad rk j
φi jk = −

1

rk j

rk j × (ri j × rk j )
∣

∣rk j × (ri j × rk j )
∣

∣

. (15.37)

Gradients of the dihedral potential are most easily calculated for θ0
i jkl = 0 or π.

In that case, the dihedral potential is a polynomial of cos θi jkl only (15.20)–(15.22)
and
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gradrU dihedral
i jkl =

dU dihedral
i jkl

d cos θi jkl

gradr cos θi jkl (15.38)

whereas in the general case 0 < θi jkl < π application of the chain rule gives

gradU dihedral
i jkl = mki jkl sin(m(θi jkl − θ0)) grad θi jkl . (15.39)

If this is evaluated with the help of

gradθi jkl = −
1

sin θi jkl

grad cos θi jkl (15.40)

singularities appear for θ = 0 and π. The same is the case for the gradients of the
harmonic improper potential

gradU
improper

i jkl = k(θi jkl − θ0
i jkl) gradθi jkl . (15.41)

Again, one possibility which has been often used, is to treat angles close to 0 or π

separately [188]. However, the gradient of the angle θi jkl can be calculated directly,
which is much more efficient [198].

The gradient of the cosine follows from application of the product rule

grad cos θ = grad

(

ri j × rk j
∣

∣ri j × rk j

∣

∣

rk j × rkl
∣

∣rk j × rkl

∣

∣

)

. (15.42)

First we derive the differentiation rule

grada [(a × b)(c × d)] = grada [(ac)(bd) − (ad)(bc)]

= c(bd) − d(bc) = b × (c × d) (15.43)

which helps us to find

gradri j
(ri j × rk j )(rk j × rkl) = rk j × (rk j × rkl) (15.44)

gradrkl
(ri j × rk j )(rk j × rkl) = rk j × (rk j × ri j ) (15.45)
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gradrk j
(ri j × rk j )(rk j × rkl) = rkl × (ri j × rk j ) + ri j × (rkl × rk j ). (15.46)

and

grad ri j

1
∣

∣ri j × rk j

∣

∣

= −
rk j × (ri j × rk j )

∣

∣ri j × rk j

∣

∣

3 (15.47)

grad rk j

1
∣

∣ri j × rk j

∣

∣

= −
ri j × (rk j × ri j )

∣

∣ri j × rk j

∣

∣

3 (15.48)

grad rk j

1
∣

∣rk j × rkl

∣

∣

= −
rkl × (rk j × rkl)

∣

∣rk j × rkl

∣

∣

3 (15.49)

grad rkl

1
∣

∣rk j × rkl

∣

∣

= −
rk j × (rkl × rk j )

∣

∣rk j × rkl

∣

∣

3 . (15.50)

Finally we collect terms to obtain the gradients of the cosine [197]

gradri j
cos θi jkl =

rk j × (rk j × rkl )
∣

∣ri j × rk j

∣

∣

∣

∣rk j × rkl

∣

∣

−
rk j × (ri j × rk j )

∣

∣ri j × rk j

∣

∣

2 cos θi jkl (15.51)

=
rk j

∣

∣ri j × rk j

∣

∣

×
(

n jkl − ni jk cos θ
)

=
rk j

∣

∣ri j × rk j

∣

∣

×
(

n jkl − ni jk(n jklni jk)
)

=
rk j

∣

∣ri j × rk j

∣

∣

×
(

ni jk × (n jkl × ni jk)
)

=
rk j

∣

∣ri j × rk j

∣

∣

×
(

ni jk ×
1

rk j
(−rk j ) sin θ

)

=
sin θ

rk j

rk j
∣

∣ri j × rk j

∣

∣

×
(

ni jk × (−rk j )
)

=

sin θ

rk j

1
∣

∣ri j × rk j

∣

∣

(

−ni jkr2
k j

)

= −rk j sin θ
ni jk

∣

∣ri j × rk j

∣

∣

gradrkl
cos θi jkl =

rk j × (rk j × ri j )
∣

∣ri j × rk j

∣

∣

∣

∣rk j × rkl

∣

∣

−
rk j × (rkl × rk j )

∣

∣rk j × rkl

∣

∣

2 cos θi jkl (15.52)

=
rk j×

∣

∣rk j × rkl

∣

∣

(

−ni jk + n jkl cos θ
)

=
rk j×

∣

∣rk j × rkl

∣

∣

(

−ni jk + n jkl(ni jkn jkl)
)

= −
rk j

∣

∣rk j × rkl

∣

∣

×
(

n jkl × (ni jk × n jkl)
)
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= −
rk j

∣

∣rk j × rkl

∣

∣

×
(

n jkl ×
(

rk j

rk j

sin θ

))

= −
sin θ

rk j

∣

∣rk j × rkl

∣

∣

rk j ×
(

n jkl × rk j

)

= −
rk j sin θ

∣

∣rk j × rkl

∣

∣

n jkl

gradrk j
cos θi jkl =

rkl × (ri j × rk j ) + ri j × (rkl × rk j )
∣

∣ri j × rk j

∣

∣

∣

∣rk j × rkl

∣

∣

−
ri j × (rk j × ri j )

∣

∣ri j × rk j

∣

∣

2 cos θ −
rkl × (rk j × rkl)

∣

∣rk j × rkl

∣

∣

2 cos θ (15.53)

=
ri j

∣

∣ri j × rk j

∣

∣

×
(

−n jkl + ni jk cos θ
)

+
rkl

∣

∣rk j × rkl

∣

∣

×
(

ni jk − n jkl cos θ
)

= −
ri j

∣

∣ri j × rk j

∣

∣

×
(

ni jk × (n jkl × ni jk)
)

+
rkl

∣

∣rk j × rkl

∣

∣

(

n jkl × (ni jk × n jkl)
)

=
ri j

∣

∣ri j × rk j

∣

∣

×
(

ni jk ×
(

rk j

rk j

sin θ

))

+
rkl

∣

∣rk j × rkl

∣

∣

(

n jkl ×
(

rk j

rk j

sin θ

))

=
sin θ

rk j

1
∣

∣ri j × rk j

∣

∣

ri j ×
(

ni jk × rk j

)

+
sin θ

rk j

1
∣

∣rk j × rkl

∣

∣

rkl ×
(

n jkl × rk j

)

=
sin θ

rk j

ni jk(ri j rk j )
∣

∣ri j × rk j

∣

∣

+
sin θ

rk j

n jkl(rklrk j )
∣

∣rk j × rkl

∣

∣

= −
ri j rk j

r2
k j

grad i j cos θ −
rklrk j

r2
k j

gradkl cos θ.

15.4 Normal Mode Analysis

The nuclear motion around an equilibrium configuration can be approximately de-
scribed as the combination of independent harmonic normal modes. Equilibrium
configurations can be found with the methods discussed in Sect. 6.2. The conver-
gence is usually rather slow (Fig. 15.8) except for the full Newton-Raphson method,
which needs the calculation and inversion of the Hessian matrix.

15.4.1 Harmonic Approximation

At an equilibrium configuration

http://dx.doi.org/10.1007/978-3-319-61088-7_6
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Fig. 15.8 (Convergence of
energy and gradient) The
energy of the glycine
dipeptide is minimized with
the methods of steepest
descent and conjugate
gradients 10

-6

10
-3

10
0

10
3

en
er

g
y

E
-E

m
in

1 10 100 1000 1000
10

-6

10
-4

10
-2

10
0

10
2

g
ra

di
en

t

SD

CG

SD

CG

ξi = ξ
eq

i (15.54)

the gradient of the potential energy vanishes. For small deviations from the equilib-
rium

ζi = ξi − ξ
eq

i (15.55)

approximation by a truncated Taylor series gives

U (ζ1 · · · ζ3N ) = U0 +
1

2

∑

i, j

∂2U

∂ζi∂ζ j

ζiζ j + · · · ≈ U0 +
1

2

∑

i, j

Hi, jζiζ j (15.56)

and the equations of motion are approximately

mi ζ̈i = −
∂

∂ζi

U = −
∑

j

Hi, jζ j . (15.57)

Assuming periodic oscillations

ζi = ζ0
i eiωt (15.58)

we have

miω
2ζ0

i =
∑

j

Hi jζ
0
j . (15.59)

If mass weighted coordinates are used, defined as

τi =
√

miζi (15.60)
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this becomes an ordinary eigenvalue problem

ω2τ 0
i =

∑

j

Hi j√
mi m j

τ 0
j . (15.61)

The eigenvectors ur of the symmetric matrix

H̃i j =
Hi j√
mi m j

(15.62)

are the solutions of

∑

j

H̃i j u jr = λr uir (15.63)

and satisfy (15.61)

ω2uir =
∑

H̃i j u jr = λr uir (15.64)

with normal mode frequencies

ωr =
√

λr . (15.65)

Finally, the Cartesian coordinates are linear combinations of all normal modes

ζi =
∑

r

Cr

uir√
mi

eiωr t . (15.66)

Fig. 15.9 (Normal mode
distribution for the dipeptide
model) The cumulative
distribution (Sect. 9.1.2) of
normal mode frequencies is
shown for the glycine
dipeptide. Translations and
rotations of the molecule
correspond to the lowest 6
frequencies which are close
to zero. The highest
frequencies between 3100
and 3600 cm−1 correspond
to the stretching modes of
the 8 hydrogen atoms 0 1000 2000 3000 4000
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In a true local energy minimum the Hessian matrix Hi j is positive definite and
all frequencies are real valued. The six lowest frequencies are close to zero and
correspond to translations and rotations of the whole system (Fig. 15.9).

Problems

Problem 15.1 Simulation of a Glycine Dipeptide

In this computer experiment a glycine dipeptide (Fig. 15.5) is simulated. Parameters
for bond stretching (Table 15.3) and bond angle (Table 15.4) terms have been derived
from quantum calculations by Bautista and Seminario [191].

• Torsional potential terms (Table 15.5) can be added to make the structure more
rigid. This is especially important for the O9 − H17, N4 − H14 and N1 − H10
bonds, which rotate almost freely without torsional potentials.

• The energy can be minimized with the methods of steepest descent or conjugate
gradients

• A normal mode analysis can be performed (the Hessian matrix is calculated by
numerical differentiation). The r th normal mode can be visualized by modulating
the coordinates periodically according to

ξi = ξ
eq

i + Cr

uir√
mi

cos ωr t. (15.67)

• The motion of the atoms can be simulated with the Verlet method. You can stretch
the O9 − H17 or N4 − H14 bond and observe, how the excitation spreads over
the molecule.

Table 15.5 (Torsional potential terms) Torsional potential terms Vi jkl = ki jkl (1 − cos(θi jkl −
θ0

i jkl ), which can be added to the force field. Minimum angles are from the optimized structure
without torsional terms (15.1). The barrier height of 2ki jkl = 2 kcal/mol is only a guessed value

i j k l θ0
i jkl ki jkl Backbone

10 1 2 3 −67.6 1.0

14 4 3 2 27.5 1.0

17 9 6 5 −147.4 1.0

4 3 2 1 160.7 1.0 Ψ

5 4 3 2 −152.3 1.0 ω

6 5 4 3 −153.1 1.0 Φ

8 6 5 4 123.7 1.0

9 6 5 4 −56.5 1.0

15 5 4 3 −32.5 1.0

16 5 4 3 86.3 1.0

7 3 2 1 −26.3 1.0



Chapter 16

Thermodynamic Systems

An important application for computer simulations is the calculation of thermody-

namic averages in an equilibrium system. We discuss two different examples:

In the first case the classical equations of motion are solved for a system of

particles interacting pairwise by Lennard–Jones forces (Lennard–Jones fluid). The

thermodynamic average is taken along the trajectory, i.e. over the calculated coor-

dinates at different times ri (tn). We evaluate the pair distance distribution function

g(R) =
1

N 2 − N
<

∑

i �= j

δ(ri j − R) >, (16.1)

the velocity auto-correlation function

C(t) =< v(t0)v(t) > (16.2)

and the mean square displacement

∆x2 =< (x(t) − x(t0))
2 > . (16.3)

In the second case the Metropolis method is applied to a one- or two-dimensional

system of interacting spins (Ising model). The thermodynamic average is taken over

a set of random configurations q(n). We study the average magnetization

< M >= µ < S > (16.4)

in a magnetic field and the phase transition to the ferromagnetic state.

© Springer International Publishing AG 2017
P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-61088-7_16
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16.1 Simulation of a Lennard–Jones Fluid

The Lennard–Jones fluid is a simple model of a realistic atomic fluid. It has been
studied by computer simulations since Verlet’s early work [164, 199] and serves as a
test case for the theoretical description of liquids [200, 201] and the liquid-gas [202]
and liquid-solid phase transitions [203, 204].

In the following we describe a simple computer model of 125 interacting particles1

without internal degrees of freedom (see problems section). The force on atom i is
given by the gradient of the pairwise Lennard–Jones potential (15.24)

Fi =
∑

j �=i

Fi j = −4ε
∑

j �=i

▽i

(

σ12

r12
i j

−
σ6

r6
i j

)

= 4ε
∑

j �=i

(

12σ12

r14
i j

−
6σ6

r8
i j

)

(ri − r j ).

(16.5)

We use argon parameters m = 6.69 × 10−26 kg, ε = 1.654 × 10−21 J, σ =
3.405 × 10−10 m [163]. After introduction of reduced units for length r∗ = 1

σ
r,

energy E∗ = 1
ε

E and time t∗ =
√

ε/mσ2 t , the potential energy

U ∗ =
∑

ij

4

(

1

r∗12
i j

−
1

r∗6
i j

)

(16.6)

and the equation of motion

d2

dt∗2
r∗

i = 4
∑

j �=i

(

12

r∗14
i j

−
6

r∗8
i j

)

(r∗
i − r∗

j ) (16.7)

become universal expressions, i.e. there exists only one universal Lennard–Jones
system. To reduce computer time, usually the 6–12 potential is modified at larger
distances which can influence the simulation results [205]. In our model a simple
cutoff of potential and forces at rmax = 10Å is used.

16.1.1 Integration of the Equations of Motion

The equations of motion are integrated with the Verlet algorithm (Sect. 13.11.5)

∆ri = ri (t) − ri (t − ∆t) +
Fi (t)

m
∆t2 (16.8)

1This small number of particles allows a graphical representation of the system during the simula-
tion.

http://dx.doi.org/10.1007/978-3-319-61088-7_15
http://dx.doi.org/10.1007/978-3-319-61088-7_13
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ri (t + ∆t) = ri (t) + ∆ri + O(∆t4). (16.9)

We use a higher order expression for the velocities to improve the accuracy of the
calculated kinetic energy

vi+1 =
∆ri

∆t
+

5Fi (t) − 2Fi (t − ∆t)

6m
∆t + O(∆t3). (16.10)

16.1.2 Boundary Conditions and Average Pressure

Molecular dynamics simulations often involve periodic boundary conditions to
reduce finite size effects. Here we employ an alternative method which simulates
a box with elastic walls. This allows us to calculate explicitly the pressure on the
walls of the box.

The atoms are kept in the cube by reflecting walls, i.e. whenever an atom passes
a face of the cube, the normal component of the velocity vector is changed in sign
(Fig. 16.1). Thus the kinetic energy is conserved but a momentum of m∆v = 2mv⊥
is transferred to the wall. The average momentum change per time can be interpreted
as a force acting upon the wall

F⊥ = <

∑

re f l. 2mv⊥

dt
> . (16.11)

The pressure p is given by

p =
1

6L2
<

∑

walls

∑

re f l. 2mv⊥

dt
> . (16.12)

With the Verlet algorithm the reflection can be realized by exchanging the values of
the corresponding coordinate at times tn and tn−1.

Fig. 16.1 Reflecting walls

t
n

t n+1
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16.1.3 Initial Conditions and Average Temperature

At the very beginning the N = 125 atoms are distributed over equally spaced lattice
points within the cube. Velocities are randomly distributed according to a Gaussian
distribution for each Cartesian component vµ

f (νµ) =
√

m

2πkB T
e−mv2

µ/2kB T (16.13)

corresponding to a Maxwell speed distribution

f (|v|) =
(

m

2πkB T

)3/2

4πv2e−mv2/2kB T . (16.14)

Assuming thermal equilibrium, the effective temperature is calculated from the
kinetic energy

kB T =
2

3N
Ekin. (16.15)

The desired temperature To is established by the rescaling procedure

vi → vi

√

kB To

kB Tactual

(16.16)

which is applied repeatedly during an equilibration run. The velocity distribution
f (|v|) can be monitored. It approaches quickly a stationary Maxwell distribution
(Fig. 16.2).

Fig. 16.2 (Velocity
distribution) The velocity
distribution is shown for
T = 100 K and T = 500 K
(histograms) and compared
to the Maxwell speed
distribution (solid curves)
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A smoother method to control temperature is the Berendsen thermostat
algorithm [206]

vi → vi

√

1 +
∆t

τtherm

kTo − kTactual

kTactual

(16.17)

where τtherm is a suitable relaxation time (for instance τtherm = 20∆t). This method
can be used also during the simulation. However, it does not generate the trajectory
of a true canonical ensemble. If this is necessary, more complicated methods have to
be used [207]

16.1.4 Analysis of the Results

After an initial equilibration phase the system is simulated at constant energy (NVE
simulation) or at constant temperature (NVT) with the Berendsen thermostat method.
Several static and dynamic properties can be determined.

16.1.4.1 Deviation from the Ideal Gas Behavior

A dilute gas is approximately ideal with

pV = NkB T . (16.18)

For a real gas the interaction between the particles has to be taken into account. From
the equipartition theorem it can be found that2

pV = NkB T + W (16.19)

with the inner virial (Fig. 16.3)

W =<
1

3

∑

i

ri Fi > (16.20)

which can be expanded as a power series of the number density n = N/V [208] to
give

pV = NkB T (1 + b(T )
N

V
+ c(T )

(

N

V

)2

+ · · · ). (16.21)

2MD simulations with periodic boundary conditions use this equation to calculate the pressure.
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Fig. 16.3 (Inner virial) The
inner virial W (16.20,
crosses and stars) is
compared to pV − kB T

(squares and circles) for two
values of the particle density

N/V = 10−3Å−1 (a) and
1.95 × 10−3Å−1 (b),
corresponding to reduced
densities n∗ = σ3 N/V of
0.040 and 0.077
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The virial coefficient b(T ) can be calculated exactly for the Lennard–Jones gas [208]:

b(T ) = −
2π

3
σ3

∞
∑

j=0

2 j−3/2

j !
Γ (

2 j − 1

4
)(

ε

kB T
)( j/2+1/4). (16.22)

For comparison we calculate the quantity

V

N

(

pV

NkB T
− 1

)

(16.23)

which for small values of the particle density n = N/V correlates well (Fig. 16.4)
with expression (16.22).

Fig. 16.4 (Second virial
coefficient) The value of
V
N

(

pV
kB T

− 1
)

is shown for

two values of the particle
density N/V = 10−3 AA
(crosses) and
1.95 × 10−3 AA−1 (circles)
and compared to the exact
second virial coefficient b

(dashed curve) (16.22)
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Fig. 16.5 (Radial pair
distribution) The normalized
radial distribution function
g(R)/gideal(R) is evaluated
for kT = 35 K, 100 K,
1000 K and a density of
n = 0.025 A−3

corresponding to a reduced
density n∗ = σ3 N/V of 1.0.
At this density the
Lennard–Jones system
shows a liquid-solid
transition at a temperature of
ca. 180 K [204]
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16.1.4.2 Structural Order

A convenient measure for structural order [209] is the radial pair distribution function
(Fig. 16.5)

g(R) =<
1

N (N − 1)

∑

i �= j

δ(ri j − R) >=
P(R < ri j < R + d R)

d R
(16.24)

which is usually normalized with respect to an ideal gas, for which

gideal(R) = 4πn R2d R. (16.25)

For small distances g(R)/gideal(R) vanishes due to the strong repulsive force.
It peaks at the distance of nearest neighbors and approaches unity at very large
distances. In the condensed phase additional maxima appear showing the degree of
short (liquid) and long range (solid) order.

Equation (16.25) is not valid for our small model system without periodic bound-
ary conditions. Therefore gideal was calculated numerically to normalize the results
shown in Fig. 16.5.

16.1.4.3 Ballistic and Diffusive Motion

The velocity auto-correlation function (Fig. 16.6)

C(t) =< v(t)v(t0) > (16.26)
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Fig. 16.6 (Velocity
auto-correlation function)
The Lennard–Jones system
is simulated for
kB T = 200 K and different
values of the density
n∗ = 0.12 (a), 0.18 (b),
0.32 (c), 0.62 (d). The
velocity auto-correlation
function (full curves) is
averaged over 20 trajectories
and fitted by an exponential
function (dashed curves)
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decays as a function of the delay time t − t0 due to collisions of the particles. In a
stationary state it does not depend on the initial time t0. Integration leads to the mean
square displacement (Fig. 16.6)

∆x2(t) =< (x(t) − x(t0))
2 > . (16.27)

In the absence of collisions the mean square displacement grows with (t − t0)
2,

representing a ballistic type of motion. Collisions lead to a diffusive kind of motion
where the mean square displacement grows only linearly with time. The transition
between this two types of motion can be analyzed within the model of Brownian
motion [210] where the collisions are replaced by a fluctuating random force Γ (t)

and a damping constant γ.
The equation of motion in one dimension is

v̇ + γv = Γ (t) (16.28)

with

< Γ (t) > = 0 (16.29)

< Γ (t)Γ (t ′) > =
2γkB T

m
δ(t − t ′). (16.30)

The velocity correlation decays exponentially

< v(t)v(t0) >=
kB T

m
e−γ|t−t0| (16.31)

with the average velocity square given by

< v2 >= C(t0) =
kB T

m
=

< Ekin >
m
2

(16.32)
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and the integral of the correlation function equals

∫ ∞

t0

C(t)dt =
kB T

γm
. (16.33)

The average of ∆x2 is

< (x(t) − x(t0))
2 >=

2kB T

mγ
(t − t0) −

2kB T

mγ2
(1 − e−γ(t−t0)). (16.34)

For small time differences t − t0 the motion is ballistic with the thermal velocity

< (x(t) − x(t0))
2 >≈

kB T

m
(t − t0)

2 =< v2 > (t − t0)
2. (16.35)

For large time differences diffusive motion emerges with

< (x(t) − x(t0)
2 >≈

2kB T

mγ
(t − t0) = 2D(t − t0) (16.36)

with the diffusion constant given by the Einstein relation

D =
kB T

mγ
. (16.37)

For a three-dimensional simulation the Cartesian components of the position or
velocity vector add up independently. The diffusion coefficient can be determined
from

D =
1

6
lim

t→∞

< (x(t) − x(t0))
2 >

t − t0
(16.38)

or, alternatively from (16.33) [163]

D =
1

3

∫ ∞

t0

< v(t)v(t0) > dt. (16.39)

This equation is more generally valid also outside the Brownian limit (Green–Kubo
formula). The Brownian model represents the simulation data quite well at low parti-
cle densities (Figs. 16.6 and 16.7). For higher densities the velocity auto-correlation
function shows a very rapid decay followed by a more or less structured tail. [163,
211, 212]
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Fig. 16.7 (Mean square
displacement) The
Lennard–Jones system is
simulated for kB T = 200K

and different values of the
density n∗ = 0.12 (a), 0.18 (b),
0.32 (c), 0.62 (d). The mean
square displacement (full

curves) is averaged over 20
trajectories and fitted by a
linear function (dashed lines)
for t − t0 > 1.5ps
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16.2 Monte-Carlo Simulation

The basic principles of Monte Carlo simulations are discussed in Chap. 9. Here
we will apply the Metropolis algorithm to simulate the Ising model in one or two
dimensions. The Ising model [213, 214] is primarily a model for the phase transition
of a ferromagnetic system. However, it has further applications for instance for a
polymer under the influence of an external force or protonation equilibria in proteins.

16.2.1 One-Dimensional Ising Model

We consider a chain consisting of N spins which can be either up (Si = 1) or down
(Si = −1). The total energy in a magnetic field is (Fig. 16.8)

H = −M B = −B

N
∑

i=1

µSi (16.40)

and the average magnetic moment of one spin is

< M >= µ
eµB/kT − e−µB/kT

eµB/kT + e−µB/kT
= µ tanh(

µB

kT
). (16.41)

If interaction between neighboring spins is included, the energy of a configuration
(S1 · · · SN ) becomes

H = −µB

N
∑

i=1

Si − J

N−1
∑

i=1

Si Si+1. (16.42)

http://dx.doi.org/10.1007/978-3-319-61088-7_9
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Fig. 16.8 (Ising model) N spins can be up or down. The interaction with the magnetic field is
−µBSi , the interaction between nearest neighbors is −J Si S j
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Fig. 16.9 (Numerical simulation of the 1-dimensional Ising model) The average magnetization
per spin is calculated from a MC simulation (circles) and compared to the exact solution (16.43).
Parameters are µB = −5 and J = −2

The 1-dimensional model can be solved analytically [208]. In the limit N → ∞ the
magnetization is

< M >= µ
sinh(

µB

kT
)

√

sinh2(
µB

kT
) + e4J/kT

. (16.43)

The numerical simulation (Fig. 16.9) starts either with the ordered state Si = 1 or
with a random configuration. New configurations are generated with the Metropolis
method as follows:
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Table 16.1 Transition probabilities for a 3-spin system (p = 1/3)

+++ ++− +−+ + − − −++ −+− − − + −−−
+++ 0 p p 0 p 0 0 0

++− p 0 0 p 0 p 0 0

+−+ p 0 0 p 0 0 p 0

+−− 0 p p 0 0 0 0 p

−++ p 0 0 0 0 p p 0

−+− 0 p 0 0 p 0 0 p

− − + 0 0 p 0 p 0 0 p

−−− 0 0 0 p 0 p p 0

• flip one randomly chosen spin Si
3 and calculate the energy change due to the

change ∆Si = (−Si ) − Si = −2Si

∆E = −µB∆Si − J∆Si (Si+1 + Si−1) = 2µBSi + 2J Si (Si+1 + Si−1) .

(16.44)

• if ∆E < 0 then accept the flip, otherwise accept it with a probability of
P = e−∆E/kT

As a simple example consider N=3 spins which have 8 possible configurations. The
probabilities of the trial step Ti→ j are shown in Table 16.1. The table is symmetric
and all configurations are connected.

16.2.2 Two-Dimensional Ising Model

For dimension d > 1 the Ising model behaves qualitatively different as a phase tran-
sition appears. For B = 0 (Fig. 16.10) the 2-dimensional Ising-model with 4 nearest
neighbors can be solved analytically [215, 216]. The magnetization disappears above
the critical temperature Tc, which is given by

J

kTc

= −
1

2
ln(

√
2 − 1) ≈

1

2.27
. (16.45)

Below Tc the average magnetization is given by

< M >=
(

1 −
1

sinh4( 2J
kT

)

) 1
8

. (16.46)

3Or try one spin after the other.
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Fig. 16.10 (Numerical
simulation of the
2-dimensional Ising model)
The average magnetization
per spin is calculated for
B = 0 from a MC simulation
(circles) and compared to
(16.46)
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Problems

Problem 16.1 Lennard–Jones Fluid

In this computer experiment a Lennard–Jones fluid is simulated. The pressure is cal-
culated from the average transfer of momentum (16.12) and compared with expres-
sion (16.19).

• Equilibrate the system and observe how the distribution of squared velocities
approaches a Maxwell distribution.

• Equilibrate the system for different values of temperature and volume and inves-
tigate the relation between pV/N and kT .

• observe the radial distribution function for different values of temperature and
densities. Try to locate phase transitions.

• determine the decay time of the velocity correlation function and compare with the
behavior of the mean square displacement which shows a transition from ballistic
to diffusive motion.

Problem 16.2 One-Dimensional Ising Model

In this computer experiment we simulate a linear chain of N = 500 spins with peri-
odic boundaries and interaction between nearest neighbors only. We go along the
chain and try to flip one spin after the other according to the Metropolis method.

After trying to flip the last spin SN the total magnetization

M =
N

∑

i=1

Si (16.47)
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Fig. 16.11 Two state model

is calculated. It is averaged over 500 such cycles and then compared graphically with
the analytical solution for the infinite chain (16.43). Temperature and magnetic field
can be varied.

Problem 16.3 Two-State Model for a Polymer

Consider a polymer (Fig. 16.11) consisting of N units which can be in two states
Si = +1 or Si = −1 with corresponding lengths l+ and l−. The interaction between
neighboring units takes one of the values w++, w+−, w−−. Under the influence of
an external force κ the energy of the polymer is

E = −κ
∑

i

l(Si ) +
∑

i

w(Si , Si+1). (16.48)

This model is isomorphic to the one-dimensional Ising model.

E = −κN
l− + l+

2
− κ

l+ − l−

2

∑

Si (16.49)

+
∑

(

w+− +
w++ − w+−

2
Si +

w+− − w−−

2
Si+1

+
w++ + w−− − 2w+−

2
Si Si+1

)

(16.50)

= κN
l− + l+

2
+ Nw+−

− κ
l+ − l−

2
M +

w++ − w−−

2
M

+
w++ + w−− − 2w+−

2

∑

Si Si+1.

(16.51)

Comparison with (16.42) shows the correspondence

− J =
w++ + w−− − 2w+−

2
(16.52)

− µB = −κ
l+ − l−

2
+

w++ − w−−

2
(16.53)
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L =
∑

l(Si ) = N
l+ + l−

2
+

l+ − l−

2
M. (16.54)

In this computer experiment we simulate a linear chain of N = 20 units with
periodic boundaries and nearest neighbor interaction as in the previous problem.

The fluctuations of the chain conformation are shown graphically and the mag-
netization of the isomorphic Ising model is compared with the analytical expression
for the infinite system (16.43). Temperature and magnetic field can be varied as well
as the coupling J. For negative J the anti-ferromagnetic state becomes stable at low
magnetic field strengths.

Problem 16.4 Two-Dimensional Ising Model

In this computer experiment a 200 × 200 square lattice with periodic boundaries and
interaction with the 4 nearest neighbors is simulated. The fluctuations of the spins can
be observed. At low temperatures ordered domains with parallel spin appear. The
average magnetization is compared with the analytical expression for the infinite
system (16.46).



Chapter 17

Random Walk and Brownian Motion

Random walk processes are an important class of stochastic processes. They have

many applications in physics, computer science, ecology, economics and other fields.

A random walk [217] is a sequence of successive random steps. In this chapter we

study Markovian [218, 219]1 discrete time2 models. In one dimension the position of

the walker after n steps approaches a Gaussian distribution, which does not depend

on the distribution of the single steps. This follows from the central limit theorem and

can be checked in a computer experiment. A 3-dimensional random walk provides

a simple statistical model for the configuration of a biopolymer, the so called freely

jointed chain model. In a computer experiment we generate random structures and

calculate the gyration tensor, an experimentally observable quantity, which gives

information on the shape of a polymer. Simulation of the dynamics is simplified if the

fixed length segments of the freely jointed chain are replaced by Hookean springs.

This is utilized in a computer experiment to study the dependence of the polymer

extension on an applied external force (this effect is known as entropic elasticity).

The random motion of a heavy particle in a bath of light particles, known as Brownian

motion, can be described by Langevin dynamics, which replace the collisions with

the light particles by an average friction force proportional to the velocity and a

randomly fluctuating force with zero mean and infinitely short correlation time. In a

computer experiment we study Brownian motion in a harmonic potential.

17.1 Markovian Discrete Time Models

The time evolution of a system is described in terms of an N-dimensional vector

r(t), which can be for instance the position of a molecule in a liquid, or the price

of a fluctuating stock. At discrete times tn = n∆t the position changes suddenly

(Fig. 17.1)

r(tn+1) = r(tn) + ∆rn (17.1)

1Different steps are independent.
2A special case of the more general continuous time random walk with a waiting time distribution

of P(τ ) = δ(τ − ∆t).
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Fig. 17.1 Discrete time

random walk

r3∆r2

r1 r(t)
∆
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t

where the steps are distributed according to the probability distribution3

P(∆rn = b) = f (b). (17.2)

The probability of reaching the position R after n + 1 steps obeys the equation

Pn+1(R) = P (r(tn+1) = R)

=
∫

dN b Pn(R − b)f (b). (17.3)

17.2 Random Walk in One Dimension

Consider a random walk in one dimension. We apply the central limit theorem to

calculate the probability distribution of the position rn after n steps. The first two

moments and the standard deviation of the step distribution are

b =
∫

db b f (b) b2 =
∫

db b2 f (b) σb =
√

b2 − b
2
. (17.4)

Hence the normalized quantity

ξi =
∆xi − b

σb

(17.5)

3General random walk processes are characterized by a distribution function P(R, R′). Here we

consider only correlated processes for which P(R, R′) = P(R′ − R).
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is a random variable with zero average and unit standard deviation. The distribution

function of the new random variable

ηn =
ξ1 + ξ2 + · · · + ξn√

n
=

rn − nb

σb

√
n

(17.6)

approaches a normal distribution for large n

f (ηn) →
1

√
2π

e−η2
n/2 (17.7)

and finally from

f (rn)drn = f (ηn)dηn = f (ηn)
drn

σb

√
n

we have

f (rn) =
1

√
2πnσb

exp

{
−

(rn − nb)2

2nσ2
b

}
. (17.8)

The position of the walker after n steps obeys approximately a Gaussian distribution

centered at rn = nb with a standard deviation of

σrn
=

√
nσb. (17.9)

17.2.1 Random Walk with Constant Step Size

In the following we consider the classical example of a 1-dimensional random walk

process with constant step size. At time tn the walker takes a step of length ∆x to the

left with probability p or to the right with probability q = 1 − p (Figs. 17.2, 17.3).

The corresponding step size distribution function is

f (b) = pδ(b + ∆x) + qδ(b − ∆x) (17.10)

with the first two moments

b = (q − p)∆x b2 = ∆x2. (17.11)

Let the walker start at r(t0) = 0. The probability Pn(m) of reaching position m∆x

after n steps obeys the recursion

Pn+1(m) = pPn(m + 1) + qPn(m − 1) (17.12)
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Fig. 17.2 (Random walk with constant step size) The figure shows the position rn for three different

1-dimensional random walks with step size ∆x = ±1. The dashed curves show the width ±σ =
±

√
n of the Gaussian approximation (17.8)

Fig. 17.3 Random walk

with constant step size

∆ ∆

p

r(t)−   x r(t) r(t)+   x
r

q

which obviously leads to a binomial distribution. From the expansion of

(p + q)n =
∑ (

n

m

)
pmqn−m (17.13)

we see that

Pn(n − 2m) =
(

n

m

)
pmqn−m (17.14)

or after substitution m′ = n − 2m = −n,−n + 2, . . . n − 2, n:

Pn(m
′) =

(
n

(n − m′)/2

)
p(n−m′)/2q(n+m′)/2. (17.15)

Since the steps are uncorrelated we easily find the first two moments

rn =
n∑

i=1

∆xi = nb = n∆x(q − p) (17.16)
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and

r2
n =

(
n∑

i=1

∆xi

)2

=
n∑

i,j=1

∆xi∆xj =
n∑

i=1

(∆xi)2 = nb2 = n∆x2. (17.17)

17.3 The Freely Jointed Chain

We consider a simple statistical model for the conformation of a biopolymer like

DNA or a protein.

The polymer is modeled by a 3-dimensional chain consisting of M units with

constant bond length and arbitrary relative orientation (Fig. 17.4). The configuration

can be described by a point in a 3(M + 1)-dimensional space which is reached after

M steps ∆ri = bi of a 3-dimensional random walk with constant step size

rM = r0 +
M∑

i=1

bi. (17.18)

17.3.1 Basic Statistic Properties

The M bond vectors

bi = ri − ri−1 (17.19)

have a fixed length |bi| = b and are oriented randomly. The first two moments are

bi = 0 b2
i = b2. (17.20)

Since different units are independent

bibj = δi,jb
2. (17.21)

Fig. 17.4 Freely jointed

chain with constant bond

length b
b
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Obviously the relative position of segment j

Rj = rj − r0 =
j∑

i=1

bi

has zero mean

Rj =
j∑

i=1

bi = 0 (17.22)

and its second moment is

R2
j =

(
j∑

i=1

bi

j∑

k=1

bk

)
=

j∑

i,k=1

bibk = jb2. (17.23)

For the end to end distance (Fig. 17.5)

RM = rM − r0 =
M∑

i=1

bi (17.24)

Fig. 17.5 (Freely jointed

chain) The figure shows a

random 3-dimensional

structure with 1000 segments

visualized as balls (Molden

graphics [220])

RM
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this gives

RM = 0, R2
M = Mb2. (17.25)

Let us apply the central limit theorem for large M. For the x coordinate of the end to

end vector we have

X =
M∑

i=1

biex = b
∑

i

cos θi. (17.26)

With the help of the averages4

cos θi =
1

4π

∫ 2π

0

dφ

∫ π

0

cos θ sin θdθ = 0 (17.27)

(cos θi)2 =
1

4π

∫ 2π

0

dφ

∫ π

0

cos2 θ sin θdθ =
1

3
(17.28)

we find that the scaled difference

ξi =
√

3 cos θi (17.29)

has zero mean and unit variance and therefore the sum

X̃ =
√

3

b
√

M
X =

√
3

M

M∑

i=1

cos θi (17.30)

converges to a normal distribution:

P(X̃) =
1

√
2π

exp

{
−

X̃2

2

}
. (17.31)

Hence

P(X) =
1

√
2π

√
3

b
√

M
exp

{
−

3

2Mb2
X2

}
(17.32)

4For a 1-dimensional polymer cos θi = 0 and (cos θi)2 = 1. In two dimensions cos θi =
1
π

∫ π
0 cos θ dθ = 0 and (cos θi)2 = 1

π

∫ π
0 cos2 θ dθ = 1

2
. To include these cases the factor 3 in

the exponent of (17.33) should be replaced by the dimension d.
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and finally in 3 dimensions

P(RM) = P(X) P(Y) P(Z)

=
√

27

b3
√

(2πM)3
exp

{
−

3

2Mb2
R2

M

}
. (17.33)

17.3.2 Gyration Tensor

For the center of mass

Rc =
1

M

M∑

i=1

Ri (17.34)

we find

Rc = 0 R2
c =

1

M2

∑

i,j

RiRj (17.35)

and since

RiRj = min(i, j) b2 (17.36)

we have

R2
c =

b2

M2

(
2

M∑

i=1

i(M − i + 1) −
M∑

i=1

i

)
=

b2

M2

(
M3

3
+

M2

2
+

M

6

)
≈

Mb2

3
.

(17.37)

The gyration radius [221] is generally defined by

R2
g =

1

M

M∑

i=1

(Ri − Rc)2 (17.38)

=
1

M

M∑

i=1

⎛
⎝R2

i + R2
c − 2

1

M

M∑

j=1

RiRj

⎞
⎠ =

1

M

∑

i

(
R2

i

)
− R2

c (17.39)

= b2 M + 1

2
−

b2

M2

(
M3

3
+

M2

2
+

M

6

)
= b2

(
M

6
−

1

6M

)
≈

Mb2

6
. (17.40)
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Rg can be also written as

R2
g =

⎛
⎝ 1

M

∑

i

R2
i −

1

M2

∑

ij

RiRj

⎞
⎠ =

1

2M2

M∑

i=1

M∑

j=1

(Ri − Rj)2 (17.41)

and can be experimentally measured with the help of scattering phenomena. It is

related to the gyration tensor which is defined as

Ωg =
1

M

∑

i

(Ri − Rc)(Ri − Rc)T . (17.42)

Its trace is

tr(Ωg) = R2
g (17.43)

and its eigenvalues give us information about the shape of the polymer (Fig. 17.6).

17.3.3 Hookean Spring Model

Simulation of the dynamics of the freely jointed chain is complicated by the

constraints which are implied by the constant chain length. Much simpler is the

z
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Fig. 17.6 (Gyration tensor) The eigenvalues of the gyration tensor give information on the shape

of the polymer. If the extension is larger (smaller) along one direction than in the perpendicular

plane, one eigenvalue is larger (smaller) than the two other
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i−1

i

Fig. 17.7 Polymer model with Hookean springs

b−b b

bP(   )

Fig. 17.8 (Distribution of bond vectors) The bond vector distribution for a 1-dimensional chain of

springs has maxima at ±b. For large force constants the width of the two peaks becomes small and

the chain of springs resembles a freely jointed chain with constant bond length

simulation of a model which treats the segments as Hookean springs (Fig. 17.7). In

the limit of a large force constant the two models give equivalent results.

We assume that the segments are independent (self crossing is not avoided). Then

for one segment the energy contribution is

Ei =
f

2
(|bi| − b)2 . (17.44)

If the fluctuations are small

||bi| − b| ≪ b (17.45)

then (Fig. 17.8)

|bi| ≈ b b2
i ≈ b2 (17.46)
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and the freely jointed chain model (17.33) gives the entropy as a function of the end

to end vector

S = −kB ln (P(RM)) = −kB ln

( √
27

b3
√

(2πM)3

)
+

3kB

2Mb2
RM

2. (17.47)

If one end of the polymer is fixed at r0 = 0 and a forceκ is applied to the other end,

the free energy is given by

F = TS − κRM =
3kBT

2Mb2
R2

M − κRM + const. (17.48)

In thermodynamic equilibrium the free energy is minimal, hence the average exten-

sion is

RM =
Mb2

3kBT
κ. (17.49)

This linear behavior is similar to a Hookean spring with an effective force constant

feff =
Mb2

3kBT
(17.50)

and is only valid for small forces. For large forces the freely jointed chain asymptot-

ically reaches its maximum length of RM,max = Mb, whereas for the chain of springs

RM → M(b + κ/f ).

17.4 Langevin Dynamics

A heavy particle moving in a bath of much smaller and lighter particles (for

instance atoms and molecules of the air) shows what is known as Brownian motion

[222–224]. Due to collisions with the thermally moving bath particles it experiences

a fluctuating force which drives the particle into a random motion. The French physi-

cist Paul Langevin developed a model to describe this motion without including the

light particles explicitly. The fluctuating force is divided into a macroscopic friction

force proportional to the velocity

Ffr = −γv (17.51)

and a randomly fluctuating force with zero mean and infinitely short correlation time

Frand(t) = 0 Frand(t)Frand(t′) = F2
randδ(t − t′). (17.52)
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The equations of motion for the heavy particle are

d

dt
x = v

d

dt
v = −γv +

1

m
Ffr(t) −

1

m
∇U (x) (17.53)

with the macroscopic friction coefficientγ and the potential U (x).

The behavior of the random force can be better understood if we introduce a time

grid tn+1 − tn = ∆t and take the limit ∆t → 0. We assume that the random force

has a constant value during each interval

Frand(t) = Fn tn ≤ t < tn+1 (17.54)

and that the values at different intervals are uncorrelated

FnFm = δm,nF2
n. (17.55)

The auto-correlation function then is given by

Frand(t)Frand(t′) =
{

0 different intervals

F2
n same interval.

(17.56)

Division by ∆t gives a sequence of functions which converges to a delta function in

the limit ∆t → 0

1

∆t
Frand(t)Frand(t′) → F2

n δ(t − t′). (17.57)

Hence we find

F2
n =

1

∆t
F2

rand . (17.58)

Within a short time interval ∆t → 0 the velocity changes by

v(tn + ∆t) = v − γv∆t −
1

m
∇U (x)∆t +

1

m
Fn∆t + · · · (17.59)

and taking the square gives

v2(tn + ∆t) = v2 − 2γv2∆t −
2

m
v∇U (x)∆t +

2

m
vFn∆t +

F2
n

m2
(∆t)2 + · · · . (17.60)

Hence for the total energy
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E(tn + ∆t) =
m

2
v2(tn + ∆t) + U (x(tn + ∆t))

=
m

2
v2(tn + ∆t) + U (x) + v∇U (x)∆t + · · · (17.61)

we have

E(tn + ∆t) = E(tn) − mγv2∆t + vFn∆t +
F2

n

2m
(∆t)2 + · · · . (17.62)

On the average the total energy E should be constant and furthermore in d dimensions

m

2
v2 =

d

2
kBT . (17.63)

Therefore we conclude

mγv2 =
∆t

2m
F2

n =
1

2m
F2

rand (17.64)

from which we obtain finally

F2
n =

2mγd

∆t
kBT . (17.65)

Problems

Problem 17.1 Random Walk in One Dimension

This program generates random walks with (a) fixed step length ∆x = ±1 or (b)

step length equally distributed over the interval −
√

3 < ∆x <
√

3. It also shows the

variance, which for large number of walks approaches σ =
√

n. See also Fig. 17.2

Problem 17.2 Gyration Tensor

The program calculates random walks with M steps of length b. The bond vectors

are generated from M random points ei on the unit sphere as bi = bei. End to end

distance, center of gravity and gyration radius are calculated and can be averaged

over numerous random structures. The gyration tensor (Sect. 17.3.2) is diagonalized

and the ordered eigenvalues are averaged.

Problem 17.3 Brownian Motion in a Harmonic Potential

The program simulates a particle in a 1-dimensional harmonic potential

U (x) =
f

2
x2 − κx (17.66)
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where κ is an external force. We use the improved Euler method (13.36). First the

coordinate and the velocity at mid time are estimated

x

(
tn +

∆t

2

)
= x(tn) + v(tn)

∆t

2
(17.67)

v

(
tn +

∆t

2

)
= v(tn) − γv(tn)

∆t

2
+

Fn

m

∆t

2
−

f

m
x(tn)

∆t

2
(17.68)

where Fn is a random number obeying (17.65). Then the values at tn+1 are

calculated as

x(tn + ∆t) = x(tn) + v

(
tn +

∆t

2

)
∆t (17.69)

v(tn + ∆t) = v(tn) − γv

(
tn +

∆t

2

)
∆t +

Fn

m
∆t −

f

m
x

(
tn +

∆t

2

)
∆t. (17.70)

Problem 17.4 Force Extension Relation

The program simulates a chain of springs Sect. 17.3.3 with potential energy

U =
f

2

∑
(|bi| − b)2 − κRM . (17.71)

The force can be varied and the extension along the force direction is averaged over

numerous time steps.

http://dx.doi.org/10.1007/978-3-319-61088-7_13


Chapter 18

Electrostatics

The electrostatic potential Φ(r) of a charge distribution ρ(r) is a solution1 of Pois-

son’s equation

△Φ(r) = −ρ(r) (18.1)

which, for spatially varying dielectric constant ε(r) becomes

div(ε(r) grad Φ(r)) = −ρ(r) (18.2)

and, if mobile charges are taken into account, like for an electrolyte or semiconductor,

turns into the Poisson–Boltzmann equation

div(ε(r) grad Φ(r)) = −ρfix(r) −
∑

i

n0
i Zie e−ZieΦ(r)/kBT . (18.3)

In this chapter we discretize the Poisson and the linearized Poisson–Boltzmann

equation by finite volume methods which are applicable even in case of discontin-

uous ε. We solve the discretized equations iteratively with the method of successive

over-relaxation. The solvation energy of a charged sphere in a dielectric medium is

calculated to compare the accuracy of several methods. This can be studied also in

a computer experiment.

Since the Green’s function is analytically available for the Poisson and Poisson–

Boltzmann equations, alternatively the method of boundary elements can be applied,

which can reduce the computer time, for instance for solvation models. A computer

experiment simulates a point charge within a spherical cavity and calculates the

solvation energy with the boundary element method.

1The solution depends on the boundary conditions, which in the simplest case are given by

lim|r|→∞ Φ(r) = 0.
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18.1 Poisson Equation

From a combination of the basic equations of electrostatics

div D(r) = ρ(r) (18.4)

D(r) = ε(r)E(r) (18.5)

E(r) = −grad Φ(r) (18.6)

the generalized Poisson equation is obtained

div(ε(r) gradΦ(r)) = −ρ(r) (18.7)

which can be written in integral form with the help of Gauss’ theorem

∮

∂V

dA div(ε(r) gradΦ(r)) =

∫

V

dV ε(r) gradΦ(r)) = −

∫

V

dV ρ(r). (18.8)

If ε(r) is continuously differentiable, the product rule for differentiation gives

ε(r) △Φ(r) + (grad ε(r)) (grad Φ(r)) = −ρ(r) (18.9)

which for constant ε simplifies to the Poisson equation

∆Φ(r) = −
ρ(r)

ε
. (18.10)

18.1.1 Homogeneous Dielectric Medium

We begin with the simplest case of a dielectric medium with constant ε and solve
(18.10) numerically. We use a finite volume method (Sect. 12.3) which corresponds
to a finite element method with piecewise constant test functions. The integration
volume is divided into small cubes Vijk which are centered at the grid points (Fig. 18.1)

rijk = (hi, hj, hk). (18.11)

Integration of (18.10) over the control volume Vijk around rijk gives

∫

V

dV div grad Φ =

∮

∂V

grad ΦdA = −
1

ε

∫

V

dV ρ(r) = −
Qijk

ε
. (18.12)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 18.1 (Finite volume for
the Poisson equation) The
control volume is a small
cube centered at a grid point
( full circle)

x

y

z

h
h

h

Qijk is the total charge in the control volume. The flux integral is approximated by
(12.85)

∮

∂V

grad Φ dA = −h2
(

∂Φ

∂x
(xi+1/2, yj, zk) −

∂Φ

∂x
(xi−1/2, yj, zk)

+
∂Φ

∂y
(xiyj+1/2, zk) −

∂Φ

∂y
(xi, yj−1/2, zk) +

∂Φ

∂z
(xi, yj, zk+1/2) −

∂Φ

∂z
(xi, yj, zk−1/2)

)

.

(18.13)

The derivatives are approximated by symmetric differences

∮

∂V

grad Φ dA = −h
{(

Φ(xi+1, yj, zk) − Φ(xi, yj, zk)
)

−
(

Φ(xi, yj, zk) − Φ(xi−1, yj, zk)
)

+
(

Φ(xi, yj+1, zk) − Φ(xi, yj, zk)
)

−
(

Φ(xi, yj, zk) − Φ(xi, yj−1, zk)
)

+
(

Φ(xi, yj, zk+1) − Φ(xi, yj, zk)
)

−
(

Φ(xi, yj, zk) − Φ(xi, yj, zk−1)
)}

= −h
(

Φ(xi−1, yj, zk) + Φ(xi+1, yj, zk) + Φ(xi, yj−1, zk) + Φ(xi, yj+1, zk)

+Φ(xi, yj, zk−1) + Φ(xi, yj, zk+1) − 6Φ(xi, yj, zk)
)

(18.14)

which coincides with the simplest discretization of the second derivatives (3.40).
Finally we obtain the discretized Poisson equation in the more compact form

6
∑

s=1

(Φ(rijk + drs) − Φ(rijk)) = −
Qijk

εh
(18.15)

which involves an average over the 6 neighboring cells

dr1 = (−h, 0, 0) . . . dr6 = (0, 0, h). (18.16)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_3
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18.1.2 Numerical Methods for the Poisson Equation

Equation (18.15) is a system of linear equations with very large dimension (for a
grid with 100 × 100 × 100 points the dimension of the matrix is 106 × 106 !). Our
computer experiments use the iterative method (Sect. 5.5)

Φnew(rijk) =
1

6

(

∑

s

Φold(rijk + drs) +
Qijk

εh

)

. (18.17)

Jacobi’s method (5.121 on p. 80) makes all the changes in one step whereas
the Gauss–Seidel method (5.124 on p. 80) makes one change after the other. The
chessboard (or black red method) divides the grid into two subgrids (with i + j + k

even or odd) which are treated subsequently. The vector drs connects points of
different subgrids. Therefore it is not necessary to store intermediate values like for
the Gauss–Seidel method.

Convergence can be improved with the method of successive over-relaxation
(SOR, 5.128 on p. 81) using a mixture of old and new values

Φnew(rijk) = (1 − ω)Φold(rijk) + ω
1

6

(

∑

Φold(rijk + drs) +
Qijk

εh

)

(18.18)

with the relaxation parameter ω. For 1 < ω < 2 convergence is faster than for ω = 1.
The optimum choice of ω for the Poisson problem in any dimension is discussed in
[225].

Convergence can be further improved by multigrid methods [226, 227]. Error
components with short wavelengths are strongly damped during a few iterations
whereas it takes a very large number of iterations to remove the long wavelength
components. But here a coarser grid is sufficient and reduces computing time. After
a few iterations a first approximation Φ1 is obtained with the finite residual

r1 = ∆Φ1 +
1

ε
ρ. (18.19)

Then more iterations on a coarser grid are made to find an approximate solution Φ2

of the equation

∆Φ = −r1 = −
1

ε
ρ − ∆Φ1. (18.20)

The new residual is

r2 = ∆Φ2 + r1. (18.21)

http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5
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Function values of Φ2 on the finer grid are obtained by interpolation and finally the
sum Φ1 + Φ2 provides an improved approximation to the solution since

∆(Φ1 + Φ2) = −
1

ε
ρ + r1 + (r2 − r1) = −

1

ε
ρ + r2. (18.22)

This method can be extended to a hierarchy of many grids.
Alternatively, the Poisson equation can be solved non-iteratively with pseudospec-

tral methods [228, 229]. For instance, if the boundary is the surface of a cube, eigen-
functions of the Laplacian are for homogeneous boundary conditions (Φ = 0) given
by

Nk(r) = sin(kxx) sin(kyy) sin(kzz) (18.23)

and for no-flow boundary conditions ( ∂
∂n

Φ = 0) by

Nk(r) = cos(kxx) cos(kyy) cos(kzz) (18.24)

which can be used as expansion functions for the potential

Φ(r) =
∑

kx,ky,kz

ΦkNk(r). (18.25)

Introducing collocation points rj the condition on the residual becomes

0 = △Φ(rj) +
1

ε
ρ(rj) =

∑

kx,ky,kz

k2ΦkNk(rj) +
1

ε
ρ(rj) (18.26)

which can be inverted with an inverse discrete sine transformation, (respectively an
inverse discrete cosine transformation for no-flux boundary conditions) to obtain the
Fourier components of the potential. Another discrete sine (or cosine) transformation
gives the potential in real space.

18.1.3 Charged Sphere

As a simple example we consider a sphere of radius R with a homogeneous charge
density of

ρ0 = e ·
3

4πR3
. (18.27)
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Fig. 18.2 (Discretization of the discontinuous charge density) Left the most precise method divides
the control volumes at the boundary into two irregularly shaped parts. Middle assigning either the
value ρ0 or zero retains the discontinuity but changes the shape of the boundary. Right averaging
over a control volume smears out the discontinuous transition

The exact potential is given by

Φ(r) =
e

4πε0R
+

e

8πε0R

(

1 −
r2

R2

)

for r < R

Φ(r) =
e

4πǫ0r
for r > R. (18.28)

The charge density (18.27) is discontinuous at the surface of the sphere. Integration
over a control volume smears out this discontinuity which affects the potential values
around the boundary (Fig. 18.2). Alternatively we could assign the value ρ(rijk) which
is either ρ0 (18.27) or zero to each control volume which retains a sharp transition
but changes the shape of the boundary surface and does not conserve the total charge.
This approach was discussed in the first edition of this book in connection with a
finite differences method. The most precise but also complicated method divides the
control volumes at the boundary into two irregularly shaped parts [230, 231].

Initial guess as well as boundary values are taken from

Φ0(r) =
e

4πε0 max(r, h)
(18.29)

which provides proper boundary values but is far from the final solution inside the
sphere. The interaction energy is given by (Sect. 18.5)

Eint =
1

2

∫

V

ρ(r)Φ(r)dV =
3

20

e2

πε0R
. (18.30)

Calculated potential (Fig. 18.3) and interaction energy (Figs. 18.4, 18.5) converge
rapidly. The optimum relaxation parameter is around ω ≈ 1.9.
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Fig. 18.3 (Electrostatic
potential of a charged
sphere) A charged sphere is
simulated with radius
R = 0.25 and a
homogeneous charge density
ρ = e · 3/4πR3. The grid
consists of 2003 points with
a spacing of h = 0.025. The
calculated potential (circles)
is compared to the exact
solution (18.28, solid curve),
the initial guess is shown by
the dashed line
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Fig. 18.4 (Influence of the
relaxation parameter) The
convergence of the
interaction energy (18.30,
which has a value of
34.56 eV for this example) is
studied as a function of the
relaxation parameter ω. The
optimum value is around
ω ≈ 1.9. For ω > 2 there is
no convergence. The dashed

line shows the exact value
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Fig. 18.5 (Influence of grid
size) The convergence of the
interaction energy (18.30)
and the central potential
value are studied as a
function of grid size. The
dashed lines show the exact
values
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Fig. 18.6 Face center of the
control volume

drs

drs

2

(i,j,k)’

(i,j,k)

18.1.4 Variable ε

In the framework of the finite volume method we take the average over a control
volume to discretize ε2 and Φ

εijk = ε(rijk) =
1

h3

∫

Vijk

dV ε(r) (18.31)

Φijk = Φ(rijk) =
1

h3

∫

Vijk

dV Φ(r). (18.32)

Integration of (18.7) gives

∫

V

dV div (ε(r) grad Φ(r)) =

∮

∂V

ε(r) grad ΦdA = −

∫

V

dV ρ(r) = −Qijk .

(18.33)

The surface integral is

∮

∂V

dA ε gradΦ =
∑

s∈faces

∫

As

dA ε(r)
∂

∂n
Φ. (18.34)

Applying the midpoint rule (12.77) we find (Fig. 18.6)

∮

∂V

dA ε gradΦ ≈ h2
6

∑

r=1

ε

(

rijk +
1

2
drs

)

∂

∂n
Φ

(

rijk +
1

2
drs

)

. (18.35)

2But see Sect. 18.1.5 for the case of discontinuous ε.

http://dx.doi.org/10.1007/978-3-319-61088-7_12


18.1 Poisson Equation 407

The potential Φ as well as the product ε(r) ∂Φ
∂n

are continuous, therefore we make
the approximation [230]

ε

(

rijk +
1

2
drs

)

∂Φ

∂n

(

rijk +
1

2
drs

)

= ε(rijk)
Φ

(

rijk + 1
2 drs

)

− Φ(rijk)

h
2

= ε(rijk + drs)
Φ(rijk + drs) − Φ

(

rijk + 1
2 drs

)

h
2

. (18.36)

From this equation the unknown potential value on the face of the control volume
Φ(rijk + 1

2 drs) (Fig. 18.6) can be calculated

Φ

(

rijk +
1

2
drs

)

=
ε(rijk)Φ(rijk) + ε(rijk + drs)Φ(rijk + drs)

ε(rijk) + ε(rijk + drs)
(18.37)

which gives

ε

(

rijk +
1

2
drs

)

∂

∂n
Φ

(

rijk +
1

2
drs

)

=
2ε(rijk)ε(rijk + drs)

ε(rijk) + ε(rijk + drs)

Φ(rijk + drs) − Φ(rijk)

h
.

(18.38)

Finally we obtain the discretized equation

−Qijk = h

6
∑

s=1

2ε(rijk + drs)ε(rijk)

ε(rijk + drs) + ε(rijk)
(Φ(rijk + drs) − Φ(rijk)) (18.39)

which can be solved iteratively according to

Φnew(rijk) =

∑ 2ε(rijk+drs)ε(rijk)

ε(rijk+drs)+ε(rijk)
Φold(rijk + drs) +

Qijk

h

∑ 2ε(rijk+drs)ε(rijk)

ε(rijk+drs)+ε(rijk)

. (18.40)

18.1.5 Discontinuous ε

For practical applications models are often used with piecewise constant ε. A simple
example is the solvation of a charged molecule in a dielectric medium (Fig. 18.9).
Here ε = ε0 within the molecule and ε = ε0ε1 within the medium. At the boundary
ε is discontinuous. In (18.40) the discontinuity is replaced by a smooth transition
between the two values of ε (Fig. 18.7).

If the discontinuity of ε is inside a control volume Vijk then (18.31) takes the
arithmetic average
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Fig. 18.7 (Transition of ε)
The discontinuous ε(r)

(black line) is averaged over
the control volumes to obtain
the discretized values εijk

(full circles).
Equation (18.40) takes the
harmonic average over two
neighbor cells (open circles)
and replaces the
discontinuity by a smooth
transition over a distance of
about h

n

ε

Fig. 18.8 Average of ε over
a control volume

ε1

ε2

V1 V1

ε2

ε1

2V
ε1

ε2

V2

ε1
ε2

εijk = V
(1)

ijk ε1 + V
(2)

ijk ε2 (18.41)

which corresponds to the parallel connection of two capacities (Fig. 18.8). Depending
on geometry, a serial connection may be more appropriate which corresponds to the
weighted harmonic average

εijk =
1

V
(1)

ijk ε−1
1 + V

(2)

ijk ε−1
2

. (18.42)

18.1.6 Solvation Energy of a Charged Sphere

We consider again a charged sphere, which is now embedded in a dielectric medium
(Fig. 18.9) with relative dielectric constant ε1.

For a spherically symmetrical problem (18.7) can be solved by application of
Gauss’s theorem
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Fig. 18.9 (Solvation of a
charged sphere in a dielectric
medium) Charge density and
dielectric constant are
discontinuous at the surface
of the sphere

ε=

ρ=

ε=ε

ρ=ρ

1

0

1

o

4πr2ε(r)
dΦ

dr
= −4π

∫ r

0
ρ(r′)r′2dr′ = −q(r) (18.43)

Φ(r) = −

∫ r

0

q(r)

4πr2ε(r)
+ Φ(0). (18.44)

For the charged sphere we find

q(r) =

{

Qr3/R3 for r < R

Q for r > R
(18.45)

Φ(r) = −
Q

4πε0R3

r2

2
+ Φ(0) for r < R (18.46)

Φ(r) = −
Q

8πε0R
+ Φ(0) +

Q

4πε0ε1

(

1

r
−

1

R

)

for r > R. (18.47)

The constant Φ(0) is chosen to give vanishing potential at infinity

Φ(0) =
Q

4πε0ε1R
+

Q

8πε0R
. (18.48)

The interaction energy is

Eint =
1

2

∫ R

0
4πr2dr ρΦ(r) =

Q2(5 + ε1)

40πε0ε1R
. (18.49)

Numerical results for ε1 = 4 are shown in Fig. 18.10.

18.1.7 The Shifted Grid Method

An alternative approach uses a different grid for ε which is shifted by h/2 in all
directions (Fig. 18.11) [232] or, more generally, a dual grid (12.74).

εijk = ε(ri+1/2,,j+1/2,k+1/2). (18.50)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 18.10 (Charged sphere
in a dielectric medium)
Numerical results for ε1 = 4
outside the sphere and 2003

grid points (circles) are
compared to the exact
solution (18.46,18.47, solid

curves)
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Fig. 18.11 (Shifted grid
method) A different grid is
used for the discretization of
ε which is shifted by h/2 in
all directions Φ

Φ

ε ε

ε ε

ijk+1

i−1jk

i−1j−1k ij−1k

ijk

ijk

ε
ijk

The value of ε has to be averaged over four neighboring cells to obtain the discretized
equation

−
Qijk

h2
=

∑

s

ε(rijk + drs)
∂Φ

∂n
(rijk + drs)

=
Φi,j,k+1 − Φi,j,k

h

εijk + εi,j−1,k + εi−1,j,k + εi−1,j−1,k

4

+
Φi,j,k−1 − Φi,j,k

h

εijk−1 + εi,j−1,k−1 + εi−1,j,k−1 + εi−1,j−1,k−1

4

+
Φi+1,j,k − Φi,j,k

h

εijk + εi,j−1,k + εi,j,k−1 + εi,j−1,k−1

4
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Fig. 18.12 (Comparison of
numerical errors) The
Coulomb interaction of a
charged sphere is calculated
with several methods for
1003 grid points. circles

(18.40, ε averaged)
diamonds (18.40, ε−1

averaged) squares (18.51,
ε averaged), triangles (18.51,
ε−1 averaged), solid curve
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+
Φi−1,j,k − Φi,j,k

h

εi−1jk + εi−1,j−1,k + εi−1,j,k−1 + εi−1,j−1,k−1

4

+
Φi,j+1,k − Φi,j,k

h

εijk + εi−1,j,k + εi,j,k−1 + εi−1,j,k−1

4

+
Φi,,j−1,k − Φi,j,k

h

εij−1k + εi−1,j−1,k + εi,j−1,k−1 + εi−1,j−1,k−1

4
. (18.51)

The shifted-grid method is especially useful if ε changes at planar interfaces.
Numerical results of several methods are compared in Fig. 18.12.

18.2 Poisson–Boltzmann Equation

Electrostatic interactions are very important in molecular physics. Bio-molecules
are usually embedded in an environment which is polarizable and contains mobile
charges (Na+, K+, Mg++, Cl− · · · ).

We divide the charge density formally into a fixed and a mobile part

ρ(r) = ρfix(r) + ρmobile(r). (18.52)

The fixed part represents, for instance, the charge distribution of a protein molecule
which, neglecting polarization effects, is a given quantity and provides the inhomo-
geneity of the equation. The mobile part, on the other hand, represents the sum of all
mobile charges (e is the elementary charge and Zi the charge number of ion species i)

ρmobile(r) =
∑

i

Zie ni(r) (18.53)
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which move around until an equilibrium is reached which is determined by the mutual
interaction of the ions. The famous Debye–Huckel [233] and Gouy–Chapman models
[234, 235] assume that the electrostatic interaction

U (r) = ZieΦ(r) (18.54)

is dominant and the density of the ions ni is given by a Boltzmann-distribution

ni(r) = n
(0)
i e−ZieΦ(r)/kBT . (18.55)

The potential Φ(r) has to be calculated in a self consistent way together with the
density of mobile charges. The charge density of the free ions is

ρmobile(r) =
∑

i

n
(0)
i eZie

−ZieΦ/kBT (18.56)

and the Poisson equation (18.7) turns into the Poisson–Boltzmann equation [236]

div(ε(r) gradΦ(r)) +
∑

i

n
(0)
i eZie

−ZieΦ/kBT = −ρfix(r). (18.57)

18.2.1 Linearization of the Poisson–Boltzmann Equation

For small ion concentrations the exponential can be expanded

e−ZieΦ/kT ≈ 1 −
ZieΦ

kBT
+

1

2

(

ZieΦ

kBT

)2

+ · · · . (18.58)

For a neutral system

∑

i

n
(0)
i Zie = 0 (18.59)

and the linearized Poisson–Boltzmann-equation is obtained:

div(ε(r) grad Φ(r)) −
∑

i

n
(0)
i

Z2
i e2

kBT
Φ(r) = −ρfix. (18.60)

With

ε(r) = ε0εr(r) (18.61)

and the definition
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κ(r)2 =
e2

ε0εr(r)kBT

∑

n
(0)
i Z2

i (18.62)

we have finally

div(εr(r) grad Φ(r)) − εrκ
2Φ = −

1

ε0
ρ. (18.63)

For a charged sphere with radius a embedded in a homogeneous medium the solution
of (18.63) is given by

Φ =
A

r
e−κr A =

e

4πε0εr

eκa

1 + κa
. (18.64)

The potential is shielded by the ions. Its range is of the order λDebye = 1/κ (the
so-called Debye length).

18.2.2 Discretization of the Linearized Poisson Boltzmann

Equation

To solve (18.63) the discrete equation (18.39) is generalized to [237]

∑ 2εr(rijk + drs)εr(rijk))

εr(rijk + drs) + εr(rijk))

(

Φ(rijk + drs) − Φ(rijk)
)

− εr(rijk)κ
2(rijk)h

2Φ(rijk) = −
Qijk

hε0
. (18.65)

If ε is constant then we iterate

Φnew(rijk) =

Qijk

hε0εr
+

∑

Φold(rijk + drs)

6 + h2κ2(rijk)
. (18.66)

18.3 Boundary Element Method for the Poisson Equation

Often continuum models are used to describe the solvation of a subsystem which is
treated with a high accuracy method. The polarization of the surrounding solvent or
protein is described by its dielectric constant ε and the subsystem is placed inside a
cavity with ε = ε0 (Fig. 18.13). Instead of solving the Poisson equation for a large
solvent volume another kind of method is often used which replaces the polarization
of the medium by a distribution of charges over the boundary surface.
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Fig. 18.13 Cavity in a
dielectric medium

ε = ε

dA

(r)
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ρ

ε = ε  
1

In the following we consider model systems which are composed of two spatial
regions:

• the outer region is filled with a dielectric medium (ε1) and contains no free charges
• the inner region (“Cavity”) contains a charge distribution ρ(r) and its dielectric

constant is ε = ε0.

18.3.1 Integral Equations for the Potential

Starting from the Poisson equation

div(ε(r)gradΦ(r)) = −ρ(r) (18.67)

we will derive some useful integral equations in the following. First we apply Gauss’s
theorem to the expression [150]

div
[

G(r − r′)ε(r)grad(Φ(r)) − Φ(r)ε(r)grad(G(r − r′))
]

= −ρ(r)G(r − r′) − Φ(r)ε(r)divgrad(G(r − r′)) − Φ(r)gradε(r)grad(G(r − r′))

(18.68)

with the yet undetermined function G(r − r′). Integration over a volume V gives

−

∫

V

dV
(

ρ(r)G(r − r′) + Φ(r)ε(r)divgrad(G(r − r′))

+Φ(r)gradε(r)grad(G(r − r′))
)

=

∮

∂V

dA

(

G(r − r′)ε(r)
∂

∂n
(Φ(r)) − Φ(r)ε(r)

∂

∂n
(G(r − r′))

)

. (18.69)

Now choose G as the fundamental solution of the Poisson equation
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Fig. 18.14 Discontinuity at
the cavity boundary
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ε
1
ε

0

G0(r − r′) = −
1

4π|r − r′|
(18.70)

which obeys

div gradG0 = δ(r − r′) (18.71)

to obtain the following integral equation for the potential:

Φ(r′)ε(r) =

∫

V

dV
ρ(r)

4π|r − r′|
+

1

4π

∫

V

dV Φ(r)gradε(r)grad

(

1

|r − r′|

)

−
1

4π

∮

∂V

dA

(

1

|r − r′|
ε(r)

∂

∂n
(Φ(r)) + Φ(r)ε(r)

∂

∂n

(

1

|r − r′|

))

. (18.72)

First consider as the integration volume a sphere with increasing radius. Then the
surface integral vanishes for infinite radius (Φ → 0 at large distances) [150].

The gradient of ε(r) is nonzero only on the boundary surface (Fig. 18.14) of the
cavity and with the limiting procedure (d → 0)

gradε(r)dV = n
ǫ1 − 1

d
ǫ0dV = dA n(ǫ1 − 1)ǫ0

we obtain

Φ(r′) =
1

ε(r′)

∫

cav

dV
ρ(r)

4π|r − r′|
+

(ǫ1 − 1)ǫ0

4πε(r′)

∮

S

dA Φ(r)
∂

∂n

1

|r − r′|
. (18.73)

This equation allows to calculate the potential inside and outside the cavity from
the given charge density and the potential at the boundary.

Next we apply (18.72) to the cavity volume (where ε = ǫ0) and obtain

Φin(r
′) =

∫

V

dV
ρ(r)

4π|r − r′|ǫ0

−
1

4π

∮

S

dA

(

Φin(r)
∂

∂n

1

|r − r′|
−

1

|r − r′|

∂

∂n
Φin(r)

)

. (18.74)



416 18 Electrostatics

From comparison with (18.73) we have

∮

S

dA
1

|r − r′|

∂

∂n
Φin(r) = ǫ1

∮

S

dAΦin(r)
∂

∂n

1

|r − r′|

and the potential can be alternatively calculated from the values of its normal gradient
at the boundary

Φ(r′) =
1

ε(r′)

∫

cav

dV
ρ(r)

4π|r − r′|
+

(

1 − 1
ǫ1

)

ǫ0

4πε(r′)

∮

S

dA
1

|r − r′|

∂

∂n
Φin(r).

(18.75)

This equation can be interpreted as the potential generated by the charge density ρ

plus an additional surface charge density

σ(r) =

(

1 −
1

ǫ1

)

ǫ0
∂

∂n
Φin(r). (18.76)

Integration over the volume outside the cavity (where ε = ǫ1ǫ0) gives the following
expression for the potential:

Φout(r
′) =

1

4π

∮

S

dA

(

Φout(r)
∂

∂n

1

|r − r′|
−

1

|r − r′|

∂

∂n
Φout(r)

)

. (18.77)

At the boundary the potential is continuous

Φout(r) = Φin(r) r ∈ A (18.78)

whereas the normal derivative (hence the normal component of the electric field) has
a discontinuity

ǫ1
∂Φout

∂n
=

∂Φin

∂n
. (18.79)

18.3.2 Calculation of the Boundary Potential

For a numerical treatment the boundary surface is approximated by a finite set of
small surface elements Si, i = 1 · · · N centered at ri with an area Ai and normal
vector ni (Fig. 18.15). (We assume planar elements in the following, the curvature
leads to higher order corrections).

The corresponding values of the potential and its normal derivative are denoted
as Φi = Φ(ri) and ∂Φi

∂n
= ni gradΦ(ri). At a point r±

j close to the element Sj we
obtain the following approximate equations:
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Fig. 18.15 Representation
of the boundary by surface
elements
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j

+
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Φin(r
−
j ) =

∫

V

dV
ρ(r)

4π|r − r−
j |ǫ0

−
1

4π

∑

i

Φi

∮

Si

dA
∂

∂n

1

|r − r−
j |

+
1

4π

∑

i

∂Φi,in

∂n

∮

Si

dA
1

|r − r−
j |

(18.80)

Φout(r
+
j ) =

1

4π

∑

i

Φi

∮

Si

dA
∂

∂n

1

|r − r+
j

−
1

4π

∑

i

∂Φi,out

∂n

∮

Si

dA
1

|r − r+
j |

.

(18.81)

These two equations can be combined to obtain a system of equations for the potential
values only. To that end we approach the boundary symmetrically with r±

i = ri±dni.
Under this circumstance

∮

Si

dA
1

|r − r+
j |

=

∮

Si

dA
1

|r − r−
j |

∮

Si

dA
∂

∂n

1

|r − r+
i |

= −

∮

Si

dA
∂

∂n

1

|r − r−
i |

∮

Si

dA
∂

∂n

1

|r − r+
j |

=

∮

Si

dA
∂

∂n

1

|r − r−
j |

j �= i (18.82)

and we find

(1 + ǫ1)Φj =

∫

V

dV
ρ(r)

4πǫ0|r − rj|

−
1

4π

∑

i �=j

(1 − ǫ1)Φi

∮

Si

dA
∂

∂n

1

|r − r−
j |

−
1

4π
(1 + ǫ1)Φj

∮

Sj

dA
∂

∂n

1

|r − r−
j |

.

(18.83)

The integrals for i �= j can be approximated by

∮

Si

dA
∂

∂n

1

|r − r−
j |

= Ai nigradi

1

|ri − rj|
. (18.84)

The second integral has a simple geometrical interpretation (Fig. 18.16).
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Fig. 18.16 Projection of the
surface element
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Since grad 1
|r−r′|

= − 1
|r−r′|2

r−r′

|r−r′|
the area element dA is projected onto a sphere

with unit radius. The integral
∮

Sj
dA gradr−

1
|rj−r−

j |
is given by the solid angle of Sj

with respect to r′. For r′ → rj from inside this is just minus half of the full space
angle of 4π. Thus we have

(1 + ǫ1)Φj =

∫

V

dV
ρ(r)

4π|r − rj|ǫ0

−
1

4π

∑

i �=j

(1 − ǫ1)ΦiAi

∂

∂ni

1

|ri − rj|
+

1

2
(1 + ǫ1)Φj (18.85)

or

Φj =
2

1 + ǫ1

∫

V

dV
ρ(r)

4πǫ0|r − rj|
+

1

2π

∑

i �=j

ǫ1 − 1

ǫ1 + 1
ΦiAi

∂

∂ni

1

|ri − rj|
. (18.86)

This system of equations can be used to calculate the potential on the boundary. The
potential inside the cavity is then given by (18.73). Numerical stability is improved by
a related method which considers the potential gradient along the boundary. Taking
the normal derivative

∂

∂nj

= njgradrj±
(18.87)

of (18.80, 18.81) gives

∂

∂nj

Φin(r
−
j ) =

∂

∂nj

∫

V

dV
ρ(r)

4π|r − r−
j |ǫ0

−
1

4π

∑

i

Φi

∮

Si

dA
∂2

∂n∂nj

1

|r − r−
j |

+
1

4π

∑

i

∂Φi,in

∂n

∮

Si

dA
∂

∂nj

1

|r − r−
j |

(18.88)
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∂

∂nj

Φout(r
+
j ) =

1

4π

∑

i

Φi

∮

Si

dA
∂2

∂n∂nj

1

|r − r+
j |

−
1

4π

∑

i

∂Φi,out

∂n

∮

Si

dA
∂

∂nj

1

|r − r+
j |

. (18.89)

In addition to (18.82) we have now

∮

Si

dA
∂2

∂n∂nj

1

|r − r−
j |

=

∮

Si

dA
∂2

∂n∂nj

1

|r − r+
j |

(18.90)

and the sum of the two equations gives

(

1 +
1

ǫ1

)

∂

∂nj

Φin,j

=
∂

∂nj

⎛

⎝

∫

V

dV
ρ(r)

4πǫ0|r − rj|
+

1 − 1
ǫ1

4π

∑

i �=j

Ai

∂Φi,in

∂n

1

|ri − rj|

⎞

⎠

+
1 + 1

ǫ1

2π

∂Φj,in

∂n
(18.91)

or finally

∂

∂nj

Φin,j =
2ǫ1

ǫ1 + 1

∂

∂nj

∫

V

dV
ρ(r)

4πǫ0|r − rj|

+ 2
ǫ1 − 1

ǫ1 + 1

∑

i �=j

Ai

∂Φi,in

∂n

∂

∂nj

1

|ri − rj|
. (18.92)

In terms of the surface charge density this reads:

σ′
j = 2ε0

(1 − ε1)

(1 + ε1)

⎛

⎝−njgrad
∫

dV
ρ(r)

4πǫ0|r − r′|
+

1

4πε0

∑

i �=j

σ′
iAi

nj(rj − ri)

|ri − rj|
3

⎞

⎠ .

(18.93)

This system of linear equations can be solved directly or iteratively (a simple damping
scheme σ′

m → ωσ′
m + (1 − ω)σ′

m,old with ω ≈ 0.6 helps to get rid of oscillations).
From the surface charges σiAi the potential is obtained with the help of (18.75).
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18.4 Boundary Element Method for the Linearized

Poisson–Boltzmann Equation

We consider now a cavity within an electrolyte. The fundamental solution of the
linear Poisson–Boltzmann equation (18.63)

Gκ(r − r′) = −
e−κ|r−r′|

4π|r − r′|
(18.94)

obeys

div gradGκ(r − r′) − κ2Gκ(r − r′) = δ(r − r′). (18.95)

Inserting into Green’s theorem (18.69) we obtain the potential outside the cavity

Φout(r
′) = −

∮

S

dA

(

Φout(r)
∂

∂n
Gκ(r − r′) − Gκ(r − r′)

∂

∂n
Φout(r)

)

(18.96)

which can be combined with (18.74, 18.79) to give the following equations [238]

(1 + ǫ1)Φ(r′) =

∮

S

dA

[

Φ(r)
∂

∂n
(G0 − ǫ1Gκ) − (G0 − Gκ)

∂

∂n
Φin(r)

]

+

∫

cav

ρ(r)

4πǫ0|r − r′|
dV (18.97)

(1 + ǫ1)
∂

∂n′
Φin(r

′) =

∮

S

dAΦ(r)
∂2

∂n∂n′
(G0 − Gκ)

−

∮

S

dA
∂

∂n
Φin(r)

∂

∂n′

(

G0 −
1

ǫ1
Gk

)

+
∂

∂n′

∫

cav

ρ(r)

4πǫ|r − r′|
dV . (18.98)

For a set of discrete boundary elements the following equations determine the values
of the potential and its normal derivative at the boundary:

1 + ǫ1

2
Φj =

∑

i �=j

Φi

∮

dA
∂

∂n
(G0 − ǫ1Gκ) −

∑

i �=j

∂

∂n
Φi,in

∮

dA(G0 − Gκ)

+

∫

ρ(r)

4πǫ0|r − ri|
dV (18.99)

1 + ǫ1

2

∂

∂n′
Φi,in =

∑

i �=j

Φi

∮

dA
∂2

∂n∂n′
(G0 − Gκ)

−
∑

i �=j

∂

∂n
Φi,in

∮

dA
∂

∂n′

(

G0 −
1

ǫ1
Gk

)

+
∂

∂n′

∫

ρ(r)

4πǫ|r − ri|
dV . (18.100)
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The situation is much more involved than for the simpler Poisson equation (with
κ = 0) since the calculation of many integrals including such with singularities is
necessary [238, 239].

18.5 Electrostatic Interaction Energy (Onsager Model)

A very important quantity in molecular physics is the electrostatic interaction of a
molecule and the surrounding solvent [240, 241]. We calculate it by taking a small
part of the charge distribution from infinite distance (Φ(r → ∞) = 0) into the
cavity. The charge distribution thereby changes from λρ(r) to (λ + dλ)ρ(r) with
0 ≤ λ ≤ 1. The corresponding energy change is

dE =

∫

dλ · ρ(r) Φλ(r)dV

=

∫

dλ · ρ(r)

(

∑

n

σn(λ)An

4πε0|r − rn|
+

∫

λρ(r′)

4πε0|r − r′|
dV ′

)

dV . (18.101)

Multiplication of the equations (18.93) by a factor of λ shows that the surface
charges λσn are the solution corresponding to the charge density λρ(r). It follows
that σn(λ) = λσn and hence

dE = λdλ

∫

ρ(r)

(

∑

n

σnAn

4πε0|r − rn|
+

ρ(r′)

4πε0|r − r′|
dV ′

)

. (18.102)

The second summand is the self energy of the charge distribution which does not
depend on the medium. The first summand vanishes without a polarizable medium
and gives the interaction energy. Hence we have the final expression

Eint =

∫

dE =

∫ 1

0
λdλ

∫

ρ(r)
∑

n

σnAn

4πε0|r − rn|
dV

=
∑

n

σnAn

∫

ρ(r)

8πε0|r − rn|
dV . (18.103)

For the special case of a spherical cavity with radius a an analytical solution by a
multipole expansion is available [242]

Eint = −
1

8πε0

∑

l

l
∑

m=−l

(l + 1)(ε1 − 1)

[l + ε1(l + 1)] a2l+1
Mm

l Mm
l (18.104)
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with the multipole moments

Mm
l =

∫

ρ(r, θ,ϕ)

√

4π

2l + 1
rlYm

l (θ,ϕ)dV . (18.105)

The first two terms of this series are:

E
(0)
int = −

1

8πε0

ε1 − 1

ε1a
M0

0 M0
0 = −

1

8πε0

(

1 −
1

ε1

)

Q2

a
(18.106)

E
(1)
int = −

1

8πε0

2(ε1 − 1)

(1 + 2ε1)a3
(M−1

1 M−1
1 + M0

1 M0
1 + M1

1 M1
1 )

= −
1

8πε0

2(ε1 − 1)

1 + 2ε1

μ2

a3
. (18.107)

18.5.1 Example: Point Charge in a Spherical Cavity

Consider a point charge Q in the center of a spherical cavity of radius R (Fig. 18.17).
The dielectric constant is given by

ε =

{

ε0 r < R

ε1ε0 r > R
. (18.108)

Electric field and potential are inside the cavity

E =
Q

4πε0r2
Φ =

Q

4πε0r
+

Q

4πε0R

(

1

ε1
− 1

)

(18.109)

and outside

E =
Q

4πε1ε0r2
Φ =

Q

4πε1ε0r
r > R (18.110)

Fig. 18.17 Surface charges
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Fig. 18.18 (Solvation
energy with the boundary
element method) A spherical
cavity is simulated with
radius a = 1Å which
contains a point charge in its
center. The solvation energy
is calculated with 25 × 25
(circles) and 50 × 50
(squares) surface elements of
equal size. The exact
expression (18.106) is shown
by the solid curve
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which in terms of the surface charge density σ is

E =
Q + 4πR2σ

4πε0r2
r > R (18.111)

with the total surface charge

4πR2σ = Q

(

1

ε1
− 1

)

. (18.112)

The solvation energy (18.103) is given by

Eint =
Q2

8πε0

(

1

ε1
− 1

)

(18.113)

which is the first term (18.106) of the multipole expansion. Figure 18.18 shows
numerical results.

Problems

Problem 18.1 Linearized Poisson–Boltzmann Equation

This computer experiment simulates a homogeneously charged sphere in a dielec-
tric medium (Fig. 18.19). The electrostatic potential is calculated from the linearized
Poisson Boltzmann equation (18.65) on a cubic grid of up to 1003 points. The poten-
tial Φ(x) is shown along a line through the center together with a log-log plot of the
maximum change per iteration
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Fig. 18.19 Charged sphere
in a dielectric medium

ε,κ
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x

Fig. 18.20 Point charge
inside a spherical cavity

x
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z

|Φ(n+1)(r) − Φ(n)(r)| (18.114)

as a measure of convergence.
Explore the dependence of convergence on

• the initial values which can be chosen either Φ(r) = 0 or from the analytical
solution

Φ(r) =

{

Q

8πǫǫ0a

2+ǫ(1+κa)

1+κa
−

Q

8πǫ0a3 r2 for r < a
Qe−κ(r−a)

4πǫ0ǫ(κa+1)r
for r > a.

(18.115)

• the relaxation parameter ω for different combinations of ǫ and κ

• the resolution of the grid

Problem 18.2 Boundary Element Method

In this computer experiment the solvation energy of a point charge within a spherical
cavity (Fig. 18.20) is calculated with the boundary element method (18.93).
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The calculated solvation energy is compared to the analytical value from (18.104)

Esolv =
Q2

8πǫ0R

∞
∑

n=1

s2n

R2n

(ǫ1 − ǫ2)(n + 1)

nǫ1 + (n + 1)ǫ2
(18.116)

where R is the cavity radius and s is the distance of the charge from the center of the
cavity.
Explore the dependence of accuracy and convergence on

• the damping parameter ω

• the number of surface elements (6 × 6 · · · 42 × 42) which can be chosen either as
dφdθ or dφd cos θ (equal areas)

• the position of the charge



Chapter 19

Advection

Transport processes are very important in physics and engineering sciences. Trans-

port of a conserved quantity like energy or concentration of a certain substance

(e.g. salt) in a moving fluid is due to the effects of diffusion (Chap. 21) and advection

(which denotes transport by the bulk motion). The combination of these two transport

mechanisms is usually called convection.

In this chapter we investigate the advection equation in one spatial dimension

∂

∂t
f (x, t) = −c

∂

∂x
f (x, t). (19.1)

Numerical solutions are obtained with simple and more elaborate methods using

finite differences, finite volumes and finite elements. Accuracy and stability of different

methods are compared. The linear advection equation is an ideal test case but the

methods are also useful for general nonlinear advection equations including the

famous system of Navier–Stokes equations.

19.1 The Advection Equation

Consider a fluid moving with velocity u(r) and let f (r, t) denote the concentration

of the substance. Its time dependence obeys the conservation law

∂

∂t
f = div (D grad f − u f ) + S(r, t) = − div (Jdi f f + Jadv) + S(r, t)

(19.2)

or in integral form

∂

∂t

∫

V

dV f (r, t) +
∮

∂V

J(r, t)dA =
∫

V

dV S(r, t). (19.3)

Without diffusion and sources or sinks, the flux of the substance is given by
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Fig. 19.1 Advection in an

incompressible fluid

u∆t

J(r, t) = u(r, t) f (r, t) (19.4)

and the continuity equation for the substance concentration reads

∂

∂t
f + div ( f u) = 0. (19.5)

Introducing the substantial derivative we obtain

0 = ∂

∂t
f + div ( f u) = ∂

∂t
f + (u grad) f + f divu (19.6)

= d f

dt
+ f divu. (19.7)

For the common case of an incompressible fluid div u = 0 and the advection equation

simplifies to

d f

dt
= ∂

∂t
f (r, t) + (u(r, t) grad) f (r, t) = 0 (19.8)

which has a very simple interpretation. Consider a small element of the fluid

(Fig. 19.1), which during a time interval ∆t moves from the position r to r + ∆r =
r + u∆t . The amount of substance does not change and we find

f (r, t) = f (r + u∆t, t + ∆t) = f (r, t) + ∂ f

∂t
∆t + u∆t grad f + · · · (19.9)

which in the limit of small ∆t becomes (19.8).

19.2 Advection in One Dimension

In one dimension div u = ∂ux

∂x
=0 implies constant velocity ux = c. The differential

equation

∂ f (x, t)

∂t
+ c

∂ f (x, t)

∂x
= 0 (19.10)
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can be solved exactly with d’ Alembert’s method. After substitution

x ′ = x − ct t ′ = t (19.11)

f (x, t) = f (x ′ + ct ′, t ′) = φ(x ′, t ′)

∂

∂x
= ∂

∂x ′
∂

∂t
= ∂

∂t ′ − c
∂

∂x ′ (19.12)

it becomes

0 =
(

∂

∂t ′ − c
∂

∂x ′ + c
∂

∂x ′

)

φ = ∂

∂t ′ φ (19.13)

hence φ does not depend on time and the solution has the

f (x, t) = φ(x ′) = φ(x − ct) (19.14)

where the constant envelope is determined by the initial values

φ(x ′) = f (x, t = 0). (19.15)

After spatial Fourier transformation

f̂ (k, t) = 1√
2π

∫ ∞

−∞
eikx f (x, t)dx (19.16)

the advection equation becomes an ordinary differential equation

d f̂ (t, k)

dt
= 1√

2π

∫ ∞

−∞
eikx ick f (x, t)dx = ick f̂ (t, k) (19.17)

quite similar to the example of a simple rotation (p. 13). Therefore we have to expect

similar problems with the simple Euler integration methods (p. 293).

For a Fourier component of f in space and time (i.e. a plane wave moving in

x-direction)

gωk = ei(ωt−kx) (19.18)

we find a linear dispersion relation, i.e. all Fourier components move with the same

velocity

ω = ck. (19.19)
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19.2.1 Spatial Discretization with Finite Differences

The simplest discretization (p. 259) is obtained by introducing a regular grid

xm = m∆x m = 1, 2 . . . M (19.20)

fm(t) = f (xm, t) (19.21)

and approximating the gradient by a finite difference quotient.

In the following we use periodic boundary conditions by setting f0 ≡ fM , fM+1 ≡
f1 which are simplest to discuss and allow us to simulate longer times on a finite

domain.

19.2.1.1 First Order Forward and Backward Differences (Upwind

Scheme)

First we use a first order backward difference in space

d fm(t)

dt
= c

fm(t) − fm−1(t)

∆x
. (19.22)

From a Taylor series expansion

f (x − ∆x) = f (x) − ∂ f

∂x
∆x + (∆x)2

2

∂2 f

∂x2
· · · = exp

{

−∆x
∂

∂x

}

f (x)

(19.23)

we see that the leading error of the finite difference approximation

∂ f

∂t
− c

f (x) − f (x − ∆x)

∆x
= ∂ f

∂t
− c

∂ f

∂x
+ c

∆x

2

∂2 f

∂x2
+ · · · (19.24)

looks like a diffusion term for positive velocity c and is therefore called “numeri-

cal diffusion”. Negative velocities, instead lead to an unphysical sharpening of the

function f.

For c < 0 we have to reverse the space direction and use a forward difference

d fm(t)

dt
= c

fm+1(t) − fm(t)

∆x
(19.25)

for which the sign of the second derivative changes
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∂ f

∂t
− c

f (x + ∆x) − f (x)

∆x
= ∂ f

∂t
− c

∂ f

∂x
− c

∆x

2

∂2 f

∂x2
+ · · · . (19.26)

Using the backward difference we obtain a system of ordinary differential

equations

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1

f2

...

fM−1

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= − c

∆x

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −1

−1 1

. . .
. . .

. . .

−1 1

−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1

f2

...

fM−1

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(19.27)

or shorter

df

dt
= − c

∆x
Mf (19.28)

with the formal solution

f(t) = exp
{

− c

∆x
M t

}

f(t = 0). (19.29)

The eigenpairs of M are easily found (see p. 221). Inserting the Ansatz

fk =

⎛

⎜

⎝

e−ik∆x

...

e−M ik∆x

⎞

⎟

⎠
(19.30)

corresponding to a Fourier component (19.18) into the eigenvalue equation we obtain

Mfk =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

e−ik∆x − e−M ik∆x

e−2ik∆x − e−1ik∆x

...

e−(M−1)ik∆x − e−(M−2)ik∆x

e−M ik∆x − e−(M−1)ik∆x

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (19.31)

Solutions are found for values of k given by

e−M ik∆x = 1, k = 0,
2π

M∆x
, . . . (M − 1)

2π

M∆x
(19.32)

or, reducing k-values to the first Brillouin zone (p. 132)

k = −
(

M

2
− 1

)

2π

M∆x
− 2π

M∆x
, 0,

2π

M∆x
, . . .

M

2

2π

M∆x
M even (19.33)
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k = − M

2

2π

M∆x
− 2π

M∆x
, 0,

2π

M∆x
, . . .

M

2

2π

M∆x
M odd (19.34)

for which

Mfk = λkfk = (1 − eik∆x ) fk . (19.35)

The eigenvalues of − c
∆x

M are complex valued

σk = − c

∆x
(1 − eik∆x ) = c

∆x
(cos k∆x − 1) + i

c

∆x
sin k∆x (19.36)

and so is the dispersion

ωk = −iσk = c

∆x
sin k∆x − i

c

∆x
(cos k∆x − 1). (19.37)

If we take instead the forward difference we find similarly

σk = − c

∆x
(e−ik∆x − 1) = − c

∆x
(cos k∆x − 1) + i

c

∆x
sin k∆x (19.38)

ωk = −iλk = c

∆x
sin k∆x + i

c

∆x
(cos k∆x − 1). (19.39)

19.2.1.2 Second Order Symmetric Difference

A symmetric difference quotient has higher error order and no diffusion term

f (x + ∆x) − f (x − ∆x)

2∆x
=

sinh
(

∆x ∂
∂x

)

∆x
f = ∂ f

∂x
+ (∆x)2

6

∂3 f

∂x3
+ · · ·

(19.40)

It provides the system of ordinary differential equations.

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1

f2

...

fM−1

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= − c

∆x

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1/2 −1/2

−1/2 0 1/2

. . .
. . .

. . .

−1/2 0 1/2

1/2 −1/2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f1

f2

...

fM−1

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (19.41)

The eigenpairs of M are easily found (see p. 221) from
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Fig. 19.2 (Dispersion of finite difference quotients) The dispersion of first order (19.37, 19.39)

and second order (19.45) difference quotients is shown. Left the real part of ωk (full curve) which

is the same in all three cases is compared to the linear dispersion of the exact solution (broken line).

Right imaginary part of ωk (dashed curve = forward difference, dash-dotted curve = backward

difference, full line = second order symmetric difference)

Mfk = 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

e−2ik∆x − e−M ik∆x

e−3ik∆x − e−ik∆x

...

e−M ik∆x − e−(M−2)ik∆x

e−ik∆x − e−(M−1)ik∆x

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(19.42)

= 1

2
(e−ik∆x − eik∆x )fk = −i sin k∆x fk (19.43)

hence the eigenvalues of − c
∆x

M are purely imaginary and there is no damping

(Fig. 19.2)

σk = i
c

∆x
sin k∆x (19.44)

ωk = −iσk = c

∆x
sin k∆x . (19.45)

19.2.2 Explicit Methods

Time integration with an explicit forward Euler step proceeds according to (p. 293)

f(t + ∆t) = f(t) + ∂ f

∂t
∆t = f(t) − c

∂ f

∂x
∆t (19.46)
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and can be formulated in matrix notation as

f(t + ∆t) = A f(t) = (1 − αM)f(t) (19.47)

where the matrix M depends on the discretization method.

19.2.2.1 Forward in Time, Backward in Space

Combination with the backward difference quotient gives the FTBS (forward in time

backward in space) method

f (x, t + ∆t) = f (x, t) − α ( f (x, t) − f (x − ∆x, t)) (19.48)

with the so called Courant number [243]1

α = c
∆t

∆x
. (19.49)

The eigenvalues of 1 − αM are

σk = 1 − α(1 − eik∆x )

= 1 − α(1 − cos k∆x) + iα sin k∆x (19.50)

with absolute square (Fig. 19.3)

|σk |2 = 1 + 2(α2 − α)(1 − cos k∆x). (19.51)

Stability requires that |σk | ≤ 1, i.e.

2(α2 − α)(1 − cos k∆x) ≤ 0 (19.52)

and, since (1 − cos k∆x) ≥ 0

(α − 1)α ≤ 0 (19.53)

with the solution2

0 ≤ α ≤ 1. (19.54)

1Also known as CFL (after the names of Courant, Friedrichs, Lewy).
2The so called Courant– Friedrichs– Lewy condition (or CFL condition).
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Fig. 19.3 (Stability of the

FTBS method) Top the

magnitude of the eigenvalue

|σk | is shown as a function of

k for positive values of the

Courant number (from

Bottom to Top) α =
0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

1.1. The method is stable for

α ≤ 1 (full curves) and

unstable for α > 1 (dashed

curves). Bottom the

magnitude of the eigenvalue

|σk | is shown as a function of

k for negative values of the

Courant number (from

Bottom to Top) α =
−0.1,−0.3,−0.5,−0.7,

−0.9. The method is

unstable for all α < 0
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Fig. 19.4 (Performance of

the FTBS method) An

initially rectangular pulse

(dashed curve) is propagated

with the FTBS method

(∆x = 0.01,∆t =
0.005,α = 0.5). Due to

numerical diffusion the

shape is rapidly smoothened.

Results are shown after 1,10

and 100 round trips (2000

time steps each)
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The FTBS method works, but shows strong damping due to numerical diffusion

(Fig. 19.4). Its dispersion relation is

ωk∆t = −i ln(σk) = −i ln ([1 − α(1 − cos k∆x) + iα sin k∆x]) . (19.55)

19.2.2.2 Forward in Time, Forward in Space

For a forward difference we obtain similarly

f (x, t + ∆t) = f (x, t) − α ( f (x + ∆x, t) − f (x, t)) (19.56)
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σk = 1 − α(e−ik∆x − 1) (19.57)

|σk |2 = 1 + 2(α2 + α)(1 − cos k∆x) (19.58)

which is the same result as for the backward difference with α replaced by−α.

19.2.2.3 Forward in Time, Centered in Space

For a symmetric difference quotient, the eigenvalues of M are purely imaginary, all

eigenvalues of (1 + αM)

σk = 1 + iα sin k∆x (19.59)

|σk |2 = 1 + α2 sin2 k∆x (19.60)

have absolute values |σk | > 1 and this method (FTCS, forward in time centered in

space) is unstable (Fig. 19.5).

19.2.2.4 Lax-Friedrichs-Scheme

Stability can be achieved by a modification which is known as Lax-Friedrichs-

scheme. The value of f (x, t) is averaged over neighboring grid points

f (x, t + ∆t) = f (x + ∆x) + f (x − ∆x)

2
− α

2
( f (x + ∆x) − f (x − ∆x))

=
[

1 − α

2
exp

(

∆x
∂

∂x

)

+ 1 + α

2
exp

(

−∆x
∂

∂x

)]

f (x, t)

= 1 − α
∂ f

∂x
+ (∆x)2

2

∂2 f

∂x2
+ · · · . (19.61)

Fig. 19.5 (Instability of the

FTCS method) An initially

Gaussian pulse (dashed

curve) is propagated with the

FTCS method (∆x =
0.01,∆t = 0.005,α = 0.5).

Numerical instabilities

already show up after 310

time steps and blow up

rapidly afterwards
400 600 800

x/∆x

0

0.5

1

f 
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)
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The error order is O(∆x2) as for the FTCS method but the leading error has now

diffusive character. We obtain the system of equations

f(t + ∆t) = 1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − α 1 + α

1 + α 1 − α

. . .
. . .

. . .

1 + α 1 − α

1 − α 1 + α

⎞

⎟

⎟

⎟

⎟

⎟

⎠

f(t). (19.62)

The eigenvalues follow from

(1 − α)e−i(n+1)k∆x + (1 + α)e−i(n−1)k∆x = e−ink∆x
[

(1 − α)e−i)k∆x + (1 + α)eik∆x
]

(19.63)

and are given by

σk = 1

2

[

(1 − α)e−ik∆x + (1 + α)eik∆x
]

= cos k∆x + iα sin k∆x . (19.64)

The absolute square is

|σk |2 = 1

4

[

(1 − α)e−i)k∆x + (1 + α)eik∆x
] [

(1 − α)ei)k∆x + (1 + α)e−ik∆x
]

= 1

4

[

(1 − α)2 + (1 + α)2 + (1 − α2)(e−2ik∆x + e2ik∆x )
]

= 1

2

[

1 + α2 + (1 − α2) cos 2k∆x
]

= 1 − (1 − α2)(sin k∆x)2 (19.65)

and the method is stable for

(1 − α2)(sin k∆x)2 ≥ 0 (19.66)

which is the case if the Courant condition holds

|α| ≤ 1. (19.67)
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19.2.2.5 Lax-Wendroff Method

The Lax-Friedrichs method can be further improved to reduce numerical diffusion

and obtain a method which is higher order in time. It is often used for hyperbolic

partial differential equations. From the time derivative of the advection equation

∂

∂t

(

∂ f

∂t

)

= −c
∂

∂x

(

∂ f

∂t

)

= c2 ∂2 f

∂x2
(19.68)

we obtain the Taylor expansion

f (t + ∆t) = f (t) − ∆t c
∂ f

∂x
+ (∆t)2

2
c2 ∂2 f

∂x2
+ · · · (19.69)

which we discretize to obtain the Lax-Wendroff scheme

f (x, t + ∆t) = f (x, t) − ∆t c
f (x + ∆x, t) − f (x − ∆x, t)

2∆x

+ (∆t)2

2
c2 f (x + ∆x, t) + f (x − ∆x, t) − 2 f (x, t)

(∆x)2
. (19.70)

This algorithm can also be formulated as a predictor-corrector method. First we

calculate intermediate values at t + ∆t/2, x ± ∆x/2 with the Lax method

f (x + ∆x

2
, t + ∆t

2
) = f (x + ∆x, t) + f (x, t)

2
− c∆t

f (x + ∆x, t) − f (x, t)

2∆x

f (x − ∆x

2
, t + ∆t

2
) = f (x, t) + f (x − ∆x, t)

2
− c∆t

f (x, t) − f (x − ∆x, t)

2∆x
(19.71)

which are then combined in a corrector step

f (x, t + ∆t) = f (x, t) − c∆t
f (x + ∆x

2
, t + ∆t

2
) − f (x − ∆t

2
, t + ∆t

2
)

∆x
.

(19.72)

Insertion of the predictor step (19.71) shows the equivalence with (19.70).

f (x, t) − c∆t

∆x

[

f (x + ∆x, t) + f (x, t)

2
− c∆t

f (x + ∆x, t) − f (x, t)

2∆x

− f (x, t) + f (x − ∆x, t)

2
+ c∆t

f (x, t) − f (x − ∆x, t)

2∆x

]
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= f (x, t) − c
∆t

2∆x

[

f (x + ∆x, t) − f (x − ∆x, t)

2

]

+ c2(∆t)2

2(∆x)2
[ f (x + ∆x, t) − 2 f (x, t) + f (x − ∆x, t)] . (19.73)

In matrix notation the Lax-Wendroff method reads

f(t + ∆t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
α+α2

2
1 − α2 α2−α

2

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

f(t) (19.74)

with eigenvalues

σk = 1 − α2 + α2 + α

2
eik∆x + α2 − α

2
e−ik∆x

= 1 − α2 + α2 cos k∆x + iα sin k∆x (19.75)

and

|σk |2 = (1 + α2(cos(k∆x) − 1))2 + α2 sin2 k∆x

= 1 − α2(1 − α2)(1 − cos k∆x)2 (19.76)

which is ≤ 1 for

α2(1 − α2)(1 − cos k∆x)2 ≥ 0 (19.77)

which reduces to the CFL condition

|α| ≤ 1. (19.78)

19.2.2.6 Leapfrog Method

The Leapfrog method uses symmetric differences for both derivatives

f (x, t + ∆t) − f (x, t − ∆t)

2∆t
= −c

f (x + ∆x, t) − f (x − ∆x, t)

2∆x
(19.79)
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Fig. 19.6 Leapfrog method

for advection

n−1

n

n+1

2−m 1−m m 1+m m+2

x

t

to obtain a second order two step method

f (x, t + ∆t) = f (x, t − ∆t) − α [ f (x + ∆x, t) − f (x − ∆x, t)] (19.80)

on a grid which is equally spaced in space and time.

The calculated data form two independent subgrids (Fig. 19.6). For long integra-

tion times this can lead to problems if the results on the subgrids become different

due to numerical errors. Introduction of a diffusive coupling term can help to avoid

such difficulties.

To analyze stability, we write the two step method as a one step method, treating

the values at even and odd time steps as independent variables

gn
m = f (m∆x, 2n∆t) hn

m = f (m∆x, (2n + 1)∆t) (19.81)

for which the Leapfrog scheme becomes

hn
m = hn−1

m − α(gn
m+1 − gn

m−1) (19.82)

gn+1
m = gn

m − α(hn
m+1 − hn

m−1). (19.83)

Combining this two equations we obtain the one step iteration

gn
m = f 2n

m hn
m = f 2n+1

m

(

hn

gn+1

)

=
(

1

−αM 1

)(

1 −αM

1

)(

hn−1

gn

)

=
(

1 −αM

−αM 1 + α2 M2

)(

hn−1

gn

)

.

(19.84)

The eigenvalues of the matrix M are λk = −2i sin k∆x , hence the eigenvalues of

the Leapfrog scheme
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Fig. 19.7 (Dispersion of first order explicit methods) Real (Left) and imaginary (Right) part of

ωk are shown for the first order explicit FTBS (Top), FTCS (Middle) and Lax-Friedrich (Bottom)

methods for values of α = 0.3, 0.5, 0.75, 0.9

σk = 1 + α2λ2

2
±
√

α2λ2 + α4λ4

4

= 1 − 2α2 sin2 k∆x ± 2

√

α2 sin2 k∆x(α2 sin2 k∆x − 1). (19.85)

For |α| ≤ 1 the squareroot is purely imaginary and
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Fig. 19.8 (Dispersion of second order explicit methods) Real (Left) and imaginary (Right) part of

ωk are shown for the second order explicit Lax-Wendroff (Top) and leapfrog (Bottom) methods for

values of α = 0.3, 0.5, 0.75, 0.9

|σk |2 = 1

i.e. the method is unconditionally stable and diffusionless. The dispersion

2ω∆t = −i ln σk = arctan

(

±2
√

α2 sin2 k∆x − α4 sin4 k∆x

1 − 2α2 sin2 k∆x

)

(19.86)

has two branches. Expanding for small k∆x we find

ω ≈ ±ck + · · · . (19.87)

Only the plus sign corresponds to a physical mode. The negative sign corresponds

to the so called computational mode which can lead to artificial rapid oscillations.

These can be removed by special filter algorithms [244, 245].

Figures. 19.7, 19.8 and 19.9 show a comparison of different explicit methods.
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Fig. 19.9 (Comparison of

explicit methods) The results

from the FTBS,

Lax-Friedrichs(L, green),

Lax-Wendroff (LW, black)

and leapfrog (LF, red)

methods after 10 roundtrips

are shown. Initial values

(black dashed curves) are

Gaussian (Top), triangular

(Middle) and rectangular

(Bottom). ∆x = 0.01,

∆t = 0.005,α = 0.5
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19.2.3 Implicit Methods

Time integration by implicit methods improves the stability but can be time con-

suming since inversion of a matrix is involved. A simple Euler backward step (13.4)

takes the derivative at t + ∆t

f(t + ∆t) = f(t) − αMf(t + ∆t) (19.88)

which can be formally written as

f(t + ∆t) = (1 + αM)−1f(t). (19.89)

http://dx.doi.org/10.1007/978-3-319-61088-7_13
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The Crank–Nicolson method (13.5) takes the average of implicit and explicit Euler

step

f(t + ∆t) = f(t) − α

2
M [f(t + ∆t) + f(t)] (19.90)

f(t + ∆t) =
(

1 + α

2
M
)−1 (

1 − α

2
M
)

f(t). (19.91)

Both methods require to solve a linear system of equations.

19.2.3.1 First Order Implicit Method

Combining the back steps in time and space we obtain the BTBS (backward in time,

backward in space) method

f(t + ∆t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 + α

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −1

−1 1

. . .
. . .

. . .

−1 1

−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1

f(t). (19.92)

The tridiagonal structure of the matrix 1 + αM simplifies the solution of the

system. The eigenvalues of (1 + αM)−1 are

σk = 1

1 + α(1 − eik∆x )
(19.93)

|σk |2 = 1

(1 + α)2 + α2 − 2α(1 + α) cos(k∆x)
≤ 1 (19.94)

and the method is unconditionally stable.

19.2.3.2 Second Order Crank–Nicolson Method

The Crank–Nicolson method with the symmetric difference quotient gives a second

order method

(

1 + α

2
M
)

f(t + ∆t) =
(

1 − α

2
M
)

f(t). (19.95)

http://dx.doi.org/10.1007/978-3-319-61088-7_13
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The eigenvalues of (1 + α
2

M)−1(1 − α
2

M) are

σk =
1 + α

2
i sin k∆x

1 − α
2

i sin k∆x
(19.96)

=
1 − α2

4
sin2 k∆x + iα sin k∆x

1 + α2

4
sin2 k∆x

(19.97)

with

|σk |2 = 1. (19.98)

There is no damping but strong dispersion at larger values of α, slowing down

partial waves with higher k−values (Fig. 19.11)

This method is unconditionally stable (Fig. 19.10). It may, however, show oscilla-

tions if the time step is chosen too large (Fig. 19.11). It can be turned into an explicit

method by an iterative approach (iterated Crank–Nicolson method, see p. 475), which

avoids solution of a linear system but is only stable for α ≤ 1.

19.2.4 Finite Volume Methods

Finite volume methods [246] are very popular for equations in the form of a

conservation law

∂ f (x, t)

∂t
= −divJ( f (x, t)). (19.99)
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Fig. 19.10 (Dispersion of the Crank–Nicolson method) Real (Left) and imaginary part (Right)

part of ωk are shown for α = 0.1, 9, 5, 10. This implicit method is stable for α > 1 but dispersion

becomes noticeable at higher values
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Fig. 19.11 (Performance of

the Crank–Nicolson method)

Results of the implicit

Crank–Nicolson method

after 10 roundtrips are

shown. Initial values (black

dashed curves) are Gaussian

(Top), triangular (Middle)

and rectangular (Bottom).

∆x = 0.01,∆t = 0.01

(α = 1, red dash-dotted

curve) ∆t = 0.1(α = 10,

blue full curve)

∆t = 0.2(α = 20, green

dotted curve, only shown for

Gaussian initial values)
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In one dimension the control volumes are intervals, in the simplest case centered at

equidistant grid points xn

Vn = [xn − ∆x

2
, xn + ∆x

2
]. (19.100)

Integration over one interval gives an equation for the cell average

∂ f n(t)

∂t
= 1

∆x

∂

∂t

∫ xn+∆x/2

xn−∆x/2

f (x, t) = − 1

∆x

∫ xn+∆x/2

xn−∆x/2

∂

∂x
J (x, t)
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Fig. 19.12 (Finite volume

method) The change of the

cell average f n is balanced

by the fluxes through the cell

interfaces J n±1/2

xn−1
xn xn+1

nf  (t)

n−1f    (t)

n+1f    (t)

n+1/2J       (t)n−1/2J       (t)

x

= − 1

∆x

[

J (xn + ∆x

2
, t) − J (xn − ∆x

2
, t)

]

. (19.101)

Formally this can be integrated

f n(t + ∆t) − f (t) = − 1

∆x

[∫ t+∆t

t

J

(

xn + ∆x

2
, t ′
)

dt −
∫ t+∆t

t

J

(

xn − ∆x

2
, t ′
)

dt

]

(19.102)

and with the temporally averaged fluxes through the control volume boundaries

J n±1/2(t) = 1

∆t

∫ t+∆t

t

J

(

xn ± ∆x

2
, t ′
)

dt (19.103)

it takes the simple form (Fig. 19.12)

f n(t + ∆t) = f n(t) − ∆t

∆x

[

J n+1/2(t) − J n−1/2(t)
]

. (19.104)

A numerically scheme for a conservation law is called conservative if it can

be written in this form with some approximation J n±1/2(t) of the fluxes at the cell

interfaces. Conservative schemes are known to converge to a weak solution of the

conservation law under certain conditions (stability and consistency).

To obtain a practical scheme, we have to approximate the fluxes in terms of the cell

averages. Godunov’s famous method [247] uses a piecewise constant approximation

of f (x, t)

f (x, t) ≈ f n(t) for xn−1/2 ≤ x ≤ xn+1/2. (19.105)

To construct the fluxes, we have to solve the Riemann problem3

∂ f

∂t
= −∂ J

∂x
(19.106)

3A conservation law with discontinuous initial values.



448 19 Advection

with discontinuous initial values

f (x, t) =
{

f n(t) if x ≤ xn+1/2

f n+1(t) if x ≥ xn+1/2

(19.107)

in the time interval

t ≤ t ′ ≤ t + ∆t. (19.108)

For the linear advection equation with J (x, t) = c f (x, t) the solution is eas-

ily found as the discontinuity just moves with constant velocity. For c∆t ≤ ∆x ,

d’Alembert’s method gives

f (xn + ∆x

2
, t ′) = f n(t) (19.109)

and the averaged flux is

J n+1/2(t) = c

∆t

∫ t+∆t

t

f (xn + ∆x

2
, t ′)dt = c f n(t). (19.110)

Finally we end up with the FTBS upwind scheme (Sect. 19.2.2)

f n(t + ∆t) = f n(t) − c∆t

∆x

[

f n(t) − f n−1(t)
]

. (19.111)

For general conservation laws, approximate methods have to be used to solve the

Riemann problem (so called Riemann solvers [248]).

Higher order methods can be obtained by using higher order piecewise interpo-

lation functions. If we interpolate linearly

f (x, t) ≈ f n(t) + (x − xn)σn(t) for xn−1/2 ≤ x ≤ xn+1/2

the solution to the Riemann problem is

f (xn + ∆x

2
, t ′) = f (xn + ∆x

2
− c(t ′ − t), t) = f n(t) +

[

∆x

2
− c(t ′ − t)

]

σn(t)

= f n(t) +
[

∆x

2
− c(t ′ − t)

]

f n+1 − f n−1

2∆x
.
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The time averaged fluxes are

J n+1/2 = c f n(t) + c

[

∆x

2
− c

∆t

2

]

σn(t)

and we end up with

f n(t + ∆t) = f n(t) − c∆t

∆x

[

f n(t) − f n−1(t) +
(

∆x

2
− c

∆t

2

)

(σn − σn−1)

]

.

(19.112)

If we take the slopes from the forward differences

σn = f n+1 − f n

∆x
(19.113)

we end up with

f n(t + ∆t) = f n(t) − c∆t

∆x

[

f n(t) − f n−1(t)
]

− c∆t

2∆x
(∆x − c∆t)

f n+1 − 2 f n + f n−1

∆x

= f n(t) − c∆t

∆x

[

f n(t) − f n−1(t) + f n+1 − 2 f n + f n−1

2

]

+ (c∆t)2

2∆x

f n+1 − 2 f n + f n−1

∆x

= f n(t) − c∆t

∆x

[

f n+1 − f n−1

2

]

+ (c∆t)2

2∆x

f n+1 − 2 f n + f n−1

∆x
(19.114)

i.e. we end up with the Lax-Wendroff scheme. Different approximations for the slopes

are possible (backward difference, symmetric differences) leading to the schemes of

Fromm and Beam-Warming.

19.2.5 Taylor–Galerkin Methods

The error order of finite difference methods can be improved by using a finite element

discretization [249, 250]. We start from the Taylor series expansion in the time step

f (t + ∆t) = f (t) + ∆t
∂ f

∂t
+ (∆t)2

2

∂2 f

∂t2
+ (∆t)3

6

∂3 f

∂t3
+ · · · (19.115)

which is also the basis of the Lax-Wendroff method (19.70) and make use of the

advection equation to substitute time derivatives by spatial derivatives
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f (t + ∆t) = f (t) − ∆t c
∂ f

∂x
+ (∆t)2

2
c2 ∂2 f

∂x2
+ (∆t)3

6
c2 ∂3 f

∂t∂x2
+ · · ·

(19.116)

where we use a mixed expression for the third derivative to allow the usage of linear

finite elements. We approximate the third derivative as

∂3 f

∂t∂x2
= ∂2

∂x2

f (x, t + ∆t) − f (x, t)

∆t
+ · · · (19.117)

and obtain an implicit expression which is a third order accurate extension of the

Lax-Wendroff scheme

[

1 − (∆t)2

6
c2 ∂2

∂x2

]

( f (x, t + ∆t) − f (x, t)) = −∆t c
∂ f

∂x
+ (∆t)2

2
c2 ∂2 f

∂x2
.

(19.118)

Application of piecewise linear elements on a regular grid (p. 282) produces the

following Lax-Wendroff Taylor-Galerkin scheme

[

1 + 1

6

(

1 − α2
)

D2

]

(f(t + ∆t) − f(t)) =
[

−α M1 + α2

2
M2

]

f(t). (19.119)

The Taylor-Galerkin method can be also combined with other schemes like

leapfrog or Crank–Nicolson [250]. It can be generalized to advection-diffusion prob-

lems and it can be turned into an explicit scheme [251] by series expansion of the

inverse in

f(t + ∆t) = f(t) +
[

1 + 1

6

(

1 − α2
)

M2

]−1 [

−α M1 + α2

2
M2

]

f(t). (19.120)

The eigenvalues are

σk = 1 +
αi sin k∆x − 2α2 sin2 k∆x

2

1 − 2
3
(1 − α2) sin2 k∆x

2

. (19.121)

The method is stable for |α| ≤ 1. Due to its higher error order it shows less

dispersion and damping than the Lax-Wendroff method (Fig. 19.13) and provides

superior results (Fig. 19.14).
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Fig. 19.13 (Dispersion of the Taylor-Galerkin Lax-Wendroff method) Real (Left) and imaginary

part (Right) part of ωk are shown for α = 0.3, 0.5, 0.75, 0.9

Fig. 19.14 (Performance of

the Taylor-Galerkin

Lax-Wendroff method)

Results of the Lax-Wendroff

(dashed curves) and

Taylor-Galerkin

Lax-Wendroff (full curves)

methods are compared after

25 roundtrips (2000 steps

each). ∆x = 0.01,
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19.3 Advection in More Dimensions

While in one dimension for an incompressible fluid c = const, this is not necessarily

the case in more dimensions.
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19.3.1 Lax–Wendroff Type Methods

In more dimensions we substitute

∂ f

∂t
= −u∇ f (19.122)

∂2 f

∂t2
= ∂

∂t

(

∂ f

∂t

)

= −u∇

(

∂ f

∂t

)

= (u∇)(u∇) f (19.123)

in the series expansion

f (t + ∆t) − f (t) = ∆t
∂ f

∂t
+ ∆t2

2

∂2 f

∂t2
+ · · · (19.124)

to obtain a generalization of the Taylor expansion (19.69)

f (t + ∆t) − f (t) = −∆t u∇ f + (∆t)2

2
(u∇)(u∇) f + · · · (19.125)

which then has to be discretized in space by the usual methods of finite differences

or finite elements [250]. Other one-dimensional schemes like leapfrog also can be

generalized to more dimensions.

19.3.2 Finite Volume Methods

In multidimensions we introduce a, not necessarily regular, mesh of control vol-

umes Vi . The surface of Vi is divided into interfaces Ai,α to the neighboring cells.

Application of the integral form of the continuity equation (19.3) gives

∂

∂t

∫

Vi

dV f (r, t) = −
∮

∂Vi

J(r, t)dA (19.126)

and after time integration

f i (t + ∆t) − f (t) = −∆t
∑

α

J i,α(t) (19.127)

with the cell averages
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Fig. 19.15 Averaged fluxes

in 2 dimensions

fi
Ji,4

Ji,1

Ji,2

Ji,3

f i (t) = 1

Vi

∂

∂t

∫

Vi

dV f (r, t) (19.128)

and the flux averages

J i,α(t) = 1

∆t

1

Vi

∑

α

∫ t+∆t

t

dt ′
∮

Ai,α

J(r, t ′)dA. (19.129)

For a regular mesh with cubic control volumes the sum is over all cell faces

f i jk(t + ∆t) = f i jk(t) − ∆t
[

J i+1/2, j,k(t) + J i, j+1/2,k(t) + J i, j,k+1/2,(t)

−J i−1/2, j,k(t) − −J i, j−1/2,k(t) − J i, j,k−1/2(t)
]

. (19.130)

The function values have to be reconstructed from the cell averages, e.g. piecewise

constant

f (r, t) = f i (t) for r ∈ Vi (19.131)

and the fluxes through the cell surface approximated in a suitable way, e.g. constant

over a surface element (Fig. 19.15)

J(r, t) = Ji,α(t) for r ∈ Ai,α. (19.132)

Then the Riemann problem has to be solved approximately to obtain the fluxes for

times t . . . t + ∆t . This method is also known as reconstruct evolve average (REA)

method. An overview of average flux methods is presented in [252].
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19.3.3 Dimensional Splitting

Splitting methods are very useful to divide a complicated problem into simpler

steps. The time evolution of the advection equation can be written as a sum of three

contributions4

∂ f

∂t
= −div(u f ) = −∂(ux f )

∂x
− ∂(u y f )

∂y
− ∂(uz f )

∂z
(19.133)

or, for an incompressible fluid

∂ f

∂t
= −u grad f = −ux

∂ f

∂x
− u y

∂ f

∂y
− uz

∂ f

∂z
(19.134)

which has the form

∂ f

∂t
= A f = (Ax + Ay + Az) f. (19.135)

The time evolution can be approximated by

f (t + ∆t) = e∆t A f (t) ≈ e∆t Ax e∆t Ay e∆t Az f (t) (19.136)

i.e. by a sequence of one-dimensional time evolutions. Accuracy can be improved

by applying a symmetrical Strang-splitting

f (t + ∆t) ≈ e∆t/2 Ax e∆t/2 Ay e∆t Az e∆t/2 Ay e∆t/2 Ax f (t). (19.137)

Problems

Problem 19.1 Advection in one Dimension

In this computer experiment we simulate 1-dimensional advection with periodic

boundary conditions. Different initial values (rectangular, triangular or Gaussian

pulses of different widths) and methods (Forward in Time Backward in Space,

Lax-Friedrichs, leapfrog, Lax-Wendroff, implicit Crank–Nicolson, Taylor-Galerkin

Lax-Wendroff) can be compared. See also Figs. 19.4, 19.11, 19.14 and 19.9.

4This is also the case if a diffusion term D
(

∂2 f

∂x2 + ∂2 f

∂y2 + ∂2 f

∂z2

)

is included.



Chapter 20

Waves

Waves are oscillations that move in space and time and are able to transport energy

from one point to another. Quantum mechanical wavefunctions are discussed in

Chap. 23. In this chapter we simulate classical waves which are, for instance, impor-

tant in acoustics and electrodynamics. We use the method of finite differences to

discretize the wave equation in one spatial dimension

∂2

∂t2
f (t, x) = c2 ∂2

∂x2
f (t, x). (20.1)

Numerical solutions are obtained by an eigenvector expansion using trigonomet-

ric functions or by time integration. Accuracy and stability of different methods are

compared. The wave function is second order in time and can be integrated directly

with a two step method. Alternatively, it can be converted into a first order system

of equations of double dimension. Here, the velocity appears explicitly and veloc-

ity dependent damping can be taken into account. Finally, the second order wave

equation can be replaced by two coupled first order equations for two variables (like

velocity and density in case of acoustic waves), which can be solved by quite general

methods. We compare the leapfrog, Lax–Wendroff and Crank–Nicolson methods.

Only the Crank–Nicolson method is stable for Courant numbers α > 1. It is an

implicit method and can be solved iteratively. In a series of computer experiments

we simulate waves on a string. We study reflection at an open or fixed boundary and

at the interface between two different media. We compare dispersion and damping

for different methods.

20.1 Classical Waves

In classical physics there are two main types of waves:

Electromagnetic waves do not require a medium. They are oscillations of the elec-

tromagnetic field and propagate also in vacuum. As an example consider a plane wave

which propagates in x-direction and is linearly polarized (Fig. 20.1). The electric and

magnetic field have the form
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Fig. 20.1 Electromagnetic

wave

x

y

z

E

B

E =

⎛
⎝

0

Ey(x, t)

0

⎞
⎠ B =

⎛
⎝

0

0

Bz(x, t)

⎞
⎠ . (20.2)

Maxwell’s equations read in the absence of charges and currents

divE = div B = 0, rot E = −
∂B

∂t
, rotB = μ0ε0

∂E

∂t
. (20.3)

The fields (20.2) have zero divergence and satisfy the first two equations. Application

of the third and fourth equation gives

∂Ey

∂x
= −

∂Bz

∂t
−

∂Bz

∂x
= μ0ε0

∂Ey

∂t
(20.4)

which can be combined to a one-dimensional wave-equation

∂2 Ey

∂t2
= c2 ∂2 Ey

∂x2
(20.5)

with velocity c = (μ0ε0)
−1/2.

Mechanical waves propagate through an elastic medium like air, water or an elastic

solid. The material is subject to external forces deforming it and elastic forces which

try to restore the deformation. As a result the atoms or molecules move around their

equilibrium positions. As an example consider one-dimensional acoustic waves in

an organ pipe (Fig. 20.2):

A mass element

dm = ̺dV = ̺Adx (20.6)

at position x experiences an external force due to the air pressure which, according to

Newton’s law changes the velocity v of the element as described by Euler’s equation1

1we consider only small deviations from the equilibrium values ̺0, p0, v0 = 0.
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x x+dx

dm
A

F(x)=p(x)A

J(x+dx)=     Av(x+dx)ρ
0

F(x+dx)=−p(x+dx)A

J(x)=     Av(x)
0

ρ

Fig. 20.2 (Acoustic waves in one dimension) A mass element dm = ̺Adx at position x experiences

a total force F = F(x) + F(x + dx) = −A
∂ p
∂x

dx . Due to the conservation of mass the change of

the density
∂̺
∂t

is given by the net flux J = J (x) − J (x + dx) = −̺0 A ∂v
∂x

dx

̺0

∂

∂t
v = −

∂ p

∂x
. (20.7)

The pressure is a function of the density

p

p0

=

(
̺

̺0

)n (
d p

d̺

)

0

= n
p0

̺0

= c2 (20.8)

where n = 1 for an isothermal ideal gas and n ≈ 1.4 for air under adiabatic conditions

(no heat exchange), therefore

̺0

∂

∂t
v = −c2 ∂̺

∂x
. (20.9)

From the conservation of mass the continuity equation (12.10) follows

∂

∂t
̺ = −̺0

∂

∂x
v. (20.10)

Combining the time derivative of (20.10) and the spatial derivative of (20.9) we

obtain again the one-dimensional wave equation

∂2

∂t2
̺ = c2 ∂2

∂x2
̺. (20.11)

The wave-equation can be factorized as

(
∂

∂t
+ c

∂

∂x

) (
∂

∂t
− c

∂

∂x

)
̺ =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
̺ = 0 (20.12)

which shows that solutions of the advection equation

(
∂

∂t
± c

∂

∂x

)
̺ = 0 (20.13)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 20.3 d’Alembert

solution to the wave equation

x

t
f(x−ct)f(x+ct)

are also solutions of the wave equation, which have the form

̺ = f (x ± ct). (20.14)

In fact a general solution of the wave equation is given according to d’Alembert as

the sum of two waves running to the left and right side with velocity c and a constant

envelope (Fig. 20.3)

̺ = f1(x + ct) + f2(x − ct). (20.15)

A special solution of this kind is the plane wave solution

f (x, t) = eiωt±ikx

with the dispersion relation

ω = ck. (20.16)

20.2 Spatial Discretization in One Dimension

We use the simplest finite difference expression for the spatial derivative (Sects. 3.4

and 12.2)

∂2

∂x2
f (x, t) =

f (t, x + ∆x) + f (t, x − ∆x) − 2 f (t, x)

∆x2
+ O(∆x2) (20.17)

and a regular grid

xm = m∆x m = 1, 2 . . . M (20.18)

fm = f (xm). (20.19)

http://dx.doi.org/10.1007/978-3-319-61088-7_3
http://dx.doi.org/10.1007/978-3-319-61088-7_12
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x1 x2

xN−1

x1x0 x2

x1x0 x2
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xM−1 xM xM+1

xM−1 xM xM+1

xM−1 xM xM+1

(t)ξ (t)ξ

x

x

x

x

(d)

(c)

(b)

(a)

Fig. 20.4 (Boundary Conditions for 1-dimensional waves) Additional boundary points

x0, xM+1 are used to realize the boundary conditions. (a) Fixed boundaries f (x0) = 0
∂2

∂x2 f (x1) = 1
∆x2 ( f (x2) − 2 f (x1)) or f (xM+1) = 0, ∂2

∂x2 f (xM ) = 1
∆x2 ( f (xM−1) −

2 f (xM )). (b) Periodic boundary conditions x0 ≡ xM , ∂2

∂x2 f (x1) = 1
∆x2 ( f (x2) + f (xM ) −

2 f (x1)) xM+1 ≡ x1, ∂2

∂x2 f (xM ) = 1
∆x2 ( f (xM−1) + f (x1) − 2 f (xN M )). (c) Open bound-

aries ∂
∂x

f (x1) =
f (x2)− f (x0)

2∆x
= 0, ∂2

∂x2 f (x1) = 1
∆x2 (2 f (x2) − 2 f (x1))or ∂

∂x
f (xM ) =

f (xM+1)− f (xM−1)

2∆x
= 0 ∂2

∂x2 f (xM ) = 1
∆x2 (2 f ((xM−1) − 2 f (xM )). (d) Moving bound-

aries f (x0, t) = ξ0(t)
∂2

∂x2 f (x1) = 1
∆x2 ( f (x2) − 2 f (x1) + ξ0(t))or f (xM+1, t) = ξM+1(t),

∂2

∂x2 f (xM ) = 1
∆x2 ( f (xM−1) − 2 f (xM ) + ξN+1(t))

This turns the wave equation into the system of ordinary differential equations

(Sect. 12.2.3)

d2

dt2
fm = c2 fm+1 + fm−1 − 2 fm

∆x2
(20.20)

where f0 and fM+1 have to be specified by suitable boundary conditions (Fig. 20.4).

In matrix notation we have

f(t) =

⎛
⎜⎝

f1(t)
...

fM(t)

⎞
⎟⎠ (20.21)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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d2

dt2
f(t) = Af(t) + S(t) (20.22)

where for

fixed boundaries A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

c2

∆x2
S(t) = 0 (20.23)

periodic boundaries2 A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 1

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

c2

∆x2
S(t) = 0 (20.24)

open boundaries A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 2

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

c2

∆x2
S(t) = 0 (20.25)

moving boundaries A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

c2

∆x2
S(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0(t)

0
...
...

0

ξM+1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20.26)

A combination of different boundary conditions for both sides is possible.

Equation (20.20) corresponds to a series of mass points which are connected by

harmonic springs (Fig. 20.5), a model, which is used in solid state physics to describe

longitudinal acoustic waves [253].

2This corresponds to the boundary condition f0 = f2,
∂
∂x

f (x1) = 0. Alternatively we could use

f0 = f1,
∂
∂x

f (x1/2) = 0 which replaces the 2 s in the first and last row by 1 s.



20.3 Solution by an Eigenvector Expansion 461

Δ Δ

x
(j+1)   xΔ(j−1)   x j   x

Fig. 20.5 (Atomistic model for longitudinal waves) A set of mass points m is connected by springs

with stiffness K . The elongation of mass point number j from its equilibrium position x j = j∆x

is ξ j . The equations of motion mξ̈ j = −K (ξ j − ξ j−1) − K (ξ j − ξ j+1) coincide with (20.20) with

a velocity of c = ∆x

√
k∆x

m

20.3 Solution by an Eigenvector Expansion

For fixed boundaries (20.20) reads in matrix form

d2

dt2
f(t) = Af(t) (20.27)

with the vector of function values:

f(t) =

⎛
⎜⎝

f1(t)
...

fM(t)

⎞
⎟⎠ (20.28)

and the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

c2

∆x2
(20.29)

which can be diagonalized exactly (Sect. 10.3). The two boundary points f (0) = 0

and f ((M + 1)∆x) = 0 can be added without any changes. The eigenvalues are

λ = 2
c2

∆x2
(cos(k∆x) − 1) = −

4c2

∆x2
sin2

(
k∆x

2

)
= (iωk)

2 k∆x =
πl

(M + 1)
, l = 1 . . . M

(20.30)

with the frequencies

http://dx.doi.org/10.1007/978-3-319-61088-7_10


462 20 Waves

Fig. 20.6 (Dispersion of the

discrete wave equation) The

dispersion of the discrete

wave equation approximates

the linear dispersion of the

continuous wave equation

only at small values of k. At

kmax = π/∆x it saturates at

ωmax = 2c/∆x =

(2/π) ckmax

0 0.5 1 1.5

k/k
max

0

0.5

1

1.5

ω
/ω

m
ax

ωk =
2c

∆x
sin

(
k∆x

2

)
. (20.31)

This result deviates from the dispersion relation of the continuous wave equation

(20.11) ωk = ck and approximates it only for k∆x ≪ 1 (Fig. 20.6).

The general solution has the form (Sect. 12.2.4)

fn(t) =

M∑

l=1

(
Cl+eiωl t + Cl−e−iωl t

)
sin

(
m

πl

(M + 1)

)
. (20.32)

The initial amplitudes and velocities are

fn(t = 0) =

M∑

l=1

(Cl+ + Cl−) sin

(
m

πl

(M + 1)

)
= Fm

d

dt
fm(t = 0, xm) =

M∑

l=1

iωl (Cl+ − Cl−) sin

(
m

πl

(M + 1)

)
= Gm (20.33)

with Fm and Gm given. Different eigenfunctions of a tridiagonal matrix are mutually

orthogonal

M∑

m=1

sin

(
m

πl

M + 1

)
sin

(
m

πl ′

M + 1

)
=

M

2
δl,l ′ (20.34)

and the coefficients Cl± follow from a discrete Fourier transformation:

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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F̃l =
1

M

M∑

m=1

sin

(
m

πl

N + 1

)
Fm

=
1

M

M∑

m=1

M∑

l ′=1

(Cl ′+ + Cl ′−) sin

(
m

πl ′

M + 1

)
sin

(
m

πl

M + 1

)
=

1

2
(Cl+ + Cl−)

(20.35)

G̃l =
1

M

M∑

m=1

sin

(
m

πl

N + 1

)
Gn

=
1

M

M∑

m=1

N M∑

l ′=1

iωl (Cl+ − Cl−) sin

(
m

πl ′

M + 1

)
sin

(
m

πl

M + 1

)
=

1

2
iωl (Cl+ − Cl−)

(20.36)

Cl+ = F̃l +
1

iωl
G̃l

Cl− = F̃l −
1

iωl
G̃l . (20.37)

Finally the explicit solution of the wave equation is

fm(t) =

M∑

l=1

2(F̃l cos(ωl t) +
G̃l

ωl

sin(ωl t)) sin

(
m

πl

M + 1

)
. (20.38)

Periodic or open boundaries can be treated similarly as the matrices can be diag-

onalized exactly (Sect. 10.3). For moving boundaries the expansion coefficients are

time dependent (Sect. 12.2.4).

20.4 Discretization of Space and Time

Using the finite difference expression also for the second time derivative the fully

discretized wave equation is

f (t + ∆t, x) + f (t − ∆t, x) − 2 f (t, x)

∆t2

= c2 f (t, x + ∆x) + f (t, x − ∆x) − 2 f (t, x)

∆x2
+ O(∆x2,∆t2). (20.39)

For a plane wave

f = ei(ωt−kx) (20.40)

we find

http://dx.doi.org/10.1007/978-3-319-61088-7_10
http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 20.7 (Dispersion of the

discrete wave equation) Only

for α = 1 or for small values

of k∆x and ω∆t is the

dispersion approximately

linear. For α < 1 only

frequencies

ω < ωmax = 2 arcsin(α)/∆t

are allowed whereas for

α > 1 the range of k-values

is bounded by

kmax = 2 arcsin(1/α)/∆x

0 0.5 1 1.5

k    x /2
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0.5

1

1.5

ω
   

 

< 1

> 1

Δ

Δ

α

α

t/
2

eiω∆t + e−iω∆t − 2 = c2 ∆t2

∆x2

(
eik∆x + e−ik∆x − 2

)
(20.41)

which can be written as

sin
ω∆t

2
= α sin

k∆x

2
(20.42)

with the so-called Courant-number [243]

α = c
∆t

∆x
. (20.43)

From (20.42) we see that the dispersion relation is linear only for α = 1. For

α �= 1 not all values of ω and k allowed (Fig. 20.7).

20.5 Numerical Integration with a Two-Step Method

We solve the discrete wave equation (20.39) with fixed or open boundaries for

f (t + ∆t, x) = 2 f (t, x)(1 − α2) + α2( f (t, x + ∆x) + f (t, x − ∆x))

− f (t − ∆t, x) + O(∆t2,∆x2) (20.44)

on the regular grids

xm = m∆x m = 1, 2 . . . M (20.45)

tn = n∆t n = 1, 2 . . . N (20.46)
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fn =

⎛
⎜⎝

f n
1
...

f n
M

⎞
⎟⎠ =

⎛
⎜⎝

f (tn, x1)
...

f (tn, xM)

⎞
⎟⎠ (20.47)

by applying the iteration

f n+1
m = 2(1 − α2) f n

m + α2 f n
m+1 + α2 f n

m−1 − f n−1
m . (20.48)

This is a two-step method which can be rewritten as a one-step method of double

dimension

(
fn+1

fn

)
= T

(
fn

fn−1

)
=

(
2 + α2 M −1

1 0

) (
fn

fn−1

)
(20.49)

with the tridiagonal matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

−2 a1

1 −2 1

. . .
. . .

. . .

1 −2 1

aN −2

⎞
⎟⎟⎟⎟⎟⎠

(20.50)

where a1and aN have the values 1 for a fixed or 2 for an open end.

The matrix M has eigenvalues (Sect. 10.3)

λ = 2 cos(k∆x) − 2 = −4 sin2

(
k∆x

2

)
. (20.51)

To simulate excitation of waves by a moving boundary we add one grid point with

given elongation ξ0(t) and change the first equation into

f (tn+1, x1) = 2(1−α2) f (tn, x1)+α2 f (tn, x2)+α2ξ0(tn)− f (tn−1, x1). (20.52)

Repeated iteration gives the series of function values

(
f1

f0

)
,

(
f2

f1

)
= T

(
f1

f0

)
,

(
f3

f2

)
= T 2

(
f1

f0

)
, · · · (20.53)

A necessary condition for stability is that all eigenvalues of T have absolute values

smaller than one. Otherwise small perturbations would be amplified. The eigenvalue

equation for T is

(
2 + α2 M − σ −1

1 −σ

) (
u

v

)
=

(
0

0

)
. (20.54)

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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Fig. 20.8 (Stability regions

of the two-step method)

Instabilities appear for

|α| > 1. One of the two

eigenvalues σ becomes

unstable (|σ| > 1) for waves

with large k-values

0 1 2 3 4

k  Δx 

0

1

2

3

4

|σ
|

α  =1.5

α  =1.1

2

2

α  <1.02

We substitute the solution of the second equation

u = σv (20.55)

into the first equation and use the eigenvectors of M (Sect. 10.3) to obtain the eigen-

value equation

(2 + α2λ − σ)σv − v = 0. (20.56)

Hence σ is one of the two roots of

σ2 − σ(α2λ + 2) + 1 = 0 (20.57)

which are given by (Fig. 20.8)

σ = 1 +
α2λ

2
±

√(
α2λ

2
+ 1

)2

− 1. (20.58)

From

λ = −4 sin2

(
k∆x

2

)

we find

−4 < λ < 0 (20.59)

1 − 2α2 <
α2λ

2
+ 1 < 1 (20.60)

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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and the square root in (20.58) is imaginary if

−1 <
α2λ

2
+ 1 < 1 (20.61)

which is the case for

sin2

(
k∆x

2

)
α2 < 1. (20.62)

This holds for all k only if

|α| < 1. (20.63)

But then

|σ|2 =

(
1 +

α2λ

2

)2

+

(
1 −

(
α2λ

2
+ 1

)2
)

= 1 (20.64)

and the algorithm is (conditionally) stable. If on the other hand |α| > 1 then for

some k-values the square root is real. Here we have

1 +
α2λ

2
< −1 (20.65)

and finally

1 +
α2λ

2
−

√(
1 +

α2λ

2

)2

− 1 < −1 (20.66)

which shows that instabilities are possible in this case.

20.6 Reduction to a First Order Differential Equation

A general method to reduce the order of an ordinary differential equation (or a

system of such) introduces the time derivatives as additional variables (Chap. 13).

The spatially discretized one-dimensional wave equation (20.22) can be transformed

into a system of double dimension

d

dt
f(t) = v(t) (20.67)

http://dx.doi.org/10.1007/978-3-319-61088-7_13
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d

dt
v(t) =

c2

∆x2
Mf(t) + S(t). (20.68)

We use the improved Euler method (Sect. 13.5)

f(t + ∆t) = f(t) + v(t +
∆t

2
)∆t + O(∆t3) (20.69)

v(t + ∆t) = v(t) +

[
c2

∆x2
Mf(t +

∆t

2
) + S(t +

∆t

2
)

]
∆t + O(∆t3) (20.70)

and two different time grids

fn = f(tn) Sn = S(tn) n = 0, 1 . . . (20.71)

f(tn+1) = f(tn) + v(tn+1/2)∆t (20.72)

vn = v(tn−1/2) n = 0, 1 . . . (20.73)

v(tn+1/2) = v(tn−1/2) +

[
c2

∆x2
Mf(tn) + S(tn)

]
∆t. (20.74)

We obtain a leapfrog (Fig. 20.9) like algorithm (p. 398)

vn+1 = vn +

[
c2

∆x2
Mfn + Sn

]
∆t (20.75)

fn+1 = fn + vn+1∆t (20.76)

where the updated velocity (20.75) has to be inserted into (20.76). This can be

combined into the iteration

(
fn+1

vn+1

)
=

⎛
⎜⎝

fn + vn∆t +
[

c2

∆x2 Mfn + Sn

]
∆t2

vn +
[

c2

∆x2 Mfn + Sn

]
∆t

⎞
⎟⎠ =

⎛
⎝ 1 + c2∆t2

∆x2 M ∆t

c2∆t
∆x2 M 1

⎞
⎠

(
fn

vn

)
+

(
Sn∆t2

Sn∆t

)
.

(20.77)

Fig. 20.9 Leapfrog method

fn−1
fn fn+1

vnvn−1 vn+1

n   tΔ(n−1)  tΔ Δ(n+1)   t

(n+1/2) tΔ  

t

Δ(n−1/2) t

http://dx.doi.org/10.1007/978-3-319-61088-7_13
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Since the velocity appears explicitly we can easily add a velocity dependent damp-

ing like

−γv(tn, xm) (20.78)

which we approximate by

−γv(tn −
∆t

2
, xm) (20.79)

under the assumption of weak damping

γ∆t ≪ 1. (20.80)

To study the stability of this algorithm we consider the homogeneous problem

with fixed boundaries. With the Courant number α = c∆t
∆x

(20.77) becomes

(
fn+1

vn+1

)
=

(
1 + α2 M ∆t (1 − γ∆t)

α2

∆t
M 1 − γ∆t

) (
fn

vn

)
. (20.81)

Using the eigenvectors and eigenvalues of M (Sect. 10.3)

λ = −4 sin2

(
k∆x

2

)
(20.82)

we find the following equation for the eigenvalues σ:

(1 + α2λ − σ)u + ∆t (1 − γ∆t)v = 0

α2λu + ∆t (1 − γ∆t − σ)v = 0. (20.83)

Solving the second equation for u and substituting into the first equation we have

[(1 + α2λ − σ)
∆t

−α2λ
(1 − γ∆t − σ) + ∆t (1 − γ∆t)] = 0 (20.84)

hence

(1 + α2λ − σ)(1 − γ∆t − σ) − α2λ(1 − γ∆t) = 0

σ2 − σ(2 − γ∆t + α2λ) + (1 − γ∆t) = 0

σ = 1 −
γ∆t

2
+

α2λ

2
±

√(
1 −

γ∆t

2
+

α2λ

2

)2

− (1 − γ∆t). (20.85)

Instabilities are possible if the square root is real and σ < −1. (σ > 1 is not possible).

This is the case for

−1+
γ∆t

2
≈ −

√
1 − γ∆t < 1−

γ∆t

2
+

α2λ

2
<

√
1 − γ∆t ≈ 1−

γ∆t

2
(20.86)

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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−2 + γ∆t <
α2λ

2
< 0. (20.87)

The right inequality is satisfied, hence it remains

α2 sin2

(
k∆x

2

)
< 1 −

γ∆t

2
. (20.88)

This holds for all k-values if it holds for the maximum of the sine-function

α2 < 1 −
γ∆t

2
. (20.89)

This shows that inclusion of the damping term even favors instabilities.

20.7 Two Variable Method

For the 1-dimensional wave equation (20.11) there exists another possibility to reduce

the order of the time derivative by splitting it up into two first order equations similar

to (20.9, 20.10)

∂

∂t
f (t, x) = c

∂

∂x
g(t, x) (20.90)

∂

∂t
g(t, x) = c

∂

∂x
f (t, x). (20.91)

Several algorithms can be applied to solve these equations [254]. We discuss only

methods which are second order in space and time and are rather general methods

to solve partial differential equations. The boundary conditions need some special

care. For closed boundaries with f (x0) = 0 obviously
∂ f

∂t
(x0) = 0 whereas

∂ f

∂x
(x0)

is finite. Hence a closed boundary for f (t, x) is connected with an open boundary

for g(t, x) with
∂g
∂x

(x0) = 0 and vice versa. This is well known from acoustics

(Fig. 20.10).

pΔ

vΔ

Fig. 20.10 (Standing waves in an organ pipe) At the closed (Left) end the amplitude of the longi-

tudinal velocity is zero whereas the amplitudes of pressure and density changes are extremal. This

is reversed at the open (Right) end
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20.7.1 Leapfrog Scheme

We use symmetric differences (Sect. 3.2) for the first derivatives

f (t + ∆t
2

, x) − f (t − ∆t
2

, x)

∆t
= c

g(t, x + ∆x
2

) − g(x − ∆x
2

)

∆x
+ O(∆x2,∆t2)

(20.92)

g(t + ∆t
2

, x) − g(t − ∆t
2

, x)

∆t
= c

f (t, x + ∆x
2

) − f (x − ∆x
2

)

∆x
+ O(∆x2,∆t2)

(20.93)

to obtain the following scheme

g((tn+1/2, xm+1/2) = g(tn−1/2, xm+1/2) + α ( f (tn, xm+1)) − f (tn, xm−1) (20.94)

f (tn+1, xm) = f (tn, xm) + α
(
g(tn+1/2, xm+1/2) − g((tn+1/2, xm−1/2)

)
. (20.95)

Using different time grids for the two variables

fn =

⎛
⎜⎝

f n
1
...

f n
M

⎞
⎟⎠ =

⎛
⎜⎝

f (tn, x1)
...

f (tn, xM)

⎞
⎟⎠ gn =

⎛
⎜⎝

gn
1
...

gn
M

⎞
⎟⎠ =

⎛
⎜⎝

g((tn−1/2, x1/2)
...

g(tn−1/2, xM−1/2)

⎞
⎟⎠ (20.96)

this translates into the algorithm (Fig. 20.11)

gn+1
m = gn

m + α
(

f n
m − f n

m−1

)
(20.97)

f n+1
m = f n

m +α
(
gn+1

m+1 − gn+1
m

)
= f n

m +α
(
gn

m+1 − gn
m

)
+α2( f n

m+1 −2 f n
m + f n

m−1).

(20.98)

Fig. 20.11 (Simulation with

the leapfrog method) A

rectangular pulse is

simulated with the

two-variable leapfrog

method. While for α = 1 the

pulse shape has not changed

after 1000 steps, for smaller

values the short wavelength

components are lost due to

dispersion
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time
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e

1000 steps

α=0.95

α=1.0
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472 20 Waves

To analyze the stability we insert

f n
m = ueaneikm∆x gn

m = veaneikm∆x (20.99)

and obtain the equations

Gv = v + αu(1 − e−ik∆x ) (20.100)

Gu = u + αv(eik∆x − 1) + α2u(2 cos k∆x − 2) (20.101)

which in matrix form read

G

(
u

v

)
=

(
1 + α2(2 cos k∆x − 2) α(eik∆x − 1)

α(1 − e−ik∆x ) 1

) (
u

v

)
. (20.102)

The maximum amplification factor G is given by the largest eigenvalue, which is

one of the roots of

(1 − 4α2 sin2

(
k∆x

2

)
− σ)(1 − σ) + 4α2 sin2

(
k∆x

2

)
= 0

(1 − σ + α2λ2)(1 − σ) − α2λ2 = 0 (20.103)

σ = 1 − 2α2 sin2

(
k∆x

2

)
±

√(
1 − 2α2 sin2

(
k∆x

2

))2

− 1. (20.104)

The eigenvalues coincide with those of the two-step method (20.58).

20.7.2 Lax–Wendroff Scheme

The Lax–Wendroff scheme can be derived from the Taylor series expansion

f (t + ∆t, x) = f (t, x) +
∂ f (t, x)

∂t
∆t +

1

2
∆t2 ∂2 f (t, x)

∂t2
+ . . .

= f (t, x) + c∆t
∂g(t, x)

∂x
+

c2∆t2

2

∂2 f (t, x)

∂t2
+ . . . (20.105)

g(t + ∆t, x) = g(t, x) +
∂g(t, x)

∂t
∆t +

1

2
∆t2 ∂2g(t, x)

∂t2
+ . . .

= g(t, x) + c∆t
∂ f (t, x)

∂x
+

c2∆t2

2

∂2g(t, x)

∂t2
+ . . . . (20.106)
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It uses symmetric differences on regular grids (20.45, 20.46) to obtain the iteration

f n+1
m = f n

m + c∆t
gn

m+1 − gn
m−1

2∆x
+ c2∆t2

f n
m+1 + f n

m−1 − 2 f n
m

2∆x2
(20.107)

gn+1
m = gn

m + c∆t
f n
m+1 − f n

m−1

2∆x
+ c2∆t2

gn
m+1 + gn

m−1 − 2gn
m

2∆x2
(20.108)

(
fn+1

gn+1

)
=

(
1 + α2

2
M α

2
D

α
2

D 1 + α2

2
M

) (
fn

gn

)
(20.109)

with the tridiagonal matrix

D =

⎛
⎜⎜⎜⎜⎜⎝

0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0

⎞
⎟⎟⎟⎟⎟⎠

. (20.110)

To analyze the stability we insert

f n
m = ueaneikm∆x gn

m = veaneikm∆x (20.111)

and calculate the eigenvalues (compare with 20.102) of

(
1 + α2(cos k∆x − 1) iα sin k∆x

iα sin k∆x 1 + α2(cos k∆x − 1)

)
(20.112)

which are given by

σ = 1 + α2(cos k∆x − 1) ±
√

α2(cos2 k∆x − 1). (20.113)

The root is always imaginary and

|σ|2 = 1 + (α4 − α2)(cos k∆x − 1)2 ≤ 1 + 4(α4 − α2).

For α < 1 we find |σ| < 1. The method is stable but there is wavelength dependent

damping (Figs. 20.12 and 20.13).
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Fig. 20.12 (Stability region

of the Lax–Wendroff

method) Instabilities appear

for |α| > 1. In the opposite

case short wavelength modes

are damped

0 1 2 3

k Δx
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0.5
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1.5

2

|σ
|

α
2
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2
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2
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α
2
 = 1.0

α
2
 = 0.8

Fig. 20.13 (Simulation with

the Lax–Wendroff method)

A rectangular pulse is

simulated with the

two-variable Lax–Wendroff

method. While for α = 1 the

pulse shape has not changed

after 2000 steps, for smaller

values the short wavelength

components are lost due to

dispersion and damping
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20.7.3 Crank–Nicolson Scheme

This method takes the average of the explicit and implicit Euler methods

f (t + ∆t) = f (t) +
c

2

(
∂g

∂x
(t, x) +

∂g

∂x
(t + ∆t, x)

)
∆t (20.114)

g(t + ∆t) = g(t) +
c

2

(
∂ f

∂x
(t, x) +

∂ f

∂x
(t + ∆t, x)

)
∆t (20.115)

and uses symmetric differences on the regular grids (20.45, 20.46) to obtain

f n+1
m = f n

m +
α

4

(
gn

m+1 − gn
m−1 + gn+1

m+1 − gn+1
m−1

)
(20.116)
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gn+1
m = gn

m +
α

4

(
f n
m+1 − f n

m−1 + f n+1
m+1 − f n+1

m−1

)
(20.117)

which reads in matrix notation

(
fn+1

gn+1

)
=

(
1 α

4
D

α
4

D 1

) (
fn

gn

)
+

(
α
4

D
α
4

D

) (
fn+1

gn+1

)
. (20.118)

This equation can be solved formally by collecting terms at time tn+1

(
1 −α

4
D

−α
4

D 1

) (
fn+1

gn+1

)
=

(
1 α

4
D

α
4

D 1

) (
fn

gn

)
(20.119)

and multiplying with the inverse matrix from left

(
fn+1

gn+1

)
=

(
1 −α

4
D

−α
4

D 1

)−1 (
1 α

4
D

α
4

D 1

) (
fn

gn

)
. (20.120)

Now, if u is an eigenvector of D with purely imaginary eigenvalue λ (Sect. 10.3)

(
1 α

4
D

α
4

D 1

)(
u

±u

)
=

(
(1 ± α

4
λ)u

(α
4
λ ± 1)u

)
= (1 ±

α

4
λ)

(
u

±u

)
(20.121)

and furthermore

(
1 −α

4
D

−α
4

D 1

) (
u

±u

)
=

(
(1 ∓ α

4
λ)u

(−α
4
λ ± 1)u

)
= (1 ∓

α

4
λ)

(
u

±u

)
. (20.122)

But, since the eigenvalue of the inverse matrix is the reciprocal of the eigenvalue,

the eigenvalues of

T =

(
1 −α

4
D

−α
4

D 1

)−1 (
1 α

4
D

α
4

D 1

)
(20.123)

are given by

σ =
1 ± α

4
λ

1 ∓ α
4
λ

. (20.124)

Since λ is imaginary, we find |σ| = 1. The Crank–Nicolson method is stable and does

not show damping like the Lax–Wendroff method. However, there is considerable

dispersion. Solution of the linear system (20.119) is complicated and can be replaced

by an iterative predictor-corrector method. Starting from the initial guess

(
(0)fn+1
(0)gn+1

)
=

(
1 α

2
D

α
2

D 1

) (
fn

gn

)
(20.125)

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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we iterate

(
(0)fn+1/2

(0)gn+1/2

)
=

1

2

(
(0)fn+1
(0)gn+1

)
+

1

2

(
fn
)gn

)
=

(
1 α

4
D

α
4

D 1

)(
fn

gn

)

(
(1)fn+1
(1)gn+1

)
=

(
fn

gn

)
+

(
α
2

D
α
2

D

)(
(0)fn+1/2

(0)gn+1/2

)

=

(
1 α

4
D

α
4

D 1

) (
fn

gn

)
+

(
α
4

D
α
4

D

)(
(0)fn+1
(0)gn+1

)
(20.126)

(
(1)fn+1/2

(1)gn+1/2

)
=

1

2

(
fn
)gn

)
+

1

2

(
(1)fn+1
(1)gn+1

)
=

(
fn

gn

)
+

(
α
4

D
α
4

D

)(
(0)fn+1/2

(0)gn+1/2

)

(20.127)

(
(2)fn+1
(2)gn+1

)
=

(
fn

gn

)
+

(
α
2

D
α
2

D

) (
(1)fn+1/2

(1)gn+1/2

)

=

(
1 α

4
D

α
4

D 1

) (
fn

gn

)
+

(
α
4

D
α
4

D

)(
(1)fn+1
(1)gn+1

)
. (20.128)

In principle this iteration could be repeated more times, but as Teukolsky showed

[255], two iterations are optimal for hyperbolic equations like the advection or wave

equation. The region of stability is reduced (Figs. 20.14 and 20.15) compared to the

implicit Crank–Nicolson method. The eigenvalues are

(0)σ = 1 ± iα sin k∆x |(0)σ| > 1 (20.129)

(1)σ = 1 ± iα sin k∆x −
α2

2
sin2 k∆x |(1)σ| > 1 (20.130)

Fig. 20.14 (Simulation with

the iterated Crank–Nicolson

method) A rectangular pulse

is simulated with the

two-variable iterated

Crank–Nicolson method.

Only this method is stable

for values α > 1
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Fig. 20.15 (Simulation of a

triangular pulse) A triangular

pulse is simulated with

different two-variable

methods (dashed curve

initial conditions, red

leapfrog, blue

Lax–Wendroff, green

iterated Crank–Nicolson).

This pulse contains less short

wavelength components than

the square pulse and shows

much less deformation even

after 5000 steps
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(2)σ = 1 −
α2

2
sin2 k∆x ± i(α sin k∆x −

α3 sin3 k∆x

4
)

|(2)σ|2 = 1 −
α4 sin4 k∆x

4
+

α6 sin6 k∆x

16
≤ 1 for |α| ≤ 2. (20.131)

Problems

Problem 20.1 Waves on a Damped String

In this computer experiment we simulate waves on a string with a moving boundary

with the method from Sect. 20.6.

• Excite the left boundary with a continuous sine function and try to generate stand-

ing waves

• Increase the velocity until instabilities appear

• Compare reflection at open and fixed right boundary

• Observe the dispersion of pulses with different shape and duration

• The velocity can be changed by a factor n (refractive index) in the region x > 0.

Observe reflection at the boundary x = 0

Problem 20.2 Waves with the Fourier Transform Method

In this computer experiment we use the method from Sect. 20.3 to simulate waves

on a string with fixed boundaries.
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• Different initial excitations of the string can be selected

• The dispersion can be switched off by using ωk = ck instead of the proper eigen-

values (20.31)

Problem 20.3 Two Variable Methods

In this computer experiment we simulate waves with periodic boundary conditions.

Different initial values (rectangular, triangular or Gaussian pulses of different widths)

and methods (leapfrog, Lax–Wendroff, iterated Crank–Nicolson) can be compared.



Chapter 21

Diffusion

Diffusion is one of the simplest non-equilibrium processes. It describes the transport

of heat [256, 257] and the time evolution of differences in substance concentrations

[258]. In this chapter, the one-dimensional diffusion equation

∂

∂t
f (t, x) = D

∂2

∂x2
f (t, x) + S(t, x) (21.1)

is semi-discretized with finite differences. The time integration is performed with three

different Euler methods. The explicit Euler method is conditionally stable only for

small Courant number α = D∆t
∆x2 < 1/2, which makes very small time steps necessary.

The fully implicit method is unconditionally stable but its dispersion deviates largely

from the exact expression. The Crank–Nicolson method is also unconditionally stable.

However, it is more accurate and its dispersion relation is closer to the exact one.

Extension to more than one dimension is easily possible, but the numerical effort

increases drastically as there is no formulation involving simple tridiagonal matrices

like in one dimension. The split operator approximation uses the one-dimensional

method independently for each dimension. It is very efficient with almost no loss in

accuracy. In a computer experiment the different schemes are compared for diffusion

in two dimensions.

21.1 Particle Flux and Concentration Changes

Let f (x, t) denote the concentration of a particle species and J the corresponding

flux of particles. Consider a small cube with volume h3 (Fig. 21.1). The change

of the number of particles within this volume is given by the integral form of the

conservation law (12.10)

∂

∂t

∫

V

dV f (r, t) +

∮

∂V

J(r, t)dA =

∫

V

dV S(r, t) (21.2)

© Springer International Publishing AG 2017

P.O.J. Scherer, Computational Physics, Graduate Texts in Physics,

DOI 10.1007/978-3-319-61088-7_21

479

http://dx.doi.org/10.1007/978-3-319-61088-7_12


480 21 Diffusion

Fig. 21.1 Flux through a

volume element

where the source term S(r) accounts for creation or destruction of particles due to

for instance chemical reactions. In Cartesian coordinates we have

∫ x+h/2

x−h/2

dx ′

∫ y+h/2

y−h/2

dy′

∫ z+h/2

z−h/2

dz′

(

∂

∂t
f (x ′, y′, z′, t) − S(x ′, y′, z′, t)

)

+

∫ x+h/2

x−h/2

dx ′

∫ y+h/2

y−h/2

dy′

(

Jz(x ′, y′, z +
h

2
) − Jz(x ′, y′, z −

h

2
)

)

+

∫ x+h/2

x−h/2

dx ′

∫ z+h/2

z−h/2

dz′

(

Jy(x ′, y +
h

2
, z′) − Jy(x ′, y −

h

2
, z′)

)

+

∫ z+h/2

z−h/2

dz′

∫ y+h/2

y−h/2

dy′

(

Jz(x +
h

2
, y′, z′) − Jz(x −

h

2
, y′, z′)

)

= 0. (21.3)

In the limit of small h this turns into the differential form of the conservation law

h3

(

∂

∂t
f (x, y, z, t) − S(x, y, z, t)

)

+h2

(

h
∂ Jx

∂x
+ h

∂ Jy

∂y
+ h

∂ Jz

∂z

)

= 0 (21.4)

or after division by h3

∂

∂t
f (r, t) = −divJ(r, t) + S(r, t). (21.5)

Within the framework of linear response theory the flux is proportional to the gradient

of f (Fig. 21.2),

J = −D grad f. (21.6)
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Fig. 21.2 Diffusion due to a

concentration gradient

J

Together we obtain the diffusion equation

∂ f

∂t
= div(Dgrad f ) + S (21.7)

which in the special case of constant D simplifies to

∂ f

∂t
= D∆ f + S. (21.8)

21.2 Diffusion in One Dimension

We will use the finite differences method which works well if the diffusion constant

D is constant in time and space. We begin with diffusion in one dimension and use

regular grids tn = n∆t , xm = m∆x , f n
m = f (tn, xm) and the discretized second

derivative

∂2 f

∂x2
=

f (x + ∆x) + f (x − ∆x) − 2 f (x)

∆x2
+ O(∆x2) (21.9)

to obtain the semi-discrete diffusion equation

ḟ (t, xm) =
D

∆x2
( f (t, xm+1) + f (t, xm−1) − 2 f (t, xm)) + S(t, xm) (21.10)

or in matrix notation

ḟ(t) =
D

∆x2
Mf(t) + S(t) (21.11)

with the tridiagonal matrix



482 21 Diffusion

x
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x
0

x
2

x
1

x
0

x
2 x

M
x

M+1

x
1

x
0

x
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x
M−1

x
M−1

x
M

x
M+1

x
M−1

x
M

x
M+1

(t)ξ

(t)ξ

x

x

(a)

(b)

x

(c)

J(t)J(t)

J=0
J=0

Fig. 21.3 (Boundary conditions for 1-dimensional diffusion) Additional boundary points x0, xM+1

are used to realize the boundary conditions, (a) Dirichlet boundary conditions the function val-

ues at the boundary are given f (t, x0) = ξ0(t)
∂2

∂x2 f (x1) = 1
∆x2 ( f (x2) − 2 f (x1) + ξ0(t))

or f (t, xM+1) = ξM+1(t),
∂2

∂x2 f (xM ) = 1
∆x2 ( f (xM−1) − 2 f (xM ) + ξM+1(t)), (b) Neumann

boundary conditions the flux through the boundary is given, hence the derivative
∂ f
∂x

at the

boundary f (t, x0) = f (t, x2)+2 ∆x
D

J1(t)
∂2

∂x2 f (x1) = 1
∆x2

(

2 f (x2) − 2 f (x1) + 2 ∆x
D

J1(t)
)

or

f (t, xM+1) = f (t, xM−1)−
2∆x

D
JM (t) ∂2

∂x2 f (xM ) = 1
∆x2

(

2 f (xM−1) − 2 f (xM ) − 2∆x
D

JM (t)
)

,

(c) No-flow boundary conditions there is no flux through the boundary, hence the deriva-

tive
∂ f
∂x

= 0 at the boundary f (t, x0) = f (t, x2)
∂2

∂x2 f (x1) = 1
∆x2 (2 f (x2) − 2 f (x1)) or

f (t, xM ) = f (t, xM−2)
∂2

∂x2 f (xM ) = 1
∆x2 (2 f (xM−1) − 2 f (xM ))

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (21.12)

Boundary conditions can be taken into account by introducing extra boundary

points x0, xM+1 (Fig. 21.3).
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21.2.1 Explicit Euler (Forward Time Centered Space)

Scheme

A simple Euler step (13.3) makes the approximation

f n+1
m − f n

m = ḟ (tn, xm)∆t = D
∆t

∆x2

(

f n
m+1 + f n

m−1 − 2 f n
m

)

+ Sn
m∆t. (21.13)

For homogeneous boundary conditions f = 0 this becomes in matrix form

⎛

⎜

⎝

f n+1
1
...

f n+1
M

⎞

⎟

⎠
= A

⎛

⎜

⎝

f n
1
...

f n
M

⎞

⎟

⎠
+

⎛

⎜

⎝

Sn
1 ∆t
...

Sn
M∆t

⎞

⎟

⎠
(21.14)

with the tridiagonal matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − 2D ∆t
∆x2 D ∆t

∆x2

D ∆t
∆x2 1 − 2D ∆t

∆x2

. . .
. . .

. . .

D ∆t
∆x2 1 − 2D ∆t

∆x2 D ∆t
∆x2

D ∆t
∆x2 1 − 2D ∆t

∆x2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 1 + αM

(21.15)

where α is the Courant number for diffusion

α = D
∆t

∆x2
. (21.16)

The eigenvalues of M are (compare 20.30)

λ = −4 sin2

(

k∆x

2

)

with k∆x =
π

M + 1
,

2π

M + 1
, · · ·

Mπ

M + 1
(21.17)

and hence the eigenvalues of A are given by

1 + αλ = 1 − 4α sin2 k∆x

2
. (21.18)

The algorithm is stable if

|1 + αλ| < 1 for all λ (21.19)

which holds if

http://dx.doi.org/10.1007/978-3-319-61088-7_13
http://dx.doi.org/10.1007/978-3-319-61088-7_20
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−1 < 1 − 4α sin2 k∆x

2
< 1. (21.20)

The maximum of the sine function is sin( Mπ
2(M+1)

) ≈ 1. Hence the right hand inequa-

tion is satisfied and from the left one we have

−1 < 1 − 4α. (21.21)

The algorithm is stable for

α = D
∆t

∆x2
<

1

2
. (21.22)

The dispersion relation follows from inserting a plane wave ansatz

eiω∆t = 1 − 4α sin2

(

k∆x

2

)

. (21.23)

For α > 1/4 the right hand side changes sign at

kc∆x = 2arcsin

√

1

4α
. (21.24)

The imaginary part of ω has a singularity at kc and the real part has a finite value of

π for k > kc (Fig. 21.4). Deviations from the exact dispersion

ω = ik2 (21.25)

are large, except for very small k.

Fig. 21.4 (Dispersion of the

explicit Euler method) The

dispersion of the explicit

method is shown for different

values of the Courant

number α and compared to

the exact dispersion (dashed

curve). The imaginary part

of ω shows a singularity for

α > 1/4. Above the

singularity ω is complex

valued
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21.2.2 Implicit Euler (Backward Time Centered Space)

Scheme

Next we use the backward difference

f n+1
m − f n

m = ḟ (tn+1, xm)∆t

= D
∂2 f

∂x2
(tn+1, xm)∆t + S(tn+1, xm)∆t (21.26)

to obtain the implicit method

f n+1
m − α

(

f n+1
m+1 + f n+1

m−1 − 2 f n+1
m

)

= f n
m + Sn+1

m ∆t (21.27)

or in matrix notation

Afn+1 = fn + Sn+1∆t with A = 1 − αM (21.28)

which can be solved formally by

fn+1 = A−1fn + A−1Sn+1∆t. (21.29)

The eigenvalues of A are

λ(A) = 1 + 4α sin2 k∆x

2
> 1 (21.30)

and the eigenvalues of A−1

λ(A−1) = λ(A)−1 =
1

1 + 4α sin2 k∆x
2

. (21.31)

The implicit method is unconditionally stable since

|λ(A−1)| < 1. (21.32)

The dispersion relation of the implicit scheme follows from

eiω∆t =
1

1 + 4α sin2
(

k∆x
2

) . (21.33)

There is no singularity and ω is purely imaginary. Still, deviations from the exact

expression are large (Fig. 21.5).
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Fig. 21.5 (Dispersion of the

implicit Euler method) The

dispersion of the fully

implicit method is shown for

two different values of the

Courant number α and

compared to the exact

dispersion (dashed curve)
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Formally a matrix inversion is necessary. Numerically it is much more efficient

to solve the tridiagonal system of equations (page 75).

(1 − αM) f (tn+1) = f (tn) + S(tn+1)∆t. (21.34)

21.2.3 Crank–Nicolson Method

The Crank–Nicolson method [259] which is often used for diffusion problems, com-

bines implicit and explicit methods. It uses the Heun method (Sect. 13.5) for the time

integration

f n+1
m − f n

m =
∆t

2

(

∂ f

∂t
(tn+1, xm) +

∂ f

∂t
(tn, xm)

)

(21.35)

= D
∆t

2

(

∂2 f

∂x2
(tn+1, xm) +

∂2 f

∂x2
(tn, xm)

)

+ (S(tn, xm) + S(tn+1, xm))
∆t

2

(21.36)

= D
∆t

2

(

f n
m+1 + f n

m−1 − 2 f n
m

∆x2
+

f n+1
m + f n+1

m−1 − 2 f n+1
m

∆x2

)

+
Sn

m + Sn+1
m

2
∆t.

(21.37)

This approximation is second order both in time and space and becomes in matrix

notation

http://dx.doi.org/10.1007/978-3-319-61088-7_13
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(

1 −
α

2
M

)

fn+1 =
(

1 +
α

2
M

)

fn +
Sn + Sn+1

2
∆t (21.38)

which can be solved by

fn+1 =
(

1 −
α

2
M

)−1 (

1 +
α

2
M

)

fn +
(

1 −
α

2
M

)−1 Sn + Sn+1

2
∆t. (21.39)

Again it is numerically much more efficient to solve the tridiagonal system of

equations (21.38) than to calculate the inverse matrix.

The eigenvalues of this method are

λ =
1 + α

2
µ

1 − α
2
µ

with µ = −4 sin2 k∆x

2
∈ [−4, 0]. (21.40)

Since αµ < 0 it follows

1 +
α

2
µ < 1 −

α

2
µ (21.41)

and hence

λ < 1. (21.42)

On the other hand we have

1 > −1 (21.43)

1 +
α

2
µ > −1 +

α

2
µ (21.44)

λ > −1. (21.45)

This shows that the Crank–Nicolson method is stable [260]. The dispersion follows

from

eiω∆t =
1 − 2α sin2

(

k∆x
2

)

1 + 2α sin2
(

k∆x
2

) . (21.46)

For α > 1/2 there is a sign change of the right hand side at

kc∆x = 2arcsin

√

1

2α
. (21.47)

The imaginary part of ω has a singularity at kc and ω is complex valued for k > kc

(Fig. 21.6).
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Fig. 21.6 (Dispersion of the

Crank–Nicolson method)

The dispersion of the

Crank–Nicolson method is

shown for different values of

the Courant number α and

compared to the exact

dispersion (dashed curve).

The imaginary part of ω

shows a singularity for

α > 1/2. Above the

singularity ω is complex

valued. The exact dispersion

is approached quite closely
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21.2.4 Error Order Analysis

Taylor series gives for the exact solution

∆ fexact = ∆t ḟ (t, x) +
∆t2

2
f̈ (t, x) +

∆t3

6

∂3

∂t3
f (t, x) · · ·

= ∆t
[

D f ′′(t, x) + S(t, x)
]

+
∆t2

2

[

D ḟ ′′(t, x) + Ṡ(t, x)
]

+ · · · (21.48)

whereas for the explicit method

∆ fexpl = αM f (t, x) + S(t, x)∆t

= D
∆t

∆x2
( f (t, x + ∆x) + f (t, x − ∆x) − 2 f (t, x)) + S(t, x)∆t.

= D
∆t

∆x2

(

∆x2 f ′′(t, x) +
∆x4

12
f ′′′′(t, x) + · · ·

)

+ S(t, x)∆t

= ∆ fexact +
D∆t∆x2

12
f ′′′′(t, x) −

∆t2

2
f̈ (t, x) + · · · (21.49)

and for the implicit method

∆ fimpl = αM f (t + ∆t, x) + S(t + ∆t, x)∆t

= D
∆t

∆x2
( f (t + ∆t, x + ∆x) + f (t + ∆t, x − ∆x) − 2 f (t + ∆t, x))
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+S(t + ∆t, x)∆t

= D
∆t

∆x2

(

∆x2 f ′′(t, x) +
∆x4

12
f ′′′′(t, x) + · · ·

)

+S(t, x)∆t + D
∆t2

∆x2

(

∆x2 ḟ ′′(t, x) +
∆x4

12
ḟ ′′′′(t, x) + · · ·

)

+ Ṡ(t, x)∆t2

= ∆ fexact + D
∆t∆x2

12
f ′′′′(t, x) +

1

2
∆t2 f̈ (t, x) + · · · . (21.50)

The Crank–Nicolson method has higher accuracy in ∆t :

∆ fC N =
∆ fexpl + ∆ fimpl

2
=

D∆t∆x2

12
f ′′′′(t, x) −

∆t3

6

∂3 f

∂t3
+ · · · . (21.51)

21.2.5 Finite Element Discretization

In one dimension discretization with finite differences is very similar to discretization

with finite elements, if Galerkin’s method is applied on a regular grid (Chap. 12). The

only difference is the non-diagonal form of the mass-matrix which has to be applied

to the time derivative [147]. Implementation of the discretization scheme (12.170)

is straightforward. The semi-discrete diffusion equation becomes

∂

∂t

(

1

6
f (t, xm−1) +

2

3
f (t, xm) +

1

6
f (t, xm+1)

)

=
D

∆x2
( f (t, xm+1) + f (t, xm−1) − 2 f (t, xm)) + S(t, xm) (21.52)

or in matrix form

(

1 +
1

6
M2

)

ḟ(t) =
D

∆x2
M2f(t) + S(t). (21.53)

This can be combined with the Crank–Nicolson scheme to obtain

(

1 +
1

6
M2

)

(fn+1 − fn) =
(α

2
M2fn +

α

2
M2fn+1

)

+
∆t

2
(Sn + Sn+1) (21.54)

or

[

1 +

(

1

6
−

α

2

)

M2

]

fn+1 =

[

1 +

(

1

6
+

α

2

)

M2

]

fn +
∆t

2
(Sn + Sn+1) .

(21.55)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_12
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21.3 Split-Operator Method for Multidimensions

The simplest discretization of the Laplace operator in 3 dimensions is given by

∆ f =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

f (t, x, y, z)

=
1

∆x2
(Mx + My + Mz) f (t, x, y, z) (21.56)

where

1

∆x2
Mx f (t, x, y, z) =

f (t, x + ∆x, y, z) + f (t, x − ∆x, y, z) − 2 f (t, x, y, z)

∆x2

(21.57)

etc. denote the discretized second derivatives. Generalization of the Crank–Nicolson

method for the 3-dimensional problem gives

f (tn+1) =
(

1 −
α

2
Mx −

α

2
My −

α

2
Mz

)−1 (

1 +
α

2
Mx +

α

2
My +

α

2
Mz

)

f (t).

(21.58)

But now the matrices representing the operators Mx , My, Mz are not tridiagonal. To

keep the advantages of tridiagonal matrices we use the approximations

(

1 +
α

2
Mx +

α

2
My +

α

2
Mz

)

≈
(

1 +
α

2
Mx

) (

1 +
α

2
My

) (

1 +
α

2
Mz

)

(21.59)

(

1 −
α

2
Mx −

α

2
My −

α

2
Mz

)

≈
(

1 −
α

2
Mx

) (

1 −
α

2
My

) (

1 −
α

2
Mz

)

(21.60)

and rearrange the factors to obtain

f (tn+1) =
(

1 −
α

2
Mx

)−1 (

1 +
α

2
Mx

) (

1 −
α

2
My

)−1 (

1 +
α

2
My

) (

1 −
α

2
Mz

)−1 (

1 +
α

2
Mz

)

f (tn)

(21.61)

which represents successive application of the 1-dimensional scheme for the three

directions separately. The last step was possible since the operators Mi and M j for

different directions i �= j commute. For instance

Mx My f = Mx ( f (x, y + ∆x) + f (x, y − ∆x) − 2 f (x, y))

= ( f (x + ∆x, y + ∆y) + f (x − ∆x, y + ∆x)

− 2 f (x, y + ∆x) + f (x + ∆x, y − ∆x)
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+ f (x − ∆x, y − ∆x) − 2 f (x, y − ∆x)

−2 f (x + ∆x, y) − 2 f (x − ∆x, y) + 4 f (x, y))

= My Mx f. (21.62)

The Taylor series of (21.58) and (21.61) coincide up to second order with respect to
αMi :

(

1 −
α

2
Mx −

α

2
My −

α

2
Mz

)−1 (

1 +
α

2
Mx +

α

2
My +

α

2
Mz

)

= 1 + α(Mx + My + Mz) +
α2

2
(Mx + My + Mz)

2 + O(α3) (21.63)

(

1 −
α

2
Mx

)−1 (

1 +
α

2
Mx

) (

1 −
α

2
My

)−1 (

1 +
α

2
My

) (

1 −
α

2
Mz

)−1 (

1 +
α

2
Mz

)

=

(

1 + αMx +
α2 M2

x

2

) (

1 + αMy +
α2 M2

y

2

)(

1 + αMz +
α2 M2

z

2

)

+ O(α3)

= 1 + α(Mx + My + Mz) +
α2

2
(Mx + My + Mz)

2 + O(α3). (21.64)

Hence we have

fn+1 =

(

1 + D∆t

(

∆ +
∆x2

12
∆2 + · · ·

)

+
D2∆t2

2
(∆2 + · · · )

)

fn

+

(

1 +
D∆t

2
∆ + · · ·

)

Sn+1 + Sn

2
∆t

= fn + ∆t (D∆ fn + Sn) +
∆t2

2
(D2∆2 + D∆Sn + Ṡn) + O(∆t∆x2,∆t3).

(21.65)

and the error order is conserved by the split operator method.

Problems

Problem 21.1 Diffusion in 2 Dimensions

In this computer experiment we solve the diffusion equation on a two dimensional

grid for

• an initial distribution f (t = 0, x, y) = δx,0δy,0

• a constant source f (t = 0) = 0, S(t, x, y) = δx,0δy,0

Compare implicit, explicit and Crank–Nicolson method.



Chapter 22

Nonlinear Systems

Nonlinear problems [261, 262] are of interest to physicists, mathematicians and

also engineers. Nonlinear equations are difficult to solve and give rise to interesting

phenomena like indeterministic behavior, multistability or formation of patterns in

time and space. In the following we discuss recurrence relations like an iterated

function [263]

xn+1 = f (xn) (22.1)

systems of ordinary differential equations like population dynamics models

[264–266]

ẋ(t) = f (x, y)

ẏ(t) = g(x, y) (22.2)

or partial differential equations like the reaction diffusion equation [265, 267, 268]

∂

∂t
c(x, t) = D

∂2

∂x2
c(x, t) + f (c) (22.3)

where f and g are nonlinear in the mathematical sense.1We discuss fixed points of

the logistic mapping and analyze their stability. A bifurcation diagram visualizes

the appearance of period doubling and chaotic behavior as a function of a control

parameter. The Ljapunov exponent helps to distinguish stable fixed points and periods

from chaotic regions. For continuous-time models, the iterated function is replaced by

a system of differential equations. For stable equilibria all eigenvalues of the Jacobian

matrix must have a negative real part. We discuss the Lotka–Volterra model, which

is the simplest model of predator-prey interactions and the Holling-Tanner model,

which incorporates functional response. Finally we allow for spatial inhomogeneity

and include diffusive terms to obtain reaction-diffusion systems, which show the

1Linear functions are additive f (x + y) = f (x) + f (y) and homogeneous f (αx) = α f (x).
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phenomena of traveling waves and pattern formation. Computer experiments study

orbits and bifurcation diagram of the logistic map, periodic oscillations of the Lotka–

Volterra model, oscillations and limit cycles of the Holling-Tanner model and finally

pattern formation in the diffusive Lotka–Volterra model.

22.1 Iterated Functions

Starting from an initial value x0 a function f is iterated repeatedly

x1 = f (x0)

x2 = f (x1)

...

xi+1 = f (xi ). (22.4)

The sequence of function values x0, x1 · · · is called the orbit of x0. It can be visualized

in a 2-dimensional plot by connecting the points

(x0, x1) → (x1, x1) → (x1, x2) → (x2, x2) · · · → (xi , xi+1) → (xi+1, xi+1)

by straight lines (Fig. 22.1).

22.1.1 Fixed Points and Stability

If the equation

x∗ = f (x∗) (22.5)

Fig. 22.1 (Orbit of an

iterated function) The

sequence of points

(xi , xi+1), (xi+1, xi+1) is

plotted together with the

curves y = f (x) (dashed)

and y = x (dotted)

(x ,x )
1 2

22
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0
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1
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y
y=xy=f(x)
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Fig. 22.2 (Attractive fixed

point) The orbit of an

attractive fixed point

converges to the intersection

of the curves y = x and

y = f (x)

x

y
y=x

y=f(x)

(x ,x )
0 1

1
(x ,x )

1

(x ,x )
1 2

(x ,x )
22

(x ,0)
0

has solutions x∗, then these are called fixed points. Consider a point in the vicinity

of a fixed point

x = x∗ + ε0 (22.6)

and make a Taylor series expansion

f (x) = f (x∗ + ε0) = f (x∗) + ε0 f ′(x∗) + · · · = x∗ + ε1 + · · · (22.7)

with the notation

ε1 = ε0 f ′(x∗). (22.8)

Repeated iteration gives2

f (2)(x) = f ( f (x)) = f (x∗ + ε1) + · · · = x∗ + ε1 f ′(x∗) = x∗ + ε2

...

f (n)(x∗) = x∗ + εn (22.9)

with the sequence of deviations

εn = f ′(x∗)εn−1 = · · · =
(

f ′(x∗)
)n

ε0.

The orbit moves away from the fixed point for arbitrarily small ε0 if | f ′(x∗)| > 1

whereas the fixed point is attractive for | f ′(x∗)| < 1 (Fig. 22.2).

Higher order fixed points are defined by iterating f (x) several times. A fixed point

of order n simultaneously solves

2Here and in the following f (n) denotes an iterated function, not a derivative.
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Fig. 22.3 (Periodic orbit)

The orbit of an attractive

fourth order fixed point

cycles through the values

x1 = f (x4), x2 = f (x1),

x3 = f (x2), x4 = f (x3)

x
1

x
2

x
3

x
4 x

y
y=x

y=f(x)

f (x∗) �= x∗

f (2)(x∗) �= x∗

f (n−1)(x∗) �= x∗

f (n)(x∗) = x∗. (22.10)

The iterated function values cycle periodically (Fig. 22.3) through

x∗ → f (x∗) → f (2)(x∗) · · · f (n−1)(x∗).

This period is attractive if

| f ′(x∗) f ′( f (x∗)) f ′( f (2)(x∗)) · · · f ′( f (n−1)(x∗))| < 1.

22.1.2 The Ljapunov-Exponent

Consider two neighboring orbits with initial values x0 and x0 + ε0. After n iterations

the distance is

| f ( f (· · · f (x0))) − f ( f (· · · f (x0 + ε0)))| = |ε0|eλn (22.11)

with the so called Ljapunov-exponent [269] λ which is useful to characterize the

orbit. The Ljapunov-exponent can be determined from

λ = lim
n→∞

1

n
ln

(

| f (n)(x0 + ε0) − f (n)(x0)|
|ε0|

)

(22.12)



22.1 Iterated Functions 497

or numerically easier with the approximation

| f (x0 + ε0) − f (x0)| = |ε0|| f ′(x0)|

| f ( f (x0 + ε0)) − f ( f (x0))| = |( f (x0 + ε0) − f (x0))|| f ′(x0 + ε0)|
= |ε0|| f ′(x0)|| f ′(x0 + ε0)|| (22.13)

| f (n)(x0 + ε0) − f (n)(x0)| = |ε0|| f ′(x0)|| f ′(x1)| · · · | f ′(xn−1)| (22.14)

from

λ = lim
n→∞

1

n

n−1
∑

i=0

ln | f ′(xi )|. (22.15)

For a stable fixed point

λ → ln | f ′(x∗)| < 0 (22.16)

and for an attractive period

λ → ln | f ′(x∗) f ′( f (x∗) · · · f ′( f (n−1)(x∗))| < 0. (22.17)

Orbits with λ < 0 are attractive fixed points or periods. If, on the other hand, λ > 0,

the orbit is irregular and very sensitive to the initial conditions, hence is chaotic.

22.1.3 The Logistic Map

A population of animals is observed yearly. The evolution of the population density

N is described in terms of the reproduction rate r by the recurrence relation

Nn+1 = r Nn (22.18)

where Nn is the population density in year number n. If r is constant, an exponential

increase or decrease of N results.

The simplest model for the growth of a population which takes into account that

the resources are limited is the logistic model by Verhulst [270]. He assumed that the

reproduction rate r depends on the population density N in a simple way (Fig. 22.4)

r = r0(1 −
N

K
). (22.19)
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Fig. 22.4 (Reproduction

rate of the logistic model) At

low densities the growth rate

has its maximum value r0. At

larger densities the growth

rate declines and reaches

r = 0 for N = K . The

parameter K is called

carrying capacity

ro

K0
N

r(N)

The Verhulst model (22.19) leads to the iterated nonlinear function

Nn+1 = r0 Nn −
r0

K
N 2

n (22.20)

with r0 > 0, K > 0. We denote the quotient of population density and carrying

capacity by the new variable

xn =
1

K
Nn (22.21)

and obtain an equation with only one parameter, the so called logistic mapping

xn+1 =
1

K
Nn+1 =

1

K
r0 Nn

(

1 −
Nn

K

)

= r0 · xn · (1 − xn). (22.22)

22.1.4 Fixed Points of the Logistic Map

Consider an initial point in the interval

0 < x0 < 1. (22.23)

We want to find conditions on r to keep the orbit in this interval. The maximum value

of xn+1 is found from

dxn+1

dxn

= r(1 − 2xn) = 0 (22.24)

which gives xn = 1/2 and max(xn+1) = r/4. If r > 4 then negative xn appear after

some iterations and the orbit is not bound by a finite interval since
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|xn+1|
|xn|

= |r |(1 + |xn|) > 1. (22.25)

The fixed point equation

x∗ = r x∗ − r x∗2 (22.26)

always has the trivial solution

x∗ = 0 (22.27)

and a further solution

x∗ = 1 −
1

r
(22.28)

which is only physically reasonable for r > 1, since x should be a positive quantity.

For the logistic mapping the derivative is

f ′(x) = r − 2r x (22.29)

which for the first fixed point x∗ = 0 gives | f ′(0)| = r . This fixed point is attractive

for 0 < r < 1 and becomes unstable for r > 1. For the second fixed point we have

| f ′(1 − 1
r
)| = |2 − r |, which is smaller than one in the interval 1 < r < 3. For r < 1

no such fixed point exists. Finally, for r1 = 3 the first bifurcation appears and higher

order fixed points become stable.

Consider the fixed point of the double iteration

x∗ = r(r(x∗ − x∗2

) − r2(x∗ − x∗2)2). (22.30)

All roots of this fourth order equation can be found since we already know two of

them. The remaining roots are

x∗
1,2 =

r+1
2

±
√

r2 − 2r − 3

r
. (22.31)

They are real valued if

(r − 1)2 − 4 > 0 → r > 3 (or r < −1). (22.32)

For r > 3 the orbit oscillates between x∗
1 and x∗

2 until the next period doubling

appears for r2 = 1 +
√

6. With increasing r more and more bifurcations appear and

finally the orbits become chaotic (Fig. 22.5).
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Fig. 22.5 (Orbits of the logistic map) Left For 0 < r < 1 the logistic map has the attractive fixed

point x∗ = 0. Middle In the region 1 < r < 3 this fixed point becomes unstable and another stable

fixed point is at x∗ = 1 − 1/r . Right For 3 < r < 1 +
√

6 the second order fixed point (22.31) is

stable. For larger values of r more and more bifurcations appear
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Fig. 22.6 (Bifurcation diagram of the logistic map) For different values of r the function is iterated

1100 times. The first 1000 iterations are dropped to allow the trajectory to approach stable fixed

points or periods. The iterated function values x1000 · · · x1100 are plotted in a r-x diagram together

with the estimate (22.15) of the Ljapunov exponent. The first period doublings appear at r = 3 and

r = 1 +
√

6. For larger values chaotic behavior is observed and the estimated Ljapunov exponent

becomes positive. In some regions motion is regular again with negative Ljapunov exponent

22.1.5 Bifurcation Diagram

The bifurcation diagram visualizes the appearance of period doubling and chaotic

behavior as a function of the control parameter r (Fig. 22.6).
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22.2 Population Dynamics

If time is treated as a continuous variable, the iterated function has to be replaced by

a differential equation

dN

dt
= f (N ) (22.33)

or, more generally by a system of equations

d

dt

⎛

⎜

⎜

⎜

⎝

N 1

N2

...

Nn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

f1(N 1 · · · Nn)

f2(N1 · · · Nn)

fn(N1 · · · Nn)

⎞

⎟

⎟

⎠

. (22.34)

22.2.1 Equilibria and Stability

The role of the fixed points is now taken over by equilibria, which are solutions of

0 =
dN

dt
= f (Neq) (22.35)

which means roots of f (N ). Let us investigate small deviations from equilibrium

with the help of a Taylor series expansion. Inserting

N = Neq + ξ (22.36)

we obtain

dξ

dt
= f (N eq) + f ′(N eq)ξ + · · · (22.37)

but since f (Neq) = 0, we have approximately

dξ

dt
= f ′(Neq)ξ (22.38)

with the solution

ξ(t) = ξ0 exp
{

f ′(Neq)t
}

. (22.39)

The equilibrium is only stable if Re f ′(Neq) < 0, since then small deviations

disappear exponentially. For Re f ′(Neq) > 0 deviations will increase, but the
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exponential behavior holds only for not too large deviations and saturation may

appear. If the derivative f ′(Neq) has a nonzero imaginary part then oscillations will

be superimposed. For a system of equations the equilibrium is defined by

⎛

⎜

⎜

⎝

f1(N
eq

1 · · · N
eq
n )

f2(N
eq

1 · · · N
eq
n )

fN (N
eq

1 · · · N
eq
n )

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0

0
...

0

⎞

⎟

⎟

⎟

⎠

(22.40)

and if such an equilibrium exists, linearization gives

⎛

⎜

⎜

⎜

⎝

N 1

N2

...

Nn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

N
eq

1

N
eq

2
...

N
eq
n

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

(22.41)

d

dt

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξN

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

∂ f1

∂N 1

∂ f1

∂N2
· · · ∂ f1

∂Nn
∂ f2

∂N1

∂ f2

∂N2
· · · ∂ f2

∂Nn

...
...

. . .
...

∂ fn

∂N1

∂ fn

∂N2
· · · ∂ fn

∂Nn

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

. (22.42)

The equilibrium is stable if all eigenvalues λi of the derivative matrix have a negative

real part.

22.2.2 The Continuous Logistic Model

The continuous logistic model describes the evolution by the differential equation

dx

dt
= r0x(1 − x). (22.43)

To find possible equilibria we have to solve

xeq(1 − xeq) = 0 (22.44)

which has the two roots xeq = 0 and xeq = 1 (Fig. 22.7).

The derivative f ′ is

f ′(x) =
d

dx
(r0x(1 − x)) = r0(1 − 2x). (22.45)

Since f ′(0) = r0 > 0 and f ′(1) = −r0 < 0 only the second equilibrium is stable.
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Fig. 22.7 (Equilibria of the

logistic model) The

equilibrium xeq = 0 is

unstable since an

infinitesimal deviation grows

exponentially in time. The

equilibrium xeq = 1 is stable

since initial deviations

disappear exponentially
unstable

stable

x10

dt
dx

22.3 Lotka–Volterra Model

The model by Lotka [271] and Volterra [272] is the simplest model of predator-prey

interactions. It has two variables, the density of prey (H) and the density of predators

(P). The overall reproduction rate of each species is given by the difference of the

birth rate r and the mortality rate m

dN

dt
= (r − m)N

which both may depend on the population densities. The Lotka–Volterra model

assumes that the prey mortality depends linearly on the predator density and the

predator birth rate is proportional to the prey density

m H = a P rP = bH (22.46)

where a is the predation rate coefficient and b is the reproduction rate of predators per

1 prey eaten. Together we end up with a system of two coupled nonlinear differential

equations

dH

dt
= f (H, P) = rH H − aH P

dP

dt
= g(H, P) = bH P − m P P (22.47)

where rH is the intrinsic rate of prey population increase and m P the predator mor-

tality rate.
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22.3.1 Stability Analysis

To find equilibria we have to solve the system of equations

f (H, P) = rH H − aH P = 0

g(H, P) = bH P − m P P = 0. (22.48)

The first equation is solved by Heq = 0 or by Peq = rH/a. The second equation is

solved by Peq = 0 or by Heq = m P/b. Hence there are two equilibria, the trivial one

Peq = Heq = 0 (22.49)

and a nontrivial one

Peq =
rH

a
Heq =

m P

b
. (22.50)

Linearization around the zero equilibrium gives

dH

dt
= rH H + · · ·

dP

dt
= −m P P + · · · . (22.51)

This equilibrium is unstable since a small prey population will increase exponentially.

Now expand around the nontrivial equilibrium:

P = Peq + ξ, H = Heq + η (22.52)

dη

dt
=

∂ f

∂H
η +

∂ f

∂P
ξ = (rH − a Peq)η − aHeqξ = −

am P

b
ξ (22.53)

dξ

dt
=

∂g

∂H
η +

∂g

∂P
ξ = bPeqη + (bHeq − m P)ξ =

brH

a
η (22.54)

or in matrix notation

d

dt

(

η

ξ

)

=
(

0 − am P

b
brH

a
0

)(

η

ξ

)

. (22.55)

The eigenvalues are purely imaginary

λ = ±i
√

m HrP = ±iω (22.56)

and the corresponding eigenvectors are
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Fig. 22.8 (Lotka Volterra model) The predator and prey population densities show periodic oscil-

lations (Right). In the H-P plane the system moves on a closed curve, which becomes an ellipse for

small deviations from equilibrium (Left)

(

i
√

m Hrp

brH/a

)

,

(

am P/b

i
√

m HrP

)

. (22.57)

The solution of the linearized equations is then given by

ξ(t) = ξ0 cos ωt +
b

a

√

rP

m H

η0 sin ωt

η(t) = η0 cos ωt −
a

b

√

m H

rP

ξ0 sin ωt (22.58)

which describes an ellipse in the ξ − η plane (Fig. 22.8). The nonlinear equations

(22.48) have a first integral

rH ln P(t) − a P(t) − b H(t) + m P ln H(t) = C (22.59)

and therefore the motion in the H − P plane is on a closed curve around the equi-

librium which approaches an ellipse for small amplitudes ξ, η.

22.4 Functional Response

Holling [273, 274] studied predation of small mammals on pine sawflies. He sug-

gested a very popular model of functional response. Holling assumed that the preda-

tor spends its time on two kinds of activities, searching for prey and prey handling

(chasing, killing, eating, digesting). The total time equals the sum of time spent on

searching and time spent on handling

T = Tsearch + Thandling. (22.60)
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Fig. 22.9 Functional

response of Holling’s model

H

aHT

T/Th

HTα

Capturing prey is assumed to be a random process. A predator examines an area

α per time and captures all prey found there. After spending the time Tsearch the

predator examined an area of αTsearch and captured HT = HαTsearch prey. Hence

the predation rate is

a =
HT

H T
= α

Tsearch

T
= α

1

1 + Thandling/Tsearch

. (22.61)

The handling time is assumed to be proportional to the number of prey captured

Thandling = Th HαTsearch (22.62)

where Th is the handling time spent per one prey. The predation rate then is given by

a =
α

1 + αH Th

. (22.63)

At small densities handling time is unimportant and the predation rate is a0 = α

whereas at high prey density handling limits the number of prey captured and the

predation rate approaches a∞ = 1
H Th

(Fig. 22.9).

22.4.1 Holling-Tanner Model

We combine the logistic model with Holling’s model for the predation rate [273–275]

d H

dt
= rH H

(

1 −
H

K H

)

− aH P = rH H

(

1 −
H

K H

)

−
α

1 + αH Th
H P = f (H, P)

(22.64)
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and assume that the carrying capacity of the predator is proportional to the density

of prey

d P

dt
= rP P

(

1 −
P

K P

)

= rP P

(

1 −
P

k H

)

= g(H, P). (22.65)

Obviously there is a trivial equilibrium with Peq = Heq = 0. Linearization gives

dH

dt
= rH H + · · ·

dP

dt
= rP P + · · · (22.66)

which shows that this equilibrium is unstable. There is another trivial equilibrium

with Peq = 0, Heq = K H . After linearization

P = ξ + . . . H = K H + η + . . . (22.67)

we find

dη

dt
= rH (K H + η)(1 −

K H + η

K H

) −
α

1 + α(K H + η)Th

(K H + η)ξ + . . .

= −rHη −
α

1 + αK H Th

K Hξ + . . . (22.68)

dξ

dt
= rPξ. (22.69)

The eigenvalues of the linearized equations

(

η̇

ξ̇

)

=
(

rH − α
1+αK H Th

K H

0 rP

)(

η

ξ

)

(22.70)

are

λ =
rH + rP

2
±

1

2

√

(rH − rP)2 = rH , rP . (22.71)

Let us now look for nontrivial equilibria. The nullclines (Fig. 22.10) are the curves

defined by d H
dt

= 0 and d P
dt

= 0, hence by

P =
rH

α

(

1 −
H

K H

)

(1 + αH Th) (22.72)

P = k H. (22.73)
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Fig. 22.10 Nullclines of the

predator prey model
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The H-nullcline is a parabola at

Hm =
αTh − K −1

H

2αTh K −1
H

Pm =
(αTh + K −1

H )2

4αTh K −1
H

> 0. (22.74)

It intersects the H-axis at H = K H and H = −1/αTh and the P-axis at P = rH/α.

There is one intersection of the two nullclines at positive values of H and P which

corresponds to a nontrivial equilibrium. The equilibrium density Heq is the positive

root of

rHαTh H 2
eq + (rH + αkK H − rH K HαTh) Heq − rH K H = 0. (22.75)

It is explicitly given by

Heq = −
rH + αkK H − rH K HαTh

2rHαTh

+
√

(rH + αkK H − rH K HαTh)
2 + 4rHαThrH K H

2rHαTh

. (22.76)

The prey density then follows from

Peq = Heqk. (22.77)

The matrix of derivatives has the elements

m H P =
∂ f

∂P
= −

αHeq

1 + αTh Heq

m H H =
∂ f

∂H
= rH

(

1 − 2
Heq

K H

)

−
αk Heq

1 + αTh Heq

+
α2 H 2

eqkTh

(1 + αTh Heq)2

m P P =
∂g

∂P
= = −rP
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m P H =
∂g

∂H
= rP k (22.78)

from which the eigenvalues are calculated as

λ =
m H H + m P P

2
±

√

(m H H + m P P)2

4
− (m H H m P P − m H P m P H ). (22.79)

Oscillations appear, if the squareroot is imaginary (Fig. 22.11).

22.5 Reaction-Diffusion Systems

So far we considered spatially homogeneous systems where the density of a popula-

tion, or the concentration of a chemical agent, depend only on time. If we add spatial

inhomogeneity and diffusive motion, new and interesting phenomena like pattern

formation or traveling excitations can be observed.

22.5.1 General Properties of Reaction-Diffusion Systems

Reaction-diffusion systems are described by a diffusion equation3 where the source

term depends non-linearly on the concentrations

∂

∂t

⎛

⎜

⎝

c1

...

cN

⎞

⎟

⎠
=

⎛

⎜

⎝

D1

. . .

DN

⎞

⎟

⎠
△

⎛

⎜

⎝

c1

...

cN

⎞

⎟

⎠
+

⎛

⎜

⎝

F1({c})
...

FN ({c})

⎞

⎟

⎠
. (22.80)

22.5.2 Chemical Reactions

Consider a number of chemical reactions which are described by stoichiometric

equations

∑

i

νi Ai = 0. (22.81)

3We consider only the case, that different species diffuse independently and that the diffusion

constants do not depend on direction.
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Fig. 22.11 (Holling-Tanner model) Top evolution from an unstable equilibrium to a limit cycle.

Middle a stable equilibrium is approached with oscillations. Bottom stable equilibrium without

oscillations
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The concentration of agent Ai is

ci = ci,0 + νi x (22.82)

with the reaction variable

x =
ci − ci,0

νi

(22.83)

and the reaction rate

r =
dx

dt
=

1

νi

dci

dt
(22.84)

which, in general is a nonlinear function of all concentrations. The total concentration

change due to diffusion and reactions is given by

∂

∂t
ck = Dk △ ck +

∑

j

νk jr j = Dk △ ck + Fk({ci }). (22.85)

22.5.3 Diffusive Population Dynamics

Combination of population dynamics (22.2) and diffusive motion gives a similar set

of coupled equations for the population densities

∂

∂t
Nk = Dk △ Nk + fk(N1, N2, · · · Nn). (22.86)

22.5.4 Stability Analysis

Since a solution of the nonlinear equations is not generally possible we discuss small

deviations from an equilibrium solution N
eq

k
4 with

∂

∂t
Nk = △Nk = 0. (22.87)

Obviously the equilibrium obeys

fk(N1 · · · Nn) = 0 k = 1, 2 · · · n. (22.88)

4We assume tacitly that such a solution exists.
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We linearize the equations by setting

Nk = N
eq

k + ξk (22.89)

and expand around the equilibrium

∂

∂t

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎝

D1

. . .

DN

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎝

△ξ1

△ξ2

...

△ξn

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

∂ f1

∂N1

∂ f1

∂N2
· · · ∂ f1

∂Nn
∂ f2

∂N1

∂ f2

∂N2
· · · ∂ f2

∂Nn

...
...

. . .
...

∂ fn

∂N1

∂ fn

∂N2
· · · ∂ fn

∂Nn

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

+ · · · .

(22.90)

Plane waves are solutions of the linearized problem.5 Using the ansatz

ξ j = ξ j,0ei(ωt−kx) (22.91)

we obtain

iω

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

= −k2 D

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

+ M0

⎛

⎜

⎜

⎜

⎝

ξ1

ξ2

...

ξn

⎞

⎟

⎟

⎟

⎠

(22.92)

where M0 denotes the matrix of derivatives and D the matrix of diffusion constants.

For a stable plane wave solution λ = iω is an eigenvalue of

Mk = M0 − k2 D (22.93)

with

ℜ(λ) ≤ 0. (22.94)

If there are purely imaginary eigenvalues for some k they correspond to stable solu-

tions which are spatially inhomogeneous and lead to formation of certain patterns.

Interestingly, diffusion can lead to instabilities even for a system which is stable in

the absence of diffusion [276].

5Strictly this is true only for an infinite or periodic system.
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22.5.5 Lotka Volterra Model with Diffusion

As a simple example we consider again the Lotka Volterra model. Adding diffusive

terms we obtain the equations

∂

∂t

(

H

P

)

=
(

rH H − aH P

bH P − m P P

)

+
(

DH

DP

)

�

(

H

P

)

. (22.95)

There are two equilibria

Heq = Peq = 0 (22.96)

and

Peq =
rH

a
Heq =

m P

b
. (22.97)

The Jacobian matrix is

M0 =
∂

∂C
F(C0) =

(

rH − a Peq −aHeq

bPeq bHeq − m P

)

(22.98)

which gives for the trivial equilibrium

Mk =
(

rH − DH k2 0

0 −m P − DP k2

)

. (22.99)

One eigenvalue λ1 = −m P − DP k2 is negative whereas the second λ2 = rH − DH k2

is positive for k2 < rH/DH . Hence this equilibrium is unstable against fluctuations

with long wavelengths. For the second equilibrium we find:

Mk =
(

−DH k2 − am P

b
brH

a
−DP k2

)

(22.100)

tr (Mk) = −(DH + DP)k2

det(MK ) = m PrH + DH DP k4

λ = −
DH + DP

2
k2 ±

1

2

√

(DH − DP)2k4 − 4m PrH . (22.101)

For small k with k2 < 2
√

m PrH/|DH − DP | damped oscillations are expected

whereas the system is stable against fluctuations with larger k (Figs. 22.12, 22.13

and 22.14).
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x

y
t=814t=6.4 t=30t=1.3

Fig. 22.12 (Lotka–Volterra model with diffusion) The time evolution is calculated for initial random

fluctuations. Colors indicate the deviation of the predator concentration P(x, y, t) from its average

value (blue: �P < −0.1, green: −0.1 < �P < −0.01, black: −0.01 < �P < 0.01, yellow:

0.01 < �P < 0.1, red: �P > 0.1). Parameters as in Fig. 22.13

Fig. 22.13 (Dispersion of

the diffusive Lotka–Volterra

model) Real (full curve) and

imaginary part (broken line)

of the eigenvalue λ (22.101)

are shown as a function of k.

Parameters are

DH = DP = 1,

m P = rH = a = b = 0.5
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1

Problems

Problem 22.1: Orbits of the Iterated Logistic Map

This computer example draws orbits (Fig. 22.5) of the logistic map

xn+1 = r0 · xn · (1 − xn). (22.102)

You can select the initial value x0 and the variable r .

Problem 22.2: Bifurcation Diagram of the Logistic Map

This computer example generates a bifurcation diagram of the logistic map (Fig. 22.6).

You can select the range of r .

Problem 22.3: Lotka–Volterra Model

Equation (22.47) are solved with the improved Euler method (Fig. 22.8). The pre-

dictor step uses an explicit Euler step to calculate the values at t + �t/2
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x x

y y
P(x,y,t) H(x,y,t)

t=20

t=40

t=8

Fig. 22.14 (Traveling waves in the diffusive Lotka–Volterra model) Initially P(x, y) = Peq and

H(x, y) is peaked in the center. This leads to oscillations and a sharp wavefront moving away from

the excitation. Color code and parameters as in Fig. 22.12

Hpr (t +
�t

2
) = H(t) + (rH H(t) − aH(t)P(t))

�t

2
(22.103)

Ppr (t +
�t

2
) = P(t) +

(

bH(t)P(t) − m p P(t)
) �t

2
(22.104)

and the corrector step advances time by �t

H(t + �t) = H(t) +
(

rH Hpr (t +
�t

2
) − aHpr (t +

�t

2
)Ppr (t +

�t

2
)

)

�t

(22.105)
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P(t + �t) = P(t) +
(

bHpr (t +
�t

2
)Ppr (t +

�t

2
) − m p Ppr (t +

�t

2
)

)

�t.

(22.106)

Problem 22.4: Holling-Tanner Model

The equations of the Holling-Tanner model (22.64), (22.65) are solved with the

improved Euler method (see Fig. 22.11). The predictor step uses an explicit Euler

step to calculate the values at t + �t/2:

Hpr (t +
�t

2
) = H(t) + f (H(t), P(t))

�t

2
(22.107)

Ppr (t +
�t

2
) = P(t) + g(H(t), P(t))

�t

2
(22.108)

and the corrector step advances time by �t :

H(t + �t) = H(t) + f (Hpr (t +
�t

2
), Ppr (t +

�t

2
))�t (22.109)

P(t + �t) = P(t) + g(Hpr (t +
�t

2
), Ppr (t +

�t

2
))�t. (22.110)

Problem 22.5: Diffusive Lotka–Volterra Model

The Lotka–Volterra model with diffusion (22.95) is solved in 2 dimensions with

an implicit method (21.2.2) for the diffusive motion (Figs. 22.12 and 22.14). The

split operator approximation (21.3) is used to treat diffusion in x and y direction

independently. The equations

(

H(t + �t)

P(t + �t)

)

=
(

A−1 H(t)

A−1 P(t)

)

+
(

A−1 f (H(t), P(t))�t

A−1g(H(t), P(t))�t

)

≈
(

A−1
x A−1

y [H(t) + f (H(t), P(t))�t]

A−1
x A−1

y [P(t) + g(H(t), P(t))�t]

)

(22.111)

are equivalent to the following systems of linear equations with tridiagonal

matrix (5.3):

AyU = H(t) + f (H(t), P(t))�t (22.112)

U = Ax H(t + �t) (22.113)

Ay V = P(t) + g(H(t), P(t))�t (22.114)

V = Ax P(t + �t). (22.115)

Periodic boundary conditions are implemented with the method described in Sect. 5.4.

http://dx.doi.org/10.1007/978-3-319-61088-7_21
http://dx.doi.org/10.1007/978-3-319-61088-7_21
http://dx.doi.org/10.1007/978-3-319-61088-7_5
http://dx.doi.org/10.1007/978-3-319-61088-7_5


Chapter 23

Simple Quantum Systems

In this chapter we study simple quantum systems. A particle in a one-dimensional

potential V (x) is described by a wave packet which is a solution of the partial

differential equation [277]

i�
∂

∂t
ψ(x) = Hψ(x) = − �

2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x). (23.1)

We discuss two approaches to discretize the second derivative. Finite differences

are simple to use but their dispersion deviates largely from the exact relation, except

high order differences are used. Pseudo-spectral methods evaluate the kinetic energy

part in Fourier space and are much more accurate. The time evolution operator can

be approximated by rational expressions like Cauchy’s form which corresponds to

the Crank-Nicholson method. These schemes are unitary but involve time consuming

matrix inversions. Multistep differencing schemes have comparable accuracy but are

explicit methods. Best known is second order differencing. Split operator methods

approximate the time evolution operator by a product. In combination with finite

differences for the kinetic energy this leads to the method of real-space product

formula which can be applied to wavefunctions with more than one component, for

instance to study transitions between states. In a computer experiment we simulate

a one-dimensional wave packet in a potential with one or two minima.

Few-state systems are described with a small set of basis states. Especially the

quantum mechanical two-level system is often used as a simple model for the tran-

sition between an initial and a final state due to an external perturbation.1 Its wave-

function has two components

|ψ >=
(

C1

C2

)

(23.2)

which satisfy two coupled ordinary differential equations for the amplitudes C1,2 of

the two states

1For instance collisions or the electromagnetic radiation field.
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i�
d

dt

(

C1

C2

)

=
(

H11 H12

H21 H22

)(

C1

C2

)

. (23.3)

In several computer experiments we study a two-state system in an oscillating

field, a three-state system as a model for superexchange, the semiclassical model and

the Landau–Zener model for curve-crossing and the ladder model for exponential

decay. The density matrix formalism is used to describe a dissipative two-state system

in analogy to the Bloch equations for nuclear magnetic resonance. In computer

experiments we study the resonance line and the effects of saturation and power

broadening. Finally we simulate the generation of a coherent superposition state or

a spin flip by applying pulses of suitable duration. This is also discussed in connection

with the manipulation of a Qubit represented by a single spin.

23.1 Pure and Mixed Quantum States

Whereas pure states of a quantum system are described by a wavefunction, mixed

states are described by a density matrix. Mixed states appear if the exact quantum

state is unknown, for instance for a statistical ensemble of quantum states, a system

with uncertain preparation history, or if the system is entangled with another system.

A mixed state is different from a superposition state. For instance, the superposition

|ψ >= C0|ψ0 > +C1|ψ1 > (23.4)

of the two states |ψ0 > and |ψ1 > is a pure state, which can be described by the

density operator

|ψ >< ψ| = |C0|2|ψ0 >< ψ0| + |C1|2|ψ1 >< ψ1|
+ C0C∗

1 |ψ0 >< ψ1| + C∗
0 C1|ψ1 >< ψ0| (23.5)

whereas the density operator

ρ = p0|ψ0 >< ψ0| + p1|ψ1 >< ψ1| (23.6)

describes the mixed state of a system which is in the pure state |ψ0 > with probability

p0 and in the state |ψ1 > with probability p1 = 1 − p0. The expectation value of an

operator A is in the first case

< A >=< ψ|A|ψ >= |C0|2 < ψ0|A|ψ0 > +|C1|2 < ψ1 A|ψ1 >

+ C0C∗
1 < ψ1|A|ψ0 > +C∗

0 C1 < ψ0|A|ψ1 > (23.7)

and in the second case

< A >= p0 < ψ0|A|ψ0 > +p1 < ψ1|A|ψ1 > . (23.8)
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Both can be written in the form

< A >= tr(ρA). (23.9)

23.1.1 Wavefunctions

The time evolution of a quantum system is governed by the time dependent

Schroedinger equation [278]

i�
∂

∂t
|ψ >= H |ψ > (23.10)

for the wavefunction ψ. The brackets indicate that |ψ > is a vector in an abstract

Hilbert space [47]. Vectors can be added

|ψ >= |ψ1 > +|ψ2 >= |ψ1 + ψ2 > (23.11)

and can be multiplied with a complex number

|ψ >= λ|ψ1 >= |λψ1 > . (23.12)

Finally a complex valued scalar product of two vectors is defined2

C =< ψ1|ψ2 > (23.13)

which has the properties

< ψ1|ψ2 >=< ψ2|ψ1 >∗ (23.14)

< ψ1|λψ2 >= λ < ψ1|ψ2 >=< λ∗ψ1|ψ2 > (23.15)

< ψ|ψ1 + ψ2 >=< ψ|ψ1 > + < ψ|ψ2 > (23.16)

< ψ1 + ψ2|ψ >=< ψ1|ψ > + < ψ2|ψ > . (23.17)

2If, for instance the wavefunction depends on the coordinates of N particles, the scalar product is

defined by < ψn |ψn′ >=
∫

d3r1 · · · d3rN ψ∗
n(r1 · · · rN )ψn′ (r1 · · · rN ).
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23.1.2 Density Matrix for an Ensemble of Systems

Consider a thermal ensemble of systems. Their wave functions are expanded with

respect to basis functions |ψs > as

|ψ >=
∑

s

Cs |ψs > . (23.18)

The ensemble average of an operator A is given by

< A > = < ψAψ > = <
∑

s,s ′

C∗
s ψs ACs ′ψs ′ > (23.19)

=
∑

s,s ′

C∗
s Cs ′ Ass ′ = tr (ρA) (23.20)

with the density matrix

ρs ′s =
∑

s,s ′

C∗
s Cs ′ . (23.21)

The wave function of an N -state system is a linear combination

|ψ >= C1|ψ1 > +C2|ψ2 > + · · · CN |ψN > . (23.22)

The diagonal elements of the density matrix are the occupation probabilities

ρ11 = |C1|2 ρ22 = |C2|2 · · · ρN N = |CN |2 (23.23)

and the non diagonal elements measure the correlation of two states3

ρ12 = ρ∗
21 = C∗

2 C1, · · · . (23.24)

23.1.3 Time Evolution of the Density Matrix

The expansion coefficients of

|ψ >=
∑

s

Cs |ψs > (23.25)

can be obtained from the scalar product

Cs =< ψs |ψ > . (23.26)

3They are often called the “coherence” of the two states.
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Hence we have

C∗
s Cs ′ =< ψ|ψs >< ψs ′ |ψ >=< ψs ′ |ψ >< ψ|ψs > (23.27)

which can be considered to be the s ′, s matrix element of the projection operator

|ψ >< ψ|

C∗
s Cs ′ = (|ψ >< ψ|)s ′s . (23.28)

The thermal average of |ψ >< ψ| is the statistical operator

ρ = |ψ >< ψ| (23.29)

which is represented by the density matrix with respect to the basis functions |ψs >

ρs ′s = |ψ >< ψ|s ′s = C∗
s Cs ′ . (23.30)

From the Schroedinger equation

i�|ψ̇ >= H |ψ > (23.31)

we find

−i� < ψ̇| =< Hψ| =< ψ|H (23.32)

and hence

i�ρ̇ = i�
(

|ψ̇ >< ψ| + |ψ >< ψ̇|
)

= |Hψ >< ψ| − |ψ >< Hψ|. (23.33)

Since the Hamiltonian H is identical for all members of the ensemble we end up

with the Liouville-von Neumann equation

i�ρ̇ = Hρ − ρH = [H, ρ]. (23.34)

With respect to a finite basis this becomes explicitly:

i�ρ̇i i =
∑

j

Hi jρ j i − ρi j H j i =
∑

j �=i

Hi jρ j i − ρi j H j i (23.35)

i�ρ̇ik =
∑

j

Hi jρ jk − ρi j H jk

= (Hi i − Hkk)ρik + Hik(ρkk − ρi i ) +
∑

j �=i,k

(Hi jρ jk − ρi j H jk). (23.36)
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23.2 Wave Packet Motion in One Dimension

A quantum mechanical particle with mass m p in a one-dimensional potential V (x)

(Fig. 23.1) is described by a complex valued wavefunction ψ(x). We assume that the

wavefunction is negligible outside an interval [a, b]. This is the case for a particle

bound in a potential well i.e. a deep enough minimum of the potential or for a

wave-packet with finite width far from the boundaries. Then the calculation can be

restricted to the finite interval [a, b] by applying the boundary condition

ψ(x) = 0 for x ≤ a or x ≥ b (23.37)

or, if reflections at the boundary should be suppressed, transparent boundary condi-

tions [279].

All observables (quantities which can be measured) of the particle are expectation

values with respect to the wavefunction, for instance its average position is

< x >=< ψ(x) x ψ(x) >=
∫ b

a

dx ψ∗(x) x ψ(x). (23.38)

The probability of finding the particle at the position x0 is given by

P(x = x0) = |ψ(x0)|2 . (23.39)

For time independent potential V (x) the Schroedinger equation

i�ψ̇ = Hψ =
(

− �
2

2m p

∂2

∂x2
+ V (x)

)

ψ (23.40)

can be formally solved by

Fig. 23.1 Potential well

V(r)

ψ

ba
r

(r)
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ψ(t) = U (t, t0)ψ(t0) = exp

{

− i(t − t0)

�
H

}

ψ(t0). (23.41)

If the potential is time dependent, the more general formal solution is

ψ(t) = U (t, t0)ψ(t0) = T̂t exp

{

− i

�

∫ t

t0

H(τ )dτ

}

ψ(t0)

=
∞
∑

n=0

1

n!

(−i

�

)n ∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn T̂t {H(t1)H(t2) . . . H(tn)} (23.42)

where T̂t denotes the time ordering operator. The simplest approach for discretization

is to divide the time interval 0 . . . t into a sequence of smaller steps

U (t, t0) = U (t, tN−1) . . . U (t2, t1)U (t1, t0) (23.43)

and to neglect the variation of the Hamiltonian during the small interval ∆t = tn+1−tn
[280]

U (tn+1, tn) = exp

{

− i∆t

�
H(tn)

}

. (23.44)

23.2.1 Discretization of the Kinetic Energy

The kinetic energy

T ψ(x) = − �
2

2m p

∂2

∂x2
ψ(x) (23.45)

is a nonlocal operator in real space. It is most efficiently evaluated in Fourier space

where it becomes diagonal

F [T ψ] (k) = �
2k2

2m p

F [ψ] (k). (23.46)

23.2.1.1 Pseudo-Spectral Methods

The potential energy is diagonal in real space. Therefore, pseudo-spectral

(Sect. 12.5.1) methods [281] use a Fast Fourier Transform algorithm (Sect. 7.3.2)

to switch between real space and Fourier space. They calculate the action of the

Hamiltonian on the wavefunction according to

http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_7
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Hψ(x) = V (x)ψ(x) + F
−1

[

�
2k2

2m p

F [ψ] (k)

]

. (23.47)

23.2.1.2 Finite Difference Methods

In real space, the kinetic energy operator can be approximated by finite differences

on a grid, like the simple 3-point expression (3.31)

− �
2

2m p

ψn
m+1 + ψn

m−1 − 2ψn
m

∆x2
+ O(∆x2) (23.48)

or higher order expressions (3.33)

− �
2

2m p

−ψn
m+2 + 16ψn

m+1 − 30ψn
m + 16ψn

m−1 − ψn
m−2

12∆x2
+ O(∆x4) (23.49)

− �
2

2m p

1

∆x2

(

1

90
ψn

m+3 − 3

20
ψn

m+2 + 3

2
ψn

m+1 − 49

18
ψn

m

+ 3

2
ψn

m−1 − 3

20
ψn

m−2 + 1

90
ψn

m−3

)

+ O(∆x6) (23.50)

etc. [282]. However, finite differences inherently lead to deviations of the dispersion

relation from (23.46). Inserting ψm = eikm∆x we find

E(k) = �
2

2m p

2(1 − cos(k∆x))

∆x2
(23.51)

for the 3-point expression (23.48),

E(k) = �
2

2m p

15 − 16 cos(k∆x) + cos(2k∆x)

6∆x2
(23.52)

for the 5-point expression (23.49) and

�
2

2m p

1

∆x2

(

49

18
− 3 cos(k∆x) + 3

10
cos(2k∆x) − 1

45
cos(3k∆x)

)

(23.53)

for the 7-point expression (23.50). Even the 7-point expression shows large deviations

for k-values approaching kmax = π/∆x (Fig. 23.2). However, it has been shown that

not very high orders are necessary to achieve the numerical accuracy of the pseudo-

spectral Fourier method [283] and that finite difference methods may be even more

efficient in certain applications [284].

http://dx.doi.org/10.1007/978-3-319-61088-7_3
http://dx.doi.org/10.1007/978-3-319-61088-7_3
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Fig. 23.2 (Dispersion of

finite difference expressions)
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23.2.2 Time Evolution

A number of methods have been proposed [280, 285–287] to approximate the short

time propagator (23.44). Unitarity is a desirable property since it guaranties stability

and norm conservation even for large time steps. However, depending on the applica-

tion, small deviations from unitarity may be acceptable in return for higher efficiency.

The Crank–Nicolson (CN) method [288–290] is one of the first methods which have

been applied to the time dependent Schroedinger equation. It is a unitary but implicit

method and needs the inversion of a matrix which can become cumbersome in two

or more dimensions or if high precision is required. Multistep methods [291, 292],

especially second order [293] differencing (SOD) are explicit but only conditionally

stable and put limits to the time interval ∆t . Split operator methods (SPO) approxi-

mate the propagator by a unitary product of operators [294–296]. They are explicit

and easy to implement. The real-space split-operator method has been applied to

more complex problems like a molecule in a laser field [297]. Polynomial approx-

imations, especially the Chebishev expansion [298, 299], have very high accuracy

and allow for large time steps, if the Hamiltonian is time independent. However,

they do not provide intermediate results and need many applications of the Hamil-

tonian. The short time iterative Lanczos (SIL) method [118, 300, 301] is very useful

also for time dependent Hamiltonians. Even more sophisticated methods using finite

elements and the discrete variable representation are presented for instance in [302,

303]. In the following we discuss three methods (CN,SOD,SPO) which are easy to

implement and well suited to solve the time dependent Schroedinger equation for a

mass point moving in a one-dimensional potential.
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23.2.2.1 Rational Approximation

Taking the first terms of the Taylor expansion

U (tn+1, tn) = exp

{

− i∆t

�
H

}

= 1 − i∆t

�
H + · · · (23.54)

corresponds to a simple explicit Euler step

ψ(tn+1) =
(

1 − i∆t

�
H

)

ψ(tn). (23.55)

From the real eigenvalues E of the Hamiltonian we find the eigenvalues of the explicit

method

λ = 1 − i∆t

�
E (23.56)

which all have absolute values

|λ| =
√

1 + ∆t2 E2

�2
> 1. (23.57)

Hence the explicit method is not stable.

Expansion of the inverse time evolution operator

U (tn, tn+1) = U (tn+1, tn)
−1 = exp

{

+ i∆t

�
H

}

= 1 + i∆t

�
H + · · ·

leads to the implicit method

ψ(tn+1) = ψ(tn) − i∆t

�
Hψ(tn+1) (23.58)

which can be rearranged as

ψ(tn+1) =
(

1 + i∆t

�
H

)−1

ψ(tn). (23.59)

Now all eigenvalues have absolute values < 1. This method is stable but the norm

of the wave function is not conserved. Combination of implicit and explicit method

gives a method [289, 290] similar to the Crank–Nicolson method for the diffusion

equation (Sect. 21.2.3)

ψ(tn+1) − ψ(tn) = − i∆t

�
H

(

ψ(tn+1)

2
+ ψ(tn)

2

)

. (23.60)

http://dx.doi.org/10.1007/978-3-319-61088-7_21
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This equation can be solved for the new value of the wavefunction

ψ(tn+1) =
(

1 + i
∆t

2�
H

)−1 (

1 − i
∆t

2�
H

)

ψ(tn) (23.61)

which corresponds to a rational approximation4 of the time evolution operator

(Cayley’s form)

U (tn+1, tn) ≈
1 − i ∆t

2�
H

1 + i ∆t
2�

H
. (23.62)

The eigenvalues of (23.62) all have an absolute value of

|λ| =
∣

∣

∣

∣

∣

(

1 + i
E∆t

2�

)−1 (

1 − i
E∆t

2�

)

∣

∣

∣

∣

∣

=

√

1 + E2∆t2

4�2

√

1 + E2∆t2

4�2

= 1. (23.63)

It is obviously a unitary operator and conserves the norm of the wavefunction since

(

1 − i ∆t
2�

H

1 + i ∆t
2�

H

)† (

1 − i ∆t
2�

H

1 + i ∆t
2�

H

)

=
(

1 + i ∆t
2�

H

1 − i ∆t
2�

H

)(

1 − i ∆t
2�

H

1 + i ∆t
2�

H

)

= 1 (23.64)

as H is Hermitian H † = H and (1+i ∆t
2�

H) and (1−i ∆t
2�

H) are commuting operators.
From the Taylor series we find the error order

(

1 + i
∆t

2�
H

)−1 (

1 − i
∆t

2�
H

)

=
(

1 − i
∆t

2�
H − ∆t2

4�2
H2 + · · ·

)

(

1 − i
∆t

2�
H

)

= 1 − i∆t

�
H − ∆t2

2�2
H2 + · · · = exp

(

− i∆t

�
H

)

+ O(∆t3). (23.65)

For practical application we rewrite [304]

(

1 + i
∆t

2�
H

)−1 (

1 − i
∆t

2�
H

)

=
(

1 + i
∆t

2�
H

)−1 (

−1 − i
∆t

2�
H + 2

)

= −1 + 2

(

1 + i
∆t

2�
H

)−1

(23.66)

hence

ψ(tn+1) = 2

(

1 + i
∆t

2�
H

)−1

ψ(tn) − ψ(tn) = 2χ − ψ(tn). (23.67)

4The Pade approximation (Sect. 2.4.1) of order [1, 1].

http://dx.doi.org/10.1007/978-3-319-61088-7_2
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ψ(tn+1) is obtained in two steps. First we have to solve

(

1 + i
∆t

2�
H

)

χ = ψ(tn). (23.68)

Then ψ(tn+1) is given by

ψ(tn+1) = 2χ − ψ(tn). (23.69)

We use the finite difference method (Sect. 12.2) on the grid

xm = m∆x m = 0 · · · M ψn
m = ψ(tn, xm) (23.70)

and approximate the second derivative by

∂2

∂x2
ψ(tn, xm) =

ψn
m+1 + ψn

m−1 − 2ψn
m

∆x2
+ O(∆x2). (23.71)

Equation (23.68) then becomes a system of linear equations

A

⎡

⎢

⎢

⎢

⎣

χ0

χ1

...

χM

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

ψn
0

ψn
1
...

ψn
M

⎤

⎥

⎥

⎥

⎦

(23.72)

with a tridiagonal matrix

A = 1 − i
�∆t

4m p∆x2

⎛

⎜

⎜

⎜

⎜

⎝

2 −1

−1 2
. . .

. . .
. . . −1

−1 2

⎞

⎟

⎟

⎟

⎟

⎠

+ i
∆t

2�

⎛

⎜

⎜

⎜

⎝

V0

V1

. . .

VM

⎞

⎟

⎟

⎟

⎠

. (23.73)

The second step (23.69) becomes

⎡

⎢

⎢

⎢

⎣

ψn+1
0

ψn+1
1
...

ψn+1
M

⎤

⎥

⎥

⎥

⎦

= 2

⎡

⎢

⎢

⎢

⎣

χ0

χ1

...

χM

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

ψn
0

ψn
1
...

ψn
M

⎤

⎥

⎥

⎥

⎦

. (23.74)

Inserting a plane wave

ψ = ei(kx−ωt) (23.75)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
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Fig. 23.3 (Dispersion of the Crank–Nicolson method) The dispersion relation of the Crank–

Nicolson method (23.95) deviates largely from the exact dispersion (23.98), even for small val-

ues of the stability parameter α. The scaled frequency ω∆t/α is shown as a function of k∆x/π

for α = 0.1, 1, 2, 5, 10 (solid curves) and compared with the exact relation of a free particle

ω∆t/α = (k∆x/π)2 (dashed curve)

we obtain the dispersion relation (Fig. 23.3)

2

∆t
tan(ω∆t/2) = �

2m p

(

2

∆x
sin

k∆x

2

)2

(23.76)

which we rewrite as

ω∆t = 2arctan

[

2α

π2
sin2 k∆x

π

π

2

]

(23.77)

with the dimensionless parameter

α = π2
�∆t

2m p∆x2
. (23.78)

For time independent potentials the accuracy of this method can be improved

systematically [305] by using higher order finite differences for the spatial derivative

(Sect. 23.2.1) and a higher order Pade approximation (Sect. 2.4.1) of order [M, M]
for the exponential function

ez =
M
∏

s=1

1 − z/z(M)
s

1 + z/z
(M)∗
s

+ O(z2M+1) (23.79)

to approximate the time evolution operator

http://dx.doi.org/10.1007/978-3-319-61088-7_2
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exp

(

− i∆t

�
H

)

=
M
∏

s=1

1 − (i∆t H/�)/z(M)
s

1 + (i∆t H/�)/z
∗(M)
s

+ O((∆t)2M+1). (23.80)

However, the matrix inversion can become very time consuming in two or more

dimensions.

23.2.2.2 Second Order Differencing

Explicit methods avoid the matrix inversion. The method of second order differencing

[293] takes the difference of forward and backward step

ψ(tn−1) = U (tn−1, tn)ψ(tn) (23.81)

ψ(tn+1) = U (tn+1, tn)ψ(tn) (23.82)

to obtain the explicit two-step algorithm

ψ(tn+1) = ψ(tn−1) +
[

U (tn+1, tn) − U−1(tn, tn−1)
]

ψ(tn). (23.83)

The first terms of the Taylor series give the approximation

ψ(tn+1) = ψ(tn−1) − 2
i∆t

�
Hψ(tn) + O((∆t)3) (23.84)

which can also be obtained from the second order approximation of the time derivative

[306]

Hψ = i�
∂

∂t
ψ = ψ(t + ∆t) − ψ(t − ∆t)

2∆t
. (23.85)

This two-step algorithm can be formulated as a discrete mapping

(

ψ(tn+1)

ψ(tn)

)

=
(

−2 i∆t
�

H 1

1 0

)(

ψ(tn)

ψ(tn−1)

)

(23.86)

with eigenvalues

λ = − iEs∆t

�
±

√

1 − E2
s ∆t2

�2
. (23.87)

For sufficiently small time step [280]

∆t <
�

max |Es |
(23.88)
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the square root is real,

|λ|2 = E2
s ∆t2

�2
+

(

1 − E2
s ∆t2

�2

)

= 1 (23.89)

and the method is conditionally stable and has the same error order as the Crank–

Nicolson method (Sect. 23.2.2). Its big advantage is that it is an explicit method and

does not involve matrix inversions. Generalization to higher order multistep differ-

encing schemes is straightforward [291]. The method conserves [306] the quantities

ℜ < ψ(t + ∆t)|ψ(t) > and ℜ < ψ(t + ∆t)|H |ψ(t) > but is not strictly unitary

[293]. Consider a pair of wavefunctions at times t0 and t1 which obey the exact time

evolution

ψ(t1) = exp

{

− i∆t

�
H

}

ψ(t0) (23.90)

and apply (23.84) to obtain

ψ(t2) =
[

1 − 2
i∆t

�
H exp

{

− i∆t

�
H

}]

ψ(t0) (23.91)

which can be written as

ψ(t2) = Lψ(t0) (23.92)

where the time evolution operator L obeys

L
†
L =

[

1 + 2
i∆t

�
H exp

{

+ i∆t

�
H

}][

1 − 2
i∆t

�
H exp

{

− i∆t

�
H

}]

= 1 − 4
∆t

�
H sin

{

∆t

�
H

}

+ 4

(

∆t

�
H

)2

.

Expanding the sine function we find the deviation from unitarity [293]

L
†
L − 1 = 2

3

(

∆t

�
H

)4

+ · · · = O((∆t)4) (23.93)

which is of higher order than the error of the algorithm. Furthermore errors do not

accumulate due to the stability of the algorithm (23.89). This also holds for deviations

of the starting values from the condition (23.90).

The algorithm (23.84) can be combined with the finite differences method

(Sect. 23.2.1)
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Fig. 23.4 (Dispersion of the Fourier method) The dispersion relation of the SOD-Fourier method

(23.95) deviates from the exact dispersion (23.98) only for very high k-values and approaches it for

small values of the stability parameter α. The scaled frequency ω∆t/α is shown as a function of

k∆x/π for α = 0.5, 0.75, 1 (solid curves) and compared with the exact relation of a free particle

ω∆t/α = (k∆x/π)2 (dashed curve)

ψn+1
m = ψn−1

m − 2
i∆t

�

[

Vmψn
m − �

2

2m p∆x2

(

ψn
m+1 + ψn

m−1 − 2ψn
m

)

]

(23.94)

or with the pseudo-spectral Fourier method [306]. This combination needs two

Fourier transformations for each step but it avoids the distortion of the dispersion

relation inherent to the finite difference method. Inserting the plane wave (23.75)

into (23.84) we find the dispersion relation (Fig. 23.4) for a free particle (V = 0):

ω = 1

∆t
arcsin

(

�∆t k2

2m p

)

= 1

∆t
arcsin

(

α

(

k∆x

π

)2
)

. (23.95)

For a maximum k-value

kmax = π

∆x
(23.96)

the stability condition (23.88) becomes

1 ≥ ∆t

�

�
2k2

max

2m p

= α. (23.97)

For small k the dispersion approximates the exact behavior

ω = �k2

2m P

. (23.98)
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Fig. 23.5 (Dispersion of the finite difference method) The dispersion relation of the SOD-FD

method (23.99) deviates largely from the exact dispersion (23.98), even for small values of the

stability parameter α. The scaled frequency ω∆t/α is shown as a function of k∆x/π for α =
π2/4 ≈ 2.467, 1.85, 1.23, 0.2 (solid curves) and compared with the exact relation of a free particle

ω∆t/α = (k∆x/π)2 (dashed curve)

The finite difference method (23.94), on the other hand, has the dispersion relation

(Fig. 23.5)

ω = 1

∆t
arcsin

(

4α

π2
sin2

(

k∆x

2

))

(23.99)

and the stability limit

1 = ∆t

�
Emax = 2�∆t

m p∆x2
= 4α

π2
. (23.100)

The deviation from (23.98) is significant for k∆x/π > 0.2 even for small values of

α [306].

23.2.2.3 Split-Operator Methods

The split-operator method approximates the exponential short time evolution oper-

ator as a product of exponential operators which are easier tractable. Starting from

the Zassenhaus formula [307]

eλ(A+B) = eλAeλBeλ2C2 eλ3C3 . . . (23.101)
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C2 = 1

2
[B, A] C3 = 1

6
[C2, A + 2B] . . . (23.102)

approximants of increasing order can be systematically constructed [295, 308]

eλ(A+B) = eλAeλB + O(λ2) = eλAeλBeλ2C2 + O(λ3) · · · . (23.103)

Since these approximants do not conserve time reversibility, often the symmetric

expressions

eλ(A+B) = eλA/2eλBeλA/2 + O(λ3) = eλA/2eλB/2eλ2C3/4eλB/2eλA/2 + O(λ5) . . .

(23.104)

are preferred.

Split-Operator-Fourier Method

Dividing the Hamiltonian into its kinetic and potential parts

H = T + V = − �
2

2m P

∂2

∂x2
+ V (x) (23.105)

the time evolution operator can be approximated by the time-symmetric expression

U (∆t) = e− i∆t
2�

T e− i∆t
�

V e− i∆t
2�

T + O((∆t)3) (23.106)

where the exponential of the kinetic energy operator can be easily applied in Fourier

space [306, 309]. Combining several steps (23.106) to integrate over a longer time

interval, consecutive operators can be combined to simplify the algorithm

U (N∆t) = U N (∆t) = e− i∆t
2�

T
(

e− i∆t
�

V e− i∆t
�

T
)N−1

e− i∆t
�

V e− i∆t
2�

T . (23.107)

Real-Space Product Formulae

Using the discretization (23.48) on a regular grid the time evolution operator

becomes the exponential of a matrix

U (∆t) = exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−i∆t

⎛

⎜

⎜

⎜

⎜

⎝

V0

�
+ �

m P ∆x2 − �

2m P ∆x2

− �

2m P ∆x2

V1

�
+ �

m P ∆x2 − �

2m P ∆x2

. . .

− �

2m P ∆x2

VM

�
+ �

m P ∆x2

⎞

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭
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= exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−i∆t

⎛

⎜

⎜

⎜

⎝

γ0 + 2β −β

β γ1 + 2β −β
. . .

−β γM + 2β

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(23.108)

with the abbreviations

γm = 1

�
Vm β = �

2m P∆x2
. (23.109)

The matrix can be decomposed into the sum of two overlapping tridiagonal block

matrices [294, 297]5

Ho =

⎛

⎜

⎜

⎜

⎝

γ0 + 2β −β

−β 1
2
γ1 + β

1
2
γ2 + β −β

−β
. . .

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

A1

A3

. . .

AM−1

⎞

⎟

⎟

⎟

⎠

(23.110)

He =

⎛

⎜

⎜

⎜

⎝

0 0

0 1
2
γ1 + β −β

−β 1
2
γ2 + β 0

0
. . .

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

A2

. . .

AM−2

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (23.111)

The block structure simplifies the calculation of e−i∆t Ho and e−i∆t He tremendously

since effectively only the exponential functions of 2 × 2 matrices

Bm(τ ) = e−iτ Am (23.112)

have to be calculated and the approximation to the time evolution operator

U (∆t) = e−i∆t Ho/2e−i∆t He e−i∆t Ho/2

=

⎛

⎜

⎝

B1(
∆t
2

)

B3(
∆t
2

)

. . .

⎞

⎟

⎠

⎛

⎜

⎝

1

B2(∆t)

. . .

⎞

⎟

⎠

⎛

⎜

⎝

B1(
∆t
2

)

B3(
∆t
2

)

. . .

⎞

⎟

⎠
(23.113)

can be applied in real space without any Fourier transformation. To evaluate (23.112)

the real symmetric matrix Am is diagonalized by an orthogonal transformation

(Sect. 10.2)

5For simplicity only the case of even M is considered.

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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A = R−1 ÃR = R−1

(

λ1 0

0 λ2

)

R (23.114)

and the exponential calculated from

e−iτ A = 1 − iτ R−1 ÃR + (−iτ )2

2
R−1 ÃR R−1 ÃR + · · ·

= R−1

[

1 − iτ Ã + (−iτ )2

2
ÃR + · · ·

]

R

= R−1e−iτ Ã R = R−1

(

e−iτλ1

e−iτλ2

)

R. (23.115)

23.2.3 Example: Free Wave Packet Motion

We simulate the free motion (V = 0) of a Gaussian wave packet along the x-axis

(see Problem 23.1). To simplify the numerical calculation we set � = 1 and m p = 1

and solve the time dependent Schroedinger equation

i
∂

∂t
ψ = −1

2

∂2

∂x2
ψ (23.116)

for initial values given by a Gaussian wave packet with constant momentum

ψ0(x) =
(

2

aπ

)1/4

eik0x e−x2/a . (23.117)

The exact solution can be easily found. Fourier transformation of (23.117) gives

ψ̂k(t = 0) = 1√
2π

∫ ∞

−∞
dx e−ikxψ0(x) =

( a

2π

)1/4

exp
{

−a

4
(k − k0)

2
}

.

(23.118)

Time evolution in k-space is rather simple

i
∂

∂t
ψ̂k = k2

2
ψ̂k (23.119)

hence

ψ̂k(t) = e−ik2t/2ψ̂k(t = 0) (23.120)



23.2 Wave Packet Motion in One Dimension 537

and Fourier back transformation gives the solution of the time dependent Schroedinger

equation in real space

ψ(t, x) = 1√
2π

∫ ∞

−∞
dk eikx ψ̂k(t)

=
(

2a

π

)1/4
1√

a + 2it
exp

{

−
(x − i ak0

2
)2 + ak2

0

4
(a + 2it)

a + 2it

}

. (23.121)

Finally, the probability density is given by a Gaussian

|ψ(t, x)|2 =
√

2a

π

1√
a2 + 4t2

exp

{

− 2a

a2 + 4t2
(x − k0t)2

}

(23.122)

which moves with constant velocity k0 and kinetic energy

∫ ∞

−∞
dx ψ∗(x, t)

(

−�
2

2

∂2

∂x2

)

ψ(x, t) = 1

2

(

k2
0 + 1

a

)

. (23.123)

Numerical examples are shown in Figs. 23.6, 23.7 and Table 23.1.

23.3 Few-State Systems

In the following we discuss simple models which reduce the wavefunction to the

superposition of a few important states, for instance an initial and a final state which

are coupled by a resonant interaction. We approximate the solution of the time depen-

dent Schroedinger equation as a linear combination

Fig. 23.6 (Conservation of

norm and energy) The free

motion of a Gaussian wave

packet is simulated with the

Crank–Nicolson method

(CN), the second order

differences method (SOD)

with 3 point (23.48) 5 point

(23.49) and 7-point (23.50)

differences and with the

real-space split-operator

method (SPO). ∆t = 10−3,

∆x = 0.1, a = 1, k0 = 3.77
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Fig. 23.7 (Free wave-packet motion) The free motion of a Gaussian wave packet is simulated. The

probability density is shown for the initial Gaussian wave packet and at later times t = 1, 2, 3, 4.

Results from the second order differences method with 3 point differences (23.48, red dash-dotted)

and 5 point differences (23.49, blue dashed) are compared with the exact solution (23.122, thin

black solid line). ∆t = 10−3, ∆x = 0.1, a = 1, k0 = 3.77

Table 23.1 (Accuracy of finite differences methods) The relative error of the kinetic energy (23.123)

is shown as calculated with different finite difference methods

Method Ekin
Ekin−Eexact

kin

Eexact
kin

Crank–Nicolson (CN) with 3 point differences 7.48608 −1.6 × 10−2

Second order differences with 3 point differences (SOD3) 7.48646 −1.6 × 10−2

Second order differences with 5 point differences (SOD5) 7.60296 −4.6 × 10−4

Second order differences with 7 point differences (SOD7) 7.60638 −0.9 × 10−5

Split-operator method (SOP) with 3 point differences 7.48610 −1.6 × 10−2

Exact 7.60645

|ψ(t) >≈
M

∑

j=1

C j (t)|φ j > (23.124)

of certain basis states |φ1 > · · · |φM >6 which are assumed to satisfy the necessary

boundary conditions and to be orthonormalized

< φi |φ j >= δi j . (23.125)

6This basis is usually incomplete.
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Applying the method of weighted residuals (Sect. 12.4) we minimize the residual

|R >= i�
∑

j

Ċ j (t)|φ j > −
∑

j

C j (t)H |φ j > (23.126)

by choosing the basis functions as weight functions (Sect. 12.4.4) and solving the

system of ordinary differential equations

0 = R j =< φ j |R >= i�Ċ j −
∑

j ′

< φ j |H |φ j ′ > C j ′ (23.127)

which can be written

i�Ċi =
M

∑

j=1

Hi, j C j (t) (23.128)

with the matrix elements of the Hamiltonian

Hi, j =< φi | H |φ j > . (23.129)

In matrix form (23.128) reads

i�

⎛

⎜

⎝

Ċ1(t)
...

ĊM(t)

⎞

⎟

⎠
=

⎛

⎜

⎝

H1,1 · · · H1,M

...
. . .

...

HM,1 · · · HM,M

⎞

⎟

⎠

⎛

⎜

⎝

C1(t)
...

CM(t)

⎞

⎟

⎠
(23.130)

or more symbolically

i�Ċ(t) = HC(t). (23.131)

If the Hamilton operator does not depend explicitly on time (H = const.) the formal

solution of (23.131) is given by

C = exp

{

t

i�
H

}

C(0). (23.132)

From the solution of the eigenvalue problem

HCλ = λCλ (23.133)

(eigenvalues λ and corresponding eigenvectors Cλ) we build the linear combination

C =
∑

λ

aλCλe
λ

i�
t . (23.134)

http://dx.doi.org/10.1007/978-3-319-61088-7_12
http://dx.doi.org/10.1007/978-3-319-61088-7_12
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The amplitudes aλ can be calculated from the set of linear equations

C(0) =
∑

λ

aλCλ. (23.135)

In the following we use the 4th order Runge–Kutta method to solve (23.131) numer-

ically whereas the explicit solution (23.132) will be used to obtain approximate

analytical results for special limiting cases.

A time dependent Hamiltonian H(t) appears in semiclassical models which treat

some of the slow degrees of freedom as classical quantities, for instance an electron

in the Coulomb field of (slowly) moving nuclei

H(t) = Tel +
∑

j

−q j e

4πε0|r − R j (t)|
+

∑

j< j ′

q j q j ′

4πε0|Rj(t) − R j ′(t)| (23.136)

or in a time dependent electromagnetic field

H(t) = Tel + Vel − er E(t). (23.137)

23.3.1 Two-State System

The two-state system (Fig. 23.8) (also known as two-level system or TLS) is the

simplest model of interacting states and is very often used in physics, for instance in

the context of quantum optics, quantum information, spintronics and quantum dots.

Its interaction matrix is

H =
(

E1 V

V E2

)

(23.138)

and the equations of motion are

i�Ċ1 = E1C1 + V C2

i�Ċ2 = E2C2 + V C1
. (23.139)

The interaction matrix can be diagonalized by an orthogonal transformation

(Sect. 10.2)

Fig. 23.8 Two-state system

model
|2>

V

|1>

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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H̃ = RH RT =
(

λ1

λ2

)

(23.140)

with the rotation matrix

R =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)

. (23.141)

The tangent of ϕ can be determined from (10.2)

τ = tan ϕ = −sign

(

E2 − E1

2V

)

⎛

⎝

∣

∣

∣

∣

E2 − E1

2V

∣

∣

∣

∣

−

√

1 +
(

E2 − E1

2V

)2

⎞

⎠

(23.142)

from which we find

cos ϕ = 1√
1 + τ 2

sin ϕ = τ√
1 + τ 2

(23.143)

and the eigenvalues

λ1 = E1 − τV λ2 = E2 + τV . (23.144)

Finally the solution of (23.139) is given by (23.134)

(

C1

C2

)

= A

(

1

τ

)

e
1

i�
(E1−τV )t + B

(

−τ

1

)

e
1

i�
(E2+τV )t . (23.145)

For initial conditions

C1(0) = 1 C2(0) = 0 (23.146)

solution of (23.135) provides the coefficients

A = 1

1 + τ 2
B = − τ

1 + τ 2
(23.147)

and hence the explicit solution

(

C1

C2

)

=
(

1
1+τ 2 e

1
i�

(E1−τV )t + τ 2

1+τ 2 e
1

i�
(E2+τV )t

τ
1+τ 2

(

e
1

i�
(E1−τV )t − e

1
i�

(E2+τV )t
)

)

. (23.148)

http://dx.doi.org/10.1007/978-3-319-61088-7_10
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The occupation probability of the initial state is

C2
1 = 1 + τ 4

(1 + τ 2)2
+ 2τ 2

(1 + τ 2)2
cos

(

(E2 − E1 + 2τV )
t

�

)

. (23.149)

It oscillates with the frequency

�Ω =
√

4V 2 + (E2 − E1)
2 (23.150)

and reaches a minimum value

C2
1min =

(

1 − τ 2

1 + τ 2

)2

=
∆E2

(

|∆E | −
√

∆E2 + 4V 2

)2

(

4V 2 + ∆E2 − |∆E |
√

∆E2 + 4V 2

)2
= ∆E2

∆E2 + 4V 2
.

(23.151)

Of special interest is the fully resonant limit. E1 = E2. Addition and subtraction of

equations (23.139) here gives

i�
d

dt
(C1 ± C2) = (E1 ± V )(C1 ± C2) (23.152)

with the solution

C1 ± C2 = (C1(0) ± C2(0))e−i t (E1±V )/�. (23.153)

For initial conditions given by (23.146) the explicit solution is

C1 = e−i t E1/� cos
V t

�
|C1|2 = cos2 V t

�
=

1 + cos 2V t
�

2
(23.154)

C2 = −ie−i t E1/� sin
V t

�
|C2|2 = sin2 V t

�
=

1 − cos 2V t
�

2
. (23.155)

At resonance the two-state system oscillates between the two states with the period

T = π�

V
. (23.156)

Numerical results are shown in Fig. 23.9.
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Fig. 23.9 (Numerical simulation of a two-state system) The equations of motion of the two-state

system (23.139) are integrated with the 4th order Runge–Kutta method. For two resonant states the

occupation probability of the initial state shows oscillations with the period (23.156) proportional

to V −1. With increasing energy gap E2 − E1 the amplitude of the oscillations decreases

Fig. 23.10 Two-state

system in an oscillating field ω

|1>

|2>

23.3.2 Two-State System with Time Dependent Perturbation

Consider now a 2-state system with an oscillating perturbation (Fig. 23.10) (for

instance an atom or molecule in a laser field)

H =
(

E1 V (t)

V (t) E2

)

V (t) = V0 cos ωt. (23.157)

The equations of motion are

i�Ċ1 = E1C1 + V (t)C2

i�Ċ2 = V (t)C1 + E2C2
. (23.158)
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After the substitutions

C1 = e
E1
i�

t u1

C2 = e
E2
i�

t u2

(23.159)

ω21 = E2 − E1

�
(23.160)

they become

i�u̇1 = V (t)e
E2−E1

i�
t u2 = V0

2

(

e−i(ω21−ω)t + e−i(ω21+ω)t
)

u2

i�u̇2 = V (t)e
E1−E2

i�
t u1 = V0

2

(

ei(ω21−ω)t + ei(ω21+ω)t
)

u1

. (23.161)

At larger times the system oscillates between the two states.7 Applying the rotating

wave approximation for ω ≈ ω21 we neglect the fast oscillating perturbation

i�u̇1 = V0

2
e−i(ω21−ω)t u2 (23.162)

i�u̇2 = V0

2
ei(ω21−ω)t u1 (23.163)

and substitute

u1 = a1e−i(ω21−ω)t (23.164)

to have

i�(ȧ1 − a1i(ω21 − ω))e−i(ω21−ω)t = V0

2
e−i(ω21−ω)t u2 (23.165)

i�u̇2 = V0

2
ei(ω21−ω)t e−i(ω21−ω)t a1 (23.166)

or

i�ȧ1 = �(ω − ω21)a1 + V0

2
u2 (23.167)

i�u̇2 = V0

2
a1 (23.168)

7So called Rabi oscillations.
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which shows that the system behaves approximately like a two-state system with

a constant interaction V0/2 and an energy gap �(ω21 − ω) = E2 − E1 − �ω

(a comparison with a full numerical calculation is shown in Fig. 23.11).

23.3.3 Superexchange Model

The concept of superexchange was originally formulated for magnetic interactions

[310] and later introduced to electron transfer theory [311]. It describes an indirect

interaction through high energy intermediates (Fig. 23.12). In the simplest case, we

have to consider two isoenergetic states i and f which do not interact directly but

via coupling to an intermediate state v.

The interaction matrix is

60 3 9 12 15 18
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=0

time

V=1 Δω =3, 6

Fig. 23.11 (Simulation of a two-state system in an oscillating field) The equations of motion

(23.158) are integrated with the 4th order Runge–Kutta method. At resonance the system oscillates

between the two states with the frequency V/�. The dashed curves show the corresponding solution

of a two-state system with constant coupling (Sect. 23.3.1)

Fig. 23.12 Superexchange

model
V

|i>

|v>

V

|f>

E2
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H =

⎛

⎝

0 V1 0

V1 E2 V2

0 V2 0

⎞

⎠ . (23.169)

For simplification we choose V1 = V2.

Let us first consider the special case of a resonant intermediate state E2 = 0:

H =

⎛

⎝

0 V 0

V 0 V

0 V 0

⎞

⎠ . (23.170)

Obviously one eigenvalue is λ1 = 0 and the corresponding eigenvector is

C1 =

⎛

⎝

1

0

−1

⎞

⎠ . (23.171)

The two remaining eigenvalues are solutions of

0 = det

∣

∣

∣

∣

∣

∣

−λ V 0

V −λ V

0 V −λ

∣

∣

∣

∣

∣

∣

= λ(−λ2 + 2V 2) (23.172)

which gives

λ2,3 = ±
√

2V . (23.173)

The eigenvectors are

C2,3 =

⎛

⎝

1

±
√

2

1

⎞

⎠ . (23.174)

From the initial values

C(0) =

⎛

⎝

a1 + a2 + a3√
2a2 −

√
2a3

−a1 + a2 + a3

⎞

⎠ =

⎛

⎝

1

0

0

⎞

⎠ (23.175)

the amplitudes are calculated as

a1 = 1

2
a2 = a3 = 1

4
(23.176)

and finally the solution is
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C = 1

2

⎛

⎝

1

0

−1

⎞

⎠ + 1

4

⎛

⎝

1√
2

1

⎞

⎠ e
1

i�

√
2V t + 1

4

⎛

⎝

1

−
√

2

1

⎞

⎠ e− 1
i�

√
2V t

=

⎛

⎜

⎝

1
2

+ 1
2

cos
√

2V
�

t√
2

2
i sin

√
2V
�

t

− 1
2

+ 1
2

cos
√

2V
�

t

⎞

⎟

⎠
. (23.177)

Let us now consider the case of a distant intermediate state V ≪ |E2|. λ1 = 0 and

the corresponding eigenvector still provide one solution. The two other eigenvalues

are approximately given by

λ2,3 = ±

√

E2
2

4
+ 2V 2 + E2

2
≈ E2

2
± E2

2
(1 + 4V 2

E2
2

) (23.178)

λ2 ≈ E2 + 2V 2

E2

λ3 ≈ −2V 2

E2

(23.179)

and the eigenvectors by

C2 ≈

⎛

⎝

1
E2

V
+ 2V

E2

1

⎞

⎠ C3 ≈

⎛

⎝

1

− 2V
E2

1

⎞

⎠ . (23.180)

From the initial values

C(0) =

⎛

⎝

1

0

0

⎞

⎠ =

⎛

⎝

a1 + a2 + a3

a2λ2 + a3λ3

−a1 + a2 + a3

⎞

⎠ (23.181)

we calculate the amplitudes

a1 = 1

2
a2 ≈ V 2

E2
2

a3 ≈ 1

2

(

1 − 2V 2

E2
2

)

(23.182)

and finally the solution

C ≈

⎛

⎜

⎜

⎝

1
2
(1 + e

− 1
i�

2V 2

E2
t
)

V
E2

e
1

i�
E2t − 2V

E2
e
− 1

i�
2V 2

E2
t

1
2
(−1 + e

− 1
i�

2V 2

E2
t
)

⎞

⎟

⎟

⎠

. (23.183)
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Fig. 23.13 (Numerical simulation of the superexchange model) The equations of motion for the

model (23.169) are solved numerically with the 4th order Runge–Kutta method. The energy gap

is varied to study the transition from the simple oscillation with ω =
√

2V/� (23.177) to the

effective two-state system with ω = Ve f f /� (23.184). Parameters are V1 = V2 = 1, E1 = E3 = 0,

E2 = 0, 1, 5, 20. The occupation probability of the initial (solid curves), virtual intermediate

(dashed curves) and final (dash-dotted curves) state are shown

The occupation probability of the initial state is

|C1|2 = 1

4
|1 + e

− 1
i�

2V 2

E2
t |2 = cos2

(

V 2

�E2

t

)

(23.184)

which shows that the system behaves like a 2-state system with an effective interaction

of

Ve f f = V 2

E2

. (23.185)

Numerical results are shown in Fig. 23.13.

23.3.4 Ladder Model for Exponential Decay

For time independent Hamiltonian the solution (23.132) of the Schroedinger equation

is a sum of oscillating terms and the quantum recurrence theorem [312] states that the
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Fig. 23.14 Ladder model

|i>

V

|f,n>

system returns to the initial state arbitrarily closely after a certain time Tr . However,

if the initial state is coupled to a larger number of final states, the recurrence time

can become very long and an exponential decay observed over a large period. The

ladder model [313, 314] considers an initial state |0 > interacting with a manifold

of states |1 > . . . |n >, which do not interact with each other and are equally spaced

(Fig. 23.14)

H =

⎛

⎜

⎜

⎜

⎝

0 V · · · V

V E1

...
. . .

V En

⎞

⎟

⎟

⎟

⎠

E j = E1 + ( j − 1)∆E . (23.186)

The equations of motion are

i�Ċ0 = V

n
∑

j=1

C j

i�Ċ j = E j C j + V C0. (23.187)

For the special case ∆E = 0 we simply have

C̈0 = − V 2

�2
nC0 (23.188)

with an oscillating solution

C0 ∼ cos

(

V
√

n

�
t

)

. (23.189)

Here the n states act like one state with an effective coupling of V
√

n.

For the general case ∆E �= 0 we substitute

C j = u j e
E j

i�
t (23.190)
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and have

i�u̇ j e
E j

i�
t = V C0. (23.191)

Integration gives

u j = V

i�

∫ t

t0

e− E j

i�
t ′
C0(t

′)dt ′ (23.192)

and therefore

C j = V

i�

∫ t

t0

ei
E j

�
(t ′−t)C0(t

′)dt ′. (23.193)

With the definition

E j = j ∗ �∆ω (23.194)

we have

Ċ0 = V

i�

n
∑

j=1

C j = − V 2

�2

∑

j

∫ t

t0

ei j∆ω(t ′−t)C0(t
′)dt ′. (23.195)

We replace the sum by an integral over the continuous variable

ω = j∆ω (23.196)

and extend the integration range to −∞· · · ∞. Then the sum becomes approximately

a delta function

∞
∑

j=−∞
ei j∆ω(t ′−t)∆ j →

∫ ∞

−∞
eiω(t ′−t) dω

∆ω
= 2π

∆ω
δ(t − t ′) (23.197)

and the final result is an exponential decay law

Ċ0 = − 2πV 2

�2∆ω
C0 = −2πV 2

�
ρ(E)C0 (23.198)

with the density of final states

ρ(E) = 1

�∆ω
= 1

∆E
. (23.199)

Numerical results are shown in Fig. 23.15.



23.3 Few-State Systems 551

Fig. 23.15 (Numerical

solution of the ladder model)

The time evolution of the

ladder model (23.187) is

calculated with the 4th order

Runge–Kutta method for N

= 50 states and different

values of the coupling V
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23.3.5 Semiclassical Curve Crossing

In the following we study simple models for the transition between two electronic

states along a nuclear coordinate Q.8 Within the crude diabatic model the wavefunc-

tion takes the form

Ψ =
(

χ1(Q, t)

χ2(Q, t)

)

(23.200)

where the two components refer to the two electronic states.

The nuclear wavefunctions χ1,2 obey a system of coupled equations (M is the

reduced mass corresponding to the nuclear coordinate)

i�Ψ̇ = HΨ =
[

− �
2

2M

∂2

∂Q2
+

(

E1(Q) V (Q)

V (Q) E2(Q)

)]

Ψ. (23.201)

Here E1,2(Q) are the diabatic potential energy surfaces which cross at a point Qc

and V (Q) is the coupling matrix element in the diabatic basis.

According to Ehrenfest’s theorem, the average position

Q(t) =
∫

[

|χ1(Q, t)|2 + |χ2(Q, t)|2
]

Q d Q (23.202)

8For a diatomic molecule, e.g. the nuclear coordinate is simply the distance R of the two nuclei.
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obeys an equation of motion which looks very similar to its classical counterpart

M
d2

dt2
Q(t) = F = − ∂

∂Q
Ve f f

=
∫

d Q
(

χ1(Q, t)∗ χ2(Q, t)∗
)

(

− ∂
∂Q

E1(Q) − ∂
∂Q

V (Q)

− ∂
∂Q

V (Q) − ∂
∂Q

E2(Q)

)

(

χ1(Q, t)

χ2(Q, t)

)

.

(23.203)

The semiclassical approach approximates both nuclear wavefunctions as one and

the same narrow wave packet centered at the classical position Q(t) = Q(t). Equa-

tion (23.203) then becomes

M
∂2

∂t2
Q(t) = − ∂

∂Q

(

a(t)∗ b(t)∗
)

(

E1(Q(t)) V (Q(t))

V (Q(t)) E2(Q(t))

)(

a(t)

b(t)

)

.

Substitution of

χ1(Q, t) = χ2(Q, t) = φ(Q, t) (23.204)

in (23.200)

Ψ =
(

a(t)

b(t)

)

φ(Q, t) (23.205)

and taking the average over Q, which in fact means to replace Q by Q(t), the

semiclassical approximation is obtained:

i�

(

ȧ(t)

ḃ(t)

)

=
(

E1(Q(t)) V (Q(t))

V (Q(t)) E2(Q(t))

)(

a(t)

b(t)

)

. (23.206)

In Problem 23.5 we compare the solutions of (23.201) and (23.206). The two wave

packets are propagated with the split-operator-Fourier transform method Sect. 23.2.2.

For a small time step ∆t the propagator is approximated as a product

exp

{

∆t

i�
H

}

= exp

{

i∆t
�

4M

∂2

∂Q2

}

exp

{

∆t

i�

(

E1(Q) V (Q)

V (Q) E2(Q)

)}

exp

{

i∆t
�

4M

∂2

∂Q2

}

+ · · ·

(23.207)
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where the kinetic energy part is evaluated in Fourier space and the potential energy

part requires diagonalization of a 2×2 matrix for each grid point. From the resulting

wavefunction the average position Q(t) is calculated which is needed to define the

trajectory for the semiclassical approximation. Equation 23.206 is then solved with

the Runge–Kutta method. The initial wavefunction is a Gaussian wave packet on one

of the diabatic surfaces with constant momentum (as in 23.117). Figure 23.16 shows

an example from Problem 23.5.

23.3.6 Landau–Zener Model

This model describes crossing of two states, for instance for colliding atoms or

molecules [315, 316]. It is assumed that in the vicinity of the crossing point the

interaction V is constant and the time dependency of the energy gap is linearized

(Fig. 23.17)

V (Q(t)) = V (23.208)

∆E(t) = E2(Q(t)) − E1(Q(t)) = ∆E0 + vt. (23.209)

The Hamiltonian matrix of the Landau–Zener model is
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Fig. 23.16 (Semiclassical approximation of a curve Crossing) The crossing between two states is

simulated for coupling V = 1.23, velocity = 12 and slope = 0.4. (Problem 23.5). Top the semiclas-

sical approximation (black) reproduces the occupation probability from the full quantum calculation

(red) quite accurately. Generally, it shows more pronounced oscillations than the quantum calcu-

lation with wave packets of finite width. Bottom If the initial velocity is large enough, acceleration

is not important and the classical position (black) as well as the energy gap (red) become linear

functions of time



554 23 Simple Quantum Systems

H =
(

0 V

V ∆E(t)

)

. (23.210)

For small interaction V or large velocity ∂
∂t

∆E = Q̇ ∂
∂Q

∆E the transition probability

can be calculated with perturbation theory to give

P = 2πV 2

�
∂
∂t

∆E
. (23.211)

This expression becomes invalid for small velocities. Here the system stays on the

adiabatic potential surface, i.e. P → 1. Landau and Zener found the following

expression which is valid in both limits:

PL Z = 1 − exp

(

− 2πV 2

�
∂
∂t

∆E

)

. (23.212)

In case of collisions multiple crossing of the interaction region has to be taken into

account (Fig. 23.18).

Numerical results from Problem 23.6 are shown in Fig. 23.19.
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Fig. 23.18 Multiple passage of the interaction region
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Fig. 23.19 (Numerical solution of the Landau–Zener model) Numerical calculations (solid curves)

are compared with the Landau–Zener probability (23.212, dashed lines) and the approximation

(23.211, dotted lines) The velocity is d∆E/dt = 1. (Problem 23.6)

23.4 The Dissipative Two-State System

A two-state quantum system coupled to a thermal bath serves as a model for magnetic

resonance phenomena, coherent optical excitations [317, 318] and, quite recently,

for a Qubit, the basic element of a future quantum computer [319, 320]. Its quantum

state can not be described by a single wavefunction. Instead mixed quantum states

have to be considered which can be conveniently described within the density matrix

formalism [277].

23.4.1 Equations of Motion for a Two-State System

The equations of motion for a two-state system are

i�ρ̇11 = H12ρ21 − ρ12 H21 (23.213)

i�ρ̇22 = H21ρ12 − ρ21 H12 (23.214)
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i�ρ̇12 = (H11 − H22)ρ12 + H12(ρ22 − ρ11) (23.215)

−i�ρ̇21 = (H11 − H22)ρ21 + H21(ρ22 − ρ11) (23.216)

which can be arranged as a system of linear equations9

i�

⎛

⎜

⎜

⎝

ρ̇11

ρ̇22

ρ̇12

ρ̇21

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 0 −H21 H12

0 0 H21 −H12

−H12 H12 H11 − H22 0

H21 −H21 0 H22 − H11

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ρ11

ρ22

ρ12

ρ21

⎞

⎟

⎟

⎠

. (23.217)

23.4.2 The Vector Model

The density matrix is Hermitian

ρi j = ρ∗
j i (23.218)

its diagonal elements are real valued and due to conservation of probability

ρ11 + ρ22 = const. (23.219)

Therefore the four elements of the density matrix can be specified by three real

parameters, which are usually chosen as

x = 2ℜρ21 (23.220)

y = 2ℑρ21 (23.221)

z = ρ11 − ρ22 (23.222)

and satisfy the equations

d

dt
2ℜ(ρ21) = −1

�
((H11 − H22)2ℑ(ρ21) + 2ℑ(H12)(ρ11 − ρ22)) (23.223)

d

dt
2ℑ(ρ21) = 1

�
((H11 − H22)2ℜ(ρ21) − 2ℜ(H12)(ρ11 − ρ22)) (23.224)

d

dt
(ρ11 − ρ22) = 2

�
(ℑ(H12)2ℜ(ρ21) + ℜH122ℑ(ρ21)) . (23.225)

9The matrix of this system corresponds to the Liouville operator.
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Together they form the Bloch vector

r =

⎛

⎝

x

y

z

⎞

⎠ (23.226)

which is often used to visualize the time evolution of a two-state system [321]. In

terms of the Bloch vector the density matrix is given by

(

ρ11 ρ12

ρ21 ρ22

)

=
(

1+z
2

x−iy

2
x+iy

2
1−z

2

)

= 1

2
(1 + rσ) (23.227)

with the Pauli matrices

σx =
(

0 1

1 0

)

, σy =
(

0 −i

i 0

)

, σz =
(

1

−1

)

. (23.228)

From (23.223–23.225) we obtain the equation of motion

d

dt

⎛

⎝

x

y

z

⎞

⎠ =

⎛

⎜

⎝

−y H11−H22

�
− z 2ℑ(H12)

�

x H11−H22

�
− z 2ℜ(H12)

�

x 2ℑ(H12)

�
+ y 2ℜ(H12)

�

⎞

⎟

⎠
(23.229)

which can be written as a cross product

d

dt
r = ω × r (23.230)

with

ω =

⎛

⎝

2
�
ℜH12

− 2
�
ℑH12

1
�
(H11 − H22)

⎞

⎠ . (23.231)

Any normalized pure quantum state of the two-state system can be written as [322]

|ψ >=
(

C1

C2

)

= cos
θ

2

(

1

0

)

+ eiφ sin
θ

2

(

0

1

)

(23.232)

corresponding to the density matrix

ρ =
(

cos2 θ
2

e−iφ sin θ
2

cos θ
2

eiφ sin θ
2

cos θ
2

sin2 θ
2

)

. (23.233)
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Fig. 23.20 (Bloch sphere) Left Any pure quantum state of a two-state system can be represented

by a point on the Bloch sphere. Right The poles represent the basis states. Mixed quantum states

correspond to the interior of the sphere, the central point represents the fully mixed state

The Bloch vector

r =

⎛

⎝

cos φ sin θ

sin φ sin θ

cos θ

⎞

⎠ (23.234)

represents a point on the unit sphere (the Bloch sphere, Fig. 23.20). Mixed states

correspond to the interior of the Bloch sphere with the fully mixed stateρ =
(

1/2 0

0 1/2

)

represented by the center of the sphere (Fig. 23.20).

23.4.3 The Spin-1/2 System

An important example of a two-state system is a particle with spin 1
2
. Its quantum

state can be described by a two-component vector

(

C1

C2

)

= C1

(

1

0

)

+ C2

(

0

1

)

(23.235)

where the two unit vectors are eigenvectors of the spin component in z-direction

corresponding to the eigenvalues sz = ±�

2
. The components of the spin operator are

given by the Pauli matrices

Si = �

2
σi (23.236)

and have expectation values
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< S >= �

2

(

C∗
1 C∗

2

)

⎛

⎝

σx

σy

σz

⎞

⎠

(

C1

C2

)

= �

⎛

⎜

⎝

C∗
1 C2+C∗

2 C1

2
C∗

1 C2−C∗
2 C1

2i
|C1|2−|C2|2

2

⎞

⎟

⎠
. (23.237)

The ensemble average for a system of spin- 1
2

particles is given by the Bloch vector

< S > = �

⎛

⎝

ρ21+ρ12

2
ρ21−ρ12

2i
ρ11−ρ22

2

⎞

⎠ = �

2
r. (23.238)

The Hamiltonian of a spin- 1
2

particle in a magnetic field B is

H = −γ
�

2
σB = −γ

�

2

(

Bz Bx − iBy

Bx + iBy −Bz

)

(23.239)

from which the following relations are obtained

γBx = −2

�
ℜH12 (23.240)

γBy = 2

�
ℑH12 (23.241)

γBz = − H11 − H22

�
(23.242)

ω = −γB. (23.243)

The average magnetization

m = γ< S > = γ
�

2
r (23.244)

obeys the equation of motion

d

dt
m = −γB × m. (23.245)

23.4.4 Relaxation Processes - The Bloch Equations

Relaxation of the nuclear magnetization due to interaction with the environment

was first described phenomenologically by Bloch in 1946 [323]. A more rigorous



560 23 Simple Quantum Systems

description was given later [324, 325] and also applied to optical transitions [326].

Recently electron spin relaxation has attracted much interest in the new field of

spintronics [327] and the dissipative two-state system has been used to describe the

decoherence of a Qubit [328].

23.4.4.1 Phenomenological Description

In thermal equilibrium the density matrix is given by a canonical distribution

ρeq = e−βH

tr(e−βH )
(23.246)

which for a two-state system without perturbation

H0 =
(

∆
2

−∆
2

)

(23.247)

becomes

ρeq =
(

e−β∆/2

eβ∆/2+e−β∆/2

eβ∆/2

eβ∆/2+e−β∆/2

)

(23.248)

where, as usually β = 1/kB T . If the energy gap is very large ∆ ≫ kB T like for an

optical excitation, the equilibrium state is the state with lower energy10

ρeq =
(

0 0

0 1

)

. (23.249)

The phenomenological model assumes that deviations of the occupation difference

from its equilibrium value

ρ
eq

11 − ρ
eq

22 = − tanh

(

∆

2kB T

)

(23.250)

decay exponentially with a time constant T1 (for NMR this is the spin-lattice relax-

ation time)

d

dt |Rel
(ρ11 − ρ22) = − 1

T1

[

(ρ11 − ρ22) − (ρ
eq

11 − ρ
eq

22)
]

. (23.251)

10We assume ∆ ≥ 0, such that the equilibrium value of z = ρ11 − ρ22 is negative. Eventually, the

two states have to be exchanged.
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The coherence of the two states decays exponentially with a time constant T2

which is closely related to T1 in certain cases11 but can be much smaller than T1 if

there are additional dephasing mechanisms. The equation

d

dt |Rel
ρ12 = − 1

T2

ρ12 (23.252)

describes the decay of the transversal polarization due to spatial and temporal differ-

ences of different spins (spin-spin relaxation), whereas for an optical excitation or a

Qubit it describes the loss of coherence of a single two-state system due to interaction

with its environment.

The combination of (23.245) and the relaxation terms (23.251, 23.252) gives

the Bloch equations [323] which were originally formulated to describe the time

evolution of the macroscopic polarization

dm

dt
= −γB × m − R(m − meq) R =

⎛

⎝

1
T2

0 0

0 1
T2

0

0 0 1
T1

⎞

⎠ . (23.253)

For the components of the Bloch vector they read explicitly

d

dt

⎛

⎝

x

y

z

⎞

⎠ =

⎛

⎜

⎜

⎝

−1/T2 − 1
�
(H11 − H22) − 2

�
ℑH12

1
�
(H11 − H22) −1/T2 − 2

�
ℜH12

2
�
ℑH12

2
�
ℜH12 −1/T1

⎞

⎟

⎟

⎠

⎛

⎝

x

y

z

⎞

⎠+

⎛

⎝

0

0

zeq/T1

⎞

⎠ .

(23.254)

23.4.5 The Driven Two-State System

The Hamiltonian of a two-state system (for instance an atom or molecule) in an

oscillating electric field Ee−iω f t with energy splitting ∆ and transition dipole moment

µ is

H =
(

∆
2

−µEe−iω f t

−µEeiω f t −∆
2

)

. (23.255)

The corresponding magnetic field

Bx = 2

γ�
µE cos ω f t (23.256)

11For instance T2 = 2T1 for pure radiative damping.



562 23 Simple Quantum Systems

By = 2

γ�
µE sin ω f t (23.257)

Bz = − ∆

γ�
(23.258)

is that of a typical NMR experiment with a constant component along the z-axis and

a rotating component in the xy−plane.

23.4.5.1 Free Precession

Consider the special case Bz = const, Bx = By = 0. The corresponding Hamil-

tonian matrix is diagonal

H =
(

�Ω0

2
0

0 −�Ω0

2

)

(23.259)

with the Larmor-frequency

Ω0 = ∆

�
= −γB0. (23.260)

The equations of motion for the density matrix are

∂

∂t
(ρ11 − ρ22) = − (ρ11 − ρ22) − (ρ

eq

11 − ρ
eq

22)

T1

(23.261)

i�
∂

∂t
ρ12 = �Ω0ρ12 − i�

1

T2

ρ12 (23.262)

with the solution

(ρ11 − ρ22) = (ρ
eq

11 − ρ
eq

22) + [(ρ11(0) − ρ22(0)) − (ρ
eq

11 − ρ
eq

22)]e−t/T1 (23.263)

ρ12 = ρ12(0)e−iΩ0t−t/T2 . (23.264)

The Bloch vector

r =

⎛

⎝

(x0 cos Ω0t − y0 sin Ω0t)e−t/T2

(y0 cos Ω0t + x0 sin Ω0t)e−t/T2

zeq + (z0 − zeq)e−t/T1

⎞

⎠ (23.265)

is subject to damped precession around the z−axis with the Larmor frequency

(Fig. 23.21).
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Fig. 23.21 (Free precession) The Bloch equations (23.254) are numerically solved with the 4th

order Runge Kutta method. After excitation with a short resonant pulse the free precession is

observed. Left The occupation difference z = ρ11 − ρ22 decays exponentially to its equilibrium

value. Right In the xy-plane the Bloch vector moves on a spiral towards the equilibrium position

(x = 0, y = 0)

23.4.5.2 Stationary Solution for Monochromatic Excitation

For the two-state system (23.255) with

H11 − H22 = ∆ = �Ω0 (23.266)

H12 = V0(cos ω f t − i sin ω f t) (23.267)

the solution of the Bloch equations (23.253)

d

dt

⎛

⎝

x

y

z

⎞

⎠ =

⎛

⎜

⎝

−1/T2 −Ω0
2V0

�
sin ω f t

Ω0 −1/T2 − 2V0

�
cos ω f t

− 2V0

�
sin ω f t 2V0

�
cos ω f t −1/T1

⎞

⎟

⎠

⎛

⎝

x

y

z

⎞

⎠ +

⎛

⎝

0

0

zeq/T1

⎞

⎠

(23.268)

can be found explicitly [317]. We transform to a coordinate system which rotates

around the z-axis (Sect. 14.3 on page 330) with angular velocity ω f

⎛

⎝

x ′

y′

z′

⎞

⎠ =

⎛

⎝

cos(ω f t) sin(ω f t) 0

− sin(ω f t) cos(ω f t) 0

0 0 1

⎞

⎠

⎛

⎝

x

y

z

⎞

⎠ = A(t)

⎛

⎝

x

y

z

⎞

⎠ . (23.269)

http://dx.doi.org/10.1007/978-3-319-61088-7_14
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Then

d

dt

⎛

⎝

x ′

y′

z′

⎞

⎠ = Ȧ

⎛

⎝

x

y

z

⎞

⎠ + A
d

dt

⎛

⎝

x

y

z

⎞

⎠ = ( ȦA−1 + AK A−1)

⎛

⎝

x ′

y′

z′

⎞

⎠ + A

⎛

⎝

0

0
zeq

T1

⎞

⎠

(23.270)

with

K =

⎛

⎜

⎝

−1/T2 −Ω0
2V0

�
sin ω f t

Ω0 −1/T2 − 2V0

�
cos ω f t

− 2V0

�
sin ω f t 2V0

�
cos ω f t −1/T1

⎞

⎟

⎠
. (23.271)

The matrix products are

ȦA−1 = W =

⎛

⎝

0 ω f 0

−ω f 0 0

0 0 0

⎞

⎠ AK A−1 =

⎛

⎝

−1/T2 −Ω0 0

Ω0 −1/T2 − 2V0

�

0 2V0

�
−1/T1

⎞

⎠

(23.272)

and the equation of motion simplifies to

⎛

⎝

ẋ ′

ẏ′

ż′

⎞

⎠ =

⎛

⎜

⎝

− 1
T2

ω f − Ω0 0

Ω0 − ω f − 1
T2

− 2V0

�

0 2V0

�
− 1

T1

⎞

⎟

⎠

⎛

⎝

x ′

y′

z′

⎞

⎠ +

⎛

⎝

0

0
zeq

T1

⎞

⎠ . (23.273)

For times short compared to the relaxation times the solution is approximately given

by harmonic oscillations. The generalized Rabi frequency ΩR follows from [329]

iΩR x ′ = (ω f − Ω0)y′ (23.274)

iΩR y′ = (Ω0 − ω f )x ′ − 2V0

�
z′ (23.275)

iΩRz′ = 2V0

�
y′ (23.276)

as

ΩR =

√

(Ω0 − ω f )2 +
(

2V0

�

)2

. (23.277)
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Fig. 23.22 (Monochromatic Excitation) The Bloch equations are solved numerically with the 4th

order Runge–Kutta method for a monochromatic perturbation with ω = 4, V0 = 0.5. Parameters

of the two-state system are ω0 = 5, zeq = −1.0 and T1 = T2 = 5.0. The occupation difference

z = ρ11 −ρ22 initially shows Rabi oscillations which disappear at larger times where the stationary

value z = −0.51 is reached

At larger times these oscillations are damped and the stationary solution is approached

(Fig. 23.22) which is given by

zeq

1 + 4
V 2

0

�2 T1T2 + T 2
2 (ω f − Ω0)2

⎛

⎝

2T 2
2

V0

�
(Ω0 − ω f )

−2T2
V0

�

1 + T 2
2 (ω f − Ω0)

2

⎞

⎠ . (23.278)

The occupation difference

z = ρ11 − ρ22 = zeq

(

1 −
4

V 2
0

�2 T1T2

1 + 4
V 2

0

�2 T1T2 + T 2
2 (ω f − Ω0)2

)

(23.279)

has the form of a Lorentzian. The line width increases for higher intensities (power

broadening)

∆ω = 1

T2

√

1 + 4
V 2

0

�2
T1T2 (23.280)

and the maximum

z(Ω0)

zeq
= 1

1 + 4
V 2

0

�2 T1T2

(23.281)

approaches zero (saturation) (Figs. 23.23, 23.24).
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Fig. 23.23 (Resonance line) The equations of motion of the two-state system including relaxation

terms are integrated with the 4th order Runge–Kutta method until a steady state is reached. Para-

meters are ω0 = 5, zeq = −0.8, V = 0.01 and T1 = T2 = 3.0, 6.9. The change of the occupation

difference is shown as a function of frequency (circles) and compared with the steady state solution

(23.278)

Fig. 23.24 (Power

saturation and broadening)

The resonance line is

investigated as a function of

the coupling strength V and

compared with the stationary

solution (23.278) to observe

the broadening of the line

width (23.280). Parameters

are ω0 = 5, zeq = −1.0,

T1 = T2 = 100 and

V = 0.5, 0.25, 0.125,

0.0625, 0.03125
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23.4.5.3 Excitation by a Resonant Pulse

For a resonant pulse with real valued envelope V0(t) and initial phase angle Φ0

H12 = V0(t) e−i(Ω0t+Φ0)

the equation of motion in the rotating system is
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⎞
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(23.282)

If the relaxation times are large compared to the pulse duration this describes approx-

imately a rotation around an axis in the xy−plane (compare with 14.24)

d

dt
r′ ≈ W (t)r′ = 2V0(t)

�
W0r′ (23.283)

W0 =

⎛

⎝

0 0 − sin Φ0

0 0 − cos Φ0

sin Φ0 cos Φ0 0

⎞

⎠ . (23.284)

Since the axis is time independent, a formal solution is given by

r′(t) = eW
∫ t

0

2V0(t ′)
�

dt ′
r′(0) = eW0Φ(t)r′(0) (23.285)

with the phase angle

Φ(t) =
∫ t

t0

2V0(t
′)

�
dt ′. (23.286)

Now, since

W 2
0 =

⎛

⎝

− sin2 Φ0 − sin Φ0 cos Φ0 0

− sin Φ0 cos Φ0 − cos2 Φ0 0

0 0 −1

⎞

⎠ (23.287)

W 3
0 = −W0 (23.288)

W 4
0 = −W 2

0 (23.289)

the Taylor series of the exponential function in (23.285) can be summed up

eW0Φ = 1 + ΦW0 + 1

2
Φ2W 2

0 + 1

3!Φ
3W 3

0 + · · ·

= 1 + W 2
0

(

Φ2

2
− Φ4

4! + · · ·
)

+ W0

(

Φ − Φ3

3! + · · ·
)

http://dx.doi.org/10.1007/978-3-319-61088-7_14
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Fig. 23.25 (Rotation of the

Bloch vector by a resonant

pulse) A resonant pulse

rotates the Bloch vector by

the angle Φ around an axis

in the x ′y′-plane

Φ0

x’
y’

z’

Φ

= 1 + W 2
0 (1 − cos Φ) + W0 sin Φ

=

⎛

⎝

1 − sin2 Φ0 (1 − cos Φ) − sin Φ0 cos Φ0 (1 − cos Φ) − sin Φ0 sin Φ

− sin Φ0 cos Φ0 (1 − cos Φ) 1 − cos2 Φ0 (1 − cos Φ) − cos Φ0 sin Φ

sin Φ0 sin Φ cos Φ0 sin Φ cos Φ

⎞

⎠

=

⎛

⎝

cos Φ0 sin Φ0 0

− sin Φ0 cos Φ0 0

0 0 1

⎞

⎠

⎛

⎝

1 0 0

0 cos Φ − sin Φ

0 sin Φ cos Φ

⎞

⎠

⎛

⎝

cos Φ0 − sin Φ0 0

sin Φ0 cos Φ0 0

0 0 1

⎞

⎠ .

(23.290)

The result is a rotation about the angle Φ around an axis in the xy−plane deter-

mined by Φ0 (Fig. 23.25), especially around the x−axis for Φ0 = 0 and around the

y−axis for Φ0 = π
2

.

After a π−pulse (Φ = π) the z-component changes its sign

r′ =

⎛

⎝

cos(2Φ0) − sin(2Φ0) 0

− sin(2Φ0) − cos(2Φ0) 0

0 0 −1

⎞

⎠ r(0). (23.291)

The transition between the two basis states z = −1 and z = 1 corresponds to a spin

flip (Fig. 23.26). On the other hand, a π/2−pulse transforms the basis states into a

coherent mixture

r′ =

⎛

⎝

1 − sin2 Φ0 − sin Φ0 cos Φ0 − sin Φ0

− sin Φ0 cos Φ0 1 − cos2 Φ0 − cos Φ0

sin Φ0 cos Φ0 0

⎞

⎠ r(0). (23.292)
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Fig. 23.26 (Spin flip by a π-pulse) The equations of motion of the Bloch vector (23.268) are

solved with the 4th order Runge–Kutta method for an interaction pulse with a Gaussian shape.

The pulse is adjusted to obtain a spin flip. The influence of dephasing processes is studied.

T1 = 1000, tp = 1.8, V0 = 0.25. The occupation difference ρ11 − ρ22 = z (solid curves) and

the coherence |ρ12| = 1
2

√

x2 + y2 (broken curves) are shown for several values of the dephasing

time T2 = 5, 10, 100, 1000

23.4.6 Elementary Qubit Manipulation

Whereas a classical bit can be only in one of two states

either

(

1

0

)

or

(

0

1

)

(23.293)

the state of a Qubit is a quantum mechanical superposition

|ψ >= C0

(

1

0

)

+ C1

(

0

1

)

. (23.294)

The time evolution of the Qubit is described by a unitary transformation

|ψ >→ U |ψ > (23.295)

which is represented by a complex 2 × 2 unitary matrix that has the general form

(see also Sect. 14.15)

U =
(

α β

−eiϕβ∗ eiϕα∗

)

|α|2 + |β|2 = 1, det U = eiϕ. (23.296)

http://dx.doi.org/10.1007/978-3-319-61088-7_14
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The Bloch vector is transformed with an orthogonal matrix A, which can be found

from (23.227) and the transformed density matrix UρU−1

r → Ar A =

⎛

⎝

ℜ
(

(α2 − β2)e−iϕ
)

ℑ
(

(α2 + β2)e−iϕ
)

−2ℜ
(

αβe−iϕ
)

ℑ
(

(β2 − α2)e−iϕ
)

ℜ
(

(α2 + β2)e−iϕ
)

2ℑ
(

αβe−iϕ
)

2ℜ(α∗β) 2ℑ(α∗β) (|α|2 − |β|2)

⎞

⎠ .

(23.297)

Any single Qubit transformation can be realized as a sequence of rotations around

just two axes [318, 319, 330]. In the following we consider some simple transfor-

mations, so called quantum gates [331].

23.4.6.1 Pauli-gates

Of special interest are the gates represented by the Pauli matrices U = σi since any

complex 2 × 2 matrix can be obtained as a linear combination of the Pauli matrices

and the unit matrix (Sect. 14.15). For all three of them det U = −1 and ϕ = π.

The X-gate

UX = σx =
(

0 1

1 0

)

(23.298)

corresponds to rotation by π radians around the x−axis (23.291 with Φ0 = 0)

AX =

⎛

⎝

1 0 0

0 −1 0

0 0 −1

⎞

⎠ . (23.299)

It is also known as NOT-gate since it exchanges the two basis states. Similarly, the

Y-gate

UY = σy =
(

0 −i

i 0

)

rotates the Bloch vector by π radians around the y−axis (23.291 with Φ0 = π/2)

AY =

⎛

⎝

−1 0 0

0 1 0

0 0 −1

⎞

⎠ (23.300)

http://dx.doi.org/10.1007/978-3-319-61088-7_14
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and the Z-gate

UZ = σz =
(

1 0

0 −1

)

(23.301)

by π radians around the z−axis

AZ =

⎛

⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎠ . (23.302)

This rotation can be replaced by two successive rotations in the xy−plane

AZ = AX AY . (23.303)

The corresponding transformation of the wavefunction produces an overall phase

shift of π/2 since the product of the Pauli matrices is σxσy = iσz , which is not

relevant for observable quantities.

23.4.6.2 Hadamard Gate

The Hadamard gate is a very important ingredient for quantum computation. It trans-

forms the basis states into coherent superpositions and vice versa. It is described by

the matrix

UH =
(

1√
2

1√
2

1√
2

− 1√
2

)

(23.304)

with det UH = −1 and

AH =

⎛

⎝

0 0 1

0 −1 0

1 0 0

⎞

⎠ (23.305)

which can be obtained as the product

AH =

⎛

⎝

0 0 −1

0 1 0

1 0 0

⎞

⎠

⎛

⎝

1 0 0

0 −1 0

0 0 −1

⎞

⎠ (23.306)
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of a rotation by π radians around the x−axis and a second rotation by π/2 radians

around the y-axis. The first rotation corresponds to the X -gate and the second to

(23.292) with Φ0 = π/2

U =
(

1√
2

1√
2

− 1√
2

1√
2

)

. (23.307)

Problems

Problem 23.1 Wave Packet Motion

In this computer experiment we solve the Schroedinger equation for a particle in

the potential V (x) for an initially localized Gaussian wave packet ψ(t = 0, x) ∼
exp(−a(x − x0)

2). The potential is a box, a harmonic parabola or a fourth order

double well. Initial width and position of the wave packet can be varied.

• Try to generate the stationary ground state wave function for the harmonic oscil-

lator

• Observe the dispersion of the wave packet for different conditions and try to

generate a moving wave packet with little dispersion.

• Try to observe tunneling in the double well potential

Problem 23.2 Two-state System

In this computer experiment a two-state system is simulated. Amplitude and fre-

quency of an external field can be varied as well as the energy gap between the two

states (see Fig. 23.9).

• Compare the time evolution at resonance and away from it

Problem 23.3 Three-state System

In this computer experiment a three-state system is simulated.

• Verify that the system behaves like an effective two-state system if the intermediate

state is higher in energy than initial and final states (see Fig. 23.13).

Problem 23.4 Ladder Model

In this computer experiment the ladder model is simulated. The coupling strength

and the spacing of the final states can be varied.

• Check the validity of the exponential decay approximation (see Fig. 23.15)
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Problem 23.5 Semiclassical Approximation

In this computer experiment we study the crossing between two states along a nuclear

coordinate. The time dependent Schrödinger equation for a wave packet approach-

ing the crossing region is solved numerically and compared to the semiclassical

approximation.

• Study the accuracy of the semiclassical approximation for different values of cou-

pling and initial velocity

Problem 23.6 Landau–Zener Model

This computer experiment simulates the Landau Zener model. The coupling strength

and the nuclear velocity can be varied (see Fig. 23.19).

• Try to find parameters for an efficient crossing of the states.

Problem 23.7 Resonance Line

In this computer experiment a two-state system with damping is simulated. The

resonance curve is calculated from the steady state occupation probabilities (see

Figs. 23.23, 23.24).

• Study the dependence of the line width on the intensity (power broadening).
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Fig. 23.27 (Generation of a coherent mixture by a π/2-pulse) The equations of motion of the Bloch

vector (23.268) are solved with the 4th order Runge–Kutta method for an interaction pulse with

a Gaussian shape. The pulse is adjusted to obtain a coherent mixture. The influence of dephasing

processes is studied. T1 = 1000, tp = 0.9, V0 = 0.25. The occupation difference ρ11 − ρ22 = z

(solid curves) and the coherence |ρ12| = 1
2

√

x2 + y2 (broken curves) are shown for several values

of the dephasing time T2 = 5, 10, 100, 1000
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Fig. 23.28 (Motion of the Bloch vector during π/2 and π pulses) The trace of the Bloch vector is

shown in the laboratory system. Left π/2−pulse as in Fig. 23.27 with T2 = 1000. Right π−pulse as

in Fig. 23.26 with T2 = 1000

Problem 23.8 Spin Flip

The damped two-state system is now subject to an external pulsed field (see

Figs. 23.26, 23.27, 23.28).

• Try to produce a coherent superposition state (π/2 pulse) or a spin flip (π pulse).

• Investigate the influence of decoherence.



Chapter 24

Variational Methods for Quantum Systems

The variational principle states, that the energy expectation value of any trial function

is bounded from below by the exact ground state energy. Therefore, the ground state

can be approximated by minimizing the energy of a trial function which involves

certain parameters that have to be optimized. In this chapter we study two different

kinds of quantum systems. First we apply the variational principle to one- and two-

electron systems and calculate the ground state energy of the Helium atom and the

Hydrogen molecule. If the trial function treats electron correlation explicitly, the

calculation of the energy involves unseparable multidimensional integrals which

can be efficiently evaluated with the variational quantum Monte Carlo method. In

a second series of computer experiments we study models with a large number of

variational parameters. We simulate excitons in a molecular aggregate which are

coupled to internal vibrations. The number of parameters increases with the system

size up to several hundred and the optimization requires efficient strategies. We use

several kinds of trial functions to study the transition from a delocalized to a localized

state.

The variational principle is a very valuable tool to approximate the groundstate

energy and wavefunction. Consider the representation of the Hamiltonian in a com-

plete basis of eigenfunctions [277]

H =
∑

n

|ψn > En < ψn| (24.1)

with the groundstate energy

E0 ≤ En (24.2)

and a trial function with some adjustable parameters

ψtrial(λ). (24.3)
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The expectation value of the Hamiltonian

< ψtrialHψtrial >=
∑

n

| < ψtrial|ψn > |2En ≥ E0

∑

n

| < ψtrial|ψn > |2

= E0 < ψtrial

[

∑

n

|ψn >< ψn|
]

ψtrial >= E0|ψtrial|2. (24.4)

Hence the energy expectation value is bounded from below by the groundstate energy

< ψtrialHψtrial >

|ψtrial|2
≥ E0. (24.5)

For the exact groundstate

< ψ0|H|ψ0 >

|ψ0|2
= E0

and the variance

σ2
E =

< ψ0|H2|ψ0 >

|ψ0|2
−
(

< ψ0|H|ψ0 >

|ψ0|2

)2

= 0. (24.6)

Now, let us try to find an approximate solution of the eigenvalue problem

Hψ = E0ψ (24.7)

by optimizing the trial function. The residual is

R = Hψtrial − E0ψtrial (24.8)

and, applying Galerkin’s method (p. 272) we minimize the scalar product

< ψtrialR >=< ψtrialHψtrial > −E0 < ψtrial|ψtrial > (24.9)

where the trial function should be normalized. Alternatively, we divide by the squared

norm and minimize

< ψtrialHψtrial >

< ψtrial|ψtrial >
− E0. (24.10)

Hence the “best” trial function is found by minimizing the energy with respect to

the parameters λ.
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Now, assume that the groundstate is normalized

|ψ0|2 = 1 (24.11)

and choose the normalization of the trial function such that

ψtrial = ψ0 + ρ (24.12)

< ψ0|ρ >= 0. (24.13)

Then,

< ψtrialHψtrial >

|ψtrial|2
=

E0+ < ρHρ >

1 + |ρ|2
= E0 + O(|ρ|2) (24.14)

the accuracy of the energy is of second order in |ρ|. From

< ψtrialH
2ψtrial >

|ψtrial|2
=

E2
0+ < ρH2ρ >

1 + |ρ|2
(24.15)

we find that the variance of the energy

σ2
E =

< ψtrialH
2ψtrial >

|ψtrial|2
−
(

< ψtrialHψtrial >

|ψtrial|2

)2

=
E2

0+ < ρH2ρ >

1 + |ρ|2
−
(

E0+ < ρHρ >

1 + |ρ|2

)2

≈ E2
0(1 − |ρ|2)+ < ρH2ρ > −E2

0(1 − 2|ρ|2) − 2E0 < ρHρ >

≈ E2
0 < ρ|ρ >2 + < ρH|Hρ > −2E0 < ρHρ >

≈ |(H − E0)ρ|2 (24.16)

is also second order in |ρ|. It is bounded from below by zero. Therefore, Quantum

Monte Carlo methods often minimize the variance instead of the energy for which

the lower bound is unknown.

24.1 Variational Quantum Monte Carlo Simulation

of Atomic and Molecular Systems

Electron structure calculations for atoms and molecules beyond the self consistent

field level (Hartree Fock uses one Slater determinant as a trial function, MCSCF

methods a combination of several) need an explicit treatment of electron correla-

tion. This can be achieved by expanding the wavefunction into a large number of
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configurations (CI method) or, alternatively, by using trial functions which depend

explicitly on the electron-electron distances. Very popular [332, 333] are factors of

the Jastrow pair-correlation [334] type

exp

⎧

⎨

⎩

∑

i<j

U (rij)

⎫

⎬

⎭

(24.17)

where in the simplest case

U (rij) =
αrij

1 + βrij

(24.18)

has the form of a Pade approximant. Wavefunctions including a Jastrow factor do

not factorize and make it necessary to apply Monte Carlo integration methods to

calculate the energy expectation value (see p. 205). For the computer simulation of

two-electron systems we use trial functions of the type

ψ = e−κr1a e−κr2b eαr12/(1+βr12) (24.19)

which are products of two 1s-orbitals centered at the (possibly same) positions ra,b

and a Jastrow factor. In the following, we abbreviate

u = 1 + βr12. (24.20)

Starting with the derivatives

∂

∂x1

ψ = −
κx1a

r1a

ψ +
αx12

r12u2
ψ (24.21)

∂2

∂x2
1

ψ =
[

−
κx1a

r1a

+
αx12

r12u2

]2

ψ

+
[

−
κ

r1a

+
κx2

1a

r3
1a

]

ψ +
[

α

r12u2
−

αx2
12

r3
12u2

− 2
αβx2

12

r2
12u3

]

ψ (24.22)

we calculate the kinetic energy

Tψ = −
1

2
(∇2

1 + ∇2
2 )ψ =

[

−κ2 −
α2

u4
+

ακ

u2

(

r1a

r1a

−
r2b

r2b

)

r12

r12

]

ψ

+
[

κ

r1a

+
κ

r2b

−
2α

r12u2
+ 2

αβ

u3

]

ψ. (24.23)

For short electron-electron distance
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Fig. 24.1 Geometry of H+
2

r
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r
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R

Tψ →
[

−κ2 − α2 + ακ

(

r1a

r1a

−
r2b

r2b

)

r12

r12

+
κ

r1a

+
κ

r2b

+ 2αβ −
2α

r12

]

ψ.

(24.24)

A choice of α = 1/2 cancels the divergent Coulomb repulsion at r12 → 0 and

fulfills the electron-electron cusp condition [333, 335]. More complicated Jastrow

factors also allow to fulfill the electron-nuclei cusp conditions.

24.1.1 The Simplest Molecule: H+

2

As a first example (Problem 24.1), we consider an electron moving in the Coulomb

field of two protons (Fig. 24.1). Applying the Born-Oppenheimer approximation the

protons are kept fixed at a distance R. In atomic units,1 the Hamiltonian is

H = T + V = −
1

2
∇2 −

1

ra

−
1

rb

+
1

R
. (24.25)

This eigenvalue problem can be solved exactly (using elliptic coordinates) and is

also a popular example for the variational method.

As a trial wavefunction we use the linear combination of two hydrogen-like 1 s

orbitals

ϕa =
√

κ3

π
e−κra ϕb =

√

κ3

π
e−κrb (24.26)

which are solutions for the problem with two nuclear charges κ at infinite distance.

At finite distances, the variational parameter κ is a measure of the effective nuclear

charge. For large distance κ = 1 as for a single proton whereas at short distances the

optimum value approaches κ = 2 as for the He+ ion.

Since the problem is highly symmetric,we take a symmetric combination

1i.e. setting aB = 4πε0�
2/e2me = 1 and �

2/me = 1.
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ϕtrial =
1

√
2(1 ± S)

[ϕa ± ϕb] (24.27)

where the overlap integral can be calculated using elliptic coordinates

ra =
R

2
(λ + µ) rb =

R

2
(λ − µ)

S =
∫ ∫ ∫

ϕaϕbdV = 2π

∫ ∞

1

dλ

∫ 1

−1

dµ 2κ3(λ2 − µ2)
R3

8
e−κRλ

= e−κR(1 + κR +
κ2R2

3
). (24.28)

The action of the Hamiltonian is

Hϕa = −
1

2

(

κ2 −
2κ

ra

)

ϕa +
[

1

R
−

1

ra

−
1

rb

]

ϕa =
[

−
1

rb

+
κ − 1

ra

+
(

−
κ2

2
+

1

R

)]

ϕa

(24.29)

Hϕb = −
1

2

(

κ2 −
2κ

rb

)

ϕb +
[

1

R
−

1

ra

−
1

rb

]

ϕb =
[

−
1

ra

+
κ − 1

rb

+
(

−
κ2

2
+

1

R

)]

ϕb

(24.30)

Hϕtrial =
1

√
2(1 ± S)

[

(
κ

ra

−
κ2

2
)ϕa ±

(

κ

rb

−
κ2

2

)

ϕb

]

+
[

1

R
−

1

ra

−
1

rb

]

ϕtrial

from which we obtain the local energy

Eloc =
[

1

R
−

1

ra

−
1

rb

−
κ2

2

]

+
κ
ra

ϕa ± κ
rb

ϕb

ϕa ± ϕb

. (24.31)

For comparison, we calculate the expectation value of the energy

< ϕtrialHϕtrial >=
1

2(1 ± S)
[Haa + Hbb ± Hab ± Hba] =

Haa ± Hab

1 ± S
(24.32)

with the matrix elements

Haa = Hbb =
1

R
−

κ2

2
−
∫

ϕ2
a

rb

dV + (κ − 1)

∫

ϕ2
a

ra

dV (24.33)

Hab = Hba =
(

1

R
−

κ2

2

)

S −
∫

ϕaϕb

ra

dV + (κ − 1)

∫

ϕaϕb

rb

. (24.34)
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The integrals can be evaluated in elliptic coordinates

∫

ϕ2
b

rb

dV =
∫

ϕ2
a

ra

dV = 2κ3

∫ ∞

1

dλ

∫ 1

−1

dµ
R2

4
(λ − µ)e−κR(λ+µ)/2 = κ

(24.35)

∫

ϕ2
b

ra

dV =
∫

ϕ2
a

rb

dV = 2κ3

∫ ∞

1

dλ

∫ 1

−1

dµ
R2

4
(λ + µ)e−κR(λ+µ)/2

=
1

R
− e−2κR(κ +

1

R
) (24.36)

∫

ϕaϕb

rb

dV =
∫

ϕaϕb

ra

dV = 2κ3

∫ ∞

1

dλ

∫ 1

−1

dµ
R2

4
(λ − µ)e−κRλ

= e−κR
(

κ + κ2R
)

. (24.37)

In our computer experiment (Problem 24.1), we first keep κ = 1 fixed and use the

variational MC method to calculate the expectation value of the energy. Figure 24.2

compares the results with the exact value (24.32). Next we vary κ and determine

the optimum value at each point R by minimizing E(R,κ). Figure 24.3 shows the

κ-dependence for several points. The optimized κ-values (Fig. 24.4) lead to lower

energies, especially at short distances. The equilibrium is now at R0 = 2.0 Bohr with

a minimum energy of −0.587 a.u. instead of 2.5 Bohr and −0.565 a.u. for κ = 1.

(Exact values are 2.00 Bohr and −0.603 a.u. [277]).
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Fig. 24.2 (Adiabatic groundstate energy of H+
2 ) The potential energy curve of H+

2 is calculated with

the variational method. Circles show the results from MC integration for a maximum step length

of 0.5 Bohr and averages over 2 × 107samples for a fixed effective charge κ = 1. The solid curve

shows the results of the exact integration (24.32) for comparison. Diamonds show the MC results

after optimizing κ(R) at each point. The dashed curve shows the results of the exact integration

(24.32) where κ(R) was determined by solving ∂
∂κ

< ϕtrialHϕtrial >= 0 numerically
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Fig. 24.3 (Optimization of

the variational parameter κ

for H+
2 ) The groundstate

energy from MC integration

is shown as a function of κ

for R = 1 (diamonds), R = 2

(squares) and R = 3

(circles). The curves show a

fit with a cubic polynomial

which helps to find the

minima
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Fig. 24.4 (Optimized

effective charge parameter

for H+
2 ) The variational

parameter κ is optimized by

minimizing the MC energy

as shown in Fig. 24.3

(circles). The curve shows

the exact values obtained by

minimizing (24.32)

numerically
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24.1.2 The Simplest Two-Electron System: The Helium Atom

The Helium atom (Fig. 24.5) is the simplest “many-electron” system where electron-

electron interaction has to be taken into account. The electronic Hamiltonian reads

in atomic units

H = −
1

2
∇2

1 −
1

2
∇2

2 −
2

r1

−
2

r2

+
1

r12

. (24.38)
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Without electron-electron interaction, the singlet groundstate would be simply

given in terms of hydrogen-like 1s-orbitals as

ψ0 =
23

π
e−2r1 e−2r2

1
√

2
(↑ (1) ↓ (2)− ↑ (2) ↓ (1)) (24.39)

with

[

−
1

2
∇2

1 −
1

2
∇2

2 −
2

r1
−

2

r2

]

ψ0 = −2

(

1 −
1

r1

)

ψ0 − 2

(

1 −
1

r2

)

ψ0 −
2

r1
ψ0 −

2

r2
ψ0 = −4ψ0.

(24.40)

For the variational treatment (Problem 24.2) we use a trial wavefunction with a

variable exponent to take the partial shielding of the central charge into account

ψtrial =
κ3

π
e−κr1 e−κr2

1
√

2
(↑ (1) ↓ (2)− ↑ (2) ↓ (1)) (24.41)

where the antisymmetric spin function accounts for the Pauli principle.

Then,

Hψtrial = −
1

2

(

κ2 −
2κ

r1

+ κ2 −
2κ

r2

)

ψtrial +
(

1

r12

−
2

r1

−
2

r2

)

ψtrial (24.42)

Eloc =
1

r12

− κ2 +
κ − 2

r1

+
κ − 2

r2

. (24.43)

The integration can be performed analytically [277]. First we calculate

(

κ3

π

)2 ∫

e−2κr1 e−2κr2
1

r1

dV1dV2 =
κ3

π

∫

e−2κr 1

r
dV = κ. (24.44)

The integral of the electron-electron interaction is

(

κ3

π

)2 ∫

e−2κr1 e−2κr2
1

r12

dV1dV2

=
(

κ3

π

)2 ∫ ∞

0

r2
1dr1e−2κr1

∫ ∞

0

r2
2dr2e−2κr2

∫

dΩ1

∫

dΩ2

1

r12

=
(

κ3

π

)2 ∫ ∞

0

r2
1dr1e−2κr1

∫ ∞

0

r2
2dr2e−2κr2

(4π)2

max(r1, r2)



584 24 Variational Methods for Quantum Systems

=
(

κ3

π

)2 ∫ ∞

0

r2
1dr1e−2κr1(4π)2

[

1

r1

∫ r1

0

r2
2dr2e−2κr2 +

∫ ∞

r1

r2dr2e−2κr2

]

= 16κ6

∫ ∞

0

r2
1dr1e−2κr1

[

1 − e−2κr1

4r1κ3
−

e−2κr1

4κ2

]

=
5

8
κ. (24.45)

Together, we obtain

< ψtrialHψtrial >= −κ2 +
5

8
κ + 2(κ − 2)κ = κ2 +

(

5

8
− 4

)

κ (24.46)

which has its minimum at (Figs. 24.6 and 24.7)

κmin = 2 −
5

16
≈ 1.688 (24.47)

with the value

minκ < ψtrialHψtrial >= −
729

256
≈ −2.848.

Next, we consider a (not normalized) trial wavefunction of the Slater-Jastrow type

(24.19)

ψtrial = e−κr1 e−κr2 eαr12/(1+βr12)
1

√
2

(↑ (1) ↓ (2)− ↑ (2) ↓ (1)) . (24.48)

Fig. 24.6 (Optimization of

the effective charge for the

Helium atom) The

groundstate energy of the

Helium atom was calculated

with MC integration. The

circles show the average over

107points. The curve shows

the exact result (24.46) for

comparison. The optimum

value is κ = 1.688
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Fig. 24.7 (Standard deviation of the MC energy) The Circles show the standard deviation of the

MC energy for Helium. Its minimum between κ = 1.7 · · · 1.9 is close to the minimum of the energy

(Fig. 24.6). The curve shows a cubic polynomial fit
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Fig. 24.8 (Variation of β) The groundstate of the Helium atom is approximated with the Slater-

Jastrow wavefunction (24.48). Singularities of the potential energy are removed by using κ = 2 and

α = 1/2. Each point represents an average over 107 samples. Left The energy minimum of−2.879

is found at β = 0.15. Right the standard deviation has a minimum value of 0.29 at β = 0.35

From (24.23) with ra = rb we find the local energy

Eloc =
κ − 2

r1
+

κ − 2

r2
+

1

r12

(

1 −
2α

u2

)

+
2αβ

u3
− κ2 −

α2

u4
+

κα

u2

(

r1

r1
−

r2

r2

)

(r1 − r2)

r12
.

(24.49)

With fixed values α = 1/2 and κ = 2 all singularities in the local energy are

removed, but this also reduces the flexibility of the test function. The energy minimum

of−2.879 is found at β = 0.15 (Fig. 24.8). A further improvement can be achieved by

varying the exponent κ together with β. The minimum now is −2.885 at κ = 1.91

(Fig. 24.9). If we drop the cusp condition and vary all three parameters we find a
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α=0.5  β=0.15

Fig. 24.9 (Variation of κ) The groundstate of the Helium atom is approximated with the Slater-

Jastrow wavefunction (24.48). From Fig. 24.8 the optimized value of β = 0.15 is taken, α = 1/2.

Each point represents an average over 107 samples. Left The energy minimum of −2.885 is found

at κ = 1.91. Right the standard deviation has a minimum value of 0.33 at κ = 1.98
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Fig. 24.10 (Variation of all parameters) The groundstate of the Helium atom is approximated with

the Slater-Jastrow wavefunction (24.48). Variation of all three parameters gives a lowest energy of

−2.891 for α = 0.38,β = 0.18,κ = 1.85

slightly smaller value of −2.891 with a standard variation of σ = 0.36 (Fig. 24.10).

More sophisticated trial wavefunctions reproduce the exact value of −2.903724 even

more accurately [336, 337].

24.1.3 The Hydrogen Molecule H2

The Helium atom can be considered as the limiting case of the H2 molecule for

zero distance (neglecting nuclear Coulomb repulsion). At finite distance R the one-
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electron factors of the wavefunction have to be symmetrized.2 We use a trial function

(we omit the singlet spin function and do not normalize the wavefunction)

ψ = C [ϕa(r1)ϕb(r2) + ϕb(r1)ϕa(r2)] + (1 − C) [ϕa(r1)ϕa(r2) + ϕb(r1)ϕb(r2)]

= CψV B + (1 − C)ψionic (24.50)

which combines covalent and ionic configurations

ψV B = (ϕa(r1)ϕb(r2) + ϕb(r1)ϕa(r2)) (24.51)

ψionic = (ϕa(r1)ϕa(r2) + ϕb(r1)ϕb(r2)) (24.52)

and includes as special cases

• the Heitler-London or valence-bond ansatz (C = 1) ψV B

• the Hund-Mulliken-Bloch or molecular orbital method where the symmetric MO

is doubly occupied (C = 0.5)

ψ++
MO = (ϕa(r1) + ϕb(r1)) (ϕa(r2) + ϕb(r2))

= ψV B + ψionic (24.53)

• the Heitler-London method augmented by ionic contributions C = (1 + λ)−1

ψ = ψV B + λψionic (24.54)

• the MCSCF ansatz which mixes two determinants (C = 1 − Cd)

ψ = ψ++
MO

+ Cdψ−−
MO

= (ϕa(r1) + ϕb(r1)) (ϕa(r2) + ϕb(r2)) + Cd (ϕa(r1) − ϕb(r1)) (ϕa(r2) − ϕb(r2))

= (1 − Cd)ψV B + (1 + Cd)ψionic. (24.55)

The molecular orbital method corresponds to the Hartree–Fock method which is

very popular in molecular physics. At large distance it fails to describe two separate

hydrogen atoms with an energy of −1 au properly. In the bonding region it is close

to the valence bond method which has the proper asymptotic limit. Both predict an

equilibrium around R = 1.6 (Fig. 24.11).

To improve the results we vary the effective charge κ and the configuration mixing

C (Fig. 24.12). Optimization of κ lowers the energy especially at small internuclear

distances where the effective charge reaches a value of 2 as for the Helium atom

(Fig. 24.13). The minimum of the potential curve now is found at a much more

reasonable value of R = 1.4. Variation of the configuration mixing lowers the energy

2We consider only singlet states with antisymmetric spin part.



588 24 Variational Methods for Quantum Systems

2 4 6 8 10

distance R (Bohr)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

en
er

g
y
 (

a.
u
.)

Fig. 24.11 (Comparison of Heitler-London and Hund-Mulliken-Bloch energies for H2) The MO

method (circles) fails to describe the asymptotic behaviour at large distances properly. In the bonding

region it is close to the VB method (squares). Both predict a minimum around R = 1.6
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Fig. 24.12 (Optimization of effective charge κ and configuration mixing C) Starting from the MO

energy (black circles) optimization of κ (red squares) and C (blue diamonds) lower the energy

considerably and shift the potential minimum from 1.6 to 1.4 Bohr (see Problem 24.3)

mostly at larger distances where the proper limit is now obtained. For our computer

experiment (Problem 24.3) we include a Jastrow factor into the trial function

ψ =
{

C
[

e−κr1a−κr2b + e−κr1b−κr2a
]

+ (1 − C)
[

e−κr1a−κr2a + e−κr1b−κr2b
]}

× exp

{

αr12

1 + βr12

}

(24.56)

and vary κ,β and C to minimize the expectation value of the local energy
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Fig. 24.13 (Optimized values of κ and C) The effective charge (squares) approaches κ = 2 at very

short distances corresponding to the He atom. Configuration mixing (circles) is most important

in the bonding region. At large distances the valence bond wavefunction (C = 1) provides the

lowest energy. At very small distances the two configurations become equivalent making the mixing

meaningless as R → 0

Eloc =
1

r12

(

1 −
2α

u2

)

−
1

r1a

−
1

r1b

−
1

r2a

−
1

r2b

+
2αβ

u3
− κ2 −

α2

u4

+ C

[

κ

r1a

+
κ

r2b

+
κα

u2

(

r1a

r1a

−
r2b

r2b

)

(r1 − r2)

r12

]

eαr12/u−κr1a−κr2bψ−1

+ C

[

κ

r1b

+
κ

r2a

+
κα

u2

(

r1b

r1b

−
r2a

r2a

)

(r1 − r2)

r12

]

eαr12/u−κr1b−κr2aψ−1

+ (1 − C)

[

κ

r1a

+
κ

r2a

+
κα

u2

(

r1a

r1a

−
r2a

r2a

)

(r1 − r2)

r12

]

eαr12/u−κr1a−κr2aψ−1

+ (1 − C)

[

κ

r1b

+
κ

r2b

+
κα

u2

(

r1b

r1b

−
r2b

r2b

)

(r1 − r2)

r12

]

eαr12/u−κr1b−κr2bψ−1.

(24.57)

In the bonding region the energy is lowered by further 0.01 au with a minimum value

of −1.16 au (Fig. 24.14). This effect is small as part of the correlation is already

included in the two-determinant ansatz. More sophisticated trial functions or larger

CI expansions give –1.174 a.u. quite close to the exact value [333].

24.2 Exciton-Phonon Coupling in Molecular Aggregates

In this section we simulate excitons in a molecular aggregate which are coupled to

internal vibrations of the molecular units. Molecular aggregates are of considerable

interest for energy transfer in artificial [338] and biological systems [339]. Even



590 24 Variational Methods for Quantum Systems

Fig. 24.14 (Optimization of

the Slater-Jastrow

wavefunction for H2)

Optimization of the Jastrow

factor lowers the energy by

further 0.01 au (triangles).

Circles show the MO energy,

squares the MO energy with

optimized exponent κ and

diamonds the optimized

MCSCF energies as in

Fig. 24.13
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simple trial functions involve a large number of parameters which have to be opti-

mized and require efficient strategies to minimize the energy. We consider a finite

periodic system like in the light harvesting complex of photosynthesis. An optical

excitation on the n-th molecule is denoted by the state |n >. It can be transferred to

the neighboring molecules by the excitonic coupling V and is coupled to the vibra-

tional coordinate qn. (For simplicity, we consider only one internal vibration per

molecule). The model Hamiltonian reads in dimensionless units (periodic b.c. imply

that |0 >≡ |N > and |N + 1 >≡ |1 >)

H =
∑

mn

|m > Hmn < n|

=
λ2

2
+
∑

n

(

−
1

2

∂2

∂q2
n

+
1

2
q2

n

)

+
N
∑

n=1

|n > λqn < n| + |n > V < n + 1| + |n > V < n − 1|.

(24.58)

Due to the N-fold degeneracy of the excited states, a simple Born-Oppenheimer

wavefunction is not adequate. Instead we consider a sum of N Born-Oppenheimer

products

Ψ =
∑

n

|n > Φn(q1, . . . qN ). (24.59)

We use the variational principle to approximate the lowest eigenstate. Obviously,

the number of variational parameters will rapidly increase with the system size. Even

if we introduce only one parameter for each unit, e.q. a shift of the potential minimum,

this requires N2 parameters for the aggregate.

The Hamiltonian (24.58) can be brought to a more convenient form by a unitary

transformation with
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S =
∑

n

|n > Gn < n| (24.60)

where the translation operator G transforms the nuclear coordinates according to

GqnG−1 = qn+1. (24.61)

The transformed Hamiltonian then reads

=
λ2

2
+
∑

n

(

−
1

2

∂2

∂q2
n

+
1

2
q2

n

)

+ λq0 + |n > V G < n + 1| + |n > V G−1 < n − 1|.

(24.62)

Delocalized exciton states

|k >=
1

√
N

∑

n

eikn|n > (24.63)

transform the Hamiltonian into N independent exciton modes

H̃ =
∑

k

|k > Hk < k| (24.64)

with

Hk =
λ2

2
+
∑

n

(

−
1

2

∂2

∂q2
n

+
1

2
q2

n

)

+ λq0 + V eikG + V e−ikG−1. (24.65)

Hence, we conclude that the eigenfunctions of the Hamiltonian H have the general

form

Ψ =
1

√
N

∑

n

eikn|n > GnΦk

where Φk is an eigenfunction of Hk and the number of parameters has been reduced

by a factor of N (since for each k, only one function Φk is involved).

In the following we study the lowest exciton state, which for V < 0 is the lowest

eigenfunction3 for k = 0. Hence, the wavefunction of interest has the form

Ψ =
1

√
N

∑

n

|n > GnΦ (24.66)

and can be chosen real valued.

3This is the case of the so called J-aggregates [338] for which the lowest exciton state is strongly

allowed.
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24.2.1 Molecular Dimer

To begin with, let us consider a dimer (N = 2) consisting of two identical molecules

in a symmetric arrangement. The model Hamiltonian reads in matrix form

H = −
1

2

∂2

∂q2
1

−
1

2

∂2

∂q2
2

+
[

1
2
(q1 + λ)2 + 1

2
q2 V

V 1
2
q2

1 + 1
2
(q2 + λ)2

]

(24.67)

and can be considerably simplified by introducing delocalized vibrations

q± =
q1 ± q2√

2
(24.68)

which separates the symmetric mode q+

H =
(

−
1

2

∂2

∂q2
+

+
1

2
(q+ +

λ
√

2
)2

)

−
1

2

∂2

∂q2
−

+

⎡

⎢

⎣

1
2

(

q− + λ√
2

)2
V

V 1
2

(

q− − λ√
2

)2

⎤

⎥

⎦
.

(24.69)

The lowest eigenfunction of the symmetric oscillation is

Φ0+ = π−1/4 exp

{

−
1

2
(q+ +

λ
√

2
)2

}

(24.70)

with the eigenvalue (the zero point energy)

E0+ =
1

2
. (24.71)

Hence, for the dimer we may consider a simplified Hamiltonian with only one

vibration

H =
1

2
−

1

2

∂2

∂q2
+

⎡

⎣

1
2

(

q + λ√
2

)2

V

V 1
2

(

q − λ√
2

)2

⎤

⎦ . (24.72)

According to (24.66) the k = 0 eigenstates have the form

Ψ =
1

√
2
Φ|1 > +

1
√

2
GΦ|2 >=

1
√

2
Φ(q)|1 > +

1
√

2
Φ(−q)|2 >. (24.73)

For the dimer problem, the eigenstates can be calculated numerically by diago-

nalization of the Hamiltonian equation (24.72) in the basis of harmonic oscillator

states [340].
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Dressed Exciton

The simplest trial function which is well known as “dressed exciton” or “mean field”

ansatz [341, 342], uses a Gaussian representing the groundstate of a displaced (and

possibly distorted) harmonic oscillator

Φ =
(

2κ

π

)1/4

e−κ(q−+α)2

GΦ =
(

2κ

π

)1/4

e−κ(q−−α)2

(24.74)

with the energy expectation value

EMF(κ,λ) =< Ψ HΨ >=
1

2
+ (

1

8κ
+

κ

2
) +

1

2
(α −

λ
√

2
)2 + V e−2κα2

(24.75)

for which the first and second derivatives are easily found

∂EMF

∂α
= α −

λ
√

2
− 4V ακe−2κα2

(24.76)

∂EMF

∂κ
=

1

2
−

1

8κ2
− 2V α2e−2κα2

(24.77)

∂2EMF

∂α2
= 1 + 4V κe−2κα2 [

4κα2 − 1
]

(24.78)

∂2EMF

∂κ2
=

1

4κ3
+ 4V α4e−2κα2

(24.79)

∂2EMF

∂κ∂α
= 4V αe−2κα2 [

2κα2 − 1
]

. (24.80)

In the limit of vanishing “dressed” coupling V e−2κα2 ≈ 0, corresponding to the

so called self trapped state, the lowest energy is found for α = λ/
√

2, κ = 1/2

min EMF(V e−2κα2 → 0) = 1 (24.81)

which is the zero point energy of the two dimer modes. In the limit of vanishing

exciton-phonon coupling λ = 0 (the fully delocalized state) the energy is minimized

for α = 0, κ = 1/2

min EMF(λ → 0) = V + 1. (24.82)

For the general case we apply the Newton-Raphson method (p. 124) to locate the

minimum. It is quite important to use a reasonable starting point to ensure conver-
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Fig. 24.15 (Variational solutions for the dimer) The lowest excitation energy of the dimer Hamil-

tonian is shown as a function of the reorganization energy λ2/2. The mean field ansatz (red curves)

predicts a sharp transition to the self-trapped state and deviates largely for λ2/2 > 5. Variation of

the exponent κ improves the agreement in the transition region considerably (full red curve) as

compared to the standard treatment with fixed κ = 1/2 (dashed red curve). The black curve shows

the numerically exact solution for comparison

gence to the lowest energy.4 In Problem 24.4, we search for an approximate min-

imum on a coarse grid first. Figure 24.15 shows the calculated energy minimum

for strong excitonic coupling V = −5 as a function of λ2. For small values of the

exciton-phonon coupling, the numerically exact values are reproduced quite closely.

For larger values the mean field ansatz predicts a rapid transition to a so called

self-trapped state [343] with α = λ/
√

2 and a very small Franck-Condon factor

F = exp(−2κα2) ≈ 0 (Figs. 24.16, 24.17). In this region, the deviation from the

numerical exact result is appreciable, especially if only α is varied and κ = 1/2 kept

fixed.

Solitonic Solution

In the region of large exciton-phonon coupling a simple ansatz similar to Davydov’s

soliton [344] is quite successful (Fig. 24.18) which breaks the symmetry of the system

and uses a trial function

Ψsol = (ϕ1|1 > +ϕ2|2 >)Φα1,α2
(q1, q2) (24.83)

with two mixing amplitudes with the constraint

ϕ2
1 + ϕ2

2 = 1 (24.84)

4In the transition region, the energy may converge to an unstable state, depending on the starting

point.
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Fig. 24.16 (Optimized

parameters of the mean field

ansatz) The optimized

parameters for V = −5 show

a sharp transition to the self

trapped state. Full curves

optimization of α and κ.

Dashed curves optimization

of α for fixed κ = 1/2
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Fig. 24.17 (Franck-Condon

factor of the mean field

ansatz) The transition to the

self trapped state shows also

up in the Franck-Condon

factor F = exp
{

−2κα2
}

which is shown in a

semi-logarithmic plot. Full

curve optimization of α and

κ. Dashed curve

optimization of α for fixed

κ = 1/2. The dotted curve

shows the numerically exact

result for comparison 0 10 20 30
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Fig. 24.18 (Variational

solutions for the dimer) The

soliton approach (dashed

blue curve) works quite well

for large but also for very

weak exciton-phonon

coupling. The delocalized

soliton interpolates between

mean field and soliton results

and describes the transition

quite well (red curve). The

black curve shows the

numerically exact solution

for comparison 0 5 10 15
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and the same vibrational function for both states (in the self trapped region distortion

of the oscillator is not important)

Φα1,α2
(q1, q2) =

1
√

π
e−(q1+α1)

2/2e−(q2+α2)
2/2. (24.85)

The energy expectation value is

Esol(ϕ1,ϕ2,α1,α2) =< Ψ HΨ >

= ϕ2
1

[

1 +
(α1 − λ)2

2
+

α2
2

2

]

+ ϕ2
2

[

1 +
(α2 − λ)2

2
+

α2
1

2

]

+ 2V ϕ1ϕ2

= 1 +
1

2
(α1 − ϕ2

1λ)2 +
1

2
(α2 − ϕ2

2λ)2 + λ2ϕ2
1ϕ

2
2 + 2V ϕ1ϕ2 (24.86)

and for the optimized values

αo
i = ϕ2

i λ (24.87)

it becomes

Esol(ϕ1,ϕ2, αo
1, αo

2) = 1 + λ2ϕ2
1ϕ2

2 + 2V ϕ1ϕ2 = 1 +
λ2

4

(

2ϕ1ϕ2 +
2V

λ2

)2

−
V 2

λ2
.

(24.88)

Alternatively, using symmetrized coordinates we obtain

Esol(ϕ1,ϕ2,α+,α−) = 1 +
1

2

(

α+ −
λ

√
2

)2

+
1

2

(

α− −
λ

√
2
(ϕ2

1 − ϕ2
2)

)2

+ λ2ϕ2
1ϕ

2
2 + 2V ϕ1ϕ2

(24.89)

and optimum values

αo
+ =

λ
√

2
(24.90)

αo
− =

λ
√

2
(ϕ2

1 − ϕ2
2). (24.91)

Since |2ϕ1ϕ2| ≤ 1, the minimum for large exciton-phonon coupling is at the bottom

of the parabola

min Esol = 1 −
V 2

λ2
for |V | < λ2/2 (24.92)
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whereas in the opposite case it is found for 2ϕ1ϕ2 = 1 (V is assumed to be negative)

min Esol = 1 + V +
λ2

4
for |V | > λ2/2. (24.93)

The transition between the two regions is continuous with

min Esol = 1 +
V

2
for |V | = λ2/2. (24.94)

Delocalized Soliton Ansatz

Mean field and soliton ansatz can be combined by delocalizing the solitonic wave

function [345]. The energies of the trial function

Ψsol = (ϕ1|1 > +ϕ2|2 >)Φ (24.95)

and its mirror image

Ψ ′
sol = (ϕ2|1 > +ϕ1|2 >)GΦ (24.96)

are degenerate. Hence delocalization of the trial function

Ψdelsol = |1 > [ϕ1Φ + ϕ2GΦ] + |2 > [ϕ2Φ + ϕ1GΦ] (24.97)

is expected to lower the energy further and ensures the proper form of (24.73). Its

norm is

< Ψdelsol|Ψdelsol >= 2(1 + 2ϕ1ϕ2F) (24.98)

with the Franck-Condon factor

F =< Φ|G|Φ >= e−κ(α1−α2)
2 = e−2κα2

− . (24.99)

The expectation value of the Hamiltonian simplifies due to symmetry

< ΨdelsolHΨdelsol >= 2ϕ2
1 < ΦH1Φ > +2ϕ2

2 < ΦH2Φ > +4ϕ1ϕ2 < ΦH1GΦ >

+2V [F + 2ϕ1ϕ2] . (24.100)

Finally, varying only the antisymmetric mode, the energy is

Edelsol =
κ

2
+

1

8κ
+

λ2

2
+

α2
−
2 − (ϕ2

1 − ϕ2
2)α−λ + 2ϕ1ϕ2

[

−2Fκ2α2
− + V

]

+ V F

1 + 2ϕ1ϕ2F
.

(24.101)
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In Problem 24.5 we locate the minimum energy with the steepest descent (6.2.5)

or the conjugate gradient (6.2.5) method

24.2.2 Larger Aggregates

The variational methods for the dimer can be generalized for larger systems [345].

The mean field ansatz for the lowest k = 0 state becomes

ΨMF =
1

√
N

∑

n

|n > GnΦ (24.102)

with

Φ =
N
∏

n=1

π−1/4e−(qn+αn)
2/2. (24.103)

The energy is

EMF =
1

N

∑

n

< ΦG−nHnGnΦ > +V < ΦGΦ > +V < ΦG−1 >

=< ΦH0Φ > +2V F

=
N

2
+

λ2

2
− α0λ +

∑

n

α2
n

2
+ 2V F (24.104)

and its gradient

∂EMF

∂αn

= −λδn,0 + αn − V F(2αn − αn+1 − αn−1).

In Problem 24.5 we locate the minimum energy with the steepest descent (6.2.5)

or the conjugate gradient (6.2.5) method. As for the dimer, the mean field method

shows a rapid transition to the self-trapped state. The starting point is quite important

as in the vicinity of the transition the gradient based methods eventually converge to

a metastable state (Fig. 24.19).

The soliton wavefunction (corresponding to Davydov’s D1 soliton) for the aggre-

gate is

Ψsol =
∑

n

ϕn|n > Φ (24.105)

http://dx.doi.org/10.1007/978-3-319-61088-7_6
http://dx.doi.org/10.1007/978-3-319-61088-7_6
http://dx.doi.org/10.1007/978-3-319-61088-7_6
http://dx.doi.org/10.1007/978-3-319-61088-7_6
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Fig. 24.19 (Variational solutions for a 10-mer) The lowest energy of a periodic 10-mer is calcu-

lated for V = −5 (see Problem 24.5). The mean field wavefunction gives (green and blue curves)

reasonable values for small values of λ2 and predicts a rapid transition to the self trapped state.

Approaching the transition from below or above the calculation may end up in a metastable state

(dashed green and blue curves). The solitonic wavefunction (dashed black curve) provides lower

energies at larger values of λ2 and a much smoother transition to the self trapped state. The delo-

calized soliton (red curve) gives the lowest energy at all values of λ2. The zero point energy has

been subtracted

with the constraint

∑

n

ϕ2
n = 1 (24.106)

where Φ is given by (24.103). The energy is

Esol =< Ψsol|H|Ψsol >=
∑

n

ϕ2
n < Φ|Hn|Φ > +V

∑

n

(ϕnϕn+1 + ϕnϕn−1)

=
N

2
+
∑

n

α2
n

2
+

λ2

2
− λ

∑

n

ϕ2
nαn + V

∑

n

(ϕnϕn+1 + ϕnϕn−1)

=
N

2
+
∑

n

(αn − λϕ2
n)

2

2
+

λ2

2

(

1 −
∑

n

ϕ4
n

)

+ V
∑

n

(ϕnϕn+1 + ϕnϕn−1)

(24.107)

with the optimum displacements

αo
n = λϕ2

n. (24.108)
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The energy functional becomes

Esol(ϕn,α
o
n) =

N

2
+

λ2

2

(

1 −
∑

n

ϕ4
n

)

+ 2V
∑

n

ϕnϕn+1 (24.109)

and its gradient

∂Esol

∂ϕn

= −2λ2ϕ3
n + 2V (ϕn−1 + ϕn+1). (24.110)

In Problem 24.5 we locate the minimum energy by varying the ϕnunder the constraint

(24.106). At larger exciton-phonon coupling, the energy of the soliton wavefunction

is much lower in energy than the mean field result and the transition to the self-

trapped state is smoother. At small exciton-phonon coupling, the mean field ansatz

is lower in energy (Fig. 24.19).

Similar to the dimer case, the solitonic wavefunction can be delocalized by com-

bining the N degenerate mirror images

∑

n

ϕn|n + m > GmΦ m = 1 · · · N (24.111)

into the trial function

Ψdelsol =
1

√
N

∑

m

eikm
∑

n

ϕn|n + m > GmΦ

=
1

√
N

∑

nn′

eik(n′−n)ϕn|n′ > Gn′−nΦ =
1

√
N

∑

n′

eikn′ |n′ > Gn′ ∑

n

e−iknϕnG−nΦ.

(24.112)

From the squared norm

< Ψdelsol|Ψdelsol >=
∑

nn′

ϕnϕn′ < ΦGn−n′
Φ >=

∑

nn′

ϕnϕn′Fn−n′ (24.113)

and the expectation value

< ΨdelsolHΨdelsol >=
1

N

∑

m,n,m′,n′
< ΦG−m < n + m|ϕnHϕn′ |m′ + n′ > Gm′

Φ >

=
1

N

∑

m,n,m′,n′
< ΦG−mϕnHn+mϕn′ Gm+n−n′

Φ >

+
1

N

∑

m,n,m′,n′
V < ΦG−mϕnϕn′ Gm+n−n′+1Φ >
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+
1

N

∑

m,n,n′
V < ΦG−mϕnϕn′ Gm+n−n′−1Φ >

=
∑

n,n′
ϕnϕn′ < ΦGnH0G−n′

Φ >

+ V
∑

n,n′
ϕnϕn′ < ΦGn−n′+1Φ > +V

∑

n,n′
ϕnϕn′ < ΦGn−n′−1Φ > (24.114)

we obtain the energy of the k = 0 state

Edelsol =
N

2
+

λ2

2

+
(

∑

nn′

ϕnϕn′
1

2

[

−λ(αn′ + αn′−n) +
∑

m

αmαm+n′−n

]

Fn′−n

+V
∑

nn′

ϕnϕn′(Fn′−n+1 + Fn′−n−1

)(

∑

nn′

ϕnϕn′Fn−n′

)−1

(24.115)

with the Franck-Condon factors

Fk =< ΦGkΦ >= e−
∑

m(αm−αm+k)
2/4 = e−

∑

m(α2
m−αmαm+k)/2. (24.116)

The results for longer aggregates are qualitatively similar to the dimer. The delo-

calized soliton interpolates between mean field and soliton wave functions and shows

a smooth transition (Fig. 24.19).

Problems

In the first three computer experiments, we use the variational quantum Monte Carlo

method to calculate the groundstate energy. The Metropolis algorithm with Nw walk-

ers is used to evaluate the integral

E(κ, R) =
< ψκHψκ >

< ψκψκ >
=
∫

d3r
|ψκ(r)|2

∫

|ψκ(r′)|2d3r′ Eloc(r).

Adjust the maximum trial step to obtain an acceptance ration of about 1 and study

the influence of the number of walkers on the statistical error.
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Problem 24.1

Optimize the effective nuclear charge κ for the hydrogen molecular ion H+
2 as a

function of R and determine the equilibrium bond length. The trial function has the

form

ψtrial =
√

κ3

π
e−κra +

√

κ3

π
e−κrb .

Problem 24.2

For the Helium atom we use a trial wavefunction of the Slater-Jastrow type

ψtrial = e−κr1 e−κr2 eαr12/(1+βr12)
1

√
2

(↑ (1) ↓ (2)− ↑ (2) ↓ (1))

to find the optimum parameters α,β,κ.

Problem 24.3

In this computer experiment we study the hydrogen molecule H2. The trial function

has the form

ψtrial =
{

C
[

e−κr1a−κr2b + e−κr1b−κr2a
]

+ (1 − C)
[

e−κr1a−κr2a + e−κr1b−κr2b
]}

× exp

{

αr12

1 + βr12

}

.

Optimize the parameters κ,β, C as a function of R and determine the equilibrium

bond length.

Problem 24.4

In this computer experiment we simulate excitons in a molecular dimer coupled to

molecular vibrations. The energy of the lowest exciton state is calculated with the

dressed exciton trial function including a frequency change of the vibration

ψtrial =
1

√
2
|1 >

(

2κ

π

)1/4

e−κ(q−+α)2 +
1

√
2
|2 >

(

2κ

π

)1/4

e−κ(q−−α)2

.

The parameters κ,α are optimized with the Newton-Raphson method. Vary the exci-

ton coupling V and the reorganization energy λ2/2 and compare with the numerically

exact values.

Problem 24.5

In this computer experiment we simulate excitons in a molecular aggregate coupled

to molecular vibrations. The energy of the lowest exciton state is calculated with

different kinds of trial functions
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• the dressed exciton

ΨMF =
1

√
N

∑

n

|n > Gn

N
∏

n=1

π−1/4e−(qn+αn)
2/2

• the soliton

Ψsol =
∑

n

ϕn|n >

N
∏

n=1

π−1/4e−(qn+αn)
2/2

• the delocalized soliton

Ψdelsol =
1

√
N

∑

m

∑

n

ϕn|n + m > Gm

N
∏

n=1

π−1/4e−(qn+αn)
2/2.

The system size can be varied from a dimer (N=2) up to chains of 100 molecules.

The N equilibrium shifts αn and the N excitonic amplitudes ϕn are optimized with

the methods of steepest descent or conjugate gradients. The optimized parameters

are shown graphically. Vary the exciton coupling V and the reorganization energy

λ2/2 and study the transition from a delocalized to a localized state. Compare the

different trial functions.



Appendix A: Performing the Computer

Experiments

The computer experiments are realized as Java programs which can be run on any

platform if a Java runtime environment (JRE) is installed. They are written in a

C-like fashion which improves the readability for readers who are not so familiar

with object oriented programming. The source code can be studied most conveniently

with the netbeans environment which is open source and allows quick generation of

graphical user interfaces. The screenshot in Fig. A.1 shows an example.

After downloading and unzipping the zipped file from extras.springer.com you

have two options.

Run a Program Directly

Open the directory CP-examples in your file manager. If the JRE is installed properly

you can start any one of the programs by simply clicking onto it. Under Linux, you

can alternatively start it in a console window with e.g.

java -jar CPexample.jar

Figure A.2 shows a screenshot from computer exercise 23.4 (ladder model for expo-

nential decay).

Open a Program with the Netbeans Environment

If you have the netbeans environment installed, you can import any of the pro-

grams as a separate project by opening the corresponding folder in the directory

CP-examples/NBprojects/. You may have a look at the source code and compile and

run it

© Springer International Publishing AG 2017
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Fig. A.1 Screenshot of the source code
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Fig. A.2 Screenshot of computer experiment 23.4



Appendix B: Methods and Algorithms

Purpose Method Comments Pages

Interpolation Lagrange polynomial Explicit form, easy to evaluate 19

Barycentric Lagrange

polynomial

For evaluation at many points 19

Newton’s divided

differences

New points added easily 21

Neville method For evaluation at one point 22

Spline interpolation Smoother, less oscillatory 22

Rational interpolation Smoother, less oscillatory,

often less coefficients necessary

28, 32

Pade approximation Often better than Taylor series 29

Barycentric rational

interpolation

Easy to evaluate 30

Rational interpolation

without poles

Alternative to splines,

analytical

34

Multivariate

interpolation

Multidimensional 35

Trigonometric

interpolation

Periodic functions 132

Differentiation One-sided difference

quotient

Low error order 39

Central difference

quotient

Higher error order 41

Extrapolation High accuracy 41

Higher derivatives Finite difference methods 43

Partial derivatives Finite difference methods 45

© Springer International Publishing AG 2017
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Purpose Method Comments Pages

Integration Newton-Cotes formulas Equally spaced points 49

Trapezoidal rule Simple, closed interval 49

Midpoint rule Simple, open interval 50

Simpson’s rule More accurate 49

Composite

Newton-Cotes rules

For larger intervals 50

Extrapolation

(Romberg)

High accuracy 51

Clenshaw-Curtis

expressions

Suitable for adaptive and

multidimensional

quadrature

53

Gaussian integration High accuracy if

polynomial approximation

possible

53

Monte Carlo integration High dimensional integrals 202

Linear equations Gaussian elimination

(LU reduction)

Standard method for linear

equations and matrix

inversion

64

QR decomposition Numerically more stable 69

Iterative solution Large sparse systems 78

Richardson iteration Simplest iterative method 79

Jacobi relaxation Iterative matrix-splitting

method, converges for

diagonally dominant

matrices, parallel

computation possible

80

Gauss-Seidel relaxation Iterative matrix-splitting

method, converges for

symmetric positive definite

or diagonal dominant

matrices, no extra storage

81

Chessboard (black-red) Two independent subgrids,

especially for Poisson

equation

402

Damping and

Successive

over-relaxation

Speeds up convergence for

proper relaxation parameter

81
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Purpose Method Comments Pages

Multigrid method Fast convergence but more

complicated

402

Conjugate gradients

method (CG)

Krylov space method for

symmetric positive definite

matrices, preconditioning often

necessary

86

General minimum

residual method

(GMRES)

Krylov space method for

nonsymmetric systems

89

special LU decomposition Tridiagonal linear equations 75

Sherman-Morrison

formula

Cyclic tridiagonal systems 77

Root finding Bisection Reliable but slow continuous

functions

98

Regula falsi (false

position)

Speed and robustness between

bisection and interpolation

99

Newton-Raphson Continuous derivative necessary,

converges fast if starting point is

close to a root

100

Interpolation (secant) No derivative necessary, but

slower than Newton

101

Inverse interpolation Mainly used by combined

methods

102

Dekker’s combined

method

Combination of bisection and

secant method

106

Brent’s combined method Combination of bisection, secant,

and quadratic inverse

interpolation methods, very

popular

107

Chandrupatla’s combined

method

Uses quadratic interpolation

whenever possible, faster than

Brent’s method, especially for

higher order roots

109

Multidimensional root

finding

Newton-Raphson Needs full Hessian 124

Quasi-Newton (Broyden) Hessian not needed, no matrix

inversion

125

Function Minimization Ternary search No gradient needed, very simple,

for unimodal functions

115

Golden section search

(Brent)

Faster than ternary search but

more complicated

116
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Purpose Method Comments Pages

Multidimensional

minimization

Steepest descent Simple but slow 122

Conjugate gradients Faster than steepest descent 124

Newton-Raphson Fast, if starting point close to

minimum, needs full Hessian

124

Quasi-Newton (BFGS,

DFP)

Hessian not needed, very popular 125

Fourier transformation Görtzel’s algorithm Efficient if only some Fourier

components are needed

136

Fast Fourier transform Much faster than direct discrete

Fourier transform

138

Time-Frequency

Analysis

Short Time Fourier

Transform (STFT)

Constant resolution for all

frequencies, often used for audio

signals

145

Gabor transform STFT with Gaussian window

represents signal by elementary

signals localized in time and

frequency

156

Discrete STFT Reduced redundancy, still

invertible

153

Continuous Wavelet

transform

Constant relative frequency

resolution, better time resolution

for high frequencies,very time

consuming convolution integral

158

Discrete Wavelet

Transform

Uses orthogonal or biorthogonal

wavelets, fast scalar product

Multiresolution analysis Represents a signal by a basic

approximation and a series of

details with increasing resolution

164

Fast wavelet transform Recursive filtering, very fast 178

Random numbers Linear congruent

mapping (LC)

Simple pseudo-random number

generator

197

Xorshift Fast, maximum possible period 197

Multiply with carry

(MWC)

Similar to LC but uses a varying

carry

198

Complementary multiply

with carry (CMWC)

Improves MWC, passes many

tests

199
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Purpose Method Comments Pages

RN with given distribution Inverse of cumulative distribution

function needed

199

Random points on unit

sphere

Random directions 200

Gaussian RN (Box-Muller) Gaussian random numbers 201

Thermodynamic

average

Simple sampling Inefficient 206

Importance sampling Samples preferentially important

configurations

207

Metropolis algorithm Generates configurations

according to a canonical

distribution

207

Eigenvalue problems Direct solution Only for very small dimension 214

Tridiagonal matrices Explicit solutions for some

special tridiagonal matrices

217

Jacobi Simple but not very efficient 214

Power iteration Finds dominant eigenvector 225

QL and QR Efficient power iteration method

for not too large matrices,

especially in combination with

tridiagonalization by

Householder transformations

228

Lanczos Iterative method for very large

matrices or if only a few

eigenvalues are needed

230

Singular value

decomposition (SVD)

Generalization for arbitrary

matrices

242

Data fitting Least square fit Fit a model function to a set of

data

236

Linear least square fit with

normal equations

Simple but less accurate 237

Linear fit with

orthogonalisation

Better numerical stability 239

Linear fit with SVD Expensive but more reliable, also

for rank deficient matrices

248

Low rank matrix

approximation

Data compression, total linear

least squares

245
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Purpose Method Comments Pages

Discretization Method of lines Continuous time, discretized

space

261

Eigenvector expansion

Finite differences Simplest discretization, uniform

grids

259

Finite volumes Partial differential equations with

a divergence term (conservation

laws), flux conservative, allows

unstructured meshes and

discontinuous material

parameters

265

Finite elements Very flexible and general

discretization method but also

more complicated

277

Spectral methods Expansion with global basis

functions, mostly polynomials

and Fourier sums, less expensive

than finite elements but not as

accurate for discontinuous

material parameters and

complicated geometries

273

Dual grid For finite volumes 265, 409

Weighted residuals General method to determine the

expansion coefficients

270

Point collocation Simplest criterion, often used for

nonlinear problems and spectral

methods

271

Sub-domains More general than finite volumes 271

Least square Popular for computational fluid

dynamics and electrodynamics

272

Galerkin Most widely used criterion, leads

often to symmetric matrices

273

Fourier pseudo-spectral

method

Very useful whenever a Laplacian

is involved, reduces dispersion

273

Boundary elements If the Green’s function is

available

286
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Purpose Method Comments Pages

Time evolution Explicit forward Euler Low error order and unstable,

mainly used as predictor step

292

Implicit backward Euler Low error order but stable, used for

stiff problems and as corrector step

295

Improved Euler (Heun,

predictor-corrector)

Higher error order 296

Nordsieck

predictor-corrector

Implicit method, has been used for

molecular dynamics

298

Gear predictor-corrector Optimized for molecular dynamics 300

Explicit Runge Kutta

(2nd, 3rd, 4th)

General and robust methods, easy

step size and quality control

301

Extrapolation

(Gragg-Bulirsch-Stoer)

Very accurate and very slow 305

Explicit Adams-Bashforth High error order but not

self-starting, for smooth functions,

can be used as predictor

306

Implicit Adams-Moulton Better stability than explicit

method, can be used as corrector

306

Backward differentiation

(Gear)

Implicit, especially for stiff

problems

307

Linear multistep

predictor-corrector

General class, includes

Adams-Bashforth-Moulton and

Gear methods

309

Verlet integration Symplectic, time reversible, for

molecular dynamics

310

Position Verlet Less popular 312

Velocity Verlet Often used 313

Stoermer-Verlet If velocities are not needed 313

Beeman’s method Velocities more accurate than for

Stoermer-Verlet

315

Leapfrog Simple but two different grids 317, 317, 471

Crank-Nicolson Implicit, stable, diffusion and

Schroedinger equation

486, 474

FTBS, Lax-Friedrich simple methods for advection 434, 436

Lax-Wendroff Hyperbolic differential equations 472

Taylor-Galerkin

Lax-Wendroff

highly accurate for advection 449

Two-step Differential equation with second

order time derivative

464
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Purpose Method Comments Pages

Reduction to a first order

equation

Derivatives treated as additional

variables

467

Two-variable Transforms wave equation into a

system of two first order

equations

470

Split operator Approximates an operator by a

product

490, 311,

533

Unitary time evolution Rational approximation Implicit,unitary 526

Second order differencing Explicit, not exactly unitary 530

Split operator Fourier Low dispersion, needs fast

Fourier transformation

533

Real space product formula Fast but less accurate, useful for

wavepackets in coupled states

534

Rotation Reorthogonalization Restore orthogonality of rotation

matrix

293

Quaternions Optimum parametrization of the

rotation matrix

343

Euler angles Numerical singularities 343

Explicit method Low accuracy,

reorthogonalization needed

335

Implicit method Higher accuracy, orthogonal

transformation

338

Molecular dynamics Force field gradients Needed for molecular dynamics 361

Normal mode analysis Small amplitude motion around

an equilibrium

364

Behrendsen thermostat Simple method to control

temperature

371

Langevin dynamics Brownian motion 395

Many body quantum

systems

Variational Quantum

Monte-Carlo method

(VQMC)

Calculates energy for non

separable trial wavefunctions

205, 577
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Computer experiments, 605

Concentration, 479

Condition number, 93

Configuration integral, 205

Conjugate gradients, 86, 124

Conservation law, 257, 427, 445

Conservative schemes, 447

Continuity equation, 428, 452

Continuous logistic model, 502

Control parameter, 500

Control volumes, 265

Coordinate system, 325

Correlation coefficient, 193

Coulomb interaction, 357

Courant, 437

Courant number, 464

Covalent, 587

Covariance matrix, 193

Crank–Nicolson, 444, 445, 474, 486, 529

Critical temperature, 380

Crossing point, 553

Cubic spline, 25, 37

Cumulative probability distribution, 187

Cusp condition, 579

Cyclic tridiagonal, 77, 221

D

D’Alembert’s, 429

Damped string, 477

Damping, 376, 469, 573

Data fitting, 235

Data reconstruction, 160

Davydov, 594

Debye length, 413

Dekker, 106

Density matrix, 291, 518, 555

Density of states, 550

Detailed balance, 207

Details, 176, 179

Determinant, 337

Dielectric medium, 400, 408

Differential equations, 256

Differentiation matrix, 218

Diffusion equation, 491

Diffusive motion, 376

Diffusive population dynamics, 511

Dihedral angle, 353

Dimer, 592

Direction set, 122

Discontinuity, 416

Discontinuous ε, 407

Discrete Fourier transformation, 130, 141,

155, 273

Discrete wavelet transform, 164

Discretization, 256

Disorder, 234

Dispersion, 433, 458, 462, 464

Divided differences, 21

Dressed exciton, 593

Dual grid, 266

E

Effective coupling, 549

Effective force constant, 395

Eigenvalue, 213

Eigenvalue problem, 576

Eigenvector expansion, 262, 461

Electric field, 348

Electrolyte, 411

Electron correlation, 577

Electron-electron interaction, 582, 583

Electrostatics, 399

Elliptical differential equation, 257

Elliptic coordinates, 579, 581

Elongation, 465

End to end distance, 390

Energy function, 210

Ensemble average, 520

Equations of motion, 289

Equilibria, 208, 501

Error accumulation, 315

Error function, 192

Error of addition, 9

Error of multiplication, 10

Error propagation, 10

Euler, 433

Euler angles, 342

Euler–McLaurin expansion, 51

Euler parameters, 345

Euler’s equations, 337, 341

Expectation value, 189

Explicit Euler method, 292, 294, 335, 337,

483, 526

Exponential decay, 548, 550, 572

Exponential distribution, 200

Exponent overflow, 5

Exponent underflow, 5

Extrapolation, 41, 51, 305

F

Fair die, 190, 200

Fast Fourier transformation, 138
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Fast wavelet transform, 178

Few-State systems, 537

Filter, 179, 181

Filter function, 137

Finite differences, 39, 259

Finite elements, 277

Finite volumes, 265, 445

Fixed point equation, 499

Fixed points, 494

Fletcher-Rieves, 124

Floating point numbers, 3

Floating point operations, 7

Fluctuating force, 395

Fluid, 427

Flux, 268, 447, 479

Force, 395, 398

Force extension relation, 398

Force field, 351, 355

Forward difference, 39, 435

Fourier analysis, 145

Fourier transformation, 462

Free energy, 395

Freely jointed chain, 389, 393

Free precession, 562

Free rotor, 341

Friction coefficient, 396

Friction force, 395

Frobenius matrix, 65

FTBS, 434, 441, 443, 448

FTCS, 260, 436, 441

Functional response, 505

G

Gabor, 159

Gabor expansion, 156

Gabor transform, 158

Galerkin, 273, 282, 576

Gaussian distribution, 192, 201, 387

Gaussian elimination, 64

Gaussian integral rules, 58

Gaussian integration, 56

Gauss-Legendre, 56

Gauss–Seidel, 81, 402

Gauss’s theorem, 287, 408, 414

Gear, 300, 308

Givens, 71

Global truncation error, 15

Glycine dipeptide, 354

GMRES, 89

Godunov’s method, 447

Goertzel, 136

Golden section search, 116

Gradients, 358

Gradient vector, 121

Gram-Schmidt, 69, 89

Green’s theorem, 420

Grid, 290

Groundstate energy, 576

Gyration radius, 392

Gyration tensor, 392, 397

H

Haar wavelet, 172, 180

Hadamard gate, 571

Hamilton operator, 539

Hamming, 147, 154

Hann, 147, 154

Harmonic approximation, 364

Harmonic potential, 397

Heitler-London, 587

Helium atom, 582

Helium ion, 579

Hessian, 121, 125, 367

Heun, 297, 302

Higher derivatives, 44

High pass, 181

Hilbert matrix, 95

Hilbert space, 519

Histogram, 188

Holling, 505

Holling-Tanner model, 506

Hookean spring, 393–395, 398

Householder, 71, 223

Hund-Mulliken-Bloch, 587

Hydrogen molecule, 586

Hyperbolic differential equation, 257

I

Implicit Euler method, 295

Implicit method, 443, 485

Importance sampling, 207

Improved Euler method, 296, 398

Inertia, 334

Inevitable error, 12

Inhomogeneity, 509

Initial value problem, 256

Integers, 15

Integral equations, 414

Integral form, 258

Interacting states, 540

Interaction energy, 404, 421

Intermediate state, 546

Intermolecular interactions, 357
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Internal coordinates, 352

Interpolating function, 17, 133

Interpolating polynomial, 19, 22, 45

Interpolation, 17, 101

Interpolation error, 23

Intramolecular forces, 355

Inverse interpolation, 102

Inverse wavelet transformation, 181

Ionic, 587

Ising model, 378, 380, 381

Iterated functions, 494

Iterative algorithms, 12

Iterative method, 402

Iterative solution, 78

J

Jacobi, 80, 214, 402

Jacobian, 112

Jacobi determinant, 294

Jastrow, 578

Jastrow factor, 588

K

Kinetic energy, 342, 523

Krylov space, 83–85, 231

L

Ladder model, 550, 572

Lagrange, 19, 45, 48

Lanczos, 231

Landau–Zener model, 553, 573

Langevin dynamics, 395

Laplace operator, 46, 490

Larmor-frequency, 562

Laser field, 543

Lax-Friedrichs-scheme, 436, 438, 441, 443

Lax-Wendroff scheme, 438, 442, 443, 449,

472

Leapfrog, 317, 439, 442, 443, 468, 471

Least square fit, 236, 253

Least squares, 272

Legendre polynomials, 57

Lennard–Jones, 357, 370

Lennard–Jones system, 381

Linear approximation, 246

Linear equations, 64

Linear fit function, 238

Linear least square fit, 237, 248

Linear regression, 238, 241

Liouville, 310, 521

Ljapunov-exponent, 496, 500

Local energy, 580, 585

Local truncation error, 15

Logistic map, 497

Lotka–Volterra model, 503, 513

Lower triangular matrix, 67

Low pass, 181

Low rank matrix approximation, 245

LU decomposition, 68, 75

M

Machine numbers, 3, 7

Machine precision, 15

Magnetization, 380, 559

Markov chain, 207

Matrix elements, 539

Matrix inversion, 92

Matrix splitting, 80

Mean square displacement, 376

Mesh, 278

Method of lines, 261

Metropolis, 207, 378

Mexican hat, 161

Meyer wavelet, 176

Midpoint rule, 50, 296

Milne rule, 49

Minimization, 114

Minimum residual, 84

Mixed states, 518

Mobile charges, 411

Modified midpoint method, 305

Molecular collision, 349

Molecular dynamics, 351

Molecular orbital, 578, 587

Molecular systems, 577

Moments, 189

Moments of inertia, 334

Monochromatic excitation, 563

Monte-Carlo, 187, 202, 378

Morlet, 159, 161

Mortality rate, 503

Mother wavelet, 159

Multigrid, 402

Multipole expansion, 421

Multiresolutin analysis, 164

Multiresolution approximation, 165

Multistep, 306

Multivariate distribution, 192

Multivariate interpolation, 35

N

N-body system, 320
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Neumann, 521

Neville, 22, 43

Newton, 21

Newton–Cotes, 49

Newton-Raphson, 100, 111, 124, 593

NMR, 562

Nodes, 278

Noise filter, 143

Nonlinear optimization, 210

Nonlinear systems, 494

Nordsieck, 298

Normal distribution, 191, 194

Normal equations, 237

Normal modes, 364

Nullclines, 508

Numerical diffusion, 430

Numerical errors, 7

Numerical extinction, 7, 40

Numerical integration, 202

Nyquist frequency, 162, 184

O

Observables, 522

Occupation probability, 548

Omelyan, 346

One-sided difference, 39

Onsager, 421

Open interval, 50

Optimized sample points, 53

Orbit, 494

Orthogonality, 337

Orthogonalization, 69, 89

Orthogonal projection, 165

Orthogonal wavelets, 164

Orthonormal wavelet basis, 171

Oscillating perturbation, 543

Overlap integral, 580

P

Pade, 578

Pair distance distribution, 375

Parabolic differential equations, 257

Pattern formation, 509

Pauli-gates, 570

Pauli matrices, 343, 558

Period, 496

Period doubling, 500

Periodic orbit, 496

Phase angle, 567

Phase space, 290, 294, 310

Phase transition, 380

Pivoting, 68

Plane wave, 458, 463, 512

Point collocation method, 271

Poisson–Boltzmann-equation, 411

Poisson equation, 399, 414

Polarization, 413

Polymer, 382

Polynomial, 19, 22, 45, 214

Polynomial extrapolation, 306

Polynomial interpolation, 19, 37

Population, 497

Population dynamics, 501

Potential energy, 351

Potential energy curve, 581

Power iteration, 225

Predation, 503

Predator, 503

Predictor-corrector, 296, 298, 300, 309, 438

Pressure, 371

Prey, 503

Principal axes, 334

Probability density, 187

Pseudoinverse, 249

Pseudo random numbers, 196

Pseudo-spectral, 523

Pseudo-spectral method, 273

Pure states, 518

Q

QR algorithm, 228

QR decomposition, 69

Quadrature mirror filter, 181

Quality control, 304

Quantum systems, 518

Quasi-Newton condition, 113, 125

Quasi-Newton methods, 113, 125

Quaternion, 343, 345, 346

Qubit, 569

Qubit manipulation, 569

R

Rabi oscillations, 544

Random motion, 395

Random numbers, 187, 196, 199

Random points, 200

Random walk, 385, 397

Rational approximation, 526

Reaction-Diffusion systems, 509

Real space product formulae, 534

Rectangular elements, 280

Rectangular scaling function, 169
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Recurrence, 497

Reflecting walls, 371

Regula falsi method, 99

Relaxation, 559

Relaxation parameter, 402

Reproduction rate, 497

Residual, 402

Resolution, 152

Resonance curve, 573

Resonant pulse, 566

Richardson, 79, 85

Riemann problem, 447, 453

Rigid body, 333, 334

Romberg, 51, 53

Romberg integration, 61

Root finding, 98

Roots, 97

Rosenbrock, 123, 127

Rotational motion, 325

Rotation in the complex plane, 13

Rotation matrix, 326, 335

Rotor, 334

Rotor in a field, 348

Rounding errors, 3

Runge–Kutta, 301, 540

S

Sampling theorem, 134

Scaling function, 164

Schroedinger equation, 519, 521, 522, 572

Secant method, 101

Second order differencing, 530

Self energy, 421

Self-trapped state, 598

Semiclassical, 551

Semi-discretized, 262

Sherman-Morrison formula, 77

Shifted grid, 409

Short Time Fourier Transform, 145

Signal reconstruction, 154

Simple sampling, 206

Simpson’s rule, 49, 303

Simulated annealing, 210

Singlet, 583

Singular values, 242, 243

Slater-Jastrow ansatz, 584

Soliton, 598

Solvation, 407, 408, 413, 423

Solvation energy, 423

Solvent, 421

Specific heat, 253

Spectral methods, 273

Spectrogram, 151

Spin, 378

Spin flip, 568

Spin vector, 558

Spline interpolation, 24

Split operator, 311, 490, 533

Splitting methods, 454

Stability analysis, 12, 260

Standard deviation, 190

Statistical operator, 521

Steepest descent, 122

Step size control, 304

Stoermer-Verlet method, 313

Sub-domain method, 271

Subgrids, 440

Successive over-relaxation, 81

Superexchange, 545

Superposition, 518

Surface charge, 419, 421, 423

Surface element, 200, 418

Symmetric difference quotient, 41, 432

Symmetric differences, 439

T

Taylor-Galerkin scheme, 450, 451

Taylor series method, 298

Ternary search, 115

Tetrahedrons, 279

Thermal average, 521

Thermodynamic averages, 205

Thermodynamic systems, 369

Three-state system, 572

Tight-binding model, 234

Time derivatives, 259

Time evolution, 291

Transmission function, 137

Transport processes, 427

Trapezoidal rule, 49, 135

Trial function, 575, 576, 587

Trial step, 209

Trial wavefunction, 583

Triangulation, 278

Tridiagonal, 74, 217, 465, 473, 483, 528

Trigonometric interpolation, 132

Truncation error, 14

Two variable method, 470

Two-state system, 292, 540, 543, 555, 572

Two-step method, 464

U

Ultra-hyperbolic differential equation, 257
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Unimodal, 115

Unitary transformation, 71

Update matrix, 113

Upper triangular matrix, 66

Upwind scheme, 430, 448

V

Valence-bond, 587

Van der Waals, 357

Variable ε, 406

Variance, 190, 576

Variational principle, 575

Variational quantum Monte Carlo, 205, 577

Vector model, 556

Verhulst, 497

Verlet, 310, 312, 313, 370

Vertex, 266, 279

Virial, 373

Virial coefficient, 374

W

Wave equation, 458

Wavefunction, 519, 522

Wavelet, 164, 176, 179

Wavelet analysis, 158

Wavelet synthesis, 160

Wave packet, 536, 572

Waves, 455

Weak form, 258

Weddle rule, 49

Weighted residuals, 270, 539

Weight function, 258

Windowing function, 135, 145

W-matrix, 328

Z

Z-matrix, 354

Z-transform, 137, 179, 182
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