
Christian Heumann · Michael Schomaker
Shalabh

Introduction to 
Statistics and 
Data Analysis 
With Exercises, Solutions and 
Applications in R



Introduction to Statistics and Data Analysis



Christian Heumann • Michael Schomaker
Shalabh

Introduction to Statistics
and Data Analysis

With Exercises, Solutions
and Applications in R

123



Christian Heumann
Department of Statistics
Ludwig-Maximilians-Universität München
München
Germany

Michael Schomaker
Centre for Infectious Disease Epidemiology
and Research

University of Cape Town
Cape Town
South Africa

Shalabh
Department of Mathematics and Statistics
Indian Institute of Technology Kanpur
Kanpur
India

ISBN 978-3-319-46160-1 ISBN 978-3-319-46162-5 (eBook)
DOI 10.1007/978-3-319-46162-5

Library of Congress Control Number: 2016955516

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or

for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The success of the open-source statistical software “R” has made a significant

impact on the teaching and research of statistics in the last decade. Analysing data is

now easier and more affordable than ever, but choosing the most appropriate sta-

tistical methods remains a challenge for many users. To understand and interpret

software output, it is necessary to engage with the fundamentals of statistics.

However, many readers do not feel comfortable with complicated mathematics.

In this book, we attempt to find a healthy balance between explaining statistical

concepts comprehensively and showing their application and interpretation using R.

This book will benefit beginners and self-learners from various backgrounds as

we complement each chapter with various exercises and detailed and comprehen-

sible solutions. The results involving mathematics and rigorous proofs are separated

from the main text, where possible, and are kept in an appendix for interested

readers. Our textbook covers material that is generally taught in introductory-level

statistics courses to students from various backgrounds, including sociology,

biology, economics, psychology, medicine, and others. Most often, we introduce

the statistical concepts using examples and illustrate the calculations both manually

and using R.

However, while we provide a gentle introduction to R (in the appendix), this is

not a software book. Our emphasis lies on explaining statistical concepts correctly

and comprehensively, using exercises and software to delve deeper into the subject

matter and learn about the conceptual challenges that the methods present.

This book’s homepage, http://chris.userweb.mwn.de/book/, contains additional

material, most notably the software codes needed to answer the software exercises,

and data sets. In the remainder of this book, we will use grey boxes

to introduce the relevant R commands. In many cases, the code can be directly

pasted into R to reproduce the results and graphs presented in the book; in others,

the code is abbreviated to improve readability and clarity, and the detailed code can

be found online.
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Many years of teaching experience, from undergraduate to postgraduate level,

went into this book. The authors hope that the reader will enjoy reading it and find it a

useful reference for learning. We welcome critical feedback to improve future edi-

tions of this book. Comments can be sent to christian.heumann@stat.uni-

muenchen.de, shalab@iitk.ac.in, and michael.schomaker@uct.

ac.za who contributed equally to this book.

We thank Melanie Schomaker for producing some of the figures and giving

graphical advice, Alice Blanck from Springer for her continuous help and support,

and Lyn Imeson for her dedicated commitment which improved the earlier versions

of this book. We are grateful to our families who have supported us during the

preparation of this book.

München, Germany Christian Heumann

Cape Town, South Africa Michael Schomaker

Kanpur, India Shalabh

November 2016
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1Introduction and Framework

Statistics is a collection of methods which help us to describe, summarize, interpret,

and analyse data. Drawing conclusions from data is vital in research, administra-

tion, and business. Researchers are interested in understanding whether a medical

intervention helps in reducing the burden of a disease, how personality relates to

decision-making, whether a new fertilizer increases the yield of crops, how a polit-

ical system affects trade policy, who is going to vote for a political party in the

next election, what are the long-term changes in the population of a fish species,

and many more questions. Governments and organizations may be interested in the

life expectancy of a population, the risk factors for infant mortality, geographical

differences in energy usage, migration patterns, or reasons for unemployment. In

business, identifying people who may be interested in a certain product, optimizing

prices, and evaluating the satisfaction of customers are possible areas of interest.

No matter what the question of interest is, it is important to collect data in a

way which allows its analysis. The representation of collected data in a data set or

data matrix allows the application of a variety of statistical methods. In the first

part of the book, we are going to introduce methods which help us in describing

data, and the second and third parts of the book focus on inferential statistics, which

means drawing conclusions from data. In this chapter, we are going to introduce the

framework of statistics which is needed to properly collect, administer, evaluate, and

analyse data.

1.1 Population, Sample, and Observations

Let us first introduce some terminology and related notations used in this book.

The units on which we measure data—such as persons, cars, animals, or plants—

are called observations. These units/observations are represented by the Greek
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symbol ω. The collection of all units is called population and is represented by Ω .

When we refer to ω ∈ Ω , we mean a single unit out of all units, e.g. one person out of

all persons of interest. If we consider a selection of observations ω1,ω2, . . . , ωn , then

these observations are called sample. A sample is always a subset of the population,

{ω1, ω2, . . . ,ωn} ⊆ Ω .

Example 1.1.1

• If we are interested in the social conditions under which Indian people live, then

we would define all inhabitants of India as Ω and each of its inhabitants as ω. If we

want to collect data from a few inhabitants, then those would represent a sample

from the total population.

• Investigating the economic power of Africa’s platinum industry would require to

treat each platinum-related company as ω, whereas all platinum-related companies

would be collected in Ω . A few companies ω1, ω2, . . . ,ωn comprise a sample of

all companies.

• We may be interested in collecting information about those participating in a

statistics course. All participants in the course constitute the population Ω , and

each participant refers to a unit or observation ω.

Remark 1.1.1 Sometimes, the concept of a population is not applicable or difficult

to imagine. As an example, imagine that we measure the temperature in New Delhi

every hour. A sample would then be the time series of temperatures in a specific

time window, for example from January to March 2016. A population in the sense of

observational units does not exist here. But now assume that we measure temperatures

in several different cities; then, all the cities form the population, and a sample is any

subset of the cities.

1.2 Variables

If we have specified the population of interest for a specific research question, we

can think of what is of interest about our observations. A particular feature of these

observations can be collected in a statistical variable X . Any information we are

interested in may be captured in such a variable. For example, if our observations

refer to human beings, X may describe marital status, gender, age, or anything else

which may relate to a person. Of course, we can be interested in many different

features, each of them collected in a different variable X i , i = 1, 2, . . . , p. Each

observation ω takes a particular value for X . If X refers to gender, each observation,

i.e. each person, has a particular value x which refers to either “male” or “female”.

The formal definition of a variable is

X : Ω → S

ω �→ x
(1.1)
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This definition states that a variable X takes a value x for each observation ω ∈ Ω ,

whereby the number of possible values is contained in the set S.

Example 1.2.1

• If X refers to gender, possible x-values are contained in S = {male, female}. Each

observation ω is either male or female, and this information is summarized in X .

• Let X be the country of origin for a car. Possible values to be taken by an observation

ω (i.e. a car) are S = {Italy, South Korea, Germany, France, India, China, Japan,

USA, . . .}.

• A variable X which refers to age may take any value between 1 and 125. Each

person ω is assigned a value x which represents the age of this person.

1.2.1 Qualitative and Quantitative Variables

Qualitative variables are the variables which take values x that cannot be ordered in

a logical or natural way. For example,

• the colour of the eye,

• the name of a political party, and

• the type of transport used to travel to work

are all qualitative variables. Neither is there any reason to list blue eyes before brown

eyes (or vice versa) nor does it make sense to list buses before trains (or vice versa).

Quantitative variables represent measurable quantities. The values which these

variables can take can be ordered in a logical and natural way. Examples of quanti-

tative variables are

• size of shoes,

• price for houses,

• number of semesters studied, and

• weight of a person.

Remark 1.2.1 It is common to assign numbers to qualitative variables for practical

purposes in data analyses (see Sect. 1.4 for more detail). For instance, if we consider

the variable “gender”, then each observation can take either the “value” male or

female. We may decide to assign 1 to female and 0 to male and use these numbers

instead of the original categories. However, this is arbitrary, and we could have also

chosen “1” for male and “0” for female, or “2” for male and “10” for female. There

is no logical and natural order on how to arrange male and female, and thus, the

variable gender remains a qualitative variable, even after using numbers for coding

the values that X can take.
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1.2.2 Discrete and Continuous Variables

Discrete variables are variables which can only take a finite number of values.

All qualitative variables are discrete, such as the colour of the eye or the region of

a country. But also quantitative variables can be discrete: the size of shoes or the

number of semesters studied would be discrete because the number of values these

variables can take is limited.

Variables which can take an infinite number of values are called continuous

variables. Examples are the time it takes to travel to university, the length of an

antelope, and the distance between two planets. Sometimes, it is said that continuous

variables are variables which are “measured rather than counted”. This is a rather

informal definition which helps to understand the difference between discrete and

continuous variables. The crucial point is that continuous variables can, in theory,

take an infinite number of values; for instance, the height of a person may be recorded

as 172 cm. However, the actual height on the measuring tape might be 172.3 cm which

was rounded off to 172 cm. If one had a better measuring instrument, we may have

obtained 172.342 cm. But the real height of this person is a number with indefinitely

many decimal places such as 172.342975328… cm. No matter what we eventually

report or obtain, a variable which can take an infinite amount of values is defined to

be a continuous variable.

1.2.3 Scales

The thoughts and considerations from above indicate that different variables contain

different amounts of information. A useful classification of these considerations is

given by the concept of the scale of a variable. This concept will help us in the

remainder of this book to identify which methods are the appropriate ones to use in

a particular setting.

Nominal scale. The values of a nominal variable cannot be ordered. Examples are

the gender of a person (male–female) or the status of an application (pending–not

pending).

Ordinal scale. The values of an ordinal variable can be ordered. However, the differ-

ences between these values cannot be interpreted in a meaningful way. For exam-

ple, the possible values of education level (none–primary education–secondary

education–university degree) can be ordered meaningfully, but the differences

between these values cannot be interpreted. Likewise, the satisfaction with a prod-

uct (unsatisfied–satisfied–very satisfied) is an ordinal variable because the values

this variable can take can be ordered, but the differences between “unsatisfied–

satisfied” and “satisfied–very satisfied” cannot be compared in a numerical way.

Continuous scale. The values of a continuous variable can be ordered. Furthermore,

the differences between these values can be interpreted in a meaningful way. For

instance, the height of a person refers to a continuous variable because the values

can be ordered (170 cm, 171 cm, 172 cm, …), and differences between these
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values can be compared (the difference between 170 and 171 cm is the same

as the difference between 171 and 172 cm). Sometimes, the continuous scale is

divided further into subscales. While in the remainder of the book we typically

do not need these classifications, it is still useful to reflect on them:

Interval scale. Only differences between values, but not ratios, can be interpreted.

An example for this scale would be temperature (measured in ◦C): the difference

between −2 ◦C and 4 ◦C is 6 ◦C, but the ratio of 4/ − 2 = −2 does not mean that

−4 ◦C is twice as cold as 2 ◦C.

Ratio scale. Both differences and ratios can be interpreted. An example is speed:

60 km/h is 40 km/h more than 20 km/h. Moreover, 60 km/h is three times faster

than 20 km/h because the ratio between them is 3.

Absolute scale. The absolute scale is the same as the ratio scale, with the excep-

tion that the values are measured in “natural” units. An example is “number of

semesters studied” where no artificial unit such as km/h or ◦C is needed: the

values are simply 1, 2, 3, . . ..

1.2.4 Grouped Data

Sometimes, data may be available only in a summarized form: instead of the original

value, one may only know the category or group the value belongs to. For example,

• it is often convenient in a survey to ask for the income (per year) by means of

groups: [e0–e20,000), [e20,000–e30,000), . . ., > e100,000;

• if there are many political parties in an election, those with a low number of voters

are often summarized in a new category “Other Parties”;

• instead of capturing the number of claims made by an insurance company customer,

the variable “claimed” may denote whether or not the customer claimed at all

(yes–no).

If data is available in grouped form, we call the respective variable capturing

this information a grouped variable. Sometimes, these variables are also known as

categorical variables. This is, however, not a complete definition because categorical

variables refer to any type of variable which takes a finite, possibly small, number of

values. Thus, any discrete and/or nominal and/or ordinal and/or qualitative variable

may be regarded as a categorical variable. Any grouped or categorical variable which

can only take two values is called a binary variable.

To gain a better understanding on how the definitions from the above sections

relate to each other see Fig. 1.1. Qualitative data is always discrete, but quantitative

data can be both discrete (e.g. size of shoes or a grouped variable) and continuous

(e.g. temperature). Nominal variables are always qualitative and discrete (e.g. colour

of the eye), whereas continuous variables are always quantitative (e.g. temperature).

Categorical variables can be both qualitative (e.g. colour of the eye) and quantitative

(satisfaction level on a scale from 1 to 5). Categorical variables are never continuous.
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Fig. 1.1 Summary of variable classifications

1.3 Data Collection

When collecting data, we may ask ourselves how to facilitate this in detail and

how much data needs to be collected. The latter question will be partly answered

in Sect. 9.5; but in general, we can think of collecting data either on all subjects of

interest, such as in a national census, or on a representative sample of the population.

Most commonly, we gather data on a sample (described in the Part I of this book) and

then draw conclusions about the population of interest (discussed in the Part III of

this book). A sample might either be chosen by us or obtained through third parties

(hospitals, government agencies), or created during an experiment. This depends on

the context as described below.

Survey. A survey typically (but not always) collects data by asking questions (in

person or by phone) or providing questionnaires to study participants (as a printout

or online). For example, an opinion poll before a national election provides evidence

about the future government: potential voters are asked by phone which party they are

going to vote for in the next election; on the day of the election, this information can

be updated by asking the same question to a sample of voters who have just delivered

their vote at the polling station (so-called exit poll). A behavioural research survey

may ask members of a community about their knowledge and attitudes towards drug

use. For this purpose, the study coordinators can send people with a questionnaire

to this community and interview members of randomly selected households.

Ideally, a survey is conducted in a way which makes the chosen sample repre-

sentative of the population of interest. If a marketing company interviews people in

a pedestrian zone to find their views about a new chocolate bar, then these people

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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may not be representative of those who will potentially be interested in this product.

Similarly, if students are asked to fill in an online survey to evaluate a lecture, it

may turn out that those who participate are on average less satisfied than those who

do not. Survey sampling is a complex topic on its own. The interested reader may

consult Groves et al. (2009) or Kauermann and Küchenhoff (2011).

Experiment. Experimental data is obtained in “controlled” settings. This can mean

many things, but essentially it is data which is generated by the researcher with full

control over one or many variables of interest. For instance, suppose there are two

competing toothpastes, both of which promise to reduce pain for people with sensitive

teeth. If the researcher decided to randomly assign toothpaste A to half of the study

participants, and toothpaste B to the other half, then this is an experiment because

it is only the researcher who decides which toothpaste is to be used by any of the

participants. It is not decided by the participant. The data of the variable toothpaste

is controlled by the experimenter. Consider another example where the production

process of a product can potentially be reduced by combining two processes. The

management could decide to implement the new process in three production facilities,

but leave it as it is in the other facilities. The production process for the different

units (facilities) is therefore under control of the management. However, if each

facility could decide for themselves if they wanted a change or not, it would not be

an experiment because factors not directly controlled by the management, such as the

leadership style of the facility manager, would determine which process is chosen.

Observational Data. Observational data is data which is collected routinely, without

a researcher designing a survey or conducting an experiment. Suppose a blood sample

is drawn from each patient with a particular acute infection when they arrive at a

hospital. This data may be stored in the hospital’s folders and later accessed by a

researcher who is interested in studying this infection. Or suppose a government

institution monitors where people live and move to. This data can later be used to

explore migration patterns.

Primary and Secondary Data. Primary data is data we collect ourselves, i.e. via a

survey or experiment. Secondary data, in contrast, is collected by someone else. For

example, data from a national census, publicly available databases, previous research

studies, government reports, historical data, and data from the internet, among others,

are secondary data.

1.4 Creating a Data Set

There is a unique way in which data is prepared and collected to utilize statistical

analyses. The data is stored in a data matrix (=data set) with p columns and n rows

(see Fig. 1.2). Each row corresponds to an observation/unit ω and each column to

a variable X . This means that, for example, the entry in the fourth row and second

column (x42) describes the value of the fourth observation on the second variable.

The examples below will illustrate the concept of a data set in more detail.
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









ω Variable 1 Variable 2 · · · Variable p

1 x11 x12 · · · x1p

2 x21 x22 · · · x2p

...
...

...
...

n xn1 xn2 · · · xnp











Fig. 1.2 Data set or data matrix











ω Music Mathematics Biology Geography

StudentA 65 70 85 45
StudentB 77 82 80 60
StudentC 78 73 93 68
StudentD 88 71 63 58
StudentE 75 83 63 57











Fig. 1.3 Data set of marks of five students

Example 1.4.1 Suppose five students take examinations in music, mathematics, biol-

ogy, and geography. Their marks, measured on a scale between 0 and 100 (where

100 is the best mark), can be written down as illustrated in Fig. 1.3. Note that each

row refers to a student and each column to a variable. We consider a larger data set

in the next example.

Example 1.4.2 Consider the data set described in Appendix A.4. A pizza delivery

service captures information related to each delivery, for example the delivery time,

the temperature of the pizza, the name of the driver, the date of the delivery, the

name of the branch, and many more. To capture the data of all deliveries during one

month, we create a data matrix. Each row refers to a particular delivery, therefore

representing the observations of the data. Each column refers to a variable. In Fig. 1.4,

the variables X1 (delivery time in minutes), X2 (temperature in ◦C), and X12 (name

of branch) are listed.











Delivery Delivery Time Temperature · · · Branch

1 35.1 68.3 · · · East (1)
2 25.2 71.0 · · · East (1)
...

...
...

...
1266 35.7 60.8 · · · West (2)











Fig. 1.4 Pizza data set
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Table 1.1 Coding list for

branch
Variable Values Code

Branch East 1

West 2

Centre 3

Missing 4

The first row tells us about the features of the first pizza delivery: the delivery

time was 35.1 min, the pizza arrived with a temperature of 68.3 ◦C, and the pizza

was delivered from the branch in the East of the city. In total, there were n = 1266

deliveries. For nominal variables, such as branch, we may decide to produce a coding

list, as illustrated in Table 1.1: instead of referring to the branches as “East”, “West”,

and “Centre”, we may simply call them 1, 2, and 3. As we will see in Chap. 11, this

has benefits for some analysis methods, though this is not needed in general.

If some values are missing, for example because they were never captured or even

lost, then this requires special attention. In Table 1.1, we assign missing values the

number “4” and therefore treat them as a separate category. If we work with statistical

software (see below), we may need other coding such as NA in the statistical software

R or in Stata. More detail can be found in Appendix A.

Another consideration when collecting data is that of transformations: we may

have captured the velocity of cars in kilometres per hour, but may need to present

the data in miles per hour; we have captured the temperature in degrees Celsius,

whereas we need to communicate results in degrees Fahrenheit, or we have created a

satisfaction score which we want to range from −5 to +5, while the score currently

runs from 0 to 20. This is not a problem at all. We can simply create a new variable

which reflects the required transformation. However, valid transformations depend

on the scale of a variable. Variables on an interval scale can use transformations of

the following kind:

g(x) = a + bx, b > 0. (1.2)

For ratio scales, only the following transformations are valid:

g(x) = bx, b > 0. (1.3)

In the above equation, a is set to 0 because ratios only stay the same if we respect a

variable’s natural point of origin.

Example 1.4.3 The temperature in ◦F relates to the temperature in ◦C as follows:

Temperature in ◦F = 32 + 1.8 Temperature in ◦C

g(x) = a + b x

This means that 25 ◦C relates to (32 + 1.8 · 25) ◦F = 77 ◦F. If X1 is a variable

representing temperature by ◦C, we can simply create a new variable X2 which is

temperature in ◦F. Since temperature is measured on an interval scale, this transfor-

mation is valid.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Changing currencies is also possible. If we would like to represent the price of a

product not in South African Rand but in e, we simply apply the transformation

Price in South African Rand = b · Price in e

whereby b is the currency exchange rate.

1.4.1 Statistical Software

There are number of statistical software packages which allow data collection, man-

agement, and–most importantly–analysis. In this book, we focus on the statistical

software R which is freely available at http://cran.r-project.org/. A gentle introduc-

tion to R is provided in Appendix A. A data matrix can be created manually using

commands such as matrix(), data.frame(), and others. Any data can be edited

using edit(). However, typically analysts have already typed their data into data-

bases or spreadsheets, for example in Excel, Access, or MySQL. In most of these

applications, it is possible to save the data as an ASCII file (.dat), as a tab-delimited

file (.txt), or as a comma-separated values file (.csv). All of these formats allow easy

switching between different software and database applications. Such data can easily

be read into R by means of the following commands:

setwd('C:/directory')

read.table('pizza_delivery.dat')

read.table('pizza_delivery.txt')

read.csv('pizza_delivery.csv')

where setwd specifies the working directory. Alternatively, loading the library

foreign allows the import of data from many different statistical software pack-

ages, notably Stata, SAS, Minitab, SPSS, among others. A detailed description of

data import and export can be found in the respective R manual available at http://

cran.r-project.org/doc/manuals/r-release/R-data.pdf. Once the data is read into R,

it can be viewed with

fix() # option 1

View() # option 2

We can also can get an overview of the data directly in the R-console by displaying

only the top lines of the data with head(). Both approaches are visualized in Fig. 1.5

for the pizza data introduced in Example 1.4.2.

http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf


1.5 Key Points and Further Issues 13

Fig. 1.5 Viewing data in R

1.5 Key Points and Further Issues

Note:

� The scale of variables is not only a formalism but an essential framework

for choosing the correct analysis methods. This is particularly relevant

for association analysis (Chap. 4), statistical tests (Chap. 10), and linear

regression (Chap. 11).

� Even if variables are measured on a nominal scale (i.e. if they are cate-

gorical/qualitative), we may choose to assign a number to each category

of this variable. This eases the implementation of some analysis methods

introduced later in this book.

� Data is usually stored in a data matrix where the rows represent the

observations and the columns are variables. It can be analysed with

statistical software. We use R (R Core Team 2016) in this book. A

gentle introduction is provided in Appendix A and throughout the book.

A more comprehensive introduction can be found in other books, for

example in Albert and Rizzo (2012), Crawley (2013), or Ligges (2008).

Even advanced books, e.g. Adler (2012) or Everitt and Hothorn (2011),

can offer insights to beginners.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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1.6 Exercises

Exercise 1.1 Describe both the population and the observations for the following

research questions:

(a) Evaluation of the satisfaction of employees from an airline.

(b) Description of the marks of students from an assignment.

(c) Comparison of two drugs which deal with high blood pressure.

Exercise 1.2 A national park conducts a study on the behaviour of their leopards.

A few of the park’s leopards are registered and receive a GPS device which allows

measuring the position of the leopard. Use this example to describe the following

concepts: population, sample, observation, value, and variable.

Exercise 1.3 Which of the following variables are qualitative, and which are quan-

titative? Specify which of the quantitative variables are discrete and which are

continuous:

Time to travel to work, shoe size, preferred political party, price for a canteen meal, eye

colour, gender, wavelength of light, customer satisfaction on a scale from 1 to 10, delivery

time for a parcel, blood type, number of goals in a hockey match, height of a child, subject

line of an email.

Exercise 1.4 Identify the scale of the following variables:

(a) Political party voted for in an election

(b) The difficulty of different levels in a computer game

(c) Production time of a car

(d) Age of turtles

(e) Calender year

(f) Price of a chocolate bar

(g) Identification number of a student

(h) Final ranking at a beauty contest

(i) Intelligence quotient.

Exercise 1.5 Make yourself familiar with the pizza data set from Appendix A.4.

(a) First, browse through the introduction to R in Appendix A. Then, read in the

data.

(b) View the data both in the R data editor and in the R console.

(c) Create a new data matrix which consists of the first 5 rows and first 5 variables

of the data. Print this data set on the R console. Now, save this data set in your

preferred format.

(d) Add a new variable “NewTemperature” to the data set which converts the tem-

perature from ◦C to ◦F.
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(e) Attach the data and list the values from the variable “NewTemperature”.

(f) Use “?” to make yourself familiar with the following commands: str, dim,

colnames, names, nrow, ncol, head, and tail. Apply these commands

to the data to get more information about it.

Exercise 1.6 Consider the research questions of describing parents’ attitudes towards

immunization, what proportion of them wants immunization against chicken pox for

their last-born child, and whether this proportion differs by gender and age.

(a) Which data collection method is the most suitable one to answer the above

questions: survey or experiment?

(b) How would you capture the attitudes towards immunization in a single variable?

(c) Which variables are needed to answer all the above questions? Describe the scale

of each of them.

(d) Reflect on what an appropriate data set would look like. Now, given this data

set, try to write down the above research questions as precisely as possible.

→ Solutions to all exercises in this chapter can be found on p. 321
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Representation of Data

In Chap. 1, we highlighted that different variables contain different levels of informa-

tion. When summarizing or visualizing one or more variable(s), it is this information

which determines the appropriate statistical methods to use.

Suppose we are interested in studying the employment opportunities and starting

salaries of university graduates with a master’s degree. Let the variable X denote the

starting salaries measured in e/year. Now suppose 100 graduate students provide

their initial salaries. Let us write down the salary of the first student as x1, the

salary of the second student as x2, and so on. We therefore have 100 observations

x1, x2, . . . , x100. How can we summarize those 100 values best to extract meaningful

information from them? The answer to this question depends upon several aspects

like the nature of the recorded data, e.g. how many observations have been obtained

(either small in number or large in number) or how the data was recorded (either

exact values were obtained or the values were obtained in intervals). For example, the

starting salaries may be obtained as exact values, say 51,500 e/year, 32,350 e/year,

etc. Alternatively, these values could have been summarized in categories such as low

income (<30,000 e/year), medium income (30,000–50,000 e/year), high income

(50,000–70,000e/year), and very high income (>70,000e/year). Another approach

is to ask whether the students were employed or not after graduating and record the

data in terms of “yes” or “no”. It is evident that the latter classification is less detailed

than the grouped income data which is less detailed than the exact data. Depending on

which conceptualization of “starting salary” we use, we need to choose the approach

to summarize the data, that is the 100 values relating to the 100 graduated students.

2.1 Absolute and Relative Frequencies

Discrete Data. Let us first consider a simple example to illustrate our notation.
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Example 2.1.1 Suppose there are ten people in a supermarket queue. Each of them

is either coded as “F” (if the person is female) or “M” (if the person is male). The

collected data may look like

M, F, M, F, M, M, M, F, M, M.

There are now two categories in the data: male (M) and female (F). We use a1 to refer

to the male category and a2 to refer to the female category. Since there are seven male

and three female students, we have 7 values in category a1, denoted as n1 = 7, and 3

values in category a2, denoted as n2 = 3. The number of observations in a particular

category is called the absolute frequency. It follows that n1 = 7 and n2 = 3 are the

absolute frequencies of a1 and a2, respectively. Note that n1 + n2 = n = 10, which

is the same as the total number of collected observations. We can also calculate

the relative frequencies of a1 and a2 as f1 = f (a1) = n1
n

= 7
10

= 0.7 = 70 % and

f2 = f (a2) = n2
n

= 3
10

= 0.3 = 30 %, respectively. This gives us information about

the proportions of male and female customers in the queue.

We now extend these concepts to a general framework for the summary of data

on discrete variables. Suppose there are k categories denoted as a1, a2, . . . , ak

with n j ( j = 1, 2, . . . , k) observations in category a j . The absolute frequency n j is

defined as the number of units in the j th category a j . The sum of absolute frequencies

equals the total number of units in the data:
∑k

j=1 n j = n. The relative frequencies

of the j th class are defined as

f j = f (a j ) =
n j

n
, j = 1, 2, . . . , k. (2.1)

The relative frequencies always lie between 0 and 1 and
∑k

j=1 f j = 1.

Grouped Continuous Data. Data on continuous variables usually has a large number

(k) of different values. Sometimes k may even be the same as n and in such a case

the relative frequencies become f j = 1
n

for all j . However, it is possible to define

intervals in which the observed values are contained.

Example 2.1.2 Consider the following n = 20 results of the written part of a driving

licence examination (a maximum of 100 points could be achieved):

28, 35, 42, 90, 70, 56, 75, 66, 30, 89, 75, 64, 81, 69, 55, 83, 72, 68, 73, 16.

We can summarize the results in class intervals such as 0–20, 21–40, 41–60, 61–80,

and 81–100, and the data can be presented as follows:

Class intervals 0–20 21–40 41–60 61–80 81–100

Absolute frequencies n1 = 1 n2 = 3 n3 = 3 n4 = 9 n5 = 4

Relative frequencies f1 = 1
20

f2 = 3
20

f3 = 3
20

f4 = 9
20

f5 = 5
20

We have
∑5

j=1 n j = 20 = n and
∑5

j=1 f j = 1.
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Table 2.1 Frequency distribution for discrete data

Class intervals (a j ) a1 a2 ... ak

Absolute frequencies (n j ) n1 n2 ... nk

Relative frequencies ( f j ) f1 f2 ... fk

Now, suppose the n observations can be classified into k class intervals

a1, a2, . . . , ak , where a j ( j = 1, 2, . . . , k) contains n j observations with
∑k

j=1 n j =

n. The relative frequency of the j th class is f j = n j/n and
∑k

j=1 f j = 1. Table 2.1

displays the frequency distribution of a discrete variable X .

Example 2.1.3 Consider the pizza delivery service data (Example 1.4.2, Appen-

dix A.4). We are interested in the pizza deliveries by branch and generate the respec-

tive frequency table, showing the distribution of the data, using the table command

in R (after reading in and attaching the data) as

table(branch) # absolute frequencies

table(branch)/length(branch) # relative frequencies

a j Centre East West

n j 421 410 435

f j
421

1266
≈ 0.333 410

1266
≈ 0.323 435

1266
≈ 0.344

We have n =
∑

j n j = 1266 deliveries and
∑

j f j = 1. We can see from this table

that each branch has a similar absolute number of pizza deliveries and each branch

contributes to about one-third of the total number of deliveries.

2.2 Empirical Cumulative Distribution Function

Another approach to summarize and visualize the (frequency) distribution of vari-

ables is the empirical cumulative distribution function, often abbreviated as

“ECDF”. As the name itself suggests, it gives us an idea about the cumulative rela-

tive frequencies up to a certain point. For example, say we want to know how many

people scored up to 60 points in Example 2.1.2. Then, this can be calculated by

adding the number of people in the class intervals 0–20, 21–40, and 41–60, which

corresponds to n1 + n2 + n3 = 1 + 3 + 3 = 7 and is the cumulative frequency. If

we want to know the relative frequency of people obtaining up to 60 points, we have

to add the relative frequencies of the people in the class intervals 0–20, 21–40, and

41–60 as f1 + f2 + f3 = 1
20

+ 3
20

+ 3
20

= 7
20

.

http://dx.doi.org/10.1007/978-3-319-46162-5_1
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Before discussing the empirical cumulative distribution function in a more general

framework, let us first understand the concept of ordered values. Suppose the values

of height of four people are observed as x1 = 180 cm, x2 = 160 cm, x3 = 175 cm,

and x4 = 170 cm. We arrange these values in an order, say ascending order, i.e. first

the smallest value (denoted as x(1)) and lastly the largest value (denoted as x(4)). We

obtain

x(1) = x2 = 160 cm, x(2) = x4 = 170 cm,

x(3) = x3 = 175 cm, x(4) = x1 = 180 cm.

The values x(1), x(2), x(3), and x(4) are called ordered values for which x(1) < x(2) <

x(3) < x(4) holds. Note that x1 is not necessarily the smallest value but x(1) is

necessarily the smallest value. In general, if we have n observations x1, x2, . . . , xn ,

then the ordered data is x(1) ≤ x(2) ≤ · · · ≤ x(n).

Consider n observations x1, x2, . . . , xn of a variable X , which are arranged in

ascending order as x(1) ≤ x(2) ≤ · · · ≤ x(n) (and are thus on an at least ordinal scale).

The empirical cumulative distribution function F(x) is defined as the cumulative

relative frequencies of all values a j , which are smaller than, or equal to, x :

F(x) =
∑

a j ≤x

f (a j ). (2.2)

This definition implies that F(x) is a monotonically non-decreasing function, 0 ≤

F(x) ≤ 1, limx→−∞ F(x) = 0 (the lower limit of F is 0), limx→+∞ F(x) = 1 (the

upper limit of F is 1), and F(x) is right continuous.

2.2.1 ECDF for Ordinal Variables

The empirical cumulative distribution function of ordinal variables is a step function.

Example 2.2.1 Consider a customer satisfaction survey from a car service company.

The 200 customers who had a car service done within the last 30 days were asked to

respond regarding their overall level of satisfaction with the quality of the car service

on a scale from 1 to 5 based on the following options: 1 = not satisfied at all, 2 =

unsatisfied, 3 = satisfied, 4 = very satisfied, and 5 = perfectly satisfied. Based on

the frequency of each option, we can calculate the relative frequencies and then

plot the empirical cumulative distribution function, either manually (takes longer)

or by using R (quick):

Satisfaction level (a j ) j = 1 j = 2 j = 3 j = 4 j = 5

n j 4 16 90 70 20

f j 4/200 16/200 90/200 70/200 20/200

F j 4/200 20/200 110/200 180/200 200/200
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Fig. 2.1 ECDF for the satisfaction survey

The F j ’s are calculated as follows:

F1 = f1, F3 = f1 + f2 + f3,

F2 = f1 + f2, F4 = f1 + f2 + f3 + f4.

The ECDF for this data can be obtained by summarizing the data in a vector and

using the plot.ecdf() function in R, see Fig. 2.1:

sv <- c(rep(1,4),rep(2,16),rep(3,90),rep(4,70),rep(5,20))

plot.ecdf(sv)

The ECDF can be used to obtain the relative frequencies for values contained in

certain intervals as

H(c ≤ x ≤ d) = relative frequency of values x with c ≤ x ≤ d.

It further follows that:

H(x ≤ a j ) = F(a j ) (2.3)

H(x < a j ) = H(x ≤ a j ) − f (a j ) = F(a j ) − f (a j ) (2.4)

H(x > a j ) = 1 − H(x ≤ a j ) = 1 − F(a j ) (2.5)

H(x ≥ a j ) = 1 − H(X < a j ) = 1 − F(a j ) + f (a j ) (2.6)

H(a j1 ≤ x ≤ a j2) = F(a j2) − F(a j1) + f (a j1) (2.7)

H(a j1 < x ≤ a j2) = F(a j2) − F(a j1) (2.8)

H(a j1 < x < a j2) = F(a j2) − F(a j1) − f (a j2) (2.9)

H(a j1 ≤ x < a j2) = F(a j2) − F(a j1) − f (a j2) + f (a j1) (2.10)
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Example 2.2.2 Suppose, in Example 2.2.1, we want to know how many customers

are not satisfied with their car service. Then, using the data relating to the responses

“1” and “2”, we observe from the ECDF that (16 + 4)/200 % = 10 % of the cus-

tomers were not satisfied with the car service. This relates to using rule (2.3):

H(X ≤ 2) = F(2) = 0.1 or 10 %. Similarly, the proportion of customers who are

more than satisfied can be obtained using (2.5) as H(X > 3) = 1 − H(x ≤ 3) =

1 − 110/200 = 0.45 % or 45 %.

2.2.2 ECDF for Continuous Variables

In general, we can apply formulae (2.2)–(2.10) to continuous data as well. However,

before demonstrating their use, let us consider a somewhat different setting. Let us

assume that a continuous variable of interest is only available in the form of grouped

data. We may assume that the observations within each group, i.e. each category

or each interval, are distributed uniformly over the entire interval. The ECDF then

consists of straight lines connecting the lower and upper values of the ECDF in each

of the intervals. To understand this concept in more detail, we introduce the following

notation:

k number of groups (or intervals),

e j−1 lower limit of j th interval,

e j upper limit of j th interval,

d j = e j − e j−1 width of the j th interval,

n j number of observations in the j th interval.

Under the assumption that all values in a particular interval are distributed uni-

formly within this interval, the empirical cumulative distribution function relates to a

polygonal chain connecting the points (0, 0),
(

e1, F(e1)
)

,
(

e2, F(e2)
)

, . . . , (ek, 1).

The ECDF can then be defined as

F(x) =

⎧

⎪

⎨

⎪

⎩

0, x < e0

F(e j−1) +
f j

d j
(x − e j−1), x ∈ [e j−1, e j )

1, x ≥ ek

(2.11)

with F(e0) = 0. The idea behind (2.11) is presented in Fig. 2.2. For any interval

[e j−1, e j ), the respective lower and upper limits of the ECDF are F(e j ) and F(e j−1).

If we assume values to be distributed uniformly over this interval, we can connect

F(e j ) and F(e j−1) with a straight line. To obtain F(x) with x > e j−1 and x < e j ,

we simply add the height of the ECDF between F(e j−1) and F(x) to F(e j−1).

Example 2.2.3 Consider Example 2.1.3 of the pizza delivery service. Suppose we

are interested in determining the distribution of the pizza delivery times. Using

the function plot.ecdf() in R, we obtain the ECDF of the continuous data, see

Fig. 2.3a. Note that the structure of the curve is a step function but now almost looks

like a continuous curve. The reason for this is that when the number of observations is

large, then the lengths of class intervals become small. When these small lengths are
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Fig. 2.2 Illustration of the

ECDF for continuous data

available in groups/intervals∗

ej−1

F (ej−1)

ejx

F (x)

dj

fj

joined together, they appear like a continuous curve. As the number of observations

increases, the smoothness of the curve increases too. If the number of observations

is not large, e.g. suppose the data is reported as a summary from the drivers, i.e.

whether the delivery took <15 min, between 15 and 20 min, between 20 and 25 min,

and so on, then we can construct the ECDF by creating a table summarizing the data

features as in Table 2.2.

Figure 2.3b shows the ECDF based on the grouped data evaluated in Table 2.2. It

is interesting to see that the graphs emerging from the use of the grouped data and

ungrouped data are similar in this specific example.

Suppose we are interested in calculating how many deliveries were completed

within the desired time limit of 30 min, with a tolerance of maximum 10 %

deviation, i.e. a deviation of 3 min. We can evaluate the ECDF at x = 33 min.

Table 2.2 The values needed to calculate the ECDF for the grouped pizza delivery time data in

Example 2.2.3

Delivery time j e j−1 e j n j f j F(e j )

[0; 10] 1 0 10 0 0.0000 0.0000

(10; 15] 2 10 15 3 0.0024 0.0024

(15; 20] 3 15 20 21 0.0166 0.0190

(20; 25] 4 20 25 75 0.0592 0.0782

(25; 30] 5 25 30 215 0.1698 0.2480

(30; 35] 6 30 35 373 0.2946 0.5426

(35; 40] 7 35 40 350 0.2765 0.8191

(40; 45] 8 40 45 171 0.1351 0.9542

(45; 50] 9 45 50 52 0.0411 0.9953

(50; 55] 10 50 55 6 0.0047 1.0000
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(b) Grouped continuous data

Fig. 2.3 Empirical cumulative distribution function for pizza delivery time

Based on (2.11), we calculate H(X ≤ 33) = F(33) = F(30) + f (6)/5(33 − 30) =

0.2480 + 0.2946/5 · 3 = 0.42476. Thus, we conclude, based on the grouped data,

that only about 42 % of the deliveries were completed in the desired time frame.

2.3 Graphical Representation of a Variable

Frequency tables and empirical cumulative distribution functions are useful in provid-

ing a numerical summary of a variable. Graphs are an alternative way to summarize

a variable’s information. In many situations, they have the advantage of conveying

the information hidden in the data more compactly. Similarly, someone’s mood can

be more easily understood when looking at a smiley © than by reading an essay about

one’s mood in a long paragraph.

2.3.1 Bar Chart

A simple tool to visualize the relative or absolute frequencies of observed values of

a variable is a bar chart. A bar chart can be used for nominal and ordinal variables,

as long as the number of categories is not very large. It consists of one bar for each

category. The height of each bar is determined by either the absolute frequency or

the relative frequency of the respective category and is shown on the y-axis. If the

variable is measured on an ordinal level, then it is recommended to arrange the bars

on the x-axis according to their ranks or values. If the number of categories is large,

then the number of bars will be large too and the bar chart, in turn, may not remain

informative.
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Fig. 2.4 Bar charts

Example 2.3.1 Consider Example 2.1.1 in which ten people, queueing in a supermar-

ket, were classified as being either male (M) or female (F). The absolute frequencies

for males and females are n1 = 7 and n2 = 3, respectively. Since there are two cate-

gories, M and F, two bars are needed to construct the chart—one for the male category

and another for the female category. The heights of the bars are determined as either

n1 = 7 and n2 = 3 or f1 = 0.7 and f2 = 0.3. These graphs are shown in Fig. 2.4.

Example 2.3.2 Consider the data in Example 2.1.3, where the pizza delivery times

for each branch are recorded over a period of 1 month. The frequency table forms the

basis for the bar chart, either using the absolute or relative frequencies on the y-axis.

Figure 2.5 shows the bar charts for the number and proportion of pizza deliveries per

branch. The graphs can be produced in R by applying the barplot command to a

frequency table:

barplot(table(branch))

barplot(table(branch)/length(branch))

Remark 2.3.1 Instead of vertical bars, horizontal bars can be drawn using the optional

argument horiz=TRUE in the barplot command.
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Fig. 2.5 Bar charts for the pizza deliveries per branch

2.3.2 Pie Chart

Pie charts are another option to visualize the absolute and relative frequencies of

nominal and ordinal variables. A pie chart is a circle partitioned into segments,

where each of the segments represents a category. The size of each segment depends

upon the relative frequency and is determined by the angle f j · 360◦.

Example 2.3.3 To illustrate the construction of a pie chart, let us consider again

Example 2.1.1 in which ten people in a supermarket queue were classified as being

either male (M) or female (F): M, F, M, F, M, M, M, F, M, M. The pie chart for this

data will have two segments: one for males and another one for females. The relative

frequencies are f1 = 7/10 and f2 = 3/10, respectively. The size of the segment

for the first category (M) is f1 · 360◦ = (7/10) · 360◦ = 252◦, and the size of the

segment for the second category (F) is f2 · 360◦ = (3/10) · 360◦ = 108◦. The pie

chart is shown in Fig. 2.6a.

Example 2.3.4 Consider again Example 2.2.1, where 200 customers were asked

about their level of satisfaction (5 categories) with their car service. The pie chart

for this example consists of five segments representing the categories 1, 2, 3, 4,

and 5. The size of the j th segment is f j · 360◦, j = 1, 2, 3, 4, 5. For example, for

category 1, there are 4 out of 200 customers, who are not satisfied at all. The angle

of the segment “not satisfied at all” therefore is f1 · 360◦ = 4/200 · 360◦ = 7.2◦.

Similarly, we can calculate the angle of the other segments and obtain a pie chart as

shown in Fig. 2.6b using the pie command in R

pie(table(sv))
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Fig. 2.6 Pie charts

Remark 2.3.2 Note that the area of a segment is not proportional to the absolute

frequency of the respective category. Instead, the area of the segment is proportional

to the angle f j · 360◦ (and depends also on the radius of the whole circle). It has been

argued that this may cause improper interpretations as the human eye may catch the

segment’s area more easily than the angle of a segment. Pie charts should therefore

be used with caution.

2.3.3 Histogram

If a variable consists of a large number of different values, the number of categories

used to construct bar charts will consequently be large too. A bar chart may thus not

give a clear summary when applied to a continuous variable. Instead, a histogram is

the appropriate choice to represent the distribution of values of continuous variables.

It is based on the idea to categorize the data into different groups and plot the bars

for each category with height h j = f j/d j , where d j = e j − e j−1 denotes the width

of the j th class interval or category. An important consideration for this concept is

that the area of the bars (=height × width) is proportional to the relative frequency.

This means that the widths of the bars need not necessarily to be the same because

different widths can be adjusted with different heights of the bars.

Example 2.3.5 Consider Example 2.1.2, where n = 20 people were divided into five

class intervals 0–20, 21–40, 41–60, 61–80, and 81–100 based on their performance

in a written driving licence examination. The frequency table is given as
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Class intervals 0–20 21–40 41–60 61–80 81–100

Absolute freq n1 = 1 n2 = 3 n3 = 3 n4 = 9 n5 = 4

Relative freq f1 = 1
20

f2 = 3
20

f3 = 3
20

f4 = 9
20

f5 = 5
20

Height f j /d j h1 = 1
400
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400

Fig. 2.7 Histogram for the

scores of the people
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The histogram for this grouped data set has five categories and therefore it has

five bars. Since the widths of class intervals are the same, the heights of the bars

are proportional to the relative frequency of the respective category. The resulting

histogram is displayed in Fig. 2.7.

Example 2.3.6 Recall Example 2.2.3 and the variable “pizza delivery time”. Table 2.3

shows the summary of the grouped data and the values needed to calculate the his-

togram. Figure 2.8a shows the histogram with equal widths of delivery time intervals.

We see a symmetric distribution of the pizza delivery times, but many delivery times

exceeding the target time of 30 min. If the histogram is required to have different

widths for different bars, i.e. different delivery time intervals for different categories,

then it can also be constructed as shown in Fig. 2.8b. This representation is different

from Fig. 2.8a. The following commands in R are used to construct the histograms

for absolute and relative frequencies, respectively:

hist(time) # show abs. frequencies

hist(time, freq=F) # show rel. frequencies

Remark 2.3.3 The R command truehist() from the library MASS presents an alter-

native to the hist() command. The default specifications are somewhat different,

and many users prefer it to the command hist.
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Table 2.3 Values needed to calculate the histogram for the grouped pizza delivery time data

Delivery time j e j−1 e j d j f j h j

[0; 10] 1 0 10 10 0.0000 0.00000

(10; 15] 2 10 15 5 0.0024 0.00047

(15; 20] 3 15 20 5 0.0166 0.00332

(20; 25] 4 20 25 5 0.0592 0.01185

(25; 30] 5 25 30 5 0.1698 0.03397

(30; 35] 6 30 35 5 0.2946 0.05893

(35; 40] 7 35 40 5 0.2765 0.05529

(40; 45] 8 40 45 5 0.1351 0.02701

(45; 50] 9 45 50 5 0.0411 0.00821

(50; 55] 10 50 55 5 0.0047 0.00094
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(b) With different widths per category

Fig. 2.8 Histogram for pizza delivery time

2.4 Kernel Density Plots

A disadvantage of histograms is that continuous data is categorized artificially. The

choice of the class intervals is crucial for the final look of the graph. A more elegant

way to deal with this problem is to smooth the histogram in the sense that each obser-

vation may contribute to different classes with different weights, and the distribution

is represented by a continuous function rather than a step function. A kernel density

plot can be produced by using the following function:
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Fig. 2.9 Construction of kernel density plots

f̂n(x) =
1

nh

n
∑

i=1

K

(

x − xi

h

)

, h > 0, (2.12)

where n is the sample size, h is the bandwidth, and K is a kernel function, for

example

K (x) =

{

1
2

if − 1 ≤ x ≤ 1

0 elsewhere
(rectangular kernel)

K (x) =

{

3
4
(1 − x2) if |x | < 1

0 elsewhere.
(Epanechnikov kernel)

To better understand this concept, consider Fig. 2.9a. The tick marks on the x-axis

represent five observations: 3, 6, 7, 8, and 10. On each observation xi as well as its

surrounding values, we apply a kernel function, which is the Epanechnikov kernel in

the figure. This means that we have five functions (grey, dashed lines), which refer to

the five observations. These functions are largest at the observation itself and become

gradually smaller as the distance from the observation increases. Summing up the

functions, as described in Eq. (2.12), yields the solid black line, which is the kernel

density plot of the five observations. It is a smooth curve, which represents the data

distribution. The degree of smoothness can be controlled by the bandwidth h, which

is chosen as 2 in Fig. 2.9a.



2.4 Kernel Density Plots 31

Delivery time

d
e
n
s
it
y

0 10 20 30 40 50 60 70

0
.0

0
0
.0

2
0
.0

4
0
.0

6

(a) Default bandwidth

0 10 20 30 40 50 60 70

0
.0

0
0
.0

2
0
.0

4
0
.0

6

Delivery time

d
e
n
s
it
y

(b) Shorter bandwidth

Fig. 2.10 Kernel density plot for delivery time

The choice of the kernel may affect the overall look of the plot. Above, we have

given the functions for the rectangular and Epanechnikov kernels. However, another

common function for kernel density plots is the normal distribution function, which

is introduced in Sect. 8.2.2, see Fig. 2.9b for a comparison of different kernels. The

kernel which is based on the normal distribution is called the “Gaussian kernel” and

is the default in R, where a kernel density plot can be produced combining the plot

and density commands:

example <- c(3,6,7,8,10)

plot(density(example, kernel='gaussian'))

Please note that kernel functions are not defined arbitrarily and need to satisfy cer-

tain conditions, such as those required for probability density functions as explained

in Chap. 7, Theorem 7.2.1.

Example 2.4.1 Let us consider the pizza data which we introduced earlier and in

Appendix A.4. We can summarize the delivery time by using a kernel density plot

using the R command plot(density(time)) and compare it with a histogram,

see Fig. 2.10a. We see that the delivery times are symmetric around 35 min. If we

shorten the bandwidth to a half of the default bandwidth (option adjust=0.5), the

kernel density plot becomes more wiggly, which is illustrated in Fig. 2.10b.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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2.5 Key Points and Further Issues

Note:

� Bar charts and histograms are not the same graphical tools. Bar charts

visualize the categories of nominal or ordinal variables whereas his-

tograms visualize the distribution of continuous variables. A bar chart

does not require to have ordered values on the x-axis, but a histogram

always requires the values on the x-axis to be on a continuous scale and

to be ordered. The interpretation of a histogram is simplified if the class

intervals are equally sized, since then the heights of the rectangles of

the histogram are proportional to the absolute or relative frequencies.

� The ECDF can be used only for ordinal and continuous variables, see

Sect. 7.2 for the theoretical background of the cumulative distribution

function.

� A pie chart summarizes observations from a discrete (nominal, ordi-

nal or grouped continuous) variable. It is only useful if the number of

different values (categories) is small. It is to be kept in mind that the

area of each segment is not proportional to the absolute frequency of

the respective category. The angle of the segment is proportional to the

relative frequency of the respective category.

� Other possibilities to visualize the distribution of variables are, for exam-

ple, box plots (Sect. 3.3) and stratified plots (Sects. 4.1.3, 4.3.1, and 4.4).

2.6 Exercises

Exercise 2.1 Consider the results of the national elections in South Africa in 2014

and 2009:

Party Results 2014 (%) Results 2009 (%)

ANC (African National Congress) 62.15 65.90

DA (Democratic Alliance) 22.23 16.66

EFF (Economic Freedom Fighters) 6.35 –

IFP (Inkatha Freedom Party) 2.40 4.55

COPE (Congress of the People) 0.67 7.42

Others 6.20 5.47

(a) Summarize the results of the 2014 elections in a bar chart. Do it manually and

by using R.

(b) How would you compare the results of the 2009 and 2014 elections? Offer a

simple solution that can be represented in a single plot. Construct this plot in R.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Exercise 2.2 Consider a variable X describing the time until the first goal was scored

in the matches of the 2006 football World Cup competition. Only matches with at

least one goal are considered, and goals during the x th minute of extra time are

denoted as 90 + x :

6 24 90+1 8 4 25 3 83 89 34 25 24 18 6

23 10 28 4 63 6 60 5 40 2 22 26 23 26

44 49 34 2 33 9 16 55 23 13 23 4 8 26

70 4 6 60 23 90+5 28 49 6 57 33 56 7

(a) What is the scale of X?

(b) Write down the frequency table of X based on the following categories: [0, 15),

[15, 30), [30, 45), [45, 60), [60, 75), [75, 90), [90, 96).

(c) Draw the histogram for X with intervals relating to the groups from the frequency

table.

(d) Now use R to reproduce the histogram. Compare the histogram to a kernel

density plot of your choice.

(e) Calculate the empirical cumulative distribution function for the grouped data.

(f) Use R to plot the ECDF (via a step function) for

(i) the original data and

(ii) the grouped data.

(g) Consider the grouped data. Now assume that the values within each interval are

distributed uniformly. Determine the proportion of first goals which occurred

(i) in the first half, i.e. during the first 45 min,

(ii) in the last 10 min or during the extra time,

(iii) between the 20th and 65th min, i.e. what is H(20 ≤ X ≤ 65)?

(h) Determine the time point at which in 80 % of the matches the first goal was

scored at or before this time point.

Exercise 2.3 Suppose we have the following information to construct a histogram

for a continuous variable with 2000 observations:

j e j−1 e j d j h j

1 0 1 1 0.125

2 1 4 3 0.125

3 4 7 3 0.125

4 7 8 1 0.125

(a) Determine the relative frequencies for each interval.

(b) Determine the absolute frequencies.
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Exercise 2.4 A university survey was conducted on 500 first-year students to obtain

knowledge about the size of their accommodation (in square metres).

j Size of accommodation (m2)

e j−1 ≤ x ≤ e j

F(x)

1 8–14 0.25

2 14–22 0.40

3 22–34 0.75

4 34–50 0.97

5 50–82 1.00

(a) Determine the absolute frequencies for each category.

(b) What proportion of people live in a flat of at least 34 m2?

Exercise 2.5 Consider a survey in which 100 people were asked to rate on a scale

from 1 to 10 how much they agree with the statement that “there is too much football

on television”. The results are summarized below:

Score 0 1 2 3 4 5 6 7 8 9 10

Responses 0 1 3 8 8 27 30 11 6 4 2

(a) Calculate and draw the ECDF of the scores.

(b) Determine F(3) and F(9).

(c) Consider the situation, where the data is summarized in the two categories “dis-

agree” (score ≤ 5) and “agree” (score > 5). What would the ECDF look like

under the approach outlined in (2.11)? Determine F(3) and F(9) for the sum-

marized data.

(d) Explain the differences between (b) and (c).

Exercise 2.6 It is possible to produce professional graphics in R. However, it is

advantageous to go beyond the default options. To demonstrate this, consider Exam-

ple 2.1.3 about the pizza delivery data, which is described in Appendix A.4.

(a) Set the working directory in R (setwd()), read in the data (read.csv()), and

attach the data. Draw a histogram of the variable “temperature”. Type ?hist,

and view the options. Adjust the histogram so that you are satisfied with (i) axes

labelling, (ii) axes range, and (iii) colour. Now use the lines() command to

add a dashed vertical line at 65 ◦C (which is the minimum temperature the pizza

should have at the time of delivery).

(b) Consider a different approach, which constructs plots by means of multiple lay-

ers using ggplot2. You need an Internet connection to install the package using

the command install.packages(’ggplot2’). Browse through the help
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pages on http://docs.ggplot2.org/current/. Look specifically at the examples for

ggplot, qplot, scale_histogram, and scale_y_continuous. Try to

understand the roles of “aesthetics” and “geoms”. Now, after loading the library

via library(ggplot2), create a ggplot object for the pizza data, which declares

“temperature” to be the x-variable. Now add a layer with geom_histogram to

create a histogram with interval width of 2.5 and dark grey bars which are

50 % transparent. Change the y-axis labelling by adding the relevant layer using

scale_y_continuous. Plot the graph.

(c) Now create a normal bar chart for the variable “driver” in R. Type ?barplot

and ?par to see the options one can pass on to barchart() to adjust the graph.

Make the graph look good.

(d) Now create the same bar chart with ggplot2. Use qplot instead of ggplot

to create the plot. Use an option which makes each bar to consist of segments

relating to the day of delivery, so that one can see the number of deliveries by

driver to highlight during which days the drivers delivered most often. Browse

through “themes” and “scales” on the help page, and add layers that make the

background black and white and the bars on a grey scale.

→ Solutions to all exercises in this chapter can be found on p. 325

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,

Springer, Heidelberg

http://docs.ggplot2.org/current/


3Measures of Central Tendency and
Dispersion

A data set may contain many variables and observations. However, we are not always

interested in each of the measured values but rather in a summary which interprets the

data. Statistical functions fulfil the purpose of summarizing the data in a meaningful

yet concise way.

Example 3.0.1 Suppose someone from Munich (Germany) plans a holiday in

Bangkok (Thailand) during the month of December and would like to get infor-

mation about the weather when preparing for the trip. Suppose last year’s maximum

temperatures during the day (in degrees Celsius) for December 1–31 are as follows:

22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26,

25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29.

How do we draw conclusions from this data? Looking at the individual values gives

us a feeling about the temperatures one can experience in Bangkok, but it does not

provide us with a clear summary. It is evident that the average of these 31 values as

“Sum of all values/Total number of observations” (22 + 24 + · · · + 28 + 29)/31 =
26.48 is meaningful in the sense that we know what temperature to expect “on

average”. To choose the right clothing for the holidays, we may also be interested in

knowing the temperature range to understand the variability in temperature, which

is between 21 and 31 ◦C. Summarizing 31 individual values with only three numbers

(26.48, 21, and 31) will provide sufficient information to plan the holidays.

In this chapter, we focus on the most important statistical concepts to summarize

data: these are measures of central tendency and variability. The applications of each

measure depend on the scale of the variable of interest, see Appendix D.1 for a

detailed summary.

© Springer International Publishing Switzerland 2016

C. Heumann et al., Introduction to Statistics and Data Analysis,

DOI 10.1007/978-3-319-46162-5_3
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3.1 Measures of Central Tendency

A natural human tendency is to make comparisons with the “average”. For example,

a student scoring 40 % in an examination will be happy with the result if the average

score of the class is 25 %. If the average class score is 90 %, then the student may not

feel happy even if he got 70 % right. Some other examples of the use of “average”

values in common life are mean body height, mean temperature in July in some

town, the most often selected study subject, the most popular TV show in 2015, and

average income. Various statistical concepts refer to the “average” of the data, but

the right choice depends upon the nature and scale of the data as well as the objective

of the study. We call statistical functions which describe the average or centre of the

data location parameters or measures of central tendency.

3.1.1 Arithmetic Mean

The arithmetic mean is one of the most intuitive measures of central tendency.

Suppose a variable of size n consists of the values x1, x2, . . . , xn . The arithmetic

mean of this data is defined as

x̄ =
1

n

n
∑

i=1

xi . (3.1)

In informal language, we often speak of “the average” or just “the mean” when using

the formula (3.1).

To calculate the arithmetic mean for grouped data, we need the following fre-

quency table:

Class intervals a j a1 = e0 − e1 a2 = e1 − e2 … ak = ek−1 − ek

Absolute freq. n j n1 n2 … nk

Relative freq. f j f1 f2 … fk

Note that a1, a2, . . . , ak are the k class intervals and each interval a j ( j = 1, 2, . . . , k)

contains n j observations with
∑k

j=1 n j = n. The relative frequency of the j th class

is f j = n j/n and
∑k

j=1 f j = 1. The mid-value of the j th class interval is defined as

m j = (e j−1 + e j )/2, which is the mean of the lower and upper limits of the interval.

The weighted arithmetic mean for grouped data is defined as

x̄ =
1

n

k
∑

j=1

n j m j =
k

∑

j=1

f j m j . (3.2)
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Example 3.1.1 Consider again Example 3.0.1 where we looked at the temperature

in Bangkok during December. The measurements were

22, 24, 21, 22, 25, 26, 25, 24, 23, 25, 25, 26, 27, 25, 26,

25, 26, 27, 27, 28, 29, 29, 29, 28, 30, 29, 30, 31, 30, 28, 29 .

The arithmetic mean is therefore

x̄ =
22 + 24 + 21 + · · · + 28 + 29

31
= 26.48 ◦C.

In R, the arithmetic mean can be calculated using the mean command:

weather <- c(22,24,21,,30,28,29)

mean(weather)

[1] 26.48387

Let us assume the data in Example 3.0.1 is summarized in categories as

follows:

Class intervals < 20 (20 − 25] (25, 30] (30, 35] > 35

Absolute frequencies n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

Relative frequencies f1 = 0 f2 = 12
31

f3 = 18
31

f4 = 1
31

f5 = 0

We can calculate the (weighted) arithmetic mean as

x̄ =
k

∑

j=1

f j m j = 0 +
12

31
· 22.5 +

18

31
· 27.5 +

1

31
32.5 + 0 ≈ 25.7.

In R, we use the weighted.mean function to obtain the result. The function requires

to specify the (hypothesized) means for each group, for example the middle values

of the class intervals, as well as the weights.

weighted.mean(c(22.5,27.5,32.5),c(12/31,18/31,1/31))

Interestingly, the results of the mean and the weighted mean differ. This is because

we use the middle of each class as an approximation of the mean within the class. The

implication is that we assume that the values are uniformly distributed within each

interval. This assumption is obviously not met. If we had knowledge about the mean

in each class, like in this example, we would obtain the correct result as follows:

x̄ =
k

∑

j=1

f j x̄ j = 0 +
12

31
· 23.83333 +

18

31
· 28 +

1

31
32.5 + 0 = 26.48387.

However, the weighted mean is meant to estimate the arithmetic mean in those

situations where only grouped data is available. It is therefore typically used to

obtain an approximation of the true mean.
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Properties of the Arithmetic Mean.

(i) The sum of the deviations of each variable around the arithmetic mean is zero:

n
∑

i=1

(xi − x̄) =
n

∑

i=1

xi − nx̄ = nx̄ − nx̄ = 0. (3.3)

(ii) If the data is linearly transformed as yi = a + bxi , where a and b are known

constants, it holds that

ȳ =
1

n

n
∑

i=1

yi =
1

n

n
∑

i=1

(a + bxi ) =
1

n

n
∑

i=1

a +
b

n

n
∑

i=1

xi = a + bx̄ . (3.4)

Example 3.1.2 Recall Examples 3.0.1 and 3.1.1 where we considered the tempera-

tures in December in Bangkok. We measured them in degrees Celsius, but someone

from the USA might prefer to know them in degrees Fahrenheit. With a linear trans-

formation, we can create a new temperature variable as

Temperature in ◦F = 32 + 1.8 Temperature in ◦C.

Using ȳ = a + bx̄ , we get ȳ = 32 + 1.8 · 26.48 ≈ 79.7 ◦F.

3.1.2 Median and Quantiles

The median is the value which divides the observations into two equal parts such

that at least 50 % of the values are greater than or equal to the median and at least

50 % of the values are less than or equal to the median. The median is denoted by

x̃0.5; then, in terms of the empirical cumulative distribution function, the condition

F(x̃0.5) = 0.5 is satisfied. Consider the n observations x1, x2, . . . , xn which can

be ordered as x(1) ≤ x(2) ≤ · · · ≤ x(n). The calculation of the median depends on

whether the number of observations n is odd or even. When n is odd, then x̃0.5 is the

middle ordered value. When n is even, then x̃0.5 is the arithmetic mean of the two

middle ordered values:

x̃0.5 =
{

x((n+1)/2) if n is odd
1
2
(x(n/2) + x(n/2+1)) if n is even.

(3.5)

Example 3.1.3 Consider again Examples 3.0.1–3.1.2 where we evaluated the tem-

perature in Bangkok in December. The ordered values x(i), i = 1, 2, . . . , 31, are as

follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31

(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31



3.1 Measures of Central Tendency 41

We have n = 31, and therefore x̃0.5 = x((n+1)/2) = x((31+1)/2) = x(16) = 26. There-

fore, at least 50 % of the 31 observations are greater than or equal to 26 and at least

50 % are less than or equal to 26. If one value was missing, let us say the last observa-

tion, then the median would be calculated as 1
2
(x(30/2) + x(30/2+1)) = 1

2
(26 + 26) =

26. In R, we would have obtained the results using the median command:

median(weather)

If we deal with grouped data, we can calculate the median under the assumption

that the values within each class are equally distributed. Let K1, K2, . . . , Kk be

k classes with observations of size n1, n2, . . . , nk , respectively. First, we need to

determine which class is the median class, i.e. the class that includes the median. We

define the median class as the class Km for which

m−1
∑

j=1

f j < 0.5 and

m
∑

j=1

f j ≥ 0.5 (3.6)

hold. Then, we can determine the median as

x̃0.5 = em−1 +
0.5 −

∑m−1
j=1 f j

fm

dm (3.7)

where em−1 denotes the lower limit of the interval Km and dm is the width of the

interval Km .

Example 3.1.4 Recall Example 3.1.1 where we looked at the grouped temperature

data:

Class intervals <20 (20–25] (25, 30] (30, 35] >35

n j n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

f j f1 = 0 f2 = 12
31

f3 = 18
31

f4 = 1
31

f5 = 0
∑

j f j 0 12
31

30
31

1 1

For the third class (m = 3), we have

m−1
∑

j=1

f j =
12

31
< 0.5 and

m
∑

j=1

f j =
30

31
≥ 0.5.

We can therefore calculate the median as

x̃0.5 = em−1 +
0.5 −

∑m−1
j=1 f j

fm

dm = 25 +
0.5 − 12

31
18
31

· 5 ≈ 25.97.
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(d) Data with outliers

Fig. 3.1 Arithmetic mean and median for different data

Comparing the Mean with the Median. In the above examples, the mean and the

median turn out to be quite similar to each other. This is because we looked at data

which is symmetrically distributed around its centre, i.e. on average, we can expect

26 ◦C with deviations that are similar above and below the average temperature.

A similar example is given in Fig. 3.1a: we see that the raw data is summarized by

using ticks at the bottom of the graph and by using a kernel density estimator. The

mean and the median are similar here because the distribution of the observations

is symmetric around the centre. If we have skewed data (Fig. 3.1b), then the mean

and the median may differ. If the data has more than one centre, such as in Fig. 3.1c,

neither the median nor the mean has meaningful interpretations. If we have outliers

(Fig. 3.1d), then it is wise to use the median because the mean is sensitive to outliers.

These examples show that depending on the situation of interest either the mean, the

median, both or neither of them can be useful.
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Quantiles. Quantiles are a generalization of the idea of the median. The median is

the value which splits the data into two equal parts. Similarly, a quantile partitions

the data into other proportions. For example, a 25 %-quantile splits the data into two

parts such that at least 25 % of the values are less than or equal to the quantile and at

least 75 % of the values are greater than or equal to the quantile. In general, let α be a

number between zero and one. The (α × 100)%-quantile, denoted as x̃α , is defined as

the value which divides the data in proportions of (α × 100)% and (1 − α) × 100 %

such that at least α × 100 % of the values are less than or equal to the quantile and

at least (1 − α) × 100 % of the values are greater than or equal to the quantile. In

terms of the empirical cumulative distribution function, we can write F(x̃α) = α. It

follows immediately that for n observations, at least nα values are less than or equal

to x̃α and at least n(1 − α) observations are greater than or equal to x̃α . The median

is the 50 %-quantile x̃0.5. If α takes the values 0.1, 0.2, . . . , 0.9, the quantiles are

called deciles. If α · 100 is an integer number (e.g. α × 100 = 95), the quantiles are

called percentiles, i.e. the data is divided into 100 equal parts. If α takes the values

0.2, 0.4, 0.6, and 0.8, the quantiles are known as quintiles and they divide the data

into five equal parts. If α takes the values 0.25, 0.5, and 0.75, the quantiles are called

quartiles.

Consider n ordered observations x(1) ≤ x(2) ≤ · · · ≤ x(n). The α · 100 %-quantile

x̃α is calculated as

x̃α =

⎧

⎨

⎩

x(k) if nα is not an integer number,

choose k as the smallest integer > nα,
1
2
(x(nα) + x(nα+1)) if nα is an integer.

(3.8)

Example 3.1.5 Recall Examples 3.0.1–3.1.4 where we evaluated the temperature in

Bangkok in December. The ordered values x(i), i = 1, 2, . . . , 31 are as follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31

(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

To determine the quartiles, i.e. the 25, 50, and 75 % quantiles, we calculate nα as

31 · 0.25 = 7.75, 31 · 0.5 = 15.5, and 31 · 0.75 = 23.25. Using (3.8), it follows that

x̃0.25 = x(8) = 25, x̃0.5 = x(16) = 26,

x̃0.75 = x(24) = 29.

In R, we obtain the same results using the quantile function. The probs argument

is used to specify α. By default, the quartiles are reported.

quantile(weather)

quantile(weather, probs=c(0,0.25,0.5,0.75,1))

However, please note that R offers nine different ways to obtain quantiles, each

of which can be chosen by the type argument. See Hyndman and Fan (1996) for

more details.
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(a) QQ-plot for Luigi and Domenico
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(b) QQ-plot for Mario and Salvatore

Fig. 3.2 QQ-plots for the pizza delivery time for different drivers

3.1.3 Quantile–Quantile Plots (QQ-Plots)

If we plot the quantiles of two variables against each other, we obtain a Quantile–

Quantile plot (QQ-plot). This provides a simple summary of whether the distributions

of the two variables are similar with respect to their location or not.

Example 3.1.6 Consider again the pizza data which is described in Appendix A.4. We

may be interested in the delivery time for different drivers to see if their performance

is the same. Figure 3.2a shows a QQ-plot for the delivery time of driver Luigi and

the delivery time of driver Domenico. Each point refers to the α% quantile of both

drivers. If the point lies on the bisection line, then they are identical and we conclude

that the quantiles of the both drivers are the same. If the point is below the line, then

the quantile is higher for Luigi, and if the point is above the line, then the quantile is

lower for Luigi. So if all the points lie exactly on the line, we can conclude that the

distributions of both the drivers are the same. We see that all the reported quantiles

lie below the line, which implies that all the quantiles of Luigi have higher values

than those of Domenico. This means that not only on an average, but also in general,

the delivery times are higher for Luigi. If we look at two other drivers, as displayed

in Fig. 3.2b, the points lie very much on the bisection line. We can therefore conclude

that the delivery times of these two drivers do not differ much.

In R, we can generate QQ-plots by using the qqplot command:

qqplot()
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Fig. 3.3 Different patterns for a QQ-plot

As a summary, let us consider four important patterns:

(a) If all the pairs of quantiles lie (nearly) on a straight line at an angle of 45 % from

the x-axis, then the two samples have similar distributions (Fig. 3.3a).

(b) If the y-quantiles are lower than the x-quantiles, then the y-values have a ten-

dency to be lower than the x-values (Fig. 3.3b).

(c) If the x-quantiles are lower than the y-quantiles, then the x-values have a ten-

dency to be lower than the y-values (Fig. 3.3c).

(d) If the QQ-plot is like Fig. 3.3d, it indicates that there is a break point up to which

the y-quantiles are lower than the x-quantiles and after that point, the y-quantiles

are higher than the x-quantiles.

3.1.4 Mode

Consider a situation in which an ice cream shop owner wants to know which flavour

of ice cream is the most popular among his customers. Similarly, a footwear shop

owner may like to find out what design and size of shoes are in highest demand. To

answer this type of questions, one can use the mode which is another measure of

central tendency.

The mode x̄M of n observations x1, x2, . . . , xn is the value which occurs the

most compared with all other values, i.e. the value which has maximum absolute

frequency. It may happen that two or more values occur with the same frequency in

which case the mode is not uniquely defined. A formal definition of the mode is

x̄M = a j ⇔ n j = max {n1, n2, . . . , nk} . (3.9)

The mode is typically applied to any type of variable for which the number of different

values is not too large. If continuous data is summarized in groups, then the mode

can be used as well.

Example 3.1.7 Recall the pizza data set described in Appendix A.4. The pizza deliv-

ery service has three branches, in the East, West, and Centre, respectively. Suppose

we want to know which branch delivers the most pizzas. We find that most of the de-

liveries have been made in the West, see Fig. 3.4a; therefore the mode is x̄M = West.

Similarly, suppose we also want to find the mode for the categorized pizza deliv-

ery time: if we group the delivery time in intervals of 5 min, then we see that the

most frequent delivery time is the interval “30−35” min, see Fig. 3.4b. The mode is

therefore x̄M = [30, 35).
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(b) Histogram for grouped delivery time

Fig. 3.4 Results from the pizza data set

3.1.5 Geometric Mean

Consider n observations x1, x2, . . . , xn which are all positive and collected on a

quantitative variable. The geometric mean x̄G of this data is defined as

x̄G = n

√
√
√
√

n
∏

i=1

xi =
(

n
∏

i=1

xi

) 1
n

. (3.10)

The geometric mean plays an important role in fields where we are interested in

products of observations, such as when we look at percentage changes in quantities.

We illustrate its interpretation and use by looking at the average growth of a quantity

in the sense that we allow a starting value, such as a certain amount of money or a

particular population, to change over time. Suppose we have a starting value at some

baseline time point 0 (zero), which may be denoted as B0. At time t , this value may

have changed and we therefore denote it as Bt , t = 1, 2, . . . , T . The ratio of Bt and

Bt−1,

xt =
Bt

Bt−1
,

is called the t th growth factor. The growth rate rt is defined as

rt = ((xt − 1) · 100) %

and gives us an idea about the growth or decline of our value at time t . We can

summarize these concepts in the following table:
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Time Inventory Growth factor Growth rate

t Bt xt rt

0 B0 – –

1 B1 x1 = B1/B0 ((x1 − 1) · 100) %

2 B2 x2 = B2/B1 ((x2 − 1) · 100) %

.

.

.
.
.
.

.

.

.
.
.
.

T BT xT = BT /BT −1 ((xT − 1) · 100) %

We can calculate Bt (t = 1, 2, . . . , T ) by using the growth factors:

Bt = B0 · x1 · x2 · . . . · xt .

The average growth factor from B0 to BT is the geometric mean or geometric average

of the growth factors:

x̄G = T
√

x1 · x2 · . . . · xT

= T

√

B0 · x1 · x2 · . . . · xT

B0

= T

√

BT

B0
. (3.11)

Therefore, Bt at time t can be calculated as Bt = B0 · x̄ t
G .

Example 3.1.8 Suppose someone wants to deposit money, say e1000, in a bank.

The bank advisor proposes a 5-year savings plan with the following plan for interest

rates: 1 % in the first year, 1.5 % in the second year, 2.5 % in the third year, and 3 %

in the last 2 years. Now he would like to calculate the average growth factor and

average growth rate for the invested money. The concept of the geometric mean can

be used as follows:

Year Euro Growth factor Growth rate (%)

0 1000 – –

1 1010 1.01 1.0

2 1025.15 1.015 1.5

3 1050.78 1.025 2.5

4 1082.30 1.03 3.0

5 1114.77 1.03 3.0

The geometric mean is calculated as

x̄G = (1.01 · 1.015 · 1.025 · 1.03 · 1.03)
1
5 = 1.021968

which means that he will have on average about 2.2 % growth per year. The savings

after 5 years can be calculated as

e 1000 · 1.0219685 = e 1114.77.

It is easy to compare two different saving plans with different growth strategies using

the geometric mean.
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3.1.6 Harmonic Mean

The harmonic mean is typically used whenever different xi contribute to the mean

with a different weight wi , i.e. when we implicitly assume that the weight of each

xi is not one. It can be calculated as

x̄H =
w1 + w2 + · · · + wk
w1
x1

+ w2
x2

+ · · · + wk

xk

=
∑k

i=1 wi
∑k

i=1
wi

xi

. (3.12)

For example, when calculating the average speed, each weight relates to the rela-

tive distance travelled, ni/n, with speed xi . Using wi = ni/n and
∑

i wi =
∑

i ni/

n = 1, the harmonic mean can be written as

x̄H =
1

∑k
i=1

wi

xi

. (3.13)

Example 3.1.9 Suppose an investor bought shares worthe1000 for two consecutive

months. The price for a share was e50 in the first month and e200 in the second

month. What is the average purchase price? The number of shares purchased in

the first month is 1000/50 = 20. The number of shares purchased in the second

month is 1000/200 = 5. The total number of shares purchased is thus 20 + 5 = 25,

and the total investment is e2000. It is evident that the average purchase price is

2000/25 = e80. This is in fact the harmonic mean calculated as

x̄H =
1

0.5
50

+ 0.5
200

= 80

because the weight of each purchase is ni/n = 1000/2000 = 0.5. If the investment

was e1200 in the first month and e800 in the second month, then we could use the

harmonic mean with weights 1200/2000 = 0.6 and 800/2000 = 0.4, respectively,

to obtain the results.

3.2 Measures of Dispersion

Measures of central tendency, as introduced earlier, give us an idea about the loca-

tion where most of the data is concentrated. However, two different data sets may

have the same value for the measure of central tendency, say the same arithmetic

means, but they may have different concentrations around the mean. In this case, the

location measures may not be adequate enough to describe the distribution of the

data. The concentration or dispersion of observations around any particular value is

another property which characterizes the data and its distribution. We now introduce

statistical methods which describe the variability or dispersion of data.
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Example 3.2.1 Suppose three students Christine, Andreas, and Sandro arrive at dif-

ferent times in the class to attend their lectures. Let us look at their arrival time in

the class after or before the starting time of lecture, i.e. let us look how early or late

they were (in minutes).

Week 1 2 3 4 5 6 7 8 9 10

Christine 0 0 0 0 0 0 0 0 0 0

Andreas −10 +10 −10 +10 −10 +10 −10 +10 −10 +10

Sandro 3 5 6 2 4 6 8 4 5 7

We see that Christine always arrives on time (time difference of zero). Andreas arrives

sometimes 10 min early and sometimes 10 min late. However, the arithmetic mean of

both students is the same—on average, they both arrive on time! This interpretation

is obviously not meaningful. The difference between both students is the variability

in arrival times that cannot be measured with the mean or median. For this reason, we

need to introduce measures of dispersion (variability). With the knowledge of both

location and dispersion, we can give a much more nuanced comparison between the

different arrival times. For example, consider the third student Sandro. He is always

late; sometimes more, sometimes less. However, while on average he comes late, his

behaviour is more predictable than that of Andreas. Both location and dispersion are

needed to give a fair comparison.

Example 3.2.2 Consider another example in which a supplier for the car industry

needs to deliver 10 car doors with an exact width of 1.00 m. He supplies 5 doors with

a width of 1.05 m and the remaining 5 doors with a width of 0.95 m. The arithmetic

mean of all the 10 doors is 1.00 m. Based on the arithmetic mean, one may conclude

that all the doors are good but the fact is that none of the doors are usable as they will

not fit into the car. This knowledge can be summarized by a measure of dispersion.

The above examples highlight that the distribution of a variable needs to be char-

acterized by a measure of dispersion in addition to a measure of location (central

tendency). Now we introduce various measures of dispersion.

3.2.1 Range and Interquartile Range

Consider a variable X with n observations x1, x2, . . . , xn . Order these n observations

as x(1) ≤ x(2) ≤ · · · ≤ x(n). The range is a measure of dispersion defined as the

difference between the maximum and minimum value of the data as

R = x(n) − x(1). (3.14)

The interquartile range is defined as the difference between the 75th and 25th

quartiles as

dQ = x̃0.75 − x̃0.25. (3.15)

It covers the centre of the distribution and contains 50 % of the observations.
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Remark 3.2.1 Note that the interquartile range is defined as the interval [x̃0.25; x̃0.75]
in some literature. However, in line with most of the statistical literature, we define

the interquartile range to be a measure of dispersion, i.e. the difference between x̃0.75

and x̃0.25.

Example 3.2.3 Recall Examples 3.0.1–3.1.5 where we looked at the temperature in

Bangkok during December. The ordered values x(i), i = 1, . . . , 31, are as follows:

◦C 21 22 22 23 24 24 25 25 25 25 25 25 26 26 26 26

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
◦C 27 27 27 28 28 28 29 29 29 29 29 30 30 30 31

(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

We obtained the quantiles in Example 3.1.5 as x̃0.25 = 25 and x̃0.75 = 29. The in-

terquartile range is therefore dQ = 29 − 25 = 4, which means that 50 % of the data

is centred between 25 and 29 ◦C. The range is R = 31 − 21 = 10 ◦C, meaning that

the temperature is varying at most by 10 ◦C. In R, there are several ways to ob-

tain quartiles, minimum and maximum values, e.g. by using min, max, quantiles,

range, among others. All numbers can be easily obtained by the summary command

which we recommend using.

summary(weather)

3.2.2 Absolute Deviation, Variance, and Standard Deviation

Another measure of dispersion is the variance. The variance is one of the most

important measures in statistics and is needed throughout this book. We use the idea of

“absolute deviation” to give some more background and motivation for understanding

the variance as a measure of dispersion, followed by some examples.

Consider the deviations of n observations around a certain value “A” and combine

them together, for instance, via the arithmetic mean of all the deviations:

D =
1

n

n
∑

i=1

(xi − A). (3.16)

This measure has the drawback that the deviations (xi − A), i = 1, 2, . . . , n, can be

either positive or negative and, consequently, their sum can potentially be very small

or even zero. Using D as a measure of variability is therefore not a good idea since

D may be small even for a large variability in the data.
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Using absolute values of the deviations solves this problem, and we introduce the

following measure of dispersion:

D(A) =
1

n

n
∑

i=1

|xi − A|. (3.17)

It can be shown that the absolute deviation attains its minimum when A corresponds

to the median of the data:

D(x̃0.5) =
1

n

n
∑

i=1

|xi − x̃0.5|. (3.18)

We call D(x̃0.5) the absolute median deviation. When A = x̄ , we speak of the

absolute mean deviation given by

D(x̄) =
1

n

n
∑

i=1

|xi − x̄ |. (3.19)

Another solution to avoid the positive and negative signs of deviation in (3.16) is to

consider the squares of deviations xi − A, rather than using the absolute value. This

provides another measure of dispersion as

s2(A) =
1

n

n
∑

i=1

(xi − A)2 (3.20)

which is known as the mean squared error (MSE) with respect to A. The MSE

is another important measure in statistics, see Chap. 9, Eq. (9.4), for details. It can

be shown that s2(A) attains its minimum value when A = x̄ . This is the (sample)

variance

s̃2 =
1

n

n
∑

i=1

(xi − x̄)2. (3.21)

After expanding s̃2, we can write (3.21) as

s̃2 =
1

n

n
∑

i=1

x2
i − x̄2. (3.22)

The positive square root of the variance is called the (sample) standard deviation,

defined as

s̃ =

√
√
√
√

1

n

n
∑

i=1

(xi − x̄)2. (3.23)

The standard deviation has the same unit of measurement as the data whereas the

unit of the variance is the square of the units of the observations. For example, if X is

weight, measured in kg, then x̄ and s̃ are also measured in kg, while s̃2 is measured

in kg2 (which may be more difficult to interpret). The variance is a measure which

we use in other chapters to obtain measures of association between variables and to

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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draw conclusions from a sample about a population of interest; however, the standard

deviation is typically preferred for a descriptive summary of the dispersion of data.

The standard deviation measures how much the observations vary or how they

are dispersed around the arithmetic mean. A low value of the standard deviation

indicates that the values are highly concentrated around the mean. A high value of

the standard deviation indicates lower concentration of the observations around the

mean, and some of the observed values may even be far away from the mean. If there

are extreme values or outliers in the data, then the arithmetic mean is more sensitive

to outliers than the median. In such a case, the absolute median deviation (3.18) may

be preferred over the standard deviation.

Example 3.2.4 Consider again Example 3.2.1 where we evaluated the arrival times

of Christine, Andreas, and Sandro in their lecture. Using the arithmetic mean, we

concluded that both Andreas and Christine arrive on time, whereas Sandro is always

late; however, we saw that the variation of arrival times differs substantially among

the three students. To describe and quantify this variability formally, we calculate

the variance and absolute median deviation:

s̃2
C =

1

10

10
∑

i=1

(xi − x̄)2 =
1

10
((0 − 0)2 + · · · + (0 − 0)2) = 0

s̃2
A =

1

10

10
∑

i=1

(xi − x̄)2 =
1

10
((−10 − 0)2 + · · · + (10 − 0)2) ≈ 111.1

s̃2
S =

1

10

10
∑

i=1

(xi − x̄)2 =
1

10
((3 − 5)2 + · · · + (7 − 5)2) ≈ 3.3

D(x̃0.5,C ) =
1

10

n
∑

i=1

|xi − x̃0.5| = |0 − 0| + · · · + |0 − 0| = 0

D(x̃0.5,A) =
1

10

n
∑

i=1

|xi − x̃0.5| = | − 10 − 0| + · · · + |10 − 0| = 10

D(x̃0.5,S) =
1

10

n
∑

i=1

|xi − x̃0.5| = |3 − 5| + · · · + |7 − 5| = 1.4.

We observe that the variation/dispersion/variability is the lowest for Christine and

highest for Andreas. Both median absolute deviation and variance allow a comparison

between the two students. If we take the square root of the variance, we obtain the

standard deviation. For example, s̃S =
√

3.3 ≈ 1.8, which means that the average

difference of the observations from the arithmetic mean is 1.8.

In R, we can use the var command to calculate the variance. However, note

that R uses 1/(n − 1) instead of 1/n in calculating the variance. The idea behind

the multiplication by 1/(n − 1) in place of 1/n is discussed in Chap. 9, see also

Theorem 9.2.1.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Variance for Grouped Data. The variance for grouped data can be calculated using

s2
b =

1

n

k
∑

j=1

n j (a j − x̄)2 =
1

n

⎛

⎝

k
∑

j=1

n j a
2
j − nx̄2

⎞

⎠ =
1

n

k
∑

j=1

n j a
2
j − x̄2,

(3.24)

where a j is the middle value of the j th interval. However, when the data is artificially

grouped and the knowledge about the original ungrouped data is available, we can

also use the arithmetic mean of the j th class:

s2
b =

1

n

k
∑

j=1

n j (x̄ j − x̄)2. (3.25)

The two expressions (3.24) and (3.25) represent the variance between the different

classes, i.e. they describe the variability of the class specific means x̄ j , weighted by

the size of each class n j , around the overall mean x̄ . It is evident that the variance

within each class is not taken into account in these formulae. The variability of

measurements in each class, i.e. the variability of ∀xi ∈ K j , is another important

component to determine the overall variance in the data. It is therefore not surprising

that using only the between variance s̃2
b will underestimate the total variance and

therefore

s2
b ≤ s2. (3.26)

If the data within each class is known, we can use the Theorem of Variance

Decomposition (see p. 136 for the theoretical background) to determine the variance.

This allows us to represent the total variance as the sum of the variance between

the different classes and the variance within the different classes as

s̃2 =
1

n

k
∑

j=1

n j (x̄ j − x̄)2

︸ ︷︷ ︸

between

+
1

n

k
∑

j=1

n j s̃
2
j

︸ ︷︷ ︸

within

. (3.27)

In (3.27), s̃2
j is the variance of the j th class:

s̃2
j =

1

n j

∑

xi ∈K j

(xi − x̄ j )
2. (3.28)

The proof of (3.27) is given in Appendix C.1, p. 423.

Example 3.2.5 Recall the weather data used in Examples 3.0.1–3.2.3 and the grouped

data specified as follows:

Class intervals <20 (20–25] (25, 30] (30, 35] >35

n j n1 = 0 n2 = 12 n3 = 18 n4 = 1 n5 = 0

x̄ j – 23.83 28 31 –

s̃2
j – 1.972 2 0 –
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We know that x̄ = 26.48 and n = 31. The first step is to calculate the mean and

variances in each class using (3.28). We then obtain x̄ j and s2
j as listed above. The

within and between variances are as follows:

1

n

k
∑

j=1

n j s̃
2
j =

1

31
(12 · 1.972 + 18 · 2 + 1 · 0) ≈ 1.925

1

n

k
∑

j=1

n j (x̄ j − x̄)2 =
1

31
(12 · [23.83 − 26.48]2 + 18 · [28 − 26.48]2

+1 · [31 − 26.48]2) ≈ 4.71.

The total variance is therefore s̃2 ≈ 6.64. Estimating the variance using all 31 ob-

servations would yield the same results. However, it becomes clear that without

knowledge about the variance within each class, we cannot reliably estimate s̃2. In

the above example, the variance between the classes is 3 times lower than the total

variance which is a serious underestimation.

Linear Transformations. Let us consider a linear transformation yi = a + bxi

(b 
= 0) of the original data xi , (i = 1, 2, . . . , n). We get the arithmetic mean of

the transformed data as ȳ = a + bx̄ and for the variance:

s̃2
y =

1

n

n
∑

i=1

(yi − ȳ)2 =
b2

n

n
∑

i=1

(xi − x̄)2

= b2s̃2
x . (3.29)

Example 3.2.6 Let xi , i = 1, 2, . . . , n, denote measurements on time. These data

could have been recorded and analysed in hours, but we may be interested in a

summary in minutes. We can make a linear transformation yi = 60 xi . Then, ȳ = 60x̄

and s̃2
y = 602s̃2

x . If the mean and variance of the xi ’s have already been obtained, then

the mean and variance of the yi ’s can be obtained directly using these transformations.

Standardization. A variable is called standardized if its mean is zero and its variance

is 1. Standardization can be achieved by using the following transformation:

yi =
xi − x̄

s̃x

= −
x̄

s̃x

+
1

s̃x

xi = a + bxi . (3.30)

It follows that ȳ =
∑n

i=1(xi − x̄)/s̃x = 0 and s̃2
y =

∑n
i=1(xi − x̄)2/s̃2

x = 1. There

are many statistical methods which require standardization, see, for example,

Sect. 10.3.1 for details in the context of statistical tests.

Example 3.2.7 Let X be a variable which measures air pollution by using the concen-

tration of atmospheric particulate matter (in µg/m3). Suppose we have the following

10 measurements:

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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30 25 12 45 50 52 38 39 45 33.

We calculate x̄ = 36.9, s̃2
x = 136.09, and s̃x = 11.67. To get a standardized vari-

able Y , we transform all the observations xi ’s as

yi =
xi − x̄

s̃x

= −
x̄

s̃x

+
1

s̃x

xi = −
36.9

11.67
+

1

11.67
xi = −3.16 + 0.086xi .

Now y1 = −3.16 + 0.086 · 30 = −0.58, y2 = −3.16 + 0.086 · 25 = −1.01, . . .,

are the standardized observations. The scale command in R allows standard-

ization, and we can obtain the standardized observations corresponding to the

10 measurements as

air <- c(30,25,12,45,50,52,38,39,45,33)

scale(air)

Please note that the scale command uses 1/(n − 1) for calculating the variance,

as already outlined above. Thus, the results provided by scale are not identical to

those using (3.30).

3.2.3 Coefficient of Variation

Consider a situation where two different variables have arithmetic means x̄1 and x̄2

with standard deviations s̃1 and s̃2, respectively. Suppose we want to compare the

variability of hotel prices in Munich (measured in euros) and London (measured

in British pounds). How can we provide a fair comparison? Since the prices are

measured in different units, and therefore likely have arithmetic means which differ

substantially, it does not make much sense to compare the standard deviations di-

rectly. The coefficient of variation v is a measure of dispersion which uses both the

standard deviation and mean and thus allows a fair comparison. It is properly defined

only when all the values of a variable are measured on a ratio scale and are positive

such that x̄ > 0 holds. It is defined as

v =
s

x̄
. (3.31)

The coefficient of variation is a unit-free measure of dispersion. It is often used when

the measurements of two variables are different but can be put into relation by using a

linear transformation yi = bxi . It is possible to show that if all values xi of a variable

X are transformed into a variable Y with values yi = b · xi , b > 0, then v does not

change.
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Example 3.2.8 If we want to compare the variability of hotel prices in two selected

cities in Germany and England, we could calculate the mean prices, together with

their standard deviation. Suppose a sample of prices of say 100 hotels in two selected

cities in Germany and England is available and suppose we obtain the mean and

standard deviations of the two cities as x1 = e130, x2 = £230, s1 = e99, and s2 =
£212. Then, v1 = 99/130 ≈ 0.72 and v2 = 212/230 = 0.92. This indicates higher

variability in hotel prices in England. However, if the data distribution is skewed

or bimodal, then it may be wise not to choose the arithmetic mean as a measure of

central tendency and likewise the coefficient of variation.

3.3 Box Plots

So far we have described various measures of central tendency and dispersion. It can

be tedious to list those measures in summary tables. A simple and powerful graph

is the box plot which summarizes the distribution of a continuous (or sometimes an

ordinal) variable by using its median, quartiles, minimum, maximum, and extreme

values.

Figure 3.5a shows a typical box plot. The vertical length of the box is the in-

terquartile range dQ = x̃0.75 − x̃0.25, which shows the region that contains 50 % of

the data. The bottom end of the box refers to the first quartile, and the top end of the

box refers to the third quartile. The thick line in the box is the median. It becomes

immediately clear that the box indicates the symmetry of the data: if the median is

in the middle of the box, the data should be symmetric, otherwise it is skewed. The

whiskers at the end of the plot mark the minimum and maximum values of the data.

Looking at the box plot as a whole tells us about the data distribution and the range

and variability of observations. Sometimes, it may be advisable to understand which

values are extreme in the sense that they are “far away” from the centre of the distri-

bution. In many software packages, including R, values are defined to be extreme if

they are greater than 1.5 box lengths away from the first or third quartile. Sometimes,

they are called outliers. Outliers and extreme values are defined differently in some

software packages and books.

Median

1st Quartile

3rd Quartile

minimum

maximum

(a) Box plot without extreme values

Median

1st Quartile

3rd Quartile

extreme values

extreme values

(b) Box plot with extreme values
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The boxplot command in R draws a box plot. The range option controls whether

extreme values should be plotted, and if yes, how one wants to define such values.

boxplot(variable, range=1.5)

Example 3.3.1 Recall Examples 3.0.1–3.2.5 where we looked at the temperature in

Bangkok during December. We have already calculated the median (26◦C) and the

quartiles (25, 29◦C). The minimum and maximum values are 21◦C and 31◦C. The box

plot for this data is shown in Fig. 3.5a. One can see that the temperature distribution

is slightly skewed with more variability for lower temperatures. The interquartile

range is 4, and therefore, any value >29 + 4 × 1.5 = 35 or <25 − 4 × 1.5 = 19

would be an extreme value. However, there are no extreme values in the data.

Example 3.3.2 Consider again the pizza data described in Appendix A.4. We use R

to plot the box plot for the delivery time via boxplot(time) (Fig. 3.5b). We see

a symmetric distribution with a median delivery time of about 35 min. Most of the

deliveries took between 30 and 40 min. The extreme values indicate that there were

some exceptionally short and long delivery times.
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(b) Boxplot for pizza data

3.4 Measures of Concentration

A completely different concept used to describe a quantitative variable is the idea of

concentration. For a variable X , it summarizes the proportion of each observation

with respect to the sum of all observations
∑n

i=1 xi . Let us look at a simple example

to demonstrate its usefulness.
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Table 3.1 Concentration of

farmland: two different

situations

Farmer (i) xi (Area, in hectare)

1 20

2 20

3 20

4 20

5 20
∑5

i=1 xi = 100

Farmer (i) xi (Area, in hectare)

1 0

2 0

3 0

4 0

5 100
∑5

i=1 xi = 100

Example 3.4.1 Consider a village with 5 farms. Each farmer has a farm of a certain

size. How can we evaluate the land distribution? Do all farmers have a similar amount

of land or do one or two farmers have a big advantage because they have considerably

more space?

Table 3.1 shows two different situations: in the table on the left, we see an equal

distribution of land, i.e. each farmer owns 20 hectares of farmland. This means X is

not concentrated, rather it is equally distributed. A statistical function describing the

concentration could return a value of zero in such a case. Consider another extreme

where one farmer owns all the farmland and the others do not own anything, as shown

on the right side of Table 3.1. This is an extreme concentration of land: one person

owns everything and thus, we say the concentration is high. A statistical function

describing the concentration could return a value of one in such a case.

3.4.1 Lorenz Curve

The Lorenz curve is a popular method to display concentrations graphically. Con-

sider n observations x1, x2, . . . , xn of a variable X . Assume that all the observations

are positive. The sum of all the observations is
∑n

i=1 xi = nx̄ if the data is un-

grouped. First, we need to order the data: 0 ≤ x(1) ≤ x(2) ≤ · · · ≤ x(n). To plot the

Lorenz curve, we need

ui =
i

n
, i = 0, . . . , n, (3.32)

and

vi =
∑i

j=1 x( j)
∑n

j=1 x( j)

, i = 1, . . . , n; v0 := 0, (3.33)
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u0 = 0 u1 u2 u3 u4 u5 = 1

v0 = 0

v1

v2

v3

v4

v5 = 1

u0 = 0 u1 u2 u3 u4 u5 = 1

v0 = 0

v1

v2

v3

v4

v5 = 1

Fig. 3.5 Lorenz curves for no concentration (left) and some concentration (right)∗

where
∑i

j=1 x( j) is the cumulative total of observations up to the i th observation.

The idea is that vi describe the contribution of all values ≤ i in comparison with

the sum of all values. Plotting ui against vi for all i shows how much the sum of all

xi , for all observations ≤ i , contributes to the total sum. In other words, the point

(ui , vi ) says that ui · 100 % of observations contain vi · 100 % of the sum of all xi

less than or equal to i . Obviously, if all xi are identical, the Lorenz curve will be a

straight diagonal line, also known as the identity line or line of equality. If the xi

are of different sizes, then the Lorenz curve falls below the line of equality. This is

illustrated in the following example.

Example 3.4.2 Recall Example 3.4.1 where we looked at the distribution of farmland

among 5 farmers. On the upper panel of Table 3.1, we observed an equal distribution

of land among the farmers: x1 = 20, x2 = 20, x3 = 20, x4 = 20, and x5 = 20. We

obtain u1 = 1/5, u2 = 2/5, . . . , u5 = 1 and v1 = 20/100, v2 = 40/100, . . . , v5 =
1. This yields a Lorenz curve as displayed on the left side of Fig. 3.5: there is no

concentration. We can interpret each point. For example, (u2, v2) = (0.4, 0.4) means

that 40 % of farmers own 40 % of the land.

The lower panel of Table 3.1 describes the situation with strong concentration. For

this table, we obtain u1 = 1/5, u2 = 2/5, . . . , u5 = 1 and v1 = 0, v2 = 0, . . . , v5 =
1. Therefore, for example, 80 % of farmers own 0 % of the land which shows strong

inequality. Most often we do not have such extreme situations. In this case, the Lorenz

curve is bent towards the lower right corner of the plot, see the right side of Fig. 3.5.

We can plot the Lorenz curve in R using the Lc command in the library ineq.

The Lorenz curve for the left table of Example 3.4.1 is plotted in R as follows:

library(ineq)

x <- c(20,20,20,20,20)

plot(Lc(x))
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Fig. 3.6 Lorenz curve and

the Gini coefficient∗

ui−1 ui

vi−1

vi

F

Fi

We can use the same approach as above to obtain the Lorenz curve when we have

grouped data. We simply describe the contributions for each class rather than for

each observation and approximate the values in each class by using its mid-point.

More formally we can write:

ũi =
i

∑

j=1

f j , i = 1, 2, . . . , k; ũ0 := 0 (3.34)

and

ṽi =
∑i

j=1 f j a j
∑k

j=1 f j a j

=
∑i

j=1 n j a j

nx̄
, i = 1, 2, . . . , k; ṽ0 := 0. (3.35)

3.4.2 Gini Coefficient

We have seen in Sect. 3.4.1 that the Lorenz curve corresponds to the identity line, that

is the diagonal line of equality, for no concentration. When there is some concentra-

tion, then the curve deviates from this line. The amount of deviation depends on the

strength of concentration. Suppose we want to design a measure of concentration

which is 0 for no concentration and 1 for perfect (i.e. extreme) concentration. We can

simply measure the area between the Lorenz curve and the identity line and multiply

it by 2. For no concentration, the area will be zero and hence the measure will be

zero. If there is perfect concentration, then the curve will coincide with the axes, the

area will be close to 0.5, and twice the area will be close to one. The measure based

on such an approach is called the Gini coefficient:

G = 2 · F. (3.36)

Note that F is the area between the curve and the bisection or diagonal line.
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The Gini coefficient can be estimated by adding up the areas of the trapeziums Fi

as displayed in Fig. 3.6:

F =
n

∑

i=1

Fi − 0.5,

where

Fi =
ui−1 + ui

2
(vi − vi−1).

It can be shown that this corresponds to

G = 1 −
1

n

n
∑

i=1

(vi−1 + vi ), (3.37)

but the proof is omitted. The same formula can be used for grouped data except that

ṽ is used instead of v. Since

0 ≤ G ≤
n − 1

n
, (3.38)

one may prefer to use the standardized Gini coefficient

G+ =
n

n − 1
G, (3.39)

which takes a maximum value of 1.

Example 3.4.3 We return to our farmland example. Suppose we have 7 farmers with

farms of different sizes:

Farmer 1 2 3 4 5 6 7

Farmland size xi 20 14 59 9 36 23 3

Using the ordered values, we can calculate ui and vi using (3.32) and (3.33):

i x(i) ui vi

1 3 1
7

= 0.1429 3
164

= 0.0183

2 9 2
7

= 0.2857 12
164

= 0.0732

3 14 3
7

= 0.4286 26
164

= 0.1585

4 20 4
7

= 0.5714 46
164

= 0.2805

5 23 5
7

= 0.7143 69
164

= 0.4207

6 36 6
7

= 0.8571 105
164

= 0.6402

7 59 7
7

= 1.0000 164
164

= 1.0000
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Fig. 3.7 Lorenz curve for

Example 3.4.3∗
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The Lorenz curve is displayed in Fig. 3.7. Using this information, it is easy to

calculate the Gini coefficient:

G = 1 −
1

7
(0.0183 + [0.0183 + 0.0732] + [0.0732 + 0.1585] + [0.1585 + 0.2805]

+[0.2805 + 0.4207] + [0.4207 + 0.6402] + [0.6402 + 1]) = 0.402

We know that G = 0.4024 ≤ 6
7

= n−1
n

. To standardize the coefficient, we therefore

have to use (3.39):

G+ =
7

6
G =

7

6
· 0.4024 = 0.4695 .

In R, we can obtain the non-standardized Gini Coefficient using the ineq function

in the library ineq.

library(ineq)

farm <- c(20,14,59,9,36,23,3)

ineq(farm)
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3.5 Key Points and Further Issues

Note:

� A summary on how to descriptively summarize data is given in Appen-

dix D.1.

� The median is preferred over the arithmetic mean when the data distri-

bution is skewed or there are extreme values.

� If data of a continuous variable is grouped, and the original ungrouped

data is not known, additional assumptions are needed to calculate mea-

sures of central tendency and dispersion. However, in some cases, these

assumptions may not be satisfied, and the formulae provided may give

imprecise results.

� QQ-plots are not only descriptive summaries but can also be used to test

modelling assumptions, see Chap. 11.9 for more details.

� The distribution of a continuous variable can be easily summarized using

a box plot.

3.6 Exercises

Exercise 3.1 A hiking enthusiast has a new app for his smartphone which summa-

rizes his hikes by using a GPS device. Let us look at the distance hiked (in km) and

maximum altitude (in m) for the last 10 hikes:

Distance 12.5 29.9 14.8 18.7 7.6 16.2 16.5 27.4 12.1 17.5

Altitude 342 1245 502 555 398 670 796 912 238 466

(a) Calculate the arithmetic mean and median for both distance and altitude.

(b) Determine the first and third quartiles for both the distance and the altitude

variables. Discuss the shape of the distribution given the results of (a) and (b).

(c) Calculate the interquartile range, absolute median deviation, and standard de-

viation for both variables. What is your conclusion about the variability of the

data?

(d) One metre corresponds to approximately 3.28 ft. What is the average altitude

when measured in feet rather than in metres?

(e) Draw and interpret the box plot for both distance and altitude.

(f) Assume distance is measured as only short (5–15 km), moderate (15–20 km), and

long (20–30 km). Summarize the grouped data in a frequency table. Calculate

the weighted arithmetic mean under the assumption that the raw data is not

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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known. Determine the weighted median under the assumption that the values

within each class are equally distributed.

(g) What is the variance for the grouped data when the raw data is known, i.e. when

one has knowledge about the variance in each class? How does it compare with

the variance one obtains when the raw data is unknown?

(h) Use R to reproduce the results of (a), (b), (c), (e), and (f).

Exercise 3.2 A gambler notes down his wins and losses (in e) from playing 10

games of roulette in a casino.

Round 1 2 3 4 5 6 7 8 9 10

Won/Lost 200 600 −200 −200 −200 −100 −100 −400 0

(a) Assume x̄ = − e90 and s = e294.7881. What is the result of round 10?

(b) Determine the mode and the interquartile range.

(c) A different gambler plays 33 rounds of roulette. His results are x̄ = e12 and

s = e1000. Is it meaningful to compare the variability of results of the two

players by using the coefficient of variation? If yes, determine the coefficients

of variation; if no, why is a comparison not possible?

Exercise 3.3 A fashion boutique has summarized its daily sales of designer socks in

different groups: men’s socks, women’s socks, and children’s socks. Unfortunately,

the data for men’s socks was lost. Determine the missing values.

n Arithmetic mean Standard deviation

in e in e

Women’s wear 45 16
√

6

Men’s wear ? ? ?

Children’s wear 20 7.5
√

3

Total 100 15
√

19.55

Exercise 3.4 The number of members of a millionaires’ club were as follows:

Year 2011 2012 2013 2014 2015 2016

Members 23 24 27 25 30 28

(a) What is the average growth rate of the membership?

(b) Based on the results of (a), how many members would one expect in 2018?
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Fig. 3.8 QQ-plots

(c) The president of the club is interested in the number of members in 2025, the

year when his presidency ends. Would it make sense to predict the number of

members for 2025?

In 2015, the members invested e250 million on the stock market. 10 members

contributed 16% of the investment sum, 8 members contributed e60 million, 8

members contributede70 million, and another 4 members contributed the remaining

amount.

(d) Draw the Lorenz curve for this data.

(e) Calculate and interpret the standardized Gini coefficient.

Exercise 3.5 Consider the monthly salaries Y (in Swiss francs) of a well-reputed

software company, as well as the length of service (in months, X ), and gender (Z ).

Figure 3.8 shows the QQ-plots for both Y and X given Z . Interpret both graphs.

Exercise 3.6 There is no built-in function in R to calculate the mode of a variable.

Program such a function yourself. Hint: type ?table and ?names to recall the

functionality of these functions. Combine them in an intelligent way.

Exercise 3.7 Consider a country in which 90 % of the wealth is owned by 20 % of

the population, the so-called upper class. For simplicity, let us assume that the wealth

is distributed equally within this class.

(a) Draw the Lorenz curve for this country.

(b) Now assume a revolution takes place in the country and all members of the upper

class have to give away their wealth which is then distributed equally across the

remaining population. Draw the Lorenz curve for this scenario.

(c) What would the curve from (b) look like if the entire upper class left the country?
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Exercise 3.8 A bus route in the mountainous regions of Romania has a length of

418 km. The manager of the bus company serving the route wants his buses to finish

a trip within 8 h. The bus travels the first 180 km with an average speed of 48 km/h, the

next 117 km with an average speed of 37 km/h, and the last section with an average

speed of 52 km/h.

(a) What is the average speed with which the bus travels?

(b) Will the bus finish the trip in time?

Exercise 3.9 Four friends have a start-up company which sells vegan ice cream.

Their initial financial contributions are as follows:

Person 1 2 3 4

Contribution (in e) 800 10300 4700 2220

(a) Calculate and draw the Lorenz curve.

(b) Determine and interpret the standardized Gini coefficient.

(c) Does G+ change if each of the friends contributes only half the amount of

money? If yes, how much? If no, why not?

(d) Use R to draw the above Lorenz curve and to calculate the Gini coefficient.

Exercise 3.10 Recall the pizza delivery data which is described in Appendix A.4.

Use R to read in and analyse the data.

(a) Calculate the mean, median, minimum, maximum, first quartile, and third quar-

tile for all quantitative variables.

(b) Determine and interpret the 99 % quantile for delivery time and temperature.

(c) Write a function which calculates the absolute mean deviation. Use the function

to calculate the absolute mean deviation of temperature.

(d) Scale the delivery time and calculate the mean and variance for this variable.

(e) Draw a box plot for delivery time and temperature. The box plots should not

highlight extreme values.

(f) Use the cut command to create a new variable which summarizes delivery time

in steps of 10 min. Calculate the arithmetic mean of this variable.

(g) Reproduce the QQ-plots shown in Example 3.1.6.

→ Solutions to all exercises in this chapter can be found on p. 333

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,

Springer, Heidelberg



4Association of Two Variables

In Chaps. 2 and 3 we discussed how to analyse a single variable using graphs and

summary statistics. However, in many situations we may be interested in the interde-

pendence of two or more variables. For example, suppose we want to know whether

male and female students in a college have any preference between the subjects

mathematics and biology, i.e. if there is any evidence that male students prefer math-

ematics over biology and female students prefer biology over mathematics or vice

versa. Suppose we choose an equal number of male and female students and ask them

about their preferred subject. We expect that if there is no association between the

two variables “gender of student” (male or female) and “subject” (mathematics or

biology), then an equal proportion of male and female students should choose the sub-

jects biology and mathematics, respectively. Any difference in the proportions may

indicate a preference of males or females for a particular subject. Similarly, in another

example, we may want to find out whether female employees of an organization are

paid less than male employees or vice versa. Let us assume again that we choose

an equal number of male and female employees and assume further that the salary

is measured as a binary variable (low- versus high-salary group). We then expect

that if there is no gender discrimination, the number of male and female employees

in the lower- and higher-salary groups in the organization should be approximately

equal. In both examples, the variables considered are binary and nominal (although

the salary can also be seen as ordinal) and the data is summarized in terms of fre-

quency measures. There may, however, be situations in which we are interested in

associations between ordinal or continuous variables. Consider a data set in which

height, weight, and age of infants are given. Usually, the height and weight of infants

increase with age. Also, the height of infants increases with their weight and vice

versa. Clearly, there is an interrelation or association among the three variables. In

another example, two persons have to judge participants of a dance competition and

rank them according to their performance. Now if we want to learn about the fairness

in the judgment, we expect that both the judges give similar ranks to each candidate,
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i.e. both judges give high ranks to good candidates and low ranks to not so good

candidates. We are therefore interested in studying the association between the ranks

given by the two judges. In all these examples, the intention lies in measuring the

degree of association between two (or more) variables. We therefore need to study

different ways of measuring the association level for different types of variables. In

this chapter, we present measures and graphical summaries for the association of

two variables—dependent on their scale.

4.1 Summarizing the Distribution of Two Discrete Variables

When both variables are discrete, then it is possible to list all combinations of values

of the two variables and to count how often these combinations occur in the data.

Consider the salary example in the introduction to this chapter in which both the

variables were binary. There are four possible combinations of variable categories

(female and low-salary group, female and high-salary group, male and low-salary

group, and male and high-salary group). A complete description of the joint occur-

rence of these two variables can be given by counting, for each combination, the

number of units for which this combination is measured. In the following, we gen-

eralize this concept to two variables where each can have an arbitrary (but fixed)

number of values or categories.

4.1.1 Contingency Tables for Discrete Data

Suppose we have data on two discrete variables. This data can be described in a

two-dimensional contingency table.

Example 4.1.1 An airline conducts a customer satisfaction survey. The survey

includes questions about travel class and satisfaction levels with respect to different

categories such as seat comfort, in-flight service, meals, safety, and other indicators.

Consider the information on X , denoting the travel class (Economy = “E”, Business

= “B”, First = “F”), and “Y”, denoting the overall satisfaction with the flight on a

scale from 1 to 4 as 1 (poor), 2 (fair), 3 (good), and 4 (very good). A possible response

from 12 customers may look as follows:

Passenger number

i 1 2 3 4 5 6 7 8 9 10 11 12

Travel class E E E B E B F E E B E B

Satisfaction 2 4 1 3 1 2 4 3 2 4 3 3

We can calculate the absolute frequencies for each of the combination of observed

values. For example, there are 2 passengers (passenger numbers 3 and 5) who were
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Table 4.1 Contingency table for travel class and satisfaction

Overall rating of flight quality Total (row)

Poor Fair Good Very good

Travel class Economy

business

first

2 2 2 1 7

0 1 2 1 4

0 0 0 1 1

Total

(column)

2 3 4 3 12

flying in economy class and rated the flight quality as poor, there were no passengers

from both business class and first class who rated the flight quality as poor; there

were 2 passengers who were flying in economy class and rated the quality as fair

(2), and so on. Table 4.1 is a two-dimensional table summarizing this information.

Note that we not only summarize the joint frequency distribution of the two

variables but also the distributions of the individual variables. Summing up the rows

and columns of the table gives the respective frequency distributions. For example,

the last column of the table demonstrates that 7 passengers were flying in economy

class, 4 passengers were flying in business class and 1 passenger in first class.

Now we extend this example and discuss a general framework to summarize

the absolute frequencies of two discrete variables in contingency tables. We use

the following notations: Let x1, x2, . . . , xk be the k classes of a variable X and let

y1, y2, . . . , yl be the l classes of another variable Y . We assume that both X and Y

are discrete variables. It is possible to summarize the absolute frequencies ni j related

to (xi , y j ), i = 1, 2, . . . , k, j = 1, 2, . . . , l, in a k × l contingency table as shown

in Table 4.2.

Table 4.2 k × l contingency table

Y

y1 y j yl Total

(rows)

x1 n11 · · · n1 j · · · n1l n1+

x2 n21 · · · n2 j · · · n2l n2+
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

X xi ni1 · · · ni j · · · nil ni+
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xk nk1 · · · nk j · · · nkl nk+

Total

(columns)

n+1 · · · n+ j · · · n+l n
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We denote the sum of the i th row as ni+ =
∑l

j=1 ni j and the sum over the j th

column as n+ j =
∑k

i=1 ni j . The total number of observations is therefore

n =
k

∑

i=1

ni+ =
l

∑

j=1

n+ j =
k

∑

i=1

l
∑

j=1

ni j . (4.1)

Remark 4.1.1 Note that it is also possible to use the relative frequencies fi j = ni j/n

instead of the absolute frequencies ni j in Table 4.2, see Example 4.1.2.

4.1.2 Joint, Marginal, and Conditional Frequency Distributions

When the data on two variables are summarized in a contingency table, there are

several concepts which can help us in studying the characteristics of the data. For

example, how the values of both the variables behave jointly, how the values of

one variable behave when another variable is kept fixed etc. These features can be

studied using the concepts of joint frequency distribution, marginal frequency distri-

bution, and conditional frequency distribution. If relative frequency is used instead

of absolute frequency, then we speak of the joint relative frequency distribution, mar-

ginal relative frequency distribution, and conditional relative frequency distribution.

Definition 4.1.1 Using the notations of Table 4.2, we define the following:

The frequencies ni j represent the joint frequency distribution of X and Y .

The frequencies ni+ represent the marginal frequency distribution of X .

The frequencies n+ j represent the marginal frequency distribution of Y .

We define f
X |Y

i | j = ni j/n+ j to be the conditional frequency distribution of

X given Y = y j .

We define f
Y |X
j |i = ni j/ni+ to be the conditional frequency distribution of Y

given X = xi

The frequencies fi j represent the joint relative frequency distribution of X

and Y .

The frequencies fi+ =
∑l

j=1 fi j represent the marginal relative frequency

distribution of X .

The frequencies f+ j =
∑k

i=1 fi j represent the marginal relative frequency

distribution of Y .

We define f
X |Y

i | j = fi j/ f+ j to be the conditional relative frequency distrib-

ution of X given Y = y j .

We define f
Y |X
j |i = fi j/ fi+ to be the conditional relative frequency distribu-

tion of Y given X = xi .
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Table 4.3 Contingency table for travel class and satisfaction

Overall rating of flight quality

Poor Fair Good Very good Total (rows)

Travel class Economy 10 33 15 4 62

Business 0 3 20 2 25

First 0 0 5 8 13

Total

(columns)

10 36 40 14 100

Note that for a bivariate joint frequency distribution, there will only be two mar-

ginal (or relative) frequency distributions but possibly more than two conditional (or

relative) frequency distributions.

Example 4.1.2 Recall the setup of Example 4.1.1. We now collect and evaluate the

responses of 100 customers (instead of 12 passengers as in Example 4.1.1) regarding

their choice of the travel class and their overall satisfaction with the flight quality.

The data is provided in Table 4.3 where each of the cell entries illustrates how

many out of 100 passengers answered xi and y j : for example, the first entry “10”

indicates that 10 passengers were flying in economy class and described the overall

service quality as poor.

• The marginal frequency distributions are displayed in the last column and last row,

respectively. For example, the marginal distribution of X refers to the frequency

table of “travel class” (X ) and tells us that 62 passengers were flying in economy

class, 25 in business class, and 13 in first class. Similarly, the marginal distribution

of “overall rating of flight quality” (Y ) tells us that 10 passengers rated the quality

as poor, 36 as fair, 40 as good, and 14 as very good.

• The conditional frequency distributions give us an idea about the behaviour of one

variable when the other one is kept fixed. For example, the conditional distribution

of the “overall rating of flight quality” (Y ) among passengers who were flying

in economy class ( fY |X=Economy) gives f
Y |X
1|1 = 10/62 ≈ 16 % which means that

approximately 16 % of the customers in economy class are rating the quality as

poor, f
Y |X
2|1 = 33/62 ≈ 53 % of the customers in economy class are rating the

quality as fair, f
Y |X
3|1 = 15/62 ≈ 24 % of the customers in economy class are rating

the quality as good and f
Y |X
4|1 = 4/62 ≈ 7 % of the customers in economy class

are rating the quality as very good. Similarly, f
Y |X
3|2 = 20/25 ≈ 80 % which means

that 80 % of the customers in business class are rating the quality as good and

so on.

• The conditional frequency distribution of the “travel class” (X ) of passengers

given the “overall rating of flight quality” (Y ) is obtained by fX |Y=Satisfaction level.

For example, fX |Y=good gives f
X |Y

1|3 = 15/40 = 37.5 % which means that 37.5 %
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of the passengers who rated the flight to be good travelled in economy class,

f
X |Y

2|3 = 20/40 = 50 % of the passengers who rated the flight to be good travelled

in business class and f
X |Y

3|3 = 5/40 = 12.5 % of the passengers who rated the flight

to be good travelled in first class.

• In total, we have 100 customers and hence

n =
k

∑

i=1

ni+ = 62 + 25 + 13 =
l

∑

j=1

n+ j = 10 + 36 + 40 + 14

=
k

∑

i=1

l
∑

j=1

ni j = 10 + 33 + 15 + 4 + +3 + 20 + 2 + 5 + 8 = 100

• Alternatively, we can summarize X and Y using the relative frequencies as follows:

Overall rating of flight quality

Poor Fair Good Very good Total (rows)

Travel class Economy 10
100

33
100

15
100

4
100

62
100

Business 0 3
100

20
100

2
100

25
100

First 0 0 5
100

8
100

13
100

Total (columns) 10
100

36
100

40
100

14
100

1

To produce the frequency table without the marginal distributions, we can use

the R command table(X,Y). To obtain the full contingency table including the

marginal distributions in R, one can use the function addmargins(). For the relative

frequencies, the function prop.table() can be used. In summary, a full contingency

table is obtained by using

addmargins(table(X,Y))

addmargins(prop.table(table(X,Y)))

4.1.3 Graphical Representation of Two Nominal
or Ordinal Variables

Bar charts (see Sect. 2.3.1) can be used to graphically summarize the association

between two nominal or two ordinal variables. The bar chart is drawn for X and the

categories of Y are represented by separated bars or stacked bars for each category

of X . In this way, we summarize the joint distribution of the contingency table.

Example 4.1.3 Consider Example 4.1.2. There are 62 passengers flying in the econ-

omy class. From these 62 passengers, 10 rated the quality of the flight as poor, 33 as

fair, 15 as good, and 4 as very good. This means for X = x1(= Economy), we can

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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(a) Categories next to each other (b) Categories stacked

Fig. 4.1 Bar charts for travel class and rating of satisfaction

either place 4 bars next to each other, as in Fig. 4.1a, or we can stack them on top

of each other, as in Fig. 4.1b. The same can be done for the other categories of X ,

see Fig. 4.1. Stacked and stratified bar charts are prepared in R by calling the library

lattice and using the function bar chart. In detail, one needs to specify:

Class <- c(rep('1: Economy',62),rep('2: Business',25),

rep('3: First',13))

Rating <- c(rep('1=poor',10),rep('2=fair',33),...)

library(lattice)

barchart(table(Class,Rating),horizontal=FALSE,stack=FALSE)

barchart(table(Class,Rating),horizontal=FALSE,stack=TRUE)

Remark 4.1.2 There are several other options in R to specify stratified bar charts.

We refer the interested reader to Exercise 2.6 to explore how the R package ggplot2

can be used to make such graphics. Sometimes it can also be useful to visualize the

difference of two variables and not stack or stratify the bars, see Exercise 2.1.

Independence and Expected Frequencies An important statistical concept is inde-

pendence. In this section, we touch upon its descriptive aspects, see Chaps. 6

(Sect. 6.5) and 7 (Sect. 7.5) for more theoretical details. Two variables are considered

to be independent if the observations on one variable do not influence the observa-

tions on the other variable. For example, suppose two different persons roll a die

separately; then, the outcomes of their rolls do not depend on each other. So we

can say that the two observations are independent. In the context of contingency

tables, two variables are independent of each other when the joint relative frequency

equals the product of the marginal relative frequencies of the two variables, i.e. the

http://dx.doi.org/10.1007/978-3-319-46162-5_6
http://dx.doi.org/10.1007/978-3-319-46162-5_6
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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Table 4.4 Observed and expected absolute frequencies for the airline survey

Overall rating of flight quality

Poor Fair Good Very good Total

Travel Economy 10 (6.2) 33 (22.32) 15 (24.8) 4 (8.68) 62

class Business 0 (2.5) 3 (9.0) 20 (10.0) 2 (3.5) 25

First 0 (1.3) 0 (4.68) 5 (5.2) 8 (1.82) 13

Total 10 36 40 14 100

following equation holds:

fi j = fi+ f+ j . (4.2)

The expected absolute frequencies under independence are obtained by

ñi j = n fi j = n
ni+
n

n+ j

n
=

ni+n+ j

n
. (4.3)

Note that the absolute frequencies are always integers but the expected absolute

frequencies may not always be integers.

Example 4.1.4 Recall Example 4.1.2. The expected absolute frequencies for the

contingency table can be calculated using (4.3). For example,

ñ11 =
62 · 10

100
= 6.2, ñ12 =

62 · 36

100
= 22.32 etc.

Table 4.4 lists both the observed absolute frequency and expected absolute frequency

(in brackets).

To calculate the expected absolute frequencies in R, we can access the “expected”

object returned from a χ
2-test applied to the respective contingency table as follows:

chisq.test(table(Class,Rating))$expected

A detailed motivation and explanation of this command is given in Sect. 10.8.

4.2 Measures of Association for Two Discrete Variables

When two variables are not independent, then they are associated. Their association

can be weak or strong. Now we describe some popular measures of association.

Measures of association describe the degree of association between two variables

and can have a direction as well. Note that if variables are defined on a nominal scale,

then nothing can be said about the direction of association, only about the strength.

Let us first consider a 2 × 2 contingency table which is a special case of a k × l

contingency table, see Table 4.5.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Table 4.5 2 × 2 contingency table

Y

y1 y2 Total (row)

x1 a b a + b

X x2 c d c + d

Total (column) a + c b + d n

Table 4.6 2 × 2 contingency table

Persons

Not affected Affected Total (row)

Vaccinated 90 10 100

Vaccination Not vaccinated 40 60 100

Total (column) 130 70 200

The variables X and Y are independent if

a

a + c
=

b

b + d
=

a + b

n
(4.4)

or equivalently if

a =
(a + b)(a + c)

n
. (4.5)

Note that some other forms of the conditions (4.4)–(4.5) can also be derived in

terms of a, b, c, and d.

Example 4.2.1 Suppose a vaccination against flu (influenza) is given to 200 persons.

Some of the persons may get affected by flu despite the vaccination. The data is

summarized in Table 4.6. Using the notations of Table 4.5, we have a = 90, b =
10, c = 40, d = 60, and thus, (a + b)(a + c)/n = 100 · 130/200 = 65 which is less

than a = 90. Hence, being affected by flu is not independent of the vaccination,

i.e. whether one is vaccinated or not has an influence on getting affected by flu.

In the vaccinated group, only 10 of 100 persons are affected by flu while in the

group not vaccinated 60 of 100 persons are affected. Another interpretation is that

if independence holds, then we would expect 65 persons to be not affected by flu in

the vaccinated group but we observe 90 persons. This shows that vaccination has a

protective effect.

To gain a better understanding about the strength of association between two

variables, we need to develop the concept of dependence and independence further.

The following three subsections illustrate this in more detail.
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4.2.1 Pearson’s χ
2 Statistic

We now introduce Pearson’s χ
2 statistic which is used for measuring the association

between variables in a contingency table and plays an important role in the construc-

tion of statistical tests, see Sect. 10.8. The χ
2 statistic or χ

2 coefficient for a k × l

contingency table is given as

χ
2 =

k
∑

i=1

l
∑

j=1

(

ni j − ñi j

)2

ñi j

=
k

∑

i=1

l
∑

j=1

(

ni j − ni+n+ j
n

)2

ni+n+ j
n

. (4.6)

A simpler formula for 2 × 2 contingency tables is

χ
2 =

n(ad − bc)2

(a + b)(c + d)(a + c)(b + d)
. (4.7)

The idea behind the χ
2 coefficient is that when the relationship between two

variables is stronger, then the deviations between observed and expected frequencies

are expected to be higher (because the expected frequencies are calculated assuming

independence) and this indicates a stronger relationship between the two variables. If

observed and expected frequencies are identical or similar, then this is an indication

that the association between the two variables is weak and the variables may even be

independent. The χ
2 statistic for a k × l contingency table sums up all the differences

between the observed and expected frequencies, squares them, and scales them with

respect to the expected frequencies. The squaring of the difference makes the statistic

independent of the positive and negative signs of the difference between observed

and expected frequencies. The range of values for χ
2 is

0 ≤ χ
2 ≤ n(min(k, l) − 1). (4.8)

Note that min(k, l) is the minimum function and simply returns the smaller of the

two numbers k and l. For example, min(3, 4) returns the value 3. Consequently the

values of χ
2 obtained from (4.6) can be compared with the range from (4.8). A

value of χ
2 close to zero indicates a weak association and a value of χ

2 close to

n(min(k, l) − 1) indicates a strong association between the two variables. Note that

the range of χ
2 depends on n, k and l, i.e. the sample size and the dimension of the

contingency table.

The χ
2 statistic is a symmetric measure in the sense that its value does not depend

on which variable is defined as X and which as Y .

Example 4.2.2 Consider Examples 4.1.2 and 4.1.4. Using the values from Table 4.4,

we can calculate the χ
2 statistic as

χ
2 =

(10 − 6.2)2

6.2
+

(33 − 22.32)2

22.32
+ · · · +

(8 − 1.82)2

1.82
= 57.95064

The maximum possible value for the χ
2 statistic is 100(min(4, 3) − 1) = 200. Thus,

χ
2 ≈ 57 indicates a moderate association between “travel class” and “overall rating

of flight quality” of the passengers. In R, we obtain this result as follows:

chisq.test(table(Class,Rating))$statistic

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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4.2.2 Cramer’s V Statistic

A problem with Pearson’s χ
2 coefficient is that the range of its maximum value

depends on the sample size and the size of the contingency table. These values

may vary in different situations. To overcome this problem, the coefficient can be

standardized to lie between 0 and 1 so that it is independent of the sample size as well

as the dimension of the contingency table. Since n(min(k, l) − 1) was the maximal

value of the χ
2 statistic, dividing χ

2 by this maximal value automatically leads to a

scaled version with maximal value 1. This idea is used by Cramer’s V statistic which

for a k × l contingency table is given by

V =

√

χ2

n(min(k, l) − 1)
. (4.9)

The closer the value of V gets to 1, the stronger the association between the two

variables.

Example 4.2.3 Consider Example 4.2.2. The obtained χ
2 statistic is 57.95064. To

obtain Cramer’s V , we just need to calculate

V =

√

χ2

n(min(k, l) − 1)
=

√

57.95064

100(3 − 1)
≈ 0.54. (4.10)

This indicates a moderate association between “travel class” and “overall rating of

flight quality” because 0.54 lies in the middle of 0 and 1. In R, there are two options

to calculate V : (i) to calculate the χ
2 statistic and then adjust it as in (4.9), (ii) to use

the functions assocstats and xtabs contained in the package vcd as follows:

library(vcd)

assocstats(xtabs(∼Class+Rating))

4.2.3 Contingency Coefficient C

Another option to standardize χ
2 is given by a corrected version of Pearson’s con-

tingency coefficient:

Ccorr =
C

Cmax
=

√

min(k, l)

min(k, l) − 1

√

χ2

χ2 + n
, (4.11)

with

C =

√

χ2

χ2 + n
and Cmax =

√

min(k, l) − 1

min(k, l)
. (4.12)

It always lies between 0 and 1. The closer the value of C is to 1, the stronger the

association.
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Example 4.2.4 We know from Example 4.2.2 that the χ
2 statistic for travel class and

satisfaction level is 57.95064. To calculate Ccorr, we need the following calculations:

C =
√

57.95064

57.95064 + 100
= 0.606, Cmax =

√

min(4, 3) − 1

min(4, 3)
=

√

2

3
= 0.816,

Ccorr =
C

Cmax
=

0.606

0.816
≈ 0.74 .

There is a moderate to strong association between “travel class” and “overall rating

of flight quality” of the passengers. We can compute C in R using the vcd package

as follows:

library(vcd)

Cmax = sqrt((min(c(3,4))-1)/min(c(3,4)))

assocstats(xtabs(∼Class+Rating))$cont/Cmax

4.2.4 Relative Risks and Odds Ratios

We now introduce the concepts of odds ratios and relative risks. Consider a 2 × 2

contingency table as introduced in Table 4.5. Now suppose we have two variables

X and Y with their conditional distributions f
X |Y

i | j and f
Y |X
j |i . In the context of a

2 × 2 contingency table, f
X |Y

1|1 = n11/n+1, f
X |Y

1|2 = n12/n+2, f
X |Y

2|2 = n22/n+2, and

f
X |Y

2|1 = n21/n+1. The relative risks are defined as the ratio of two conditional dis-

tributions, for example

f
X |Y

1|1

f
X |Y

1|2
=

n11/n+1

n12/n+2
=

a/(a + c)

b/(b + d)
and

f
X |Y

2|1

f
X |Y

2|2
=

n21/n+1

n22/n+2
=

c/(a + c)

d/(b + d)
. (4.13)

The odds ratio is defined as the ratio of these relative risks from (4.13) as

O R =
f

X |Y
1|1 / f

X |Y
1|2

f
X |Y

2|1 / f
X |Y

2|2
=

f
X |Y

1|1 f
X |Y

2|2

f
X |Y

2|1 f
X |Y

1|2
=

a d

b c
. (4.14)

Alternatively, the odds ratio can be defined as the ratio of the chances for “disease”,

a/b (number of smokers with the disease divided by the number of non-smokers

with the disease), and no disease, c/d (number of smokers with no disease divided

by the number of non-smokers with no disease).

The relative risks compare proportions, while the odds ratio compares odds.
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Example 4.2.5 A classical example refers to the possible association of smoking

with a particular disease. Consider the following data on 240 individuals:

Smoking Total (row)

Yes No

Disease Yes 34 66 100

No 22 118 140

Total (column) 56 184 240

We calculate the following relative risks:

f
X |Y

1|1

f
X |Y

1|2
=

34/56

66/184
≈ 1.69 and

f
X |Y

2|1

f
X |Y

2|2
=

22/56

118/184
≈ 0.61 . (4.15)

Thus, the proportion of individuals with the disease is 1.69 times higher among

smokers when compared with non-smokers. Similarly, the proportion of healthy

individuals is 0.61 times smaller among smokers when compared with non-smokers.

The relative risks are calculated to compare the proportion of sick or healthy

patients between smokers and non-smokers. Using these two relative risks, the odds

ratio is obtained as

O R =
34 × 118

66 × 22
= 2.76.

We can interpret this outcome as follows: (i) the chances of smoking are 2.76 times

higher for individuals with the disease compared with healthy individuals (follows

from definition (4.14)). We can also say that (ii) the chances of having the particular

disease is 2.76 times higher for smokers compared with non-smokers. If we inter-

change either one of the “Yes” and “No” columns or the “Yes” and “No” rows, we

obtain O R = 1/2.76 ≈ 0.36, giving us further interpretations: (iii) the chances of

smoking are 0.36 times lower for individuals without disease compared with indi-

viduals with the disease, and (iv) the chance of having the particular disease is 0.36

times lower for non-smokers compared with smokers. Note that all four interpreta-

tions are correct and one needs to choose the right interpretation in the light of the

experimental situation and the question of interest.

4.3 Association Between Ordinal and Continuous Variables

4.3.1 Graphical Representation of Two Continuous Variables

A simple way to graphically summarize the association between two continuous

variables is to plot the paired observations of the two variables in a two-dimensional

coordinate system. If n paired observations for two continuous variables X and Y

are available as (xi , yi ), i = 1, 2, . . . , n, then all such observations can be plotted
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rBravais−Pearson =0.91, rSpearman =0.87

X

Y

(a) Strong positive linear relationship
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(d) Moderate negative relationship

Fig. 4.2 Scatter plots

in a single graph. This graph is called a scatter plot. Such a plot reveals possible

relationships and trends between the two variables. For example, Figs. 4.2 and 4.3

show scatter plots with six different types of association.

• Figure 4.2a shows increasing values of Y for increasing values of X . We call this

relationship positive association. The relationship between X and Y is nearly linear

because all the points lie around a straight line.

• Figure 4.2b shows decreasing values of Y for increasing values of X . We call this

relationship negative association.

• Figure 4.2c tells us the same as Fig. 4.2a, except that the positive association is

weaker.
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rBravais−Pearson =0.03, rSpearman =−0.01

X

Y

(a) No clear relationship

rBravais−Pearson =0.64, rSpearman =0.99

X

Y
(b) Nonlinear relationship

Fig. 4.3 Continues Fig. 4.2—more scatter plots

• Figure 4.2d tells us the same as Fig. 4.2b, except that the negative association is

weaker.

• Figure 4.3a shows that as the X -values increase, the values of Y neither increase

nor decrease. This indicates that there is no clear relationship between X and Y

and highlights the lack of association between X and Y .

• Figure 4.3b illustrates a nonlinear relationship between X - and Y -values.

Example 4.3.1 To explore the possible relationship between the overall number of

tweets with the number of followers on Twitter, we take a sample of 10 prime

ministers and heads of state in different countries as of June 2014 and obtain the

following data:

Name Tweets Followers

Angela Merkel 25 7194

Barack Obama 11,800 43,400,000

Jacob Zuma 99 324,000

Dilma Rousseff 1934 2,330,000

Sauli Niinistö 199 39,000

Vladimir Putin 2539 189,000

Francois Hollande 4334 639,000

David Cameron 952 688,000

Enrique P. Nieto 3245 2,690,000

John Key 2468 110,000

The tweets are denoted by xi and the followers are denoted by yi , i = 1, 2, . . . , 10.

We plot paired observations (xi , yi ) into a cartesian coordinate system. For example,

we plot (x1, y1) = (25, 7194) for Angela Merkel, (x2, y2) = (11, 800, 43, 400, 000)
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Fig. 4.4 Scatter plot

between tweets and followers

Tweets

F
o

llo
w

e
rs

0 2500 5000 7500 10000 12500

5000

10
5

10
6

10
7

10
8

5 × 10
8

for Barack Obama, and so on. Figure 4.4 shows the scatter plot for the number of

tweets and the number of followers (on a log-scale).

One can see that there is a positive association between the number of tweets and

the number of followers. This does, however, not imply a causal relationship: it is

not necessarily because someone tweets more he/she has more followers or because

someone has more followers he/she tweets more; the scatter plot just describes that

those with more tweets have more followers. In R, we produce this scatter plot by

the plot command:

tweets <- c(25,11800,99,...)

followers <- c(7194,43400000,...)

plot(tweets,followers)

4.3.2 Correlation Coefficient

Suppose two variables X and Y are measured on a continuous scale and are linearly

related like Y = a + b X where a and b are constant values. The correlation coef-

ficient r(X, Y ) = r measures the degree of linear relationship between X and Y

using

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n
i=1(xi − x̄)2 ·

∑n
i=1(yi − ȳ)2

=
Sxy

√

Sxx Syy

, (4.16)

with

Sxx =
n

∑

i=1

(xi − x̄)2 = ns̃2
X , Syy =

n
∑

i=1

(yi − ȳ)2 = ns̃2
Y , (4.17)

and

Sxy =
n

∑

i=1

(xi − x̄)(yi − ȳ) =
n

∑

i=1

xi yi − nx̄ ȳ . (4.18)
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Karl Pearson (1857–1936) presented the first rigorous treatment of correlation and

acknowledged Auguste Bravais (1811–1863) for ascertaining the initial mathemati-

cal formulae for correlation. This is why the correlation coefficient is also known as

the Bravais–Pearson correlation coefficient.

The correlation coefficient is independent of the units of measurement of X and

Y . For example, if someone measures the height and weight in metres and kilograms

respectively and another person measures them in centimetres and grams, respec-

tively, then the correlation coefficient between the two sets of data will be the same.

The correlation coefficient is symmetric, i.e. r(X, Y ) = r(Y, X). The limits of r are

−1 ≤ r ≤ 1. If all the points in a scatter plot lie exactly on a straight line, then the

linear relationship between X and Y is perfect and |r | = 1, see also Exercise 4.7. If

the relationship between X and Y is (i) perfectly linear and increasing, then r = +1

and (ii) perfectly linear and decreasing, then r = −1. The signs of r thus determine

the direction of the association. If r is close to zero, then it indicates that the variables

are independent or the relationship is not linear. Note that if the relationship between

X and Y is nonlinear, then the degree of linear relationship may be low and r is then

close to zero even if the variables are clearly not independent. Note that r(X, X) = 1

and r(X, −X) = −1.

Example 4.3.2 Look again at the scatter plots in Figs. 4.2 and 4.3. We observe strong

positive linear correlation in Fig. 4.2a (r = 0.91), strong negative linear correlation

in Fig. 4.2b (r = −0.92), moderate positive linear correlation in Fig. 4.2c (r = 0.50),

moderate negative linear association in Fig. 4.2d (r = −0.56), no visible correlation

in Fig. 4.3a (r = 0.03), and strong nonlinear (but not so strong linear) correlation in

Fig. 4.3b (r = 0.64).

Example 4.3.3 In a decathlon competition, a group of athletes are competing with

each other in 10 different track and field events. Suppose we are interested in how

the results of the 100-m race relate to the results of the long jump competition. The

correlation coefficient for the 100-m race (X , in seconds) and the long jump event

(Y , in metres) for 5 athletes participating in the 2004 Olympic Games (see also

Appendix A.4) are listed in Table 4.7.

To calculate the correlation coefficient, we need the following summary statistics:

x̄ =
1

5
(10.85 + 10.44 + 10.50 + 10.89 + 10.62) = 10.66

ȳ =
1

5
(7.84 + 7.96 + 7.81 + 7.47 + 7.74) = 7.764

Sxx = (10.85 − 10.66)2 + (10.44 − 10.66)2 + · · · + (10.62 − 10.66)2 = 0.1646

Table 4.7 Results of 100-m

race and long jump of 5

athletes

i xi yi

Roman Sebrle 10.85 7.84

Bryan Clay 10.44 7.96

Dmitriy Karpov 10.50 7.81

Dean Macey 10.89 7.47

Chiel Warners 10.62 7.74
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Syy = (7.84 − 7.764)2 + (7.96 − 7.764)2 + · · · + (7.74 − 7.764)2 = 0.13332

Sxy = (10.85 − 10.66)(7.84 − 7.764) + · · · + (10.62 − 10.66)(7.74 − 7.764)

= −0.1027

The correlation coefficient therefore is

r =
Sxy

√

Sxx Syy

=
−0.1027

√
0.1646 × 0.13332

≈ −0.69 .

Since −0.69 is negative, we can say that (i) there is a negative correlation between

the 100-m race and the long jump event, i.e., shorter running times result in longer

long jump results, and (ii) this association is moderate to strong.

In R, we can obtain the results (after attaching the data) as follows:

cor(X.100m,X.Long.jump, method='pearson')

4.3.3 Spearman’s Rank Correlation Coefficient

Consider a situation where n objects are ranked with respect to two variables X and

Y . For instance, the variables could represent the opinion of two different judges

in a talent competition who rank the participants with respect to their performance.

This means that for each judge, the worst participant (with the lowest score xi ) is

assigned rank 1, the second worst participant (with the second lowest score xi ) will

receive rank 2, and so on. Thus, every participant has been given two ranks by two

different judges. Suppose we want to measure the degree of association between the

two different judgments; that is, the two different sets of ranks. We expect that under

perfect agreement, both the judges give the same judgment in the sense that they give

the same ranks to each candidate. However, if they are not in perfect agreement, then

there may be some variation in the ranks assigned by them. To measure the degree of

agreement, or, in general, the degree of association, one can use Spearman’s rank

correlation coefficient. As the name says, this correlation coefficient uses only the

ranks of the values and not the values themselves. Thus, this measure is suitable

for both ordinal and continuous variables. We introduce the following notations:

let R(xi ) denote the rank of the i th observation on X , i.e. the rank xi among the

ordered values of X . Similarly, R(yi ) denotes the rank of the i th observation of y.

The difference between the two rank values is di = R(xi ) − R(yi ). Spearman’s rank

correlation coefficient is defined as

R = 1 −
6

∑n
i=1 d2

i

n(n2 − 1)
. (4.19)

The values of R lie between −1 and +1 and measure the degree of correlation

between the ranks of X and Y . Note that it does not matter whether we choose an

ascending or descending order of the ranks, the value of R remains the same. When

all the observations are assigned exactly the same ranks, then R = 1 and when all

the observations are assigned exactly the opposite ranks, then R = −1.
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Example 4.3.4 Look again at the scatter plots in Figs. 4.2 and 4.3. We observe

strong positive correlation in Fig. 4.2a (R = 0.87), strong negative correlation in

Fig. 4.2b (R = −0.92), moderate positive correlation in Fig. 4.2c (R = 0.51), mod-

erate negative association in Fig. 4.2d (R = −0.55), no visible correlation in Fig. 4.3a

(R = −0.01), and strong nonlinear correlation in Fig. 4.3b (R = 0.99).

Example 4.3.5 Let us follow Example 4.3.3 a bit further and calculate Spearman’s

rank correlation coefficient for the first five observations of the decathlon data. Again

we list the results of the 100-m race (X ) and the results of the long jump competition

(Y ). In addition, we assign ranks to both X and Y . For example, the shortest time

receives rank 1, whereas the longest time receives rank 5. Similarly, the shortest long

jump result receives rank 1, the longest long jump result receives rank 5.

i xi R(xi ) yi R(yi ) di d2
i

Roman Sebrle 10.85 4 7.84 4 0 0

Bryan Clay 10.44 1 7.96 5 −4 16

Dmitriy Karpov 10.50 2 7.81 3 −1 1

Dean Macey 10.89 5 7.47 1 −4 16

Chiel Warners 10.62 3 7.74 2 −1 1

Total 34

Using (4.19), Spearman’s rank correlation coefficient can be calculated as

R = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
= 1 −

6 · 34

5 · 24
= −0.7.

We therefore have a moderate to strong negative association between the 100-m

race and the long jump event. We now know that for the 5 athletes above longer

running times relate to shorter jumping distances which in turn means that a good

performance in one discipline implies a good performance in the other discipline. In

R, we can obtain the same results by using the cor command:

cor(X.100m,X.Long.jump, method='spearman')

If two or more observations take the same values for xi (or yi ), then there is a

tie. In such situations, the respective ranks can simply be averaged, though more

complicated solutions also exist (one of which is implemented in the R function

cor). For example, if in Example 4.3.5 Bryan Clay’s was 10.50 s instead of 10.44 s,

then both Bryan Clay and Dmitriy Karpov had the same time. Instead of assigning

the ranks 1 and 2 to them, we assign the ranks 1.5 to each of them.

The differences between the correlation coefficient and the rank correlation coeffi-

cient are manifold: firstly, Pearson’s correlation coefficient can be used for continuous

variables only, but not for nominal or ordinal variables. The rank correlation coeffi-

cient can be used for either two continuous or two ordinal variables or a combination

of an ordinal and a continuous variable, but not for two nominal variables. More-

over, the rank correlation coefficient responds to any type of relationship whereas
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Pearson’s correlation measures the degree of a linear relationship only—see also

Fig. 4.3b. Another difference between the two correlation coefficients is that Pear-

son uses the entire information contained in the continuous data in contrast to the

rank correlation coefficient which uses only ordinal information contained in the

ordered data.

4.3.4 Measures Using Discordant and Concordant Pairs

Another concept which uses ranks to measure the association between ordinal vari-

ables is based on concordant and discordant observation pairs. It is best illustrated

by means of an example.

Example 4.3.6 Suppose an online book store conducts a survey on their customer’s

satisfaction with respect to both the timeliness of deliveries (X ) and payment options

(Y ). Let us consider the following 2 × 3 contingency table with a summary of the

responses of 100 customers. We assume that the categories for both variables can

be ordered and ranks can be assigned to different categories, see the numbers in

brackets in Table 4.8. There are 100 observation pairs (xi , yi ) which summarize the

response of the customers with respect to both X and Y . For example, there are 18

customers who were unsatisfied with the timeliness of the deliveries and complained

that there are not enough payment options. If we compare two responses (xi1 , yi1) and

(xi2 , yi2), it might be possible that one customer is more happy (or more unhappy)

than the other customer with respect to both X and Y or that one customer is more

happy with respect to X but more unhappy with respect to Y (or vice versa). If the

former is the case, then this is a concordant observation pair; if the latter is true, then

it is a discordant pair. For instance, a customer who replied “enough” and “satisfied”

is more happy than a customer who replied “not enough” and “unsatisfied” because

he is more happy with respect to both X and Y .

In general, a pair is

• concordant if i2 > i1 and j2 > j1 (or i2 < i1 and j2 < j1),

• discordant if i2 < i1 and j2 > j1 (or i2 > i1 and j2 < j1),

• tied if i1 = i2 (or j1 = j2).

Table 4.8 Payment options and timeliness survey with 100 participating customers

Timeliness

Unsatisfied Satisfied Very satisfied Total

(1) (2) (3)

Payment

options

Not enough (1) 7 11 26 44

Enough (2) 10 15 31 56

Total 17 26 57 100
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Obviously, if we have only concordant observations, then there is a strong posi-

tive association because a higher value of X (in terms of the ranking) implies a

higher value of Y . However, if we have only discordant observations, then there is

a clear negative association. The measures which are introduced below simply put

the number of concordant and discordant pairs into relation. This idea is reflected in

Goodman and Kruskal’s γ which is defined as

γ =
K

K + D
−

D

K + D
=

K − D

K + D
, (4.20)

where

K =
∑

i<m

∑

j<n

ni j nmn, D =
∑

i<m

∑

j>n

ni j nmn

describe the number of concordant and discordant observation pairs, respectively.

An alternative measure is Stuart’s τc given as

τc =
2 min(k, l)(K − D)

n2(min(k, l) − 1)
. (4.21)

Both measures are standardized to lie between −1 and 1, where larger values indicate

a stronger association and the sign indicates the direction of the association.

Example 4.3.7 Consider Example 4.3.6. A customer who replied “enough” and “sat-

isfied” is more happy than a customer who replied “not enough” and “unsatisfied”

because the observation pairs, using ranks, are (2, 2) and (1, 1) and therefore i2 > i1

and j2 > j1. There are 7 × 15 such pairs. Similarly those who said “not enough”

and “unsatisfied” are less happy than those who said “enough” and “very satisfied”

(7 × 31 pairs). Table 4.5 summarizes the comparisons in detail.

Table 4.5a shows that (x1, y1) = (not enough, unsatisfied) is concordant to

(x2, y2) = (enough, satisfied) and (x2, y3) = (enough, very satisfied) and tied to

(x2, y1) = (enough, unsatisfied), (x1, y2) = (not enough, satisfied), and (x1, y3) =
(not enough, very satisfied). Thus for these comparisons, we have 0 discordant pairs,

(7 × 15) + (7 × 31) concordant pairs and 7 × (10 + 11 + 26) tied pairs. Table 4.5b–

f show how the task can be completed. While tiresome, systematically working

through the table (and making sure to not count pairs more than once) yields

K = 7 × (15 + 31) + 11 × 31 = 663

D = 10 × (11 + 26) + 15 × 26 = 760.

As a visual rule of thumb, working from the top left to the bottom right yields the

concordant pairs; and working from the bottom left to the top right yields the discor-

dant pairs. It follows that K = (663 − 760)/(663 + 760) ≈ −0.07 which indicates

no clear relationship between the two variables. A similar result is obtained using

τc which is 4 × (760 − 663)/1002 ≈ 0.039. This rather lengthy task can be made

much quicker by using the ord.gamma and ord.tau commands from the R library

ryouready:



88 4 Association of Two Variables

(a) y1 y2 y3

x1 t t
x2 t c c

(b) y1 y2 y3

x1 t t
x2 d t c

(c) y1 y2 y3

x1 t t
x2 d d t

(d) y1 y2 y3

x1 t d d
x2 t t

(e) y1 y2 y3

x1 c t d
x2 t t

(f) y1 y2 y3

x1 c c t
x2 t t

Fig.4.5 Scheme to visualize concordant (c), discordant (d), and tied (t) pairs in a 2 × 3 contingency

table

library(ryouready)

ex <- matrix(c(7,11,26,10,15,31),ncol=3,byrow=T)

ord.gamma(ex)

ord.tau(ex)

4.4 Visualization of Variables from Different Scales

If we want to jointly visualize the association between a variable X , which is either

nominal or ordinal and another variable Y , which is continuous, then we can use any

graph which is suitable for the continuous variable (see Chaps. 2 and 3) and produce

it for each category of the nominal/ordinal variable. We recommend using stratified

box plots or stratified ECDF’s, as they are easy to read when summarized in a single

figure; however, it is also possible to place histograms next to each other or on top of

each other, or overlay kernel density plots, but we do not illustrate this here in more

detail.

Example 4.4.1 Consider again our pizza delivery example (Appendix A.4). If we

are interested in the pizza delivery times by branch, we may simply plot the box

plots and ECDF’s of delivery time by branch. Figure 4.6 shows that the shortest

delivery times can be observed in the branch in the East. Producing these graphs

in R is straightforward: The boxplot command can be used for two variables by

separating them with the ∼ sign. For the ECDF, we have to produce a plot for each

branch and overlay them with the “add=TRUE” option.

boxplot(time∼branch)

plot.ecdf(time[branch=='East'])

plot.ecdf(time[branch=='West'], add=TRUE)

plot.ecdf(time[branch=='Centre'], add=TRUE)

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_3
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(b) Using ECDF’s

Fig. 4.6 Distribution of pizza delivery time stratified by branch

4.5 Key Points and Further Issues

Note:

� How to use different measures of association:

2 nominal variables → Pearson’s χ
2, relative risks, odds ratio,

Cramer’s V , and Ccorr

2 ordinal variables → Spearman’s rank correlation coeffi-

cient, γ, τc

2 continuous variables → Pearson’s correlation coefficient,

Spearman’s correlation coefficient

� For two variables which are measured on different scales, for exam-

ple continuous/ordinal or ordinal/nominal, one should use measures of

association suitable for the less informative of the two scales.

� Another graphical representation of both a continuous and discrete vari-

able is stratified confidence interval plots (error plots), see Chap. 9.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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4.6 Exercises

Exercise 4.1 A newspaper asks two of its staff to review the coffee quality at different

trendy cafés. The coffee can be rated on a scale from 1 (miserable) to 10 (excellent).

The results of the two coffee enthusiasts X and Y are as follows:

Café i xi yi

1 3 6

2 8 7

3 7 10

4 9 8

5 5 4

(a) Calculate and interpret Spearman’s rank correlation coefficient.

(b) Does Spearman’s R differ depending on whether ranks are assigned in a decreas-

ing or increasing order?

(c) Suppose the coffee can only be rated as either good (>5) or bad (≤5). Do the

chances of a good rating differ between the two journalists?

Exercise 4.2 A total of 150 customers of a petrol station are asked about their satis-

faction with their car and motorbike insurance. The results are summarized below:

Satisfied Unsatisfied Total

Car 33 25 58

Car (diesel engine) 29 31 60

Motorbike 12 20 32

Total 74 76 150

(a) Determine and interpret Pearson’s χ
2 statistic, Cramer’s V , and Ccorr.

(b) Combine the categories “car” and “car (diesel engine)” and produce the corre-

sponding 2 × 2 table. Calculate χ
2 as efficiently as possible and give a mean-

ingful interpretation of the odds ratio.

(c) Compare the results from (a) and (b).

Exercise 4.3 There has been a big debate about the usefulness of speed limits on

public roads. Consider the following table which lists the speed limits for country

roads (in miles/h) and traffic deaths (per 100 million km) for different countries in

1986 when the debate was particularly serious:

(a) Draw the scatter plot for the two variables.

(b) Calculate the Bravais–Pearson and Spearman correlation coefficients.
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Country Speed limit Traffic deaths

Denmark 55 4.1

Japan 55 4.7

Canada 60 4.3

Netherlands 60 5.1

Italy 75 6.1

(c) What are the effects on the correlation coefficients if the speed limit is given in

km/h rather than miles/h (1 mile/h ≈ 1.61 km/h)?

(d) Consider one more observation: the speed limit for England was 70 miles/h and

the death rate was 3.1.

(i) Add this observation to the scatter plot.

(ii) Calculate the Bravais–Pearson correlation coefficient given this additional

observation.

Exercise 4.4 The famous passenger liner Titanic hit an iceberg in 1912 and sank. A

total of 337 passengers travelled in first class, 285 in second class, and 721 in third

class. In addition, there were 885 staff members on board. Not all passengers could

be rescued. Only the following were rescued: 135 from the first class, 160 from the

second class, 541 from the third class and 674 staff.

(a) Determine and interpret the contingency table for the variables “travel class”

and “rescue status”.

(b) Use a contingency table to summarize the conditional relative frequency distri-

butions of rescue status given travel class. Could there be an association of the

two variables?

(c) What would the contingency table from (a) look like under the independence

assumption? Calculate Cramer’s V statistic. Is there any association between

travel class and rescue status?

(d) Combine the categories “first class” and “second class” as well as “third class”

and “staff”. Create a contingency table based on these new categories. Determine

and interpret Cramer’s V , the odds ratio, and relative risks of your choice.

(e) Given the results from (a) to (d), what are your conclusions?

Exercise 4.5 To study the association of the monthly average temperature (in ◦C,

X ) and hotel occupation (in %, Y ), we consider data from three cities: Polenca

(Mallorca, Spain) as a summer holiday destination, Davos (Switzerland) as a winter

skiing destination, and Basel (Switzerland) as a business destination.
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Fig. 4.7 Temperature and hotel occupancy for the different cities

Months Davos Polenca Basel

X Y X Y X Y

Jan −6 91 10 13 1 23

Feb −5 89 10 21 0 82

Mar 2 76 14 42 5 40

Apr 4 52 17 64 9 45

May 7 42 22 79 14 39

Jun 15 36 24 81 20 43

Jul 17 37 26 86 23 50

Aug 19 39 27 92 24 95

Sep 13 26 22 36 21 64

Oct 9 27 19 23 14 78

Nov 4 68 14 13 9 9

Dec 0 92 12 41 4 12

(a) Calculate the Bravais–Pearson correlation coefficient. The following summary

statistics are available:
∑36

i=1 xi yi = 22, 776, x̄ = 12.22, ȳ = 51.28, s̃2
x = 76.95,

and s̃2
y = 706.98.

(b) Interpret the scatter plot in Fig. 4.7 which visualizes temperature and hotel occu-

pancy for Davos (D), Polenca (P), and Basel (B).

(c) Use R to calculate the correlation coefficient separately for each city. Interpret

the results and discuss the use of the correlation coefficient if more than two

variables are available.
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Exercise 4.6 Consider a neighbourhood survey on the use of a local park. Respon-

dents were asked whether the park may be used for summer music concerts and

whether dog owners should put their dogs on a lead. The results are summarized in

the following contingency table:

Put dogs on a lead

Agree No opinion Disagree Total

Use for concerts Agree 82 4 0 86

No opinion 8 43 9 60

Disagree 0 2 10 12

Total 90 49 19 158

(a) Calculate and interpret Goodman and Kruskal’s γ.

(b) Now ignore the ordinal structure of the data and calculate Cramer’s V .

(c) Create the contingency table which is obtained when the categories “no opinion”

and “agree” are combined.

(d) What is the relative risk of disagreement with summer concerts depending on

the opinion about using leads?

(e) Calculate the odds ratio and offer two interpretations of it.

(f) Determine γ for the table calculated in (c).

(g) What is your final interpretation and what may be the best measure to use in this

example?

Exercise 4.7 Consider n observations for which yi = a + bxi , b > 0, holds. Show

that r = 1.

Exercise 4.8 Make yourself familiar with the Olympic decathlon data described in

Appendix A.4. Read in and attach the data in R.

(a) Use R to calculate and interpret the Bravais–Pearson correlation coefficient

between the results of the discus and the shot-put events.

(b) There are 10 continuous variables. How many different correlation coefficients

can you calculate? How would you summarize them?

(c) Apply the cor command to the whole data and interpret the output.

(d) Omit the two rows which contain missing data and interpret the output again.

Exercise 4.9 We are interested in the pizza delivery data which is described in

Appendix A.4.

(a) Read in the data and create two new binary variables which describe whether

a pizza was hot (>65 ◦C) and the delivery time was short (<30 min). Create a

contingency table for the two new variables.

(b) Calculate and interpret the odds ratio for the contingency table from (a).



94 4 Association of Two Variables

(c) Use Cramer’s V , Stuart’s τc, Goodman and Kruskal’s γ, and a stacked bar chart to

explore the association between the categorical time and temperature variables.

(d) Draw a scatter plot for the continuous time and temperature variables. Determine

both the Bravais–Pearson and Spearman correlation coefficients.

(e) Use methods of your choice to explore the relationship between temperature

and driver, operator, number of ordered pizzas and bill. Is it clear which of the

variables influence the pizza temperature?

→ Solutions to all exercises in this chapter can be found on p. 345
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5Combinatorics

5.1 Introduction

Combinatorics is a special branch of mathematics. It has many applications not

only in several interesting fields such as enumerative combinatorics (the classical

application), but also in other fields, for example in graph theory and optimization.

First, we try to motivate and understand the role of combinatorics in statistics.

Consider a simple example in which someone goes to a cafe. The person would

like a hot beverage and a cake. Assume that one can choose among three different

beverages, for example cappuccino, hot chocolate, and green tea, and three different

cakes, let us say carrot cake, chocolate cake, and lemon tart. The person may consider

different beverage and cake combinations when placing the order, for example carrot

cake and cappuccino, carrot cake and tea, and hot chocolate and lemon tart. From a

statistical perspective, the customer is evaluating the possible combinations before

making a decision. Depending on their preferences, the order will be placed by

choosing one of the combinations.

In this example, it is easy to calculate the number of possible combinations.

There are three different beverages and three different cakes to choose from, leading

to nine different (3 × 3) beverage and cake combinations. However, suppose there

is a choice of 15 hot beverages and 8 different cakes. How many orders can be

made? (Answer: 15 × 8) What if the person decides to order two cakes, how will it

affect the number of possible combinations of choices? It will be a tedious task to

count all the possibilities. So we need a systematic approach to count such possible

combinations. Combinatorics deals with the counting of different possibilities in a

systematic approach.

People often use the urn model to understand the system in the counting process.

The urn model deals with the drawing of balls from an urn. The balls in the urn
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C. Heumann et al., Introduction to Statistics and Data Analysis,

DOI 10.1007/978-3-319-46162-5_5

97



98 5 Combinatorics

(a) (b) (c)

(d) – – – ...

(e) – –

Fig. 5.1 a Representation of the urn model. Drawing from the urn model b with replacement and c

without replacement. Compositions of three drawn balls: d all balls are distinguishable and e some

balls are not distinguishable

represent the units of a population, or the features of a population. The balls may

vary in colour or size to represent specific properties of a unit or feature. We illustrate

this concept in more detail in Fig. 5.1.

Suppose there are 5 balls of three different colours—two black, one grey, and two

white (see Fig. 5.1a). This can be generalized to a situation in which there are n balls

in the urn and we want to draw m balls. Suppose we want to know

• how many different possibilities exist to draw m out of n balls (thus determining

the number of distinguishable combinations).

To deal with such a question, we first need to decide whether a ball will be put back

into the urn after it is drawn or not. Figure 5.1b illustrates that a grey ball is drawn

from the urn and then placed back (illustrated by the two-headed arrow). We say the

ball is drawn with replacement. Figure 5.1c illustrates a different situation in which

the grey ball is drawn from the urn and is not placed back into the urn (illustrated by

the one-headed arrow). We say the ball is drawn without replacement.

Further, we may be interested in knowing the

• total number of ways in which the chosen set of balls can be arranged in a distin-

guishable order (which we will define as permutations later in this chapter).

To answer the question how many permutations exist, we first need to decide whether

all the chosen balls are distinguishable from each other or not. For example, in

Fig. 5.1d, the three chosen balls have different colours; therefore, they are distin-

guishable. There are many options on how they can be arranged. In contrast, some
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of the chosen balls in Fig. 5.1e are the same colour, they are therefore not distin-

guishable. Consequently, the number of combinations is much more limited. The

concept of balls and urns just represents the features of observations from a sample.

We illustrate this in more detail in the following example.

Example 5.1.1 Say a father promises his daughter three scoops of ice cream if she

cleans up her room. For simplicity, let us assume the daughter has a choice of four

flavours: chocolate, banana, cherry, and lemon. How many different choices does the

daughter have? If each scoop has to be a different flavour she obviously has much

less choice than if the scoops can have the same flavour. In the urn model, this is rep-

resented by the concept of “with/without replacement”. The urn contains 4 balls of 4

different colours which represent the ice cream flavours. For each of the three scoops,

a ball is drawn to determine the flavour. If we draw with replacement, each flavour

can be potentially chosen multiple times; however, if we draw without replacement

each flavour can be chosen only once. Then, the number of possible combinations

is easy to calculate: it is 4, i.e. (chocolate, banana, and cherry); (chocolate, banana,

and lemon); (chocolate, cherry, and lemon); and (banana, cherry, and lemon). But

what if we have more choices? Or if we can draw flavours multiple times? We then

need calculation rules which help us counting the number of options.

Now, let us assume that the daughter picked the flavours (chocolate [C], banana

[B], and lemon [L]). Like many other children, she prefers to eat her most favourite

flavour (chocolate) last, and her least favourite flavour (cherry) first. Therefore, the

order in which the scoops are placed on top of the cone are important! In how

many different ways can the scoops be placed on top of the cone? This relates

to the question of the number of distinguishable permutations. The answer is 6:

(C,B,L)–(C,L,B)–(B,L,C)–(B,C,L)–(L,B,C)–(L,C,B). But what if the daughter did

pick a flavour multiple times, e.g. (chocolate, chocolate, lemon)? Since the two

chocolate scoops are non-distinguishable, there are fewer permutations: (chocolate,

chocolate, and lemon)–(chocolate, lemon, and chocolate)–(lemon, chocolate, and

chocolate).

The bottom line of this example is that the number of combinations/options is

determined by (i) whether we draw with or without replacement (i.e. allow flavours

to be chosen more than once) and (ii) whether the arrangement in a particular order

(=permutation) is of any specific interest.

Consider the urn example again. Suppose three balls of different colours, black,

grey, and white, are drawn. Now there are two options: The first option is to take into

account the order in which the balls are drawn. In such a situation, two possible sets

of balls such as (black, grey, and white) and (white, black, and grey) constitute two

different sets. Such a set is called an ordered set. In the second option, we do not

take into account the order in which the balls are drawn. In such a situation, the two

possible sets of balls such as (black, grey, and white) and (white, black, and grey)

are the same sets and constitute an unordered set of balls.
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Definition 5.1.1 A group of elements is said to be ordered if the order in which

these elements are drawn is of relevance. Otherwise, it is called unordered.

Examples.

• Ordered samples:

– The first three places in an Olympic 100 m race are determined by the order

in which the athletes arrive at the finishing line. If 8 athletes are competing

with each other, the number of possible results for the first three places is of

interest. In the urn language, we are taking draws without replacement (since

every athlete can only have one distinct place).

– In a raffle with two prizes, the first drawn raffle ticket gets the first prize and the

second raffle ticket gets the second prize.

– There exist various esoteric tarot card games which claim to foretell someone’s

fortune with respect to several aspects of life. The order in which the cards are

shown on the table is important for the interpretation.

• Unordered samples:

– The selected members for a national football team. The order in which the

selected names are announced is irrelevant.

– Out of 10 economists, 10 medical doctors, and 10 statisticians, an advisory

committee consisting of 4 economists, 3 medical doctors, and 2 statisticians is

elected.

– Fishing 20 fish from a lake.

– A bunch of 10 flowers made from 21 flowers of 4 different colours.

Definition 5.1.2 The factorial function n! is defined as

n! =

{

1 for n = 0

1 · 2 · 3 · · · n for n > 0.
(5.1)

Example 5.1.2 It follows from the definition of the factorial function that

0! = 1, 1! = 1 2! = 1 · 2 = 2, 3! = 1 · 2 · 3 = 6 .

This can be calculated in R as follows:

factorial(n)
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5.2 Permutations

Definition 5.2.1 Consider a set of n elements. Each ordered composition of these n

elements is called a permutation.

We distinguish between two cases: If all the elements are distinguishable, then we

speak of permutation without replacement. However, if some or all of the elements

are not distinguishable, then we speak of permutation with replacement. Please note

that the meaning of “replacement” here is just a convention and does not directly

refer to the drawings, e.g. from the urn model considered in Example 5.1.1.

5.2.1 Permutations without Replacement

If all the n elements are distinguishable, then there are

n! (5.2)

different compositions of these elements.

Example 5.2.1 There were three candidate cities for hosting the 2020 Olympic

Games: Tokyo (T), Istanbul (I), and Madrid (M). Before the election, there were

3! = 6 possible outcomes, regarding the final rankings of the cities:

(M, T, I), (M, I, T), (T, M, I), (T, I, M), (I, M, T), (I, T, M).

5.2.2 Permutations with Replacement

Assume that not all n elements are distinguishable. The elements are divided into

groups, and these groups are distinguishable. Suppose, there are s groups of sizes

n1, n2, . . . , ns . The total number of different ways to arrange the n elements in s

groups is:
n!

n1! n2! n3! · · · ns !
. (5.3)

Example 5.2.2 Consider the data in Fig. 5.1e. There are two groups consisting of two

black balls (n1 = 2) and one white ball (n2 = 1). So there are the following three

possible combinations to arrange the balls: (black, black, and white), (black, white,

and black), and (white, black, and black). This can be determined by calculating

3!

2! 1!
=

3 · 2 · 1

2 · 1 · 1
= 3 .



102 5 Combinatorics

5.3 Combinations

Definition 5.3.1 The Binomial coefficient for any integers m and n with n ≥ m ≥ 0

is denoted and defined as
(

n

m

)

=
n!

m! (n − m)!
. (5.4)

It is read as “n choose m” and can be calculated in R using the following command:

choose(n,m)

There are several calculation rules for the binomial coefficient:
(

n

0

)

= 1,

(

n

1

)

= n,

(

n

m

)

=

(

n

n − m

)

,

(

n

m

)

=

m
∏

i=1

n + 1 − i

i
. (5.5)

We now answer the question of how many different possibilities exist to draw m

out of n elements, i.e. m out of n balls from an urn. It is necessary to distinguish

between the following four cases:

(1) Combinations without replacement and without consideration of the order of

the elements.

(2) Combinations without replacement and with consideration of the order of the

elements.

(3) Combinations with replacement and without consideration of the order of the

elements.

(4) Combinations with replacement and with consideration of the order of the ele-

ments.

5.3.1 Combinations without Replacement and without
Consideration of the Order

When there is no replacement and the order of the elements is also not relevant, then

the total number of distinguishable combinations in drawing m out of n elements is
(

n

m

)

. (5.6)

Example 5.3.1 Suppose a company elects a new board of directors. The board con-

sists of 5 members and 15 people are eligible to be elected. How many combinations

for the board of directors exist? Since a person cannot be elected twice, we have a
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situation where there is no replacement. The order is also of no importance: either

one is elected or not. We can thus apply (5.6) which yields
(

15

5

)

=
15!

10!5!
= 3003

possible combinations. This result can be obtained in R by using the command

choose(15,5).

5.3.2 Combinations without Replacement and with Consideration
of the Order

The total number of different combinations for the setting without replacement and

with consideration of the order is

n!

(n − m)!
=

(

n

m

)

m! . (5.7)

Example 5.3.2 Consider a horse race with 12 horses. A possible bet is to forecast

the winner of the race, the second horse of the race, and the third horse of the race.

The total number of different combinations for the horses in the first three places is

12!

(12 − 3)!
= 12 · 11 · 10 = 1320 .

This result can be explained intuitively: for the first place, there is a choice of 12

different horses. For the second place, there is a choice of 11 different horses (12

horses minus the winner). For the third place, there is a choice of 10 different horses

(12 horses minus the first and second horses). The total number of combinations is

the product 12 · 11 · 10. This can be calculated in R as follows:

12 ∗ 11 ∗ 10

5.3.3 Combinations with Replacement and without Consideration
of the Order

The total number of different combinations with replacement and without consider-

ation of the order is
(

n + m − 1

m

)

=
(n + m − 1)!

m! (n − 1)!
=

(

n + m − 1

n − 1

)

. (5.8)

Note that these are the two representations which follow from the definition of the

binomial coefficient but typically only the first representation is used in textbooks.

We will motivate the second representation after Example 5.3.3.
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Example 5.3.3 A farmer has 2 fields and aspires to cultivate one out of 4 different

organic products per field. Then, the total number of choices he has is
(

4 + 2 − 1

2

)

=

(

5

2

)

=
5!

2! 3!
=

3! · 4 · 5

1 · 2 · 3!
= 10. (5.9)

If 4 different organic products are denoted as a, b, c, and d, then the following

combinations are possible:

(a, a) (a, b) (a, c) (a, d)

(b, b) (b, c) (b, d)

(c, c) (c, d)

(d, d)

Please note that, for example, (a,b) is identical to (b,a) because the order in which

the products a and b are cultivated on the first or second field is not important in this

example.

We now try to give an intuitive explanation of formula (5.9) using Example 5.3.3.

We have n = 4 products and m = 2 fields and apply the following technical “trick”:

we sort the combinations by the product symbols (a, b, c, or d). When we switch from

one product to the next (e.g. from b to c), we make a note by adding a vertical line

|. Whenever a product is skipped, we add a line too. For example, the combination

(a, c) is denoted by a||c|, the combination (d, d) by |||dd, (c, c) by ||cc|, and (a, a)

by aa|||. Therefore, the number of characters equates to the 2 chosen symbols of the

set (a, b, c, d) plus the 3 vertical lines, in summary (4 + 2) − 1 = 5 places where

3 = n − 1 places are selected for the vertical line |. How many different line/letter

combinations exist? There are 3 out of 5 possible positions for |, i.e.
(

5
3

)

= 10 possible

combinations, and this is nothing but the right-hand side of (5.9).

5.3.4 Combinations with Replacement and with Consideration of
the Order

The total number of different combinations for the integers m and n with replacement

and when the order is of relevance is

nm . (5.10)

Example 5.3.4 Consider a credit card with a four-digit personal identification num-

ber (PIN) code. The total number of possible combinations for the PIN is

nm = 104 = 10, 000.

Note that every digit in the first, second, third, and fourth places (m = 4) can be

chosen out of ten digits from 0 to 9 (n = 10).
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5.4 Key Points and Further Issues

Note:

� The rules of combinatorics are as follows:

Combinations without replacement with replacement

without order

(

n

m

) (

n + m − 1

m

)

with order

(

n

m

)

m! nm

� Combinations with and without replacement are also often called com-

binations with and without repetition.

� The permutation rules are as follows:

without replacement with replacement

Permutations n!
n!

n1! · · · ns !

5.5 Exercises

Exercise 5.1 At a party with 10 guests, every guest shakes hands with each other

guest. How many handshakes can be counted in total?

Exercise 5.2 A language teacher is concerned about the vocabularies of his students.

He thus tests 5 students in each lecture. What are the total number of possible

combinations

(a) if a student is tested only once per lecture and

(b) if a student is tested more than once per lecture?

Use R to quantify numbers which you cannot calculate manually.

Exercise 5.3 “Gobang” is a popular game in which two players set counters on a

board with 381 knots. One needs to place 5 consecutive counters in a row to win

the game. There are also rules on how to remove counters from the other player.

Consider a match where 64 counters have already been placed on the board. How

many possible combinations exist to place 64 counters on the board?
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Exercise 5.4 A shop offers a special tray of beer: “Munich’s favourites”. Customers

are allowed to fill the tray, which holds 20 bottles, with any combination of Munich’s

6 most popular beers (from 6 different breweries).

(a) What are the number of possible combinations to fill the tray?

(b) A customer insists of having at least one beer from each brewery in his tray.

How many options does he have to fill the tray?

Exercise 5.5 The FIFA World Cup 2018 in Russia consists of 32 teams. How many

combinations for the top 3 teams exist when

(a) taking into account the order of these top 3 teams and

(b) without taking into account the order of these top 3 teams?

Exercise 5.6 An online book store assigns membership codes to each member. For

administrative reasons, these codes consist of four letters between “A” and “L”.

A special discount period increased the total number of members from 18, 200 to

20, 500. Are there enough combinations of codes left to be assigned for the new

membership codes?

Exercise 5.7 In the old scoring system of ice skating (valid until 2004), each member

of a jury of 9 people judged the performance of the skaters on a scale between 0 and

6. It was a decimal scale and thus scores such as 5.1 and 5.2 were possible. Calculate

the number of possible score combinations from the jury.

Exercise 5.8 It is possible in Pascal’s triangle (Fig. 5.2, left) to view each entry as

the sum of the two entries directly above it. For example, the 3 on the fourth line

1 5 10 10 5 1
5

0

5

1

5

2

5

3

5

4

5

5

)

1 4 6 4 1
4

0

4

1

4

2

4

3

4

4

)

1 3 3 1
3

0

3

1

3

2

3

3

)

1 2 1
2

0

2

1

2

2

)

1 1
1

0

1

1

)

1
0

0

)

Fig. 5.2 Excerpt from Pascal’s triangle (left) and its representation by means of binomial coeffi-

cients (right)
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from the top is the sum of the 1 and 2 above the 3. Another interpretation refers

to a geometric representation of the binomial coefficient,
(

n
k

)

(Fig. 5.2, right) with

k = 0, 1, 2, . . . being the column index and n = 0, 1, 2, . . . being the row index.

(a) Show that each entry in the bold third diagonal line can be represented via
(

n
2

)

.

(b) Now show that the sum of two consecutive entries in the bold third diagonal line

always corresponds to quadratic numbers.

→ Solutions to all exercises in this chapter can be found on p. 358
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Let us first consider some simple examples to understand the need for probability

theory. Often one needs to make a decision whether to carry an umbrella or not when

leaving the house; a company might wonder whether to introduce a new advertise-

ment to possibly increase sales or to continue with their current advertisement; or

someone may want to choose a restaurant based on where he can get his favourite

dish. In all these situations, randomness is involved. For example, the decision of

whether to carry an umbrella or not is based on the possibility or chance of rain.

The sales of the company may increase, decrease, or remain unchanged with a new

advertisement. The investment in a new advertising campaign may therefore only

be useful if the probability of its success is higher than that of the current adver-

tisement. Similarly, one may choose the restaurant where one is most confident of

getting the food of one’s choice. In all such cases, an event may be happening or not

and depending on its likelihood, actions are taken. The purpose of this chapter is to

learn how to calculate such likelihoods of events happening and not happening.

6.1 Basic Concepts and Set Theory

A simple (not rigorous) definition of a random experiment requires that the exper-

iment can be repeated any number of times under the same set of conditions, and

its outcome is known only after the completion of the experiment. A simple and

classical example of a random experiment is the tossing of a coin or the rolling of a

die. When tossing a coin, it is unknown what the outcome will be, head or tail, until

the coin is tossed. The experiment can be repeated and different outcomes may be

observed in each repetition. Similarly, when rolling a die, it is unknown how many

dots will appear on the upper surface until the die is rolled. Again, the die can be

rolled repeatedly and different numbers of dots are obtained in each trial. A possible
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outcome of a random experiment is called a simple event (or elementary event)

and denoted by ωi . The set of all possible outcomes, {ω1,ω2, . . . , ωk}, is called the

sample space and is denoted as Ω , i.e. Ω = {ω1,ω2, . . . , ωk}. Subsets of Ω are

called events and are denoted by capital letters such as A, B, C . The set of all simple

events that are contained in the event A is denoted by ΩA. The event Ā refers to

the non-occurring of A and is called a composite or complementary event. Also

Ω is an event. Since it contains all possible outcomes, we say that Ω will always

occur and we call it a sure event or certain event. On the other hand, if we consider

the null set ∅ = {} as an event, then this event can never occur and we call it an

impossible event. The sure event therefore is the set of all elementary events, and

the impossible event is the set with no elementary events.

The above concepts of “events” form the basis of a definition of “probability”.

Once we understand the concept of probability, we can develop a framework to make

conclusions about the population of interest, using a sample of data.

Example 6.1.1 (Rolling a die) If a die is rolled once, then the possible outcomes

are the number of dots on the upper surface: 1, 2, . . . , 6. Therefore, the sample

space is the set of simple events ω1 = “1”, ω2 = “2”, . . . , ω6 = “6” and Ω =

{ω1, ω2, . . . ,ω6}. Any subset of Ω can be used to define an event. For example, an

event A may be “an even number of dots on the upper surface of the die”. There are

three possibilities that this event occurs: ω2,ω4, or ω6. If an odd number shows up,

then the composite event Ā occurs instead of A. If an event is defined to observe only

one particular number, say ω1 = “1”, then it is an elementary event. An example of

a sure event is “a number which is greater than or equal to 1” because any number

between 1 and 6 is greater than or equal to 1. An impossible event is “the number is

7”.

Example 6.1.2 (Rolling two dice) Suppose we throw two dice simultaneously and

an event is defined as the “number of dots observed on the upper surface of both the

dice”; then, there are 36 simple events defined as (number of dots on first die, number

of dots on second die), i.e. ω1 = (1, 1), ω2 = (1, 2), . . . , ω36 = (6, 6). Therefore Ω

is

Ω =

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

One can define different events and their corresponding sample spaces. For exam-

ple, if an event A is defined as “upper faces of both the dice contain the same number

of dots”, then the sample space is ΩA = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

If another event B is defined as “the sum of numbers on the upper faces is 6”, then
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Fig. 6.1 A ∪ B and A ∩ B∗

A B A B

Fig. 6.2 A\B and

Ā = Ω\A∗

A B A Ā

the sample space is ΩB = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}. A sure event is “get

either an even number or an odd number”; an impossible event would be “the sum

of the two dice is greater than 13”.

It is possible to view events as sets of simple events. This helps to determine how

different events relate to each other. A popular technique to visualize this approach is

to use Venn diagrams. In Venn diagrams, two or more sets are visualized by circles.

Overlapping circles imply that both events have one or more identical simple events.

Separated circles mean that none of the simple events of event A are contained in

the sample space of B. We use the following notations:

A ∪ B The union of events A ∪ B is the set of all simple events of A and B which

occurs if at least one of the simple events of A or B occurs (Fig. 6.1, left

side, grey shaded area). Please note that we use the word “or” from a

statistical perspective: “A or B” means that either a simple event from A

occurs, or a simple event from B occurs, or a simple event which is part

of both A and B occurs.

A ∩ B The intersection of events A ∩ B is the set of all simple events A and B

which occur when a simple event occurs that belongs to A and B (Fig. 6.1,

right side, grey shaded area).

A\B The event A\B contains all simple events of A, which are not contained

in B. The event “A but not B” or “A minus B” occurs, if A occurs but B

does not occur. Also A\B = A ∩ B̄ (Fig. 6.2, left side, grey shaded area).

Ā The event Ā contains all simple events of Ω , which are not contained in A.

The complementary event of A (which is “Not-A” or “ Ā” occurs whenever

A does not occur (Fig. 6.2, right side, grey shaded area).

A ⊆ B A is a subset of B. This means that all simple events of A are also part of

the sample space of B.



112 6 Elements of Probability Theory

Example 6.1.3 Consider Example 6.1.1 where the sample space of rolling a die was

determined as Ω = {ω1, ω2, . . . ,ω6} with ω1 = “1”, ω2 = “2”, . . . , ω6 = “6”.

• If A = {ω1,ω2,ω3, ω4, ω5} and B is the set of all odd numbers, then B =

{ω1, ω3,ω5} and thus B ⊆ A.

• If A = {ω2,ω4, ω6} is the set of even numbers and B = {ω3,ω6} is the set of all

numbers which are divisible by 3, then A ∪ B = {ω2,ω3, ω4,ω6} is the collection

of simple events for which the number is either even or divisible by 3 or both.

• If A = {ω1, ω3,ω5} is the set of odd numbers and B = {ω3, ω6} is the set of the

numbers which are divisible by 3, then A ∩ B = {ω3} is the set of simple events

in which the numbers are odd and divisible by 3.

• If A = {ω1, ω3,ω5} is the set of odd numbers and B = {ω3, ω6} is the set of the

numbers which are divisible by 3, then A\B = {ω1,ω5} is the set of simple events

in which the numbers are odd but not divisible by 3.

• If A = {ω2, ω4,ω6} is the set of even numbers, then Ā = {ω1,ω3, ω5} is the set of

odd numbers.

Remark 6.1.1 Some textbooks also use the following notations:

A + B for A ∪ B

AB for A ∩ B

A − B for A\B.

We can use these definitions and notations to derive the following properties of a

particular event A:

A ∪ A = A A ∩ A = A

A ∪ Ω = Ω A ∩ Ω = A

A ∪ ∅ = A A ∩ ∅ = ∅

A ∪ Ā = Ω A ∩ Ā = ∅.

Definition 6.1.1 Two events A and B are disjoint if A ∩ B = ∅ holds, i.e. if both

events cannot occur simultaneously.

Example 6.1.4 The events A and Ā are disjoint events.

Definition 6.1.2 The events A1, A2, . . . , Am are said to be mutually or pairwise

disjoint, if Ai ∩ A j = ∅ whenever i �= j = 1, 2, ..., m.

Example 6.1.5 Recall Example 6.1.1. If A = {ω1,ω3,ω5} and B = {ω2,ω4, ω6} are

the sets of odd and even numbers, respectively, then the events A and B are disjoint.
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Definition 6.1.3 The events A1, A2, . . . , Am form a complete decomposition of Ω

if and only if

A1 ∪ A2 ∪ · · · ∪ Am = Ω

and

Ai ∩ A j = ∅ (for all i �= j).

Example 6.1.6 Consider Example 6.1.1. The elementary events A1 = {ω1}, A2 =

{ω2}, . . . , A6 = {ω6} form a complete decomposition. Other complete decomposi-

tions are, e.g.

• A1 = {ω1,ω3, ω5}, A2 = {ω2,ω4,ω6}

• A1 = {ω1}, A2 = {ω2, ω3,ω4, ω5,ω6}

• A1 = {ω1,ω2, ω3}, A2 = {ω4, ω5,ω6}.

6.2 Relative Frequency and Laplace Probability

There is a close connection between the relative frequency and the probability of

an event. A random experiment is described by its possible outcomes, for example

getting a number between 1 and 6 when rolling a die. Suppose an experiment has m

possible outcomes (events) A1, A2, . . . , Am and the experiment is repeated n times.

Now we can count how many times each of the possible outcome has occurred. In

other words, we can calculate the absolute frequency ni = n(Ai ) which is equal to

the number of times an event Ai , i = 1, 2, . . . , m, occurs. The relative frequency

fi = f (Ai ) of a random event Ai , with n repetitions of the experiment, is calculated

as

fi = f (Ai ) =
ni

n
. (6.1)

Example 6.2.1 Consider roulette, a game frequently played in casinos. The roulette

table consists of 37 numbers from 0 to 36. Out of these 37 numbers, 18 numbers are

red, 18 are black and one (zero) is green. Players can place their bets on either a single

number or a range of numbers, the colours red or black, whether the number is odd

or even, among many other choices. A casino employee spins a wheel (containing

pockets representing the 37 numbers) in one direction and then spins a ball over the

wheel in the opposite direction. The wheel and ball gradually slow down and the

ball finally settles in a pocket. The pocket number in which the ball sits down when

the wheel stops is the winning number. Consider three possible outcomes A1: “red”,

A2:“black”, and A3: “green (zero)”. Suppose the roulette ball is spun n = 500 times.

All the outcomes are counted and recorded as follows: A1 occurs 240 times, A2

occurs 250 times and A3 occurs 10 times. Then, the absolute frequencies are given
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by n1 = n(A1) = 240, n2 = n(A2) = 250, and n3 = n(A3) = 10. We therefore get

the relative frequencies as

f1 = f (A1) =
240

500
= 0.48 , f2 = f (A2) =

250

500
= 0.5,

f3 = f (A3) =
10

500
= 0.02.

If we assume that the experiment is repeated a large number of times (mathe-

matically, this would mean that n tends to infinity) and the experimental conditions

remain the same (at least approximately) over all the repetitions, then the relative

frequency f (A) converges to a limiting value for A. This limiting value is interpreted

as the probability of A and denoted by P(A), i.e.

P(A) = lim
n→∞

n(A)

n

where n(A) denotes the number of times an event A occurs out of n times.

Example 6.2.2 Suppose a fair coin is tossed n = 20 times and we observe the number

of heads n(A1) = 8 times and number of tails n(A2) = 12 times. The meaning

of a fair coin in this case is that the probabilities of head and tail are equal (i.e.

0.5). Then, the relative frequencies in the experiment are f (A1) = 8/20 = 0.4 and

f (A2) = 12/20 = 0.6. When the coin is tossed a large number of times and n tends

to infinity, then both f (A1) and f (A2) will have a limiting value 0.5 which is simply

the probability of getting a head or tail in tossing a fair coin.

Example 6.2.3 In Example 6.2.1, the relative frequency of f (red) = f (A1) tends to

18/37 as n tends to infinity because 18 out of 37 numbers are red.

The reader will gain a more theoretical understanding of how repeated experiments

relate to expected quantities in the following chapters after learning the Theorem of

Large Numbers described in Appendix A.3.

A different definition of probability was given by Pierre-Simon Laplace (1749–

1827). We call an experiment a Laplace experiment if the number of possible

simple events is finite and all the outcomes are equally probable. The probability of

an arbitrary event A is then defined as follows:

Definition 6.2.1 The proportion

P(A) =
|A|

|Ω|
=

Number of “favourable simple events” for A

Total number of possible simple events
(6.2)

is called the Laplace probability, where |A| is the cardinal number of A, i.e. the

number of simple events contained in the set A, and |Ω| is the cardinal number of

Ω , i.e. the number of simple events contained in the set Ω .

The cardinal numbers |A| and |Ω| are often calculated using the combinatoric

rules introduced in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
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Example 6.2.4 (Example 6.1.2 continued) The sample space contains 36 simple

events. All of these simple events have equal probability 1/36. To calculate the

probability of the event A that the sum of the dots on the two dice is at least 4 and at

most 6, we count the favourable simple events which fulfil this condition. The simple

events are (1, 3), (2, 2), (3, 1) (sum is 4), (1, 4), (2, 3), (4, 1), (3, 2) (sum is 5) and

(1, 5), (2, 4), (3, 3), (4, 2), (5, 1) (sum is 6). In total, there are (3 + 4 + 5) = 12

favourable simple events, i.e.

A = {(1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (4, 1),

(3, 2), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} .

The probability of the event A is therefore 12/36 = 1/3.

6.3 The Axiomatic Definition of Probability

An important foundation for modern probability theory was established by

A.N. Kolmogorov in 1933 when he proposed the following axioms of probability.

Axiom 1 Every random event A has a probability in the (closed) interval [0, 1], i.e.

0 ≤ P(A) ≤ 1.

Axiom 2 The sure event has probability 1, i.e.

P(Ω) = 1.

Axiom 3 If A1 and A2 are disjoint events, then

P(A1 ∪ A2) = P(A1) + P(A2).

holds.

Remark Axiom 3 also holds for three or more disjoint events and is called the

theorem of additivity of disjoint events. For example, if A1, A2, and A3 are disjoint

events, then P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3).

Example 6.3.1 Suppose the two events in tossing a coin are A1: “appearance of head”

and A2: “appearance of tail” which are disjoint. The event A1 ∪ A2: “appearance of

head or tail” has the probability

P(A1 ∪ A2) = P(A1) + P(A2) = 1/2 + 1/2 = 1.

Example 6.3.2 Suppose an event is defined as the number of points observed on the

upper surface of a die when rolling it. There are six events, i.e. the natural numbers

1, 2, 3, 4, 5, 6. These events are disjoint and they have equal probability of occurring:

P(1) = P(2) = · · · = P(6) = 1/6. The probability of getting an even number is

then

P(“even number”) = P(2) + P(4) + P(6) = 1/6 + 1/6 + 1/6 = 1/2.
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6.3.1 Corollaries Following from Kolomogorov’s Axioms

We already know that A ∪ Ā = Ω (sure event). Since A and Ā are disjoint, using

Axiom 3 we have

P(A ∪ Ā) = P(A) + P( Ā) = 1 .

Based on this, we have the following corollaries.

Corollary 1 The probability of the complementary event of A, (i.e. Ā) is

P( Ā) = 1 − P(A). (6.3)

Example 6.3.3 Suppose a box of 30 chocolates contains chocolates of 6 differ-

ent flavours with 5 chocolates of each flavour. Suppose an event A is defined as

A = {“marzipan flavour”}. The probability of finding a marzipan chocolate (with-

out looking into the box) is P(“marzipan”) = 5/30. Then, the probability of the

complementary event Ā, i.e. the probability of not finding a marzipan chocolate is

therefore

P(“no marzipan flavour”) = 1 − P(“marzipan flavour”) = 25/30.

Corollary 2 The probability of occurrence of an impossible event ∅ is zero:

P(∅) = P(Ω̄) = 1 − P(Ω) = 0.

Corollary 3 Let A1 and A2 be not necessarily disjoint events. The probability of

occurrence of A1 or A2 is

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2). (6.4)

The rule in (6.4) is known as the additive theorem of probability. Again we use

the word “or” in the statistical sense: either A1 is occurring, A2 is occurring, or both

of them. This means we have to add the probabilities P(A1) and P(A2) but need to

make sure that the simple events which are contained in both sets are not counted

twice, thus we subtract P(A1 ∩ A2).

Example 6.3.4 There are 10 actors acting in a play. Two actors, one of whom is

male, are portraying evil characters. In total, there are 6 female actors. Let an event

A describe whether the actor is male and another event B describe whether the

character is evil. Suppose we want to know the probability of a randomly chosen

actor being male or evil. We can then calculate

P(actor is male or evil) =

= P(actor is male) + P(actor is evil) − P(actor is male and evil)

=
4

10
+

2

10
−

1

10
=

1

2
.
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Corollary 4 If A ⊆ B then P(A) ≤ P(B).

Proof We use the representation B = A ∪ ( Ā ∩ B) where A and Ā ∩ B are the

disjoint events. Then using Axiom 3 and Axiom 1, we get

P(B) = P(A) + P( Ā ∩ B) ≥ P(A) .

6.3.2 Calculation Rules for Probabilities

The introduced axioms and corollaries can be summarized as follows:

(1) 0 ≤ P(A) ≤ 1

(2) P(Ω) = 1

(3) P(A1 ∪ A2) = P(A1) + P(A2), if A1 and A2 are disjoint

(4) P(∅) = 0

(5) P( Ā) = 1 − P(A)

(6) P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2)

(7) P(A) ≤ P(B), if A ⊆ B

6.4 Conditional Probability

Consider the following example to understand the concept of conditional probability:

Suppose a new medical test is developed to diagnose a particular infection of the

blood. The test is conducted on blood samples from 100 randomly selected patients

and the outcomes of the tests are presented in Table 6.1.

There are the following four possible outcomes:

• The blood sample has an infection and the test diagnoses it, i.e. the test is correctly

diagnosing the infection.

• The blood sample does not have an infection and the test does not diagnose it, i.e.

the test is correctly diagnosing that there is no infection.

• The blood sample has an infection and the test does not diagnose it, i.e. the test is

incorrect in stating that there is no infection.

• The blood sample does not have an infection but the test diagnoses it, i.e. the test

is incorrect in stating that there is an infection.

Table 6.2 contains the relative frequencies of Table 6.1. In the following, we in-

terpret the relative frequencies as probabilities, i.e. we assume that the values in

Table 6.2 would be observed if the number n of patients was much larger than 100.

It can be seen that the probability that a test is positive is P(T +) = 0.30 + 0.10 =

0.40 and the probability that an infection is present is P(I P) = 0.30 + 0.15 = 0.45.
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Table 6.1 Absolute frequencies of test results and infection status

Infection Total (row)

Present Absent

Test Positive (+) 30 10 40

Negative (−) 15 45 60

Total (column) 45 55 Total = 100

Table 6.2 Relative frequencies of patients and test

Infection Total (row)

Present (IP) Absent (IA)

Test Positive (+) 0.30 0.10 0.40

Negative (−) 0.15 0.45 0.60

Total (column) 0.45 0.55 Total = 1

If one already knows that the test is positive and wants to determine the probability

that the infection is indeed present, then this can be achieved by the respective

conditional probability P(I P|T +) which is

P(I P|T +) =
P(I P ∩ T +)

P(T +)
=

0.3

0.4
= 0.75.

Note that I P ∩ T + denotes the “relative frequency of blood samples in which the

disease is present and the test is positive” which is 0.3.

More generally, recall Definition 4.1.1 from Chap. 4 where we defined condi-

tional, joint, and marginal frequency distributions in contingency tables. The present

example simply applies these rules to the contingency tables of relative frequencies

and interprets the relative frequencies as an approximation to the probabilities of

interest, as already explained.

We use the intersection operator ∩ to describe events which occur for A = a

and B = b. This relates to the joint relative frequencies. The marginal relative fre-

quencies (i.e. probabilities P(A = a)) can be observed from the column and row

sums, respectively; and the conditional probabilities can be observed as the joint

frequencies in relation to the marginal frequencies.

For simplicity, assume that all simple events in Ω = {ω1,ω2, . . . , ωk} are equally

probable, i.e. P(ω j ) = 1
k
, j = 1, 2, . . . , k. Let A and B be two events containing n A

and nB numbers of simple events. Let further A ∩ B contain n AB numbers of simple

events. The Laplace probability using (6.2) is

P(A) =
n A

k
, P(B) =

nB

k
, P(A ∩ B) =

n AB

k
.

Assume that we have prior information that A has already occurred. Now we want to

find out how the probability of B is to be calculated. Since A has already occurred,

we know that the sample space is reduced by the number of simple events which

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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are contained in A. There are n A such simple events. Thus, the total sample space

Ω is reduced by the sample space of A. Therefore, the simple events in A ∩ B are

those simple events which are realized when B is realized. The Laplace probability

for B under the prior information on A, or under the condition that A is known, is

therefore

P(B|A) =
n AB/k

n A/k
=

P(A ∩ B)

P(A)
. (6.5)

This can be generalized to the case when the probabilities for simple events are

unequal.

Definition 6.4.1 Let P(A) > 0. Then the conditional probability of event B oc-

curring, given that event A has already occurred, is

P(B|A) =
P(A ∩ B)

P(A)
. (6.6)

The roles of A and B can be interchanged to define P(A|B) as follows. Let P(B) > 0.

The conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
. (6.7)

We now introduce a few important theorems which are relevant to calculating

conditional and other probabilities.

Theorem 6.4.1 (Multiplication Theorem of Probability) For two arbitrary events A

and B, the following holds:

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A). (6.8)

This theorem follows directly from the two definitions (6.6) and (6.7) (but does not

require that P(A) > 0 and P(B) > 0).

Theorem 6.4.2 (Law of Total Probability) Assume that A1, A2, . . . , Am are events

such that ∪m
i=1 Ai = Ω and Ai ∩ A j = ∅ for all i �= j, P(Ai ) > 0 for all i , i.e. A1,

A2, . . . , Am form a complete decomposition of Ω = ∪m
i=1 Ai in pairwise disjoint

events, then the probability of an event B can be calculated as

P(B) =

m∑

i=1

P(B|Ai )P(Ai ) . (6.9)
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6.4.1 Bayes’ Theorem

Bayes’ Theorem gives a connection between P(A|B) and P(B|A). For events A and

B with P(A) > 0 and P(B) > 0, using (6.6) and (6.7) or (6.8), we get

P(A|B) =
P(A ∩ B)

P(B)
=

P(A ∩ B)

P(A)

P(A)

P(B)

=
P(B|A)P(A)

P(B)
. (6.10)

Let A1, A2, . . . , Am be events such that∪m
i=1 Ai = Ω and Ai ∩ A j = ∅ for all i �=

j, P(Ai ) > 0 for all i , and B is another event than A, then using (6.9) and (6.10),

we get

P(A j |B) =
P(B|A j )P(A j )∑
i P(B|Ai )P(Ai )

. (6.11)

The probabilities P(Ai ) are called prior probabilities, P(B|Ai ) are sometimes

called model probabilities and P(A j |B) are called posterior probabilities.

Example 6.4.1 Suppose someone rents movies from two different DVD stores.

Sometimes it happens that the DVD does not work because of scratches. We con-

sider the following events: Ai (i = 1, 2): “the DVD is rented from store i”. Further

let B denote the event that the DVD is working without any problems. Assume we

know that P(A1) = 0.6 and P(A2) = 0.4 (note that A2 = Ā1) and P(B|A1) = 0.95,

P(B|A2) = 0.75 and we are interested in the probability that a rented DVD works

fine. We can then apply the Law of Total Probability and get

P(B)
(6.9)
= P(B|A1)P(A1) + P(B|A2)P(A2)

= 0.6 · 0.95 + 0.4 · 0.75 = 0.87.

We may also be interested in the probability that the movie was rented from store 1

and is working which is

P(B ∩ A1)
(6.8)
= P(B|A1)P(A1) = 0.95 · 0.6 = 0.57.

Now suppose we have a properly working DVD. What is the probability that it is

rented from store 1? This is obtained as follows:

P(A1|B)
(6.7)
=

P(A1 ∩ B)

P(B)
=

0.57

0.87
= 0.6552.

Now assume we have a DVD which does not work, i.e. B̄ occurs. The probability

that a DVD is not working given that it is from store 1 is P(B̄|A1) = 0.05. Similarly,
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P(B̄|A2) = 0.25 for store 2. We can now calculate the conditional probability that

a DVD is from store 1 given that it is not working:

P(A1|B̄)
(6.11)
=

P(B̄|A1)P(A1)

P(B̄|A1)P(A1) + P(B̄|A2)P(A2)

=
0.05 · 0.6

0.05 · 0.6 + 0.25 · 0.4
= 0.2308.

The result about P(B̄) used in the denominator can also be directly obtained by using

P(B̄) = 1 − 0.87 = 0.13.

6.5 Independence

Intuitively, two events are independent if the occurrence or non-occurrence of one

event does not affect the occurrence or non-occurrence of the other event. In other

words, two events A and B are independent if the probability of occurrence of B has

no effect on the probability of occurrence of A. In such a situation, one expects that

P(A|B) = P(A) and P(A|B̄) = P(A) .

Using this and (6.7), we can write

P(A|B) =
P(A ∩ B)

P(B)

=
P(A ∩ B̄)

P(B̄)
= P(A|B̄). (6.12)

This yields:

P(A ∩ B)P(B̄) = P(A ∩ B̄)P(B)

P(A ∩ B)(1 − P(B)) = P(A ∩ B̄)P(B)

P(A ∩ B) = (P(A ∩ B̄) + P(A ∩ B))P(B)

P(A ∩ B) = P(A)P(B) . (6.13)

This leads to the following definition of stochastic independence.

Definition 6.5.1 Two random events A and B are called (stochastically) indepen-

dent if

P(A ∩ B) = P(A)P(B) , (6.14)

i.e. if the probability of simultaneous occurrence of both events A and B is the

product of the individual probabilities of occurrence of A and B.
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This definition of independence can be extended to the case of more than two

events as follows:

Definition 6.5.2 The n events A1, A2, . . . , An are stochastically mutually indepen-

dent, if for any subset of m events Ai1 , Ai2 , . . . , Aim (m ≤ n)

P(Ai1 ∩ Ai2 · · · ∩ Aim ) = P(Ai1)P(Ai2) · . . . · P(Aim ) (6.15)

holds.

A weaker form of independence is pairwise independence. If condition (6.15) is

fulfilled only for two arbitrary events, i.e. m = 2, then the events are called pairwise

independent. The difference between pairwise independence and general stochastic

independence is explained in the following example.

Example 6.5.1 Consider an urn with four balls. The following combinations of ze-

roes and ones are printed on the balls: 110, 101, 011, 000. One ball is drawn from

the urn. Define the following events:

A1 : The first digit on the ball is 1.

A2 : The second digit on the ball is 1.

A3 : The third digit on the ball is 1.

Since there are two favourable simple events for each of the events A1, A2 and A3,

we get

P(A1) = P(A2) = P(A3) =
2

4
=

1

2
.

The probability that all the three events simultaneously occur is zero because there

is no ball with 111 printed on it. Therefore, A1, A2, and A3 are not stochastically

independent because

P(A1)P(A2)P(A3) =
1

8
�= 0 = P(A1 ∩ A2 ∩ A3).

However,

P(A1 ∩ A2) =
1

4
= P(A1)P(A2) ,

P(A1 ∩ A3) =
1

4
= P(A1)P(A3) ,

P(A2 ∩ A3) =
1

4
= P(A2)P(A3) ,

which means that the three events are pairwise independent.
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6.6 Key Points and Further Issues

Note:

� We summarize some important theorems and laws:

• The Laplace probability is the ratio

P(A) =
|A|

|Ω|
=

Number of “favourable simple events” for A

Total number of possible simple events
.

• The Law of Total Probability is

P(B) =

m∑

i=1

P(B|Ai )P(Ai ).

• Bayes’ Theorem is

P(A j |B) =
P(B|A j )P(A j )∑
i P(B|Ai )P(Ai )

.

• n events A1, A2, . . . , An are (stochastically) independent, if

P(A1 ∩ A2 · · · ∩ An) = P(A1)P(A2) · . . . · P(An).

� In Sect. 10.8, we present the χ
2-independence test, which can test

whether discrete random variables (see Chap. 7) are independent or not.

6.7 Exercises

Exercise 6.1

(a) Suppose Ω = {0, 1, . . . , 15}, A = {0, 8}, B = {1, 2, 3, 5, 8, 10, 12}, C = {0, 4,

9, 15}. Determine A ∩ B, B ∩ C , A ∪ C , C \ A, Ω \ (B ∪ A ∪ C).

(b) Now consider the three pairwise disjoint events E , F , G with Ω = E ∪

F ∪ G and P(E) = 0.2 and P(F) = 0.5. Calculate P(F̄), P(G), P(E ∩ G),

P(E \ E), and P(E ∪ F).

Exercise 6.2 A driving licence examination consists of two parts which are based on

a theoretical and a practical examination. Suppose 25 % of people fail the practical

examination, 15 % of people fail the theoretical examination, and 10 % of people fail

both the examinations. If a person is randomly chosen, then what is the probability

that this person

http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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(a) fails at least one of the examinations?

(b) only fails the practical examination, but not the theoretical examination?

(c) successfully passes both the tests?

(d) fails any of the two examinations?

Exercise 6.3 A new board game uses a twelve-sided die. Suppose the die is rolled

once, what is the probability of getting

(a) an even number?

(b) a number greater than 9?

(c) an even number greater than 9?

(d) an even number or a number greater than 9?

Exercise 6.4 The Smiths are a family of six. They are celebrating Christmas and

there are 12 gifts, two for each family member. The name tags for each family

member have been attached to the gifts. Unfortunately the name tags on the gifts are

damaged by water. Suppose each family member draws two gifts at random. What

is the probability that someone

(a) gets his/her two gifts, rather than getting the gifts for another family member?

(b) gets none of his/her gifts, but rather gets the gifts for other family members?

Exercise 6.5 A chef from a popular TV cookery show sometimes puts too much salt

in his pumpkin soup and the probability of this happening is 0.2. If he is in love

(which he is with probability 0.3), then the probability of using too much salt is 0.6.

(a) Create a contingency table for the probabilities of the two variables “in love”

and “too much salt”.

(b) Determine whether the two variables are stochastically independent or not.

Exercise 6.6 Dr. Obermeier asks his neighbour to take care of his basil plant while

he is away on leave. He assumes that his neighbour does not take care of the basil

with a probability of 1
3
. The basil dies with probability 1

2
when someone takes care

of it and with probability 3
4

if no one takes care of it.

(a) Calculate the probability of the basil plant surviving after its owner’s leave.

(b) It turns out that the basil eventually dies. What is the probability that

Dr. Obermeier’s neighbour did not take care of the plant?

Exercise 6.7 A bank considers changing its credit card policy. Currently 5 % of credit

card owners are not able to pay their bills in any month, i.e. they never pay their bills.

Among those who are generally able to pay their bills, there is still a 20 % probability

that the bill is paid too late in a particular month.
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(a) What is the probability that someone is not paying his bill in a particular month?

(b) A credit card owner did not pay his bill in a particular month. What is the

probability that he never pays back the money?

(c) Should the bank consider blocking the credit card if a customer does not pay his

bill on time?

Exercise 6.8 There are epidemics which affect animals such as cows, pigs, and oth-

ers. Suppose 200 cows are tested to see whether they are infected with a virus or not.

Let event A describe whether a cow has been transported by a truck recently or not

and let B denote the event that a cow has been tested positive with a virus. The data

are summarized in the following table:

B B̄ Total

A 40 60 100

Ā 20 80 100

Total 60 140 200

(a) What is the probability that a cow is infected and has been transported by a truck

recently?

(b) What is the probability of having an infected cow given that it has been trans-

ported by the truck?

(c) Determine and interpret P(B).

Exercise 6.9 A football practice target is a portable wall with two holes (which are

the target) in it for training shots. Suppose there are two players A and B. The

probabilities of hitting the target by A and B are 0.4 and 0.5, respectively.

(a) What is the probability that at least one of the players succeeds with his shot?

(b) What is the probability that exactly one of the players hits the target?

(c) What is the probability that only B scores?

→ Solutions to all exercises in this chapter can be found on p. 361

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,

Springer, Heidelberg
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In the first part of the book we highlighted how to describe data. Now, we discuss

the concepts required to draw statistical conclusions from a sample of data about a

population of interest. For example, suppose we know the starting salary of a sample

of 100 students graduating in law. We can use this knowledge to draw conclusions

about the expected salary for the population of all students graduating in law. Simi-

larly, if a newly developed drug is given to a sample of selected tuberculosis patients,

then some patients may show improvement and some patients may not, but we are

interested in the consequences for the entire population of patients. In the remainder

of this chapter, we describe the theoretical concepts required for making such con-

clusions. They form the basis for statistical tests and inference which are introduced

in Chaps. 9–11.

7.1 Random Variables

Random variables help us to view the collected data as an outcome of a random

experiment. Consider the simple experiment of tossing a coin. If a coin is tossed,

then one can observe either “head” (H ) or “tail” (T ). The occurrence of “head” or

“tail” is random, and the exact outcome will only be known after the coin is tossed.

We can toss the coin many times and obtain a sequence of outputs. For example, if

a coin is tossed seven times, then one of the outcomes may be H, H, T, H, T, T, T .

This outcome is the consequence of a random experiment, and it may be helpful if

we can distill the sequence of outcomes in meaningful numbers. One option is to

summarize them by a variable X , which takes the values x1 = 1 (denoting head)

and x2 = 0 (denoting tail). We have learnt from Chap. 6 that this can be described

in the framework of a random experiment where Ω = {ω1, ω2} with the events

A1 = {ω1} = 1 = head and A2 = {ω2} = 0 = tail. The random variable X is

© Springer International Publishing Switzerland 2016

C. Heumann et al., Introduction to Statistics and Data Analysis,
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Table 7.1 Examples of random variables

X Event Realizations of X

Roll of a die Ai : number i (i = 1, 2, . . . , 6) x = i

Lifetime of TV Ai : survival time is i months

(i = 1, 2, . . .)

x = i

Roulette A1: red x1 = 1

A2: black x2 = 2

A3: green (zero) x3 = 0

now mapped to real numbers, and therefore, it describes the possible outcome of

any coin toss experiment. The observed outcomes H, H, T, H, T, T, T relate to a

specific sample, a unique realization of this experiment. We can write X (ω1) = 1

and X (ω2) = 0 with ω1,ω2 ∈ Ω and 1, 0 ∈ R where R is the set of real numbers.

We know that in any coin tossing experiment, the probability of head being observed

is P(X (ω1) = 1) = 0.5 and of tail being observed is P(X (ω2) = 0) = 0.5. We

may therefore view X as a random variable which collects the possible outcomes of

a random experiment and captures the uncertainty associated with them.

Definition 7.1.1 Let Ω represent the sample space of a random experiment, and let

R be the set of real numbers. A random variable is a function X which assigns to

each element ω ∈ Ω one and only one number X (ω) = x, x ∈ R, i.e.

X : Ω → R. (7.1)

Example 7.1.1 The features of a die roll experiment, a roulette game, or the lifetime

of a TV can all be described by a random variable, see Table 7.1. The events involve

randomness, and if we have knowledge about the random process, we can assign

probabilities P(X = xi ) to each event, e.g. when rolling a die, the probability of

getting a “1” is P(X = 1) = 1/6 and the probability of getting a “2” is P(X = 2) =
1/6.

Note that it is a convention to denote random variables by capital letters (e.g. X )

and their values by small letters (e.g. x). It is evident from the coin tossing experiment

that we need to know P(X = x) to describe the respective random variable. We

assume in this chapter that we have this knowledge. However, Chaps. 9–11 show

how a sample of data can be used to estimate unknown probabilities and other

quantities given a prespecified uncertainty level. More generally, we can say that it

is mandatory to know P(X ∈ A) for all possible A which are subsets of R. If we

choose A = (−∞, x], x ∈ R, we have

P(X ∈ A) = P(X ∈ (−∞, x]) = P(−∞ < X ≤ x) = P(X ≤ x).

This consideration gives rise to the definition of the cumulative distribution func-

tion. Recall that we developed the concept of the empirical cumulative distribution

function (ECDF) in Chap. 2, Sect. 2.2, but the definition there was empirical. Now,

we develop it theoretically.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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7.2 Cumulative Distribution Function (CDF)

Definition 7.2.1 The cumulative distribution function (CDF) of a random variable

X is defined as

F(x) = P(X ≤ x). (7.2)

As in Chap. 2, we can see that the CDF is useful in obtaining the probabilities related

to the occurrence of random events. Note that the empirical cumulative distribu-

tion function (ECDF, Sect. 2.2) and the cumulative distribution function are closely

related and therefore have a similar definition and similar calculation rules. How-

ever, in Chap. 2, we work with the cumulative distribution of observed values in a

particular sample whereas in this chapter, we deal with random variables modelling

the distribution of a general population.

The Definition 7.2.1 implies the following properties of the cumulative distribution

function:

• F(x) is a monotonically non-decreasing function

(if x1 ≤ x2, it follows that F(x1) ≤ F(x2)),

• limx→−∞ F(x) = 0 (the lower limit of F is 0),

• limx→+∞ F(x) = 1 (the upper limit of F is 1),

• F(x) is continuous from the right, and

• 0 ≤ F(x) ≤ 1 for all x ∈ R.

Another notation for F(x) = P(X ≤ x) is FX (x), but we use F(x).

7.2.1 CDF of Continuous Random Variables

Before giving some examples about the meaning and interpretation of the CDF, we

first need to consider some definitions and theorems.

Definition 7.2.2 A random variable X is said to be continuous if there is a function

f (x) such that for all x ∈ R

F(x) =
∫ x

−∞
f (t)dt (7.3)

holds. F(x) is the cumulative distribution function (CDF) of X , and f (x) is the

probability density function (PDF) of x and d
dx

F(x) = f (x) for all x that are

continuity points of f .

Theorem 7.2.1 For a function f (x) to be a probability density function (PDF) of

X, it needs to satisfy the following conditions:

(1) f (x) ≥ 0 for all x ∈ R,

(2)
∫ ∞
−∞ f (x)dx = 1.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Theorem 7.2.2 Let X be a random variable with CDF F(x). If x1 < x2, where x1

and x2 are known constants, P(x1 ≤ X ≤ x2) = F(x2) − F(x1) =
∫ x2

x1
f (x)dx.

Theorem 7.2.3 The probability of a continuous random variable taking a particular

value x0 is zero:

P(X = x0) = 0. (7.4)

The proof is provided in Appendix C.2.

Example 7.2.1 Consider the continuous random variable “waiting time for the train”.

Suppose that a train arrives every 20 min. Therefore, the waiting time of a particular

person is random and can be any time contained in the interval [0, 20]. We can start

describing the required probability density function as

f (x) =
{

k for 0 ≤ x ≤ 20

0 otherwise

where k is an unknown constant. Now, using condition (2) of Theorem 7.2.1, we

have

1 =
∫ 20

0

f (x)dx = [kx]20
0 = 20k

which needs to be fulfilled. This yields k = 1/20 which is always greater than 0,

and therefore, condition (1) of Theorem 7.2.1 is also fulfilled. It follows that

f (x) =
{

1
20

for 0 ≤ x ≤ 20

0 otherwise

is the probability density function describing the waiting time for the train. We can

now use Definition 7.2.2 to determine the cumulative distribution function:

F(x) =
∫ x

0

f (t)dt =
∫ x

0

1

20
dt =

1

20
[t]x

0 =
1

20
x .

Suppose we are interested in calculating the probability of a waiting time between

15 and 20 min. This can be calculated using Theorem 7.2.2:

P(15 ≤ X ≤ 20) = F(20) − F(15) =
20

20
−

15

20
= 0.25.

We can obtain this probability from the graph of the CDF as well, see Fig. 7.1 where

both the PDF and CDF of this example are illustrated.

Defining a function, for example the CDF, is simple in R: One can use the

function command followed by specifying the variables the function evaluates

in round brackets (e.g. x) and the function itself in braces (e.g. x/20). Functions can

be plotted using the curve command:

cdf <- function(x){1/20 ∗ x}
curve(cdf,from=0,to=20)
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Fig. 7.1 Probability density function (PDF) and cumulative distribution function (CDF) for waiting

time in Example 7.2.1

Alternatively, theplot command can be used to plot vectors against each other; for

example, after defining a function, we can define a sequence

(x<-seq(0,20,0.01)), evaluate this sequence via the specified function

(cdf(x)), and plot them against each other and connect the points from the sequence

with a line (plot(x,cdf(x),type=’l’)).

This example illustrates how the cumulative distribution function can be used

to obtain probabilities of interest. Most importantly, if we want to calculate the

probability that the random variable X takes values in the interval [x1, x2], we simply

have to look at the difference of the respective CDF values at x1 and x2. Figure 7.2a

highlights that the interval probability corresponds to the difference of the CDF

values on the y-axis.

We can also use the probability density function to visualize P(x1 ≤ X ≤ x2).

We know from Theorem 7.2.1 that
∫ ∞
−∞ f (x)dx = 1, and therefore, the area under

the PDF equals 1. Thus, we can interpret interval probabilities as the area under the

PDF between x1 and x2. This is presented in Fig. 7.2b.

7.2.2 CDF of Discrete Random Variables

Definition 7.2.3 A random variable X is defined to be discrete if its probability

space is either finite or countable, i.e. if it takes only a finite or countable number of

values. Note that a set V is said to be countable, if its elements can be listed, i.e.

there is a one-to-one correspondence between V and the positive integers.

Example 7.2.2 Consider the example of tossing of a coin where each trial results

in either a head (H ) or a tail (T ), each occurring with the same probability
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(a)

x1 x2

F (x1)

F (x2)

x
(b)

x1 x2

F (x2) − F (x1)

Fig. 7.2 Graphical representation of the probability P(x1 ≤ X ≤ x2) a via the CDF and b via the

PDF∗

0.5. When the coin is tossed multiple times, we may observe sequences such as

H, T, H, H, T, H, H, T , and T, . . .. The sample space is Ω = {H, T }. Let the

random variable X denote the number of trials required to get the third head, then

X = 4 for the given sequence above. Clearly, the space of X is the set (3, 4, 5, . . .).

We can see that X is a discrete random variable because its space is finite and can

be counted. We can also assign certain probabilities to each of these values, e.g.

P(X = 3) = p1 and P(X = 4) = p2.

Definition 7.2.4 Let X be a discrete random variable which takes k different values.

The probability mass function (PMF) of X is given by

f (X) = P(X = xi ) = pi for each i = 1, 2, . . . , k. (7.5)

It is required that the probabilities pi satisfy the following conditions:

(1) 0 ≤ pi ≤ 1,

(2)
∑k

i=1 pi = 1.
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Definition 7.2.5 Given (7.5), we can write the CDF of a discrete random variable as

F(x) =
k

∑

i=1

I{xi ≤x} pi , (7.6)

where I is an indicator function defined as

I{xi ≤x} =
{

1 if xi ≤ x

0 otherwise.

The CDF of a discrete variable is always a step function.

Working with the CDF for Discrete Random variables

We can easily calculate various types of probabilities for discrete random variables

using the CDF. Let a and b be some known constants, then

P(X ≤ a) = F(a), (7.7)

P(X < a) = P(X ≤ a) − P(X = a) = F(a) − P(X = a), (7.8)

P(X > a) = 1 − P(X ≤ a) = 1 − F(a), (7.9)

P(X ≥ a) = 1 − P(X < a) = 1 − F(a) + P(X = a), (7.10)

P(a ≤ X ≤ b) = P(X ≤ b) − P(X < a)

= F(b) − F(a) + P(X = a), (7.11)

P(a < X ≤ b) = F(b) − F(a), (7.12)

P(a < X < b) = F(b) − F(a) − P(X = b), (7.13)

P(a ≤ X < b) = F(b) − F(a) − P(X = b) + P(X = a). (7.14)

Remark 7.2.1 The Eqs. (7.7)–(7.14) can also be used for continuous variables, but in

this case, P(X = a) = P(X = b) = 0 (see Theorem 7.2.3), and therefore, Eqs. (7.7)–

(7.14) can be modified accordingly.

Example 7.2.3 Consider the experiment of rolling a die. There are six possible out-

comes. If we define the random variable X as the number of dots observed on

the upper surface of the die, then the six possible outcomes can be described as

x1 = 1, x2 = 2, . . . , x6 = 6. The respective probabilities are P(X = xi ) = 1/6; i =
1, 2, . . . , 6. The PMF and CDF are therefore defined as follows:

f (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1/6 if x = 1

1/6 if x = 2

1/6 if x = 3

1/6 if x = 4

1/6 if x = 5

1/6 if x = 6

0 elsewhere.

F(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if −∞ < x < 1

1/6 if 1 ≤ x < 2

2/6 if 2 ≤ x < 3

3/6 if 3 ≤ x < 4

4/6 if 4 ≤ x < 5

5/6 if 5 ≤ x < 6

1 if 6 ≤ x < ∞.
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Fig. 7.3 Probability density function and cumulative distribution function for rolling a die in

Example 7.2.3. “•” relates to an included value and “◦” to an excluded value

Both the CDF and the PDF are displayed in Fig. 7.3.

We can use the CDF to calculate any desired probability, e.g. P(X ≤ 5) =
F(5) = 5/6. This is shown in Fig. 7.3b where for X = 5, we obtain F(5) = 5/6

when evaluating on the y-axis. Similarly, P(3 < X ≤ 5) = F(5) − F(3) =
(5/6) − (3/6) = 2/6 can be interpreted as the difference of F(5) and F(3) on the

y-axis.

7.3 Expectation and Variance of a Random Variable

We have seen that both the probability density function (or probability mass function)

and the cumulative distribution function are helpful in characterizing the features of

a random variable. Some other features of random variables are characterized by the

concepts of expectation and variance.

7.3.1 Expectation

Definition 7.3.1 The expectation of a continuous random variable X , having the

probability density function f (x) with
∫

|x | f (x)dx < ∞, is defined as

E(X) =
∫ +∞

−∞
x f (x)dx . (7.15)
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For a discrete random variable X , which takes the values x1, x2, . . . with respective

probabilities p2, p2, . . ., the expectation of X is defined as

E(X) =
k

∑

i=1

xi pi = x1 P(X = x1) + x2 P(X = x2) + · · · + xk P(X = xk). (7.16)

The expectation of X , i.e. E(X), is usually denoted by μ = E(X) and relates to the

arithmetic mean of the distribution of the population. It reflects the central tendency

of the population.

Example 7.3.1 Consider again Example 7.2.1 where the waiting time for a train was

described by the following probability density function:

f (x) =
{

1
20

for 0 ≤ x ≤ 20

0 otherwise.

We can calculate the expectation as follows:

E(X) =
∫ ∞

−∞
x f (x) dx =

∫ 0

−∞
x f (x) dx +

∫ 20

0

x f (x) dx +
∫ ∞

20

x f (x) dx

= 0 +
∫ 20

0

1

20
x dx + 0 =

[

1

40
x2

]20

0

=
400

40
− 0 = 10.

The “average” waiting time for the train is therefore 10 min. This means that if a

person has to wait for the train every day, then the person will experience waiting

times varying randomly between 0 and 20 min and, on average, has to wait for 10 min.

Example 7.3.2 Consider again the die roll experiment from Example 7.2.3. The

probabilities for the occurrence of any xi , i = 1, 2, . . . , 6, are P(X = xi ) = 1/6.

The expectation can thus be calculated as

E(X) =
6

∑

i=1

xi pi

= 1 · P(X = 1) + 2 · P(X = 2) + 3 · P(X = 3) + 4 · P(X = 4)

+ 5 · P(X = 5) + 6 · P(X = 6)

= (1 + 2 + 3 + 4 + 5 + 6)
1

6
=

21

6
= 3.5.

7.3.2 Variance

The variance describes the variability of a random variable. It gives an idea about the

concentration or dispersion of values around the arithmetic mean of the distribution.
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Definition 7.3.2 The variance of a random variable X is defined as

Var(X) = E[X − E(X)]2. (7.17)

The variance of a continuous random variable X is

Var(X) =
∫ +∞

−∞
(x − E(X))2 f (x)dx (7.18)

where E(X) =
∫ +∞
−∞ x f (x)dx . Similarly, the variance of a discrete random variable

X is

Var(X) =
∑

i=1

(xi − E(X))2 pi (7.19)

where E(X) =
∑

i xi pi . The variance is usually denoted by σ
2 = Var(X).

Definition 7.3.3 The positive square root of the variance is called the standard

deviation.

Example 7.3.3 Recall Examples 7.2.1 and 7.3.1. We can calculate the variance of

the waiting time for a train using the probability density function

f (x) =
{

1
20

for 0 ≤ x ≤ 20

0 otherwise

and E(X) = 10 (already calculated in Example 7.3.1). Using (7.18), we obtain:

Var(X) =
∫ ∞

−∞
(x − E(x))2 f (x) dx =

∫ ∞

−∞
(x − 10)2 f (x) dx

=
∫ 0

−∞
(x − 10)2 f (x) dx +

∫ 20

0

(x − 10)2 f (x) dx +
∫ ∞

20

(x − 10)2 f (x) dx

= 0 +
∫ 20

0

(x − 10)2 ·
1

20
dx + 0 =

∫ 20

0

1

20
(x2 − 20x + 100) dx

=
[

1

20

(

1

3
x3 − 10x2 + 100x

)]20

0

= 33
1

3
.

The standard deviation is

√

33 1
3

min2 ≈ 5.77 min.

Recall that in Chap. 3, we introduced the sample variance and the sample stan-

dard deviation. We already know that the standard deviation has the same unit of

measurement as the variable, whereas the unit of the variance is the square of the

measurement unit. The standard deviation measures how the values of a random vari-

able are dispersed around the population mean. A low value of the standard deviation

indicates that the values are highly concentrated around the mean. A high value of

the standard deviation indicates lower concentration of the data values around the

mean, and the observed values may be far away from the mean. These considerations

are helpful in making connections between random variables and samples of data,

see Chap. 9 for the construction of confidence intervals.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Example 7.3.4 Recall Example 7.3.2 where we calculated the expectation of a die

roll experiment as E(X) = 3.5. With xi ∈ {1, 2, 3, 4, 5, 6} and pi = 1/6 for all i =
1, 2, 3, 4, 5, 6, the variance for this example corresponds to

Var(X) =
∑

i=1

(xi − E(X))2 pi = (1 − 3.5)2 ·
1

6
+ (2 − 3.5)2 ·

1

6
+ (3 − 3.5)2 ·

1

6

+(4 − 3.5)2 ·
1

6
+ (5 − 3.5)2 ·

1

6
+ (6 − 3.5)2 ·

1

6
≈ 2.92.

Theorem 7.3.1 The variance of a random variable X can be expressed as

Var(X) = E(X2) − [E(X)]2. (7.20)

The proof is given in Appendix C.2.

Example 7.3.5 In Examples 7.2.1, 7.3.1, and 7.3.3, we evaluated the waiting time

for a train using the PDF

f (X) =
{

1
20

for 0 < X ≤ 20

0 otherwise.

We calculated the expectation and variance in Eqs. (7.15) and (7.17) as 10 min and

33 1
3

min2, respectively. Theorem 7.3.1 tells us that we can calculate the variance in

a different way as follows:

E(X2) =
∫ ∞

−∞
x2 f (x) dx =

∫ 20

0

1

20
x2 dx

=
[

1

60
x3

]20

0

= 133
1

3

Var(X) = E(X2) − [E(X)]2 = 133
1

3
− 102 = 33

1

3
.

This yields the same result as Eq. (7.18) but is much quicker.

7.3.3 Quantiles of a Distribution

We introduced the concept of quantiles in Chap. 3, Sect. 3.1.2. Now, we define

quantiles in terms of the distribution function.

Definition 7.3.4 The value x p for which the cumulative distribution function is

F(x p) = p (0 < p < 1) (7.21)

is called the p-quantile.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Fig. 7.4 First quartile,

median, and third quartile∗

x0.25 x0.5 x0.75

0.25

0.5

0.75

x

It follows from Definition 7.3.4 that x p is the value which divides the cumulative

distribution function into two parts: the probability of observing a value left of x p is

p, whereas the probability of observing a value right of x p is 1− p. For example, the

0.25-quantile x0.25 describes the x-value for which the probability of observing x0.25

or any smaller value is 0.25. Figure 7.4 shows the 0.25-quantile (first quartile), the 0.5-

quantile (median), and the 0.75-quantile (third quartile) in a cumulative distribution

function.

Example 7.3.6 Recall Examples 7.2.1, 7.3.1, 7.3.5 and Fig. 7.1b where we described

the waiting time for a train by using the following CDF:

F(x) =
1

20
x .

The first quartile x0.25 is 5 because F(5) = 5/20 = 0.25. This means that the

probability of waiting for the train for 5 min or less is 25 % and of waiting for longer

than 5 min is 75 %.

For continuous variables, there is a unique value which describes the p-quantile.

However, for discrete variables, this may not necessarily be true. In this case, the

p-quantile is chosen such that

F(x p) ≥ p,

F(x) < p for x < x p

holds.

Example 7.3.7 The cumulative distribution function for rolling a die is described in

Example 7.2.3 and Fig. 7.3b. The first quartile x0.25 is 2 because F(2) = 2/6 > 0.25

and F(x) < 0.25 for x < 2.

7.3.4 Standardization

Standardization transforms a random variable in such a way that it has an expectation

of zero and a variance of one. More details on the need for standardization are

discussed in Chap. 10.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Definition 7.3.5 A random variable Y is called standardized when

E(Y ) = 0 and Var(Y ) = 1.

Theorem 7.3.2 Suppose a random variable X has mean E(X) = μ and Var(X) =
σ

2. Then, it can be standardized as follows:

Y =
X − μ

σ
=

X − E(X)
√

Var(X)
. (7.22)

Example 7.3.8 In Examples 7.2.1, 7.3.1, and 7.3.5, we considered the waiting time

X for a train. The random variable X can take values between 0 and 20 min, and we

calculated E(X) = 10 and Var(X) = 33 1
3
. The standardized variable of X is

Y =
X − μ

σ
=

X − 10
√

33 1
3

.

One can show that E(Y ) = 0 and Var(Y ) = 1, see also Exercise 7.10 for more

details.

7.4 Tschebyschev’s Inequality

If we do not know the distribution of a random variable X , we can still make state-

ments about the probability that X takes values in a certain interval (which has to

be symmetric around the expectation μ) if the mean μ and the variance σ
2 of X are

known.

Theorem 7.4.1 (Tschebyschev’s inequality) Let X be a random variable with

E(X) = μ and Var(X) = σ
2. It holds that

P(|X − μ| ≥ c) ≤
Var(X)

c2
. (7.23)

This is equivalent to

P(|X − μ| < c) ≥ 1 −
Var(X)

c2
. (7.24)

The proof is given in Appendix C.2.

Example 7.4.1 In Examples 7.2.1, 7.3.1, and 7.3.5, we have worked with a random

variable which describes the waiting time for a train. We determined E(X) = 10 and

Var(X) = 33 1
3
. We can calculate the probability of waiting between 10 − 7 = 3 and

10 + 7 = 17 min:

P(|X − μ| < c) ≥ 1 −
Var(X)

c2

P(|X − 10| < 7) ≥ 1 −
33 1

3

72
≈ 0.32.
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The probability is therefore at least 0.32. However, if we apply our distributional

knowledge that F(x) = 1
20

x (for 0 ≤ X ≤ 20), then we obtain a much more precise

result which is

P(3 < X < 17) = F(17) − F(3) =
17

20
−

3

20
= 0.7.

We can clearly see that Tschebyschev’s inequality gives us the correct answer, that

is P(3 < X < 17) is greater 0.32. Nevertheless, the approximation to the exact

probability, 0.7, is rather poor. One needs to keep in mind that only the lack of

distributional knowledge makes the inequality useful.

7.5 Bivariate Random Variables

There are many situations in which we are interested in analysing more than one

variable, say two variables. When we have more than one variable, then not only

their individual distributions but also their joint distribution can be of interest. For

example, we know that driving a car after drinking alcohol is not necessarily safe. If

we consider two variables, the blood alcohol content X and number of car accidents

Y , then we may be interested in the probability of having a high blood alcohol

content and a car accident at the same time. If we analyse (X, Y ) jointly, then we are

interested in their joint bivariate distribution fXY (x, y). This distribution can either

be discrete or continuous.

Discrete Bivariate Random Variables. Suppose we have two categorical variables

X and Y which can take the values x1, x2, . . . , x I and y1, y2, . . . , yJ , respectively.

Their joint probability distribution function is characterized by

P(X = xi , Y = y j ) = pi j (i = 1, 2, . . . , I ; j = 1, 2, . . . , J )

with
∑I

i=1

∑J
j=1 pi j = 1. This means that the probability of observing xi and y j

together is pi j . We can summarize this information in a contingency table as follows:

Y

1 2 . . . J Total

1 p11 p12 … p1J p1+
2 p21 p22 … p2J p2+

X
.
.
.

.

.

.
.
.
.

I pI 1 pI 2 . . . pI J pI+
Total p+1 p+2 . . . p+J 1

Each cell contains a “piece” of the joint distribution. The entries p+1, p+2, . . . ,

p+J in the bottom row of the table summarize the marginal distribution of Y , which

is the distribution of Y without giving reference to X . The entries p1+, p+2, . . . , pI+
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in the last column summarize the marginal distribution of X . The marginal distribu-

tions can therefore be expressed as

P(X = xi ) =
J

∑

j=1

pi j = pi+ i = 1, 2, . . . , I,

P(Y = y j ) =
I

∑

i=1

pi j = p+ j j = 1, 2, . . . , J .

The conditional distributions of X given Y = y j and Y given X = x j are given

as follows:

P(X = xi |Y = y j ) = pi | j =
pi j

p+ j

i = 1, 2, . . . , I,

P(Y = y j |X = xi ) = p j |i =
pi j

pi+
j = 1, 2, . . . , J.

They summarize the distribution of X for a given value of y j (or the distribution of Y

for a given value of xi ) and play a crucial role in the construction of regression models

such as the linear regression model introduced in Chap. 11. Please also recall the

definitions of Sect. 4.1 where we introduced conditional and marginal distributions

for data samples rather than random variables.

Example 7.5.1 Suppose we have a contingency table on smoking behaviour X

(1 = never smoking, 2 = smoking sometimes, and 3 = smoking regularly)

and education level Y (1 = primary education, 2 = Secondary education, and

3 = tertiary education):

Y

1 2 3 Total

X 1 0.10 0.20 0.30 0.60

2 0.10 0.10 0.10 0.30

3 0.08 0.01 0.01 0.10

Total 0.28 0.31 0.41 1

The cell entries represent the joint distribution of smoking behaviour and education

level. We can interpret each entry as the probability of observing X = xi and

Y = y j simultaneously. For example, p23 = P (“smoking sometimes and tertiary

education”) = 0.10. The marginal distribution of X is contained in the last column

of the table and lists the probabilities of smoking (unconditional on education level),

e.g. the probability of being a non-smoker in this population is 60 %. We can also

interpret the conditional distributions: P(X |Y = 3) represents the distribution of

smoking behaviour among those who have tertiary education. If we are interested

in the probability of smoking sometimes given tertiary education is completed, then

we calculate P(X = 2|Y = 3) = p2|3 = 0.10
0.41

= 0.24.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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x1 x2

y1

y2

Fig. 7.5 Area covering all points of (X, Y ) with (x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2)
∗

Continuous Bivariate Random Variables.

Definition 7.5.1 A bivariate random variable (X, Y ) is continuous if there is a func-

tion fXY (x, y) such that

FXY (x, y) = P(X ≤ x, Y ≤ y) =
∫ y

−∞

∫ x

−∞
fXY (x, y) dx dy (7.25)

holds.

The function FXY (x, y) is the joint cumulative distribution function of X and

Y ; the joint distribution function is denoted by fXY (x, y), and fXY (x, y) has to fulfil

the usual conditions of a density function. Necessary and sufficient conditions that

a function FXY (x, y) is a bivariate cumulative distribution function are as follows:

lim
x→−∞

FXY (x, y) = 0 lim
y→−∞

FXY (x, y) = 0

lim
x→∞

FXY (x, y) = 1 lim
y→∞

FXY (x, y) = 1

and F(x2, y2) − F(x1, y2) − F(x2, y1) + F(x1, y1) ≥ 0 for all x1 < x2, y1 < y2.

The last condition is sometimes referred to as the rectangle inequality. As in

the univariate case, we can use the cumulative distribution function to calcu-

late interval probabilities; similarly, we look at the rectangular area defined by

(x1, y1), (x1, y2), (x2, y1), and (x2, y2) in the bivariate case (instead of an interval

[a, b]), see Fig. 7.5.

We can calculate the desired probabilities as follows:

P(x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =
∫ y2

y1

∫ x2

x1

fXY (x, y) dx dy.

The marginal distributions of X and Y are

fX (x) =
∫ ∞

−∞
fXY (x, y)dy, fY (y) =

∫ ∞

−∞
fXY (x, y)dx,
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Fig. 7.6 Joint and marginal distribution for Example 7.5.2

respectively. Similar to the discrete case, fX (x) and fY (y) also describe the distri-

bution of X unconditional on Y and the distribution of Y unconditional on X . The

cumulative marginal distributions are

FX (x) =
∫ x

−∞
fX (t)dt, FY (y) =

∫ y

−∞
fY (t)dt.

The conditional distributions can be obtained by the ratio of the joint and marginal

distributions:

fX |Y (x, y) =
f (x, y)

f (y)
, fY |X (x, y) =

f (x, y)

f (x)
.

Example 7.5.2 Consider the function

fXY (x, y) =
{

x + y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 elsewhere.

Suppose X and Y represent the concentrations of two drugs in the human body.

Then, fXY (x, y) may represent the sum of two drug concentrations in the human

body. Since there are infinite possible realizations of both X and Y , we represent

their joint distribution in a figure rather than a table, see Fig. 7.6a.

The marginal distributions for X and Y can be calculated as follows:

fX (x) =
∫ ∞

−∞
fXY (x, y)dy =

∫ 1

0

(x + y) dy =
[

xy +
1

2
y2

]1

0

= x +
1

2
,

fY (x) =
∫ ∞

−∞
fXY (x, y)dx =

∫ 1

0

(x + y) dx =
[

1

2
x2 + xy

]1

0

= y +
1

2
.

Figure 7.6b depicts the marginal distribution for X . The slope of the marginal dis-

tribution is essentially the slope of the surface of the joint distribution shown in

Fig. 7.6a. It is easy to see in this simple example that the marginal distribution of
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X is nothing but a cut in the surface of the joint distribution. Note that the condi-

tional distributions fX |Y (x, y) and fY |X (x, y) can be easily calculated; for example,

fX |Y (x, y) = f (x, y)/ f (y) = (x + y)/(y + 0.5).

Stochastic Independence.

Definition 7.5.2 Two continuous random variables X and Y are said to be stochas-

tically independent if

fXY (x, y) = fX (x) fY (y). (7.26)

For discrete variables, this is equivalent to

P(X = xi , Y = y j ) = P(X = xi )P(Y = y j ) (7.27)

being valid for all (i, j).

Example 7.5.3 In Example 7.5.2, we considered the function

fXY (x, y) =
{

x + y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 elsewhere

with the marginal distributions of X and Y as fX = x + 0.5 and fY = y + 0.5,

respectively. Since fX · fY = (x + 1
2
)(y + 1

2
) �= fXY , it follows that X and Y are not

independent. The interpretation is that the concentrations of the two drugs are not

independent.

7.6 Calculation Rules for Expectation and Variance

Calculation Rules for the Expectation. For any constant values a and b, and any

random variables X and Y , the following rules hold:

E(a) = a, (7.28)

E(bX) = bE(X), (7.29)

E(a + bX) = a + bE(X), (7.30)

E(X + Y ) = E(X) + E(Y ) (additivity). (7.31)

The proof of rule (7.30) is given in Appendix C.2.

Example 7.6.1 Consider again Example 7.2.3 where we illustrated how the outcome

of a die roll experiment can be captured by a random variable. There were 6 events,

and X could take the values x1 = 1, x2 = 2, . . . , x6 = 6. The probability of the

occurrence of any number was P(X = xi ) = 1/6, and the expectation was calculated

as 3.5. Consider two different situations:
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(i) Suppose the die takes the value 10, 20, 30, 40, 50, and 60 instead of the values

1, 2, 3, 4, 5, and 6. The random variable Y = 10X describes this suitably, and

its expectation is

E(Y ) = E(10X) = 10E(X) = 10 · 3.5 = 35

which follows from (7.29).

(ii) If we are rolling two dices X1 and X2, then the expectation for the sum of the

two outcomes is

E(X) = E(X1 + X2) = E(X1) + E(X2) = 3.5 + 3.5 = 7

due to (7.31).

Calculation Rules for the Variance. Let a and b be any known constants and X be

a random variable (discrete or continuous). Then, we have the following rules:

Var(a) = 0, (7.32)

Var(bX) = b2 Var(X), (7.33)

Var(a + bX) = b2 Var(X). (7.34)

The proof of rule (7.34) is given in Appendix C.2.

Example 7.6.2 In Examples 7.2.1, 7.3.1, 7.3.3, and 7.3.5, we evaluated a random

variable describing the waiting time for a train. Now, suppose that a person first has

to catch a bus to get to the train station. If this bus arrives only every 60 min, then

the PDF of the random variable Y denoting the waiting time for the bus is

f (Y ) =
{

1
60

for 0 < x ≤ 60

0 otherwise .

We can use Eqs. (7.15) and (7.17) to determine both the expectation and variance

of Y . However, the waiting time for the bus is governed by the relation Y = 3X

where X is the waiting time for the train. Therefore, we can calculate E(Y ) =
E(3X) = 3E(X) = 3 · 10 = 30 min by using rule (7.29) and the variance as

Var(Y ) = Var(3X) = 32 Var(X) = 9 · 33 1
3

= 300 using rule (7.33). The total

waiting time is the sum of the two waiting times.

7.6.1 Expectation and Variance of the Arithmetic Mean

Definition 7.6.1 We define the random variables X1, X2, . . . , Xn to be i.i.d. (inde-

pendently identically distributed), if all X i follow the same distribution and are

stochastically independent of each other.

Let X1, X2, . . . , Xn be n i.i.d. random variables with E(X i ) = μ and Var(X i ) =
σ

2, i = 1, 2, . . . , n. The arithmetic mean of these variables is given by

X̄ =
1

n

n
∑

i=1

X i ,
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which is again a random variable that follows a distribution with certain expectation

and variance. A function of random variables is called a statistic. By using (7.29)

and (7.31), we obtain

E(X̄) =
1

n

n
∑

i=1

E(X i ) = μ. (7.35)

If we apply (7.34) and recall that the variables are independent of each other, we can

also calculate the variance as

Var(X̄) =
1

n2

n
∑

i=1

Var(X i ) =
σ

2

n
. (7.36)

Example 7.6.3 If we toss a coin, we obtain either head or tail, and therefore,

P(“head”) = P(“tail”) = 1
2

. If we toss the coin n times, we have for each toss

X i =
{

0

1

for “tail”

for “head”
, i = 1, . . . , n.

It is straightforward to calculate the expectation and variance for each coin toss:

E(X i ) = 0 ·
1

2
+ 1 ·

1

2
=

1

2
,

Var(X i ) = (0 −
1

2
)2 ·

1

2
+ (1 −

1

2
)2 ·

1

2
=

1

4
·

1

2
+

1

4
·

1

2
=

1

4
.

The arithmetic mean X̄ = 1
n

∑n
i=1 X i describes the relative frequency of heads when

the coin is tossed n times. We can now apply (7.35) and (7.36) to calculate

E(X̄) =
1

n

n
∑

i=1

1/2 = 1/2

and

Var(X̄) =
1

n2

n
∑

i=1

1

4
=

1

4n
.

With this example, the interpretation of formulae (7.35) and (7.36) becomes clearer:

if the probability of head is 0.5 for a single toss, then it is also 0.5 for the mean of all

tosses. If we toss a coin many times, then the variance decreases when n increases.

This means that a larger sample size yields a higher precision for the calculated

arithmetic mean. This observation shows the basic conclusion of the next chapter:

the higher the sample size, the more secure we are of our conclusions.

7.7 Covariance and Correlation

The variance measures the variability of a variable. Similarly, the covariance mea-

sures the covariation or association between X and Y .
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7.7.1 Covariance

Definition 7.7.1 The covariance between X and Y is defined as

̺ = Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]. (7.37)

The covariance is positive if, on average, larger values of X correspond to larger

values of Y ; it is negative if, on average, greater values of X correspond to smaller

values of Y .

The probability density function of any bivariate random variable (X, Y ) is char-

acterized by the expectation and variance of both X and Y ,

E(X) = μX , Var(X) = σ
2
X ,

E(Y ) = μY , Var(Y ) = σ
2
Y ,

as well as their covariance. We can summarize these features by using the expectation

vector

E

(

X

Y

)

=
(

E(X)

E(Y )

)

=
(

μX

μY

)

and the covariance matrix

Cov

(

X

Y

)

=
(

Cov(X, X) Cov(X, Y )

Cov(Y, X) Cov(Y, Y )

)

=
(

σ
2
X ̺

̺ σ
2
Y

)

.

Important properties of covariance are

(i) Cov(X, Y ) = Cov(Y, X),

(ii) Cov(X, X) = Var(X),

(iii) Cov(aX + b, cY + d) = ac Cov(X, Y ),

(iv) Cov(X, Y ) = E(XY ) − E(X)E(Y ) where E(XY ) =
∫ ∫

xy f (x, y)dxdy for

continuous variables and E(XY ) =
∑

i

∑

j xi y j pi j for discrete variables,

(v) If X and Y are independent, it follows that E(XY ) = E(X)E(Y ) = μXμY , and

therefore, Cov(X, Y ) = μXμY − μXμY = 0.

Theorem 7.7.1 (Additivity Theorem) The variance of the sum (subtraction) of X

and Y is given by

Var(X ± Y ) = Var(X) + Var(Y ) ± 2 Cov(X, Y ).

If X and Y are independent, it follows that Cov(X, Y ) = 0 and therefore Var(X ±
Y ) = Var(X) + Var(Y ). We omit the proof of this theorem.

Example 7.7.1 Recall Example 7.6.2 where we considered the waiting time Y for

a bus to the train station and the waiting time X for the waiting time for a train.

Suppose their joint bivariate probability density function can be written as

fXY (x, y) =
{

1
1200

for 0 ≤ x ≤ 60, 0 ≤ y ≤ 20

0 elsewhere.
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To calculate the covariance between X and Y , we need to calculate E(XY ):

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xy f (x, y)dx dy =

∫ 60

0

∫ 20

0

xy
1

1200
dx dy

=
∫ 60

0

[

x

1200

y2

2

]20

0

dy =
∫ 60

0

400x

2400
dy =

[

1

6

x2

2

]60

0

=
3600

12
= 300 .

We know from Example 7.6.2 that E(X) = 10, E(Y ) = 30, Var(X) = 33 1
3
, and

Var(Y ) = 300. The covariance is thus

Cov(X, Y ) = E(XY ) − E(X)E(Y ) = 300 − 30 · 10 = 0.

This makes sense as the waiting times for the train and the bus should be independent

of each other. Using rule (7.31), we conclude that the total expected waiting time is

E(X + Y ) = E(X) + E(Y ) = 10 + 30 = 40 min.

The respective variance is

Var(X + Y ) = Var(X) + Var(Y ) − 2 Cov(X, Y ) = 33
1

3
+ 300 − 2 · 0 = 333

1

3

due to Theorem 7.7.1.

7.7.2 Correlation Coefficient

Definition 7.7.2 The correlation coefficient of X and Y is defined as

ρ(X, Y ) =
Cov(X, Y )

√
Var(X) Var(Y )

. (7.38)

We already know from Chap. 4 that the correlation coefficient is a measure of

the degree of linear relationship between X and Y . It can take values between −1

and 1,−1 ≤ ρ(X, Y ) ≤ 1. However in Chap. 4, we considered the correlation of

two samples, i.e. realizations of random variables; here, we describe the correlation

coefficient of the population. If ρ(X, Y ) = 0, then X and Y are said to be uncorrelated.

If there is a perfect linear relationship between X and Y , then ρ = 1 for a positive

relationship and ρ = −1 for a negative relationship, see Appendix C.2 for the proof.

Theorem 7.7.2 If X and Y are independent, they are also uncorrelated. However,

if they are uncorrelated then they are not necessarily independent.

Example 7.7.2 In Example 7.6.2, we estimated the covariance between the waiting

time for the bus and the waiting time for the train: Cov(X, Y ) = 0. The correlation

coefficient is therefore also 0 indicating no linear relationship between the waiting

times for bus and train.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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7.8 Key Points and Further Issues

Note:

� Note that there is a difference between the empirical cumulative distri-

bution function introduced in Chap. 2 and the CDF introduced in this

chapter. In Chap. 2, we work with the cumulative distribution of observed

values in a particular sample, whereas in this chapter, we deal with ran-

dom variables modelling the distribution of a general population.

� The expectation and the variance of a random variable are defined as

follows:

Expectation Variance

Discrete
∑n

i=1 xi pi

∑n
i=1(xi − E(X))2 pi

Continuous
∫ +∞
−∞ x f (x)dx

∫ +∞
−∞ (x − E(X))2 f (x)dx

� Some important calculation rules are:

E(a + bX) = a + bE(X); Var(a + bX) = b2 Var(X);

E(X + Y ) = E(X) + E(Y ); Var(X ± Y ) = Var(X) + Var(Y )

±2 Cov(X, Y )

� Bivariate random variables (X, Y ) have a joint CDF FXY (x, y) which

specifies the probability P(X ≤ x; Y ≤ y). The conditional distribution

of X |Y [Y |X ] is the PDF of X [Y ] for a given value Y = y [X = x].
The marginal distribution of X [Y ] is the distribution of X [Y ] without

referring to the values of Y [X ].

7.9 Exercises

Exercise 7.1 Consider the following cumulative distribution function of a random

variable X :

F(x) =

⎧

⎨

⎩

0 if x < 2

− 1
4

x2 + 2x − 3 if 2 ≤ x ≤ 4

1 if x > 4.

(a) What is the PDF of X?

(b) Calculate P(X < 3) and P(X = 4).

(c) Determine E(X) and Var(X).

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Exercise 7.2 Joey manipulates a die to increase his chances of winning a board game

against his friends. In each round, a die is rolled and larger numbers are generally an

advantage. Consider the random variable X denoting the outcome of the rolled die

and the respective probabilities P(X = 1 = 2 = 3 = 5) = 1/9, P(X = 4) = 2/9,

and P(X = 6) = 3/9.

(a) Calculate and interpret the expectation and variance of X .

(b) Imagine that the board game contains an action which makes the players use

1/X rather than X . What is the expectation of Y = 1/X? Is E(Y ) = E(1/X) =
1/E(X)?

Exercise 7.3 An innovative winemaker experiments with new grapes and adds a

new wine to his stock. The percentage sold by the end of the season depends on the

weather and various other factors. It can be modelled using the random variable X

with the CDF as

F(x) =

⎧

⎨

⎩

0 if x < 0

3x2 − 2x3 if 0 ≤ x ≤ 1

1 if x > 1.

(a) Plot the cumulative distribution function with R.

(b) Determine f (x).

(c) What is the probability of selling at least one-third of his wine, but not more

than two thirds?

(d) Define the CDF in R and calculate the probability of c) again.

(e) What is the variance of X?

Exercise 7.4 A quality index summarizes different features of a product by means

of a score. Different experts may assign different quality scores depending on their

experience with the product. Let X be the quality index for a tablet. Suppose the

respective probability density function is given as follows:

f (x) =
{

cx(2 − x) if 0 ≤ x ≤ 2

0 elsewhere.

(a) Determine c such that f (x) is a proper PDF.

(b) Determine the cumulative distribution function.

(c) Calculate the expectation and variance of X .

(d) Use Tschebyschev’s inequality to determine the probability that X does not

deviate more than 0.5 from its expectation.
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Exercise 7.5 Consider the joint PDF for the type of customer service X (0 =
telephonic hotline, 1 = Email) and of satisfaction score Y (1 = unsatisfied, 2 = sat-

isfied, 3 = very satisfied):

X\Y 1 2 3

0 0 1/2 1/4

1 1/6 1/12 0

(a) Determine and interpret the marginal distributions of both X and Y .

(b) Calculate the 75 % quantile for the marginal distribution of Y .

(c) Determine and interpret the conditional distribution of satisfaction level for X =
1.

(d) Are the two variables independent?

(e) Calculate and interpret the covariance of X and Y .

Exercise 7.6 Consider a continuous random variable X with expectation 15 and

variance 4. Determine the smallest interval [15 − c, 15 + c] which contains at least

90 % of the values of X .

Exercise 7.7 Let X and Y be two random variables for which only 6 possible events—

A1, A2, A3, A4, A5, A6—are defined:

i 1 2 3 4 5 6

P(Ai ) 0.3 0.1 0.1 0.2 0.2 0.1

X i −1 2 2 −1 −1 2

Yi 0 2 0 1 2 1

(a) What is the joint PDF of X and Y ?

(b) Calculate the marginal distributions of X and Y .

(c) Are both variables independent?

(d) Determine the joint PDF for U = X + Y .

(e) Calculate E(U ) and Var(U ) and compare it with E(X) + E(Y ) and Var(X) +
Var(Y ), respectively.

Exercise 7.8 Recall the urn model we introduced in Chap. 5. Consider an urn with

eight balls: four of them are white, three are black, and one is red. Now, two balls

are drawn from the urn. The random variables X and Y are defined as follows:

X =

⎧

⎨

⎩

1 black ball

2 red ball in the first draw

3 white ball

Y =

⎧

⎨

⎩

1 black ball

2 red ball in the second draw

3 white ball.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
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(a) When are X and Y independent—when the two balls are drawn with replacement

or without replacement?

(b) Assume the balls are drawn such that X and Y are dependent. Use the conditional

distribution P(Y |X) to determine the joint PDF of X and Y .

(c) Calculate E(X), E(Y ), and ρ(X, Y ).

Exercise 7.9 If X is the amount of money spent on food and other expenses during

a day (in e) and Y is the daily allowance of a businesswoman, the joint density of

these two variables is given by

fXY (x, y) =
{

c
(

100−x
x

)

if 10 ≤ x ≤ 100, 40 ≤ y ≤ 100

0 elsewhere.

(a) Choose c such that fXY (x, y) is a probability density function.

(b) Find the marginal distribution of X .

(c) Calculate the probability that more than e75 are spent.

(d) Determine the conditional distribution of Y given X .

Exercise 7.10 Consider n i.i.d. random variables X i with E(X i ) = μ and Var(X i ) =
σ

2 and the standardized variable Y = X−μ

σ
. Show that E(Y ) = 0 and Var(Y ) = 1.

→ Solutions to all exercises in this chapter can be found on p. 365

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,

Springer, Heidelberg
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We introduced the concept of probability density and probability mass functions of

random variables in the previous chapter. In this chapter, we are introducing some

common standard discrete and continuous probability distributions which are widely

used for either practical applications or constructing statistical methods described

later in this book. Suppose we are interested in determining the probability of a cer-

tain event. The determination of probabilities depends upon the nature of the study

and various prevailing conditions which affect it. For example, the determination of

the probability of a head when tossing a coin is different from the determination of

the probability of rain in the afternoon. One can speculate that some mathematical

functions can be defined which depict the behaviour of probabilities under different

situations. Such functions have special properties and describe how probabilities

are distributed under different conditions. We have already learned that they are

called probability distribution functions. The form of such functions may be sim-

ple or complicated depending upon the nature and complexity of the phenomenon

under consideration. Let us first recall and extend the definition of independent and

identically distributed random variables:

Definition 8.0.1 The random variables X1, X2, . . . , Xn are called independent and

identically distributed (i.i.d) if the X i (i = 1, 2, . . . , n) have the same marginal cumu-

lative distribution function F(x) and if they are mutually independent.

Example 8.0.1 Suppose a researcher plans a survey on the weight of newborn babies

in a country. The researcher randomly contacts 10 hospitals with a maternity ward

and asks them to randomly select 20 of the newborn babies (no twins) born in the last

6 months and records their weights. The sample therefore consists of 10 × 20 = 200

baby weights. Since the hospitals and the babies are randomly selected, the babies’

weights are therefore not known beforehand. The 200 weights can be denoted by the

random variables X1, X2, . . . , X200. Note that the weights X i are random variables

© Springer International Publishing Switzerland 2016

C. Heumann et al., Introduction to Statistics and Data Analysis,
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because, depending on the size of the population, different samples consisting of

200 babies can be randomly selected. Also, the babies’ weights can be seen as

stochastically independent (an example of stochastically dependent weights would

be the weights of twins if they are included in the sample). After collecting the

weights of 200 babies, the researcher has a sample of 200 realized values (i.e. the

weights in grams). The values are now known and denoted by x1, x2, . . . , x200.

8.1 Standard Discrete Distributions

First, we discuss some standard distributions for discrete random variables.

8.1.1 Discrete Uniform Distribution

The discrete uniform distribution assumes that all possible outcomes have equal

probability of occurrence. A more formal definition is given as follows:

Definition 8.1.1 A discrete random variable X with k possible outcomes x1, x2, . . . ,

xk is said to follow a discrete uniform distribution if the probability mass function

(PMF) of X is given by

P(X = xi ) =
1

k
, ∀i = 1, 2, . . . , k. (8.1)

If the outcomes are the natural numbers xi = i (i = 1, 2, . . . , k), the mean and vari-

ance of X are obtained as

E(X) =
k + 1

2
, (8.2)

Var(X) =
1

12
(k2 − 1). (8.3)

Example 8.1.1 If we roll a fair die, the outcomes “1”, “2”, . . ., “6” have equal prob-

ability of occurring, and hence, the random variable X “number of dots observed on

the upper surface of the die” has a uniform discrete distribution with PMF

P(X = i) =
1

6
, for all i = 1, 2, . . . , 6.

The mean and variance of X are

E(X) =
6 + 1

2
= 3.5,

Var(X) =
1

12
(62 − 1) = 35/12.



8.1 Standard Discrete Distributions 155

Fig. 8.1 Frequency

distribution of 1000

generated discrete uniform

random numbers with

possible outcomes

(2, 5, 8, 10)
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Using the function sample() in R, it is easy to generate random numbers from a

discrete uniform distribution. The following command generates a random sample

of size 1000 from a uniform distribution with the four possible outcomes 2, 5, 8, 10

and draws a bar chart of the observed numbers. The use of the set.seed() function

allows to reproduce the generated random numbers at any time. It is necessary to

use the option replace=TRUE to simulate draws with replacement, i.e. to guarantee

that a value can occur more than once.

set.seed(123789)

x <- sample(x=c(2,5,8,10), size=1000, replace=T,

prob=c(1/4,1/4,1/4,1/4))

barchart(table(x), ylim=c(0,300))

A bar chart of the frequency distribution of the 1000 sampled numbers with the

possible outcomes (2, 5, 8, 10) using the discrete uniform distribution is given in

Fig. 8.1. We see that the 1000 generated random numbers are not exactly uniformly

distributed, e.g. the numbers 5 and 10 occur more often than the numbers 2 and 8.

In fact, they are only approximately uniform. We expect that the deviance from

a perfect uniform distribution is getting smaller as we generate more and more

random numbers but will probably never be zero for a finite number of draws. The

random numbers reflect the practical situation that a sample distribution is only an

approximation to the theoretical distribution from which the sample was drawn. More

details on how to work with random variables in R are given in Appendix A.3.
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8.1.2 Degenerate Distribution

Definition 8.1.2 A random variable X has a degenerate distribution at a, if a is

the only possible outcome with P(X = a) = 1. The CDF in such a case is given by

F(x) =
{

0 if x < a

1 if x ≥ a.

Further, E(X) = a and Var(X) = 0.

The degenerate distribution indicates that there is only one possible fixed outcome,

and therefore, no randomness is involved. It follows that we need at least two different

possible outcomes to have randomness in the observations of a random variable or

random experiment. The Bernoulli distribution is such a distribution where there are

only two outcomes, e.g. success and failure or male and female. These outcomes are

usually denoted by the values “0” and “1”.

8.1.3 Bernoulli Distribution

Definition 8.1.3 A random variable X has a Bernoulli distribution if the PMF of X

is given as

P(X = x) =
{

p if x = 1

1 − p if x = 0.

The cumulative distribution function (CDF) of X is

F(x) =

⎧

⎨

⎩

0 if x < 0

1 − p if 0 ≤ x < 1

1 if x ≥ 1.

The mean (expectation) and variance of a Bernoulli random variable are calculated

as

E(X) = 1 · p + 0 · (1 − p) = p (8.4)

and

Var(X) = (1 − p)2 · p + (0 − p)2 · (1 − p) = p(1 − p), (8.5)

respectively.

A Bernoulli distribution is useful when there are only two possible outcomes, and

our interest lies in any of the two outcomes, e.g. whether a customer buys a certain

product or not, or whether a hurricane hits an island or not. The outcome of an event

A is usually coded as 1 which occurs with probability p. If the event of interest does

not occur, i.e. the complementary event Ā occurs, the outcome is coded as 0 which

occurs with probability 1 − p. So p is the probability that the event of interest A

occurs.
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Example 8.1.2 A company organizes a raffle at an end-of-year function. There are

300 lottery tickets in total, and 50 of them are marked as winning tickets. The event

A of interest is “ticket wins” (coded as X = 1), and the probability p of having a

winning ticket is a priori (i.e. before any lottery ticket has been drawn)

P(X = 1) =
50

300
=

1

6
= p and P(X = 0) =

250

300
=

5

6
= 1 − p.

According to (8.4) and (8.5), the mean (expectation) and variance of X are

E(X) =
1

6
and Var(X) =

1

6
·

5

6
=

5

36
respectively.

8.1.4 Binomial Distribution

Consider n independent trials or repetitions of a Bernoulli experiment. In each trial

or repetition, we may observe either A or Ā. At the end of the experiment, we have

thus observed A between 0 and n times. Suppose we are interested in the probability

of A occurring k times, then the binomial distribution is useful.

Example 8.1.3 Consider a coin tossing experiment where a coin is tossed ten times

and the event of interest is A = “head”. The random variable X “number of heads in

10 experiments” has the possible outcomes k = 0, 1, . . . , 10. A question of interest

may be: What is the probability that a head occurs in 7 out of 10 trials; or in 5 out

of 10 trials? We assume that the order in which heads (and tails) appear is not of

interest, only the total number of heads is of interest.

Questions of this kind are answered by the binomial distribution. This distribution

can either be motivated as a repetition of n Bernoulli experiments (as in the above

coin tossing example) or by the urn model (see Chap. 5): assume there are M white

and N − M black balls in the urn. Suppose n balls are drawn randomly from the urn,

the colour of the ball is recorded and the ball is placed back into the urn (sampling with

replacement). Let A be the event of interest that a white ball is drawn from the urn.

The probability of A is p = M/N (the probability of drawing a black ball is 1 − p =
(N − M)/N ). Since the balls are drawn with replacement, these probabilities do not

change from draw to draw. Further, let X be the random variable counting the number

of white balls drawn from the urn in the n experiments. Since the order of the resulting

colours of balls is not of interest in this case, there are
(

n
k

)

combinations where k

balls are white and n − k balls are black. Since the balls are drawn with replacement,

every outcome of the n experiments is independent of all others. The probability that

X = k, k = 0, 1, . . . , n, can therefore be calculated as

P(X = k) =
(

n

k

)

pk(1 − p)n−k (k = 0, 1, . . . , n). (8.6)

Please note that we can use the product pk(1 − p)n−k because the draws are inde-

pendent. The binomial coefficient
(

n
k

)

is necessary to count the number of possible

orders of the black and white balls.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
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Definition 8.1.4 A discrete random variable X is said to follow a binomial distribu-

tion with parameters n and p if its PMF is given by (8.6). We also write X ∼ B(n; p).

The mean and variance of a binomial random variable X are given by

E(X) = np, (8.7)

Var(X) = np(1 − p). (8.8)

Remark 8.1.1 A Bernoulli random variable is therefore B(1; p) distributed.

Example 8.1.4 Consider an unfair coin where the probability of observing a tail (T )

is p(T ) = 0.6. Let us denote tails by “1” and heads by “0”. Suppose the coin is

tossed three times. In total, there are the 23 = 8 following possible outcomes:

Outcome X = x

1 1 1 3

1 1 0 2

1 0 1 2

0 1 1 2

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 0

Note that the first outcome, viz. (1, 1, 1) leads to x = 3, the next 3 outcomes, viz.,

(1, 1, 0), (1, 0, 1), (0, 1, 1) obtained by (=
(

3
2

)

) lead to x = 2, the next 3 outcomes,

viz., (1, 0, 0), ((0, 1, 0), (0, 0, 1) obtained by (=
(

3
1

)

) lead to x = 1, and the last

outcome, viz. (0, 0, 0) obtained by (=
(

3
0

)

) leads to x = 0. We can, for example,

calculate

P(X = 2) =
(

3

2

)

0.62(1 − 0.6)1 = 0.432 (or 43.2 %).

Further, the mean and variance of X are

E(X) = np = 3 · 0.6 = 1.8, and Var(X) = np(1 − p) = 3 · 0.6 · 0.4 = 0.72.

Functions for the binomial distribution, as well as many other distributions, are

implemented in R. For each of these distributions, we can easily determine the density

function (PMF, PDF) for given values and parameters, determine the CDF, calculate

quantiles and draw random numbers. Appendix A.3 gives more details. Nevertheless,

we illustrate the concept of dealing with distributions in R in the following example.

Example 8.1.5 Suppose we roll an unfair die 50 times with the probability of a tail

ptail = 0.6. We thus deal with a B(50, 0.6) distribution which can be plotted using

the dbinom command. The prefix d stands for “density”.



8.1 Standard Discrete Distributions 159

Fig. 8.2 PMF of a

B(50, 0.6) distribution
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n <- 50

p <- 0.6

k <- 0:n

pmf <- dbinom(k,n,p)

plot(k,pmf, type=h)

A plot of the PMF of a binomial distribution with n = 50 and p = 0.6 (i.e. B(50, 0.6))

is given in Fig. 8.2.

Note that we can also calculate the CDF with R. We can use the pbinom(x,n,p)

command, where the prefix p stands for probability, to calculate the CDF at any

point. For example, suppose we are interested in P(X ≥ 30) = 1 − F(29), that is

the probability of observing thirty or more tails; then we write

1-pbinom(29,50,0.6)

[1] 0.5610349

Similarly, we can determine quantiles. For instance, the 80 % quantile q which

describes that P(X ≤ q) ≥ 0.8 can be obtained by the qbinom(q,n,p) command

as follows:

qbinom(0.8,50,0.6)

[1] 33

If we want to generate 100 random realizations from a B(50, 0.6) distribution we

can use the rbinom command.

rbinom(100,50,0.6)

The binomial distribution has some nice properties. One of them is described in

the following theorem:
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Theorem 8.1.1 Let X ∼ B(n; p) and Y ∼ B(m; p) and assume that X and Y are

(stochastically) independent. Then

X + Y ∼ B(n + m; p). (8.9)

This is intuitively clear since we can interpret this theorem as describing the addi-

tive combination of two independent binomial experiments with n and m trials, with

equal probability p, respectively. Since every binomial experiment is a series of inde-

pendent Bernoulli experiments, this is equivalent to a series of n + m independent

Bernoulli trials with constant success probability p which in turn is equivalent to a

binomial distribution with n + m trials.

8.1.5 Poisson Distribution

Consider a situation in which the number of events is very large and the probability

of success is very small: for example, the number of alpha particles emitted by a

radioactive substance entering a particular region in a given short time interval. Note

that the number of emitted alpha particles is very high but only a few particles are

transmitted through the region in a given short time interval. Some other examples

where Poisson distributions are useful are the number of flu cases in a country within

one year, the number of tropical storms within a given area in one year, or the number

of bacteria found in a biological investigation.

Definition 8.1.5 A discrete random variable X is said to follow a Poisson distribution

with parameter λ > 0 if its PMF is given by

P(X = x) =
λx

x !
exp (−λ) (x = 0, 1, 2, . . .). (8.10)

We also write X ∼ Po(λ). The mean and variance of a Poisson random variable are

identical:

E(X) = Var(X) = λ.

Example 8.1.6 Suppose a country experiences X = 4 tropical storms on average per

year. Then the probability of suffering from only two tropical storms is obtained by

using the Poisson distribution as

P(X = 2) =
λx

x !
exp(−λ) =

42

2!
exp(−4) = 0.146525.

If we are interested in the probability that not more than 2 storms are experienced, then

we can apply rules (7.7)–(7.13) from Chap. 7: P(X ≤ 2) = P(X = 2) + P(X =
1) + P(X = 0) = F(2) = 0.2381033. We can calculate P(X = 1) and P(X = 0)

from (8.10) or using R. Similar to Example 8.1.5, we use the prefix d to obtain

the PMF and the prefix p to work with the CDF, i.e. we can use dpois(x,λ) and

ppois(x,λ) to determine P(X = x) and P(X ≤ x), respectively.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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dpois(2,4) + dpois(1,4) + dpois(0,4)

[1] 0.2381033

ppois(2,4)

[1] 0.2381033

8.1.6 Multinomial Distribution

We now consider random experiments where k distinct or disjoint events A1, A2, . . . ,

Ak can occur with probabilities p1, p2, . . . , pk , respectively, with the restriction
∑k

j=1 p j = 1. For example, if eight parties compete in a political election, we may

be interested in the probability that a person votes for party A j , j = 1, 2, . . . , 8.

Similarly one might be interested in the probability whether tuberculosis is detected

in the lungs (A1), in other organs (A2), or both (A3). Practically, we often use the

multinomial distribution to model the distribution of categorical variables. This can

be interpreted as a generalization of the binomial distribution (where only two distinct

events can occur) to the situation where more than two events or outcomes can

occur. If the experiment is repeated n times independently, we are interested in the

probability that

A1 occurs n1-times, A2 occurs n2-times, . . . , Ak occurs nk-times

with
∑k

j=1 n j = n. Since several events can occur, the outcome of one (of the n)

experiments is conveniently described by binary indicator variables. Let Vi j , i =
1, . . . , n, j = 1, . . . , k, denote the event “A j is observed in experiment i”, i.e.

Vi j =
{

1 if A j occurs in experiment i

0 if A j does not occur in experiment i

with probabilities P(Vi j = 1) = p j , j = 1, 2, . . . , k; then, the outcome of one

experiment is a vector of length k,

Vi = (Vi1, . . . , Vi j , . . . , Vik) = (0, . . . , 1, . . . , 0),

with “1” being present in only one position, i.e. in position j , if A j occurs in exper-

iment i . Now, define (for each j = 1, . . . , k) X j =
∑n

i=1 Vi j . Then, X j is counting

how often event A j was observed in the n independent experiments (i.e. how often

Vi j was 1 in the n experiments).

Definition 8.1.6 The random vector X = (X1, X2, . . . , Xk) is said to follow a

multinomial distribution if its PMF is given as

P(X1 = n1, X2 = n2, . . . , Xk = nk) =
n!

n1!n2! · · · nk !
· p

n1

1 p
n2

2 · · · p
nk

k (8.11)

with the restrictions
∑k

j=1 n j = n and
∑k

j=1 p j = 1. We also write X ∼ M(n; p1,

. . . , pk). The mean of X is the (component-wise) vector

E(X) = (E(X1), E(X2), . . . , E(Xk))

= (np1, np2, . . . , npk).



162 8 Probability Distributions

The (i, j)th element of the covariance matrix V (X) is

Cov(X i , X j ) =
{

npi (1 − pi ) if i = j

−npi p j if i �= j.

Remark 8.1.2 Due to the restriction that
∑k

j=1 n j =
∑k

j=1 X j = n, X1, . . . , Xk are

not stochastically independent which is reflected by the negative covariance. This

is also intuitively clear: if one X j gets higher, another X j ′ , j �= j ′, has to become

lower to satisfy the restrictions.

We use the multinomial distribution to describe the randomness of categorical

variables. Suppose we are interested in the variable “political party”; there might

be eight political parties, and we could thus summarize this variable by eight binary

variables, each of them describing the event of party A j , j = 1, 2, . . . , 8, being voted

for. In this sense, X = (X1, X2, . . . , X8) follows a multinomial distribution.

Example 8.1.7 Consider a simple example of the urn model. The urn contains 50

balls of three colours: 25 red balls, 15 white balls, and 10 black balls. The balls are

drawn from the urn with replacement. The balls are placed back into the urn after

every draw, which means the draws are independent. Therefore, the probability of

drawing a red ball in every draw is p1 = 25
50

= 0.5. Analogously, p2 = 0.3 (for white

balls) and p3 = 0.2 (for black balls). Consider n = 4 draws. The probability of the

random event of drawing “2 red balls, 1 white ball, and 1 black ball” is:

P(X1 = 2, X2 = 1, X3 = 1) =
4!

2!1!1!
(0.5)2(0.3)1(0.2)1 = 0.18. (8.12)

We would have obtained the same result in R using the dmultinom function:

dmultinom(c(2,1,1),prob=c(0.5,0.3,0.2))

This example demonstrates that the multinomial distribution relates to an exper-

iment with replacement and without considering the order of the draws. Instead of

the urn model, consider another example where we may interpret these three proba-

bilities as probabilities of voting for candidate A j , j = 1, 2, 3, in an election. Now,

suppose we ask four voters about their choice, then the probability of candidate A1

receiving 2 votes, candidate A2 receiving 1 vote, and candidate A3 receiving 1 vote

is 18 % as calculated in (8.12).

Remark 8.1.3 In contrast to most of the distributions, the CDF of the multinomial

distribution, i.e. the function calculating P(X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk), is not

contained in the base R-distribution. Please note that for k = 2, the multinomial

distribution reduces to the binomial distribution.
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8.1.7 Geometric Distribution

Consider a situation in which we are interested in determining how many independent

Bernoulli trials are needed until the event of interest occurs for the first time. For

instance, we may be interested in how many tickets to buy in a raffle until we win

for the first time, or how many different drugs to try to successfully tackle a severe

migraine, etc. The geometric distribution can be used to determine the probability

that the event of interest happens at the kth trial for the first time.

Definition 8.1.7 A discrete random variable X is said to follow a geometric distri-

bution with parameter p if its PMF is given by

P(X = k) = p(1 − p)k−1, k = 1, 2, 3, . . . (8.13)

The mean (expectation) and variance are given by E(X) = 1/p and Var(X) =
1/p(1/p − 1), respectively.

Example 8.1.8 Let us consider an experiment where a coin is tossed until “head” is

obtained for the first time. The probability of getting a head is p = 0.5 for each toss.

Using (8.13), we can determine the following probabilities:

P(X = 1) = 0.5

P(X = 2) = 0.5(1 − 0.5) = 0.25

P(X = 3) = 0.5(1 − 0.5)2 = 0.125

P(X = 4) = 0.5(1 − 0.5)3 = 0.0625

. . . . . .

Using the command structure for obtaining PMF’s in R (Appendix A as well as

Examples 8.1.5 and 8.1.6), we can determine the latter probability of P(X = 4) as

follows:

dgeom(3,0.5)

Note that the definition of X in R slightly differs from our definition. In R, k is

the number of failures before the first success. This means we need to specify k − 1

in the dgeom function rather than k. The mean and variance for this setting are

E(X) =
1

0.5
= 2; Var(X) =

1

0.5

(

1

0.5
− 1

)

= 2.

8.1.8 Hypergeometric Distribution

We can again use the urn model to motivate another distribution, the hypergeometric

distribution. Consider an urn with We randomly draw n balls without replacement,
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M white balls

N − M black balls

N total balls

i.e. we do not place a ball back into the urn once it is drawn. The order in which the

balls are drawn is assumed to be of no interest; only the number of drawn white balls

is of relevance. We define the following random variable

X : “number of white balls (x) among the n drawn balls”.

To be more precise, among the n drawn balls, x are white and n − x are black. There

are
(

M
x

)

possibilities to choose x white balls from the total of M white balls, and

analogously, there are
(

N−M
n−x

)

possibilities to choose (n − x) black balls from the

total of N − M black balls. In total, we draw n out of N balls. Recall the probability

definition of Laplace as the number of simple favourable events divided by all possible

events. The number of combinations for all possible events is
(

N
n

)

; the number of

favourable events is
(

M
x

)(

N−M
n−x

)

because we draw, independent of each other, x out

of M balls and n − x out of N − M balls. Hence, the PMF of the hypergeometric

distribution is

P(X = x) =
(

M
x

)(

N−M
n−x

)

(

N
n

)
(8.14)

for x ∈ {max(0, n − (N − M)), . . . , min(n, M)}.

Definition 8.1.8 A random variable X is said to follow a hypergeometric distribu-

tion with parameters n, M, N , i.e. X ∼ H(n, M, N ), if its PMF is given by (8.14).

Example 8.1.9 The German national lottery draws 6 out of 49 balls from a rotating

bowl. Each ball is associated with a number between 1 and 49. A simple bet is to

choose 6 numbers between 1 and 49. If 3 or more chosen numbers correspond to

the numbers drawn in the lottery, then one wins a certain amount of money. What

is the probability of choosing 4 correct numbers? We can utilize the hypergeometric

distribution with x = 4, M = 6, N = 49, and n = 6 to calculate such probabilities.

The interpretation is that we “draw” (i.e. bet on) 4 out of the 6 winning balls and

“draw” (i.e. bet on) another 2 out of the remaining 43 (49 − 6) losing balls. In total,

we draw 6 out of 49 balls. Calculating the number of the favourable combinations and

all possible combinations leads to the application of the hypergeometric distribution

as follows:

P(X = 4) =
(

M
x

)(

N−M
n−x

)

(

N
n

)
=

(

6
4

)(

43
2

)

(

49
6

)
≈ 0.001 (or 0.1 %).

We would have obtained the same results using the dhyper command. Its arguments

are x, M, N, n, and thus, we specify

dhyper(4,6,43,6)
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Fig. 8.3 The H(6, 43, 6)

distribution
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The H(6, 43, 6) distribution is also visualized in Fig. 8.3. It is evident that the

cumulative probability of choosing 2 or fewer correct numbers is greater than 0.9

(or 90 %), but it is very unlikely to have 3 or more numbers right. This may explain

why the national lottery pays out money only for 3 or more correct numbers.

8.2 Standard Continuous Distributions

Now, we discuss some standard probability distributions of (absolute) continuous

random variables. Characteristics of continuous random variables are that the number

of possible outcomes is uncountably infinite and that they have a continuous distribu-

tion function F(x). It follows that the point probabilities are zero, i.e. P(X = x) = 0.

Further, we assume a unique density function f exists, such that F(x) =
∫ x

−∞ f (t)dt .

8.2.1 Continuous Uniform Distribution

A continuous analogue to the discrete uniform distribution is the continuous uniform

distribution on a closed interval in R.

Definition 8.2.1 A continuous random variable X is said to follow a (continuous)

uniform distribution in the interval [a, b], i.e. X ∼ U (a, b), if its probability density

function (PDF) is given by

f (x) =
{

1
b−a

if a ≤ x ≤ b (a < b)

0 otherwise.

The mean and variance of X ∼ U (a, b) are

E(X) =
a + b

2
and Var(X) =

(b − a)2

12
,

respectively.
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Example 8.2.1 Suppose a train arrives at a subway station regularly every 10 min.

If a passenger arrives at the station without knowing the timetable, then the waiting

time to catch the train is uniformly distributed with density

f (x) =
{

1
10

if 0 ≤ x ≤ 10

0 otherwise.

The “average” waiting time is E(X) = (10 + 0)/2 = 5 min. The probability of wait-

ing for the train for less than 3 min is obviously 0.3 (or 30 %) which can be calculated

in R using the punif(x,a,b) command (see also Appendix A.3):

punif(3,0,10)

8.2.2 Normal Distribution

The normal distribution is one of the most important distributions used in statistics.

The name was given by Carl Friedrich Gauss (1777–1855), a German mathematician,

astronomer, geodesist, and physicist who observed that measurements in geodesy and

astronomy randomly deviate in a symmetric way from their true values. The normal

distribution is therefore also often called a Gaussian distribution.

Definition 8.2.2 A random variable X is said to follow a normal distribution with

parameters µ and σ2 if its PDF is given by

f (x) =
1

σ
√

2π
exp

(

−
(x − µ)2

2σ2

)

; −∞ < x < ∞, −∞ < µ < ∞, σ2 > 0.

(8.15)

We write X ∼ N (µ,σ2). The mean and variance of X are

E(X) = µ ; and Var(X) = σ2,

respectively. If µ = 0 and σ2 = 1, then X is said to follow a standard normal

distribution, X ∼ N (0, 1). The PDF of a standard normal distribution is given by

φ(x) =
1

√
2π

exp(−
x2

2
); −∞ < x < ∞.

The density of a normal distribution has its maximum (see Fig. 8.4) at x = µ.

The density is also symmetric around µ. The inflexion points of the density are at

(µ − σ) and (µ + σ) (Fig. 8.4). A lower σ indicates a higher concentration around

the mean µ. A higher σ indicates a flatter density (Fig. 8.5).

The cumulative distribution function of X ∼ N (µ,σ2) is

F(x) =
∫ x

−∞
φ(t)dt (8.16)

which is often denoted as Φ(x). The value of Φ(x) for various values of x can be

obtained in R following the rules introduced in Appendix A.3. For example,
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µ − σ µ + σµ

Fig. 8.4 PDF of a normal distribution∗

N(0, 1)

N(0, 0.5)

N(0, 2)

0

Fig. 8.5 PDF of N (0, 2), N (0, 1) and N (0, 0.5) distributions∗

pnorm(1.96, mean = 0, sd = 1)

calculates Φ(1.96) as approximately 0.975. This means, for a standard normal dis-

tribution the probability P(X ≤ 1.96) ≈ 0.975.

Remark 8.2.1 There is no explicit formula to solve the integral in Eq. (8.16). It has

to be solved by numerical (or computational) methods. This is the reason why CDF

tables are presented in almost all statistical textbooks, see Table C.1 in Appendix C.

Example 8.2.2 An orange farmer sells his oranges in wooden boxes. The weights of

the boxes vary and are assumed to be normally distributed with µ = 15 kg and σ2 =
9
4

kg2. The farmer wants to avoid customers being unsatisfied because the boxes are

too low in weight. He therefore asks the following question: What is the probability

that a box with a weight of less than 13 kg is sold? Using thepnorm(x,µ,σ) command

in R, we get
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pnorm(13,15,sqrt(9/4))

[1] 0.09121122

To calculate the probability in Example 8.2.2 manually, we first have to introduce

some theoretical results.

Calculation rules for normal random variables.

Let X ∼ N (µ, σ2). Using the transformation

Z =
X − µ

σ
∼ N (0, 1), (8.17)

every normally distributed random variable can be transformed into a standard nor-

mal random variable. We call this transformation the Z -transformation. We can use

this transformation to derive convenient calculation rules. The probability for X ≤ b

is

P(X ≤ b) = P

(

X − µ

σ
≤

b − µ

σ

)

= P

(

Z ≤
b − µ

σ

)

= Φ

(

b − µ

σ

)

. (8.18)

Consequently, the probability for X > a is

P(X > a) = 1 − P(X ≤ a) = 1 − Φ

(

a − µ

σ

)

. (8.19)

The probability that X realizes a value in the interval [a, b] is

P(a ≤ X ≤ b) = P

(

a − µ

σ
≤ Z ≤

b − µ

σ

)

= Φ

(

b − µ

σ

)

− Φ

(

a − µ

σ

)

.

(8.20)

Because of the symmetry of the probability density function φ(x) around its mean 0,

the following equation holds for the distribution function Φ(x) of a standard normal

random variable for any value a:

Φ(−a) = 1 − Φ(a). (8.21)

It follows that P(−a < Z < a) = 2 · Φ(a) − 1, see also Fig. 8.6.

Example 8.2.3 Recall Example 8.2.2 where a farmer sold his oranges. He was inter-

ested in P(X ≤ 13) for X ∼ N (15, 9/4). Using (8.17), we get

P(X ≤ 13) = Φ

(

13 − 15
3
2

)

= Φ

(

−
4

3

)

= 1 − Φ

(

4

3

)

≈ 0.091 (or 9.1 %).

To obtain Φ(4/3) ≈ 90.9 %, we could either use R (pnorm(4/3)) or use

Table C.1.
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Fig. 8.6 Distribution function of the standard normal distribution

Distribution of the Arithmetic Mean.

Assume that X ∼ N (µ,σ2). Consider a random sample X = (X1, X2, . . . , Xn) of

independent and identically distributed random variables X i with X i ∼ N (µ, σ2).

Then, the arithmetic mean X̄ = 1
n

∑n
i=1 X i follows a normal distribution with mean

E(X̄) =
1

n

n
∑

i=1

E(X i ) = µ

and variance

Var(X̄) =
1

n2

n
∑

i=1

Var(X i ) =
σ2

n
(8.22)

where Cov(X i , X j ) = 0 for i �= j . In summary, we get

X̄ ∼ N

(

µ,
σ2

n

)

.

Remark 8.2.2 In fact, in Eq. (8.22), we have used the fact that the sum of normal

random variables also follows a normal distribution, i.e.

(X1 + X2) ∼ N
(

µ1 + µ2,σ
2
1 + σ2

2

)

.

This result can be generalized to n (not necessarily identically distributed but inde-

pendent) normal random variables. In fact, it holds that if X1, X2, . . . , Xn are inde-

pendent normal variables with means µ1, µ2, . . . , µn and variances σ2
1,σ2

2, . . . , σ2
n ,

then for any real numbers a1, a2, . . . , an , it holds that

(a1 X1 + a2 X2 + · · · + an Xn) ∼ N
(

a1µ1 + a2µ2 + · · · anµn, a2
1σ2

1 + a2
2σ2

2 + · · · a2
nσ2

n

)

.
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In general, it cannot be taken for granted that the sum of two random variables

follows the same distribution as the two variables themselves. As an example, con-

sider the sum of two independent uniform distributions with X1 ∼ U [0, 10] and

X2 ∼ U [20, 30]. It holds that E(X1 + X2) = E(X1) + E(X2) and Var(X1 + X2) =
Var(X1) + Var(X2), but X1 + X2 is obviously not uniformly distributed.

8.2.3 Exponential Distribution

The exponential distribution is useful in many situations, for example when one is

interested in the waiting time, or lifetime, until an event of interest occurs. If we

assume that the future lifetime is independent of the lifetime that has already taken

place (i.e. no “ageing” process is working), the waiting times can be considered to

be exponentially distributed.

Definition 8.2.3 A random variable X is said to follow an exponential distribution

with parameter λ > 0 if its PDF is given by

f (x) =
{

λ exp(−λx) if x ≥ 0

0 otherwise.
(8.23)

We write X ∼ Exp(λ). The mean and variance of an exponentially distributed ran-

dom variable X are

E(X) =
1

λ
and Var(X) =

1

λ2
,

respectively. The CDF of the exponential distribution is given as

F(x) =
{

1 − exp(−λx) if x ≥ 0

0 otherwise.
(8.24)

Note, that P(X > x) = 1 − F(x) = exp(−λx) (x ≥ 0). An interesting property of

the exponential distribution is its memorylessness: if time t has already been reached,

the probability of reaching a time greater than t + ∆ does not depend on t . This can

be written as

P(X > t + ∆|X > t) = P(X > ∆) t,∆ > 0.

The result can be derived using basic probability rules as follows:

P(X > t + ∆|X > t) =
P(X > t + ∆ and X > t)

P(X > t)
=

P(X > t + ∆)

P(X > t)

=
exp[−λ(t + ∆)]

exp[−λt]
= exp[−λ∆]

= 1 − F(∆) = P(X > ∆).

For example, suppose someone stands in a supermarket queue for t minutes. Say

the person forgot to buy milk, so she leaves the queue, gets the milk, and stands in

the queue again. If we use the exponential distribution to model the waiting time,

we say that it does not matter what time it is: the random variable “waiting time

from standing in the queue until paying the bill” is not influenced by how much
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time has elapsed already; it does not matter if we queued before or not. Please note

that the memorylessness property is shared by the geometric and the exponential

distributions.

There is also a relationship between the Poisson and the exponential distribution:

Theorem 8.2.1 The number of events Y occurring within a continuum of time is

Poisson distributed with parameter λ if and only if the time between two events is

exponentially distributed with parameter λ.

The continuum of time depends on the problem at hand. It may be a second, a minute,

3 months, a year, or any other time period.

Example 8.2.4 Let Y be the random variable which counts the “number of accesses

per second for a search engine”. Assume that Y is Poisson distributed with parameter

λ = 10 (E(Y ) = 10, Var(Y ) = 10). The random variable X , “waiting time until the

next access”, is then exponentially distributed with parameter λ = 10. We therefore

get

E(X) =
1

10
, Var(X) =

1

102
.

In this example, the continuum is 1 s. The expected number of accesses per second

is therefore E(Y ) = 10, and the expected waiting time between two accesses is

E(X) = 1/10 s. The probability of experiencing a waiting time of less than 0.1 s is

F(0.1) = 1 − exp(−λx) = 1 − exp(−10 · 0.1) ≈ 0.63.

In R, we can obtain the same result as

pexp(0.1,10)

[1] 0.6321206

8.3 Sampling Distributions

All the distributions introduced in this chapter up to now are motivated by practical

applications. However, there are theoretical distributions which play an important

role in the construction and development of various statistical tools such as those

introduced in Chaps. 9–11. We call these distributions “sampling distributions”. Now,

we discuss the χ2-, t-, and F-distributions.

8.3.1 χ
2-Distribution

Definition 8.3.1 Let Z1, Z2 . . . , Zn be n independent and identically N (0, 1)-

distributed random variables. The sum of their squares,
∑n

i=1 Z2
i , is then χ2-

distributed with n degrees of freedom and is denoted as χ2
n . The PDF of the χ2-

distribution is given in Eq. (C.7) in Appendix C.3.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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The χ2-distribution is not symmetric. A χ2-distributed random variable can only

realize values greater than or equal to zero. Figure 8.7a shows the χ2
1-, χ2

2-, and

χ2
5-distributions. It can be seen that the “degrees of freedom” specify the shape of

the distribution. Their interpretation and meaning will nevertheless become clearer

in the following chapters. The quantiles of the CDF of different χ2-distributions can

be obtained in R using the qchisq(p,df) command. They are also listed in Table

C.3 for different values of n.

Theorem 8.3.1 Consider two independent random variables which are χ2
m- and χ2

n-

distributed, respectively. The sum of these two random variables is χ2
n+m-distributed.

An important example of a χ2-distributed random variable is the sample variance

(S2
X ) of an i.i.d. sample of size n from a normally distributed population, i.e.

(n − 1)S2
X

σ2
∼ χ2

n−1. (8.25)

8.3.2 t-Distribution

Definition 8.3.2 Let X and Y be two independent random variables where X ∼
N (0, 1) and Y ∼ χ2

n . The ratio

X
√

Y/n
∼ tn

follows a t-distribution (Student’s t-distribution) with n degrees of freedom. The

PDF of the t-distribution is given in Eq. (C.8) in Appendix C.3.

Figure 8.7b visualizes the t1-, t5-, and t30-distributions. The quantiles of different

t-distributions can be obtained in R using the qt(p,df) command. They are also

listed in Table C.2 for different values of n.

An application of the t-distribution is the following: if we draw a sample of size

n from a normal population N (µ,σ2) and calculate the arithmetic mean X̄ and the

sample variance S2
X , then the following theorem holds:

Theorem 8.3.2 (Student’s theorem) Let X = (X1, X2, . . . , Xn) with X i
i id.∼ N

(µ,σ2). The ratio

(X̄ − µ)
√

n

SX

=
(X̄ − µ)

√
n

√

1
n−1

∑n
i+1(X i − X̄)2

∼ tn−1 (8.26)

is then t-distributed with n − 1 degrees of freedom.
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Fig. 8.7 Probability density functions of χ2 and t distributions∗

8.3.3 F-Distribution

Definition 8.3.3 Let X and Y be independent χ2
m and χ2

n-distributed random vari-

ables, then the distribution of the ratio

X/m

Y/n
∼ Fm,n (8.27)

follows the Fisher F-distribution with (m, n) degrees of freedom. The PDF of the

F-distribution is given in Eq. (C.9) in Appendix C.3.

If X is a χ2
1-distributed random variable, then the ratio (8.27) is F1,n-distributed.

The square root of this ratio is tn-distributed since the square root of a χ2
1-distributed

random variable is N (0, 1)-distributed. If W is F-distributed, Fm,n , then 1/W is

Fn,m-distributed. Figure 8.8 visualizes the F5,5, F5,10 and F5,30 distributions. The

Fig. 8.8 Probability density

functions for different

F-distributions∗
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quantiles of different F-distributions can be obtained in R using the qf(p,df1,df2)

command.

One application of the F-distribution relates to the ratio of two sample variances of

two independent samples of size m and n, where each sample is an i.i.d. sample from

a normal population, i.e. N (µX , σ2) and N (µY , σ2). For the sample variances S2
X =

1
m−1

∑m
i=1(X i − X̄)2 and S2

Y = 1
n−1

∑n
i=1(Yi − Ȳ )2 from the two populations, the

ratio
S2

X

S2
Y

∼ Fm−1,n−1

is F-distributed with (m − 1) degrees of freedom in the numerator and (n − 1)

degrees of freedom in the denominator.

8.4 Key Points and Further Issues

Note:

� Examples of different distributions are:

Distribution Example

Uniform Rolling a die (discrete)

Waiting for a train (continuous)

Bernoulli Any binary variable such as gender

Binomial Number of “heads” when tossing a coin n times

Poisson Number of particles emitted by a radioactive source

entering a small area in a given time interval

Multinomial Categorical variables such as “party voted for”

Geometric Number of raffle tickets until first ticket wins

Hypergeometric National lotteries; Fisher’s test, see p. 428

Normal Height or weight of women (men)

Exponential Survival time of a PC

χ2 Sample variance; χ2 tests, see p. 235 ff

t Confidence interval for the mean, see p. 197

F Tests in the linear model, see p. 272
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Note:

� One can use R to determine values of densities (PDF/PMF), cumula-

tive probability distribution functions (CDF), quantiles of the CDF, and

random numbers:

First letter Function Further letters Example

d Density distribution name dnorm

p Probability distribution name pnorm

q Quantiles distribution name qnorm

r Random number distribution name rnorm

We encourage the use of R to obtain quantiles of sampling distributions,

but Tables C.1–C.3 also list some of them.

� In this chapter, we assumed the parameters such as µ,σ,λ, and others to

be known. In Chap. 9, we will propose how to estimate these parameters

from the data. In Chap. 10, we test statistical hypotheses about these

parameters.

� For n i.i.d. random variables X1, X2, . . . , Xn , the arithmetic mean X̄

converges to a N (µ,σ2/n) distribution as n tends to infinity. See Appen-

dix C.3 as well as Exercise 8.11 for the Theorem of Large Numbers and

the Central Limit Theorem, respectively.

8.5 Exercises

Exercise 8.1 A company producing cereals offers a toy in every sixth cereal package

in celebration of their 50th anniversary. A father immediately buys 20 packages.

(a) What is the probability of finding 4 toys in the 20 packages?

(b) What is the probability of finding no toy at all?

(c) The packages contain three toys. What is the probability that among the 5 pack-

ages that are given to the family’s youngest daughter, she finds two toys?

Exercise 8.2 A study on breeding birds collects information such as the length of

their eggs (in mm). Assume that the length is normally distributed with µ = 42.1 mm

and σ2 = 20.82. What is the probability of

(a) finding an egg with a length greater than 50 mm?

(b) finding an egg between 30 and 40 mm in length?

Calculate the results both manually and by using R.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Exercise 8.3 A dodecahedron is a die with 12 sides. Suppose the numbers on the die

are 1–12. Consider the random variable X which describes which number is shown

after rolling the die once. What is the distribution of X? Determine E(X) and Var(X).

Exercise 8.4 Felix states that he is able to distinguish a freshly ground coffee blend

from an ordinary supermarket coffee. One of his friends asks him to taste 10 cups

of coffee and tell him which coffee he has tasted. Suppose that Felix has actually no

clue about coffee and simply guesses the brand. What is the probability of at least 8

correct guesses?

Exercise 8.5 An advertising board is illuminated by several hundred bulbs. Some

of the bulbs are fused or smashed regularly. If there are more than 5 fused bulbs on

a day, the owner of the board replaces them, otherwise not. Consider the following

data collected over a month which captures the number of days (ni ) on which i bulbs

were broken:

Fused bulbs 0 1 2 3 4 5

ni 6 8 8 5 2 1

(a) Suggest an appropriate distribution for X : “number of broken bulbs per day”.

(b) What is the average number of broken bulbs per day? What is the variance?

(c) Determine the probabilities P(X = x) using the distribution you chose in (a)

and using the average number of broken bulbs you calculated in (b). Compare

the probabilities with the proportions obtained from the data.

(d) Calculate the probability that at least 6 bulbs are fused, which means they need

to be replaced.

(e) Consider the random variable Y : “time until next bulb breaks”. What is the

distribution of Y ?

(f) Calculate and interpret E(Y ).

Exercise 8.6 Marco’s company organizes a raffle at an end-of-year function. There

are 4000 raffle tickets to be sold, of which 500 win a prize. The price of each ticket

is e1.50. The value of the prizes, which are mostly electrical appliances produced

by the company, varies between e80 and e250, with an average value of e142.

(a) Marco wants to have a 99 % guarantee of receiving three prizes. How much

money does he need to spend? Use R to solve the question.

(b) Use R to plot the function which describes the relationship between the number

of tickets bought and the probability of winning at least three prizes.

(c) Given the value of the prizes and the costs of the tickets, is it worth taking part

in the raffle?
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Exercise 8.7 A country has a ratio between male and female births of 1.05 which

means that 51.22 % of babies born are male.

(a) What is the probability for a mother that the first girl is born during the first three

births?

(b) What is the probability of getting 2 girls among 4 babies?

Exercise 8.8 A fishermen catches, on average, three fish in an hour. Let Y be a

random variable denoting the number of fish caught in one hour and let X be the

time interval between catching two fishes. We assume that X follows an exponential

distribution.

(a) What is the distribution of Y ?

(b) Determine E(Y ) and E(X).

(c) Calculate P(Y = 5) and P(Y < 1).

Exercise 8.9 A restaurant sells three different types of dessert: chocolate, brownies,

yogurt with seasonal fruits, and lemon tart. Years of experience have shown that the

probabilities with which the desserts are chosen are 0.2, 0.3, and 0.5, respectively.

(a) What is the probability that out of 5 guests, 2 guests choose brownies, 1 guest

chooses yogurt, and the remaining 2 guests choose lemon tart?

(b) Suppose two out of the five guests are known to always choose lemon tart. What

is the probability of the others choosing lemon tart as well?

(c) Determine the expectation and variance assuming a group of 20 guests.

Exercise 8.10 A reinsurance company works on a premium policy for natural disas-

ters. Based on experience, it is known that W = “number of natural disasters from

October to March” (winter) is Poisson distributed with λW = 4. Similarly, the ran-

dom variable S = “number of natural disasters from April to September” (summer)

is Poisson distributed with λS = 3. Determine the probability that there is at least 1

disaster during both summer and winter based on the assumption that the two random

variables are independent.

Exercise 8.11 Read Appendix C.3 to learn about the Theorem of Large Numbers

and the Central Limit Theorem.

(a) Draw 1000 realizations from a standard normal distribution using R and calculate

the arithmetic mean. Repeat this process 1000 times. Evaluate the distribution

of the arithmetic mean by drawing a kernel density plot and by calculating the

mean and variance of it.
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(b) Repeat the procedure in (a) with an exponential distribution with λ = 1. Interpret

your findings in the light of the Central Limit Theorem.

(c) Repeat the procedure in (b) using 10,000 rather than 1000 realizations. How do

the results change and why?

→ Solutions to all exercises in this chapter can be found on p. 375

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,

Springer, Heidelberg
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9.1 Introduction

The first four chapters of this book illustrated how one can summarize a data set

both numerically and graphically. The validity of interpretations made from such

a descriptive analysis is valid only for the data set under consideration and cannot

necessarily be generalized to other data. However, it is desirable to make conclusions

about the entire population of interest and not only about the sample data. In this

chapter, we describe the framework of statistical inference which allows us to

infer from the sample data about the population of interest–at a given, prespecified

uncertainty level–and knowledge about the random process generating the data.

Consider an example where the objective is to forecast an election outcome.

This requires us to determine the proportion of votes that each of the k participating

parties is going to receive, i.e. to calculate or estimate p1, p2, . . . , pk . If it is possible

to ask every voter about their party preference, then one can simply calculate the

proportions p1, p2, . . . , pk for each party. However, it is logistically impossible to

ask all eligible voters (which form the population in this case) about their preferred

party. It seems more realistic to ask only a small fraction of voters and infer from

their responses to the responses of the whole population. It is evident that there might

be differences in responses between the sample and the population—but the more

voters are asked, the closer we are to the population’s preference, i.e. the higher

the precision of our estimates for p1, p2, . . . , pk (the meaning of “precision” will

become clearer later in this chapter). Also, it is intuitively clear that the sample must

be a representative sample of the voters’ population to avoid any discrepancy or bias

in the forecasting. When we speak of a representative sample, we mean that all the

characteristics present in the population are contained in the sample too. There are

many ways to get representative random samples. In fact, there is a branch of statistics,

called sampling theory, which studies this subject [see, e.g. Groves et al. (2009) or

Kauermann and Küchenhoff (2011) for more details]. A simple random sample is

one where each voter has an equal probability of being selected in the sample and

© Springer International Publishing Switzerland 2016
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each voter is independently chosen from the same population. In the following, we

will assume that all samples are simple random samples. To further formalize the

election forecast problem, assume that we are interested in the true proportions which

each party receives on the election day. It is practically impossible to make a perfect

prediction of these proportions because there are too many voters to interview, and

moreover, a voter may possibly make their final decision possibly only when casting

the vote and not before. The voter may change his/her opinion at any moment and may

differ from what he/she claimed earlier. In statistics, we call these true proportions

parameters of the population. The task is then to estimate these parameters on the

basis of a sample. In the election example, the intuitive estimates for the proportions

in the population are the proportions in the sample and we call them sample estimates.

How to find good and precise estimates are some of the challenges that are addressed

by the concept of statistical inference. Now, it is possible to describe the election

forecast problem in a statistical and operational framework: estimate the parameters

of a population by calculating the sample estimates. An important property of every

good statistical inference procedure is that it provides not only estimates for the

population parameters but also information about the precision of these estimates.

Consider another example in which we would like to study the distribution of

weight of children in different age categories and get an understanding of the “nor-

mal” weight. Again, it is not possible to measure the weight of all the children of

a specific age in the entire population of children in a particular country. Instead,

we draw a random sample and use methods of statistical inference to estimate the

weight of children in each age group. More specifically, we have several populations

in this problem. We could consider all boys of a specific age and all girls of a spe-

cific age as two different populations. For example, all 3-year-old boys will form

one possible population. Then, a random sample is drawn from this population. It is

reasonable to assume that the distribution of the weight of k-year-old boys follows a

normal distribution with some unknown parameters μkb and σ2
kb. Similarly, another

population of k-year-old girls is assumed to follow a normal distribution with some

unknown parameters μkg and σ2
kg . The indices kb and kg are used to emphasize

that the parameters may vary by age and gender. The task is now to calculate the

estimates of the unknown parameters (in the population) of the normal distributions

from the samples. Using quantiles, a range of “normal” weights can then be specified,

e.g. the interval from the 1 % quantile to the 99 % quantile of the estimated normal

distribution or, alternatively, all weights which are not more than twice the standard

deviation away from the mean. Children with weights outside this interval may be

categorized as underweight or overweight. Note that we make a specific assumption

for the distribution class; i.e. we assume a normal distribution for the weights and

estimate its parameters. We call this a parametric estimation problem because it is

based on distributional assumptions. Otherwise, if no distributional assumptions are

made, we speak of a nonparametric estimation problem.



9.2 Properties of Point Estimators 183

9.2 Properties of Point Estimators

As we discussed in the introduction, the primary goal in statistical inference is to find

a good estimate of (a) population parameter(s). The parameters are associated with

the probability distribution which is believed to characterize the population; e.g. μ

and σ2 are the parameters in a normal distribution N (μ,σ2). If these parameters are

known, then one can characterize the entire population. In practice, these parameters

are unknown, so the objective is to estimate them. One can attempt to obtain them

based on a function of the sample values. But what does this function look like; and

if there is more than one such function, then which is the best one? What is the best

approach to estimate the population parameters on the basis of a given sample of

data? The answer is given by various statistical concepts such as bias, variability,

consistency, efficiency, sufficiency, and completeness of the estimates. We are going

to introduce them now.

Assume x = (x1, x2 . . . , xn) are the observations of a random sample from a pop-

ulation of interest. The random sample represents the realized values of a random

variable X . It can be said that x1, x2 . . . , xn are the n observations collected on the

random variable X . Any function of random variables is called a statistic. For exam-

ple, X̄ = 1
n

∑n
i=1 X i , max(X1, X2, . . . , Xn) etc. are functions of X1, X2, . . . , Xn ,

so they are a statistic. It follows that a statistic is also a random variable. Consider

a statistic T (X) which is used to estimate a population parameter θ (which may be

either a scalar or a vector). We say T (X) is an estimator of θ. To indicate that we

estimate θ using T (X), we use the “hat” ( ˆ ) symbol, i.e. we write θ̂ = T (X). When

T is calculated from the sample values x1, x2 . . . , xn , we write T (x) and call it an

estimate of θ. It becomes clear that T (X) is a random variable but T (x) is its observed

value (dependent on the actual sample). For example, T (X) = X̄ = 1
n

∑n
i=1 X i is

an estimator and a statistic, but T (x) = x̄ = 1
n

∑n
i=1 xi is its estimated value from

the realized sample values x1, x2, . . . , xn . Since the sample values are realizations

from a random variable, each sample leads to a different value of the estimate of

the population parameter. The population parameter is assumed to be a fixed value.

Parameters can also be assumed to be random, for example in Bayesian statistics,

but this is beyond the scope of this book.

9.2.1 Unbiasedness and Efficiency

Definition 9.2.1 An estimator T (X) is called an unbiased estimator of θ if

Eθ(T (X)) = θ . (9.1)

The index θ denotes that the expectation is calculated with respect to the distribution

whose parameter is θ.
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The bias of an estimator T (X) is defined as

Biasθ(T (X)) = Eθ(T (X)) − θ . (9.2)

It follows that an estimator is said to be unbiased if its bias is zero.

Definition 9.2.2 The variance of T (X) is defined as

Varθ(T (X)) = E
{
[T (X) − E(T (X))]2

}
. (9.3)

Both bias and variance are measures which characterize the properties of an esti-

mator. In statistical theory, we search for “good” estimators in the sense that the bias

and the variance are as small as possible and therefore the accuracy is as high as

possible. Readers interested in a practical example may consult Examples 9.2.1 and

9.2.2, or the explanations for Fig. 9.1.

It turns out that we cannot minimize both measures simultaneously as there is

always a so-called bias–variance tradeoff. A measure which combines bias and vari-

ance into one measure is the mean squared error.

Definition 9.2.3 The mean squared error (MSE) of T (X) is defined as

MSEθ(T (X)) = E
{
[T (X) − θ]2

}
. (9.4)

The expression (9.4) can be partitioned into two parts: the variance and the squared

bias, i.e.

MSEθ(T (X)) = Varθ(T (X)) + [Biasθ(T (X))]2 . (9.5)

This can be proven as follows:

MSEθ(T (X)) = E[T (X) − θ]2

= E[(T (X) − Eθ(T (X)) + (Eθ(T (X) − θ)]2

= E[T (X) − Eθ(T (X))]2 + [Eθ(T (X)) − θ]2

= Varθ(T (X)) + [Biasθ(T (X))]2 .

Note that the calculation is based on the result that the cross product term is zero.

The mean squared error can be used to compare different biased estimators.

Definition 9.2.4 An estimator T1(X) is said to be MSE-better than another estimator

T2(X) for estimating θ if

MSEθ(T1(X)) < MSEθ(T2(X)) ,

where θ ∈ Θ and Θ is the parameter space, i.e. the set of all possible values of θ.

Often, Θ is R or all positive real values R+. For example, for a normal distribution,

N (μ,σ2), μ can be any real value and σ2 has to be a number greater than zero.
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Unfortunately, we cannot find an MSE-optimal estimator in the sense that an

estimator is MSE-better than all other possible estimators for all possible values of

θ. This becomes clear if we define the constant estimator T (x) = c (independent

of the actual sample): if θ = c, i.e. if the constant value equals the true population

parameter we want to estimate, then the MSE of this constant estimator is zero

(but it will be greater than zero for all other values of θ, and the bias increases

more as we move c far away from the true θ). Usually, we can only find estimators

which are locally best (in a certain subset of Θ). This is why classical statistical

inference restricts the search for best estimators to the class of unbiased estimators.

For unbiased estimators, the MSE is equal to the variance of an estimator. In this

context, the following definition is used for comparing two (unbiased) estimators.

Definition 9.2.5 An unbiased estimator T1(X) is said to be more efficient than

another unbiased estimator T2(X) for estimating θ if

Varθ(T1(X)) ≤ Varθ(T2(X)) , ∀θ ∈ Θ ,

and

Varθ(T1(X)) < Varθ(T2(X))

for at least one θ ∈ Θ . It turns out that restricting our search of best estimators to

unbiased estimators is sometimes a successful strategy; i.e. for many problems, a

best or most efficient estimate can be found. If such an estimator exists, it is said to

be UMVU (uniformly minimum variance unbiased). Uniformly means that it has the

lowest variance among all other unbiased estimators for estimating the population

parameter(s) θ.

Consider the illustration in Fig. 9.1 to better understand the introduced concepts.

Suppose we throw three darts at a target and the goal is to hit the centre of the target,

i.e. the innermost circle of the dart board. The centre represents the population

parameter θ. The three darts play the role of three estimates θ̂1, θ̂2, θ̂3 (based on

different realizations of the sample) of the population parameter θ. Four possible

situations are illustrated in Fig. 9.1. For example, in Fig. 9.1b, we illustrate the case

of an estimator which is biased but has low variance: all three darts are “far” away

from the centre of the target, but they are “close” together. If we look at Fig. 9.1a, c,

we see that all three darts are symmetrically grouped around the centre of the target,

meaning that there is no bias; however, in Fig. 9.1a there is much higher precision

than in Fig. 9.1c. It is obvious that Fig. 9.1a presents an ideal situation: an estimator

which is unbiased and has minimum variance.

Theorem 9.2.1 Let X = (X1, X2 . . . , Xn) be an i.i.d. (random) sample of a random

variable X with population mean E(X i ) = μ and population variance V ar(X i ) =
σ2, for all i = 1, 2, . . . , n. Then the arithmetic mean X̄ =

∑n
i=1 X i is an unbiased

estimator of μ and the sample variance S2 = 1
n−1

∑n
i=1(X i − X̄)2 is an unbiased

estimator of σ2.
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Fig. 9.1 Illustration of bias and variance

Note that the theorem holds, in general, for i.i.d. samples, irrespective of the choice

of the distribution of the X i ’s. Note again that we are looking at the situation before

we have any observations on X . Therefore, we again use capital letters to denote

that the X i ’s are random variables which are not known beforehand (i.e. before we

actually record the observations on our selected sampling units).

Remark 9.2.1 The empirical variance S̃2 = 1
n

∑n
i=1(X i − X̄)2 is a biased estimate

of σ2 and its bias is − 1
n
σ2.

Example 9.2.1 Let X1, X2 . . . , Xn be identically and independently distributed vari-

ables whose population mean is μ and population variance is σ2. Then X̄ =
1
n

∑n
i=1 X i is an unbiased estimator of μ. This can be shown as follows:

E(X̄) = E

(
1

n

n∑

i=1

X i

)
(7.29)= 1

n

n∑

i=1

E(X i ) = 1

n

n∑

i=1

μ = μ.
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The variance of X̄ can be calculated as follows:

Var(X̄) = 1

n2

n∑

i=1

Var(X i ) ,
[
Cov(X i , X j ) = 0 using independence of X i ’s

]

= 1

n2

n∑

i=1

σ2 = σ2

n
.

We conclude that X̄ is an unbiased estimator of μ and its variance is σ2

n
irrespective

of the choice of the distribution of X . We have learned about the distribution of X̄

already in Chap. 8, see also Appendix C.3 for the Theorem of Large Numbers and

the Central Limit Theorem; however, we would like to highlight the property of

“unbiasedness” in the current context.

Now, we consider another example to illustrate that estimators may not always be

unbiased but may have the same variance.

Example 9.2.2 Let X1, X2 . . . , Xn be identically and independently distributed vari-

ables whose population mean is μ and population variance is σ2. Then X̃ = X̄ + 1 =
1
n

∑n
i=1(X i + 1) is a biased estimator of μ. This can be shown as follows:

E(X̃)
(7.31)= E

(
1

n

n∑

i=1

X i

)
+ E

(
1

n

n∑

i=1

1

)

(7.29)= 1

n

n∑

i=1

E(X i ) + 1

n
· n = 1

n

n∑

i=1

μ + 1

= μ + 1 �= μ .

However, the variance of X̃ is

Var(X̃) = Var
(
X̄ + 1

) (7.34)= Var(X̄) = σ2

n
.

If we compare the two estimators X̃ = 1
n

∑n
i=1(X i + 1) and X̄ = 1

n

∑n
i=1(X i ), we

see that both have the same variance but the former (X̃) is biased. The efficiency

of both estimators is thus the same. It further follows that the mean squared error

of X̄ is smaller than the mean squared error of X̃ because the MSE consists of the

sum of the variance and the squared bias. Therefore X̄ is MSE-better than X̃ . The

comparison of bias, variance and MSE tells us that we should prefer X̄ over X̃ when

estimating the population mean. This is intuitive, but the argument we make is a

purely statistical one.

Theorem 9.2.1 contains the following special cases:

• The sample mean X̄ = 1
n

∑n
i=1 X i based on an i.i.d. random sample X1, X2, . . . ,

Xn from a normally distributed population N (μ,σ2) is an unbiased point estimator

of μ.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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• The sample variance S2 = 1
n−1

∑n
i=1(X i − X̄)2 based on an i.i.d. random sample

X1, X2, . . . , Xn from a normally distributed population N (μ, σ2) is an unbiased

point estimator of σ2. The sample variance S̃2 = 1
n

∑n
i=1(X i − X̄)2 is a biased

estimator for σ2, but it is asymptotically unbiased in the sense that its bias tends

to zero as the sample size n tends to infinity.

• The sample mean X̄ = 1
n

∑n
i=1 X i based on an i.i.d. random sample X1, X2, . . . ,

Xn from a Bernoulli distributed population B(1, p) is an unbiased point estimator

of the probability p.

For illustration, we show the validity of the third statement. Let us consider an i.i.d.

random sample X i , i = 1, 2 . . . , n, from a Bernoulli distribution, where X i = 1 if

an event occurs and X i = 0 otherwise. Here, p is the probability of occurrence of

an event in the population, i.e. p = P(X i = 1). Note that p is also the population

mean: E(X i ) = 1 · p + 0 · (1 − p) = p, i = 1, 2, . . . , n. The arithmetic mean (rel-

ative frequency) is an unbiased estimator of p because

E(X̄) = 1

n

n∑

i=1

E(X i ) = 1

n

n∑

i=1

p = p,

and thus, we can write the estimate of p as

p̂ = 1

n

n∑

i=1

X i . (9.6)

Example 9.2.3 Suppose a random sample of size n = 20 of the weight of 10-year-

old children in a particular city is drawn. Let us assume that the children’s weight

in the population follows a normal distribution N (μ, σ2). The sample provides the

following values of weights (in kg):

40.2, 32.8, 38.2, 43.5, 47.6, 36.6, 38.4, 45.5, 44.4, 40.3

34.6, 55.6, 50.9, 38.9, 37.8, 46.8, 43.6, 39.5, 49.9, 34.2

To obtain an estimate of the population mean μ, we calculate the arithmetic mean of

the observations as

μ̂ = x̄ = 1

n

n∑

i=1

xi = 1

20
(40.2 + 32.8 + · · · + 34.2) = 41.97,

because it is an unbiased estimator of μ. Similarly, we use S2 to estimate σ2 because

it is unbiased in comparison to S̃2. Using s2
X as an estimate for σ2 for the given

observations, we get

σ̂2 = s2
x = 1

n − 1

n∑

i=1

(xi − x̄)2

= 1

19
((40.2 − 41.97)2 + · · · + (34.2 − 41.97)2) ≈ 36.85.
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The square root of 36.85 is approximately 6.07 which is the standard deviation. Note

that the standard deviation based on the sample values divided by the square root of

the sample size, i.e. σ̂/
√

20, is called the standard error of the mean X̄ (SEM). As

already introduced in Chap. 3, we obtain these results in R using the mean and var

commands.

Example 9.2.4 A library draws a random sample of size n = 100 members from the

members’ database to see how many members have to pay a penalty for returning

books late, i.e. xi = 1. It turns out that 39 members in the sample have to pay a penalty.

Therefore, an unbiased estimator of the population proportion of all members of the

library who return books late is

p̂ = x̄ = 1

n

n∑

i=1

xi = 1

100
· 39 = 39

100
= 0.39.

Remark 9.2.2 Unbiasedness and efficiency can also be defined asymptotically: we

say, for example, that an estimator is asymptotically unbiased, if the bias approaches

zero when the sample size tends to infinity. The concept of asymptotic efficiency

involves some mathematical knowledge which is beyond the intended scope of

this book. Loosely speaking, an asymptotic efficient estimator is an estimator

which achieves the lowest possible (asymptotic) variance under given distribu-

tional assumptions. The estimators introduced in Sect. 9.3.1, which are based on the

maximum likelihood principle, have these properties (under certain mathematically

defined regularity conditions).

Next, we illustrate the properties of consistency and sufficiency of an estimator.

9.2.2 Consistency of Estimators

For a good estimator, as the sample size increases, the values of the estimator should

get closer to the parameter being estimated. This property of estimators is referred

to as consistency.

Definition 9.2.6 Let T1, T2, . . . , Tn, be a sequence of estimators for the parameter

θ where Tn = Tn(X1, X2, . . . , Xn) is a function of X1, X2, . . . , Xn . The sequence

{Tn} is a consistent sequence of estimators for θ if for every ǫ > 0,

lim
n→∞

P [|Tn − θ| < ǫ] = 1

or equivalently

lim
n→∞

P [|Tn − θ| ≥ ǫ] = 0.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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This definition says that as the sample size n increases, the probability that Tn is

getting closer to θ is approaching 1. This means that the estimator Tn is getting

closer to the parameter θ as n grows larger. Note that there is no information on how

fast Tn is converging to θ in the sense of convergence defined above.

Example 9.2.5 Let X1, X2 . . . , Xn be identically and independently distributed vari-

ables with expectation μ and variance σ2. Then for X̄n = 1
n

∑n
i=1 X i , we have

E(X̄n) = μ and Var(X̄n) = σ2/n. For any ǫ > 0, we can write the following:

P
[
|X̄n − μ| ≥ ǫ

]
= P

[
|X̄n − μ| ≥ cσ√

n

]

where ǫ = cσ/
√

n. Using Tschebyschev’s inequality (Theorem 7.4.1, p. 139), we

get 1
c2 = σ2/nǫ2, and therefore

P

[
|X̄n − μ| ≥ cσ√

n

]
≤ 1

c2
= σ2

nǫ2

and

lim
n→∞

P

[
|X̄n − μ| ≥ cσ√

n

]
≤ lim

n→∞
σ2

nǫ2
= 0,

provided σ2 is finite. Hence X̄n, n = 1, 2, . . . , converges to μ and therefore X̄n is a

consistent estimator of μ.

Remark 9.2.3 We call this type of consistency weak consistency. Another definition

is MSE consistency, which says that an estimator is MSE consistent if MSE −→ 0

as n → ∞. If the estimator is unbiased, it is sufficient that Var −→ 0 as n → ∞. If

Tn(X) is MSE consistent, it is also weakly consistent. Therefore, it follows that an

unbiased estimator with its variance approaching zero as the sample size approaches

infinity is both MSE consistent and weakly consistent.

In Example 9.2.5, the variance of Tn(X) = X̄n is σ2/n which goes to zero as n

goes to ∞ and therefore X̄n is both weakly consistent and MSE consistent.

9.2.3 Sufficiency of Estimators

Sufficiency is another criterion to judge the quality of an estimator. Before delving

deeper into the subject matter, we first try to understand some basic concepts.

Consider two independent random variables X and Y , each following a N (μ, 1)

distribution. We conclude that both X and Y contain information about μ. Consider

two estimators of μ as μ̂1 = X + Y and μ̂2 = X − Y . Suppose we want to know

whether to use μ̂1 or μ̂2 to estimate μ. We notice that E(μ̂1) = E(X) + E(Y ) = μ +
μ = 2μ, E(μ̂2) = E(X) − E(Y ) = μ − μ = 0, Var(μ̂1) = Var(X) + Var(Y ) = 1 +
1 = 2 and Var(μ̂2) = Var(X) + Var(Y ) = 1 + 1 = 2. Using the additivity property

of the normal distribution, which was introduced in Remark 8.2.2, we can say that

μ̂1 ∼ N (2μ, 2) and μ̂2 ∼ N (0, 2). So μ̂1 contains information about μ, whereas μ̂2

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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does not contain any information about μ. In other words, μ̂2 loses the information

about μ. We call this property “loss of information”.

If we want to make conclusions about μ using both X and Y , we need to acknowl-

edge that the dimension of them is 2. On the other hand, if we use μ̂1 or equivalently

μ̂1/2 ∼ N (μ, 1
2
), then we need to concentrate only on one variable and we say that

it has dimension 1. It follows that μ̂1 and μ̂1/2 provide the same information about

μ as provided by the entire sample on both X and Y . So we can say that either μ̂1

or μ̂1/2 is sufficient to provide the same information about μ that can be obtained

on the basis of the entire sample. This is the idea behind the concept of sufficiency

and it results in the reduction of dimension. In general, we can say that if all the

information about μ contained in the sample of size n can be obtained, for example,

through the sample mean then it is sufficient to use this one-dimensional summary

statistic to make inference about μ.

Definition 9.2.7 Let X1, X2, . . . , Xn be a random sample from a probability density

function (or probability mass function) f (x, θ). A statistic T is said to be sufficient

for θ if the conditional distribution of X1, X2, . . . , Xn given T = t is independent

of θ.

The Neyman–Fisher Factorization Theorem provides a practical way to find suf-

ficient statistics.

Theorem 9.2.2 (Neyman–Fisher Factorization Theorem (NFFT)) Let X1, X2, . . . ,

Xn be a random sample from a probability density function (or probability mass

function) f (x, θ). A statistic T = T (x1, x2, . . . , xn) is said to be sufficient for θ if

and only if the joint density of X1, X2, . . . , Xn can be factorized as

f (x1, x2, . . . , xn; θ) = g(t, θ) · h(x1, x2, . . . , xn)

where h(x1, x2, . . . , xn) is nonnegative and does not involve θ; and g(t, θ) is a non-

negative function of θ which depends on x1, x2, . . . , xn only through t, which is a

particular value of T .

This theorem holds for discrete random variables too. Any one-to-one function of

a sufficient statistic is also sufficient. A function f is called one-to-one if whenever

f (a) = f (b) then a = b.

Example 9.2.6 Let X1, X2, . . . , Xn be a random sample from N (μ, 1) where μ is

unknown. We attempt to find a sufficient statistic for μ. Consider the following

function as the joint distribution of x1, x2, . . . , xn (whose interpretation will become

clearer in the next section):

f (x1, x2, . . . , xn;μ) =
(

1√
2π

)n

exp

(
−1

2

n∑

i=1

(xi − μ)2

)

=
(

1√
2π

)n

exp

(
−nμ2

2
+ μ

n∑

i=1

xi

)
exp

(
−1

2

n∑

i=1

x2
i

)
.
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Here

g(t,μ) =
(

1√
2π

)n

exp

(
−nμ2

2
+ μ

n∑

i=1

xi

)
,

h(x1, x2, . . . , xn) = exp

(
−1

2

n∑

i=1

x2
i

)
,

t = t (x1, x2, . . . , xn) =
n∑

i=1

xi .

Using the Neyman–Fisher Factorization Theorem, we conclude that T = T (X1,

X2, . . . , Xn) =
∑n

i=1 X i is a sufficient statistic for μ. Also, T = T (X1,

X2, . . . , Xn) = X̄ is sufficient for μ as it is a one-to-one statistic of
∑n

i=1 X i . On

the other hand, T = X̄2 is not sufficient for μ as it is not a one-to-one function of∑n
i=1 X i . The important point here is that X̄ is a function of the sufficient statistic and

hence a good estimator for μ. It is thus summarizing the sample information about

the parameter of interest in a complete yet parsimonious way. Another, multivariate,

example of sufficiency is given in Appendix C.4.

9.3 Point Estimation

In the previous section, we introduced and discussed various properties of estimators.

In this section, we want to show how one can find estimators with good properties. In

the general case, properties such as unbiasedness and efficiency cannot be guaranteed

for a finite sample. But often, the properties can be shown to hold asymptotically.

9.3.1 Maximum Likelihood Estimation

We have used several estimators throughout the book without stating explicitly that

they are estimators. For example, we used the sample mean (X̄ ) to estimate μ in

a N (μ, σ2) distribution; we also used the sample proportion (relative frequency) to

estimate p in a B(1, p) distribution, etc. The obvious question is how to obtain a good

statistic to estimate an unknown parameter, for example how to determine that the

sample mean can be used to estimate μ. We need a general framework for parameter

estimation. The method of maximum likelihood provides such an approach. For the

purpose of illustration, we introduce the method of maximum likelihood estimation

with an example using the Bernoulli distribution.

Example 9.3.1 Consider an i.i.d. random sample X = (X1, X2, . . . , Xn) from a

Bernoulli population with p = P(X i = 1) and (1 − p) = P(X i = 0). The joint

probability mass function for a given set of realizations x1, x2, . . . , xn (i.e. the data) is
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P(X1 = x1, X2 = x2, . . . , Xn = xn|p) = P(X1 = x1|p) · · · · · P(Xn = xn|p)

=
n∏

i=1

pxi (1 − p)1−xi . (9.7)

This is a function of (x1, x2, . . . , xn) given the parameter p. The product results

from the fact that the draws are independent and the fact that pxi (1 − p)1−xi = p if

xi = 1 and pxi (1 − p)1−xi = 1 − p if xi = 0. That is, the term pxi (1 − p)1−xi cov-

ers results from both possible outcomes. Now, consider a random sample where the

values x = (x1, x2, . . . , xn) are known, for example x = (0, 1, 0, 0, . . . , 1). Then,

(9.7) can be seen as a function of p because (x1, x2, . . . , xn) is known. In this case,

after obtaining a sample of data, the function is called the likelihood function and

can be written as

L(x1, x2, . . . , xn|p) =
n∏

i=1

px1(1 − p)1−xi . (9.8)

The joint density function of X1, X2, . . . , Xn is called the likelihood function.

For better understanding, consider a sample of size 5 with x = (x1 = 1, x2 = 1, x3 =
0, x4 = 1, x5 = 0). The likelihood (function) is

L(1, 1, 0, 1, 0|p) = p · p · (1 − p) · p · (1 − p) = p3(1 − p)2 . (9.9)

The maximum likelihood estimation principle now says that the estimator p̂ of p

is the value of p which maximizes the likelihood (9.8) or (9.9). In other words,

the maximum likelihood estimate is the value which maximizes the probability of

observing the realized sample from the likelihood function. In general, i.e. for any

sample, we have to maximize the likelihood function (9.9) with respect to p. We use

the well-known principle of maxima–minima to maximize the likelihood function in

this case. In principle, any other optimization procedure can also be used, for example

numerical algorithms such as the Newton–Raphson algorithm. If the likelihood is

differentiable, the first-order condition for the maximum is that the first derivative

with respect to p is zero. For maximization, we can transform the likelihood by a

strictly monotone increasing function. This guarantees that the potential maximum

is taken at the same point as in the original likelihood. A good and highly common

choice is the natural logarithm since it transforms products in sums and sums are

easy to differentiate by differentiating each term in the sum. The log-likelihood in

our example is therefore

l(1, 1, 0, 1, 0|p) = ln L(1, 1, 0, 1, 0, |p) = ln
{

p3(1 − p)2
}

(9.10)

= 3 ln(p) + 2 ln(1 − p) (9.11)

where ln denotes the natural logarithm function and we use the rules

ln(a · b) = ln(a) + ln(b) , a > 0, b > 0

ln
(a

b

)
= ln(a) − ln(b) , a > 0, b > 0

ln
(

ab
)

= b ln(a) , a > 0 .
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Fig. 9.2 Illustration of the likelihood and log-likelihood function of a binomial distribution

Taking the first derivative of (9.10) with respect to p results in

∂l(1, 1, 0, 1, 0|p)

∂ p
= 3

p
− 2

1 − p
. (9.12)

Setting (9.12) to zero and solving for p leads to

3

p
− 2

1 − p
= 0

3

p
= 2

1 − p

3(1 − p) = 2p

5p = 3

p̂ML = 3

5
= 1

5
(1 + 1 + 0 + 1 + 0) = x̄ .

The value of the second-order partial derivative of (9.9) with respect to p at p = p̂ML

is negative which ensures that p̂ML maximizes the likelihood function. It follows from

this example that the maximum likelihood estimate for p leads to the well-known

arithmetic mean. Figure 9.2 shows the likelihood function and the log-likelihood

function as functions of p, where p ∈ [0, 1]. The figures show that the likelihood

function and the log-likelihood function have the same maxima at p = 3/5 = 0.6.

Maximum likelihood estimators have some important properties: they are usually

consistent, asymptotically unbiased, asymptotically normally distributed, asymptot-

ically efficient, and sufficient. Even if they are not, a function of a sufficient statistic

can always be found which has such properties. This is the reason why maximum

likelihood estimation is popular. By “asymptotically” we mean that the properties

hold as n tends to infinity, i.e. as the sample size increases. There might be other

good estimators in a particular context, for example estimators that are efficient and

not only asymptotically efficient; however, in general, the ML principle is a great
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choice in many circumstances. We are going to use it in the following sections and

chapters, for instance for general point estimation and in the linear regression model

(Chap. 11).

Remark 9.3.1 More examples of maximum likelihood estimators are given in

Exercises 9.1–9.3.

9.3.2 Method of Moments

The method of moments is another well-known method to derive the estimators for

population parameters. Below, we outline this principle briefly by way of example.

The idea is that the population parameters of interest can be related to the moments

(e.g. expectation, variance) of the distribution of the considered random variables.

A simple case is the estimator for the expected value E(X) = μ of a population

using an i.i.d. random sample X = (X1, . . . , Xn). In this case, μ̂ = X̄ is the natural

moment estimator of μ. Further, since E(X2) = σ2 + μ2, an estimator of σ2 + μ2 is
1
n

∑n
i=1 X2

i . Using X̄2 as an estimator for μ2, this results in the biased, but asymp-

totically unbiased estimate

σ̂2 = 1

n

n∑

i=1

X2
i −

(
1

n

n∑

i=1

X i

)2

= 1

n

n∑

i=1

(X i − X̄)2 .

An extension of this method is the generalized method of moments (GMM). GMM

estimators have interesting properties: under relatively week conditions (not further

discussed here), they are consistent and asymptotically normal, as well as efficient

in the class of those estimators that do not use any additional information besides

the information included in the moment conditions. Usually, they require a two-step

estimating approach or an iterative estimating procedure.

The least squares estimator for a linear regression model with i.i.d. random

errors, discussed in detail in Chap. 11, can be seen as a special case of a GMM

estimator.

9.4 Interval Estimation

9.4.1 Introduction

Let us first consider an example to understand what we mean by interval estimation.

Consider a situation in which a lady wants to know the time taken to travel from her

home to the train station. Suppose she makes 20 trips and notes down the time taken.

To get an estimate of the expected time, one can use the arithmetic mean. Let us say

x̄ = 25 min. This is the point estimate for the expected travelling time. It may not be

appropriate to say that she will always take exactly 25 min to reach the train station.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Rather the time may vary by a few minutes each time. To take this into account, the

time can be estimated in the form of an interval: it may then be found that the time

varies mostly between 20 and 30 min. Such a statement is more informative. Both

expectation and variation of the data are taken into account. The interval (20, 30 min)

provides a range in which most of the values are expected to lie. We call this concept

interval estimation.

A point estimate on its own does not take into account the precision of the estimate.

The deviation between the point estimate and the true parameter (e.g. |x̄ − μ|) can be

substantial, especially when the sample size is small. To incorporate the information

about the precision of an estimate in the estimated value, a confidence interval can

be constructed. It is a random interval with lower and upper bounds, Il(X) and

Iu(X), such that the unknown parameter θ is covered by a prespecified probability

of at least 1 − α:

Pθ(Il(X) ≤ θ ≤ Iu(X)) ≥ 1 − α. (9.13)

The probability 1 − α is called the confidence level or confidence coefficient, Il(X)

is called the lower confidence bound or lower confidence limit and Iu(X) is called

the upper confidence bound or upper confidence limit. It is important to note that

the bounds are random and the parameter is a fixed value. This is the reason why

we say that the true parameter is covered by the interval with probability 1 − α and

not that the probability that the interval contains the parameter is 1 − α. Please note

that some software packages use the term “error bar” when referring to confidence

intervals.

Frequency interpretation of the confidence interval: Suppose N independent

samples X( j), j = 1, 2, . . . , N , of size n are sampled from the same population

and N confidence intervals of the form [Il(X
( j)), Iu(X( j))] are calculated. If N is

large enough, then on an average N (1 − α) of the intervals (9.13) cover the true

parameter.

Example 9.4.1 Let a random variable follow a normal distribution with μ = 10 and

σ2 = 1. Suppose we draw a sample of n = 10 observations repeatedly. The sample

will differ in each draw, and hence, the mean and the confidence interval will also

differ. The data sets are realizations from random variables. Have a look at Fig. 9.3

which illustrates the mean and the 95 % confidence intervals for 6 random samples.

They vary with respect to the mean and the confidence interval width. Most of the

means are close toμ = 10, but not all. Similarly, most confidence intervals, but not all,

include μ. This is the idea of the frequency interpretation of the confidence interval:

different samples will yield different point and interval estimates. Most of the times

the interval will cover μ, but not always. The coverage probability is specified by

1 − α, and the frequency interpretation means that we expect that (approximately)

(1 − α) · 100 % of the intervals to cover the true parameter μ. In that sense, the

location of the interval will give us some idea about where the true but unknown

population parameter μ lies, while the length of the interval reflects our uncertainty

about μ: the wider the interval is, the higher is our uncertainty about the location

of μ.
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Fig. 9.3 Frequency

interpretation of confidence

intervals

We now introduce the following confidence intervals:

• Confidence interval for the mean μ of a normal distribution.

• Confidence interval for the probability p of a binomial random variable.

• Confidence interval for the odds ratio.

9.4.2 Confidence Interval for the Mean of a Normal Distribution

Confidence Interval for µ When σ
2 = σ

2
0 is Known.

Let X1, X2, . . . , Xn be an i.i.d. sample from a N (μ, σ2
0) distribution where σ2

0 is

assumed to be known. We use the point estimate X̄ = 1
n

∑n
i=1 X i to estimate μ

and construct a confidence interval around the mean μ. Using the Central Limit

Theorem (Appendix C.3, p. 426), it follows that X̄ follows a N (μ,σ2
0/n) distribution.

Therefore
√

n(X̄ − μ)/σ0 ∼ N (0, 1), and it follows that

Pμ

(∣∣∣∣
√

n(X̄ − μ)

σ0

∣∣∣∣ ≤ z1− α
2

)
= 1 − α (9.14)

where z1−α/2 denotes the (1 − α/2) quantile of the standard normal distribution

N (0, 1). We solve this inequality for the unknown μ and get the desired confidence

interval as follows:

Pμ

[
−z1− α

2
≤

(√
n(X̄ − μ)

σ0

)
≤ z1− α

2

]
= 1 − α

or

Pμ

[
X̄ − z1−α/2

σ0√
n

≤ μ ≤ X̄ + z1−α/2
σ0√

n

]
= 1 − α .
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The confidence interval for μ is thus obtained as

[Il(X), Iu(X)] =
[

X̄ − z1−α/2
σ0√

n
, X̄ + z1−α/2

σ0√
n

]
. (9.15)

This is known as (1 − α)% confidence interval for μ or the confidence interval for

μ with confidence coefficient α.

We can use the R function qnorm or Table C.1 to obtain z1− α
2

, see also Sects. 8.4,

A.3, and C.7. For example, for α = 0.05 and α = 0.01 we get z1− α
2

= z0.975 = 1.96

and z1− α
2

= z0.995 = 2.576 using qnorm(0.975) and qnorm(0.995). This gives us

the quantiles we need to determine a 95 % and 99 % confidence interval, respectively.

Example 9.4.2 We consider again Example 9.2.3 where we evaluated the weight of

10-year-old children. Assume that the variance is known to be 36; then the upper and

lower limits of a 95 % confidence interval for the expected weight μ can be calculated

as follows:

Il(X) = X̄ − z1−α/2
σ0√

n
= 41.97 − 1.96

√
36√
20

≈ 39.34 ,

Iu(X) = X̄ + z1−α/2
σ0√

n
= 41.97 + 1.96

√
36√
20

≈ 44.59.

We get the confidence interval [Iu(X), Io(X)] = [39.34, 44.59]. With 95 % confi-

dence, the true parameter μ is covered by the interval [39.34, 44.59].

Confidence Interval for µ When σ
2 is Unknown.

Let X1, X2, . . . , Xn be an i.i.d. sample from N (μ, σ2) where σ2 is assumed to be

unknown and is being estimated by the sample variance S2
X . We know from Sect. 8.3.1

that
(n − 1)S2

X

σ2
∼ χ2

n−1 .

It can be shown that X̄ and S2
X are stochastically independent. Thus, we know that

√
n(X̄ − μ)

SX

∼ tn−1

follows a t-distribution with n − 1 degrees of freedom. We can use this result to

determine the confidence interval for μ as

Pμ

[
−t1− α

2 ,n−1 ≤
(√

n(X̄ − μ)

SX

)
≤ t1− α

2 ,n−1

]
= 1 − α

or

Pμ

[
X̄ − t1− α

2 ,n−1

SX√
n

≤ μ ≤ X̄ + t1− α
2 ,n−1

SX√
n

]
= 1 − α .

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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The confidence interval for μ is thus obtained as

[Il(X), Iu(X)] =
[

X̄ − tn−1;1−α/2 · SX√
n
, X̄ + tn−1;1−α/2 · SX√

n

]
(9.16)

which is the 100(1 − α)% confidence interval for μ or the confidence interval for μ

with confidence coefficient α.

The interval (9.16) is, in general, wider than the interval (9.15) for identical α and

identical sample size n, since the unknown parameter σ2 is estimated by S2
X which

induces additional uncertainty. The quantiles for the t-distribution can be obtained

using the R command qt or Table C.2.

Example 9.4.3 Consider Example 9.4.2 where we evaluated the weight of 10-year-

old children. We have already calculated the point estimate of μ as x̄ = 41.97. With

t19;0.975 = 2.093, obtained via qt(0.975,19) or Table C.2, the upper and lower

limits of a 95 % confidence interval for μ are obtained as

Iu(X) = x̄ − t19;0.975 · sX√
n

= 41.97 − 2.093 · 6.07√
20

≈ 39.12 ,

Io(X) = x̄ + t19;0.975 · sX√
n

= 41.97 + 2.093 · 6.07√
20

≈ 44.81 .

Therefore, the confidence interval is [Il(X), Iu(X)] = [39.13, 44.81]. In R, we can

use the conf.int value of the t.test command to get a confidence interval for the

mean (see also Example 10.3.3 for more details on t.test). The default is a 95 %

confidence interval, but it can be changed easily if desired:

x <- c(40.2, 32.8, 38.2, 43.5, ..., 49.9, 34.2)

t.test(x,conf.level = 0.95)$conf.int

[1] 39.12384 44.80616

There is no unique best way to draw the calculated confidence intervals in R.

Among many other options, one can simply work with the plot functionality or

use geom_errorbar in conjunction with a ggplot object created with the library

ggplot2, or use the plotCI command in the library plotrix.

9.4.3 Confidence Interval for a Binomial Probability

Let X1, X2, . . . , Xn be an i.i.d. sample from a Bernoulli distribution B(1, p). Then

Y =
∑n

i=1 X i has a binomial distribution B(n, p).

We have already introduced p̂ as an estimator for p:

p̂ = 1

n

n∑

i=1

X i = 1

n
Y.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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From (8.8), we know that Var(Y ) = np(1 − p). Applying rule (7.33), the variance

of the estimator p̂ is

Var( p̂) = p(1 − p)

n

and it can be estimated by

S2
p̂

= p̂(1 − p̂)

n
.

Nowadays, the exact confidence intervals of the binomial distribution function can

be easily calculated using computer implementations. Nevertheless, (i) for a suffi-

ciently large sample size n, (ii) if p is not extremely low or high, and (iii) if the

condition np(1 − p) ≥ 9 is fulfilled, we can use an approximation based on the nor-

mal distribution to calculate confidence intervals. To be more specific, one can show

that

Z = p̂ − p√
p̂(1 − p̂)/n

approx .∼ N (0, 1). (9.17)

This gives us

P

[
p̂ − z1−α/2

√
p̂(1 − p̂)

n
≤ p ≤ p̂ + z1−α/2

√
p̂(1 − p̂)

n

]
≈ 1 − α, (9.18)

and we get a confidence interval for p as
[

p̂ − z1−α/2

√
p̂(1 − p̂)

n
, p̂ + z1−α/2

√
p̂(1 − p̂)

n

]
. (9.19)

Example 9.4.4 We look again at Example 9.2.4 where we evaluated the proportion

of members who had to pay a penalty. Out of all borrowers, 39 % brought back their

books late and thus had to pay a fee. A 95 % confidence interval for the probability

p of bringing back a book late can be constructed using the normal approximation,

since n p̂(1 − p̂) = 100 · 0.39 · 0.61 = 23.79 > 9. With z1−α/2 = z0.975 = 1.96 and

p̂ = 0.39, we get the 95 % confidence interval as

[
0.39 − 1.96

√
0.39 · 0.61

100
, 0.39 + 1.96

√
0.39 · 0.61

100

]
= [0.294, 0.486].

In R, an exact confidence interval can be found using the function binom.test:

binom.test(x=39,n=100)$conf.int

[1] 0.2940104 0.4926855

One can see that the exact and approximate confidence limits differ slightly due

to the normal approximation which approximates the exact binomial probabilities.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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9.4.4 Confidence Interval for the Odds Ratio

In Chap. 4, we introduced the odds ratio to determine the strength of association

between two binary variables. One may be interested in the dispersion of the odds

ratio and hence calculate a confidence interval for it. Recall the notation for 2 × 2

contingency tables:

Y Total (row)

y1 y2

x1 a b a + bX
x2 c d c + d

Total (column) a + c b + d n

In the spirit of the preceding sections, we can interpret the entries in this con-

tingency table as population parameters. For example, a describes the absolute fre-

quency of observations in the population for which Y = y1 and X = x1. If we have

a sample then we can estimate a by the number of observed observations n11 for

which Y = y1 and X = x1. We can thus view n11 to be an estimator for a, n12 to be

an estimator for b, n21 to be an estimator for c, and n22 to be an estimator for d. It

follows that

ÔR = n11n22

n12n21
(9.20)

serves as the point estimate for the population odds ratio OR = ad/bc. To construct

a confidence interval for the odds ratio, we need to work on a log-scale. The log odds

ratio,

θ0 = ln OR = ln a − ln b − ln c + ln d, (9.21)

takes the natural logarithm of the odds ratio. It is evident that it can be estimated

using the observed absolute frequencies of the joint frequency distribution of X and

Y :

θ̂0 = ln ÔR = ln
n11n22

n12n21
. (9.22)

It can be shown that θ̂0 follows approximately a normal distribution with expectation

θ0 and standard deviation

σ̂
θ̂0

=
(

1

n11
+ 1

n22
+ 1

n12
+ 1

n21

) 1
2

. (9.23)

Following the reasoning explained in the earlier section on confidence intervals for

binomial probabilities, we can calculate the 100(1 − α)% confidence interval for θ0

under a normal approximation as follows:
[
θ̂0 − z1− α

2
σ̂

θ̂0
, θ̂0 + z1− α

2
σ̂

θ̂0

]
= [Iu, Io] . (9.24)

http://dx.doi.org/10.1007/978-3-319-46162-5_4


202 9 Inference

Since we are interested in the confidence interval of the odds ratio, and not the log

odds ratio, we need to transform back the lower and upper bound of the confidence

interval as [
exp(Iu), exp(Io)

]
. (9.25)

Example 9.4.5 Recall Example 4.2.5 from Chap. 4 where we were interested in the

association of smoking with a particular disease. The data is summarized in the

following 2 × 2 contingency table:

Smoking Total (row)

Yes No

Yes 34 66 100
Disease

No 22 118 140

Total (column) 56 184 240

The odds ratio was estimated to be 2.76, and we therefore concluded that the chances

of having the particular disease is 2.76 times higher for smokers compared with non-

smokers. To calculate a 95 % confidence intervals, we need θ̂0 = ln(2.76), z1− α
2

≈
1.96 and

σ̂
θ̂0

=
(

1

n11
+ 1

n22
+ 1

n12
+ 1

n21

) 1
2

=
(

1

34
+ 1

118
+ 1

66
+ 1

22

) 1
2

≈ 0.314.

The confidence interval for the log odds ratio is

[ln(2.76) − 1.96 · 0.314, ln(2.76) + 1.96 · 0.314] ≈ [0.40, 1.63] .

Exponentiation of the confidence interval bounds yields the 95 % confidence interval

for the odds ratio as

[1.49, 5.11] .

There are many ways to obtain the same results in R. One option is to use the

oddsratio function of the library epitools. Note that we need to specify “wald”

under the methods option to get confidence intervals which use the normal approxi-

mation as we did in this case.

library(epitools)

smd <- matrix(c(34,22,66,118),ncol=2,nrow=2) #data

oddsratio(smd,method='wald')

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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9.5 Sample Size Determinations

Confidence intervals help us estimating the precision of point estimates. What if

we are required to adhere to a prespecified precision level? We know that the vari-

ance decreases as the sample size increases. In turn, confidence intervals become

narrower. On the other hand, increasing the sample size has its own consequences.

For example, the cost and time involved in setting up experiments, or conducting

a survey, increases. In these situations it is important to find a balance between the

variability of the estimates and the sample size. We cannot control the variability in

the data in most of the situations, but it is possible to control the sample size and

therefore the precision of our estimates. For example, we can control the number

of people to be interviewed in a survey—given the resources which are available.

We discuss how to determine the number of observations needed to get a particular

precision (length) of the confidence interval. We find the answers to such questions

using the formulae for confidence intervals.

Sample Size Calculation for µ.

Let us consider the situation where we are interested in estimating the population

mean μ. The length of the confidence interval (9.15) for the point estimate X̄ is

2z1−α/2
σ0√

n
. (9.26)

We would now like to fix the width of the confidence interval and come up with

a sample size which is required to achieve this width. Let us fix the length of the

confidence interval as

∆ = 2z1−α/2
σ0√

n
. (9.27)

Assume we have knowledge of σ0. The knowledge about σ0 can be obtained, for

example, through a pilot study or past experience with the experiment. We are inter-

ested in obtaining the value of n for which a confidence interval has a fixed confidence

width of ∆ or less. Rearranging (9.27) gives us

n ≥
[
2

z1−α/2σ0

∆

]2

. (9.28)

This means a minimum or optimum sample size is

nopt =
[
2

z1−α/2σ0

∆

]2

. (9.29)

The sample size nopt ensures that the 1 − α confidence interval for μ has at most

length ∆. But note that we have assumed that σ0 is known. If we do not know σ0

(which is more likely in practice), we have to make an assumption about it, e.g. by

using an estimate from a former study, a pilot study, or other external information.

Practically, (9.28) is used in the case of known and unknown σ2
0 .
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Example 9.5.1 A call centre is interested in determining the expected length of a

telephone call as precisely as possible. The requirements are that the 95 % confidence

interval for μ should have a width of 1 min. Suppose that the call centre has developed

a pilot study in which σ0 was estimated to be 5 min. The sample size n that is needed

to estimate the expected length of the phone calls with the desired precision is:

n ≥
[

2z1−α/2σ0

∆

]2

=
[

2 × 1.96 × 5

1

]2

≈ 384.

This means that at least 384 calls are required to get the desired confidence interval

width.

Sample Size Calculation for p.

We can follow the earlier reasoning and determine the optimum sample size for a

specific confidence interval width using the confidence interval definition (9.19).

Since the width of the confidence interval is

∆ = 2z1−α/2

√
p̂(1 − p̂)

n
,

we get

n ≥
[
2

z1−α/2

∆

]2

p̂(1 − p̂). (9.30)

Example 9.5.2 A factory may be interested in the probability of an error in an oper-

ating process. The length of the confidence interval should be ±2 %, i.e. ∆ = 0.04.

Suppose it is speculated that the error probability is 10 %; we may then use p̂ = 0.1

as our prior judgment for the true value of p. This yields

n ≥
[
2

z1−α/2

∆

]2

p̂(1 − p̂) =
[

2 × 1.96

0.04

]2

0.1 · (1 − 0.1) ≈ 865. (9.31)

This means we need a sample size of at least 865 to obtain the desired width of the

confidence interval for p.

The above examples for both μ and p have shown us that without external knowl-

edge about the research question of interest, it is difficult to come up with an appro-

priate sample size. Results may vary considerably depending on what type of infor-

mation is assumed to be known. With limited knowledge, it can be useful to report

results for different widths of confidence intervals and hypothesized values of p or

σ0.

Sample size calculations can be highly complex in many practical situations and

may not remain as simple as in the examples considered here. For example, Chap. 10

uses additional concepts in the context of hypothesis testing, such as the power,

which can be taken into consideration when estimating sample sizes. However,

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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in this case, calculations and interpretations become more difficult and complex.

A detailed overview of sample size calculations can be found in Chow et al. (2007)

and Bock (1997).

9.6 Key Points and Further Issues

Note:

� We have introduced important point estimates for the parameters of a nor-

mal and a binomial distribution:

x̄ for μ, S2 for σ2, x̄ for p.

In general, the choice of these point estimates is not arbitrary but follows

some principles of statistical inference such as maximum likelihood esti-

mation, or least squares estimation (introduced in Chap. 11).

� The maximum likelihood estimator is usually consistent, asymptotically

unbiased, asymptotically normally distributed, and asymptotically effi-

cient.

� The validity of all results in this chapter depends on the assumption that

the data is complete and has no missing values. Incomplete data may yield

different conclusions.

� A confidence interval is defined in terms of upper and lower confidence

limits and covers the true target parameter with probability 1 − α. Confi-

dence intervals are often constructed as follows:

point estimate ± quantile ·
√

variance of point estimate︸ ︷︷ ︸
standard error

.

� More detailed introductions to inference are presented in Casella and

Berger (2002) and Young and Smith (2005).

9.7 Exercises

Exercise 9.1 Consider an i.i.d. sample of size n from a Po(λ) distributed random

variable X .

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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(a) Determine the maximum likelihood estimate for λ.

(b) What does the log-likelihood function look like for the following realizations:

x1 = 4, x2 = 3, x3 = 8, x4 = 6, x5 = 6? Plot the function using R. Hint: The

curve command can be used to plot functions.

(c) Use the Neyman–Fisher Factorization Theorem to argue that the maximum like-

lihood estimate obtained in (a) is a sufficient statistic for λ.

Exercise 9.2 Consider an i.i.d. sample of size n from a N (μ,σ2) distributed random

variable X .

(a) Determine the maximum likelihood estimator for μ under the assumption that

σ2 = 1.

(b) Now determine the maximum likelihood estimator for μ for an arbitrary σ2.

(c) What is the maximum likelihood estimate for σ2?

Exercise 9.3 Let X1, X2, . . . , Xn be n i.i.d. random variables which follow a uni-

form distribution, U (0, θ). Write down the likelihood function and argue, without

differentiating the function, what the maximum likelihood estimate of θ is.

Exercise 9.4 Let X1, X2, . . . , Xn be n i.i.d. random variables which follow an expo-

nential distribution. An intelligent statistician proposes to use the following two

estimators to estimate μ = 1/λ:

(i) Tn(X) = nXmin with Xmin = min(X1, . . . , Xn) and Xmin ∼ Exp(nλ),

(ii) Vn(X) = n−1
∑n

i=1 X i .

(a) Are both Tn(X) and Vn(X) (asymptotically) unbiased for μ?

(b) Calculate the mean squared error of both estimators. Which estimator is more

efficient?

(c) Is Vn(X) MSE consistent, weakly consistent, both, or not consistent at all?

Exercise 9.5 A national park in Namibia determines the weight (in kg) of a sample

of common eland antelopes:

450 730 700 600 620 660 850 520 490 670 700 820

910 770 760 620 550 520 590 490 620 660 940 790

Calculate

(a) the point estimate of μ and σ2 and

(b) the confidence interval for μ (α = 0.05).

under the assumption that the weight is normally distributed.

(c) Use R to reproduce the results from (b).



9.7 Exercises 207

Exercise 9.6 We are interested in the heights of the players of the two basketball

teams “Brose Baskets Bamberg” and “Bayer Giants Leverkusen” as well as the

football team “SV Werder Bremen”. The following summary statistics are given:

N Minimum Maximum Mean Std. dev.

Bamberg 16 185 211 199.06 7.047

Leverkusen 14 175 210 196.00 9.782

Bremen 23 178 195 187.52 5.239

Calculate a 95 % confidence interval for μ for all three teams and interpret the results.

Exercise 9.7 A married couple tosses a coin after each dinner to determine who has

to wash the dishes. If the coin shows “head”, then the husband has to wash the dishes,

and if the coin shows “tails”, then the wife has to wash the dishes. After 98 dinners,

the wife notes that the coin has shown head 59 times.

(a) Estimate the probability that the wife has to wash the dishes.

(b) Calculate and interpret the 95 % confidence interval for p.

(c) How many dinners are needed to estimate the true probability for the coin show-

ing “head” with a precision of ±0.5 % under the assumption that the coin is

fair?

Exercise 9.8 Suppose 93 out of 104 pupils have passed the final examination at a

certain school.

(a) Calculate a 95 % confidence interval for the probability of failing the examination

both by manual calculations and by using R, and compare the results.

(b) At county level 3.2 % of pupils failed the examination. Are the school’s pupils

worse than those in the whole county?

Exercise 9.9 To estimate the audience rate for several TV stations, 3000 households

are asked to allow a device, which records which TV station is watched, to be

installed on their TVs. 2500 agreed to participate. Assume it is of interest to estimate

the probability of someone switching on the TV and watching the show “Germany’s

next top model”.

(a) What is the precision with which the probability can be estimated?

(b) What source of bias could potentially influence the estimates?
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Exercise 9.10 An Olympic decathlon athlete is interested in his performance com-

pared with the performance of other athletes. He is a good runner and interested in

his 100 m results compared with those of other athletes.

(a) He uses the decathlon data from this book (Appendix A.2) to come up with

σ̂ = s = 0.233. What sample size does he need to calculate a 95 % confidence

interval for the mean running time which is precise to ±0.1 s?

(b) Calculate a 95 % confidence interval for the mean running time (x̄ = 10.93) of

the 30 athletes captured in the data set in Chap. A.2. Interpret the width of this

interval compared with the width determined in a).

(c) The runner’s own best time is 10.86 s. He wants to be among the best 10 % of all

athletes. Calculate an appropriate confidence interval to compare his time with

the 10 % best times.

Exercise 9.11 Consider the pizza delivery data described in Chap. A.4. We distin-

guish between pizzas delivered on time (i.e. in less than 30 min) and not delivered on

time (i.e. in more than 30 min). The contingency table for delivery time and operator

looks as follows:

Operator Total

Laura Melissa

<30 min 163 151 314

≥30 min 475 477 952

Total 638 628 1266

(a) Calculate and interpret the odds ratio and its 95 % confidence interval.

(b) Reproduce the results from (a) using R.

→ Solutions to all exercises in this chapter can be found on p. 384
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10.1 Introduction

We introduced point and interval estimation of parameters in the previous chapter.

Sometimes, the research question is less ambitious in the sense that we are not inter-

ested in precise estimates of a parameter, but we only want to examine whether

a statement about a parameter of interest or the research hypothesis is true or not

(although we will see later in this chapter that there is a connection between confi-

dence intervals and statistical tests, called duality). Another related issue is that once

an analyst estimates the parameters on the basis of a random sample, (s)he would

like to infer something about the value of the parameter in the population. Statisti-

cal hypothesis tests facilitate the comparison of estimated values with hypothetical

values.

Example 10.1.1 As a simple example, consider the case where we want to find out

whether the proportion of votes for a party P in an election will exceed 30 % or

not. Typically, before the election, we will try to get representative data about the

election proportions for different parties (e.g. by telephone interviews) and then make

a statement like “yes”, we expect that P will get more than 30 % of the votes or “no”,

we do not have enough evidence that P will get more than 30 % of the votes. In

such a case, we will only know after the election whether our statement was right or

wrong. Note that the term representative data only means that the sample is similar

to the population with respect to the distributions of some key variables, e.g. age,

gender, and education. Since we use one sample to compare it with a fixed value

(30 %), we call it a one-sample problem.

Example 10.1.2 Consider another example in which a clinical study is conducted

to compare the effectiveness of a new drug (B) to an established standard drug (A)

for a specific disease, for example too high blood pressure. Assume that, as a first

step, we want to find out whether the new drug causes a higher reduction in blood
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pressure than the already established older drug. A frequently used study design for

this question is a randomized (i.e. patients are randomly allocated to one of the two

treatments) controlled clinical trial (double blinded, i.e. neither the patient nor the

doctor know which of the drugs a patient is receiving during the trial), conducted in

a fixed time interval, say 3 months. A possible hypothesis is that the average change

in the blood pressure in group B is higher than in group A, i.e. δB > δA where

δ j = µ j0 − µ j3, j = A, B and µ j0 is the average blood pressure at baseline before

measuring the blood pressure again after 3 months (µ j3). Note that we expect both

the differences δA and δB to be positive, since otherwise we would have some doubt

that either drug is effective at all. As a second step (after statistically proving our

hypothesis), we are interested in whether the improvement of B compared to A is

relevant in a medical or biological sense and is valid for the entire population or

not. This will lead us again to the estimation problems of the previous chapter, i.e.

quantifying an effect using point and interval estimation. Since we are comparing two

drugs, we need to have two samples from each of the drugs; hence, we have a two-

sample problem. Since the patients receiving A are different from those receiving

B in this example, we refer to it as a “two-independent-samples problem”.

Example 10.1.3 In another example, we consider an experiment in which a group

of students receives extra mathematical tuition. Their ability to solve mathematical

problems is evaluated before and after the extra tuition. We are interested in knowing

whether the ability to solve mathematical problems increases after the tuition, or not.

Since the same group of students is used in a pre–post experiment, this is called a

“two-dependent-samples problem” or a “paired data problem”.

10.2 Basic Definitions

10.2.1 One- and Two-Sample Problems

In one-sample problems, the data is usually assumed to arise as one sample from a

defined population. In two-sample problems, the data originates in the form of two

samples possibly from two different populations. The heterogeneity is often modelled

by assuming that the two populations only differ in some parameters or key quantities

such as expectation (i.e. mean), median, or variance. As in our introductory example,

the samples can either be independent (as in the drug Example 10.1.2) or dependent

(as in the evaluation Example 10.1.3).

10.2.2 Hypotheses

A researcher may have a research question for which the truth about the population

of interest is unknown. Suppose data can be obtained using a survey, observation, or
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an experiment: if, given a prespecified uncertainty level, a statistical test based on

the data supports the hypothesis about the population, we say that this hypothesis is

statistically proven. Note that the research question has to be operationalized before

it can be tested by a statistical test. Consider the drug Example 10.1.2: we want to

examine whether the new drug B has a greater blood pressure lowering effect than

the standard drug A. We have several options to operationalize this research question

into a statistical set-up. One is to test whether the average reduction (from baseline to

3 months) of the blood pressure is higher (and positive) for drug B than drug A. We

then state our hypotheses in terms of expected values (i.e. µ). Why do we have to use

the expected values µ and not simply compare the arithmetic means x̄? The reason is

that the superiority of B shown in the sample will only be valid for this sample and

not necessarily for another sample. We need to show the superiority of B in the entire

population, and hence, our hypothesis needs to reflect this. Another option would

be, for example, to use median changes in blood pressure values instead of mean

changes in blood pressure values. An important point is that the research hypothesis

which we want to prove has to be formulated as the statistical alternative hypothesis,

often denoted by H1. The reason for this will become clearer later in this chapter.

The opposite of the research hypothesis has to be formulated as the statistical null

hypothesis, denoted by H0. In the drug example, the alternative and null hypotheses

are, respectively,

H1 : δB > δA

and

H0 : δB ≤ δA.

We note that the two hypotheses are disjoint and the union of them covers all possible

differences of δB and δA. There is a boundary value (δB = δA) which separates the

two hypotheses. Since we want to show the superiority of B, the hypothesis was

formulated as a one-sided hypothesis. Note that there are different ways to formulate

two-sample hypotheses; for example, H1 : δB > δA is equivalent to H1 : δB − δA >

0. In fact, it is very common to formulate two-sample hypotheses as differences,

which we will see later in this chapter.

10.2.3 One- and Two-Sided Tests

We distinguish between one-sided and two-sided hypotheses and tests. In the previous

section, we gave an example of a one-sided test.

For an unknown population parameter θ (e.g. µ) and a fixed value θ0 (e.g. 5), the

following three cases have to be distinguished:

Case Null hypothesis Alternative hypothesis

(a) θ = θ0 θ �= θ0 Two-sided test problem

(b) θ ≥ θ0 θ < θ0 One-sided test problem

(c) θ ≤ θ0 θ > θ0 One-sided test problem
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Example 10.2.1 One-sample problems often test whether a target value is achieved

or not. For example, consider the null hypothesis as

• H0 : average filling weight of packages of flour = 1 kg

• H0 : average body height (men) = 178 cm.

The alternative hypothesis H1 is formulated as deviation from the target value. If

deviations in both directions are interesting, then H1 is formulated as a two-sided

hypothesis,

• H1 : average body height (men) �= 178 cm.

If deviations in a specific direction are the subject of interest, then H1 is formulated

as a one-sided hypothesis, for example,

• H1 : average filling weight of flour packages is lower than 1 kg.

• H1 : average filling weight of flour packages is greater than 1 kg.

Two-sample problems often examine differences of two samples. Suppose the

null hypothesis H0 is related to the average weight of flour packages filled by two

machines, say 1 and 2. Then, the null hypothesis is

• H0 : average weight of flour packages filled by machine 1 = average weight of

flour packages filled by machine 2.

Then, H1 can be formulated as a one-sided or two-sided hypothesis. If we want to

prove that machine 1 and machine 2 have different filling weights, then H1 would

be formulated as a two-sided hypothesis

• H1 : average filling weight of machine 1 �= average filling weight of machine 2.

If we want to prove that machine 1 has lower average filling weight than machine 2,

H1 would be formulated as a one-sided hypothesis

• H1 : average filling weight of machine 1 < average filling weight of machine 2.

If we want to prove that machine 2 has lower filling weight than machine 1, H1

would be formulated as a one-sided hypothesis

• H1 : average filling weight of machine 1 > average filling weight of machine 2.

Remark 10.2.1 Note that we have not considered the following situation: H0 : θ �=
θ0, H1 : θ = θ0. In general, with the tests described in this chapter, we cannot prove

the equality of a parameter to a predefined value and neither can we prove the

equality of two parameters, as in H0 : θ1 �= θ2, H1 : θ1 = θ2. We can, for example,
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not prove (statistically) that machines 1 and 2 in the previous example provide equal

filling weight. This would lead to the more complex class of equivalence tests, which

is a topic beyond the scope of this book.

10.2.4 Type I and Type II Error

If we undertake a statistical test, two types of error can occur.

• The hypothesis H0 is true but is rejected; this error is called type I error.

• The hypothesis H0 is not rejected although it is wrong; this is called type II error.

When a hypothesis is tested, then the following four situations are possible:

H0 is true H0 is not true

H0 is not rejected Correct decision Type II error

H0 is rejected Type I error Correct decision

The significance level is the probability of type I error, P(H1|H0) = α, which is the

probability of rejecting H0 (accepting H1) if H0 is true. If we construct a test, the

significance level α is prespecified, e.g. α = 0.05. A significance test is constructed

such that the probability of a type I error does not exceed α while the probability of a

type II error depends on the true but unknown parameter values in the population(s)

and the sample size. Therefore, the two errors are not symmetrically treated in a

significance test. In fact, the type II error β, P(H0|H1) = β is not controlled by

the construction of the test and can become very high, sometimes up to 1 − α.

This is the reason why a test not rejecting H0 is not a (statistical) proof of H0.

In mathematical statistics, one searches for the best test which maintains α and

minimizes β. Minimization of both α and β simultaneously is not possible. The

reason is that when α increases then β decreases and vice versa. So one of the errors

needs to be fixed and the other error is minimized. Consequently, the error which

is considered more serious is fixed and then the other error is minimized. The tests

discussed in the below sections are obtained based on the assumption that the type I

error is more serious than the type II error. So the test statistics are obtained by fixing

α and then minimizing β. In fact, the null hypothesis is framed in such a way that

it implies that the type I error is more serious than the type II error. The probability

1 − β = P(H1|H1) is called the power of the test. It is the probability of making a

decision in favour of the research hypothesis H1, if it is true, i.e. the probability of

detecting a correct research hypothesis.
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10.2.5 How to Conduct a Statistical Test

In general, we can follow the steps described below to test a hypothesis about a

population parameter based on a sample of data.

(1) Define the distributional assumptions for the random variables of interest, and

specify them in terms of population parameters (e.g. θ or µ and σ). This is neces-

sary for parametric tests. There are other types of tests, so-called nonparametric

tests, where the assumptions can be relaxed in the sense that we do not have to

specify a particular distribution, see Sect. 10.6ff. Moreover, for some tests the

distributional assumptions can be relaxed if the sample size is large.

(2) Formulate the null hypothesis and the alternative hypothesis as described in

Sects. 10.2.2 and 10.2.3.

(3) Fix a significance value (often called type I error) α, for example α = 0.05, see

also Sect. 10.2.4.

(4) Construct a test statistic T (X) = T (X1, X2, . . . , Xn). The distribution of T has

to be known under the null hypothesis H0. We note again that (X1, X2, . . . ,

Xn) refers to the random variables before drawing the actual sample and

x1, x2, . . . , xn are the realized values (observations) in the sample.

(5) Construct a critical region K for the statistic T , i.e. a region where—if T falls

in this region—H0 is rejected, such that

PH0(T (X) ∈ K ) ≤ α .

The notation PH0(·) means that this inequality must hold for all parameter values

θ that belong to the null hypothesis H0. Since we assume that we know the

distribution of T (X) under H0, the critical region is defined by those values of

T (X) which are unlikely (i.e. with probability of less than α) to be observed

under the null hypothesis. Note that although T (X) is a random variable, K is a

well-defined region, see Fig. 10.1 for an example.

(6) Calculate t (x) = T (x1, x2, . . . , xn) based on the realized sample values X1 =
x1, X2 = x2, . . . , Xn = xn .

(7) Decision rule: if t (x) falls into the critical region K , the null hypothesis H0

is rejected. The alternative hypothesis is then statistically proven. If t (x) falls

outside the critical region, H0 is not rejected.

t (x) ∈ K : H0 rejected ⇒ H1 is statistically significant,

t (x) /∈ K : H0 not rejected and therefore accepted.

The next two paragraphs show how to arrive at the test decisions from step 7 in

a different way. Readers interested in an example of a statistical test may jump

to Sect. 10.3.1 and possibly also Example 10.3.1.
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10.2.6 Test Decisions Using the p-Value

Statistical software usually does not show us all the steps of hypothesis testing as

outlined in Sect. 10.2.5. It is common that instead of calculating and reporting the

critical values, the test statistic is printed together with the so-called p-value. It is

possible to use the p-value instead of critical regions for making test decisions. The

p-value of the test statistic T (X) is defined as follows:

two-sided case: PH0(|T | ≥ t (x)) = p-value

one-sided case: PH0(T ≥ t (x)) = p-value

PH0(T ≤ t (x)) = p-value

It can be interpreted as the probability of observing results equal to, or more extreme

than those actually observed if the null hypothesis was true. Then, the decision rule

is

H0 is rejected if the p-value is smaller than the prespecified significance level α.

Otherwise, H0 cannot be rejected.

Example 10.2.2 Assume that we are dealing with a two-sided test and assume further

that the test statistic T (x) is N (0, 1)-distributed under H0. The significance level is

α = 0.05. If we observe, for example, t = 3, then the p-value is PH0(|T | ≥ 3). This

can be calculated in R as

2*(1-pnorm(3))

because pnorm() is used to calculate P(X ≤ x), and therefore, 1-pnorm() can be

used to calculate P(X > x). We have to multiply with two because we are deal-

ing with a two-sided hypothesis. The result is p = 0.002699796. Therefore, H0 is

rejected. The one-sided p-value is half of the two-sided p-value, i.e. P(T ≥ 3) =
P(T ≤ 3) = 0.001349898, and is not necessarily reported by R. It is therefore impor-

tant to look carefully at the R output when dealing with one-sided hypotheses.

The p-value is sometimes also called the significance, although we prefer the term

p-value. We use the term significance only in the context of a test result: a test is

(statistically) significant if (and only if) H0 can be rejected.

Unfortunately, the p-value is often over-interpreted: both a test and the p-value

can only provide a yes/no decision: either H0 is rejected or not. Interpreting the p-

value as the probability that the null hypothesis is true is wrong! It is also incorrect to

say that the p-value is the probability of making an error during the test decision. In

our (frequentist) context, hypotheses are true or false and no probability is assigned

to them. It can also be misleading to speak of “highly significant” results if the p-

value is very small. A last remark: the p-value itself is a random variable: under the

null hypothesis, it follows a uniform distribution, i.e. p ∼ U (0, 1).
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10.2.7 Test Decisions Using Confidence Intervals

There is an interesting and useful relationship between confidence intervals and

hypothesis tests. If the null hypothesis H0 is rejected at the significance level α, then

there exists a 100(1 − α)% confidence interval which yields the same conclusion as

the test: if the appropriate confidence interval does not contain the value θ0 targeted

in the hypothesis, then H0 is rejected. We call this duality. For example, recall

Example 10.1.2 where we were interested in whether the average change in blood

pressure for drug B is higher than for drug A, i.e. H1 : δB > δA. This hypothesis is

equivalent to H1 : δB − δA > δ0 = 0. In the following section, we develop tests to

decide whether H1 is statistically significant or not. Alternatively, we could construct

a 100(1 − α)% confidence interval for the difference δB − δA and evaluate whether

the interval contains δ0 = 0 or not; if yes, we accept H0; otherwise, we reject it. For

some of the tests introduced in following section, we refer to the confidence intervals

which lead to the same results as the corresponding test.

10.3 Parametric Tests for Location Parameters

10.3.1 Test for the Mean When the Variance is Known (One-Sample
Gauss Test)

We develop a hypothesis test to test whether the unknown mean (expectation) µ of a

N (µ,σ2)-distributed random variable X either differs from a specific value µ = µ0

or is smaller (or greater) than µ0. We assume that the variance σ2 = σ2
0 is known.

We apply the scheme of Sect. 10.2.5 step by step to develop the test procedure and

then give an illustrative example.

1. Distributional assumption: The random variable X follows a N (µ,σ2
0)- distribu-

tion with known variance σ2
0 . We assume that an i.i.d. random sample is drawn from

X1, X2, . . . , Xn where the X i s follow the same distribution as X , i = 1, 2, . . . , n.

2. Define any of the following set of hypotheses H0 and H1:

H0 : µ = µ0 versus H1 : µ �= µ0, (two-sided test)

H0 : µ ≤ µ0 versus H1 : µ > µ0, (one-sided test)

H0 : µ ≥ µ0 versus H1 : µ < µ0, (one-sided test).

3. Specify the probability of a type I error α: Often α = 0.05 = 5 % is chosen.

4. Construct a test statistic: The unknown mean, i.e. the expectation µ, is usually

estimated by the sample mean x̄ . We already know that if the X i s are i.i.d., then the

sample mean is normally distributed. Under the assumption that H0 is true,

X̄ = 1

n

n
∑

i=1

X i
H0∼ N (µ0, σ

2
0/n),
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where
H0∼ means the “distribution under H0”. If we standardize the mean under H0,

we get a N (0, 1)-distributed test statistic

T (X) = X̄ − µ0

σ0

√
n

H0∼ N (0, 1),

see also Theorem 7.3.2. Note that T (X) follows a normal distribution even if the

X i s are not normally distributed and if n is large enough which follows from the

Central Limit Theorem (Appendix C.3). One can conclude that the distributional

assumption from step 1 is thus particularly important for small samples, but not

necessarily important for large samples. As a rule of thumb, n ≥ 30 is considered

to be a large sample. This rule is based on the knowledge that a t-distribution with

more than 30 degrees of freedom gets very close to a N (0, 1)-distribution.

5. Critical region: Since the test statistic T (X) is N (0, 1)-distributed, we get the

following critical regions, depending on the hypothesis:

Case H0 H1 Critical region K

(a) µ = µ0 µ �= µ0 K = (−∞,−z1−α/2) ∪ (z1−α/2,∞)

(b) µ ≤ µ0 µ > µ0 K = (z1−α,∞)

(c) µ ≥ µ0 µ < µ0 K = (−∞, zα = −z1−α)

For case (a) with H0: µ = µ0 and H1: µ �= µ0, we are interested in extreme

values of the test statistic on both tails: very small values and very large values of the

test statistic give us evidence that H0 is wrong (because the statistic is mainly driven

by the difference of the sample mean and the test value µ0 for a fixed variance),

see Fig. 10.1. In such a two-sided test, when the distribution of the test statistic is

symmetric, we divide the critical region into two equal parts and assign each region

of size α/2 to the left and right tails of the distribution. For α = 0.05, 2.5 % of the

most extreme values towards the right end of the distribution and 2.5 % of the most

extreme values towards the left end of the distribution give us enough evidence that

H0 is wrong and can be rejected and that H1 is accepted. It is also clear why α is

zα/2 = −z1−α/2
z1−α/2

Fig. 10.1 Critical region of a two-sided one-sample Gauss-test H0: µ = µ0 versus H1: µ �= µ0.

The critical region K = (−∞,−z1−α/2) ∪ (z1−α/2,∞) has probability mass α if H0 is true∗

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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z1−α

Fig. 10.2 Critical region of a one-sided one-sample Gauss test H0: µ ≤ µ0 versus H1: µ > µ0.

The critical region K = (z1−α,∞) has probability mass α if H0 is true∗

the probability of a type I error: the most extreme values in the two tails together

have 5 % probability and are just the probability that the test statistic falls into the

critical region although H0 is true. Also, these areas are those which have the least

probability of occurring if H0 is true. For α = 0.05, we get z1− α
2

= 1.96.

For case (b), only one direction is of interest. The critical region lies on the right

tail of the distribution of the test statistic. A very large value of the test statistic has

a low probability of occurrence if H0 is true. An illustration is given in Fig. 10.2: for

α = 0.05, we get z1−α = 1.64 and any values greater than 1.64 are unlikely to be

observed under H0. Analogously, the critical region for case (c) is constructed. Here,

the shaded area (critical region) is on the left-hand side. In this case, for α = 0.05,

we get zα = −z1−α = −1.64.

6. Realization of the test statistic: For an observed sample x1, x2, . . . , xn , the arith-

metic mean

x̄ = 1

n

n
∑

i=1

xi

is used to calculate the realized (observed) test statistic t (x) = T (x1, x2,. . . , xn) as

t (x) = x̄ − µ0

σ0

√
n.

7. Test decision: If the realized test statistic from step 6 falls into the critical region,

H0 is rejected (and therefore, H1 is statistically proven). Table 10.1 summarizes the

test decisions depending on t (x) and the quantiles defining the appropriate critical

regions.

Example 10.3.1 A bakery supplies loaves of bread to supermarkets. The stated sell-

ing weight (and therefore the required minimum expected weight) is µ = 2 kg.

However, not every package weighs exactly 2 kg because there is variability in the

weights. It is therefore important to find out if the average weight of the loaves
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Table 10.1 Rules to make test decisions for the one-sample Gauss test (and the two-sample Gauss

test, the one-sample approximate binomial test, and the two-sample approximate binomial test—

which are all discussed later in this chapter)

Case H0 H1 Reject H0 if

(a) µ = µ0 µ �= µ0 |t (x)| > z1−α/2

(b) µ ≥ µ0 µ < µ0 t (x) < zα

(c) µ ≤ µ0 µ > µ0 t (x) > z1−α

is significantly smaller than 2 kg. The weight X (measured in kg) of the loaves is

assumed to be normally distributed. We assume that the variance σ2
0 = 0.12 is known

from experience. A supermarket draws a sample of n = 20 loaves and weighs them.

The average weight is calculated as x̄ = 1.97 kg. Since the supermarket wants to be

sure that the weights are, on average, not lower than 2 kg, a one-sided hypothesis

is appropriate and is formulated as H0: µ ≥ µ0 = 2 kg versus H1: µ < µ0 = 2 kg.

The significance level is specified as α = 0.05, and therefore, z1−α = 1.64. The test

statistic is calculated as

t (x) = x̄ − µ0

σ0

√
n = 1.97 − 2

0.1

√
20 = −1.34.

The null hypothesis is not rejected, since t (x) = −1.34 > −1.64 = −z1−0.05 =
z0.05.

Interpretation: The sample average x̄ = 1.97 kg is below the target value of µ = 2 kg.

But there is not enough evidence to reject the hypothesis that the sample comes from

a N (2, 0.12)-distributed population. The probability to observe a sample of size

n = 20 with an average of at most 1.97 in a N (2, 0.12)-distributed population is

greater than α = 0.05 = 5 %. The difference between x̄ = 1.97 kg and the target

value µ = 2 kg is not statistically significant.

Remark 10.3.1 The Gauss test assumes the variance to be known, which is often

not the case in practice. The t-test (Sect. 10.3.2) assumes that the variance needs to

be estimated. The t-test is therefore commonly employed when testing hypotheses

about the mean. Its usage is outlined below. In R, the command Gauss.test from

the library compositions offers an implementation of the Gauss test.

10.3.2 Test for the Mean When the Variance is Unknown
(One-Sample t-Test)

If the variance σ2 is unknown, hypotheses about the mean µ of a normal random

variable X ∼ N (µ,σ2) can be tested in a similar way to the one-sample Gauss

test. The difference is that the unknown variance is estimated from the sample. An
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unbiased estimator of σ2 is the sample variance

S2
X = 1

n − 1

n
∑

i=1

(X i − X̄)2.

The test statistic is therefore

T (X) = X̄ − µ0

SX

√
n,

which follows a t-distribution with n − 1 degrees of freedom if H0 is true, as we

know from Theorem 8.3.2.

Critical regions and test decisions

Since T (X) follows a t-distribution under H0, the critical regions refer to the regions

of the t-distribution which are unlikely to be observed under H0:

Case H0 H1 Critical region K

(a) µ = µ0 µ �= µ0 K = (−∞,−tn−1;1−α/2) ∪ (tn−1;1−α/2,∞)

(b) µ ≥ µ0 µ < µ0 K = (−∞,−tn−1;1−α)

(c) µ ≤ µ0 µ > µ0 K = (tn−1;1−α,∞)

The hypothesis H0 is rejected if the realized test statistic, i.e.

t (x) = x̄ − µ0

sX

√
n,

falls into the critical region. The critical regions are based on the appropriate quantiles

of the t-distribution with (n − 1) degrees of freedom, as outlined in Table 10.2.

Example 10.3.2 We again consider Example 10.3.1. Now we assume that the vari-

ance of the loaves is unknown. Suppose a random sample of size n = 20 has an

arithmetic mean of x̄ = 1.9668 and a sample variance of s2 = 0.09272. We want to

test whether this result contradicts the two-sided hypothesis H0: µ = 2, that is case

(a). The significance level is fixed at α = 0.05. For the realized test statistic t (x), we

calculate

t (x) = x̄ − µ0

sX

√
n = 1.9668 − 2

0.0927

√
20 = −1.60.

Table 10.2 Rules to make test decisions for the one-sample t-test (and the two-sample t-test, and

the paired t-test, both explained below)

Case H0 H1 Reject H0, if

(a) µ = µ0 µ �= µ0 |t (x)| > tn−1;1−α/2

(b) µ ≥ µ0 µ < µ0 t (x) < −tn−1;1−α

(c) µ ≤ µ0 µ > µ0 t (x) > tn−1;1−α

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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H0 is not rejected since |t | = 1.60 < 2.09 = t19;0.975, where the quantiles ±2.09

are defining the critical region (see Table C.2 or use R: qt(0.975,19)). The same

results can be obtained in R using the t.test() function, see Example 10.3.3 for

more details. Or, we can directly calculate the (two-sided) p-value as

2*(1-pt(abs(1.6), df=19))

This yields a p-value of 0.1260951 which is not smaller than α, and therefore,

H0 is not rejected.

10.3.3 Comparing the Means of Two Independent Samples

In a two-sample problem, we may be interested in comparing the means of two inde-

pendent samples. Assume that we have two samples of two normally distributed vari-

ables X ∼ N (µX ,σ2
X ) and Y ∼ N (µY ,σ2

Y ) of size n1 and n2, i.e. X1, X2, . . . , Xn1

are i.i.d. with the same distribution as X and Y1, Y2, . . . , Yn2 are i.i.d. with the same

distribution as Y . We can specify the following hypotheses:

Case Null hypothesis Alternative hypothesis

(a) µX = µY µX �= µY Two-sided test problem

(b) µX ≥ µY µX < µY One-sided test problem

(c) µX ≤ µY µX > µY One-sided test problem

We distinguish another three cases:

1. σ2
X and σ2

Y are known.

2. σ2
X and σ2

Y are unknown, but they are assumed to be equal, i.e. σ2
X = σ2

Y .

3. Both σ2
X and σ2

Y are unknown and unequal (σ2
X �= σ2

Y ).

Case 1: The variances are known (two-sample Gauss test).

If the null hypothesis H0: µX = µY is true, then, using the usual rules for the normal

distribution and the independence of the samples,

X̄ ∼ N

(

µX ,
σ2

X

n1

)

,

Ȳ ∼ N

(

µY ,
σ2

Y

n2

)

,

and

(X̄ − Ȳ ) ∼ N

(

µY − µY ,
σ2

X

n1
+

σ2
Y

n2

)

.
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It follows that the test statistic

T (X, Y) = X̄ − Ȳ
√

σ2
X

n1
+ σ2

Y

n2

(10.1)

follows a standard normal distribution, T (X, Y) ∼ N (0, 1). The realized test statistic

is

t (x, y) = x̄ − ȳ
√

σ2
X

n1
+ σ2

Y

n2

. (10.2)

The test procedure is identical to the procedure of the one-sample Gauss test intro-

duced in Sect. 10.3.1; that is, the test decision is based on Table 10.1.

Case 2: The variances are unknown, but equal (two-sample t-test).

We denote the unknown variance of both distributions as σ2 (i.e. both the populations

are assumed to have varianceσ2). We estimateσ2 by using the pooled sample variance

where each sample is assigned weights relative to the sample size:

S2 =
(n1 − 1)S2

X + (n2 − 1)S2
Y

n1 + n2 − 2
. (10.3)

The test statistic

T (X, Y) = X̄ − Ȳ

S

√

n1 · n2

n1 + n2
(10.4)

with S as in (10.3) follows a t-distribution with n1 + n2 − 2 degrees of freedom if

H0 is true. The realized test statistic is

t (x, y) = x̄ − ȳ

s

√

n1 · n2

n1 + n2
. (10.5)

The test procedure is identical to the procedure of the one-sample t-test; that is, the

test decision is based on Table 10.2.

Case 3: The variances are unknown and unequal (Welch test).

We test H0: µX = µY versus H1: µX �= µY given σ2
X �= σ2

Y and both σ2
X and σ2

Y

are unknown. This problem is also known as the Behrens–Fisher problem and is the

most frequently used test when comparing two means in practice. The test statistic

can be written as

T (X, Y) =
∣

∣X̄ − Ȳ
∣

∣

√

S2
X

n1
+ S2

Y

n2

, (10.6)

which is approximately t-distributed with v degrees of freedom:

v =
(

s2
x

n1
+

s2
y

n2

)2

/

⎛

⎜

⎝

(

s2
x /n1

)2

n1 − 1
+

(

s2
y/n2

)2

n2 − 1

⎞

⎟

⎠
(10.7)
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where s2
x and s2

y are the estimated values of S2
X = 1

n−1

∑n
i=1(X i − X̄)2 and S2

Y =
1

n−1

∑n
i=1(Yi − Ȳ )2, respectively. The test procedure, using the observed test statistic

t (x, y) = |x̄ − ȳ|
√

s2
X

n1
+ s2

Y

n2

, (10.8)

is identical to the procedure of the one-sample t-test; that is, the test decision is based

on Table 10.2 except that the degrees of freedom are not n − 1 but v. If v is not an

integer, it can be rounded off to an integer value.

Example 10.3.3 A small bakery sells cookies in packages of 500 g. The cookies are

handmade and the packaging is either done by the baker himself or his wife. Some

customers conjecture that the wife is more generous than the baker. One customer

does an experiment: he buys packages of cookies packed by the baker and his wife

on 16 different days and weighs the packages. He gets the following two samples

(one for the baker, one for his wife).

Weight (wife) (X ) 512 530 498 540 521 528 505 523

Weight (baker) (Y ) 499 500 510 495 515 503 490 511

We want to test whether the complaint of the customers is justified. Let us start

with the following simple hypotheses:

H0 : µx = µy versus H1 : µx �= µy,

i.e. we only want to test whether the weights are different, not that the wife is making

heavier cookie packages. Since the variances are unknown, we assume that case 3 is

the right choice. We calculate and obtain x̄ = 519.625, ȳ = 502.875, s2
X = 192.268,

and s2
Y = 73.554. The test statistic is:

t (x, y) = |x̄ − ȳ|
√

s2
X

n1
+ s2

Y

n2

= |519.625 − 502.875|
√

192.268
8

+ 73.554
8

≈ 2.91.

The degrees of freedom are:

v =
(

192.268

8
+ 73.554

8

)2

/

(

(192.268/8)2

7
+ (73.554/8)2

7

)

≈ 11.67 ≈ 12.

Since |t (x)| = 2.91 > 2.18 = t12;0.975, it follows that H0 is rejected. Therefore, H1 is

statistically significant. This means that the mean weight of the wife’s packages is

different from the mean weight of the baker’s packages. Let us refine the hypothesis

and try to find out whether the wife’s packages have a higher mean weight. The

hypotheses are now:

H0 : µx ≤ µy versus H1 : µx > µy .
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The test statistic remains the same but the critical region and the degrees of freedom

change. Thus, H0 is rejected if t (x, y) > tv;1−α. Using tv;1−α = t12;0.95 ≈ 1.78 and

t (x, y) = 2.91, it follows that the null hypothesis can be rejected. The mean weight

of the wife’s packages is greater than the mean weight of the baker’s packages.

In R, we would have obtained the same result using the t.test command:

x <- c(512,530,498,540,521,528,505,523)

y <- c(499,500,510,495,515,503,490,511)

t.test(x,y,alternative='greater')

Welch Two-Sample t-test

data: x and y

t = 2.9058, df = 11.672, p-value = 0.006762

alternative hypothesis: true difference in means is greater

than 0...

Note that we have to specify the alternative hypothesis under the option alter-

native. The output shows us the test statistic (2.9058), the degrees of freedom

(11.672), the alternative hypothesis—but not the decision rule. We know that H0

is rejected if t (x, y) > tv;1−α, so the decision is easy in this case: we simply have

to calculate t12;0.95 using qt(0.95,12) in R. A simpler way to arrive at the same

decision is to use the p-value. We know that H0 is rejected if p < α which is the

case in this example. It is also worthwhile mentioning that R displays the hypothe-

ses slightly differently from ours: our alternative hypothesis is µx > µy which is

identical to the statement µx − µy > 0, as shown by R, see also Sect. 10.2.2.

If we specify two.sided as an alternative (which is the default), a confidence

interval for the mean difference is also part of the output:

t.test(x,y,alternative='two.sided')

...

95 % confidence interval:

4.151321 29.348679

It can be seen that the confidence interval of the difference does not cover the “0”.

Therefore, the null hypothesis is rejected. This is the duality property referred to

earlier in this chapter: the test decision is the same, no matter whether one evaluates

(i) the confidence interval, (ii) the test statistic, or (iii) the p-value.

Any kind of t-test can be calculated with the t.test command: for example,

the two-sample t-test requires to specify the option var.equal=TRUE while the

Welch test is calculated when the (default) option var.equal=FALSE is set. We can

also conduct a one-sample t-test. Suppose we are interested in whether the mean
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weight of the wife’s packages of cookies is greater than 500 g; then, we could test

the hypotheses:

H0 : µx ≤ 500 versus H1 : µx > 500.

In R, we simply have to specify µ0:

t.test(x,mu=500,alternative='greater')

which gives us

One-Sample t-test

data: x

t = 4.0031, df = 7, p-value = 0.002585

alternative hypothesis: true mean is greater than 500

...

10.3.4 Test for Comparing the Means of Two Dependent Samples
(Paired t-Test)

Suppose there are two dependent continuous random variables X and Y with E(X) =
µX and E(Y ) = µY . They could be dependent because we measure the same variable

twice on the same subjects at different times. Typically, this is the case in pre–post

experiments, for example when we measure the weight of a person before starting a

special diet and after finishing the diet; or when evaluating household expenditures

on electronic appliances in two consecutive years. We then say that the samples

are paired, or dependent. Since the same variable is measured twice on the same

subject, it makes sense to calculate a difference between the two respective values.

Let D = X − Y denote the random variable “difference of X and Y ”. If H0: µX = µY

is true, then the expected difference is zero, and we get E(D) = µD = 0. This means

testing H0 : µX = µY is identical to testing µX − µY = µD = 0. We further assume

that D is normally distributed if H0: µX = µY is true (or equivalently if H0: µD = 0 is

true), i.e. D ∼ N (0,σ2
D). For a random sample (D1, D2, . . . , Dn) of the differences,

the test statistic

T (X, Y) = T (D) = D̄

SD

√
n (10.9)

is t-distributed with n − 1 degrees of freedom. The sample mean is D̄ =
∑n

i=1 /Di n

and the sample variance is

S2
D =

∑n
i=1(Di − D̄)2

n − 1
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which is an estimator of σ2
D . The realized test statistic is thus

t (d) = d̄

sd

√
n (10.10)

where d̄ =
∑n

i=1 di/n and s2
d =

∑n
i=1(di − d̄)2/n − 1.

The two-sided test H0: µD = 0 versus H1: µD �= 0 and the one-sided tests H0:

µD ≤ 0 versus H1: µD > 0 or H0: µD ≥ 0 versus H1: µD < 0 can be derived as in

Sect. 10.3.2; that is, the test decision is based on Table 10.2. In fact, the paired t-test

is a one-sample t-test on the differences of X and Y .

Example 10.3.4 In an experiment, n = 10 students have to solve different tasks

before and after drinking a cup of coffee. Let Y and X denote the random variables

“number of points before/after drinking a cup of coffee”. Assume that a higher

number of points means that the student is performing better. Since the test is repeated

on the same students, we have a paired sample. The data is given in the following

table:

i yi (before) xi (after) di = xi − yi (di − d̄)2

1 4 5 1 0

2 3 4 1 0

3 5 6 1 0

4 6 7 1 0

5 7 8 1 0

6 6 7 1 0

7 4 5 1 0

8 7 8 1 0

9 6 5 −1 4

10 2 5 3 4

Total 10 8

We calculate

d̄ = 1 and s2
d = 8

9
= 0.9432,

respectively. For the realized test statistic t (d), using α = 0.05, we get

t (d) = 1

0.943

√
10 = 3.35 > t9;0.95 = 1.83,

such that H0: µX ≤ µY is rejected and H1: µX > µY is accepted. We can conclude

(for this example) that drinking coffee significantly increased the problem-solving

capacity of the students.
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In R, we would have obtained the same results using the t.test function and

specifying the option paired=TRUE:

yp <- c(4,3,5,6,7,6,4,7,6,2)

xp <- c(5,4,6,7,8,7,5,8,5,5)

t.test(xp,yp,paired=TRUE)

Paired t-test

data: xp and yp

t = 3.3541, df = 9, p-value = 0.008468

alternative hypothesis: true difference in means != 0

95 % confidence interval:

0.325555 1.674445

sample estimates:

mean of the differences

1

We can make the test decision using the R output in three different ways:

(i) We compare the test statistic (t = −3.35) with the critical value (1.83, obtained

via qt(0.95,9)).

(ii) We evaluate whether the p-value (0.008468) is smaller than the significance

level α = 0.05.

(iii) We evaluate whether the confidence interval for the mean difference covers “0”

or not.

10.4 Parametric Tests for Probabilities

10.4.1 One-Sample Binomial Test for the Probability p

Test construction and hypotheses.

Let X be a Bernoulli B(1; p) random variable with the two possible outcomes 1

and 0, which indicate occurrence and non-occurrence of an event of interest A. The

probability for A in the population is p. From the sample X = (X1, X2, . . . , Xn) of

independent B(1; p)-distributed random variables, we calculate the mean (relative

frequency) as p̂ = 1
n

∑n
i=1 X i which is an unbiased estimate of p. The following

hypotheses may thus be of interest:

Case Null hypothesis Alternative hypothesis

(a) p = p0 p �= p0 Two-sided problem

(b) p ≥ p0 p < p0 One-sided problem

(c) p ≤ p0 p > p0 One-sided problem
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In the following, we describe two possible solutions, one exact approach and an

approximate solution. The approximate solution is based on the approximation of

the binomial distribution by the normal distribution, which is appropriate if n is

sufficiently large and the condition np(1 − p) ≥ 9 holds (i.e. p is neither too small

nor too large). First, we present the approximate solution and then the exact one.

Test statistic and test decisions.

(a) Approximate binomial test. We define the standardized test statistic as

T (X) = p̂ − p0√
p0(1 − p0)

√
n. (10.11)

It holds approximately that T (X) ∼ N (0, 1), given that the conditions that (i)

n is sufficiently large and (ii) np(1 − p) ≥ 9 are satisfied. The test can then

be conducted along the lines of the Gauss test in Sect. 10.3.1; that is, the test

decision is based on Table 10.1.

Example 10.4.1 We return to Example 10.1.1. Let us assume that a representative

sample of size n = 2000 has been drawn from the population of eligible voters, from

which 700 (35 %) have voted for the party of interest P . The research hypothesis

(which has to be stated as H1) is that more than 30 % (i.e. p0 = 0.3) of the eligible

voters cast their votes for party P . The sample is in favour of H1 because p̂ = 35 %,

but to draw conclusions for the proportion of voters of party P in the population,

we have to conduct a binomial test. Since n is large and np(1 − p) = 2000 · 0.35 ·
0.65 = 455 ≥ 9, the assumptions for the use of the test statistic (10.11) are satisfied.

We can write down the realized test statistic as

t (x) = p̂ − p0√
p0(1 − p0)

√
n = 0.35 − 0.3√

0.3(1 − 0.3)

√
2000 = 4.8795.

Using α = 0.05, it follows that T (X) = 4.8795 > z1−α = 1.64, and thus, the null

hypothesis H0 : p ≤ 0.3 can be rejected. Therefore, H1 : p > 0.3 is statistically

significant; that is, the proportion of votes for party P is greater than 30 %.

(b) The exact binomial test can be constructed using the knowledge that under H0,

Y =
∑n

i=1 X i (i.e. the number of successes) follows a binomial distribution. In

fact, we can use Y directly as the test statistic:

T (X) = Y ∼ B(n, p0) .

The observed test statistic is t (x) =
∑

i xi . For the two-sided case (a), the two

critical numbers cl and cr (cl < cr ) which define the critical region, have to be

found such that

PH0(Y ≤ cl) ≤ α

2
and PH0(Y ≥ cr ) ≤ α

2
.

The null hypothesis is rejected if the test statistic, i.e. Y , is greater than or equal

to cr or less than or equal to cl . For the one-sided case, a critical number c has

to be found such that

PH0(Y ≤ c) ≤ α
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for hypotheses of type (b) and

PH0(Y ≥ c) ≤ α

for hypotheses of type (c). If Y is less than the critical value c (for case (b)) or

greater than the critical value (for case (c)), the null hypothesis is rejected.

Example 10.4.2 We consider again Example 10.1.1 where we looked at the popula-

tion of eligible voters, from which 700 (35 %) have voted for the party of interest P .

The observed test statistic is t (x) =
∑

i xi = 700 and the alternative hypothesis is

H1 : p ≥ 0.3, as in case (c). There are at least two ways in which we can obtain the

results:

(i) Long way: We can calculate the test statistic and compare it to the critical region.

To get the critical region, we search c such that

Pp=0.3(Y ≥ c) ≤ 0.05 ,

which equates to

Pp=0.3(Y < c) ≥ 0.95

and can be calculated in R as:

qbinom(p=0.95, prob=0.3, size=2000)

[1] 634

Since Y = 700 > c = 634 we reject the null hypothesis. As in Example 10.4.1,

we conclude that there is enough evidence that the proportion of votes for party

P is greater than 30 %.

(ii) Short way: The above result can be easily obtained in R using the binom.

test() command. We need to specify the number of “successes” (here: 700),

the number of “failures” (2000 − 700 = 1300), and the alternative hypothesis:

binom.test(c(700,1300),p=0.3,alternative='greater')

data: c(700, 1300)

number of successes = 700, number of trials = 2000,

p-value = 8.395e-07

alternative hypothesis: true probability of success

is greater than 0.3

95 % confidence interval:

0.332378 1.000000

probability of success

0.35
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Both the p-value (which is smaller than α = 0.05) and the confidence interval

(for which we do not show the calculation) confirm the rejection of the null

hypothesis.

Note that

binom.test(x=700,n=2000,p=0.3, alternative='greater')

returns the same result.

10.4.2 Two-Sample Binomial Test

Test construction and hypotheses.

We consider now the case of two independent i.i.d. samples from Bernoulli distrib-

utions with parameters p1 and p2.

X = (X1, X2, . . . , Xn1), X i ∼ B(1; p1)

Y = (Y1, Y2, . . . , Yn2), Yi ∼ B(1; p2).

The sums

X =
n1
∑

i=1

X i ∼ B(n1; p1), Y =
n2
∑

i=1

Yi ∼ B(n2; p2)

follow binomial distributions. One of the following hypotheses may be of interest:

Case Null hypothesis Alternative hypothesis

(a) p1 = p2 p1 �= p2 Two-sided problem

(b) p1 ≥ p2 p1 < p2 One-sided problem

(c) p1 ≤ p2 p1 > p2 One-sided problem

Similar to the one-sample case, both exact and approximate tests exist. Here, we only

present the approximate test. The exact test of Fisher is presented in Appendix C.5,

p. 428. Let n1 and n2 denote the sample sizes. Then, X/n1 and Y/n2 are approxi-

mately normally distributed:

X

n1

approx .∼ N

(

p1,
p1(1 − p1)

n1

)

,

Y

n2

approx .∼ N

(

p2,
p2(1 − p2)

n2

)

.

Their difference D

D
approx .∼ N

(

0, p(1 − p)

(

1

n1
+ 1

n2

))
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is normally distributed too under H0 (given p = p1 = p2 holds). Since the proba-

bilities p1 and p2 are identical under H0, we can pool the two samples and estimate

p by

p̂ = X + Y

n1 + n2
. (10.12)

Test statistic and test decision.

The test statistic

T (X, Y) = D
√

p̂(1 − p̂)
(

1
n1

+ 1
n2

)

, (10.13)

follows a N (0, 1)-distribution if n1 and n2 are sufficiently large and p is not near the

boundaries 0 and 1 (one could use, for example, again the condition np(1 − p) > 9

with n = n1 + n2). The realized test statistic can be calculated using the observed

difference d̂ = p̂1 − p̂2. The test can be conducted for the one-sided and the two-

sided case as the Gauss test introduced in Sect. 10.3.1; that is, the decision rules from

Table 10.1 can be applied.

Example 10.4.3 Two competing lotteries claim that every fourth lottery ticket wins.

Suppose we want to test whether the probabilities of winning are different for the

two lotteries, i.e. H0 : p1 = p2 and H1 : p1 �= p2. We have the following data

n Winning Not winning

Lottery A 63 14 49

Lottery B 45 13 32

We can estimate the probabilities of a winning ticket for each lottery, as well as the

respective difference, as

p̂A = 14

63
, p̂B = 13

45
, d̂ = p̂A − p̂B = − 1

15
.

Under H0, an estimate for p following (10.12) is

p̂ = 14 + 13

63 + 45
= 27

108
= 0.25.

The test statistic can be calculated as

t (x, y) =
− 1

15
√

0.25(1 − 0.25)
(

1
63

+ 1
45

)

= −0.79.

H0 is not rejected since |t (x, y)| = 0.79 < 1.96 = z1−0.05/2. Thus, there is no statis-

tical evidence for different winning probabilities for the two lotteries. These hypothe-

ses can be tested in R using the Test of Fisher, see Appendix C.5, p. 428, for more

details.
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10.5 Tests for Scale Parameters

There are various tests available to test hypotheses about scale parameters. Such

tests are useful when one is interested in the dispersion of a variable, for example

in quality control where the variability of a process may be of interest. One-sample

tests of hypotheses for the variance of a normal distribution, e.g. hypotheses such

as H0 : σ2 = σ2
0 , can be tested by the χ2-test for the variance, see Appendix C.5,

p. 430. Two-sample problems can be addressed by the F-test (which is explained in

Appendix C.5, p. 431); or by other tests such as the Levene test or Bartlett’s test,

which are also available in R (leveneTest in the package car, bartlett in the

base distribution of R).

10.6 Wilcoxon–Mann–Whitney (WMW) U-Test

Test construction and hypotheses.

The WMW U -test is often proposed as an alternative to the t-test because it also

focuses on location but not on the expected value µ. It is a nonparametric test

and useful in situations where skewed distributions are compared with each other.

We consider two independent random samples X = (X1, X2, . . . , Xn1) and Y =
(Y1, Y2, , . . . , Yn2) from two populations with observed values (x1, x2, . . . , xn1) and

(y1, y2, . . . , yn2), respectively. In this case, the null hypothesis H0 considering the

location can be formulated as

H0 : P(X > Y ) = P(Y > X) = 1

2
.

The null hypothesis can be interpreted in the following way: the probability that a

randomly drawn observation from the first population has a value x that is greater

(or lower) than the value y of a randomly drawn subject from the second population

is 1
2

. The alternative hypothesis H1 is then

H1 : P(X > Y ) �= P(Y > X) .

This means we are comparing the entire distribution of two variables. If there is a

location shift in the sense that one distribution is shifted left (or right) compared

with the other distribution, the null hypothesis will be rejected because this shift

can be seen as part of the alternative hypothesis P(X > Y ) �= P(Y > X). In fact,

under some assumptions, the hypothesis can even be interpreted as comparing two

medians, and this is what is often done in practice.

Observed test statistic.

To construct the test statistic, it is necessary to merge (x1, x2, . . . , xn1) and (y1, y2,

. . . , yn2) into one sorted sample, usually in ascending order, while keeping the infor-

mation which value belongs to which sample. For now, we assume that all values of

the two samples are distinct; that is, no ties are present. Then, each observation has
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a rank between 1 and (n1 + n2). Let R1+ be the sum of ranks of the x-sample and

let R2+ be the sum of ranks of the y-sample. The test statistic is defined as U , where

U is the minimum of the two values U1, U2, U = min(U1, U2) with

U1 = n1 · n2 + n1(n1 + 1)

2
− R1+, (10.14)

U2 = n1 · n2 + n2(n2 + 1)

2
− R2+. (10.15)

Test decision.

H0 is rejected if U < un1,n2;α. Here, un1,n2;α is the critical value derived from the

distribution of U under the null hypothesis. The exact (complex) distribution can,

for example, be derived computationally (in R). We are presenting an approximate

solution together with its implementation in R.

Since U1 + U2 = n1 · n2, it is sufficient to compute only Ri+ and U = min{Ui ,

n1n2 − Ui } (i = 1 or i = 2 are chosen such that Ri+ is calculated for the sample

with the lower sample size). For n1, n2 ≥ 8, one can use the approximation

T (X, Y) =
U − n1·n2

2
√

n1 · n2 · (n1 + n2 + 1)

12

approx .∼ N (0, 1) (10.16)

as the test statistic. For two-sided hypotheses, H0 is rejected if |t (x, y)| > z1−α/2;

for one-sided hypotheses H0 is rejected if |t (x, y)| > z1−α. In the case of ties, the

denominator of the test statistic in (10.16) can be modified as

T (X, Y) =
U − n1·n2

2
√

√

√

√

√

[

n1 · n2

n(n − 1)

]

⎡

⎣

n3 − n

12
−

G
∑

j=1

t3
j − t j

12

⎤

⎦

approx .∼ N (0, 1),

where G is the number of different (groups of) ties and t j denotes the number of tied

ranks in tie group j .

Example 10.6.1 In a study, the reaction times (in seconds) to a stimulus were mea-

sured for two groups. One group drank a strong coffee before the stimulus and the

other group drank only the same amount of water. There were 9 study participants

in the coffee group and 10 participants in the water group. The following reaction

times were recorded:

Reaction time 1 2 3 4 5 6 7 8 9 10

Coffee group (C) 3.7 4.9 5.2 6.3 7.4 4.4 5.3 1.7 2.9

Water group (W) 4.5 5.1 6.2 7.3 8.7 4.2 3.3 8.9 2.6 4.8

We test with the U -test whether there is a location difference between the two groups.

First, the ranks of the combined sample are calculated as:
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1 2 3 4 5 6 7 8 9 10 Total

Value (C) 3.7 4.9 5.2 6.3 7.4 4.4 5.3 1.7 2.9

Rank (C) 5 10 12 15 17 7 13 1 3 83

Value (W) 4.5 5.1 6.2 7.3 8.7 4.2 3.3 8.9 2.6 4.8

Rank (W) 8 11 14 16 18 6 4 19 2 9 107

With RC+ = 83 and RW+ = 107, we get

U1 = n1 · n2 + n1(n1 + 1)

2
− RC+ = 9 · 10 + 9 · 10

2
− 83 = 52,

U2 = n1 · n2 + n2(n2 + 1)

2
− RW+ = 9 · 10 + 10 · 11

2
− 107 = 38.

With n1, n2 ≥ 8 and U = U2 = 38,

t (x, y) =
U − n1·n2

2
√

n1 · n2 · (n1 + n2 + 1)

12

=
38 − 9·10

2
√

9 · 10 · (9 + 10 + 1)

12

≈ −0.572.

Since |t (x, y)| = 0.572 < z1−α/2 = 1.96, the null hypothesis cannot be rejected;

that is, there is no statistical evidence that the two groups have different reaction

times.

In R, one can use the wilcox.test command to obtain the results:

coffee <- c(3.7, 4.9, 5.2, 6.3, ..., 2.9)

water <- c(4.5, 5.1, 6.2, ..., 4.8)

wilcox.test(coffee, water)

The output is

Wilcoxon rank sum test

data: coffee.sample and water.sample

W = 38, p-value = 0.6038

alternative hypothesis: true location shift is not equal to 0

We can see that the null hypothesis is not rejected because p = 0.6038 > α =
0.05. The displayed test statistic is W which equates to our statistic U2. The alternative

hypothesis in R is framed as location shift, an interpretation which has already been

given earlier in the chapter. Note that the test also suggests that the medians of the

two samples are not statistically different.
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10.7 χ
2-Goodness-of-Fit Test

Test construction.

The χ2-goodness-of-fit test is one of the most popular tests for testing the goodness

of fit of the observed data to a distribution. The construction principle is very general

and can be used for variables of any scale. The test statistic is derived such that the

observed absolute frequencies are compared with the expected absolute frequencies

under the null hypothesis H0.

Example 10.7.1 Consider an experiment where a die is rolled n = 60 times. Under

the null hypothesis H0, we assume that the die is fair, i.e. pi = 1
6
, i = 1, 2, . . . , 6,

where pi = P(X = i). We could have also said that H0 is the hypothesis that the

rolls are following a discrete uniform distribution. Thus, the expected absolute fre-

quencies under H0 are npi = 60 · 1
6

= 10, while the observed frequencies in the

sample are Ni , i = 1, 2, . . . , 6. The Ni generally deviate from npi . The χ2-statistic

is based on the squared differences,
∑6

i=1(Ni − npi )
2, and becomes large as the

differences between the observed and the expected frequencies become larger. The

χ2-test statistic is a modification of this sum by scaling each squared difference by

the expected frequencies, npi , and is explained below.

With a nominal variable, we can proceed as in Example 10.7.1. If the scale of the

variable is ordinal or continuous, the number of different values can be large. Note

that in the most extreme case, we can have as many different values as observations

(n), leading to Ni = 1 for all i = 1, 2, . . . , n. Then, it is necessary to group the data

into k intervals before applying the χ2-test. The reason is that the general theory of

the χ2-test assumes that the number k (which was 6 in Example 10.7.1 above) is

fixed and does not grow with the number of observations n; that is, the theory says

that the χ2-test only works properly if k is fixed and n is large. For this reason, we

group the sample X = (X1, X2, . . . , Xn) into k classes as shown in Sect. 2.1.

Class 1 2 · · · k Total

Number of observations n1 n2 · · · nk n

The choice of the class intervals is somewhat arbitrary. As a rule of thumb npi > 5

should hold for most class intervals. The general hypotheses can be formulated in

the form of distribution functions:

H0 : F(x) = F0(x) versus H1 : F(x) �= F0(x).

Test statistic.

The test statistic is defined as

T (X) = t (x) = χ2 =
k

∑

i=1

(Ni − npi )
2

npi

. (10.17)

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Here,

• Ni (i = 1, 2, . . . , k) are the absolute frequencies of observations of the sample X

in class i , Ni is a random variable with realization ni in the observed sample;

• pi (i = 1, 2, . . . , k) are calculated from the distribution under H0, F0(x), and are

the (hypothetical) probabilities that an observation of X falls in class i ;

• npi are the expected absolute frequencies in class i under H0.

Test decision.

For a significance level α, H0 is rejected if t (x) is greater than the (1 − α)-quantile

of the χ2-distribution with k − 1 − r degrees of freedom, i.e. if

t (x) = χ2 > ck−1−r,1−α.

Note that r is the number of parameters of F0(x), if these parameters are estimated

from the sample. The χ2-test statistic is only asymptotically χ2-distributed under

H0.

Example 10.7.2 Let F0(x) be the distribution function of the test distribution. If

one specifies a normal distribution such as F0(x) = N (3, 10), or a discrete uniform

distribution with pi = 0.25 (i = 1, 2, 3, 4), then r = 0, since no parameters have

to be estimated from the data. Otherwise, if we simply want to test whether the

data is generated from a normal distribution N (µ, σ2) or the data follows a normal

distribution N (µ,σ2), then µ and σ2 may be estimated from the sample by x̄ and s2.

Then, r = 2 and the number of degrees of freedom is reduced.

Example 10.7.3 Gregor Mendel (1822–1884) conducted crossing experiments with

pea plants of different shape and colour. Let us look at the outcome of a pea crossing

experiment with the following results:

Crossing result Round Round Edged Edged

Yellow Green Yellow Green

Observations 315 108 101 32

Mendel had the hypothesis that the four different types occur in proportions of

9:3:3:1, that is

p1 = 9

16
, p2 = 3

16
, p3 = 3

16
, p4 = 1

16
.

The hypotheses are

H0 : P(X = i) = pi versus H1 : P(X = i) �= pi , i = 1, 2, 3, 4.

With n = 556 observations, the test statistic can be calculated from the following

observed and expected frequencies:
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i Ni pi npi

1 315 9
16

312.75

2 108 3
16

104.25

3 101 3
16

104.25

4 32 1
16

34.75

The χ2-test statistic is calculated as

t (x) = χ2 = (315 − 312.75)2

312.75
+ · · · + (32 − 34.75)2

34.75
= 0.47.

Since χ2 = 0.47 < 7.815 = χ2
0.95,3 = c0.95,3, the null hypothesis is not rejected.

Statistically, there is no evidence that Mendel was wrong with his 9:3:3:1 assumption.

In R, the test can be conducted by applying the chisq.test command:

chisq.test(c(315, 108, 101, 32),

p=c(9/16,3/16,3/16,1/16))

qchisq(df=3, p=0.95)

which leads to the following output

Chi-squared test for given probabilities

data: c(315, 108, 101, 32)

X-squared = 0.47, df = 3, p-value = 0.9254

and the critical value is

[1] 7.814728

Remark 10.7.1 In this example, the data was already summarized in a frequency

table. For raw data, the table command can be used to preprocess the data, i.e. we

can use chisq.test(table(var1,var2)).

Another popular goodness-of-fit test is the test of Kolmogorov–Smirnov. There

are two different versions of this test, one for the one-sample scenario and one for the

two-sample scenario. The null hypothesis for the latter is that the two independent

samples come from the same distribution. In R, the command ks.test() can be

used to perform Kolmogorov–Smirnov tests.
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10.8 χ
2-Independence Test and Other χ

2-Tests

In Chap. 4, we introduced different methods to describe the association between

two variables. Several association measures are possibly suitable if the variables are

categorical, for example Cramer’s V , Goodman’s and Kruskal’s γ, Spearman’s rank

correlation coefficient, and the odds ratio. If we are not interested in the strength of

association but rather in finding out whether there is an association at all, one can

use the χ2-independence test.

Test construction.

In the following we assume that we observe a sample from a bivariate discrete

distribution of two variables X and Y which can be summarized in a contingency

table with absolute frequencies ni j , (i = 1, 2, . . . , I ; j = 1, 2 . . . , J ):

Y

1 2 · · · J

X 1 n11 n12 · · · n1J n1+
2 n21 n22 · · · n2J n2+
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

I n I 1 n I 2 · · · n I J n I+
n+1 n+2 · · · n+J n

Remember that

ni+ is the i th row sum,

n+ j is the j th column sum, and

n is the total number of observations.

The hypotheses are H0: X and Y are independent versus H1 : X and Y are not

independent. If X and Y are independent, then the expected frequencies mi j are

m̂i j = nπ̂i j = ni+n+ j

n
. (10.18)

Test statistic.

Pearson’s χ2-test statistic was introduced in Chap. 4, Eq. (4.6). It is

T (X, Y) = χ2 =
I

∑

i=1

J
∑

j=1

(ni j − mi j )
2

mi j

,

where mi j = nπi j = nπi+π+ j (expected absolute cell frequencies under H0).

Strictly speaking, mi j are the true, unknown expected frequencies under H0 and

are estimated by m̂i j = nπi+π+ j , such that the realized test statistic equates to

t (x, y) = χ2 =
I

∑

i=1

J
∑

j=1

(ni j − m̂i j )
2

m̂i j

. (10.19)

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Test decision.

The number of degrees of freedom under H0 is (I − 1)(J − 1), where I − 1 are the

parameters which have to be estimated for the marginal distribution of X , and J − 1

are the number of parameters for the marginal distribution of Y . The test decision is:

Reject H0, if t (x, y) = χ2 > c(I−1)(J−1);1−α.

Note that the alternative hypothesis H1 is very general. If H0 is rejected, nothing can

be said about the structure of the dependence of X and Y from the χ2-value itself.

Example 10.8.1 Consider the following contingency table. Here, X describes the

educational level (1: primary, 2: secondary, 3: tertiary) and Y the preference for a

specific political party (1: Party A, 2: Party B, 3: Party C). Our null hypothesis is that

the two variables are independent, and we want to show the alternative hypothesis

which says that there is a relationship between them.

Y Total

1 2 3

X 1 100 200 300 600

2 100 100 100 300

3 80 10 10 100

Total 280 310 410 1000

For the (estimated) expected frequencies m̂i j = ni+n+ j

n
, we get

Y

1 2 3

X 1 168 186 246

2 84 93 123

3 28 31 41

For example: m̂11 = 600 · 280/1000 = 168. The test statistic is

t (x, y) =
I

∑

i=1

J
∑

j=1

(ni j − m̂i j )
2

m̂i j

= (100 − 168)2

168
+ · · · + (10 − 41)2

41
≈ 182.54.

Since χ2
4;0.95 = 9.49 < t (x, y) = 182.54, H0 is rejected.
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In R, either the summarized data (as shown below) can be used to calcu-

late the test statistic or the raw data (summarized in a contingency table via

table(var1,var2)):

ct <- matrix(nrow=3,ncol=3,byrow=T,

data=c(100,200,300,100,100,100,80,10,10))

chisq.test(ct)

qchisq(df=(3-1)*(3-1), p=0.95)

The output is

Pearson’s Chi-squared test

data: contingency.table

X-squared = 182.5428, df = 4, p-value < 2.2e-16

with the critical value

[1] 9.487729

which confirms our earlier manual calculations. The p-value is smaller than α = 0.05

which further confirms that the null hypothesis has to be rejected.

For a binary outcome, the χ2-test of independence can be formulated as a test for

the null hypothesis that the proportions of the binary variable are equal in several

(≥2) groups, i.e. for a K × 2 (or 2 × K ) table. This test is called the χ
2-test of

homogeneity.

Example 10.8.2 Consider two variables X and Y , where X is describing the rating

of a coffee brand with the categories “bad taste” and “good taste” and Y denotes

three age subgroups, e.g. “18–25”, “25–35”, and “35–45”. The observed data is

Y

18–25 25–35 35–45 Total

X Bad 10 30 65 105

Good 90 70 35 195

Total 100 100 100 300

Assume H0 is the hypothesis that the probabilities P(X = ‘good’|Y = ‘18–25’),

P(X = ‘good’|Y = ‘25–35’), and P(X = ‘good’|Y = ‘35–45’) are all equal. Then,

we can use the function either prop.test or chisq.test in R to test this

hypothesis:
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prop.test(x=rbind(c(10,30,65), c(90,70,35) ))

chisq.test(x=rbind(c(10,30,65), c(90,70,35) ))

This produces the following outputs:

3-sample test for equality of proportions

data: cbind(c(10, 30, 65), c(90, 70, 35))

X-squared = 68.1319, df = 2, p-value = 1.605e-15

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3

0.10 0.30 0.65

and

Pearson’s Chi-squared test

data: cbind(c(10, 30, 65), c(90, 70, 35))

X-squared = 68.1319, df = 2, p-value = 1.605e-15

The results (test statistic, p-value) are identical and H0 is rejected. Note that

prop.test strictly expects a K × 2 table (i.e. exactly 2 columns).

Remark 10.8.1 For 2 × 2-tables with small sample sizes and therefore small cell

frequencies, it is recommended to use the exact test of Fisher as described in Appen-

dix C.5.

Remark 10.8.2 The test described in Example 10.8.2 is a special case (since one

variable is binary) of the general χ2-test of homogeneity. The χ2-test of homogeneity

is valid for any K × C table, where K is the number of subgroups of a variable Y

and C is the number of values of the outcome X of interest. The null hypothesis H0

assumes that the conditional distributions of X given Y are identical in all subgroups,

i.e.

P(X = xc|Y = yk) = P(X = xc|Y = yk′)

forall c = 1, 2, . . . , C; k, k′ = 1, 2, . . . , K , k �= k′. Again, the usual χ2-test statistic

can be used.
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10.9 Key Points and Further Issues

Note:

� A graphical summary on when to use the tests introduced in this chapter

is given in Appendices D.2 and D.3.

� To arrive at a test decision, i.e. accept H0 or reject it, it does not matter

whether one compares the test statistic to the critical region, one uses the

p-value obtained from statistical software, or one evaluates the appropri-

ate confidence interval. However, it is important not to misinterpret the

p-value (see Sect. 10.2.6) and to choose the correct confidence interval.

� There is a difference between relevance and significance. A test might be

significant, but the point estimate of the quantity of interest may not be

relevant from a substantive point of view. Similarly, a test might not be

significant, but the point and interval estimates may still yield relevant

conclusions.

� The test statistic of the t-test (one-sample, two-sample, paired) is asymp-

totically normally distributed. This means that for relatively large n (as

a rule of thumb >30 per group) the sample does not need to come from a

normal distribution. However, the application of the t-test makes sense

only when the expectation µ can be interpreted meaningfully; this may

not be the case for skewed distributions or distributions with outliers.

10.10 Exercises

Exercise 10.1 Two people, A and B, are suspects for having committed a crime

together. Both of them are interrogated in separate rooms. The jail sentence depends

on who confesses to have committed the crime, and who does not:

B does not confess B does confess

A does not confess Each serves 1 year A: 3 years; B: goes free

A does confess A: goes free; B: 3 years Each serves 2 years

A has two hypotheses:

H0 : B does not confess versus H1 : B does confess.

Given the possible sentences he decides to not confess if H0 is true and to confess

otherwise. Explain the concepts of type I error and type II error for this situation.

Comment on the consequences if these errors are made.



10.10 Exercises 243

Exercise 10.2 A producer of chocolate bars hypothesizes that his production does

not adhere to the weight standard of 100 g. As a measure of quality control, he weighs

15 bars and obtains the following results in grams:

96.40, 97.64, 98.48, 97.67, 100.11, 95.29, 99.80, 98.80, 100.53, 99.41, 97.64,

101.11, 93.43, 96.99, 97.92

It is assumed that the production process is standardized in the sense that the variation

is controlled to be σ = 2.

(a) What are the hypotheses regarding the expected weight µ for a two-sided test?

(b) Which test should be used to test these hypotheses?

(c) Conduct the test that was suggested to be used in (b). Use α = 0.05.

(d) The producer wants to show that the expected weight is smaller than 100 g. What

are the appropriate hypotheses to use?

(e) Conduct the test for the hypothesis in (d). Again use α = 0.05.

Exercise 10.3 Christian decides to purchase the new CD by Bruce Springsteen. His

first thought is to buy it online, via an online auction. He discovers that he can also

buy the CD immediately, without bidding at an auction, from the same online store.

He also looks at the price at an internet book store which was recommended to him

by a friend. He notes down the following prices (in e):

Internet book store 16.95

Online store, no auction 18.19, 16.98, 19.97, 16.98, 18.19, 15.99, 13.79, 15.90,

15.90, 15.90, 15.90, 15.90, 19.97, 17.72

Online store, auction 10.50, 12.00, 9.54, 10.55, 11.99, 9.30, 10.59, 10.50, 10.01,

11.89, 11.03, 9.52, 15.49, 11.02

(a) Calculate and interpret the arithmetic mean, variance, standard deviation, and

coefficient of variation for the online store, both for the auction and non-auction

offers.

(b) Test the hypothesis that the mean price at the online store (no auction) is unequal

to e16.95 (α = 0.05).

(c) Calculate a confidence interval for the mean price at the online store (no auction)

and interpret your findings in the light of the hypothesis in (b).

(d) Test the hypothesis that the mean price at the online store (auction) is less than

e16.95 (α = 0.05).

(e) Test the hypothesis that the mean non-auction price is higher than the mean

auction price. Assume that (i) the variances are equal in both samples and (ii)

the variances are unequal (α = 0.05).

(f) Test the hypothesis that the variance of the non-auction price is unequal to the

variance of the auction price (α = 0.05).
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(g) Use the U -test to compare the location of the auction and non-auction prices.

Compare the results with those of (e).

(h) Calculate the results of (a)–(g) with R.

Exercise 10.4 Ten of Leonard’s best friends try a new diet: the “Banting” diet. Each

of them weighs him/herself before and after the diet. The data is as follows:

Person (i) 1 2 3 4 5 6 7 8 9 10

Before diet (xi ) 80 95 70 82 71 70 120 105 111 90

After diet (yi ) 78 94 69 83 65 69 118 103 112 88

Choose a test and a confidence interval to test whether there is a difference between

the mean weight before and after the diet (α = 0.05).

Exercise 10.5 A company producing clothing often finds deficient T-shirts among

its production.

(a) The company’s controlling department decides that the production is no longer

profitable when there are more than 10 % deficient shirts. A sample of 230 shirts

yields 30 shirts which contain deficiencies. Use the approximate binomial test

to decide whether the T-shirt production is profitable or not (α = 0.05).

(b) Test the same hypothesis as in (a) using the exact binomial test. You can use R

to determine the quantiles needed for the calculation.

(c) The company is offered a new cutting machine. To test whether the change of

machine helps to improve the production quality, 115 sample shirts are evaluated,

7 of which have deficiencies. Use the two-sample binomial test to decide whether

the new machine yields improvement or not (α = 0.05).

(d) Test the same hypothesis as in (c) using the test of Fisher in R.

Exercise 10.6 Two friends play a computer game and each of them repeats the same

level 10 times. The scores obtained are:

1 2 3 4 5 6 7 8 9 10

Player 1 91 101 112 99 108 88 99 105 111 104

Player 2 261 47 40 29 64 6 87 47 98 351

(a) Player 2 insists that he is the better player and suggests to compare their mean

performance. Use an appropriate test (α = 0.05) to test this hypothesis.

(b) Player 1 insists that he is the better player. He proposes to not focus on the mean

and to use the U -test for comparison. What are the advantages and disadvantages

of using this test compared with (a)? What are the results (α = 0.05)?
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Exercise 10.7 Otto loves gummy bears and buys 10 packets at a factory store. He

opens all packets and sorts them by their colour. He counts 222 white gummy bears,

279 red gummy bears, 251 orange gummy bears, 232 yellow gummy bears, and

266 green ones. He is disappointed since white (pineapple flavour) is his favourite

flavour. He hypothesizes that the producer of the bears does not uniformly distribute

the bears into the packets. Choose an appropriate test to find out whether Otto’s

speculation could be true.

Exercise 10.8 We consider Exercise 4.4 where we evaluated which of the passengers

from the Titanic were rescued. The data was summarized as follows:

1. Class 2. Class 3. Class Staff Total

Rescued 202 125 180 211 718

Not rescued 135 160 541 674 1510

(a) The hypothesis derived from the descriptive analysis was that travel class and

rescue status are not independent. Test this hypothesis.

(b) Interpret the following R output:

4-sample test for equality of proportions

data: titanic

X-squared = 182.06, df = 3, p-value < 2.2e-16

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3 prop 4

0.5994065 0.4385965 0.2496533 0.2384181

(c) Summarize the data in a 2×2 table: passengers from the first and second class

should be grouped together, and third class passengers and staff should be

grouped together as well. Is the probability of being rescued higher in the first

and second class? Provide an answer using the following three tests: exact test

of Fisher, χ2-independence test, and χ2-homogeneity test. You can use R to

conduct the test of Fisher.

Exercise 10.9 We are interested in understanding how well the t-test can detect

differences with respect to the mean. We use R to draw 3 samples each of 20 obser-

vations from three different normal distributions: X ∼ N (5, 22), Y1 ∼ N (4, 22), and

Y2 ∼ N (3.5, 22). The summary statistics of this experiment are as follows:

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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• x̄ = 4.97, s2
x = 2.94,

• ȳ1 = 4.55, s2
y1

= 2.46,

• ȳ2 = 3.27, s2
y2

= 3.44.

(a) Use the t-test to compare the means of X and Y1.

(b) Use the t-test to compare the means of X and Y2.

(c) Interpret the results from (a) and (b).

Exercise 10.10 Access the theatre data described in Appendix A.4. The data sum-

marizes a survey conducted on visitors of a local Swiss theatre in terms of age, sex,

annual income, general expenditure on cultural activities, expenditure on theatre vis-

its, and the estimated expenditure on theatre visits in the year before the survey was

done.

(a) Compare the mean expenditure on cultural activities for men and women using

the Welch test (α = 0.05).

(b) Would the conclusions change if the two-sample t-test or the U -test were used

for comparison?

(c) Test the hypothesis that women spend on average more money on theatre visits

than men (α = 0.05).

(d) Compare the mean expenditure on theatre visits in the year of the survey and the

preceding year (α = 0.05).

Exercise 10.11 Use R to read in and analyse the pizza data described in Appen-

dix A.4 (assume α = 0.05).

(a) The manager’s aim is to deliver pizzas in less than 30 min and with a temperature

of greater than 65 ◦C. Use an appropriate test to evaluate whether these aims have

been reached on average.

(b) If it takes longer than 40 min to deliver the pizza, then the customers are promised

a free bottle of wine. This offer is only profitable if less than 15 % of deliveries

are too late. Test the hypothesis p < 0.15.

(c) The manager wonders whether there is any relationship between the operator

taking the phone call and the pizza temperature. Assume that a hot pizza is

defined to be one with a temperature greater 65 ◦C. Use the test of Fisher, the

χ2-independence test, and the χ2-test of homogeneity to test his hypothesis.

(d) Each branch employs the same number of staff. It would thus be desirable if each

branch receives the same number of orders. Use an appropriate test to investigate

this hypothesis.

(e) Is the proportion of calls taken by each operator the same in each branch?

(f) Test whether there is a relationship between drivers and branches.
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Exercise 10.12 The authors of this book went to visit historical sites in India. None of

them has a particularly strong interest in photography, and they speculated that each

of them would take about the same number of pictures on their trip. After returning

home, they counted 110, 118, and 105 pictures, respectively. Use an appropriate test

to find out whether their speculation was correct (α = 0.01).

→ Solutions to all exercises in this chapter can be found on p. 393

∗Source Toutenburg, H., Heumann, C., Induktive Statistik, 4th edition, 2007,

Springer, Heidelberg
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We learnt about various measures of association in Chap. 4. Such measures are

used to understand the degree of relationship or association between two variables.

The correlation coefficient of Bravais–Pearson, for example, can help us to quantify

the degree of a linear relationship, but it does not tell us about the functional form

of a relationship. Moreover, any association of interest may depend on more than

one variable, and we would therefore like to explore multivariate relationships. For

example, consider a situation where we measured the body weights and the long jump

results (distances) of school children taking part in a competition. The correlation

coefficient of Bravais–Pearson between the body weight and distance jumped can

tell us how strong or weak the association between the two variables is. It can also

tell us whether the distance jumped increases or decreases with the body weight in

the sense that a negative correlation coefficient indicates shorter jumps for higher

body weights, whereas a positive coefficient implies longer jumps for higher body

weights. Suppose we want to know how far a child with known body weight, say

50 kg, will jump. Such questions cannot be answered from the value and sign of the

correlation coefficient. Another question of interest may be to explore whether the

relationship between the body weight and distance jumped is linear or not. One may

also be interested in the joint effect of age and body weight on the distance jumped.

Could it be that older children, who have on average a higher weight than younger

children, perform better? What would be the association of weight and the long jump

results of children of the same age? Such questions are addressed by linear regression

analysis which we introduce in this chapter.

In many situations, the outcome does not depend on one variable but on several

variables. For example, the recovery time of a patient after an operation depends on

several factors such as weight, haemoglobin level, blood pressure, body temperature,

diet control, rehabilitation, and others. Similarly, the weather depends on many fac-

tors such as temperature, pressure, humidity, speed of winds, and others. Multiple
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Fig. 11.1 Scatter plots

linear regression, introduced in Sect. 11.6, addresses the issue where the outcome

depends on more than one variable.

To begin with, we consider only two quantitative variables X and Y in which the

outcome Y depends on X and we explore the quantification of their relationship.

Examples Examples of associations in which we might be interested in are:

• body height (X ) and body weight (Y ) of persons,

• speed (X) and braking distance (Y ) measured on cars,

• money invested (in e) in the marketing of a product (X) and sales figures for this

product (in e) (Y ) measured in various branches,

• amount of fertilizer used (X ) and yield of rice (Y ) measured on different acres,

and

• temperature (X ) and hotel occupation (Y ) measured in cities.

11.1 The Linear Model

Consider the scatter plots from Fig. 4.2 on p. 80. Plotting X -values against Y -values

enables us to visualize the relationship between two variables. Figure 11.1a reviews

what a positive (linear) association between X and Y looks like: the higher the X

values, the higher the Y -values (and vice versa). The plot indicates that there may

be a linear relationship between X and Y . On the other hand, Fig. 11.1b displays a

scatter plot which shows no clear relationship between X and Y . The R2 measure,

shown in the two figures and explained in more detail later, equates to the squared

correlation coefficient of Bravais–Pearson.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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To summarize the observed association between X and Y , we can postulate the

following linear relationship between them:

Y = α + β X. (11.1)

This Eq. (11.1) represents a straight line where α is the intercept and β represents

the slope of the line. The slope indicates the change in the Y -value when the X -value

changes by one unit. If the sign of β is positive, it indicates that the value of Y

increases as the value of X increases. If the sign of β is negative, it indicates that the

value of Y decreases as the value of X increases. When X = 0, then Y = α. If α = 0,

then Y = β X represents a line passing through the origin. Suppose the height and

body weights in the example of school children are represented in Fig. 11.1a. This

has the following interpretation: when the height of a child increases by 1 cm, then

the body weight increases by β kilograms. The slope β in Fig. 11.1a would certainly

be positive because we have a positive linear relationship between X and Y . Note

that in this example, the intercept term has no particular meaning because when the

height X = 0, the body weight Y = α = 0. The scatter diagram in Fig. 11.1b does

not exhibit any clear relationship between X and Y . Still, the slope of a possible line

would likely be somewhere around 0.

It is obvious from Fig. 11.1a that by assuming a linear relationship between X

and Y , any straight line will not exactly match the data points in the sense that it

cannot pass through all the observations: the observations will lie above and below

the line. The line represents a model to describe the process generating the data.

In our context, a model is a mathematical representation of the relationship

between two or more variables. A model has two components—variables (e.g. X, Y )

and parameters (e.g. α, β). A model is said to be linear if it is linear in its parameters.

A model is said to be nonlinear if it is nonlinear in its parameters (e.g. β2 instead

of β). Now assume that each observation potentially deviates by ei from the line in

Fig. 11.1a. The linear model in Eq. (11.1) can then be written as follows to take this

into account:

Y = α + β X + e. (11.2)

Suppose we have n observations (x1, y1), (x2, y2), . . . , (xn, yn), then each obser-

vation satisfies

yi = α + βxi + ei . (11.3)

Each deviation ei is called an error. It represents the deviation of the data points

(xi , yi ) from the regression line. The line in Fig. 11.1a is the fitted (regression)

line which we will discuss in detail later. We assume that the errors ei are iden-

tically and independently distributed with mean 0 and constant variance σ 2, i.e.

E(ei ) = 0, Var(ei ) = σ 2 for all i = 1, 2, . . . , n. We will discuss these assumptions

in more detail in Sect. 11.7.

In the model (11.2), Y is called the response, response variable, dependent

variable or outcome; X is called the covariate, regressor or independent variable.

The scalars α and β are the parameters of the model and are described as regression

coefficients or parameters of the linear model. In particular, α is called the intercept

term and β is called the slope parameter.
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It may be noted that if the regression parameters α and β are known, then the linear

model is completely known. An important objective in identifying the model is to

determine the values of the regression parameters using the available observations

for X and Y . It can be understood from Fig. 11.1a that an ideal situation would be

when all the data points lie exactly on the line or, in other words, the error ei is zero

for each observation. It seems meaningful to determine the values of the parameters

in such a way that the errors are minimized.

There are several methods to estimate the values of the regression parameters. In

the remainder of this chapter, we describe the methods of least squares and maximum

likelihood estimation.

11.2 Method of Least Squares

Suppose n sets of observations Pi = (xi , yi ), i = 1, 2, . . . , n, are obtained on two

variables P = (X, Y ) and are plotted in a scatter plot. An example of four observa-

tions, (x1, y1), (x2, y2), (x3, y3), and (x4, y4), is given in Fig. 11.2.

The method of least squares says that a line can be fitted to the given data set such

that the errors are minimized. This implies that one can determine α and β such that

the sum of the squared distances between the data points and the line Y = α + β X

is minimized. For example, in Fig. 11.2, the first data point (x1, y1) does not lie on

the plotted line and the deviation is e1 = y1 − (α + βx1). Similarly, we obtain the

x1 x2 x3 x4

y1

y2

y3

y4

e1

e2

e3 e4

�y = α+ βx

α

Slope

Fig. 11.2 Regression line, observations, and errors ei
∗
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difference of the other three data points from the line: e2, e3, e4. The error is zero if

the point lies exactly on the line. The problem we would like to solve in this example

is to minimize the sum of squares of e1, e2, e3, and e4, i.e.

min
α,β

4∑

i=1

(yi − α − βxi )
2. (11.4)

We want the line to fit the data well. This can generally be achieved by choosing

α and β such that the squared errors of all the n observations are minimized:

min
α,β

n∑

i=1

e2
i = min

α,β

n∑

i=1

(yi − α − βxi )
2. (11.5)

If we solve this optimization problem by the principle of maxima and minima, we

obtain estimates of α and β as

β̂ = Sxy

Sxx
=

∑
(xi −x̄)(yi −ȳ)∑

(xi −x̄)2 =
∑n

i=1 xi yi −nx̄ ȳ∑n
i=1 x2

i −nx̄2

α̂ = ȳ − b̂x̄

}
, (11.6)

see Appendix C.6 for a detailed derivation. Here, α̂ and β̂ represent the estimates of

the parameters α and β, respectively, and are called the least squares estimator of

α and β, respectively. This gives us the model y = α̂ + β̂x which is called the fitted

model or the fitted regression line. The literal meaning of “regression” is to move

back. Since we are acquiring the data and then moving back to find the parameters

of the model using the data, it is called a regression model. The fitted regression

line y = α̂ + β̂x describes the postulated relationship between Y and X . The sign

of β determines whether the relationship between X and Y is positive or negative.

If the sign of β is positive, it indicates that if X increases, then Y increases too. On

the other hand, if the sign of β is negative, it indicates that if X increases, then Y

decreases. For any given value of X , say xi , the predicted value ŷi is calculated by

ŷi = α̂ + β̂xi

and is called the i th fitted value.

If we compare the observed data point (xi , yi ) with the point suggested (predicted,

fitted) by the regression line, (xi , ŷi ), the difference between yi and ŷi is called the

residual and is given as

êi = yi − ŷi = yi − (α̂ + β̂xi ). (11.7)

This can be viewed as an estimator of the error ei . Note that it is not really an estimator

in the true statistical sense because ei is random and so it cannot be estimated.

However, since the ei are unknown and êi measures the same difference between the

estimated and true values of the y’s, see for example Fig. 11.2, it can be treated as

estimating the error ei .
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Example 11.2.1 A physiotherapist advises 12 of his patients, all of whom had the

same knee surgery done, to regularly perform a set of exercises. He asks them to

record how long they practise. He then summarizes the average time they practised

(X , time in minutes) and how long it takes them to regain their full range of motion

again (Y , time in days). The results are as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12

xi 24 35 64 20 33 27 42 41 22 50 36 31

yi 90 65 30 60 60 80 45 45 80 35 50 45

To estimate the linear regression line y = α̂ + β̂x , we first calculate x̄ = 35.41

and ȳ = 57.08. To obtain Sxy and Sxx we need the following table:

i xi yi (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ) (xi − x̄)2

1 24 90 −11.41 32.92 −375.61 130.19

2 35 65 −0.41 7.92 −3.25 0.17

3 64 30 28.59 −27.08 −774.22 817.39

4 20 60 −15.41 2.92 −45.00 237.47

5 33 60 −2.41 2.92 −7.27 5.81

6 27 80 −8.41 22.92 −192.75 70.73

7 42 45 6.59 −12.08 −79.61 43.43

8 41 45 5.59 −12.08 −67.53 31.25

9 22 80 −13.41 22.92 −307.36 179.83

10 50 35 14.59 −22.08 −322.14 212.87

11 36 50 0.59 −7.08 −4.18 0.35

12 31 45 −4.41 −12.08 53.27 19.45

Total −2125.65 1748.94

Using (11.6), we can now easily find the least squares estimates α̂ and β̂ as

β̂ = Sxy

Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

= −2125.65

1748.94
≈ −1.22,

α̂ = ȳ − β̂ x̄ = 57.08 − (−1.215) · 35.41 = 100.28.

The fitted regression line is therefore

y = 100.28 − 1.22 · x .

We can interpret the results as follows:

• For an increase of 1 min in exercising, the recovery time decreases by 1.22 days

because β̂ = −1.22. The negative sign of β̂ indicates that the relationship between

exercising time and recovery time is negative; i.e. as exercise time increases, the

recovery time decreases.

• When comparing two patients with a difference in exercising time of 10 min,

the linear model estimates a difference in recovery time of 12.2 days because

10 · 1.22 = 12.2.
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Fig. 11.3 Scatter plot and

regression line for

Example 11.2.1
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• The model predicts an average recovery time of 100.28−1.22 · 38 = 53.92 days

for a patient who practises the set of exercises for 38 min.

• If a patient did not exercise at all, the recovery time would be predicted as â =
100.28 days by the model. However, see item (i) in Sect. 11.2.1 below about

interpreting a regression line outside of the observed data range.

We can also obtain these results by using R. The command lm(Y∼X) fits a linear

model and provides the estimates of α̂ and β̂.

lm(Y∼X)

We can draw the regression line onto a scatter plot using the command abline,

see also Fig. 11.3.

plot(X,Y)

abline(a=100.28,b=-1.22)

11.2.1 Properties of the Linear Regression Line

There are a couple of interesting results related to the regression line and the least

square estimates.

(i) As a rule of thumb, one should interpret the regression line ŷi = α̂ + β̂xi only in

the interval [x(1), x(n)]. For example, if X denotes “Year”, with observed values
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from 1999 to 2015, and Y denotes the “annual volume of sales of a particular

company”, then a prediction for the year 2030 may not be meaningful or valid

because a linear relationship discovered in the past may not continue to hold in

the future.

(ii) For the points P̂i = (xi , ŷi ), forming the regression line, we can write

ŷi = α̂ + β̂xi = ȳ + β̂(xi − x̄). (11.8)

(iii) It follows for xi = x̄ that ŷi = ȳ, i.e. the point (x̄, ȳ) always lies on the regres-

sion line. The linear regression line therefore always passes through (x̄, ȳ).

(iv) The sum of the residuals is zero. The i th residual is defined as

êi = yi − ŷi = yi − (α̂ + β̂xi ) = yi − [ȳ + β̂(xi − x̄)].
The sum is therefore

n∑

i=1

êi =
n∑

i=1

yi −
n∑

i=1

ȳ − β̂

n∑

i=1

(xi − x̄)

= n ȳ − n ȳ − β̂(nx̄ − nx̄) = 0. (11.9)

(v) The arithmetic mean of ŷ is the same as the arithmetic mean of y:

¯̂y = 1

n

n∑

i=1

ŷi = 1

n
(n ȳ + β̂(nx̄ − nx̄)) = ȳ. (11.10)

(vi) The least squares estimate β̂ has a direct relationship with the correlation coef-

ficient of Bravais–Pearson:

β̂ = Sxy

Sxx

= Sxy√
Sxx

√
Syy

·
√

Syy

Sxx

= r

√
Syy

Sxx

. (11.11)

The slope of the regression line is therefore proportional to the correlation coef-

ficient r : a positive correlation coefficient implies a positive estimate of β and

vice versa. However, a stronger correlation does not necessarily imply a steeper

slope in the regression analysis because the slope depends upon
√

Syy/Sxx as

well.

11.3 Goodness of Fit

While one can easily fit a linear regression model, this does not mean that the model

is necessarily good. Consider again Fig. 11.1: In Fig. 11.1a, the regression line is

clearly capturing the linear trend seen in the scatter plot. The fit of the model to the

data seems good. Figure 11.1b shows however that the data points vary considerably

around the line. The quality of the model does not seem to be very good. If we would

use the regression line to predict the data, we would likely obtain poor results. It

is obvious from Fig. 11.1 that the model provides a good fit to the data when the

observations are close to the line and capture a linear trend.



11.3 Goodness of Fit 257

R
2
=0.97

(a) Strong linear relationship

R
2
=0.57

(b) Weak linear relationship

Fig. 11.4 Different goodness of fit for different data

A look at the scatter plot provides a visual and qualitative approach to judging

the quality of the fitted model. Consider Fig. 11.4a, b which both show a linear trend

in the data, but the observations in Fig. 11.4a are closer to the regression line than

those in Fig. 11.4b. Therefore, the goodness of fit is worse in the latter figure and any

quantitative measure should capture this.

A quantitative measure for the goodness of fit can be derived by means of vari-

ance decomposition of the data. The total variation of y is partitioned into two

components—sum of squares due to the fitted model and sum of squares due to

random errors in the data:
n∑

i=1

(yi − ȳ)2

︸ ︷︷ ︸
SQTotal

=
n∑

i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
SQRegression

+
n∑

i=1

(yi − ŷi )
2

︸ ︷︷ ︸
SQError

. (11.12)

The proof of the above equation is given in Appendix C.6.

The left-hand side of (11.12) represents the total variability in y with respect to

ȳ. It is proportional to the sample variance (3.21) and is called SQTotal (total sum of

squares). The first term on the right-hand side of the equation measures the variability

which is explained by the fitted linear regression model (SQRegression, sum of squares

due to regression); the second term relates to the error sum of squares (SQError) and

reflects the variation due to random error involved in the fitted model. Larger values

of SQError indicate that the deviations of the observations from the regression line are

large. This implies that the model provides a bad fit to the data and that the goodness

of fit is low.

Obviously, one would like to have a fit in which the error sum of squares is as

small as possible. To judge the goodness of fit, one can therefore look at the error

sum of squares in relation to the total sum of squares: in an ideal situation, if the error

sum of squares equals zero, the total sum of squares is equal to the sum of squares

due to regression and the goodness of fit is optimal. On the other hand, if the sum of

squares due to error is large, it will make the sum of squares due to regression smaller

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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and the goodness of fit should be bad. If the sum of squares due to regression is zero,

it is evident that the model fit is the worst possible. These thoughts are reflected in

the criterion for the goodness of fit, also known as R2:

R2 = SQRegression

SQTotal
= 1 − SQError

SQTotal
. (11.13)

It follows from the above definition that 0 ≤ R2 ≤ 1. The closer R2 is to 1, the better

the fit because SQError will then be small. The closer R2 is to 0, the worse the fit,

because SQError will then be large. If R2 takes any other value, say R2 = 0.7, it

means that only 70 % of the variation in data is explained by the fitted model, and

hence, in simple language, the model is 70 % good. An important point to remember

is that R2 is defined only when there is an intercept term in the model (an assumption

we make throughout this chapter). So it is not used to measure the goodness of fit in

models without an intercept term.

Example 11.3.1 Consider again Fig. 11.1: In Fig. 11.1a, the line and data points fit

well together. As a consequence R2 is high, R2 = 0.82. Figure 11.1b shows data

points with large deviations from the regression line; therefore, R2 is small, here

R2 = 0.002. Similarly, in Fig. 11.4a, an R2 of 0.97 relates to an almost perfect

model fit, whereas in Fig. 11.4b, the model describes the data only moderately well

(R2 = 0.57).

Example 11.3.2 Consider again Example 11.2.1 where we analysed the relationship

between exercise intensity and recovery time for patients convalescing from knee

surgery. To calculate R2, we need the following table:

i yi ŷi (yi − ȳ) (yi − ȳ)2 (ŷi − ȳ) (ŷi − ȳ)2

1 90 70.84 32.92 1083.73 13.76 189.34

2 65 57.42 7.92 62.73 0.34 0.12

3 30 22.04 −27.08 733.33 −35.04 1227.80

4 60 75.72 2.92 8.53 18.64 347.45

5 60 59.86 2.92 8.53 2.78 7.73

6 80 67.18 22.92 525.33 10.10 102.01

7 45 48.88 −12.08 145.93 −8.2 67.24

8 45 50.10 −12.08 145.93 −6.83 48.72

9 80 73.28 22.92 525.33 16.20 262.44

10 35 39.12 −22.08 487.53 −17.96 322.56

11 50 56.20 −7.08 50.13 −0.88 0.72

12 45 62.30 −12.08 145.93 5.22 27.25

Total 3922.96 2603.43

We calculate R2 with these results as

R2 = SQRegression

SQTotal
=

∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

= 2603.43

3922.96
= 0.66.
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We conclude that the regression model provides a reasonable but not perfect fit to

the data because 0.66 is not close to 0, but also not very close to 1. About 66 % of the

variability in the data can be explained by the fitted linear regression model. The rest

is random error: for example, individual variation in the recovery time of patients

due to genetic and environmental factors, surgeon performance, and others.

We can also obtain this result in R by looking at the summary of the linear model:

summary(lm(Y∼X))

Please note that we give a detailed explanation of the model summary in Sect. 11.7.

There is a direct relationship between R2 and the correlation coefficient of

Bravais–Pearson r :

R2 = r2 =
(

Sxy√
Sxx Syy

)2

. (11.14)

The proof is given in Appendix C.6.

Example 11.3.3 Consider again Examples 11.3 and 11.5 where we analysed the

association of exercising time and time to regain full range of motion after knee

surgery. We calculated R2 = 0.66. We therefore know that the correlation coefficient

is r =
√

R2 =
√

0.66 ≈ 0.81.

11.4 Linear Regression with a Binary Covariate

Until now, we have assumed that the covariate X is continuous. It is however also

straightforward to fit a linear regression model when X is binary, i.e. if X has two

categories. In this case, the values of X in the first category are usually coded as

0 and the values of X in the second category are coded as 1. For example, if the

binary variable is “gender”, we replace the word “male” with the number 0 and

the word “female” with 1. We can then fit a linear regression model using these

numbers, but the interpretation differs from the interpretations in case of a continuous

variable. Recall the definition of the linear model, Y = α + β X + e with E(e) = 0;

if X = 0 (male) then E(Y |X = 0) = α and if X = 1 (female), then E(Y |X = 1) =
α + β · 1 = α + β. Thus, α is the average value of Y for males, i.e. E(Y |X = 0),

and β = E(Y |X = 1) − E(Y |X = 0). It follows that those subjects with X = 1 (e.g.

females) have on average Y -values which are β units higher than subjects with X = 0

(e.g. males).
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Example 11.4.1 Recall Examples 11.2.1, 11.3.2, and 11.3.3 where we analysed the

association of exercising time and recovery time after knee surgery. We keep the

values of Y (recovery time, in days) and replace values of X (exercising time, in

minutes) with 0 for patients exercising for less than 40 min and with 1 for patients

exercising for 40 min or more. We have therefore a new variable X indicating whether

a patient is exercising a lot (X = 1) or not (X = 0). To estimate the linear regression

line ŷ = α̂ + β̂x , we first calculate x̄ = 4/12 and ȳ = 57.08. To obtain Sxy and Sxx ,

we need the following table:

i xi yi (xi − x̄) (yi − ȳ) (xi − x̄)(yi − ȳ) (xi − x̄)2

1 0 90 − 4
12

32.92 −10.97 0.11

2 0 65 − 4
12

7.92 −2.64 0.11

3 1 30 8
12

−27.08 −18.05 0.44

4 0 60 − 4
12

2.92 −0.97 0.11

5 0 60 − 4
12

2.92 −0.97 0.11

6 0 80 − 4
12

22.92 −7.64 0.11

7 1 45 8
12

−12.08 −8.05 0.44

8 1 45 8
12

−12.08 −8.05 0.44

9 0 80 − 4
12

22.92 −7.64 0.11

10 1 35 8
12

−22.08 −14.72 0.44

11 0 50 − 4
12

−7.08 2.36 0.11

12 0 45 − 4
12

−12.08 4.03 0.11

Total Total −72.34 2.64

We can now calculate the least squares estimates of α and β using (11.6) as

β̂ = Sxy

Sxx

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

= −72.34

2.64
≈ −27.4,

α̂ = ȳ − β̂ x̄ = 57.08 − (−27.4) · 4

12
= 66.2.

The fitted regression line is:

y = 66.2 − 27.4 · x .

The interpretation is:

• The average recovery time for patients doing little exercise is 66.2 − 27.4 · 0 =
66.2 days.

• Patients exercising heavily (x = 1) have, on average, a 27.4 days shorter recovery

period (β = −27.4) than patients with a short exercise time (x = 0).

• The average recovery time for patients exercising heavily is 38.8 days (66.2 −
27.4 · 1 for x = 1).

• These interpretations are visualized in Fig. 11.5. Because “exercise time” (X )

is considered to be a nominal variable (two categories representing the intervals

[0; 40) and (40;∞)), we can plot the regression line on a scatter plot as two parallel

lines.
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Fig. 11.5 Scatter plot and

regression lines for

Examples 11.4.1 and 11.5.1

20 30 40 50 60 70

2
0

4
0

6
0

8
0

1
0

0

Exercise Time

R
e

c
o
v
e

ry
 T

im
e

b
^
=27.5

binary X

square root of X

11.5 Linear Regression with a Transformed Covariate

Recall that a model is said to be linear when it is linear in its parameters. The definition

of a linear model is not at all related to the linearity in the covariate. For example,

Y = α + β2 X + e

is not a linear model because the right-hand side of the equation is not a linear

function in β. However,

Y = α + β X2 + e

is a linear model. This model can be fitted as for any other linear model: we obtain

α̂ and β̂ as usual and simply use the squared values of X instead of X . This can

be justified by considering X∗ = X2, and then, the model is written as Y = α +
β X∗ + e which is again a linear model. Only the interpretation changes: for each

unit increase in the squared value of X , i.e. X∗, Y increases by β units. Such an

interpretation is often not even needed. One could simply plot the regression line of

Y on X∗ to visualize the functional form of the effect. This is also highlighted in the

following example.

Example 11.5.1 Recall Examples 11.2.1, 11.3.2, 11.3.3, and 11.4.1 where we

analysed the association of exercising time and recovery time after knee surgery. We

estimated β̂ as −1.22 by using X as it is, as a continuous variable, see also Fig. 11.3.

When using a binary X , based on a cut-off of 40 min, we obtained β̂ = −27.4, see

also Fig. 11.5. If we now use
√

X rather than X , we obtain β̂ = −15.1. This means for
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an increase of 1 unit of the square root of exercising time, the recovery time decreases

by 15.1 days. Such an interpretation will be difficult to understand for many people.

It is better to plot the linear regression line y = 145.8 − 15.1 · √x , see Fig. 11.5. We

can see that the new nonlinear line (obtained from a linear model) fits the data nicely

and it may even be preferable to a straight regression line. Moreover, the value of α

substantially increased with this modelling approach, highlighting that no exercis-

ing at all may severely delay recovery from the surgery (which is biologically more

meaningful). In R, we obtain these results by either creating a new variable
√

X or

by using the I() command which allows specifying transformations in regression

models.

newX <- sqrt(X)

lm(Y∼newX) #option 1

lm(Y∼I(sqrt(X))) #option 2

Generally the covariate X can be replaced by any transformation of it, such as

using log(X),
√

X , sin(X), or X2. The details are discussed in Sect. 11.6.3. It is

also possible to compare the quality and goodness of fit of models with different

transformations (see Sect. 11.8).

11.6 Linear Regression with Multiple Covariates

Up to now, we have only considered two variables—Y and X . We therefore assume

that Y is affected by only one covariate X . However, in many situations, there might

be more than one covariate which affects Y and consequently all of them are relevant

to the analysis (see also Sect. 11.10 on the difference between association and causa-

tion). For example, the yield of a crop depends on several factors such as quantity of

fertilizer, irrigation, and temperature, among others. In another example, in the pizza

data set (described in Appendix A.4), many variables could potentially be associated

with delivery time—driver, amount of food ordered, operator handling the order,

whether it is a weekend, and so on. A reasonable question to ask is: Do different

drivers have (on average) a different delivery time—given they deal with the same

operator, the amount of food ordered is the same, the day is the same, etc. These kind

of questions can be answered with multiple linear regression. The model contains

more than one, say p, covariates X1, X2, . . . , X p. The linear model (11.2) can be

extended as

Y = β0 + β1 X1 + · · · + βp X p + e. (11.15)

Note that the intercept term is denoted here by β0. In comparison with (11.2), α = β0

and β = β1.
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Example 11.6.1 For the pizza delivery data, a particular linear model with multiple

covariates could be specified as follows:

Delivery Time = β0 + β1Number pizzas ordered + β2Weekend(0/1)

+β3Operator (0/1) + e.

11.6.1 Matrix Notation

If we have a data set of n observations, then every set of observations satisfies model

(11.15) and we can write

y1 = β0 + β1x11 + β2x12 + · · · + βpx1p +e1

y2 = β0 + β1x21 + β2x22 + · · · + βpx2p +e2

...
...

...

yn = β0 + β1xn1 + β2xn2 + · · · + βpxnp +en (11.16)

It is possible to write the n equations in (11.16) in matrix notation as

y = Xβ + e (11.17)

where

y =

⎛
⎜⎜⎜⎝

y1

y2

...

yn

⎞
⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎝

1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...

1 xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

β0

β1

...

βp

⎞
⎟⎟⎟⎠ , e =

⎛
⎜⎜⎜⎝

e1

e2

...

en

⎞
⎟⎟⎟⎠ .

The letters y, X,β, e are written in bold because they refer to vectors and matrices

rather than scalars. The capital letter X makes it clear that X is a matrix of order

n × p representing the n observations on each of the covariates X1, X2, . . . , X p.

Similarly, y is a n × 1 vector of n observations on Y, β is a p × 1 vector of regression

coefficients associated with X1, X2, . . . , X p, and e is a n × 1 vector of n errors. The

lower case letter x relates to a vector representing a variable which means we can

denote the multiple linear model from now on also as

y = β01 + β1x1 + · · · + βpxp + e (11.18)

where 1 is the n × 1 vector of 1’s. We assume that E(e) = 0 and Cov(e) = σ 2 I (see

Sect. 11.9 for more details).

We would like to highlight that X is not the data matrix. The matrix X is called

the design matrix and contains both a column of 1’s denoting the presence of the

intercept term and all explanatory variables which are relevant to the multiple linear

model (including possible transformations and interactions, see Sects. 11.6.3 and

11.7.3). The errors e reflect the deviations of the observations from the regression

line and therefore the difference between the observed and fitted relationships. Such

deviations may occur for various reasons. For example, the measured values can be
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affected by variables which are not included in the model, the variables may not be

accurately measured, there is unmeasured genetic variability in the study population,

and all of which are covered in the error e. The estimate of β is obtained by using the

least squares principle by minimizing
∑n

i=1 e2
i = e′e. The least squares estimate

of β is given by

β̂ = (X′X)−1X′y. (11.19)

The vector β̂ contains the estimates of (β0, β1, . . . , βp)
′. We can interpret it as

earlier: β̂0 is the estimate of the intercept which we obtain because we have added the

column of 1’s (and is identical to α in (11.1)). The estimates β̂1, β̂2, . . . , β̂p refer to

the regression coefficients associated with the variables x1, x2, . . . , xp, respectively.

The interpretation of β̂ j is that it represents the partial change in yi when the value

of xi changes by one unit keeping all other covariates fixed.

A possible interpretation of the intercept term is that when all covariates equal

zero then

E(y) = β0 + β1 · 0 + · · · + βp · 0 = β0. (11.20)

There are many situations in real life for which there is no meaningful interpretation

of the intercept term because one or many covariates cannot take the value zero. For

instance, in the pizza data set, the bill can never be e0, and thus, there is no need

to describe the average delivery time for a given bill of e0. The intercept term here

serves the purpose of improvement of the model fit, but it will not be interpreted.

In some situations, it may happen that the average value of y is zero when all

covariates are zero. Then, the intercept term is zero as well and does not improve

the model. For example, suppose the salary of a person depends on two factors—

education level and type of qualification. If any person is completely illiterate, even

then we observe in practice that his salary is never zero. So in this case, there is a

benefit of the intercept term. In another example, consider that the velocity of a car

depends on two variables—acceleration and quantity of petrol. If these two variables

take values of zero, the velocity is zero on a plane surface. The intercept term will

therefore be zero as well and yields no model improvement.

Example 11.6.2 Consider the pizza data described in Appendix A.4. The data matrix

X is as follows:

X =

⎛
⎜⎜⎜⎝

Day Date Time · · · Discount

Thursday 1-May-14 35.1 · · · 1

Thursday 1-May-14 25.2 · · · 0
...

...

Saturday 31-May-14 35.7 · · · 0

⎞
⎟⎟⎟⎠

Suppose the manager has the hypothesis that the operator and the overall bill (as

a proxy for the amount ordered from the customer) influence the delivery time. We

can postulate a linear model to describe this relationship as

Delivery Time = β0 + β1Bill + β2Operator + e.
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The model in matrix notation is as follows:⎛
⎜⎜⎜⎝

35.1

25.2
...

35.7

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
y

=

⎛
⎜⎜⎜⎝

1 58.4 1

1 26.4 0
...

...
...

1 42.7 0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
X

⎛
⎝

β0

β1

β2

⎞
⎠

︸ ︷︷ ︸
β

+

⎛
⎜⎜⎜⎝

e1

e2

...

e1266

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
e

To understand the associations in the data, we need to estimate β which we obtain by

the least squares estimator β̂ = (X′X)−1X′y. Rather than doing this tiresome task

manually, we use R:

lm(time∼bill+operator)

If we have more than one covariate in a linear regression model, we simply add

all of them separated by the + sign when specifying the model formula in the lm()

function. We obtain β̂0 = 23.1, β̂1 = 0.26, β̂2 = 0.16. The interpretation of these

parameters is as follows:

• For each extrae that is spent, the delivery time increases by 0.26 min. Or, for each

extra e10 spent, the delivery time increases on average by 2.6 min.

• The delivery time is on average 0.16 min longer for operator 1 compared with

operator 0.

• For operator 0 and a bill of e0, the expected delivery time is β0 = 23.1 min.

However, there is no bill ofe0, and therefore, the intercept β0 cannot be interpreted

meaningfully here and is included only for improvement of the model fit.

11.6.2 Categorical Covariates

We now consider the case when covariates are categorical rather than continuous.

Examples

• Region: East, West, South, North,

• Marital status: single, married, divorced, widowed,

• Day: Monday, Tuesday, . . ., Sunday.

We have already described how to treat a categorical variable which consists of

two categories, i.e. a binary variable: one category is replaced by 1’s and the other

category is replaced by 0’s subjects who belong to the category x = 1 have on average

y-values which are β̂ units higher than those subjects with x = 0.
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Consider a variable x which has more than two categories, say k > 2 categories. To

include such a variable in a regression model, we create k − 1 new variables xi , i =
1, 2, . . . , k − 1. Similar to how we treat binary variables, each of these variables is

a dummy variable and consists of 1’s for units which belong to the category of

interest and 0’s for the other category

xi =
{

1 for category i ,

0 otherwise.
(11.21)

The category for which we do not create a dummy variable is called the reference

category, and the interpretation of the parameters of the dummy variables is with

respect to this category. For example, for category i , the y-values are on average βi

higher than for the reference category. The concept of creating dummy variables and

interpreting them is explained in the following example.

Example 11.6.3 Consider again the pizza data set described in Appendix A.4. The

manager may hypothesize that the delivery times vary with respect to the branch.

There are k = 3 branches: East, West, Centre. Instead of using the variable x =
branch, we create (k − 1), i.e. (3 − 1) = 2 new variables denoting x1 = East and

x2 = West. We set x1 = 1 for those deliveries which come from the branch in the

East and set x1 = 0 for other deliveries. Similarly, we set x2 = 1 for those deliveries

which come from the West and x2 = 0 for other deliveries. The data then is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Delivery y (Delivery Time) x (Branch) x1 (East) x2 (West)

1 35.1 East 1 0

2 25.2 East 1 0

3 45.6 West 0 1

4 29.4 East 1 0

5 30.0 West 0 1

6 40.3 Centre 0 0
...

...
...

...

1266 35.7 West 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Deliveries which come from the East have x1 = 1 and x2 = 0, deliveries which

come from the West have x1 = 0 and x2 = 1, and deliveries from the Centre have

x1 = 0 and x2 = 0. The regression model of interest is thus

y = β0 + β1East + β2West + e.

We can calculate the least squares estimate β̂ = (β̂0, β̂1, β̂2)
′ = (X′X)−1X′y via R:

either (i) we create the dummy variables ourselves or (ii) we ask R to create it for

us. This requires that “branch” is a factor variable (which it is in our data, but if it

was not, then we would have to define it in the model formula via as.factor()).

East <- as.numeric(branch=='East')

West <- as.numeric(branch=='West')

lm(time∼ East+West) # option 1

lm(time∼ branch) # option 2a

lm(time∼ as.factor(branch)) # option 2b
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We obtain the following results:

Y = 36.3 − 5.2East − 1.1West.

The interpretations are as follows:

• The average delivery time for the branch in the Centre is 36.3 min, the delivery

time for the branch in the East is 36.3 − 5.2 = 31.1 min, and the predicted delivery

time for the West is 36.3 − 1.1 = 35.2 min.

• Therefore, deliveries arrive on average 5.2 min earlier in the East compared with

the centre (β̂1 = −5.2), and deliveries in the West arrive on average 1.1 min earlier

than in the centre (β̂2 = −1.1). In other words, it takes 5.2 min less to deliver a

pizza in the East than in the Centre. The deliveries in the West take on average

1.1 min less than in the Centre.

Consider now a covariate with k = 3 categories for which we create two new

dummy variables, x1 and x2. The linear model is y = β0 + β1x1 + β2x2 + e.

• For x1 = 1, we obtain E(y) = β0 + β1 · 1 + β2 · 0 = β0 + β1 ≡ E(y|x1 = 1,

x2 = 0);

• For x2 = 1, we obtain E(y) = β0 + β1 · 0 + β2 · 1 = β0 + β2 ≡ E(y|x1 = 0,

x2 = 1); and

• For the reference category (x1 = x2 = 0), we obtain y = β0 + β1 · 0 + β2 · 0 =
β0 ≡ E(y|x1 = x2 = 0).

We can thus conclude that the intercept β0 = E(y|x1 = 0, x2 = 0) describes the

average y for the reference category, that β1 = E(y|x1 = 1, x2 = 0) − E(y|x1 =
0, x2 = 0) describes the difference between the first and the reference category,

and that β2 = E(y|x1 = 0, x2 = 1) − E(y|x1 = 0, x2 = 0) describes the difference

between the second and the reference category.

Remark 11.6.1 There are other ways of recoding categorical variables, such as effect

coding. However, we do not describe them in this book.

11.6.3 Transformations

As we have already outlined in Sect. 11.5, if x is transformed by a function T (x) =
(T (x1), T (x2), . . . , T (xn)) then

y = f (x) = β0 + β1T (x) + e (11.22)

is still a linear model because the model is linear in its parameters β. Popular trans-

formations T (x) are log(x),
√

x, exp(x), xp, among others. The choice of such a

function is typically motivated by the application and data at hand. Alternatively, a

relationship between y and x can be modelled via a polynomial as follows:

y = f (x) = β0 + β1x + β2x2 + · · · + βpxp + e. (11.23)
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Fig. 11.6 Scatter plot and

regression lines for Example
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Example 11.6.4 Consider again Examples 11.2.1, 11.3.2, 11.3.3, 11.4.1, and 11.5.1

where we analysed the association of intensity of exercising and recovery time after

knee surgery. The linear regression line was estimated as

Recovery Time = 100.28 − 1.22 Exercising Time.

One could question whether the association is indeed linear and fit the second- and

third-order polynomials:

Recovery Time = β0 − β1Exercise + β2Exercise2,

Recovery Time = β0 − β1Exercise + β2Exercise2 + β3Exercise3.

To obtain the estimates we can use R:

lm(Y∼X+I(X2))

lm(Y∼X+I(X2)+I(X3))

The results are β0 = 121.8, β1 = −2.4, β2 = 0.014 and β0 = 12.9, β1 = 6.90,

β2 = −0.23, β3 = 0.002 for the two models respectively. While it is difficult to

interpret these coefficients directly, we can simply plot the regression lines on a

scatter plot (see Fig. 11.6).

We see that the regression based on the quadratic polynomial visually fits the

data slightly better than the linear polynomial. It seems as if the relation between

recovery time and exercise time is not exactly linear and the association is better

modelled through a second-order polynomial. The regression line based on the cubic

polynomial seems to be even closer to the measured points; however, the functional

form of the association looks questionable. Driven by a single data point, we obtain a
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regression line which suggests a heavily increased recovery time for exercising times

greater than 65 min. While it is possible that too much exercising causes damage to

the knee and delays recovery, the data does not seem to be clear enough to support

the shape suggested by the model. This example illustrates the trade-off between

fit (i.e. how good the regression line fits the data) and parsimony (i.e. how well a

model can be understood if it becomes more complex). Section 11.8 explores this

non-trivial issue in more detail.

Transformations of the Outcome Variable. It is also possible to apply transforma-

tions to the outcome variable. While in many situations, this makes interpretations

quite difficult, a log transformation is quite common and easy to interpret. Consider

the log-linear model

log y = β01 + β1x1 + · · · + βpxp + e

where y is required to be greater than 0. Exponentiating on both sides leads to

y = eβ01 · eβ1x1 · · · · · eβpxp · ee.

It can be easily seen that a one unit increase in xj multiplies y by eβ j . Therefore, if

y is log-transformed, one simply interprets exp(β) instead of β. For example, if y

is the yearly income, x denotes gender (1 = male, 0 = female), and β1 = 0.2 then

one can say that a man’s income is exp(0.2) = 1.22 times higher (i.e. 22 %) than a

woman’s.

11.7 The Inductive View of Linear Regression

So far we have introduced linear regression as a method which describes the rela-

tionship between dependent and independent variables through the best fit to the

data. However, as we have highlighted in earlier chapters, often we are interested

not only in describing the data but also in drawing conclusions from a sample about

the population of interest. For instance, in an earlier example, we have estimated the

association of branch and delivery time for the pizza delivery data. The linear model

was estimated as delivery time = 36.3 − 5.2 East − 1.1 West; this indicates that the

delivery time is on average 5.2 min shorter for the branch in the East of the town

compared with the central branch and 1.1 min shorter for the branch in the West com-

pared with the central branch. When considering all pizza deliveries (the population),

not only those collected by us over the period of a month (the sample), we might ask

ourselves whether 1.1 min is a real difference valid for the entire population or just

caused by random error involved in the sample we chose. In particular, we would

also like to know what the 95 % confidence interval for our parameter estimate is.

Does the interval cover “zero”? If yes, we might conclude that we cannot be very

sure that there is an association and do not reject the null hypothesis that βWest = 0.

In reference to Chaps. 9 and 10, we now apply the concepts of statistical inference

and testing in the context of regression analysis.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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Point and interval estimation in the linear model. We now rewrite the model for

the purpose of introducing statistical inference to linear regression as

y = β01 + β1x1 + · · · + βpxp + e

= Xβ + e with e ∼ N (0, σ 2I) . (11.24)

where y is the n × 1 vector of outcomes and X is the n × (p + 1) design matrix

(including a column of 1’s for the intercept). The identity matrix I consists of 1’s on

the diagonal and 0’s elsewhere, and the parameter vector is β = (β0, β1, . . . , βp)
′.

We would like to estimate β to make conclusions about a relationship in the pop-

ulation. Similarly, e reflects the random errors in the population. Most importantly,

the linear model now contains assumptions about the errors. They are assumed to

be normally distributed, N (0, σ 2 I ), which means that the expectation of the errors

is 0, E(ei ) = 0, the variance is Var(ei ) = σ 2 (and therefore the same for all ei ), and

it follows from Var(e) = σ 2I that Cov(ei , ei ′) = 0 for all i 
= i ′. The assumption of a

normal distribution is required to construct confidence intervals and test of hypothe-

ses statistics. More details about these assumptions and the procedures to test their

validity on the basis of a given sample of data are explained in Sect. 11.9.

The least squares estimate of β is obtained by

β̂ = (X′X)−1X′y. (11.25)

It can be shown that β̂ follow a normal distribution with mean E(β̂) = β and covari-

ance matrix Var(β̂) = σ 2I as

β̂ ∼ N (β, σ 2(X′X)−1). (11.26)

Note that β̂ is unbiased (since E(β̂) = β); more details about (11.26) can be found

in Appendix C.6. An unbiased estimator of σ 2 is

σ̂ 2 = (y − Xβ̂)′(y − Xβ̂)

n − (p + 1)
= ê′ê

n − (p + 1)
= 1

n − (p + 1)

n∑

i=1

ê2
i . (11.27)

The errors are estimated from the data as ê = y − Xβ̂ and are called residuals.

Before giving a detailed data example, we would like to outline how to draw

conclusions about the population of interest from the linear model. As we have seen,

both β and σ 2 are unknown in the model and are estimated from the data using (11.25)

and (11.27). These are our point estimates. We note that if β j = 0, then β j xj = 0,

and then, the model will not contain the term β j xj. This means that the covariate xj

does not contribute to explaining the variation in y. Testing the hypothesis β j = 0

is therefore equivalent to testing whether x j is associated with y or not in the sense

that it helps to explain the variations in y or not. To test whether the point estimate is

different from zero, or whether the deviations of estimates from zero can be explained

by random variation, we have the following options:
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1. The 100(1 − α)% confidence interval for each β̂ j is

β̂ j ± tn−p−1;1−α/2 · σ̂
β̂ j

(11.28)

with σ̂
β̂

=
√

s j j σ̂ 2 where s j j is the j th diagonal element of the matrix (X′X)−1.

If the confidence interval does not overlap 0, then we can conclude that β is

different from 0 and therefore xi is associated with y and it is a relevant variable. If

the confidence interval includes 0, we cannot conclude that there is an association

between xi and y.

2. We can formulate a formal test which tests if β̂ j is different from 0. The hypothe-

ses are:

H0 : β j = 0 versus H1 : β j 
= 0.

The test statistic

T = β̂ j√
σ̂

β̂2
j

follows a tn−p−1 distribution under H0. If |T | > tn−p−1;1−α/2, we can reject the

null hypothesis (at α level of significance); otherwise, we accept it.

3. The decisions we get from the confidence interval and the T -statistic from points

1 and 2 are identical to those obtained by checking whether the p-value (see also

Sect. 10.2.6) is smaller than α, in which case we also reject the null hypothesis.

Example 11.7.1 Recall Examples 11.2.1, 11.3.2, 11.3.3, 11.4.1, 11.5.1, and 11.6.4

where we analysed the association of exercising time and time of recovery from knee

surgery. We can use R to obtain a full inductive summary of the linear model:

summary(lm(Y∼X))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.1244 10.3571 9.667 2.17e-06 ***

X -1.2153 0.2768 -4.391 0.00135 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.58 on 10 degrees of freedom

Now, we explain the meaning and interpretation of different terms involved in the

output.

• Under “Estimate”, the parameter estimates are listed and we read that the linear

model is fitted as y (recovery time) = 100.1244 − 1.2153 · x (exercise time). The

subtle differences to Example 11.2.1 are due to rounding of numerical values.

• The variance is estimated as σ̂ 2 = 11.582 (“Residual standard error”). This is

easily calculated manually using the residual sum of squares:
∑

ê2
i /(n − p − 1) =

1/10 · {(90 − 70.84)2 + · · · + (45 − 62.30)2} = 11.582.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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• The standard errors σ̂
β̂

are listed under “Std. Error”. Given that n − p − 1 =
12 − 1 − 1 = 10, and therefore t10;0.975 = 2.28, we can construct a confidence

interval for age:

−1.22 ± 2.28 · 0.28 = [−1.86;−0.58]
The interval does not include 0, and we therefore conclude that there is an asso-

ciation between exercising time and recovery time. The random error involved

in the data is not sufficient to explain the deviation of β̂i = −1.22 from 0 (given

α = 0.05).

• We therefore reject the null hypothesis that β j = 0. This can also be seen by com-

paring the test statistic (listed under “t value” and obtained by (β̂ j − 0)/
√

σ̂ 2

β̂
=

−1.22/0.277) with t10,0.975, | − 4.39| > 2.28. Moreover, p = 0.001355 < α =
0.05. We can say that there is a significant association between exercising and

recovery time.

Sometimes, one is interested in whether a regression model is useful in the sense

that all βi ’s are different from zero, and we therefore can conclude that there is an

association between any xi and y. The null hypothesis is

H0 : β1 = β2 = · · · = βp = 0

and can be tested by the overall F-test

F = (ŷ − ȳ)′(ŷ − ȳ)/(p)

(y − ŷ)′(y − ŷ)/(n − p − 1)
= n − p − 1

p

∑
i (ŷi − ȳ)2

∑
i e2

i

.

The null hypothesis is rejected if F > F1−α;p,n−p−1. Note that the null hypothesis in

this case tests only the equality of slope parameters and does not include the intercept

term.

Example 11.7.2 In this chapter, we have already explored the associations between

branch, operator, and bill with delivery time for the pizza data (Appendix A.4). If we

fit a multiple linear model including all of the three variables, we obtain the following

results:

summary(lm(time∼branch+bill+operator))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.19138 0.78752 33.258 < 2e-16 ***

branchEast -3.03606 0.42330 -7.172 1.25e-12 ***

branchWest -0.50339 0.38907 -1.294 0.196

bill 0.21319 0.01535 13.885 < 2e-16 ***

operatorMelissa 0.15973 0.31784 0.503 0.615

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.653 on 1261 degrees of freedom

Multiple R-squared: 0.2369, Adjusted R-squared: 0.2345

F-statistic: 97.87 on 4 and 1261 DF, p-value: < 2.2e-16
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By looking at the p-values in the last column, one can easily see (without calculat-

ing the confidence intervals or evaluating the t-statistic) that there is a significant asso-

ciation between the bill and delivery time; also, it is evident that the average delivery

time in the branch in the East is significantly different (≈ 3 min less) from the central

branch (which is the reference category here). However, the estimated difference in

delivery times for both the branches in the West and the operator was not found to be

significantly different from zero. We conclude that some variables in the model are

associated with delivery time, while for others, we could not show the existence of

such an association. The last line of the output confirms this: the overall F-test has a

test statistic of 97.87 which is larger than F1−α;p,n−p−1 = F0.95;4,1261 = 2.37; there-

fore, the p-value is smaller 0.05 (2.2 × 10−16) and the null hypothesis is rejected. The

test suggests that there is at least one variable which is associated with delivery time.

11.7.1 Properties of Least Squares and Maximum Likelihood
Estimators

The least squares estimator of β has several properties:

1. The least squares estimator of β is unbiased, E(β̂) = β (see Appendix C.6 for

the proof).

2. The estimator σ̂ 2 as introduced in equation (11.27) is also unbiased, i.e. E(σ̂ 2) =
σ 2.

3. The least squares estimator of β is consistent, i.e. β̂ converges to β as n approaches

infinity.

4. The least squares estimator of β is asymptotically normally distributed.

5. The least squares estimator of β has the smallest variance among all linear and

unbiased estimators (best linear unbiased estimator) of β.

We do not discuss the technical details of these properties in detail. It is more

important to know that the least squares estimator has good features and that is

why we choose it for fitting the model. Since we use a “good” estimator, we expect

that the model will also be “good”. One may ask whether it is possible to use a

different estimator. We have already made distributional assumptions in the model:

we require the errors to be normally distributed, given that it is indeed possible to

apply the maximum likelihood principle to obtain estimates for β and σ 2 in our

set-up.

Theorem 11.7.1 For the linear model (11.24), the least squares estimator and the

maximum likelihood estimator for β are identical. However, the maximum likelihood

estimator of σ 2 is σ̂ 2
ML = 1/n(ê′ê) of σ 2 which is a biased estimator of σ 2, but it is

asymptotically unbiased.

How to obtain the maximum likelihood estimator for the linear model is presented in

Appendix C.6. The important message of Theorem 11.7.1 is that no matter whether

we apply the least squares principle or the maximum likelihood principle, we always
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obtain β̂ = (X′X)−1X′y; this does not apply when estimating the variance, but it is

an obvious choice to go for the unbiased estimator (11.27) in any given analysis.

11.7.2 The ANOVA Table

A table that is frequently shown by software packages when performing regression

analysis is the analysis of variance (ANOVA) table. This table can have several mean-

ings and interpretations and may look slightly different depending on the context in

which it is used. We focus here on its interpretation i) as a way to summarize the

effect of categorical variables and ii) as a hypothesis test to compare k means. This

is illustrated in the following example.

Example 11.7.3 Recall Example 11.6.3 where we established the relationship

between branch and delivery time as

Delivery Time = 36.3 − 5.2East − 1.1West.

The R output for the respective linear model is as follows:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.3127 0.2957 122.819 < 2e-16 ***

branchEast -5.2461 0.4209 -12.463 < 2e-16 ***

branchWest -1.1182 0.4148 -2.696 0.00711 **

We see that the average delivery time of the branches in the East and the Centre

(reference category) is different and that the average delivery time of the branches in

the West and the Centre is different (because p < 0.05). This is useful information,

but it does not answer the question if branch as a whole influences the delivery time.

It seems that this is the case, but the hypothesis we may have in mind may be

H0 : μEast = μWest = μCentre

which corresponds to

H0 : βEast = βWest = βCentre

in the context of the regression model. These are two identical hypotheses because

in the regression set-up, we are essentially comparing three conditional means

E(Y |X = x1) = E(Y |X = x2) = E(Y |X = x3). The ANOVA table summarizes the

corresponding F-Test which tests this hypothesis:

m1 <- lm(time∼branch)

anova(m1)

Response: time

Df Sum Sq Mean Sq F value Pr(>F)

branch 2 6334 3166.8 86.05 < 2.2e-16 ***

Residuals 1263 46481 36.8
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We see that the null hypothesis of 3 equal means is rejected because p is close to

zero.

What does this table mean more generally? If we deal with linear regression with

one (possibly categorical) covariate, the table will be as follows:

df Sum of squares Mean squares F-statistic

Var p SQReg. MSR=SQReg./p MSR/MSE

Res n − p − 1 SQError MSE= SQError/(n − p − 1)

The table summarizes the sum of squares regression and residuals (see Sect. 11.3 for

the definition), standardizes them by using the appropriate degrees of freedom (df),

and uses the corresponding ratio as the F-statistic. Note that in the above example,

this corresponds to the overall F-test introduced earlier. The overall F-test tests the

hypothesis that any β j is different from zero which is identical to the hypothesis

above. Thus, if we fit a linear regression model with one variable, the ANOVA table

will yield the same conclusions as the overall F-test which we obtain through the

main summary. However, if we consider a multiple linear regression model, the

ANOVA table may give us more information.

Example 11.7.4 Suppose we are not only interested in the branch, but also in how

the pizza delivery times are affected by operator and driver. We may for example

hypothesize that the delivery time is identical for all drivers given they deliver for

the same branch and speak to the same operator. In a standard regression output, we

would get 4 coefficients for 5 drivers which would help us to compare the average

delivery time of each driver to the reference driver; it would however not tell us if

on an average, they all have the same delivery time. The overall F-test would not

help us either because it would test if any β j is different from zero which includes

coefficients from branch and operator, not only driver. Using the anova command

yields the results of the F-test of interest:

m2 <- lm(time∼branch+operator+driver)

anova(m2)

Response: time

Df Sum Sq Mean Sq F value Pr(>F)

branch 2 6334 3166.8 88.6374 < 2.2e-16 ***

operator 1 16 16.3 0.4566 0.4994

driver 4 1519 379.7 10.6282 1.798e-08 ***

Residuals 1258 44946 35.7

We see that the null hypothesis of equal delivery times of the drivers is rejected.

We can also test other hypotheses with this output: for instance, the null hypothesis

of equal delivery times for each operator is not rejected because p ≈ 0.5.
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11.7.3 Interactions

It may be possible that the joint effect of some covariates affects the response.

For example, drug concentrations may have a different effect on men, woman, and

children; a fertilizer could work differently in different geographical areas; or a new

education programme may show benefit only with certain teachers. It is fairly simple

to target such questions in linear regression analysis by using interactions. Interac-

tions are measured as the product of two (or more) variables. If either one or both

variables are categorical, then one simply builds products for each dummy variable,

thus creating (k − 1) × (l − 1) new variables when dealing with two categorical

variables (with k and l categories respectively). These product terms are called inter-

actions and estimate how an association of one variable differs with respect to the

values of the other variable. Now, we give examples for continuous–categorical,

categorical–categorical, and continuous–continuous interactions for two variables

x1 and x2.

Categorical–Continuous Interaction. Suppose one variable x1 is categorical with

k categories, and the other variable x2 is continuous. Then, k − 1 new variables

have to be created, each consisting of the product of the continuous variable and a

dummy variable, x2 × x1i
, i ∈ 1, . . . , k − 1. These variables are added to the regres-

sion model in addition to the main effects relating to x1 and x2 as follows:

y = β0 + β1x11
+ · · · + βk−1x1k−1

+ βkx2

+βk+1x11
x2 + · · · + βpx1k−1

x2 + e.

It follows that for the reference category of x1, the effect of x2 is just βk (because

each x2x1i
is zero since each x1 j

is zero). However, the effect for all other categories

is β2 + β j where β j refers to x1j
x2. Therefore, the association between x2 and the

outcome y differs by β j between category j and the reference category. Testing

H0 : β j = 0 thus helps to identify whether there is an interaction effect with respect

to category j or not.

Example 11.7.5 Consider again the pizza data described in Appendix A.4. We may

be interested in whether the association of delivery time and temperature varies

with respect to branch. In addition to time and branch, we therefore need additional

interaction variables. Since there are 3 branches, we need 3 − 1 = 2 interaction

variables which are essentially the product of (i) time and branch “East” and (ii)

time and branch “West”. This can be achieved in R by using either the “⋆” operator

(which will create both the main and interaction effects) or the “:” operator (which

only creates the interaction term).

int.model.1 <- lm(temperature∼time∗branch)
int.model.2 <- lm(temperature∼time+branch+time:branch)

summary(int.model.1)

summary(int.model.2)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.718327 1.850918 38.207 < 2e-16 ***

time -0.288011 0.050342 -5.721 1.32e-08 ***

branchEast 10.941411 2.320682 4.715 2.69e-06 ***

branchWest 1.102597 2.566087 0.430 0.66750

time:branchEast -0.195885 0.066897 -2.928 0.00347 **

time:branchWest 0.004352 0.070844 0.061 0.95103

The main effects of the model tell us that the temperature is almost 11 degrees

higher for the eastern branch compared to the central branch (reference) and about

1 degree higher for the western branch. However, only the former difference is

significantly different from 0 (since the p-value is smaller than α = 0.05). Moreover,

the longer the delivery time, the lower the temperature (0.29 degrees for each minute).

The parameter estimates related to the interaction imply that this association differs

by branch: the estimate is indeed βtime = −0.29 for the reference branch in the

Centre, but the estimate for the branch in the East is−0.29 − 0.196 = −0.486 and the

estimate for the branch in the West is −0.29 + 0.004 = −0.294. However, the latter

difference in the association of time and temperature is not significantly different

from zero. We therefore conclude that the delivery time and pizza temperature are

negatively associated and this is more strongly pronounced in the eastern branch

compared to the other two branches. It is also possible to visualize this by means of

a separate regression line for each branch, see Fig. 11.7.
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• Centre: Temperature = 70.7 − 0.29 × time,

• East: Temperature = 70.7 + 10.9 − (0.29 + 0.195) × time,

• West: Temperature = 70.7 + 1.1 − (0.29 − 0.004) × time.

One can see that the pizzas delivered by the branch in the East are overall hotter

but longer delivery times level that benefit off. One might speculate that the delivery

boxes from the eastern branch are not properly closed and therefore—despite the

overall good performance—the temperature falls more rapidly over time for this

branch.

Categorical–Categorical Interaction. For two categorical variables x1 and x2, with

k and l categories, respectively, (k − 1) × (l − 1) new dummy variables x1i × x2 j

need to be created as follows:

y = β0 + β1x11
+ · · · + βk−1x1k−1

+ βkx21
+ · · · + βk+l−2x2l−1

+βk+l−1x11
x21

+ · · · + βpx1k−1
x2l−1

+ e.

The interpretation of the regression parameters of interest is less complicated than

it looks at first. If the interest is in x1, then the estimate referring to the category of

interest (i.e. x1i
) is interpreted as usual—with the difference that it relates only to

the reference category of x2. The effect of x1i
may vary with respect to x2, and the

sum of the respective main and interaction effects for each category of x2 yields

the respective estimates. These considerations are explained in more detail in the

following example.

Example 11.7.6 Consider again the pizza data. If we have the hypothesis that the

delivery time depends on the operator (who receives the phone calls), but the effect is

different for different branches, then a regression model with branch (3 categories, 2

dummy variables), operator (2 categories, one dummy variable), and their interaction

(2 new variables) can be used.

lm(time∼operator*branch)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.4203 0.4159 87.567 <2e-16 ***
operatorMelissa -0.2178 0.5917 -0.368 0.7129
branchEast -5.6685 0.5910 -9.591 <2e-16 ***
branchWest -1.3599 0.5861 -2.320 0.0205 *
operatorMelissa:branchEast 0.8599 0.8425 1.021 0.3076
operatorMelissa:branchWest 0.4842 0.8300 0.583 0.5598
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The interaction terms can be interpreted as follows:

• If we are interested in the operator, we see that the delivery time is on aver-

age 0.21 min shorter for operator “Melissa”. When this operator deals with a

branch other than the reference (Centre), the estimate changes to −0.21 + 0.86 =
0.64 min longer delivery in the case of branch “East” and −0.21 + 0.48 =
0.26 min for branch “West”.

• If we are interested in the branches, we observe that the delivery time is shortest

for the eastern branch which has on average a 5.66 min shorter delivery time

than the central branch. However, this is the estimate for the reference operator

only; if operator “Melissa” is in charge, then the difference in delivery times

for the two branches is only −5.66 + 0.86 = −4.8 min. The same applies when

comparing the western branch with the central branch: depending on the operator,

the difference between these two branches is estimated as either −1.36 or −1.36 +
0.48 = 0.88 min, respectively.

• The interaction terms are not significantly different from zero. We therefore con-

clude that the hypothesis of different delivery times for the two operators, possibly

varying by branch, could not be confirmed.

Continuous–Continuous Interaction. It is also possible to add an interaction of

two continuous variables. This is done by adding the product of these two variables

to the model. If x1 and x2 are two continuous variables, then x1x2 is the new variable

added in the model as an interaction effect as

y = β1x1 + β2x2 + β3x1x2 + e.

Example 11.7.7 If we again consider the pizza data, with pizza temperature as an

outcome, we may wish to test for an interaction of bill and time.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 92.555943 2.747414 33.688 < 2e-16 ***
bill -0.454381 0.068322 -6.651 4.34e-11 ***
time -0.679537 0.086081 -7.894 6.31e-15 ***
bill:time 0.008687 0.002023 4.294 1.89e-05 ***

The R output above reveals that there is a significant interaction effect. The inter-

pretation is more difficult here. It is clear that a longer delivery time and a larger bill

decrease the pizza’s temperature. However, for a large product of bill and time (i.e.,

when both are large), these associations are less pronounced because the negative

coefficients become more and more outweighed by the positive interaction term. On

the contrary, for a small bill and short delivery time, the temperature can be expected

to be quite high.

Combining Estimates. As we have seen in the examples in this section, it can

make sense to combine regression estimates when interpreting interaction effects.

While it is simple to obtain the point estimates, it is certainly also important to report
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their 95 % confidence intervals. As we know from Theorem 7.7.1, the variance of

the combination of two random variables can be obtained by Var(X ± Y ) = σ 2
XY =

Var(X) + Var(Y ) ± 2 Cov(X, Y ). We can therefore estimate a confidence interval

for the combined estimate β̂i + β̂ j as

(β̂i + β̂ j ) ± tn−p−1;1−α/2 · σ̂
(β̂i +β̂ j )

(11.29)

where σ̂
(β̂i +β̂ j )

is obtained from the estimated covariance matrix Ĉov(β̂) via

σ̂
(β̂i +β̂ j )

=
√

V̂ar(βi ) + V̂ar(β j ) + 2̂Cov(βi , β j ).

Example 11.7.8 Recall Example 11.7.5 where we estimated the association between

pizza temperature, delivery time, and branch. There was a significant interaction

effect for time and branch. Using R, we obtain the covariance matrix as follows:

mymodel <- lm(temperature∼time*branch)

vcov(mymodel)

(Int.) time East West time:East time:West
(Int.) 3.4258 -0.09202 -3.4258 -3.4258 0.09202 0.09202
time -0.0920 0.00253 0.0920 0.0920 -0.00253 -0.00253
branchEast -3.4258 0.09202 5.3855 3.4258 -0.15232 -0.09202
branchWest -3.4258 0.09202 3.4258 6.5848 -0.09202 -0.17946
time:East 0.0920 -0.00253 -0.1523 -0.0920 0.00447 0.00253
time:West 0.0920 -0.00253 -0.0920 -0.1794 0.00253 0.00501

The point estimate for the association between time and temperature in the eastern

branch is −0.29 − 0.19 (see Example 11.7.5). The standard error is calculated as√
0.00253 + 0.00447 − 2 · 0.00253 = 0.044. The confidence interval is therefore

−0.48 ± 1.96 · 0.044 = [−0.56;−0.39].

Remark 11.7.1 If there is more than one interaction term, then it is generally possible

to test whether there is an overall interaction effect, such as β1 = β2 = β3 = β4 = 0

in the case of four interaction variables. These tests belong to the general class of

“linear hypotheses”, and they are not explained in this book. It is also possible to

create interactions between more than two variables. However, the interpretation

then becomes difficult.

11.8 Comparing Different Models

There are many situations where different multiple linear models can be fitted to a

given data set, but it is unclear which is the best one. This relates to the question of

which variables should be included in a model and which ones can be removed.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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For example, when we modelled the association of recovery time and exercising

time by using different transformations, it remained unclear which of the proposed

transformations was the best. In the pizza delivery example, we have about ten

covariates: Does it make sense to include all of them in the model or do we understand

the associations in the data better by restricting ourselves to the few most important

variables? Is it necessary to include interactions or not?

There are various model selection criteria to compare the quality of different

fitted models. They can be useful in many situations, but there are also a couple of

limitations which make model selection a difficult and challenging task.

Coefficient of Determination (R
2). A possible criterion to check the goodness of

fit of a model is the coefficient of determination (R2). We discussed its development,

interpretation, and philosophy in Sect. 11.3 (see p. 256 for more details).

Adjusted R
2. Although R2 is a reasonable measure for the goodness of fit of a

model, it also has some limitations. One limitation is that if the number of covariates

increases, R2 increases too (we omit the theorem and the proof for this statement).

The added variables may not be relevant, but R2 will still increase, wrongly indicating

an improvement in the fitted model. This criterion is therefore not a good measure

for model selection. An adjusted version of R2 is defined as

R2
ad j = 1 − SQError/(n − p − 1)

SQTotal/(n − 1)
. (11.30)

It can be used to compare the goodness of fit of models with a different number

of covariates. Please note that both R2 and R2
ad j are only defined when there is an

intercept term in the model (which we assume throughout the chapter).

Example 11.8.1 In Fig. 11.6, the association of exercising time and recovery time

after knee surgery is modelled linearly, quadratically, and cubically; in Fig. 11.5,

this association is modelled by means of a square-root transformation. The model

summary in R returns both R2 (under “Multiple R-squared”) and the adjusted R2

(under “adjusted R-squared”). The results are as follows:

R2 R2
ad j

Linear 0.6584 0.6243

Quadratic 0.6787 0.6074

Cubic 0.7151 0.6083

Square root 0.6694 0.6363

It can be seen that R2 is larger for the models with more variables; i.e. the cubic

model (which includes three variables) has the largest R2. The adjusted R2, which

takes the different model sizes into account, favours the model with the square-root

transformation. This model provides therefore the best fit to the data among the four

models considered using R2.
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Akaike’s Information Criterion (AIC) is another criterion for model selection. The

AIC is based on likelihood methodology and has its origins in information theory.

We do not give a detailed motivation of this criterion here. It can be written for the

linear model as

AIC = n log

(
SQError

n

)
+ 2(p + 1). (11.31)

The smaller the AIC, the better the model. The AIC takes not only the fit to the data

via SQError into account but also the parsimony of the model via the term 2(p + 1).

It is in this sense a more mature criterion than R2
ad j which considers only the fit

to the data via SQError. Akaike’s Information Criterion can be calculated in R via

the extractAIC() command. There are also other commands, but the results differ

slightly because the different formulae use different constant terms. However, no

matter what formula is used, the results regarding the model choice are always the

same.

Example 11.8.2 Consider again Example 11.8.1. R2
ad j preferred the model which

includes exercising time via a square-root transformation over the other options. The

AIC value for the model where exercise time is modelled linearly is 60.59, when

modelled quadratically 61.84, when modelled cubically 62.4, and 60.19 for a square-

root transformation. Thus, in line with R2
ad j , the AIC also prefers the square-root

transformation.

Backward selection. Two models, which differ only by one variable x j , can be

compared by simply looking at the test result for β j = 0: if the null hypothesis is

rejected, the variable is kept in the model; otherwise, the other model is chosen. If

there are more than two models, then it is better to consider a systematic approach to

comparing them. For example, suppose we have 10 potentially relevant variables and

we are not sure which of them to include in the final model. There are 210 = 1024

possible different combinations of variables and in turn so many choices of models!

The inclusion or deletion of variables can be done systematically with various proce-

dures, for example with backward selection (also known as backward elimination)

as follows:

1. Start with the full model which contains all variables of interest, Υ = {x1, x2,

. . . , xp}.
2. Remove the variable xi ∈ Υ which optimizes a criterion, i.e. leads to the smallest

AIC (the highest R2
ad j , the highest test statistic, or the smallest significance)

among all possible choices.

3. Repeat step 2. until a stop criterion is fulfilled, i.e. until no improvement regarding

AIC, R2, or the p-value can be achieved.
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There are several other approaches. Instead of moving in the backward direction,

we can also move in the forward direction. Forward selection starts with a model

with no covariates and adds variables as long as the model continues to improve with

respect to a particular criterion. The stepwise selection approach combines forward

selection and backward selection: either one does backward selection and checks in

between whether adding variables yields improvement, or one does forward selection

and continuously checks whether removing the already added variables improves the

model.

Example 11.8.3 Consider the pizza data: if delivery time is the outcome, and branch,

bill, operator, driver, temperature, and number of ordered pizzas are potential covari-

ates, we may decide to include only the relevant variables in a final model. Using

the stepAIC function of the library(MASS) allows us implementing backward

selection with R.

library(MASS)

ms <- lm(time∼branch+bill+operator+driver

+temperature+pizzas)

stepAIC(ms, direction='back')

At the first step, the R output states that the AIC of the full model is 4277.56.

Then, the AIC values are displayed when variables are removed: 4275.9 if operator

is removed, 4279.2 if driver is removed, and so on. One can see that the AIC is

minimized if operator is excluded.

Start: AIC=4277.56

time ~ branch+bill+operator+driver+temperature+pizzas

Df Sum of Sq RSS AIC

- operator 1 9.16 36508 4275.9

<none> 36499 4277.6

- driver 4 279.71 36779 4279.2

- branch 2 532.42 37032 4291.9

- pizzas 1 701.57 37201 4299.7

- temperature 1 1931.50 38431 4340.8

- bill 1 2244.28 38743 4351.1

Now R fits the model without operator. The AIC is 4275.88. Excluding further

variables does not improve the model with respect to the AIC.
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Step: AIC=4275.88

time ~ branch + bill + driver + temperature + pizzas

Df Sum of Sq RSS AIC

9.572480563>enon<

- driver 4 288.45 36797 4277.8

- branch 2 534.67 37043 4290.3

- pizzas 1 705.53 37214 4298.1

- temperature 1 1923.92 38432 4338.9

- bill 1 2249.60 38758 4349.6

We therefore conclude that the final “best” model includes all variables considered,

except operator. Using stepwise selection (with option both instead of back) yields

the same results. We could now interpret the summary of the chosen model.

Limitations and further practical considerations. The above discussions of vari-

able selection approaches makes it clear that there are a variety of options to compare

fitted models, but there is no unique best way to do so. Different criteria are based

on different philosophies and may lead to different outcomes. There are a few con-

siderations that should however always be taken into account:

• If categorical variables are included in the model, then all respective dummy vari-

ables need to be considered as a whole: all dummy variables of this variable should

either be removed or kept in the model. For example, a variable with 3 categories

is represented by two dummy variables in a regression model. In the process of

model selection, both of these variables should either be kept in the model or

removed, but not just one of them.

• A similar consideration refers to interactions. If an interaction is added to the

model, then the main effects should be kept in the model as well. This enables

straightforward interpretations as outlined in Sect. 11.7.3.

• The same applies to polynomials. If adding a cubic transformation of xi, the squared

transformation as well as the linear effect should be kept in the model.

• When applying backward, forward, or stepwise regression techniques, the results

may vary considerably depending on the method chosen! This may give different

models for the same data set. Depending on the strategy used to add and remove

variables, the choice of the criterion (e.g. AIC versus p-values), and the detailed

set-up (e.g. if the strategy is to add/remove a variable if the p-value is smaller than

α, then the choice of α is important), one may obtain different results.

• All the above considerations show that model selection is a non-trivial task which

should always be complemented by substantial knowledge of the subject matter.

If there are not too many variables to choose from, simply reporting the full model

can be meaningful too.
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11.9 Checking Model Assumptions

The assumptions made for the linear model mostly relate to the error terms: e ∼
N (0, σ 2I). This implies a couple of things: i) the difference between y and Xβ

(which is e) needs to follow a normal distribution, ii) the variance for each error ei

is constant as σ 2 and therefore does not depend on i , and iii) there is no correlation

between the error terms, Cov(ei , ei ′) = 0 for all i, i ′. We also assume that Xβ is

adequate in the sense that we included all relevant variables and interactions in the

model and that the estimator β̂ is stable and adequate due to influential observations

or highly correlated variables. Now, we demonstrate how to check assumptions i)

and ii).

Normality assumption. The errors e are assumed to follow a normal distribution.

We never know the errors themselves. The only possibility is to estimate the errors

by means of the residuals ê = y − Xβ̂. To ensure that the estimated residuals are

comparable to the scale of a standard normal distribution, they can be standardized

via

ê∗
i = êi

σ̂ 2
√

1 − Pi i

where Pi i is the i th diagonal element of the hat matrix P = X(X′X)−1X′. Generally,

the estimated standardized residuals are used to check the normality assumption. To

obtain a first impression about the error distribution, one can simply plot a histogram

of the standardized residuals. The normality assumption is checked with a QQ-plot

where the theoretical quantiles of a standard normal distribution are plotted against

the quantiles from the standardized residuals. If the data approximately matches the

bisecting line, then we have evidence for fulfilment of the normality assumption

(Fig. 11.8a), otherwise we do not (Fig. 11.8b).
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Fig. 11.8 Checking the normality assumption with a QQ-plot
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Small deviations from the normality assumption are not a major problem as the

least squares estimator of β remains unbiased. However, confidence intervals and

tests of hypothesis rely on this assumption, and particularly for small sample sizes

and/or stronger violations of the normality assumptions, these intervals and conclu-

sions from tests of hypothesis no longer remain valid. In some cases, these problems

can be fixed by transforming y.

Heteroscedasticity. If errors have a constant variance, we say that the errors are

homoscedastic and we call this phenomenon homoscedasticity. When the variance

of errors is not constant, we say that the errors are heteroscedastic. This phenom-

enon is also known as heteroscedasticity. If the variance σ 2 depends on i , then

the variability of the ei will be different for different groups of observations. For

example, the daily expenditure on food (y) may vary more among persons with a

high income (x1), so fitting a linear model yields stronger variability of the ei among

higher income groups. Plotting the fitted values ŷi (or alternatively xi ) against the

standardized residuals (or a transformation thereof) can help to detect whether or not

problems exist. If there is no pattern in the plot (random plot), then there is likely no

violation of the assumption (see Fig. 11.10a). However, if there is a systematic trend,

i.e. higher/lower variability for higher/lower ŷi , then this indicates heteroscedasticity

(Fig. 11.10b, trumpet plot). The consequences are again that confidence intervals and

tests may no longer be correct; again, in some situations, a transformation of y can

help.

Example 11.9.1 Recall Example 11.8.3 where we identified a good model to describe

the delivery time for the pizza data. Branch, bill, temperature, number of pizzas

ordered, and driver were found to be associated with delivery time. To explore

whether the normality assumption is fulfilled for this model, we can create a his-

togram for the standardized residuals (using the R function rstandard()). A QQ-

plot is contained in the various model diagnostic plots of the plot() function.

fm <- lm(time∼branch+bill+driver+temperature

+pizzas)

hist(rstandard(fm))

plot(fm, which=2)

Figure 11.9 shows a reasonably symmetric distribution of the residuals, maybe

with a slightly longer tail to the right. As expected for a standard normal distribution,

not many observations are larger than 2 or smaller than −2 (which are close to the 2.5

and 97.5 % quantiles). The QQ-plot also points towards a normal error distribution
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Fig. 11.9 Checking the normality assumption in Example 11.9.1

because the observed quantiles lie approximately on the bisecting line. It seems that

the lowest residuals deviate a bit from the expected normal distribution, but not

extremely. The normality assumption does not seem to be violated.

Plotting the fitted values ŷi against the square root of the absolute values of the

standardized residuals (=
√

|ê∗
i |, used by R for stability reasons) yields a plot with

no visible structure (see Fig. 11.10a). There is no indication of heteroscedasticity.
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(a) Example 11.9.1: chaos plot
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(b) Violation: σ
2 depends on i

Fig. 11.10 Checking the heteroscedasticity assumption
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plot(fm, which=3)

Figure 11.10b shows an artificial example where heteroscedasticity occurs: the

higher the fitted values, the higher is the variation of residuals. This is also called a

trumpet plot.

11.10 Association Versus Causation

There is a difference between association and causation: association says that higher

values of X relate to higher values of Y (or vice versa), whereas causation says that

because values of X are higher, values of Y are higher too. Regression analysis, as

introduced in this chapter, establishes associations between X i ’s and Y , not causation,

unless strong assumptions are made.

For example, recall the pizza delivery example from Appendix A.4. We have seen

in several examples and exercises that the delivery time varies by driver. In fact, in a

multiple linear regression model where Y is the delivery time, and the covariates are

branch, bill, operator, driver, and temperature, we get significant differences of the

mean delivery times of some drivers (e.g. Domenico and Bruno). Does this mean that

because Domenico is the driver, the pizzas are delivered faster? Not necessarily. If

Domenico drives the fastest scooter, then this may be the cause of his speedy deliv-

eries. However, we have not measured the variable “type of scooter” and thus cannot

take it into account. The result we obtain from the regression model is still useful

because it provides the manager with useful hypotheses and predictions about his

delivery times, but the interpretation that the driver’s abilities cause shorter delivery

times may not necessarily be appropriate.

This example highlights that one of the most important assumptions to interpret

regression parameters in a causal way is to have measured (and used) all variables

X i which affect both the outcome Y and the variable of interest A (e.g. the variable

“driver” above). Another assumption is that the relationship between all X i ’s and

Y is modelled correctly, for example non-linear if appropriate. Moreover, we need

some a priori assumptions about how the variables relate to each other, and some

technical assumptions need to be met as well. The interested reader is referred to

Hernan and Robins (2017) for more details.
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11.11 Key Points and Further Issues

Note:

� If X is a continuous variable, the parameter β in the linear regression

model Y = α + β X + e can be interpreted as follows:

“For each unit of increase in X , there is an increase of β units in E(Y ).”

� If X can take a value of zero, then it can be said that

“For X = 0, E(Y ) equals α.”

If X = 0 is out of the data range or implausible, it does not make sense

to interpret α.

� A model is said to be linear when it is linear in its parameters.

� It is possible to include many different covariates in the regression

model: they can be binary, log-transformed, or take any other form,

and it is still a linear model. The interpretation of these variables is

always conditional on the other variables; i.e. the reported association

assumes that all other variables in the model are held fixed.

� To evaluate whether xj is associated with y, it is useful to test whether

β j = 0. If the null hypothesis H0 : β j = 0 is rejected (i.e. the p-value is

smaller than α), one says that there is a significant association of xj and

y. However, note that a non-significant result does not necessarily mean

there is no association, it just means we could not show an association.

� An important assumption in the multivariate linear model y = Xβ + e

relates to the errors:

e ∼ N (0, σ 2I).

To check whether the errors are (approximately) normally distributed,

one can plot the standardized residuals in a histogram or a QQ-plot. The

heteroscedasticity assumption (i.e. σ 2 does not depend on i) is tested

by plotting the fitted values (ŷi ) against the standardized residuals (êi ).

The plot should show no pattern (random plot).

� Different models can be compared by systematic hypothesis testing,

R2
ad j , AIC, and other methods. Different methods may yield different

results, and there is no unique best option.
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11.12 Exercises

Exercise 11.1 The body mass index (BMI) and the systolic blood pressure of 6

people were measured to study a cardiovascular disease. The data are as follows:

Body mass index 26 23 27 28 24 25

Systolic blood pressure 170 150 160 175 155 150

(a) The research hypothesis is that a high BMI relates to a high blood pressure.

Estimate the linear model where blood pressure is the outcome and BMI is the

covariate. Interpret the coefficients.

(b) Calculate R2 to judge the goodness of fit of the model.

Exercise 11.2 A psychologist speculates that spending a lot of time on the internet

has a negative effect on children’s sleep. Consider the following data on hours of deep

sleep (Y ) and hours spent on the internet (X ) where xi and yi are the observations

on internet time and deep sleep time of the i th (i = 1, 2, . . . , 9) child respectively:

Child i 1 2 3 4 5 6 7 8 9

Internet time xi (in h) 0.3 2.2 0.5 0.7 1.0 1.8 3.0 0.2 2.3

Sleep time yi (in h) 5.8 4.4 6.5 5.8 5.6 5.0 4.8 6.0 6.1

(a) Estimate the linear regression model for the given data and interpret the coeffi-

cients.

(b) Calculate R2 to judge the goodness of fit of the model.

(c) Reproduce the results of a) and b) in R and plot the regression line.

(d) Now assume that we only distinguish between spending more than 1 hour on the

internet (X = 1) and spending less than (or equal to) one hour on the internet

(X = 0). Estimate the linear model again and compare the results. How can β̂

now be interpreted? Describe how β̂ changes if those who spend more than one

hour on the internet are coded as 0 and the others as 1.

Exercise 11.3 Consider the following data on weight and height of 17 female stu-

dents:

Student i 1 2 3 4 5 6 7 8 9

Weight yi 68 58 53 60 59 60 55 62 58

Height xi 174 164 164 165 170 168 167 166 160

Student i 10 11 12 13 14 15 16 17

Weight y 53 53 50 64 77 60 63 69

Height x 160 163 157 168 179 170 168 170

(a) Calculate the correlation coefficient of Bravais–Pearson (use
∑n

i=1 xi yi =
170, 821, x̄ = 166.65, ȳ = 60.12,

∑n
i=1 y2

i = 62, 184,
∑n

i=1 x2
i = 472, 569).

What does this imply with respect to a linear regression of height on weight?
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(b) Now estimate and interpret the linear regression model where “weight” is the

outcome.

(c) Predict the weight of a student with a height 175 cm.

(d) Now produce a scatter plot of the data (manually or by using R) and interpret it.

(e) Add the following two points to the scatter plot (x18, y18) = (175, 55) and

(x19, y19) = (150, 75). Speculate how the linear regression estimate will change

after adding these points.

(f) Re-estimate the model using all 19 observations and
∑

xi yi = 191, 696 and∑
x2

i = 525, 694.

(g) Given the results of the two regression models: What are the general implications

with respect to the least squares estimator of β?

Exercise 11.4 To study the association of the monthly average temperature (in ◦C,

X ) and hotel occupation (in %, Y ), we consider data from three cities: Polenca

(Mallorca, Spain) as a summer holiday destination, Davos (Switzerland) as a winter

skiing destination, and Basel (Switzerland) as a business destination.

Month Davos Polenca Basel

X Y X Y X Y

Jan −6 91 10 13 1 23

Feb −5 89 10 21 0 82

Mar 2 76 14 42 5 40

Apr 4 52 17 64 9 45

May 7 42 22 79 14 39

Jun 15 36 24 81 20 43

Jul 17 37 26 86 23 50

Aug 19 39 27 92 24 95

Sep 13 26 22 36 21 64

Oct 9 27 19 23 14 78

Nov 4 68 14 13 9 9

Dec 0 92 12 41 4 12

(a) Interpret the following regression model output where the outcome is “hotel

occupation” and “temperature” is the covariate.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.33459 7.81792 6.438 2.34e-07 ***

X 0.07717 0.51966 0.149 0.883

(b) Interpret the following output where “city” is treated as a covariate and “hotel

occupation” is the outcome.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.3333 7.9457 6.083 7.56e-07 ***

cityDavos 7.9167 11.2369 0.705 0.486

cityPolenca 0.9167 11.2369 0.082 0.935
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(c) Interpret the following output and compare it with the output from b):

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

city 2 450.1 225.03 0.297 0.745

Residuals 33 25001.2 757.61

(d) In the following multiple linear regression model, both “city” and “tempera-

ture” are treated as covariates. How can the coefficients be interpreted?

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.1731 10.9949 4.018 0.000333 ***

X 0.3467 0.6258 0.554 0.583453

cityDavos 9.7946 11.8520 0.826 0.414692

cityPolenca -1.1924 11.9780 -0.100 0.921326

(e) Now consider the regression model for hotel occupation and temperature fitted

separately for each city: How can the results be interpreted and what are the

implications with respect to the models estimated in (a)–(d)? How can the models

be improved?

Davos:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 73.9397 4.9462 14.949 3.61e-08 ***

X -2.6870 0.4806 -5.591 0.000231 ***

Polenca:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -22.6469 16.7849 -1.349 0.20701

X 3.9759 0.8831 4.502 0.00114 **

Basel:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.574 13.245 2.459 0.0337 *

X 1.313 0.910 1.443 0.1796

(f) Describe what the design matrix will look like if city, temperature, and the

interaction between them are included in a regression model.

(g) If the model described in (f) is fitted the output is as follows:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.5741 10.0657 3.236 0.002950 **

X 1.3133 0.6916 1.899 0.067230 .

cityDavos 41.3656 12.4993 3.309 0.002439 **

cityPolenca -55.2210 21.0616 -2.622 0.013603 *

X:cityDavos -4.0003 0.9984 -4.007 0.000375 ***

X:cityPolenca 2.6626 1.1941 2.230 0.033388 *

Interpret the results.
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(h) Summarize the association of temperature and hotel occupation by city—

including 95 % confidence intervals—using the interaction model. The covari-

ance matrix is as follows:

(Int.) X Davos Polenca X:Davos X:Polenca

(Int.) 101.31 -5.73 -101.31 -101.31 5.73 5.73

X -5.73 0.47 5.73 5.73 -0.47 -0.47

Davos -101.31 5.73 156.23 101.31 -9.15 -5.73

Polenca -101.31 5.73 101.31 443.59 -5.73 -22.87

X:Davos 5.73 -0.47 -9.15 -5.73 0.99 0.47

X:Polenca 5.73 -0.47 -5.73 -22.87 0.47 1.42

Exercise 11.5 The theatre data (see Appendix A.4) describes the monthly expen-

diture on theatre visits of 699 residents of a Swiss city. It captures not only the

expenditure on theatre visits (in SFR) but also age, gender, yearly income (in 1000

SFR), and expenditure on cultural activities in general as well as expenditure on

theatre visits in the preceding year.

(a) The summary of the multiple linear model where expenditure on theatre visits

is the outcome is as follows:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -127.22271 19.15459 -6.642 6.26e-11 ***

Age 0.39757 0.19689 [1] [2]

Sex 22.22059 5.22693 4.251 2.42e-05 ***

Income 1.34817 0.20947 6.436 2.29e-10 ***

Culture 0.53664 0.05053 10.620 <2e-16 ***

Theatre_ly 0.17191 0.11711 1.468 0.1426

How can the missing values [1] and [2] be calculated?

(b) Interpret the model diagnostics in Fig. 11.11.

(c) Given the diagnostics in (b), how can the model be improved? Plot a histogram

of theatre expenditure in R if you need further insight.

(d) Consider the model where theatre expenditure is log-transformed:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9541546 0.1266802 23.320 < 2e-16 ***

Age 0.0038690 0.0013022 2.971 0.00307 **

Sex 0.1794468 0.0345687 5.191 2.75e-07 ***

Income 0.0087906 0.0013853 6.346 4.00e-10 ***

Culture 0.0035360 0.0003342 10.581 < 2e-16 ***

Theatre_ly 0.0013492 0.0007745 1.742 0.08197 .

How can the coefficients be interpreted?
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Fig. 11.11 Checking the model assumptions
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(b) Fitted values vs. residuals

Fig. 11.12 Checking the model assumptions

(e) Judge the quality of the model from d) by means of Figs. 11.12a and 11.12b.

What do they look like compared with those from b)?

Exercise 11.6 Consider the pizza delivery data described in Appendix A.4.

(a) Read the data into R. Fit a multiple linear regression model with delivery time

as the outcome and temperature, branch, day, operator, driver, bill, number of

ordered pizzas, and discount customer as covariates. Give a summary of the

coefficients.
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(b) Use R to calculate the 95 % confidence intervals of all coefficients. Hint: the

standard errors of the coefficients can be accessed either via the covariance

matrix or the model summary.

(c) Reproduce the least squares estimate of σ 2. Hint: use residuals() to obtain

the residuals.

(d) Now use R to estimate both R2 and R2
ad j . Compare the results with the model

output from a).

(e) Use backward selection by means of the stepAIC function from the library MASS

to find the best model according to AIC.

(f) Obtain R2
ad j from the model identified in e) and compare it to the full model

from a).

(g) Identify whether the model assumptions are satisfied or not.

(h) Are all variables from the model in (e) causing the delivery time to be either

delayed or improved?

(i) Test whether it is useful to add a quadratic polynomial of temperature to the

model.

(j) Use the model identified in (e) to predict the delivery time of the last captured

delivery (i.e. number 1266). Use thepredict() command to ease the calculation

of the prediction.

→ Solutions of all exercises in this chapter can be found on p. 409

∗Source Toutenburg, H., Heumann, C., Deskriptive Statistik, 7th edition, 2009,

Springer, Heidelberg



AAppendix: Introduction to R

Background

The open-source software R was developed as a free implementation of the language

S which was designed as a language for statistical computation, statistical program-

ming, and graphics. The main intention was to allow users to explore data in an

easy and interactive way, supported by meaningful graphical representations. The

statistical software R was originally created by Ross Ihaka and Robert Gentleman

(University of Auckland, New Zealand).

Installation and Basic Functionalities

• The “base” R version, i.e. the software with its most relevant commands, can

be downloaded from https://www.r-project.org/. After installing R, it is recom-

mended to install an editor too. An editor allows the user to conveniently save and

display R-code, submit this code to the R console (i.e. the R software itself), and

control the settings and the output. A popular choice of editor is RStudio (free of

charge) which can be downloaded from https://www.rstudio.com/ (see Fig. A.1

for a screenshot of the software). There are alternative good editors, for example

“Tinn-R” (http://sourceforge.net/projects/tinn-r/).

• A lot of additional user-written packages are available online and can be

installed within the R console or using the R menu. Within the console, the

install.packages("package to install") function can be used. Please

note that an internet connection is required.

© Springer International Publishing Switzerland 2016

C. Heumann et al., Introduction to Statistics and Data Analysis,

DOI 10.1007/978-3-319-46162-5
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Statistics has a close relationship to algebra: data sets can be seen as matrices, and

variables as vectors. R makes use of these structures and this is why we first intro-

duce data structure functionalities before explaining some of the most relevant basic

statistical commands.

R as a Calculator, Basic Data Structures and Arithmetic
Operations

• The character # marks the beginning of a comment. All characters until the end of

the line are ignored by R. We use # to comment on our R-code.

• If we know the name of a command we would like to use, and we want to learn

about its functionality, typing ?command in the R command line prompt displays

a help page, e.g.

?mean

displays a help page for the arithmetic mean function.

• Using

example(mean)

shows application examples of the respective function.

• The command c(1,2,3,4,5) combines the numbers 1, 2, 3, 4 and 5 into a vector

(e.g. a variable).

• Vectors can be assigned to an “object”. For example,

X <- c(2,12,22,32)

assigns a numeric vector of length 4 to the object X. In general, the arrow sign

(<−) is a very important concept to store data, summaries, and outputs in objects

(i.e. the name in the front of the <− sign). Note that R is case sensitive; i.e. X and

x are two different variable names. Instead of “<−”, one can also use “=”.

• Sequences of numbers can be created using the seq and rep commands. For

example,

seq(1,10)

and

rep(1,10)

yield

[1] 1 2 3 4 5 6 7 8 9 10

and

[1] 1 1 1 1 1 1 1 1 1 1

respectively.
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• Basic data structures are vectors, matrices, arrays, lists, and data frames. They

can contain numeric values, logical values or even characters (strings). In the latter

case, arithmetic operations are not allowed.

– A numeric vector of length 5 can be constructed by the command

x <- vector(mode="numeric", length=5)

The elements can be accessed by squared brackets: [ ]. For example,

x[3] <- 4

assigns the value 4 to the third element of the object x. Logical vectors containing

the values TRUE and FALSE are also possible. In arithmetic operations, TRUE

corresponds to 1 and FALSE corresponds to 0 (which is the default). Consider

the following example:

x.log <- vector(mode="logical", length=4)

x.log[1] = x.log[3] = x.log[4] = TRUE

mean(x.log)

returns as output 0.75 because the mean of (1, 0, 1, 1) =(TRUE, FALSE, TRUE,

TRUE) is 0.75.

– A matrix can be constructed by the matrix() command:

x <- matrix(nrow=4, ncol=2, data=1:8, byrow=T)

creates a 4 × 2 matrix, where the data values are the natural numbers 1, 2, 3, . . . ,

8 which are stored row-wise in the matrix,

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

because of the parameter byrow=T (which is equivalent to byrow=TRUE). The

default is byrow=F which would store the data column-wise.

– Arrays are more general data structures than vectors and matrices in the sense

that they can have more than two dimensions. For instance,

x <- array(data=1:12, dim=c(3,2,2))

creates a three-dimensional array with 3 · 2 · 2 = 12 elements.

– A list can contain objects of different types. For example, a list element can be

a vector or matrix. Lists can be initialized by the command list and can grow

dynamically. It is important to understand that list elements should be accessed

by the name of the entry via the dollar sign or using double brackets:
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x <- list(one=c(1,2,3,4,5),two=c("Hello", "world", "!"))

x

$one

[1] 1 2 3 4 5

$two

[1] "Hello" "world" "!"

x[[2]]

[1] "Hello" "world" "!"

x$one

[1] 1 2 3 4 5

– A data frame is the standard data structure for storing a data set with rows as

observations and columns as variables. Many statistical procedures in R (such

as the lm function for linear models) expect a data frame. A data frame is

conceptually not much different from a matrix and can either be initialized by

reading a data set from an external file or by binding several column vectors.

As an example, we consider three variables (age, favourite hobby, and favourite

animal) each with five observations:

age <- c(25,33,30,40,28)

hobby <- c("Reading","Sports","Games","Reading","Games")

animal <- c("Elephant", "Giraffe", NA, "Monkey", "Cat")

dat <- data.frame(age,hobby,animal)

names(dat) <- c("Age","Favourite.hobby","Favourite.animal")

dat

The resulting output is

> dat

Age Favourite.hobby Favourite.animal

1 25 Reading Elephant

2 33 Sports Giraffe

3 30 Games <NA>

4 40 Reading Monkey

5 28 Games Cat

where NA denotes a missing value. With write.table or a specialized version

thereof such as write.csv (for writing the data in a file using comma-separated

fields), a data frame can be saved in a file. The command sequence

write.csv(x=dat,file="toy.csv",row.names=FALSE)

read.dat <- read.csv(file="toy.csv")

read.dat
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saves the data frame as an external (comma-separated) file and then loads the

data again using read.csv.

Individual elements of the data frame can be accessed using squared brackets, as

for matrices. For example, dat[1,2] returns the first observation of the second

variable column for the data set dat. Individual columns (variables) can also be

selected using the $ sign:

dat$Age

returns the age column:

[1] 25 33 30 40 28

• The factor command is very useful to store nominal variables, and the command

ordered is ideal for ordinal variables. Both commands are extremely important

since factor variables with more than two categories are automatically expanded

into several columns of dummy variables if necessary, e.g. if they are included as

covariates in a linear model. In the previous paragraph, two factor variables have

already been created. This can be confirmed by typing

is.factor(dat$Favourite.hobby)

is.factor(dat$Favourite.animal)

which return the value TRUE. Have a look at the following two factor variables:

sex <- factor("female","male","male","female","female")

grade <- ordered(c("low", "medium", "low", "high", "high"),

levels=c("low", "medium","high"))

Please note that by default alphabetical order is used to order the categories (e.g.

female is coded as 1 and male as 2). However, the mapping of integers to strings

can be controlled by the user as seen for the variable “grade”:

grade

returns

[1] low medium low high high

Levels: low < medium < high
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• Basic arithmetic operations can be applied directly to a numeric vector. Basic

operations are addition +, subtraction −, multiplication ∗ and division /, inte-

ger division %/%, modulo operation %%, and exponentiation with two possible

notations: ∗∗ or ˆ. Examples are given as:

2^3 # command

[1] 8 # output

2**3 # command

[1] 8 # output

2^0.5 # command

[1] 1.414214 # output

c(2,3,5,7)^2 # command: application to a vector

[1] 4 9 25 49 # output

c(2,3,5,7)^c(2,3) # command: !!! ATTENTION!

[1] 4 27 25 343 # output

c(1,2,3,4,5,6)^c(2,3,4) # command

[1] 1 8 81 16 125 1296 #output

c(2,3,5,7)^c(2,3,4) # command: !!! WARNING MESSAGE!

[1] 4 27 625 49

Warning message:

longer object length

is not a multiple of shorter object length

in: c(2, 3, 5, 7)^c(2, 3, 4)

The last four commands show the “recycling property” of R. It tries to match the

vectors with respect to the length if possible. In fact,

c(2,3,5,7)^c(2,3)

is expanded to

c(2,3,5,7)^c(2,3,2,3)

The last example shows that R gives a warning if the length of the shorter vector

cannot be expanded to the length of the longer vector by a simple multiplication

with a natural number (2, 3, 4, . . .). Here

c(2,3,5,7)^c(2,3,4)

is expanded to

c(2,3,5,7)^c(2,3,4,2)
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such that not all elements of

c(2,3,4)

are “recycled”.

More on indexing

The standard ways of accessing/indexing elements in a vector, matrix, list, or data

frame have already been introduced above, but R allows a lot more flexible accessing

of elements.

1. Selecting elements using vectors of positive numbers (letters and LETTERS

show the 26 letters of the alphabet)

letters[1:3]

letters[ c(2,4,6) ]

[1] "a" "b" "c"

[1] "b" "d" "f"

2. Selecting elements using logical vectors

x <- 1:10 # numbers 1 to 10

x[ (x>5) ] # selecting any number >5

x[ (x%%2==0) ] # numbers that are divisible by 2

x[(x%%2==1)] # numbers that are not divisible by 2

x[5] <- NA # 5th element of x is defined

# to be missing (NA)

x

y <- x[!is.na(x)] # all x which are not missing

y

returns the output

[1] 6 7 8 9 10

[1] 2 4 6 8 10

[1] 1 3 5 7 9

[1] 1 2 3 4 NA 6 7 8 9 10

[1] 1 2 3 4 6 7 8 9 10
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3. Selecting (deleting) elements using negative numbers

x <- 1:10

x[-(1:5)] # x, but delete first five entries of x

returns the output

[1] 6 7 8 9 10

because the first five elements have been removed.

4. Selecting elements using characters

x <- c(Water=1, Juice=2, Lemonade=3 )

names(x)

x["Juice"]

returns the output

[1] "Water" "Juice" "Lemonade"

Juice

2

Standard Functions

Some standard functions and their roles in R are

abs() Absolute value

sqrt() Square root

round(), floor(), ceiling() Rounding, up and down

sum(), prod() Sum and product

log(), log10(), log2() Logarithms

exp() Exponential function

sin(), cos(), tan(), Trigonometric functions

asin(), acos(), atan()

sinh(), cosh(), tanh(), Hyperbolic functions

asinh(x), acosh(), atanh(x)

All functions can again be applied directly to numeric vectors.
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Statistical Functions

Some statistical functions and their roles in R are

mean(), var() Mean and variance

cov(), cor() Covariance and correlation

min(), max() Minimum and maximum

Note: the arguments of the functions vary depending on the chosen method. For

example, the mean() function can be applied to general R objects where averaging

makes sense (numeric or logical vectors, but also, e.g. matrices). The functions

var(), cov(), cor() expect one or two numeric vectors, matrices, or data frames.

Minimum and maximum functions work also with a comma-separated list of values,

i.e.

min(2, 6.7, 1.2, 8.0)

provides the same result (1.2) as

min(c(2, 6.7, 1.2, 8.0))

Examples:

mean( c(1,2,5,6) )

[1] 3.5

var( c(1,2,5,6) )

[1] 5.666667

Note that var(), cov() use the factor 1/(n − 1) for the unbiased estimate of the

variance instead of 1/n for the empirical variance, i.e. 1/3 in the example above.

Both functions can also be applied to several vectors or a matrix. Then the covariance

matrix (and correlation matrix in case of cor()) is computed. For example, consider

two variables

age.v <- c(25,30,35,40)

income.v <- c(2000, 2500, 2800, 3200)

Then both commands return the symmetric covariance matrix (with variances as the

diagonal entries and covariances as the non-diagonal entries).
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var(cbind(age.v, income.v))

age.v income.v

age.v 41.66667 3250.0

income.v 3250.00000 255833.3

cov(cbind(age.v, income.v))

age.v income.v

age.v 41.66667 3250.0

income.v 3250.00000 255833.3

The (Pearson) correlation between the two variables is calculated as 0.9954293.

cor(cbind(age.v, income.v))

age.v income.v

age.v 1.0000000 0.9954293

income.v 0.9954293 1.0000000

The Spearman rank correlation is perfectly 1, since both vectors are in increasing

order:

cor(cbind(age.v, income.v), method="spearman")

age.v income.v

age.v 1 1

income.v 1 1

More Useful Functions

Some more commonly used standard functions and their roles in R are as follows:

• Cumulative sum and product:

x <- c( 1,3, 2, 5)

cumsum(x) # 1, 1+3, 1+3+2, 1+3+2+5

cumprod(x) # 1, 1*3, 1*3*2, 1*3*2*5

give the output

[1] 1 4 6 11

[1] 1 3 6 30
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• Factorial:

factorial(5)

returns 5! as

[1] 120

• Binomial coefficient
(

n
k

)

:

choose(4,2)

returns
(4

2

)

as

[1] 6

Mathematical Constants

The number π is a mathematical constant, the ratio of a circle’s circumference to its

diameter, and is commonly approximated as 3.14159. It is directly available in R as

pi.

pi

[1] 3.141593

Other “constants” are

Inf, -Inf ∞, −∞
NaN Not a Number: e.g. 0/0[1] NaN

NA Not Available: missing values

NULL empty set

Assignment Operator for Creating Functions

The assignment operator <− (“less than” sign followed by hyphen) has already been

introduced above in the context of variables. Alternatively, = (equality sign) can be

used. One can create one’s own functions: the function is an object with a name which

takes values specified in the round brackets and returns what has been specified in the

curly braces. For example, the following function myfunction returns a polynomial

of degree 3 for a given argument x . Note that by default all four coefficients are equal

to 1.
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my.function <- function(x,a=1,b=1,c=1,d=1){

h <- a+b*x+c*x^2+d*x^3

return(h)

}

my.function(2)

[1] 15

my.function(x=2, a=4, b=3)

[1] 22

Loops and Conditions

The concept of loops is convenient when some operation has to be repeated. Loops

can be utilized in various ways, for example, via for or while. Conditions are

specified with the if statement. For example,

x <- 1:10

for(i in 1:10){ if(x[i]>5){x[i] <- x[i]+i}

}

x

returns

[1] 1 2 3 4 5 12 14 16 18 20

In this example, x is a vector with 10 elements: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. For

each element x[i], we replace x[i] with x[i]+i if the condition x[i]>5 is true;

otherwise we do not.

Statistical Functions

Now we consider some basic statistical functions in R. For illustration, we use

the painters data in the following example. This data is available after loading the

library MASS (only a subset is shown below). The data lists the subjective assessment,

on a 0 to 20 integer scale, of 54 classical painters. The painters were assessed on

four characteristics: composition, drawing, colour, and expression. The data is due

to the eighteenth-century art critic, de Piles. Use ?painters for more information

on the data set.

library(MASS)

painters
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shows

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

The Summary Function

The summary function allows a quick overview of a data frame. For numeric vari-

ables, the five-point summary (which is also used in a simple box plot, see Sect. 3.3)

is calculated together with the arithmetic mean. For factor variables, the absolute

frequencies of the most frequent categories are printed. If the factor has more than

six categories, the other categories are summarized in a separate category—Other.

summary(painters)

yields

Composition Drawing ... School

Min. : 0.00 Min. : 6.00 ... A :10

1st Qu.: 8.25 1st Qu.:10.00 ... D :10

Median :12.50 Median :13.50 ... E : 7

Mean :11.56 Mean :12.46 ... G : 7

3rd Qu.:15.00 3rd Qu.:15.00 ... B : 6

Max. :18.00 Max. :18.00 ... C : 6

... (Other) : 8

The summary function can also be applied to a single variable:

summary(painters$School)

returns

A B C D E F G H

10 6 6 10 7 4 7 4

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Accessing Subgroups in Data Frames

Subgroups, i.e. groups of observations which share the same feature(s) of one or

several variables, can be accessed using the subset command.

subset(painters, School=="F")

accesses all painters for which School==‘‘F’’ holds.

Composition Drawing Colour Expression School

Durer 8 10 10 8 F

Holbein 9 10 16 13 F

Pourbus 4 15 6 6 F

Van Leyden 8 6 6 4 F

This is a more elegant method than selecting these observations by specifying a

condition in squared brackets via the [rows,columns] argument.

painters[ painters[["School"]] == "F", ]

Note that the explained structure is an important one: we access the rows and columns

of a matrix or data set by using the [rows,columns] argument. Here we access all

rows for which the variable “school” is “F”. If, in addition, we also want to restrict

the data set to the first two variables, we can write:

painters[ painters[["School"]] == "F", c(1,2)]

Similarly,

subset(painters, Composition <= 6)

gives the output

Composition Drawing Colour Expression School

Fr. Penni 0 15 8 0 A

Perugino 4 12 10 4 A

Bassano 6 8 17 0 D

Bellini 4 6 14 0 D

Murillo 6 8 15 4 D

Palma Vecchio 5 6 16 0 D

Caravaggio 6 6 16 0 E

Pourbus 4 15 6 6 F

Uninteresting columns can be eliminated using negative indexing. For instance,

in the following example,
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subset(painters, School=="F", select=c(-3,-5) )

Composition Drawing Expression

Durer 8 10 8

Holbein 9 10 13

Pourbus 4 15 6

Van Leyden 8 6 4

the third and the fifth columns (Colour and School) are not shown.

The operator %in% allows for more complex searches. For instance,

subset(painters, Drawing %in% c(6,7,8,9) & Composition==10)

returns the following output:

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

J. Jordaens 10 8 16 6 G

Bourdon 10 8 8 4 H

i.e. those painters with a drawing score between 6 and 9 (= any number which matches

6, or 7, or 8, or 9).

Stratifying a Data Frame and Applying Commands to a List

Sometimes it is of interest to apply statistical commands (such as summary) to several

subgroups. If this is the case, the data is partitioned into different groups using split

and then lapply applies a function to each of these groups. The command split

partitions the data set by values of a specific variable. For example, we first stratify

the painters data with respect to the painter’s school:

splitted <- split(painters, painters$School)

splitted

$A

Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

Guilio Romano 15 16 4 14 A
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Michelangelo 8 17 4 8 A

Perino del Vaga 15 16 7 6 A

Perugino 4 12 10 4 A

Raphael 17 18 12 18 A

$B

Composition Drawing Colour Expression School

F. Zucarro 10 13 8 8 B

Fr. Salviata 13 15 8 8 B

Parmigiano 10 15 6 6 B

Primaticcio 15 14 7 10 B

T. Zucarro 13 14 10 9 B

Volterra 12 15 5 8 B

$C

...

Note, that splitted is now a list,

is.list(splitted)

returns

[1] TRUE

while the objects splitted$A to splitted$H are data frames.

is.data.frame(splitted$A)

returns

[1] TRUE

Secondly, as indicated above, the command lapply allows us to apply a function to

a list. For instance,

lapply(splitted, summary)

applies the summary function to all data frames in the list splitted (output not

shown). See also ?apply, ?sapply, ?tapply, and ?mapply for similar opera-

tions.
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Sorting, Ranking, Finding Duplicates, and Unique Values

• Sorting a vector:

x <- c( 1,3, 2, 5)

sort(x)

sort(x, decreasing=TRUE)

returns the ordered values in decreasing order as

[1] 5 3 2 1

See also the command order for showing the order of vector elements.

• Calculating ranks;

x <- c( 10,30, 20, 50, 20)

rank(x)

returns the following output:

[1] 1.0 4.0 2.5 5.0 2.5

• Finding duplicate values:

x <- c( 1,3, 2, 5, 2)

duplicated(x)

indicates which values occur more than once:

[1] FALSE FALSE FALSE FALSE TRUE

• Removing duplicates:

x <- c( 1,3, 2, 5, 2)

unique(x)

shows the output as

[1] 1 3 2 5

This means unique finds out how many different values a vector has.
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Categorizing Numeric Variables

Continuous variables (vectors) can be categorized using the cut command.

x <- c(1.3, 1.5, 2.5, 3.8, 4.1, 5.9, 7.1, 8.4, 9.0)

xdiscrete <- cut(x, breaks=c(-Inf, 2, 5, 8, Inf) )

is.factor(xdiscrete)

xdiscrete

table(xdiscrete)

returns

[1] TRUE

[1] (-Inf,2] (-Inf,2] (2,5] (2,5] (2,5] (5,8] (5,8] (8,Inf]

[9] (8,Inf]

Levels: (-Inf,2] (2,5] (5,8] (8,Inf]

(-Inf,2] (2,5] (5,8] (8,Inf]

2 3 2 2

Random Variables

• R has built-in functions for several probability density/mass functions (PMF/PDF),

(probability) distribution function (i.e. the CDF), quantile functions and for gen-

erating random numbers.

• The function names use the following scheme:

First letter Function Further letters

d density distribution name

p probability distribution name

q quantiles distribution name

r random number distribution name

• Examples:

dnorm(x=0)

[1] 0.3989423

returns the value of the density function (i.e. P(X = x)) of a N (0, 1)-distribution

at x = 0, which is 1/
√

2π.

pnorm(q=0)

pnorm(q=1.96)

[1] 0.5

[1] 0.9750021
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returns the value of the CDF of a N (0, 1)-distribution at q , i.e. Φ(q) = P(X ≤ q).

qnorm(p=0.95)

returns the value

[1] 1.644854

which is the 95 % quantile of a N (0, 1)-distribution.

X <- rnorm(n=4)

X

returns a vector of four normal random numbers of a N (0, 1)-distribution:

[1] -0.90826678 -0.09089654 -0.47679821 1.22137230

Note that a repeated application of this function leads to different random numbers.

To get a reproducible sequence of random numbers, a seed value needs to be set:

set.seed(89234512)

X <- rnorm(n=4)

X

If all three commands are executed, then the sequence is (using the standard random

generator)

[1] -1.07628865 0.37797715 0.04925738 -0.22137107

• The following functions for distributions can be used:

Model distributions

Function Distribution

beta Beta

binom Binomial

cauchy Cauchy

exp Exponential

gamma Gamma

geom Geometric

hyper Hypergeometric

lnorm Log–normal

norm Normal

pois Poisson

unif Uniform

mvnorm Multivariate normal (in package mvtnorm)
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Test distributions

Function Distribution

chisq χ2

f F

signrank Wilcoxon signed rank (1 sample)

t t

wilcox Wilcoxon rank sum (2 samples)

• For convenience, we list a few important PDF and CDF values in Sect. C.

Key Points and Further Issues

Note:

� R uses the following data structures: vectors, matrices, arrays, lists, and

data frames.

� Entries of matrices and data frames can be accessed using squared brack-

ets. For example, data[1:5,2] refers to the first five observations of

the second column (variable) of the data. Variables of data frames can

also be accessed via the $ sign, e.g. via data$variable.

� If operations such as statistical analyses have to be repeated on several

subgroups, using split together with lapply is a viable option. Alter-

natively, loops (e.g. for) together with conditions (such as if) can be

used.

� R contains the most relevant statistical functions needed

for descriptive and inductive analyses (as shown through-

out the book). User-written packages can be installed using

install.packages(‘‘package_name’’).

� Readers who are interested in learning more about R are referred to

Albert and Rizzo (2012), Crawley (2013), Dalgaard (2008), Ligges

(2008), and Everitt and Hothorn (2011).
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Data Sets

From the data used in this book, we publish some relevant data sets, along with

solutions of the R-exercises, on https://chris.userweb.mwn.de/book/. The important

data sets are explained in the following paragraphs.

Pizza Delivery Data

The pizza delivery data (pizza_delivery.csv, see also Table A.1) is a simulated

data set. The data refers to an Italian restaurant which offers home delivery of pizza.

It contains the orders received during a period of one month: May 2014. There are

three branches of the restaurant. The pizza delivery is centrally managed: an operator

receives a phone call and forwards the order to the branch which is nearest to the

customer’s address. One of the five drivers (two of whom only work part time at the

weekend) delivers the order. The data set captures the number of pizzas ordered as

well as the final bill (in e) which may also include drinks, salads, and pasta dishes.

The owner of the business observed an increased number of complaints, mostly

because pizzas arrive too late and too cold. To improve the service quality of his

business, the owner wants to measure (i) the time from call to delivery and (ii) the

pizza temperature at arrival (which can be done with a special device). Ideally, a pizza

arrives within 30 min of the call; if it takes longer than 40 min, then the customers

are promised a free bottle of wine (which is not always handed out though). The

temperature of the pizza should be above 65 ◦C at the time of delivery. The analysis of

the data aims to determine the factors which influence delivery time and temperature

of the pizzas.

Table A.1 First few rows of the pizza delivery data

day date time operator branch driver temperature

1 Thursday 1 May 2014 35.1 Laura East Bruno 68.3

2 Thursday 1 May 2014 25.2 Melissa East Salvatore 71.0

3 Thursday 1 May 2014 45.6 Melissa West Salvatore 53.4

4 Thursday 1 May 2014 29.4 Melissa East Salvatore 70.3

5 Thursday 1 May 2014 30.0 Melissa West Salvatore 71.5

6 Thursday 1 May 2014 40.3 Melissa Centre Bruno 60.8

...

bill pizzas free_wine got_wine discount_customer

1 58.4 4 0 0 1

2 26.4 2 0 0 0

3 58.1 3 1 0 0

4 35.2 3 0 0 0

5 38.4 2 0 0 0

6 61.8 4 1 1 0

....

https://chris.userweb.mwn.de/book/
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Table A.2 First few rows of the decathlon data from the 2004 Olympic Games in Athens data

100m Long.jump Shot.put High.jump 400m

Roman Sebrle 10.85 7.84 16.36 2.12 48.36

Bryan Clay 10.44 7.96 15.23 2.06 49.19

Dmitriy Karpov 10.50 7.81 15.93 2.09 46.81

Dean Macey 10.89 7.47 15.73 2.15 48.97

Chiel Warners 10.62 7.74 14.48 1.97 47.97

Attila Zsivoczky 10.91 7.14 15.31 2.12 49.40

...

110m.hurdle Discus Pole.vault Javelin 1500m

Roman Sebrle 14.05 48.72 5.0 70.52 280.01

Bryan Clay 14.13 50.11 4.9 69.71 282.00

Dmitriy Karpov 13.97 51.65 4.6 55.54 278.11

Dean Macey 14.56 48.34 4.4 58.46 265.42

Chiel Warners 14.01 43.73 4.9 55.39 278.05

Attila Zsivoczky 14.95 45.62 4.7 63.45 269.54

...

Decathlon Data

This data (decathlon.csv, see also Table A.2) describes the results of the decathlon

competition during the 2004 Olympic Games in Athens. The performance of all 30

athletes in the 100 m race (in seconds), long jump (in metres), shot-put (in metres),

high jump (in metres), 400 m race (in seconds), 110 m hurdles race (in seconds),

discus competition (in metres), pole vault (in metres), javelin competition (in metres),

and 1500 m race (in seconds) are recorded in the data set.

Theatre Data

This data (theatre.csv, see also Table A.3) summarizes a survey conducted on

699 participants in a big Swiss city. The survey participants are all frequent visitors

to a local theatre and were asked about their age, sex (gender, female = 1), annual

income (in 1000 SFR), general expenditure on cultural activities (“Culture”, in SFR

per month), expenditure on theatre visits (in SFR per month), and their estimated

expenditure on theatre visits in the year before the survey was done (in SFR per

month).

Table A.3 First few rows of the theatre data

Age Sex Income Culture Theatre Theatre_ly

1 31 1 90.5 181 104 150

2 54 0 73.0 234 116 140

3 56 1 74.3 289 276 125

4 36 1 73.6 185 75 130

5 24 1 109.0 191 172 140

6 25 0 93.1 273 168 130

...
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Solutions to Chapter 1

Solution to Exercise 1.1

(a) The population consists of all employees of the airline. This may include admin-

istration staff, pilots, stewards, cleaning personnel, and others. Each single

employee relates to an observation in the survey.

(b) The population comprises all students who take part in the examination. Each

student represents an observation.

(c) All people suffering high blood pressure in the study area (city, province, country,

. . .), are the population of interest. Each of these persons is an observation.

Solution to Exercise 1.2 The population in this study refers to all leopards in the

park. Only a few of the leopards are equipped with the GPS devices. This is the

sample on which the study is conducted in. Each leopard refers to an observation.

The measurements are taken for each leopard in the sample. The GPS coordinates

allow to determine the position during the entire day. Important variables to capture

would therefore be X1 = “latitude”, X2 = “longitude”, and X3 = “time”. Each

variable would take on certain values for each observation; for example, the first

leopard may have been observed at latitude 32◦ at a certain time point, and thus

x11 = 32◦.
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Solution to Exercise 1.3

Qualitative: Preferred political party, eye colour, gender,

blood type, subject line of an email.

Quantitative and discrete: Shoe size, customer satisfaction on a scale from

1 to 10, number of goals in a hockey match.

Quantitative and continuous: Time to travel to work, price of a canteen meal,

wavelength of light, delivery time of a parcel,

height of a child.

Solution to Exercise 1.4

(a) The choice of a political party is measured on a nominal scale. The names of the

parties do not have a natural order.

(b) Typically the level of a computer game is measured on an ordinal scale: for

example, level 10 may be more difficult than level 5, but this does not imply that

level 10 is twice as difficult as level 5, or that the difference in difficulty between

levels 2 and 3 is the same as the difference between levels 10 and 11.

(c) The production time of a car is measured on a continuous scale (ratio scale). In

practice, it may be measured in days from the start of the production.

(d) This variable is measured on a continuous scale (ratio scale). Typically, the age

is captured in years starting from the day of birth.

(e) Calender year is a continuous variable which is measured on an interval scale.

Note that the year which we define as “zero” is arbitrary, and it varies from

culture to culture. Because the year zero is arbitrary, and we also have dates

before this year, the calender year is measured on an interval scale.

(f) The scale is continuous (ratio scale).

(g) The scale of ID numbers is nominal. The ID number may indeed consist of

numbers; however, “112233” does not refer to something half as much/good as

“224466”. The number is descriptive.

(h) The final rank is measured on an ordinal scale. The ranks can be clearly ordered,

and the participants can be ranked by using their final results. However the first

winner may not have “double” the beauty of the second winner, it is merely a

ranking.

(i) The intelligence quotient is a variable on a continuous scale. It is constructed

in such a way that differences are interpretative—i.e. being 10 points above or

10 points below the average score of 100 points means the same deviation from

the average. However, ratios cannot be interpreted, so the intelligence quotient

is measured on an interval scale.
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Solution to Exercise 1.5

(a) The data is provided in .csv format. We thus read it in with the read.csv()

command (after we have set a working directory with setwd()):

setwd('C:/directory')

pizza <- read.csv('pizza_delivery.csv')

(b) The data can be viewed by means of the fix() or View() command or simply

being printed:

fix(pizza)

pizza

(c) We can access the data, as for any matrix, by using squared brackets [, ], see also

Appendix A.1. The first entry in the brackets refers to the row and the second

entry to the columns. Each entry either is empty (referring to every row/column)

or consists of a vector or sequence describing the columns/rows we want to select.

This means that we obtain the first 5 rows and variables via pizza[1:5,1:5].

If we give the new data the name “pizza2” we simply need to type:

pizza2 <- pizza[1:5,1:5]

pizza2

We can save this new data either as a .dat file (with write.table()), or as a

.csv file (with write.csv()), or directly as an R data file (with save()) which

gives us access to our entire R session.

write.csv(pizza2,file='pizza2.csv')

write.table(pizza2,file='pizza2.dat')

save(pizza2,file='pizza2.Rdata')

(d) We can access any variable by means of the $ sign. If we type pizza$new we

create a new variable in the pizza data set called “new”. Therefore, a simple way

to add a variable to the data set is as follows:

pizza$NewTemperature <- 32+1.8*pizza$temperature

(e)

attach(pizza)

NewTemperature
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Fig. B.1 Applying str() to the pizza data

(f) We can apply all these commands onto the object “pizza”. The command

str(pizza) gives us an overview of the data set, see also Fig. B.1. The output

shows that the data set contains 1266 observations (deliveries) and 13 variables.

We can also see which of these variables are factors (categorical with defined

categories) and which are numerical. We also see the first actual numbers for

the each variable and the coding scheme used for the categories of the factor

variables. The command dim summarizes the dimension of the data, i.e. the

number of rows and columns of the data matrix. Colnames gives us the names

of the variables from the data set, and so does names. The commands nrow and

ncol give us the number of rows and columns, respectively. Applying head and

tail to the data prints the first and last rows of the data, respectively.

Solution to Exercise 1.6

(a) The appropriate study design is a survey. The information would be obtained via

a questionnaire given to a sample of parents. It is not a controlled experiment

because we do not manipulate one particular variable, while controlling others;

we rather collect data on all variables of interest.

(b) There are different options to ask for parents’ attitudes: of course one could

simply ask “what do you think of immunization?”; however, capturing long

answers in a variable “attitude” may make it difficult to summarize and distil the

information obtained. A common way to deal with such variables is to translate

a concept into a score: for example, one could ask 5 “yes/no”-type questions

(instead of one general question) which relate to attitudes towards immunization,

such as “do you think immunization may be harmful for your child?” or “do you

agree that it is a priority to immunize infants in their first year of life?” The

number of answers that show a positive attitude towards immunization can be

summed up. If there are 5 questions, there are up to 5 points “to earn”. Thus,

each parent may be asked 5 questions and his/her attitude can be summarized

on a scale ranging from 0 to 5, depending on the answers given.
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(c) The following variables are needed:

• Attitude: possibly several variables are needed to capture parents’ information

in a score, see (b) for details. The scale is ordinal because a higher score relates

to a more positive attitude towards immunization, but the differences between

different score levels cannot be interpreted meaningfully.

• Immunized: a binary (“yes–no” type) variable capturing whether the parent

agrees to immunization against chickenpox for their youngest child or not.

This is a nominal variable.

• Gender: to compare “Immunized” for male and female parents. This is a

nominal variable.

• Age: to compare the age distribution in the group of parents who would immu-

nize their child with the age distribution in the group who would not immunize

their child. Age is measured on a continuous scale.

(d) A data set might look as follows:

⎛

⎜
⎝

Parent A1 . . . A5 Attitude Immunization Gender Age

1 yes . . . yes 3 yes male 35

2 no . . . yes 2 no female 26
...

...
...

...
...

...
...

⎞

⎟
⎠

where A1, . . . , A5 refer to variables capturing attitudes towards immunization

and “Attitude” is the score variable summarizing these questions. The questions

may be written down as follows:

• What is the average attitude score towards immunization among parents and

how much does it vary?

• What percentage of parents answer “yes” when asked whether they would

immunize their youngest child against chickenpox?

• What is the difference in the proportion calculated in (b) when stratified by

gender?

• What is the average age of those parents who would immunize their child

compared with the average age of those parents who would not immunize

their child?

Chapter 2

Solution to Exercise 2.1

(a) The table shows the relative frequencies of each party and not the absolute

frequencies. We can thus draw a bar chart where the relative frequencies of

votes are plotted on the y-axis and different parties are plotted on the x-axis. In

R, we can first type in the data by defining two vectors and then use the “barplot”

command to draw the bar chart (Fig. B.2a). Typing “?barplot” and “?par” shows

the graphical options to improve the presentation and look of the graph:

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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(b) Difference in results between the
2014 and 2009 elections

Fig. B.2 Bar charts for national elections in South Africa

results2014 <- c(0.6215,0.2223,0.0635,0.0240,0.0067,0.0620)

barplot(results2014)

barplot(results2014,names.arg=c('ANC','DA','EFF','IFP','COPE',

'Others'), col=gray.colors(6),ylim=c(0,0.7),xlab='Parties',ylab =

'Votes(%)')

(b) There are several options to compare the results. Of course, one can simply plot

the two bar charts with each bar chart representing one election. It would be

important for this solution to ensure that the y-axes are identical in both the

plots. However, if we want to compare the election results in one graph then we

can plot the difference between the two elections, i.e. the win/loss per party. The

bar chart for the new variable “difference in proportion of votes between the two

elections” is shown in Fig. B.2 and is obtained as follows:

results2009 <- c(0.6590,0.1666,0,0.0455,0.0742,0.0547)

difference <- results2014-results2009

barplot(difference)

Remark Another solution would be to create subcategories on the x-axis: for exam-

ple, there would be categories such as “ANC 2009 results” and “ANC 2014 results”,

followed by “DA 2009 results” and “DA 2014 results”, and so on.

Solution to Exercise 2.2

(a) The scale of X is continuous. However, please note that the number of values

X can practically take is limited (90 min plus extra time, recorded in 1 min

intervals).
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Table B.1 Frequency table and other information for the variable “time until first goal”

j [e j−1, e j ) n j f j d j h j F(x)

1 [0, 15) 19 19
55 15 19

825
19
55

2 [15, 30) 17 17
55 15 17

825
36
55

3 [30, 45) 6 6
55 15 6

825
42
55

4 [45, 60) 5 5
55 15 5

825
47
55

5 [60, 75) 4 4
55 15 4

825
51
55

6 [75, 90) 2 2
55 15 2

825
53
55

7 [90, 96) 2 2
55 6 2

825 1

Total 56 1

(b) It is straightforward to obtain the frequency table, as well as the other information

needed to obtain the histogram and the ECDF, see Table B.1.

(c) We need to obtain the heights for each category to obtain the histogram using

h j = f j/d j , see Table B.1.

(d) We obtain the histogram and kernel density plot in R (Fig. B.3a) using the

commands

goals <- c(6,24,91,...,7)

hist(goals, breaks=c(0,15,30,45,60,75,90,96))

plot(density(goals, adjust=1,kernel='gaussian'))
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(b) Kernel density plot

Fig. B.3 Distribution of time to goal
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(b) Grouped data

Fig. B.4 Empirical cumulative distribution function for the variable “time until first goal”

(e) The ECDF values for F(x) are calculated using the relative frequencies f (x),

see Table B.1.

(f) (i) We can easily plot the ECDF (Fig. B.4a) for the original data using the R

command

plot.ecdf(goals)

(ii) Generating the ECDF for the grouped data requires more effort and is not

necessarily intuitive: first we categorize the continuous variable using the

function cut. We use the label option to indicate that the name of each

category corresponds to the upper limit of the respective interval. This new

variable is a “factor” variable and the plot.ecdf function does not work

with this type of variable. We need to first change the “factor” variable into a

“character” variable with strings corresponding to the labels and coerce this

into numeric values. Then we use plot.ecdf, see also Fig. B.4b. Alterna-

tively, we can directly replace the raw values with numbers corresponding

to the upper interval limits.

goals_cat <- cut(goals, breaks=c(0,15,30,45,60,75,90,96),

labels=c(15,30,45,60,75,90,96))

plot.ecdf(as.numeric(as.character(goals_cat))

(g) To solve the exercises, we simply use Formula (2.11) and Rules (2.3ff.)

(i) H(X ≤ 45) = F(45) = 42
55 ≈ 0.76.

(ii) H(X > 80) = 1 − F(80) = 1 −
(

51
55 + 2/55

15 (80 − 75)

)

≈ 0.085.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
http://dx.doi.org/10.1007/978-3-319-46162-5_2
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(iii) H(20 ≤ X ≤ 65) = F(65) − F(20) = 47
55 + 4/55

15 · (65 − 60) −
(

19
55+

17/55
15 · (20 − 15)

)

≈ 0.43.

(h) We know from (2.11) that

F(x p) = p = F(e j−1) + h j (x p − e j−1)

with h j = f j/d j which relates to

x p = e j−1 + p − F(e j−1)

h j

.

We are interested in x0.8 because 80 % of the matches have seen a goal at this

time point:

x0.8 = 45 +
0.8 − 43

56
1

168

= 50.4.

We conclude that 80 % of the “first goals” happened up to 50.4 min.

Solution to Exercise 2.3

(a) We obtain the relative frequencies for the first and fourth intervals as 0.125 (h j ·
d j = 0.125 · 1). Accordingly, for the other two intervals, we obtain frequencies

of f j = 3 · 0.125 = 0.375.

(b) We obtain the absolute frequencies for the first and fourth intervals as 250 (2000 ·
0.125). For the other intervals, we obtain 750 (2000 · 0.375).

Solution to Exercise 2.4

(a) The absolute frequencies n j are evident from the following table:

j e j−1 e j F(e j ) f j n j (= f j n) d j a j

1 8 14 0.25 0.25 0.25 · 500 = 125 6 11

2 14 22 0.40 0.15 75 8 18

3 22 34 0.75 0.35 175 12 28

4 34 50 0.97 0.22 110 16 42

5 50 82 1.00 0.03 15 32 66

(b) We obtain F(X > 34) = 1 − F(34) = 1 − 0.75 = 0.25.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Table B.2 Information needed to calculate the ECDF

Score 1 2 3 4 5 6 7 8 9 10

Results 1 3 8 8 27 30 11 6 4 2
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Fig. B.5 Empirical

cumulative distribution

function for the variable
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Solution to Exercise 2.5

(a) The data needed to calculate and draw the ECDF is summarized in Table B.2;

the ECDF is plotted in Fig. B.5.

(b) It follows from Table B.2 that F(3) = 12 % and F(9) = 98 %.

(c) The grey solid line in Fig. B.5 summarizes the ECDF for the grouped data.

It goes from (0, 0) to (1, 1) with a breakpoint at (5, 0.47) since F(5) = 0.47

summarizes the information for the group “disagree”. Using (2.11) we calculate:

F(3) = F(e j−1) + f j

d j

(x − e j−1)

= F(0) + 0.47

5
· (3 − 0) = 28.2 %

F(9) = F(5) + 0.53

5
· (9 − 5) = 89.4 %.

(d) The results of (b) and (c) are very different. The formula applied in (c) assumes

that the values in each category are uniformly distributed, i.e. that within each

category, each value occurs as often as each other value. However, we know from

(a) that this is not true: there are more values towards the central score numbers.

The assumption used in (c) is therefore inappropriate as also highlighted in

Fig. B.5.

http://dx.doi.org/10.1007/978-3-319-46162-5_2
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Solution to Exercise 2.6 We read in and attach the data as follows:

setwd('C:/directory')

pizza <- read.csv('pizza_delivery.csv')

attach(pizza)

(a) We need the options ylim, xlim, ylab, xlab, col to adjust the

histogram produced with hist(). We then add a dashed (lty=2) line

(type=’l’), which is thick (lwd=3), from (65, 0) to (65, 400) using the lines()

command. See also Fig. B.6a.

hist(temperature,xlab='Temperature',xlim=c(40,90),

ylim=c(0,400),col='lightgrey',ylab='Number of deliveries')

lines(c(65,65),c(0,400),type='l',lty=2,lwd=3)

(b) We can create the histogram as follows, see also Fig. B.6b:

library(ggplot2)

p1 <- ggplot(data=pizza,aes(x=temperature))

p2 <- p1 + geom_histogram(fill='darkgrey',alpha=0.5,binwidth=2.5)

+ scale_y_continuous('Number of deliveries')

plot(p2)

(c) A possible solution is as follows, see also Fig. B.6c:

barplot(table(driver),ylim=c(0,200),col=gray.colors(7),

ylab='Number of deliveries', xlab='Driver',main='Title'))

(d) We can produce the graph (Fig. B.6d) as follows:

p3 <- qplot(driver,data=pizza,aes=('bar'),fill=day)

p4 <- p3 + scale_fill_grey() +theme_bw()

plot(p4)
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Chapter 3

Solution to Exercise 3.1

(a) The arithmetic means can be calculated as follows:

x̄D = 1

10

10
∑

i=1

xi = 1

10
(12.5 + · · · + 17.5) = 17.32,

x̄A = 1

10

10
∑

i=1

xi = 1

10
(342 + · · · + 466) = 612.4.

The ordered values of the two variables are:

i: 1 2 3 4 5 6 7 8 9 10

------------------------------------------------------

D: 7.6 12.1 12.5 14.8 16.2 16.5 17.5 18.5 27.4 29.9

A: 238 342 398 466 502 555 670 796 912 1245

x̃0.5,D = 1

2
(x̃(5) + x̃(6)) = 1

2
(16.2 + 16.5) = 16.35,

x̃0.5,A = 1

2
(x̃(5) + x̃(6)) = 1

2
(502 + 555) = 528.5.

(b) We have nα = 10 · 0.25 = 2.5 which is not an integer. We can therefore calculate

the 25 % quantiles, i.e. the first quartiles, as

x̃0.25,D = x̃(3) = 12.5; x̃0.25,A = x̃(3) = 398.

Similarly, nα = 10 · 0.75 = 7.5 is not an integer and thus

x̃0.75,D = x̃(8) = 18.5; x̃0.75,A = x̃(8) = 796.

One can see that the distributions for both variables are not symmetric. For

example, when looking at the distance hiked, the difference between the median

and the first quartile (16.35 − 12.5) is much larger than the difference between

the median and the third quartile (18.5 − 16.35); this indicates a distribution that

is skewed towards the left.

(c) We can calculate the interquartile ranges as follows:

dQ,A = 796 − 398 = 398; dQ,D = 18.5 − 12.5 = 6.

The mean absolute deviations are:

DD(x̃0.5) = = 1

10
(|7.6 − 16.35| + · · · + |29.9 − 16.35|) = 4.68,

DA(x̃0.5) = = 1

10
(|238 − 528.5| + · · · + |1245 − 528.5|) = 223.2.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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The variances of both the variables are

s̃2
D = 1

10
([7.6 − 16.35]2 + · · · + [29.9 − 16.35]2) ≈ 41.5,

s̃2
A = 1

10
([238 − 528.5]2 + · · · + [1245 − 528.5]2) ≈ 82, 314.

The standard deviations are therefore s̃D =
√

41.5 and s̃A =
√

82, 314.

(d) To answer this question, we can use the rules of linear transformations.

ȳ
(3.4)= 0 + 3.28x̄ = 3.28 · 528.5 = 1722.48,

s̃2
y

(3.29)= b2s̃2
x = 3.282 · 272.2 ≈ 2928.

(e) To draw the box plots, we can use the results from (a), (b), and (c) in this

solution. The median, first quartile, third quartile, and the interquartile range

have already been calculated. It is also easy to determine the minimum and

maximum values from the table of ordered values in (a). What is missing is the

knowledge of whether to treat some of the values as extreme values or not. For the

distance hiked, an extreme value would be any value >18.5 + 1.5 × 6 = 27.5 or

<12.5 − 1.5 × 6 = 3.5. It follows that there is only one extreme value: 29.9 km.

For the maximum altitude, there is no extreme value because there is no value

>796 + 1.5 × 398 = 1292 or <398 − 1.5 × 398 = −199. The box plots are

shown in Fig. B.7a, b.
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(b) Box plot for maximum altitude

Fig. B.7 Box plots for Exercise 3.1
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(f) The data can be summarized as follows:

Class intervals (5; 15] (15; 20] (20; 30]
n j 4 4 2

f j 4/10 4/10 2/10
∑

f j 4/10 8/10 1

We can calculate the weighted arithmetic mean by using the relative frequencies

f j and the middle of the intervals m j :

x̄ =
∑

j

f j m j = 4

10
· 10 + 4

10
· 17.5 + 2

10
· 25 = 16.

To estimate the weighted median, we need to determine the class for which

m−1
∑

j=1

f j < 0.5 and

m
∑

j=1

f j ≥ 0.5

holds. This is clearly the case for the second class K2 = (15; 20]. Thus

x̃0.5 = em−1 +
0.5 −

∑m−1
j=1 f j

fm

dm = 15 + 0.5 − 0.4

0.4
· 5 = 16.25.

(g) If the raw data is known, then the variance for the grouped data will be identical

to the variance calculated in (c). For educational purposes, we show the identity

here. The variance for grouped data can be calculated as:

s̃2 = 1

n

k
∑

j=1

n j (x̄ j − x̄)2

︸ ︷︷ ︸

between

+ 1

n

k
∑

j=1

n j s̃
2
j

︸ ︷︷ ︸

within

Using the arithmetic mean x̄ = 17.32 as well as the means in each class, x̄1 =
11.75, x̄2 = 17.225, and x̄3 = 28.65, we can calculate the variance between the

classes:

s̃2
b = 1

10
([4 · (11.75 − 17.32)2] + [4 · (17.225 − 17.32)2]

+[2 · (28.65 − 17.32)2]) = 38.08735.

The variances within each class are:

s̃2
1 = 1

4
[(7.6 − 11.75)2 + · · · + (14.8 − 11.75)2] = 6.8025,

s̃2
2 = 1

4
[(16.2 − 17.225)2 + · · · + (18.5 − 17.225)2] = 0.956875,

s̃2
3 = 1

2
[(27.4 − 28.65)2 + (29.9 − 28.65)2] = 1.5625.
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We thus get

s̃2
w = 1

10
(4 · 6.8025 + 4 · 0.956875 + 2 · 1.5625) = 3.41625.

The total variance is therefore s̃2 = s̃2
w + s̃2

b = 3.41625 + 38.08735 ≈ 41.5.

The results will typically differ if we do not know the raw data: we have to

replace the arithmetic means within each class, x̄ j , with the middle of each class

a j , i.e. a1 = 10, a2 = 17.5, a3 = 25:

s̃2
b = 1

10
([4 · (10 − 17.32)2] + [4 · (17.5 − 17.32)2]

+[2 · (25 − 17.32)2]) = 33.2424.

We further get

s̃2
1 = 1

4
[(7.6 − 10)2 + · · · + (14.8 − 10)2] = 9.865,

s̃2
2 = 1

4
[(16.2 − 17.5)2 + · · · + (18.5 − 17.5)2] = 0.9225,

s̃2
3 = 1

2
[(27.4 − 25)2 + (29.9 − 25)2] = 1.5625,

and

s̃2
w = 1

10
(4 · 9.865 + 4 · 0.9225 + 2 · 14.885) = 7.292.

The variance is s̃2 = s̃2
w + s̃2

b = 7.292 + 33.2424 ≈ 40.5. The approximation

is therefore good. However, please note that the between-class variance was

estimated too low, but the within-class variance was estimated too high; only

the combination of the two variance components led to reasonable results in this

example. It is evident that the approximation in the third class was not ideal. The

middle of the interval, 25, was not a good proxy for the true mean in this class,

28.65.

(h) It is easy to calculate the mean and the median:

distance <- c(12.5,29.9,...,17.5)

altitude <- c(342,1245,...,466)

mean(distance)

mean(altitude)

median(distance)

median(altitude)

We can use the quantile function, together with the probs option, to get the

quantiles:
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quantile(distance,probs=0.75)

quantile(distance,probs=0.25)

quantile(altitude,probs=0.75)

quantile(altitude,probs=0.25)

However, the reader will see that the results differ slightly from our results

obtained in (b). As noted in Example 3.1.5, R offers nine different ways to obtain

quantiles, each of which can be chosen by the type argument. The difference

between these options cannot be understood easily without a background in

probability theory. It may, however, be worth highlighting that we get the same

results as in (b) if we choose the type=2 option in this example. The interquartile

ranges can be calculated by means of the difference of the quantiles obtained

above. To determine the mean absolute deviation, we have to program our own

function:

amd <- function(mv){1/length(mv)*sum(abs(mv-median(mv)))}

amd(distance)

amd(altitude)

We can calculate the variance using the var command. However, as noted in

Example 3.2.4, on p. 52, R uses 1/(n − 1) rather than 1/n when calculating the

variance. This important alternative formula for variance estimation is explained

in Chap. 9, Theorem 9.2.1. To obtain the results from (c), we hence need to

multiply the output from R by (n − 1)/n:

var(altitude)*9/10

var(distance)*9/10

The box plots can be drawn by using the boxplot command:

boxplot(altitude)

boxplot(distance)

The weighted mean is obtained as follows:

weighted.mean(c(10,17.5,25),c(4/10,4/10,2/10))

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Solution to Exercise 3.2

(a) We need to solve the equation that defines the arithmetic mean:

x̄ = 1

n

∑

i

xi

−90 = 1

10
(200 + 600 − 200 − 200 − 200 − 100 − 100 − 400 + 0 + R)

−90 = 1

10
(−400 + R)

⇒ R = −500.

(b) The mode is x̄M = −200. Using nα = 2.5 and nα = 7.5, respectively, we can

determine the quartiles as follows:

x̃0.25 = x(3) = −200,

x̃0.75 = x(8) = 0.

The interquartile range is dQ = 0 − (−200) = 200.

(c) It is not possible to use the coefficient of variation because some of the values

are negative.

Solution to Exercise 3.3 We calculate

nm = n − nw − nc = 100 − 45 − 20 = 35.

Using the formula for the arithmetic mean for grouped data,

x̄ = 1

n
(nw x̄w + nm x̄m + nc x̄c),

we further get

x̄m = 1

nm

(nx̄ − nw x̄w − nc x̄c)

= 1

35
(100 · 15 − 45 · 16 − 20 · 7.5) = 18.

Similarly, we can use the Theorem of Variance Decomposition, Eq. (3.27), to calcu-

late the variance for the grouped data:

s2 = s2
w + s2

b = 1

n
(nws2

w + nms2
m + ncs2

c )

+1

n

(

nw(x̄w − x̄)2 + nm(x̄m − x̄)2 + nc(x̄c − x̄)2
)

.

This yields

s2
m = 1

nm

[

ns2 − nws2
w − ncs2

c − nw(x̄w − x̄)2 − nm(x̄m − x̄)2 − nc(x̄c − x̄)2
]

= 1

35
(100 · 19.55 − 45 · 6 − 20 · 3 − 45 · 12 − 35 · 32 − 20 · 7.52) = 4.

http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Solution to Exercise 3.4

(a) We evaluate a period of 6 years which means that T = 0, 1, 2, 3, 4, 5. To deter-

mine the average growth rate, we need to first calculate the geometric mean.

There are two options to facilitate this:

(i) Solution:

Bt/Bt−1 = (−, 1.04, 1.125, 0.925, 1.2, 0.933)

x̄G = (1.04 · 1.125 · 0.925 · 1.2 · 0.933)1/5 = 1.04.

(ii) Easier solution:

x̄G = (28/23)1/5 = 1.04.

Since x̄G = 1.04, the average growth rate is r = 1.04 − 1 = 4 %.

(b) To predict the number of members in 2018, we could apply the average growth

rate to the number of members in 2016 for two consecutive years:

B2018 = x̄G B2017, B2017 = x̄G B2016, ⇒ B2018 = x̄2
G B2016

B2018 = 1.042 · 28 = 30.28 ≈ 31.

(c) We could use the approach outlined in (b) to predict the number of members

in 2025. However, this assumes that the average growth rate between 2011 and

2016 remains valid until 2025. This is rather unrealistic. The number of members

of the club increases in some years, but decreases in other years. There is no

guarantee that the pattern observed until 2016 can be generalized to the future.

This highlights that statistical methodology should in general be used with care

when making long-term future predictions.

(d) The invested money is
∑

i xi =e 250 million. We deal with partially grouped

data because the club’s members invest in groups, but the invested sum is clearly

defined and not part of a group or interval. We can thus summarize the data as

follows:

(i) 1 2 3 4

Number of members 10 8 8 4

Rel. number of members f j 10/30 8/30 8/30 4/30

ũi =
∑

j f j 10/30 18/30 26/30 1

Money invested xi 40 60 70 80

Rel. amount per group 40/250 60/250 70/250 80/250

vi 40/250 100/250 170/250 1

The Lorenz curve is plotted in Fig. B.8.
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Fig. B.8 Lorenz curve

(e) The Gini coefficient can be calculated using formula (3.37) as follows:

G = 1 − 1

30
(10(0 + 4/25) + 8(4/25 + 2/5) + 8(2/5 + 17/25)

+ 4(17/25 + 1)) = 1 − 268/375 = 107/375 = 0.2853.

G+ (3.39)= 30/29 · 107/375 = 214/725 = 0.2952.

The concentration of investment is thus rather weak.

Solution to Exercise 3.5 Let us look at Fig. 3.8b first. The quantiles coincide approx-

imately with the bisection line. This means that the distribution of “length of service”

is similar for men and women. They have worked for about the same amount of time

for the company. For example, the median service time should be approximately

the same for men and women, the first quartile should be very similar too, the third

quartile should be similar too, and so on. However, Fig. 3.8a shows a somewhat dif-

ferent pattern: the quantiles for men are consistently higher than those for women.

For example, the median salary will be higher for men. In conclusion, we see that

men and women have a similar length of service in the company, but earn less.

Solution to Exercise 3.6 There are many ways in which a “mode” function can be

programmed. We present a simple and understandable solution, not the most efficient

one. Recall that table constructs a frequency table. This table shows immediately

which value(s) occur(s) most often in the data. How can we extract it? Applying the

http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_3
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Fig. B.9 Lorenz curves

names function on the table returns the names of the values represented in the table.

The only thing we need to do is to choose the name which corresponds to the value

which has been counted most. This yields the following function:

mymode <- function(vec){

mt <- table(vec)

names(mt)[mt == max(mt)]

}

This function will work in general, though it returns a character vector. Using

as.numeric is one option to make the character string numeric, if necessary.

Solution to Exercise 3.7

(a) In this exercise, we do not have individual data; i.e. we do not know how much

each inhabitant earns. The summarized data simply tells us about the wealth

of two groups. For simplicity and for illustrative purposes, we assume that the

wealth is equally distributed in each group. We determine (ũi , ṽi ) as (0.8, 0.1)

and (1, 1) because 80 % of the population earn 10 % of the wealth and 100 %

of the population earn everything. The respective Lorenz curve is illustrated in

Fig. B.9a.

(b) The upper class lost its wealth. This means that 20 % of the population do not

own anything at all. However, the remaining 80 % owns the rest. This yields

(ũi , ṽi ) of (0.2, 0) and (1, 1), see also Fig. B.9b.

(c) In this scenario, 20 % of the population leave the country. However, the remaining

80 %—which are now 100 % of the population—earn the rest. The money is

equally distributed between the population. Figure B.9c shows this situation.
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Solution to Exercise 3.8

(a) It is necessary to use the harmonic mean to calculate the average speed. Using

w1 = n1/n = 180/418 ≈ 0.43, w2 = 117/418 ≈ 0.28, and w3 = 121/418 ≈
0.29 we get

x̄H = 1
∑k

i=1
wi

xi

= 1

0.43/48 + 0.28/37 + 0.29/52
≈ 45.2 km/h.

(b) Travelling at 45.2 km/h means travelling about 361 km in 8 h. The bus will not

be in time.

Solution to Exercise 3.9

(a) The sum of investment is
∑

i xi = e18, 020. To calculate and draw the Lorenz

curve, we need the following table:

(i) 1 2 3 4

investment xi 800 2220 4700 10300

f j 1/4 1/4 1/4 1/4

ui 1/4 2/4 3/4 1

relative investment 0.044 0.123 0.261 0.572

vi 0.044 0.168 0.428 1

The curve is presented in Fig. B.10.

(b) We can calculate the Gini coefficient as follows:

G
(3.37)= 1 − 1

4
[(0 + 0.044) + (0.044 + 0.168) + (0.168 + 0.428)

+ (0.428 + 1)] = 1 − 1

4
· 2.28 = 0.43.

G+ (3.39)= n

n − 1
G = 4

3
· 0.43 = 0.57.

(c) The Gini coefficient remains the same as the relative investment stays the same.

(d) Using the library ineq we can easily reproduce the results in R:

library(ineq)

investment <- c(800,10300,4700,2200)

plot(Lc(investment))

ineq(investment)
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However, please note that the ineq command calculates the unstandardized

Gini coefficient.

Solution to Exercise 3.10

(a) The easiest way to get all these measures is to use the summary function and

apply it to the data columns which relate to quantitative variables:

setwd('C:/yourpath')

pizza <- read.csv('pizza_delivery.csv')

attach(pizza)

summary(pizza[,c('time','temperature','bill','pizzas')])

We then get the following output:

time temperature bill pizzas

Min. :12.27 Min. :41.76 Min. : 9.10 Min. : 1.000

1st Qu.:30.06 1st Qu.:58.24 1st Qu.:35.50 1st Qu.: 2.000

Median :34.38 Median :62.93 Median :42.90 Median : 3.000

Mean :34.23 Mean :62.86 Mean :42.76 Mean : 3.013

3rd Qu.:38.58 3rd Qu.:67.23 3rd Qu.:50.50 3rd Qu.: 4.000

Max. :53.10 Max. :87.58 Max. :75.00 Max. :11.000
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(b) We can use the quantile function:

quantile(time,probs=0.99)

quantile(temperature,probs=0.99)

The results are 48.62 min for delivery time and 79.87 ◦C for temperature. This

means 99 % of the delivery times are less than or equal to 48.62 min and 1 % of

deliveries are greater than or equal to 48.62 min. Similarly, only 1 % of pizzas

were delivered with a temperature greater than 79.87 ◦C.

(c) The following simple function calculates the absolute mean deviation:

amdev <- function(mv){1/length(mv)*sum(abs(mv-mean(mv)))}

amdev(temperature)

(d) We can use the scale, mean, and var commands, respectively.

sc.time <- scale(time)

mean(sc.time)

var(sc.time)

As one would expect, the mean is zero and the variance is 1 for the scaled

variable.

(e) The boxplot command draws a box plot; the range option specifies the range

for which extreme values are defined. As specified in the help files, range=0

produces a box plot with no extreme values.

boxplot(temperature,range=0)

boxplot(time,range=0)

The box plots are displayed in Fig. B.11.

(f) We use the cut command to create a variable which has the categories (10, 20],
(20, 30], (30, 40], (40, 50], (50, 60], respectively. Using the interval mid-points,

as well as the relative frequencies in each class (obtained via the table com-

mand), we get:

tc <- cut(time,breaks=seq(10,60,10))

weighted.mean(c(15,25,35,45,55),table(tc)/sum(table(tc)))

[1] 34.18641

mean(time)

[1] 34.22955

The weighted mean is very similar to the mean from the raw data, see output

above.



Appendix B: Solutions to Exercises 345

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

T
e
m

p
e
ra

tu
re

(a) For temperature

1
0

2
0

3
0

4
0

5
0

6
0

D
e
liv

e
ry

 T
im

e
 (

in
 m

in
u
te

s
)

(b) For delivery time

Fig. B.11 Box plots

(g) The plots can be reproduced by using the qqplot command:

qqplot(time[driver=='Luigi'],time[driver=='Domenico'])

qqplot(time[driver=='Mario'],time[driver=='Salvatore'])

Chapter 4

Solution to Exercise 4.1

(a) We need the following table to calculate the correlation coefficient R:

Café (i) xi R(xi ) yi R(yi ) di d2
i

1 3 1 6 2 −1 1

2 8 4 7 3 1 1

3 7 3 10 5 −2 4

4 9 5 8 4 1 1

5 5 2 4 1 1 1

R = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
= 1 − 6(1 + 1 + 4 + 1 + 1)

5(25 − 1)
= 1 − 0.4 = 0.6.

There is a moderate-to-strong positive correlation between the ratings of the two

coffee enthusiasts. In general, a high rating from one staff member implies a

rather high rating from the other staff member.

(b) Above we have assigned ranks in an increasing order; i.e. the lowest xi/yi gets

the lowest rank (1) and the highest xi/yi gets the highest rank (5). If we use

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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decreasing order and assign the lowest rank to the highest values, we get the

following results:

Café (i) xi R(xi ) yi R(yi ) di d2
i

1 3 5 6 4 1 1

2 8 2 7 3 −1 1

3 7 3 10 1 2 4

4 9 1 8 2 −1 1

5 5 4 4 5 −1 1

As in (a), we have
∑

i d2
i = 8 and therefore, the results are identical: R = 0.6.

Depending on whether ranks are assigned in an increasing order or a decreasing

order, the sign of di differs, but the calculation of R is not affected since the

squared values of di are used for its calculation and the sign of di is thus not

important.

(c) We can summarize the ratings in a 2 × 2 table:

X Y

Coffee Bad 2 1

Quality Good 3 4

The odds ratio is O R = (2 × 4)/(3 × 1) = 2. The chance of rating a coffee as

good is twice as likely for person X compared to person Y .

Solution to Exercise 4.2

(a) The expected frequencies (under independence) are:

Satisfied Unsatisfied

Car 74·58
150 = 28.61 76·58·

150 = 29.39

Car (diesel engine) 74·60
150 = 29.6 76·60

150 = 30.4

Motorbike 74·32
150 = 15.79 76·32

150 = 16.21
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We therefore have

χ2 =
k
∑

i=1

l
∑

j=1

(

ni j − ni+n+ j

n

)2

ni+n+ j

n

= (33 − 28.61)2

28.61
+ (25 − 29.39)2

29.39
+ (29 − 29.6)2

29.6

+ (31 − 30.4)2

30.4
+ (12 − 15.79)2

15.79
+ (20 − 16.21)2

16.21
= 0.6736 + 0.6557 + 0.0122 + 0.0112 + 0.9097 + 0.8861 = 3.1485.

The maximum value χ2 can take is 150(2 − 1) = 150 which indicates that there

is almost no association between type of vehicle and satisfaction with the insur-

ance. The other measures can be calculated as follows:

V =

√

χ2

n(min(k, l) − 1)
=
√

3.1485

150(2 − 1)
= 0.14.

Ccorr:

Ccorr =
√

min(k, l)

min(k, l) − 1

√

χ2

χ2 + n
=

=
√

2

1

√

3.1485

3.1485 + 150
=

√
2
√

0.02056 ≈ 0.20.

The small values of V and Ccorr confirm that the association is rather weak.

(b) The summarized table looks as follows:

Satisfied Unsatisfied

Car 62 56

Motorbike 12 20

Using (4.7), we obtain

χ2 = n(ad − bc)2

(a + d)(c + d)(a + c)(b + d)

= 150(1240 − 672)2

118 · 32 · 74 · 76
= 48, 393, 600

21, 236, 224
≈ 2.2788.

The maximum value χ2 can take is 150(2 − 1). The association is therefore

weak. The odds ratio is

O R = ad

bc
= 62 · 20

12 · 56
= 1240

672
≈ 1.845.

The chances of being satisfied with the insurance are 1.845 times higher among

those who drive a car.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Fig. B.12 Scatter diagram
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(c) All χ2-based statistics suggest that there is only a small association between the

two variables, for both the 2 × 3 and the 2 × 2 tables. However, the odds ratio

gives us a more nuanced interpretation, showing that customers driving a car

are somewhat more satisfied with their insurance. The question is whether the

additional information from the odds ratio is stable and trustworthy. Confidence

intervals for the odds ratio can provide guidance under such circumstances, see

Sect. 9.4.4 for more details.

Solution to Exercise 4.3

(a) The scatter plot is given in Fig. B.12. The black circles show the five observations.

A positive relationship can be discovered: the higher the speed limit, the higher

the number of deaths. However, “Italy” (the observation on the top right) is the

observation which gives the graph a visible pattern and drives our impression

about the potential relationship.

(b) Using x̄ = 61 and ȳ = 4.86 we obtain

Sxx = (55 − 61)2 + (55 − 61)2 + · · · + (75 − 61)2 = 270

Syy = (4.1 − 4.86)2 + (4.7 − 4.86)2 + · · · + (6.1 − 4.86)2 = 2.512

Sxy = (55 − 61)(4.1 − 4.86) + · · · + (75 − 61)(6.1 − 4.86) = 23.2

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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and therefore

r = Sxy
√

Sxx Syy

23.2√
270 · 2.512

= 0.891.

The correlation coefficient of Spearman is calculated using the following table:

Country (i) xi R(xi ) yi R(yi ) di d2
i

Denmark 55 4.5 4.1 5 −0.5 0.25

Japan 55 4.5 4.7 3 1.5 2.25

Canada 60 2.5 4.3 4 −1.5 2.25

Netherlands 60 2.5 5.1 2 0.5 0.25

Italy 75 1 6.1 1 0 0

This yields

R = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
= 1 − 6 · 5

5(25 − 1)
= 0.75.

Please note that above we averaged the ranks for ties. The R function cor uses a

more complicated approach; this is why the results differ slightly when using R.

(c) The results stay the same. Pearson’s correlation coefficient is invariant with

respect to linear transformations which means that it does not matter whether

we use miles/h or km/h.

(d) (i) The grey square in Fig. B.12 represents the additional observation. The

overall pattern of the scatter plot changes with this new observation pair:

the positive relationship between speed limit and number of traffic deaths

is not so clear anymore. This emphasizes how individual observations may

affect our impression of a scatter plot.

(ii) Based on the same approach as in (b), we can calculate x̄ = 62.5, ȳ =
4.6333, Sxx = 337.5, Syy = 4.0533, Sxy = 13, and r = 0.3515. A single

observation changes our conclusions from a strong positive relationship

to a moderate-to-weak relationship. It is evident that Pearson’s correlation

coefficient is volatile and may be affected heavily by outliers or extreme

observations.

Solution to Exercise 4.4

(a) The contingency table for the absolute frequencies is as follows:

1. Class 2. Class 3. Class Staff Total

Rescued 202 125 180 211 718

Not rescued 135 160 541 674 1510

Total 337 285 721 885 2228
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(b) To obtain the conditional relative frequency distributions, we calculate the pro-

portion of passengers rescued (X ) for each travel class (Y ). In the notation of

Definition 4.1.1, we determine f
X |Y

i | j = fi j/ f+ j = ni j/n+ j for all i and j . For

example, frescued|1. class = 202/337 = 0.5994. This yields

1. Class 2. Class 3. Class Staff

Rescued 0.5994 0.4386 0.2497 0.2384

Not rescued 0.4006 0.5614 0.7503 0.7616

It is evident that the proportion of passengers being rescued differs by travel

class. It can be speculated that there is an association between the two variables

pointing towards better chances of being rescued among passengers from higher

travel classes.

(c) Using (4.3), we get

1. Class 2. Class 3. Class Staff Total

Rescued 108.6 91.8 232.4 285.2 718

Not rescued 228.4 193.2 488.6 599.8 1510

Total 337 285 721 885 2228

which can be used to calculate χ2 and V as follows:

χ2 =
k
∑

i=1

l
∑

j=1

(

ni j − ni+n+ j

n

)2

ni+n+ j

n

= (202 − 108.6)2

108.6
+ (125 − 91.8)2

91.8

+ (180 − 232.4)2

232.4
+ (211 − 285.2)2

285.2
+ (135 − 228.4)2

228.4

+ (160 − 193.2)2

193.2
+ (541 − 488.6)2

488.6
+ (674 − 599.8)2

599.8
= 80.33 + 12.01 + 11.82 + 19.30 + 38.19 + 5.71 + 5.62 + 9.18

= 182.16.

V =

√

χ2

n(min(k, l) − 1)
=
√

182.16

2228(2 − 1)
= 0.286.

The value of V indicates a moderate or weak relationship between the two

variables. This is in contradiction to the hypothesis derived from the conditional

distributions in (b).

(d) The table is as follows:

1. Class/2. Class 3. Class/Staff Total

Rescued 327 391 718

Not rescued 295 1215 1510

Total 622 1606 2228

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Using (4.7) we get

χ2 = 2228(327 · 1215 − 295 · 391)2

718 · 1510 · 622 · 1606
= 163.55.

and therefore V =
√

163.55
2228 = 0.271.

There are several relative risks that can be calculated, for example:

f1|1
f1|2

= n11/n+1

n12/n+2
= 327/622

391/1606
≈ 2.16,

f2|1
f2|2

= n21/n+1

n22/n+2
= 295/622

1215/1606
≈ 0.63.

The proportion of passengers who were rescued was 2.16 times higher in the 1./2.

class compared to the 3. class and staff. Similarly, the proportion of passengers

who were not rescued was 0.62 times lower in the 1./2. class compared to the 3.

class and staff. The odds ratio is O R = a·d
b·c = 397,305

115,345 = 3.444. This is nothing

but the ratio of the relative risks, i.e. 2.16/0.63. The chance of being rescued

(i.e. the ratio rescued/not rescued) was almost 3.5 times higher for the 1./2. class

compared to the 3. class and staff.

(e) While Cramer’s V led to rather conservative conclusions regarding a possible

relationship of travel class and rescue status, the conditional relative frequency

distribution, the relative risks, and the odds ratio support the hypothesis that, at

least to some degree, the chances of being rescued were higher in better travel

classes. This makes sense because better travel classes were located towards the

top of the ship with best access to the lifeboats while both third-class passengers

and large numbers of the staff were located and working in the bottom of the

ship, where the water came in first.

Solution to Exercise 4.5

(a) Using (4.17) and (4.18), we get

r = Sxy
√

Sxx Syy

=
∑36

i=1 xi yi − 36x̄ ȳ
√

ns̃2
x ns̃2

y

= 22776 − 36 · 12.22 · 51.28

n
√

s̃2
x s̃2

y

= 216.9

36
√

76.95 · 706.98
≈ 0.026.

This indicates that there is no linear relationship between temperature and hotel

occupancy.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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(b) The scatter plot shows no clear pattern. This explains why the correlation coeffi-

cient is close to 0. However, if we look only at the points for each city separately,

we see different structures for different cities: a possible negative relationship

for Davos (D), a rather positive relationship for Polenca (P) and no visible rela-

tionship for Basel (B). This makes sense because for winter holiday destinations

hotel occupancy should be higher when the temperature is low and for summer

holiday destinations occupancy should be high in the summer months.

(c) We type in the data by specifying three variables: temperature (X), occu-

pancy (Y ) and city (Z). We then simply use the cor command to calculate

the correlation—and condition on the values of Z which we are interested in:

X <- c(-6,-5,2,...,9,4)

Y <- c(91,89,76,...,9,12)

Z <- c(rep('Davos',12),rep('Polenca',12),rep('Basel',12))

cor(X[Z=='Davos'],Y[Z=='Davos'])

cor(X[Z=='Basel'],Y[Z=='Basel'])

cor(X[Z=='Polenca'],Y[Z=='Polenca'])

This yields correlation coefficients of −0.87 for Davos, 0.42 for Basel and 0.82

for Polenca. It is obvious that looking at X and Y only indicates no correlation,

but the information from Z shows strong linear relationships in subgroups. This

example shows the limitations of using correlation coefficients and the necessity

to think in a multivariate way. Regression models offer solutions. We refer the

reader to Chap. 11, in particular Sect. 11.7.3 for more details.

Solution to Exercise 4.6

(a) We use the visual rule of thumb and work from the top left to the bottom right for

the concordant pairs and from the top right to the bottom left for the discordant

pairs:

K = 82 · 43 + 82 · 9 + 82 · 2 + 82 · 10 + 8 · 2 + 8 · 10 + 4 · 10 + 4 · 9

+43 · 10 = 5850

D = 4 · 8 + 9 · 2 = 50

γ = K − D

K + D
= 5800

5900
= 0.98.

(b)

χ2 =
k
∑

i=1

l
∑

j=1

(

ni j − ni+n+ j
n

)2

ni+n+ j
n

=
(82 − 86·90

158 )2

86·90
158

+
(4 − 49·86

158 )2

49·86
158

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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+
(0 − 19·86

158 )2

19·86
158

+
(8 − 90·60

158 )2

90·60
158

+
(43 − 49·60

158 )2

49·60
158

+
(9 − 60·19

158 )2

60·19
158

+
(0 − 12·90

158 )2

12·90
158

+
(2 − 12·49

158 )2

12·49
158

+
(10 − 12·19

158 )2

12·19
158

= 22.25.19.27 + 10.34 + 20.05 + 31.98 + 0.47 + 6.84 + 0.80 + 50.74

= 162.74.

V =

√

χ2

n(min(k, l) − 1)
=
√

162.74

158 · 2
≈ 0.72.

(c) The table is as follows:

Use a leash

Agree or no. Disagree Total

Use for concerts Agree or no. 137 9 146

Disagree 2 10 12

Total 139 19 158

(d) The relative risk can either be summarized as:

2/139

10/19
≈ 0.03 or

10/19

2/139
≈ 36.6.

The proportion of those who disagree with using the park for summer concerts is

0.03 times lower in the group who agree or have no opinion about using leashes

for dogs compared to those who disagree. Similarly, the proportion of those who

disagree with using the park for summer concerts is 36.6 times higher in the

group who also disagree with using leashes for dogs compared to those who do

not disagree.

(e) The odds ratio is OR = (137 · 10)/(2 · 9) ≈ 36.1.

• The chance of not disagreeing with the concert proposal is 36.1 times higher

for those who also do not disagree with the leash proposal.

• The chance of not disagreeing with the leash proposal is 36.1 times higher for

those who also do not disagree with the concert proposal.

• In simpler words: The chance of agreeing or having no opinion for one of the

questions is 36.1 times higher if the person also has no opinion or agrees with

the other question.

(f)

γ = 137 · 10 − 9 · 2

137 · 10 + 9 · 2
= 1352

1388
= 0.974.
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(g) In general, it makes sense to use all the information available, i.e. to use the

ordinal structure of the data and all three categories. While it is clear that γ is

superior to V in our example, one may argue that the relative risks or the odds

ratio could be more useful because they provide an intuitive quantification on

how the two variables relate to each other rather than just giving a summary

of strength and direction of association. However, as we have seen earlier, the

interpretations of the relative risks and the odds ratio are quite clumsy in this

example. It can be difficult to follow the somewhat complicated interpretation.

A simple summary would be to say that agreement with both questions was

strongly associated (γ = 0.98).

Solution to Exercise 4.7 We use the definition of the correlation coefficient, replace

yi with a + bxi and replace ȳ with a + bx̄ to obtain

r =
∑n

i=1(xi − x̄)(a + bxi − (a + bx̄))
√
∑n

i=1(xi − x̄)2
∑n

i=1(a + bxi − (a + bx̄))2
.

This equates to:

r =
∑n

i=1(xi − x̄)(b(xi − x̄))
√
∑n

i=1(xi − x̄)2
∑n

i=1(b(xi − x̄))2
=

b
∑n

i=1(xi − x̄)2

√

b2
∑n

i=1(xi − x̄)2
∑n

i=1(xi − x̄)2
= 1.

Solution to Exercise 4.8

(a) We read in the data, make sure the first column is recognized as containing the

row names, attach the data, and obtain the correlation using the cor command:

decathlon <- read.csv('decathlon.csv', row.names=1)

attach(decathlon)

cor(X.Discus,X.High.jump)

The correlation is 0.52984. This means there is a moderate-to-strong positive

correlation; i.e. the longer the distance the discus is thrown, the higher the height

in the high jump competition.

(b) There are 10 variables. For the first variable, we can calculate the correlation with

9 other variables. For the second variable, we can also calculate the correlation

with 9 other variables. However, we have already calculated one out of the

9 correlations, i.e. when analysing variable number one. So it is sufficient to

calculate 8 correlations for the second variable. Similarly, we need another 7

correlations for the third variable, 6 correlations for the fourth variable, and so on.

In total, we therefore need to have 9 + 8 + 7 + · · · + 1 = 45 correlations. Since

the correlation coefficient describes the relationship between two variables, it
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Fig. B.13 Correlation matrix

for the decathlon data
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makes sense to summarize the results in a contingency table, similar to a matrix,

see Fig. B.13.

(c) Using cor(decathlon) yields the correlation coefficients between all variable

pairs. This is much simpler than calculating the correlation coefficient for each of

the 45 comparisons. Note that the correlation matrix provides the 45 comparisons

both in the upper triangle and in the lower triangle of the table. We know that

r(X, Y ) = r(Y, X), but R still provides us with both, although they are identical.

Note that the diagonal elements are 1 because r(X, X) = 1.

(d) One way to omit rows with missing data automatically is to use the na.omit

command:

cor(na.omit(decathlon))

The results are displayed in Fig. B.13. We see moderate-to-strong correlations

between the 100 m race, 400 m race, 110 m hurdle race and long jump. This

may reflect the speed-and-athletic component of the decathlon contest. We also

see moderate-to-strong correlations between the shot-put, high jump, and discus

events. This may reflect the strength-and-technique component of the contest.

The other disciplines also show correlations which make sense, but they are

rather weak and may reflect the uniqueness of these disciplines.
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Solution to Exercise 4.9

(a) A possible code is listed below:

pizza <- read.csv('pizza_delivery.csv')

pizza$tempcat <- cut(pizza$temperature, breaks=c(0,65,100))

pizza$timecat <- cut(pizza$time, breaks=c(0,30,100))

attach(pizza)

addmargins(table(tempcat,timecat))

timecat

tempcat (0,30] (30,100] Sum

(0,65] 101 691 792

(65,100] 213 261 474

Sum 314 952 1266

We can see that there is a higher proportion of high temperature ((65, 100]) in

the category of short delivery times ((0, 30]) compared to long delivery times

((30, 100]).
(b) Using the data from (a), we can calculate the odds ratio:

(101∗261)/(213∗691)

Thus, the chances of receiving a cold pizza are 0.18 lower if the delivery time is

short.

(c) We use the vcd and ryouready packages to determine the desired measures of

association:

library(vcd)

library(ryouready)

library(lattice)

assocstats(xtabs(∼tempcat+timecat))

ord.gamma(table(tempcat,timecat))

ord.tau(table(tempcat,timecat))

barchart(table(tempcat,timecat),horizontal=F,stack=T)
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Fig. B.14 Plots for Exercise 4.9

Cramer’s V is 0.361, Stuart’s τc is −0.302, and γ is −0.696. The first two

measures indicate a moderate-to-weak relationship between temperature and

delivery time. It is clear from the last two measures that this relationship is

negative, i.e. that shorter delivery times imply higher temperatures. However,

interestingly, τc and γ provide us with a different strengths of association. In

any case, it is clear that for shorter delivery times the customers receive warmer

pizzas, as evident from the stacked bar chart (Fig. B.14a).

(d) The scatter plot (Fig. B.14b) shows a decreasing temperature for an increasing

delivery time. This is also highlighted in the correlation coefficients which are

−0.43 and −0.39 for Bravais–Pearson and Spearman, respectively.

http://dx.doi.org/10.1007/978-3-319-46162-5_4
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plot(time,temperature)

cor(time,temperature)

cor(time,temperature,method='spearman')

(e) It makes sense to compare continuous variables (temperature, number of pizzas,

bill) using the correlation coefficient from Bravais–Pearson. The relationships

between temperature and driver and operator could be visualized using stratified

box plots.

boxplot(temperature∼driver)

boxplot(temperature∼operator)

cor(temperature,pizzas)

cor(temperature,bill)

The correlation coefficients are −0.37 and −0.42 for number of pizzas and

bill, respectively. More pizzas and a higher bill are associated with a lower

temperature. The box plots (Fig. B.14c, d) show variation in the delivery times

of the different drivers, but almost identical delivery times for the two operators.

These results give us a first idea about the relationship in the data. However,

they do not tell us the full story. For example: is the pizza temperature for higher

bills low because a higher bill means more pizzas, and therefore, a less efficient

preparation of the food? Is one driver faster because he mainly delivers for a

particular branch? Could it be that the operators have a different performance

but because they deal with different branches and drivers, these differences are

not visible? To address these questions, a multivariate perspective is needed.

Regression models, as introduced in Chap. 11, provide some answers.

Chapter 5

Solution to Exercise 5.1 There are n = 10 guests and m = 2 guests shake hands

with each other. The order is not important: two guests shake hands no matter who

is “drawn first”. It is also not possible to shake hands with oneself which means that

in terms of the urn model, we have the “no replacement” case. Therefore, we obtain

the solution as (
n

m

)

=
(

10

2

)

= 10 · 9

2 · 1
= 45

handshakes in total.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_5
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Solution to Exercise 5.2 We assume that it is not relevant to know which student

gets tested at which time point. We are thus dealing with combinations without

considering the order. We have n = 25 and m = 5 and therefore obtain:

(a) a total number of
(25

5

)

= 53,130 possibilities.

(b) a total number of
(25+5−1

5

)

=
(29

5

)

= 118,755 possibilities.

In R, the commands choose(25,5) and choose(29,5), respectively provide the

required results.

Solution to Exercise 5.3 The board consists of n = 381 knots. Each knot is either

occupied or not. We may thus assume a “drawing” without replacement in the sense

that each knot can be drawn (occupied) only once. If we place m = 64 counters on

the board, then we can simultaneously think of “drawing” 64 occupied knots out of

a total of 381 knots. The order in which we draw is not relevant—either a knot is

occupied or not. The total number of combinations is
(

n
m

)

=
(381

64

)

≈ 4.35 · 1073. We

obtain the final number in R using the command choose(381,64).

Solution to Exercise 5.4 We obtain the results (again using the command

choose(n,m) in R) as follows:

(a) The customer takes the beers “with replacement” because the customer can

choose among any type of beer for each position in the tray. One can also think

of an urn model with 6 balls relating to the six different beers, where beers are

drawn with replacement and placed on the tray. The order in which the beers are

placed on the tray is not relevant. We thus have
(

n + m − 1

m

)

=
(

6 + 20 − 1

20

)

=
(

25

20

)

= 53, 130

combinations.

(b) If the customer insists on having at least one beer per brewery on his tray, then

6 out of the 20 positions of the tray are already occupied. Based on the same

thoughts as in (a), we calculate the total number of combinations as
(

n + m − 1

m

)

=
(

6 + 14 − 1

14

)

=
(

19

14

)

= 11, 628.

Solution to Exercise 5.5 Since each team has exactly one final place, we have a

“without replacement” situation. Using n = 32 and m = 3 (and choose(n,m) in R)

yields
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(a) 32!
(32−3)! =

(32
3

)

3! = 29, 760 and

(b)
(32

3

)

= 4960.

Solution to Exercise 5.6 There are n = 12 different letters for m = 4 positions of

the membership code. Each letter can be used more than once if desired and we

thus obtain nm = 124 = 20,736 possible combinations. We therefore conclude that

sufficient membership codes are left. However, this may not last long and the book

store may still wish to create another solution for its membership codes.

Solution to Exercise 5.7 For each member of the jury, there are 61 scoring options:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

. . .

. . .

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

6

Different jury members are allowed to assign the same scores. We thus deal with

combinations “with replacement”. To verify this, just think of an urn with 61 balls

where each ball refers to one possible score. Now one ball is drawn, assigned to a

specific jury member and then put back into the urn. Since each score is “attached”

to a particular jury member, we have combinations with consideration of the order

and therefore obtain a total of nm = 619 ≈ 1.17 · 1016 possibilities. If you have

difficulties in understanding the role of “replacement” and “order” in this example,

recall that each member has 61 scoring options: thus, 61 × 61 × · · · × 61 (9 times)

combinations are possible.

Solution to Exercise 5.8

(a) We obtain:
(

2

0

)

= 1 ↔
(

n

2

)

=
(

2

2

)

= 1;
(

3

1

)

= 3 ↔
(

n

2

)

=
(

3

2

)

= 3;
(

4

2

)

= 6 ↔
(

n

2

)

=
(

4

2

)

= 6;
(

5

3

)

= 10 ↔
(

n

2

)

=
(

5

2

)

= 10.

(b) Based on the observations from (a) we conclude that each entry on the diagonal

line can be represented by
(

n
2

)

. The sum of two consecutive entries is thus
(

n
2

)

+
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(
n+1

2

)

. Using the fourth relation in (5.5), it follows that:
(

n

2

)

+
(

n + 1

2

)

(5.5)= n(n − 1)

2
+ (n + 1)n

2

= n(n − 1 + n + 1)

2
= n · 2n

2
= n2.

Chapter 6

Solution to Exercise 6.1

(a) We obtain

• A ∩ B = {8}.
• B ∩ C = {∅}.
• A ∩ C = {0, 4, 8, 9, 15}.
• C \ A = {4, 9, 15}.
• Ω \ (B ∪ A ∪ C) = {6, 7, 11, 13, 14}.

(b) The solutions are:

• P(F̄) = 1 − P(F) = 0.5.

• P(G) = 1 − P(E) − P(F) = 0.3.

• P(E ∩ G) = 0 because the events are pairwise disjoint.

• P(E \ E) = 0.

• P(E ∪ F) = P(E) + P(F) = 0.7.

Solution to Exercise 6.2 We know that the probability of failing the practical exam-

ination is P(P E) = 0.25, of failing the theoretical examination is P(T E) = 0.15,

and of failing both is P(P E ∩ T E) = 0.1.

(a) If we ask for the probability of failing in at least one examination, we imply

that either the theoretical examination, or the practical examination, or both

are not passed. We can therefore calculate the union of events P(P E ∪ T E) =
P(P E) + P(T E) − P(T E ∩ P E) = 0.25 + 0.15 − 0.1 = 0.3.

(b) P(P E\T E) = P(P E) − P(P E ∩ T E) = 0.25 − 0.1 = 0.15.

(c) P(P E ∪ T E) = 1 − P(P E ∪ T E) = 1 − 0.3 = 0.7.

http://dx.doi.org/10.1007/978-3-319-46162-5_5
http://dx.doi.org/10.1007/978-3-319-46162-5_6
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(d) We are interested in the probability of the person failing exactly in one exam. This

corresponds to P(M\C ∪ C\M) = P(M ∪ C) − P(C ∩ M) = 0.3 − 0.1 =
0.2.

Solution to Exercise 6.3 The total number of possible simple events is |�| = 12. The

number of favourable simple events is

(a) |A| = 6 (i.e. the numbers 2, 4, 6, 8, 10, 12). Hence, P(A) = 6
12 = 1

2 .

(b) |B| = 3 (i.e. the numbers 10, 11, 12). Hence, P(B) = 3
12 = 1

4 .

(c) |C | = 2 (i.e. the numbers 10, 12). Hence, P(A ∩ B) = 2
12 = 1

6 .

(d) |D| = 7 (i.e. the numbers 2, 4, 6, 8, 10, 11, 12). Hence, P(A ∪ B) = 7
12 .

Solution to Exercise 6.4 The total number of simple events is
(12

2

)

.

(a) The number of favourable simple events is one and therefore P(right two

presents) = |A|
|�| = 1

(12
2 )

≈ 0.015.

(b) The number of favourable simple events is
(10

2

)

because the person draws two

presents out of the ten “wrong” presents:

P(wrong two presents) = |A|
|�| =

(10
2

)

/
(12

2

)

≈ 0.682. In Sect. 8.1.8, we explain

the hypergeometric distribution which will shed further light on this exercise.

Solution to Exercise 6.5

(a) Let V denote the event that there is too much salt in the soup and let L denote

the event that the chef is in love. We know that

P(V ) = 0.2 ⇒ P(V̄ ) = 0.8.

Similarly, we have

P(L) = 0.3 ⇒ P(L̄) = 0.7.

We therefore get:

P(V ∩ L) = P(V |L) · P(L) = 0.6 · 0.3 = 0.18.

P(V̄ ∩ L) = P(L) − P(V ∩ L) = 0.3 − 0.18 = 0.12.

P(V ∩ L̄) = P(V ) − P(V ∩ L) = 0.2 − 0.18 = 0.02.

P(V̄ ∩ L̄) = P(V̄ ) − P(V̄ ∩ L) = 0.8 − 0.12 = 0.68.

This yields the following contingency table:

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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V V̄ Total

L 0.18 0.12 0.3

L̄ 0.02 0.68 0.7

Total 0.2 0.8 1

(b) The variables are not stochastically independent since, for example, P(V ) ·
P(L) = 0.3 · 0.2 = 0.06 �= 0.18 = P(V ∩ L).

Solution to Exercise 6.6

(a) We define the following events: G = Basil is treated well, Ḡ = Basil is not

treated well; E = Basil survives, Ē = Basil dies. We know that

P(Ḡ) = 1

3
⇒ P(G) = 2

3
; P(E |G) = 1

2
; P(E |Ḡ) = 3

4
.

Using the Law of Total Probability, we get

P(E) = P(E |G) · P(G) + P(E |Ḡ) · P(Ḡ)

= 1

2
· 2

3
+ 3

4
· 1

3
= 1

3
+ 1

4
= 7

12
≈ 0.58.

(b) We can use Bayes’ Theorem to answer the question:

P(Ḡ|E) = P(E |Ḡ) · P(Ḡ)

P(E |Ḡ) · P(Ḡ) + P(E |G) · P(G)
=

3
4 · 1

3
7

12

= 3

7
≈ 0.43.

Solution to Exercise 6.7 We define the following events and probabilities

• A: Bill never paid, P(A) = 0.05 ⇒ P( Ā) = 0.95.

• M: Bill paid too late, P(M) = ?

• P(M | Ā) = 0.2.

• P(M |A) = 1 because someone who never pays will always pay too late.

(a) We are interested in P(M), the probability that someone does not pay his bill in

a particular month, either because he is not able to or he pays too late. We can

use the Law of Total Probability to obtain the results:

P(M) = P(M |A)P(A) + P(M | Ā)P( Ā)

= 0.05 · 1 + 0.2 · 0.95 = 0.24.
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(b) We can use Bayes’ Theorem to obtain the results:

P(A | M) = P(A)P(M | A)

P(M)
= 0.05

0.24
= 0.208.

(c) If the bill was not paid in a particular month, the probability is 20.8 % that it will

never be paid, and 78.2 % that it will be paid. One could argue that a preventive

measure that affects almost 79 % of trustworthy customers are not ideal and the

bank should therefore not block a credit card if a bill is not paid on time.

Solution to Exercise 6.8

(a) The “and” operator refers to the joint distribution of two variables. In our exam-

ple, we want to know the probability of being infected and having been trans-

ported by the truck. This probability can be directly obtained from the respective

entry in the contingency table: 40 out of 200 cows fulfil both criteria and thus

P(B ∩ A) = 40

200
.

(b) We can use P(A) = 100
200 = P( Ā) to obtain:

P(B|A) = P(B ∩ A)

P(A)
= 40/200

100/200
= 40

100
.

(c) Using these results and P(B) = 60
200 , and P(B̄) = 140

200 = 1 − P(B), we obtain

P(B| Ā) = P(B ∩ Ā)

P( Ā)
= 20/200

100/200
= 20

100

by using the Law of Total Probability. We can thus calculate

P(B) = P(B|A)P(A) + P(B| Ā)P( Ā)

= 0.40 · 0.50 + 0.20 · 0.50 = 0.30.

This means that the probability of a cow being infected is 30 %. Alternatively,

we could have simply looked at the marginal distribution of the contingency

table to get P(B) = 60/200 = 0.3.

Solution to Exercise 6.9

(a) The two shots are independent of each other and thus

P(A ∩ B) = 0.4 · 0.5 = 0.2.

P(A ∪ B) = 0.4 + 0.5 − 0.2 = 0.7.

(b) We need to calculate

P(A\B ∪ B\A) = 0.4 − 0.2 + 0.5 − 0.2 = 0.5.

(c)

P(B\A) = 0.5 − 0.2 = 0.3.
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Chapter 7

Solution to Exercise 7.1

(a) The first derivative of the CDF yields the PDF, F ′(x) = f (x):

f (x) =

⎧

⎨

⎩

0 if x < 2

− 1
2 x + 2 if 2 ≤ x ≤ 4

0 if x > 4.

(b) We know from Theorem 7.2.3 that for any continuous variable P(X = x0) = 0

and therefore P(X = 4) = 0. We calculate P(X < 3) = P(X ≤ 3) − P(X =
3) = F(3) − 0 = − 9

4 + 6 − 3 = 0.75.

(c) Using (7.15), we obtain the expectation as

E(X) =
∫ ∞

−∞
x f (x) dx =

∫ 2

−∞
x0 dx +

∫ 4

2

x

(

−1

2
x + 2

)

dx +
∫ ∞

4

x0 dx

= 0 +
∫ 4

2

(

−1

2
x2 + 2x

)

dx + 0

=
[

−1

6
x3 + x2

]4

2

=
(

−64

6
+ 16

)

−
(

−8

6
+ 4

)

= 8

3
.

Given that we have already calculated E(X), we can use Theorem 7.3.1 to cal-

culate the variance as Var(X) = E(X2) − [E(X)]2. The expectation of X2 is

E(X2) =
∫ 4

2

x2

(

−1

2
x + 2

)

dx =
∫ 4

2

(

−1

2
x3 + 2x2

)

dx

=
[

−1

8
x4 + 2

3
x3

]4

2

=
(

−32 + 128

3

)

−
(

−2 + 16

3

)

= 22

3
.

We thus obtain Var(X) = 22
3 −

(
8
3

)2 = 66−64
9 = 2

9 .

Solution to Exercise 7.2

(a) The probability mass function of X is

xi 1 2 3 4 5 6

P(X = x) 1
9

1
9

1
9

2
9

1
9

3
9

Using (7.16), we calculate the expectation as

E(X) = 1 · 1

9
+ 2 · 1

9
+ 3 · 1

9
+ 4 · 2

9
+ 5 · 1

9
+ 6 · 3

9

= 1 + 2 + 3 + 8 + 5 + 18

9
= 37

9
≈ 4.1.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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To obtain the variance, we need

E(X2) = 1 · 1

9
+ 4 · 1

9
+ 9 · 1

9
+ 16 · 2

9
+ 25 · 1

9
+ 36 · 3

9

= 1 + 4 + 9 + 32 + 25 + 108

9
= 179

9
.

Therefore, using Var(X) = E(X2) − [E(X)]2, we get

Var(X) = 179

9
−
(

37

9

)2

= 1611 − 1369

81
= 242

81
≈ 2.98.

The manipulated die yields on average higher values than a fair die because its

expectation is 4.1 > 3.5. The variability of is, however, similar because 2.98 ≈
2.92.

(b) The probability mass function of Y = 1
X

is:

yi = 1
xi

1 1
2

1
3

1
4

1
5

1
6

P( 1
X

= y) 1
9

1
9

1
9

2
9

1
9

3
9

The expectation can hence be calculated as

E(Y ) = E

(
1

X

)

= 1 · 1

9
+ 1

2
· 1

9
+ 1

3
· 1

9
+ 1

4
· 2

9
+ 1

5
· 1

9
+ 1

6
· 3

9

= 1

9
+ 1

18
+ 1

27
+ 1

18
+ 1

45
+ 1

18
= 91

270
.

Comparing the results from (a) and (b) shows clearly that E( 1
X
) �= 1

E(X)
. Recall

that E(bX) = bE(X). It is interesting to see that for some transformations T (X)

it holds that E(T (X)) = T (E(X)), but for some it does not. This reminds us to

be careful when thinking of the implications of transformations.

Solution to Exercise 7.3

(a) There are several ways to plot the CDF. One possibility is to define the function

and plot it with the curve command. Since the function has different defini-

tions for the intervals [∞, 0), [0, 1], (1, ∞], we need to take this into account.

Remember that a logical statement in R corresponds to a number, i.e. TRUE = 1

and FALSE = 0; we can thus simply add the different pieces of the function and

multiply them with a condition which specifies if X is contained in the interval

or not (Fig. B.15):



Appendix B: Solutions to Exercises 367

−0.5 0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

Fig. B.15 Cumulative distribution function for the proportion of wine sold

cdf < −function(x){
(3 ∗ x 2̂ − 2 ∗ xˆ3) ∗ (x <= 1 & x >= 0) + 1 ∗ (x > 1) + 0 ∗ (x < 0)

}
curve(cdf,from=-0.5,to=1.5)

(b) The PDF is

d

dx
F(x) = F ′(x) = f (x) =

{

6(x − x2) if 0 ≤ x ≤ 1

0 elsewhere.

(c)

P

(
1

3
≤ X ≤ 2

3

)

=
∫ 2

3

1
3

f (x)dx = F

(
2

3

)

− F

(
1

3

)

=
[

3

(
2

3

)2

− 2

(
2

3

)3
]

−
[

3

(
1

3

)2

− 2

(
1

3

)3
]

= 0.48149.

(d) We have already defined the CDF in (a). We can now simply plug in the x-values

of interest:

cdf(2/3)-cdf(1/3)
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(e) The variance can be calculated as follows:

E(X) =
∫ 1

0

x6(x − x2)dx = 6 ·
∫ 1

0

(x2 − x3)dx

= 6

[
1

3
x3 − 1

4
x4

]1

0

= 6 ·
(

1

3
− 1

4

)

= 0.5

E(X2) =
∫ 1

0

x26(x − x2)dx = 6 ·
∫ 1

0

(x3 − x4)dx

= 6

[
1

4
x4 − 1

5
x5

]1

0

= 6 ·
(

1

4
− 1

5

)

= 0.3

Var(X) = E(X2) − [E(X)]2 = 0.3 − 0.52 = 0.05.

Solution to Exercise 7.4

(a) Two conditions need to be satisfied for f (x) to be a proper PDF:

(i)
∫ 2

0 f (x)dx = 1:

∫ 2

0

f (x)dx =
∫ 2

0

c · x(2 − x)dx = c

∫ 2

0

x(2 − x)dx

=c

∫ 2

0

(2x − x2)dx = c

[

x2 − 1

3
x3

]2

0

=c

[

4 − 8

3
− (0 − 0)

]

= c · 4

3

!= 1

=⇒c = 3

4
.

(ii) f (x) ≥ 0:

f (x) = 3

4
x(2 − x) ≥ 0 ∀ x ∈ [0, 2].

(b) We calculate

F(x) = P(X ≤ x) =
∫ x

0

f (t)dt =
∫ x

0

3

4
t (2 − t)dt

= 3

4

∫ x

0

(2t − t2)dt = 3

4

[

t2 − 1

3
t3

]x

0

= 3

4

[

x2 − 1

3
x3 − 0

]

= 3

4
x2

(

1 − 1

3
x

)
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and therefore

F(x) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0 if x < 0

3
4 x2(1 − 1

3 x) if 0 ≤ x ≤ 2

1 if 2 < x .

(c) The expectation is

E(X) =
∫ 2

0

x f (x)dx = 3

4

∫ 2

0

(2x2 − x3)dx

= 3

4

[
2

3
x3 − 1

4
x4

]2

0

= 3

4

[
2

3
· 8 − 1

4
· 16 − 0

]

= 3

4

[
16

3
− 12

3

]

= 3

4
· 4

3
= 1.

Using Var(X) = E(X2) − (E(X))2, we calculate the variance as

E(X2) =
∫ 2

0

x2 f (x)dx = 3

4

∫ 2

0

(2x3 − x4)dx

= 3

4

[
2

4
x4 − 1

5
x5

]2

0

= 3

4

[
2

4
· 16 − 1

5
· 32 − 0

]

= 6 − 3 · 32

4 · 5
= 6 − 3 · 8

5
= 6

5

Var(X) = 6

5
− 12 = 1

5
.

(d)

P(|X − μ| ≤ 0.5) ≥ 1 − σ2

c2
= 1 −

( 1
5 )

(0.5)2
= 1 − 0.8 = 0.2.

Solution to Exercise 7.5

(a) The marginal distributions are obtained by the row and column sums of the joint

PDF, respectively. For example, P(X = 1) =
∑J

j=1 p1 j = p1+ = 1/4.

X P(X = xi ) Y P(Y = yi )

0 3/4 1 1/6

1 1/4 2 7/12

3 1/4
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The marginal distribution of X tells us how many customers sought help via the

telephone hotline (75 %) and via email (25 %). The marginal distribution of Y

represents the distribution of the satisfaction level, highlighting that more than

half of the customers (7/12) were “satisfied”.

(b) To determine the 75 % quantile with respect to Y , we need to find the value

y0.75 for which F(y0.75) ≥ 0.75 and F(y) < 0.75 for y < y0.75. Y takes the

values 1, 2, 3. The quantile cannot be y0.75 = 1 because F(1) = 1/6 < 0.75.

The 75 % quantile is y0.75 = 2 because F(2) = 1/6 + 7/12 = 3/4 ≥ 0.75 and

for all values which are smaller than 2 we get F(x) < 0.75.

(c) We can calculate the conditional distribution using P(Y = y j |X = 1) = p1 j/

p1+ = p1 j/(1/6 + 1/12 + 0) = p1 j/(0.25). Therefore,

P(Y = 1|X = 1) = 1/6

1/4
= 2

3
,

P(Y = 2|X = 1) = 1/12

1/4
= 1

3
,

P(Y = 3|X = 1) = 0

1/4
= 0.

Among those who used the email customer service two-thirds were unsatisfied,

one-third were satisfied, and no one was very satisfied.

(d) As we know from (7.27), two discrete random variables are said to be indepen-

dent if P(X = xi , Y = y j ) = P(X = xi )P(Y = y j ). However, in our example,

P(X = 0, Y = 1) = P(X = 0)P(X = 1) = 3
4 · 1

6 �= 0. This means that X and

Y are not independent.

(e) The covariance of X and Y is defined as Cov(X, Y ) = E(XY ) − E(X)E(Y ). We

calculate

E(X) = 0 · 3

4
+ 1 · 1

4
= 1

4

E(Y ) = 1 · 1

6
+ 2 · 7

12
+ 3 · 1

4
= 25

12

E(XY ) = 0 · 1 · 0 + 1 · 1 · 1

6
+ 0 · 2 · 1

2
+ 1 · 2 · 1

12
+ 0 · 3 · 1

4
+ 1 · 3 · 0

= 2

6

Cov(X, Y ) = 2

6
− 1

4
· 25

12
= − 3

16
.

Since Cov(X, Y ) < 0, we conclude that there is a negative relationship between

X and Y : the higher the values of X , the lower the values of Y —and vice

versa. For example, those who use the email-based customer service (X = 1)

are less satisfied than those who use the telephone customer service (X = 0).

It is, however, evident that in this example the values of X have no order and

therefore, care must be exercised in interpreting the covariance.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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Solution to Exercise 7.6 Using Tschebyschev’s inequality (7.24)

P(|X − μ| < c) ≥ 0.9 = 1 − Var(X)

c2
,

we can determine c as follows:

1 − Var(X)

c2
= 0.9

c2 = Var(X)

0.1
= 4

0.1
= 40

c = ±
√

40 = ±6.325.

Thus, the interval is [15 − 6.325; 15 + 6.325] = [8.675; 21.325].

Solution to Exercise 7.7

(a) The joint PDF is:

Y

0 1 2

−1 0.3 0.2 0.2
X

2 0.1 0.1 0.1

(b) The marginal distributions are obtained from the row and column sums of the

joint PDF, respectively:

X −1 2 Y 0 1 2

P(X = x) 0.7 0.3 P(Y = y) 0.4 0.3 0.3

(c) The random variables X and Y are independent if

P(X = x, Y = y) = P(X = x)P(Y = y) ∀x, y.

However, in our example we have, for example,

P(X = −1, Y = 0) = 0.3 �= P(X = −1) · P(Y = 0) = 0.7 · 0.4 = 0.28.

Hence, the two variables are not independent.

(d) The joint distribution of X and Y can be used to obtain the desired distribution

of U . For example, If X = −1 and Y = 0, then U = X + Y = −1. The respec-

tive probability is P(U = −1) = 0.3 because P(U = −1) = P(X = −1, Y =
0) = 0.3 and there is no other combination of X - and Y -values which yields

X + Y = −1. The distribution of U is therefore as follows:

http://dx.doi.org/10.1007/978-3-319-46162-5_7


372 Appendix B: Solutions to Exercises

k −1 0 1 2 3 4

P(U = k) 0.3 0.2 0.2 0.1 0.1 0.1

(e) We calculate

E(U ) =
4
∑

k=−1

k · P(U = k) = 0.8

E(X) = (−1)0.7 + 2 · 0.3 = −0.1

E(Y ) = 0 · 0.4 + 1 · 0.3 + 2 · 0.3 = 0.9

E(U 2) = 0.3 · (−1)2 + · · · + 0.1 · 42 = 3.4

E(X2) = 0.7 · (−1)2 + 0.3 · 22 = 1.9

E(Y 2) = 0.4 · 02 + 0.3 · 12 + 0.3 · 22 = 1.5

Var(U ) = E(U 2) − [E(U )]2 = 3.4 − (0.8)2 = 2.76

Var(X) = E(X2) − [E(X)]2 = 1.9 − (−0.1)2 = 1.89

Var(Y ) = E(Y 2) − [E(Y )]2 = 1.5 − (0.9)2 = 0.69.

It can be seen that E(X) + E(Y ) = −0.1 + 0.9 = 0.8 = E(U ). This makes

sense because we know from (7.31) that E(X + Y ) = E(X) + E(Y ). However,

Var(U ) = 2.76 �= Var(X) + Var(Y ) = 1.89 + 0.69. This follows from (7.7.1)

which says that Var(X ± Y ) = Var(X) + Var(Y ) ± 2Cov(X, Y ) and therefore,

Var(X ± Y ) = Var(X) + Var(Y ) only if the covariance is 0. We know from (c)

that X and Y are not independent and thus Cov(X, Y ) �= 0.

Solution to Exercise 7.8

(a) The random variables X and Y are independent if the balls are drawn with

replacement. This becomes clear by understanding that drawing with replace-

ment implies that for both the draws, the same balls are in the urn and the

conditions in each draw remain the same. The first draw has no implications for

the second draw.

If we were drawing the balls without replacement, then the first draw could possibly

have implications for the second draw: for instance, if the first ball drawn was red,

then the second one could not be red because there is only one red ball in the urn.

This means that drawing without replacement implies dependency of X and Y . This

can also be seen by evaluating the independence assumption (7.27):

P(X = 2, Y = 2) = 0 �= P(X = 2) · P(Y = 2) = 1

8
· 1

8
.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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(b) The marginal probabilities P(X = xi ) can be obtained from the given informa-

tion. For example, 3 out of 8 balls are black and thus P(X = 1) = 3/8. The

conditional distributions P(Y |X = xi ) can be calculated easily by realizing that

under the assumed dependency of X and Y , the second draw is always based on

7 balls (8 balls minus the one drawn under the condition X = xi )—e.g. if the

first ball drawn is black, then 7 balls, 2 of which are black, remain in the urn and

P(Y = 1|X = 1) = 2/7. We thus calculate

P(Y = 1, X = 1) = P(Y = 1|X = 1)P(X = 1) = 2

7
· 3

8
= 6

56

P(Y = 1, X = 2) = P(Y = 1|X = 2)P(X = 2) = 3

7
· 1

8
= 3

56
. . .

P(Y = 3, X = 3) = P(Y = 3|X = 3)P(X = 3) = 3

7
· 4

8
= 12

56

and obtain

Y

1 2 3

1 6
56

3
56

12
56

X 2 3
56 0 4

56

3 12
56

4
56

12
56

(c) The expectations are

E(X) = 1 · 3

8
+ 2 · 1

8
+ 3 · 4

8
= 17

8

E(Y ) = E(X) = 17

8
.

To estimate ρ(X, Y ), we need Cov(X, Y ) as well as Var(X) and Var(Y ):

E(XY ) = 1
6

56
+ 2

3

56
+ 3

12

56
+ 2

3

56
+ 4 · 0 + 6

4

56
+ 3

12

56
+ 6

4

56
+ 9

12

56

= 246

56

E(X2) = E(Y 2) = 12 3

8
+ 22 1

8
+ 32 4

8
= 43

8

Var(X) = E(X2) − [E(X)]2 = 43

8
−
(

17

8

)2

= 55

64

Var(Y ) = Var(X) = 55

64
.
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Using (7.38) and Cov(X, Y ) = E(XY ) − E(X)E(Y ), we obtain

ρ = Cov(X, Y )√
Var(X) · Var(Y )

=
246
56 − 289

64
√

55
64 · 55

64

= −0.143.

Solution to Exercise 7.9

(a) The constant c must satisfy

∫ 100

40

∫ 100

10

c

(
100 − x

x

)

dx dy =
∫ 100

40

∫ 100

10

100c

x
− c dx dy

!= 1

and therefore

∫ 100

40
[100c ln(x) − cx]100

10 dy =
∫ 100

40

100c ln 100 − 100c − 100c ln(10) + 10c dy

which is

∫ 100

40

100c

(

ln
100

10
− 1 + 1

10

)

dy = [100cy (ln 10 − 9/10)]100
40

= 600c(10 ln 10 − 9) → c ≈ 0.00012.

(b) The marginal distribution is

fX (x) =
∫ 100

40

c

(
100 − x

x

)

dy =
[

c

(
100 − x

x

)

y

]100

40

= 100c

(
100 − x

x

)

− 40c

(
100 − x

x

)

≈ 0.00713

(
100 − x

x

)

for 10 ≤ x ≤ 100.

(c) To determine P(X > 75), we need the cumulative marginal distribution of X :

FX (x) =
∫ x

−∞
fX (t)dt =

∫ x

10

0.00713

(
100 − t

t

)

dt

=
∫ x

10

0.00713

t
− 0.00713 dt = [0.713 ln(t) − 0.00713]x

10

= 0.713 ln(x) − 0.00713x − 0.00713 ln(10) + 0.00713 · 10.

Now we can calculate

P(X > 75) = 1 − P(X ≤ 75) = 1 − FX (75) = 1 − 0.973 ≈ 2.7 %.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
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(d) The conditional distribution is

fY |X (x, y) = f (x, y)

f (x)
=

c
(

100−x
x

)

60c
(

100−x
x

) = 1

60
.

Solution to Exercise 7.10 If we evaluate the expectation with respect to Y , then both

μ and σ can be considered to be constants. We can therefore write

E(Y ) = E

(
X − μ

σ

)

= 1

σ
(E(X) − μ).

Since E(X) = μ, it follows that E(Y ) = 0. The variance is

Var(Y ) = Var

(
X − μ

σ

)

.

Applying Var(a + bX) = b2Var(X) to this equation yields a = μ, b = 1
σ

and there-

fore

Var(Y ) = 1

σ2
Var(X) = σ2

σ2
= 1.

Chapter 8

Solution to Exercise 8.1 The random variable X: “number of packages with a toy” is

binomially distributed. In each of n = 20 “trials”, a toy can be found with probability

p = 1
6 .

(a) We thus get

P(X = 4) =
(

n

k

)

pk(1 − p)n−k =
(

20

4

)(
1

6

)4(5

6

)16

≈ 0.20.

(b) Similarly, we calculate

P(X = 0) =
(

n

k

)

pk(1 − p)n−k =
(

20

0

)(
1

6

)0(5

6

)20

= 0.026.

(c) This question relates to a hypergeometric distribution: there are N = 20 pack-

ages with M = 3 packages with toys and N − M = 17 packages without a toy.

The daughter gets n = 5 packages and we are interested in P(X = 2). Hence,

we get

P(X = 2) =
(

M
x

)(
N−M
n−x

)

(
N
n

) =
(3

2

)(17
3

)

(20
5

) ≈ 0.13.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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Solution to Exercise 8.2 Given X ∼ N (42.1, 20.82), we get:

(a)

P(X ≥ 50) = 1 − P(X ≤ 50) = 1 − φ

(
x − μ

σ

)

= 1 − φ

(
50 − 42.1

20.8

)

= 1 − φ(0.37) ≈ 0.35.

We obtain the same results in R as follows:

1-pnorm(50,42.1,20.8)

(b)

P(30 ≤ X ≤ 40) = P(X ≤ 40) − P(X ≤ 30)

= φ

(
40 − 42.1

20.8

)

− φ

(
30 − 42.1

20.8

)

= φ(−0.096) − φ(−0.577) = 1 − 0.538 − 1 + 0.718

≈ 18 %.

We would have obtained the same results in R using:

pnorm(40,42.1,20.8)-pnorm(30,42.1,20.8)

Solution to Exercise 8.3 The random variable X follows a discrete uniform distrib-

ution because pi = 1
12 for each xi . The expectation and variance are therefore

E(X) = k + 1

2
= 12 + 1

2
= 6.5,

Var(X) = 1

12
(122 − 1) ≈ 11.92.

Solution to Exercise 8.4 Each guess is a Bernoulli experiment where the right

answer is given with a probability of 50 %. The number of correct guesses therefore

follows a binomial distribution, i.e. X ∼ B(10; 0.5). The probability of giving the

right answer at least 8 times is identical to the probability of not being wrong more
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than 2 times. We can thus calculate P(X ≥ 8) as P(X ≤ 2):

P(X = 0) =
(

10

0

)

0.50(1 − 0.5)10 ≈ 0.000977

P(X = 1) =
(

10

1

)

0.51(1 − 0.5)9 ≈ 0.009766

P(X = 2) =
(

10

2

)

0.52(1 − 0.5)8 ≈ 0.043945.

This relates to

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= 0.000977 + 0.009766 + 0.043945 ≈ 0.0547.

We would have obtained the same results in R using:

pbinom(2,10,0.5)

1-pbinom(7,10,0.5)

Solution to Exercise 8.5

(a) It seems appropriate to model the number of fused bulbs with a Poisson dis-

tribution. We assume, however, that the probabilities of fused bulbs on two

consecutive days are independent of each other; i.e. they only depend on λ but

not on the time t .

(b) The arithmetic mean is

x̄ = 1

30
(0 + 1 · 8 + 2 · 8 + · · · + 5 · 1) = 52

30
= 1.7333

which means that, on an average, 1.73 bulbs are fused per day. The variance is

s2 = 1

30
(0 + 12 · 8 + 22 · 8 + · · · + 52 · 1) − 1.73332

= 142

30
− 3.0044 = 1.72889.

We see that mean and variance are similar, which is an indication that the

choice of a Poisson distribution is appropriate since we assume E(X) = λ and

Var(X) = λ.

(c) The following table lists the proportions (i.e. relative frequencies f j ) together

with the probabilities P(X = x) from a Po(1.73)-distribution. As a reference,

we also list the probabilities from a Po(2)-distribution since it is not practically

possible that 1.73 bulbs stop working and it may hence be an option to round

the mean.
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fi Po(1.73) Po(2)

P(X = 0) 0.2 0.177 0.135

P(X = 1) 0.267 0.307 0.27

P(X = 2) 0.267 0.265 0.27

P(X = 3) 0.167 0.153 0.18

P(X = 4) 0.067 0.067 0.09

P(X = 5) 0.033 0.023 0.036

One can see that observed proportions and expected probabilities are close

together which indicates again that the choice of a Poisson distribution was

appropriate. Chapter 9 gives more details on how to estimate parameters, such

as λ, from data if it is unknown.

(d) Using λ = 1.73, we calculate

P(X > 5) = 1 − P(X ≤ 5) = 1 −
5
∑

i=0

λi

i ! exp(−λ)

= 1 − exp(−1.73)

(

1.730

0! + 1.731

1! + · · · + 1.735

5!

)

= 1 − 0.99 = 0.01.

Thus, the bulbs are replaced on only 1 % of the days.

(e) If X follows a Poisson distribution then, given Theorem 8.2.1, Y follows an

exponential distribution with λ = 1.73.

(f) The expectation of an exponentially distributed variable is

E(Y ) = 1

λ
= 1

1.73
= 0.578.

This means that, on average, it takes more than half a day until one of the bulbs

gets fused.

Solution to Exercise 8.6

(a) Let X be a random variable describing “the number x of winning tickets

among n bought tickets”; then X follows the hypergeometric distribution

X ∼ H(n, 500, 4000). We need to determine n for the conditions specified.

We are interested in

P(X ≥ 3) = 1 − P(X = 2) − P(X = 1) − P(X = 0).

Using the PMF of the hypergeometric distribution

P(X = x) =
(

M
x

)(
N−M
n−x

)

(
N
n

) ,

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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this equates to

P(X ≥ 3) = 1 −
(500

2

)(4000−500
n−2

)

(4000
n

) −
(500

1

)(4000−500
n−1

)

(4000
1

) −
(500

0

)(4000−500
n

)

(4000
n

) .

We have the following requirement:

1 −
(500

2

)(4000−500
n−2

)

(4000
n

) −
(500

1

)(4000−500
n−1

)

(4000
1

) −
(500

0

)(4000−500
n

)

(4000
n

)

!
≥ 0.99.

To solve this equation, we can program this function for P(X > 3; n) in R and

evaluate it for different numbers of tickets sold, e.g. between 50 and 100 tickets:

raffle <- function(n){

p <- 1-((choose(500,2)*choose(3500,n-2))/(choose(4000,n)))

-((choose(500,1)*choose(3500,n-1))/(choose(4000,n)))

-((choose(500,0)*choose(3500,n))/(choose(4000,n)))

return(p)

}

raffle(50:100)

raffle(63:64)

The output shows that at least 64 tickets need to be bought to have a 99%

guarantee that at least three tickets win. This equates to spending e 96.

(b) We can plot the function as follows:

nb <- seq(1:75)

plot(nb,tombola(nb),type='l')

Figure B.16 shows the relationship between the number of tickets bought and

the probability of having at least three winning tickets.

(c) The solution of (a) shows that it is well worth taking part in the raffle: Marco

pays e96 and with a probability of 99 % and he wins at least three prizes which

are worth e142 · 3 = 426. More generally, the money generated by the raffle

is e1.50 × 4000 = 6000, but the prizes are worth e142 · 500 = 71, 000. One

may suspect that the company produces the appliances much more cheaply than

they are sold for and is thus so generous.
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Fig. B.16 Probability to have at least three winning tickets given the number of tickets bought

Solution to Exercise 8.7 The probability of getting a girl is p = 1 − 0.5122 =
0.4878.

(a) We are dealing with a geometric distribution here. Since we are interested in

P(X ≤ 3), we can calculate:

P(X = 1) = 0.4878

P(X = 2) = 0.4878(1 − 0.4878) = 0.2498512

P(X = 3) = 0.4878(1 − 0.4878)2 = 0.1279738

P(X ≤ 3) = P(X = 1) + P(X = 2) + P(X = 3) = 0.865625.

We would have obtained the same result in R using:

pgeom(2,0.4878)

Note that we have to specify “2” rather than “3” for x because R takes the number

of unsuccessful trials rather the number of trials until success.

(b) Here we deal with a binomial distribution with k = 2 and n = 4. We can calculate

P(X = 2) as follows:

P(X = k) =
(

n

k

)

pk(1 − p)n−k

=
(

4

2

)

0.48782 · (1 − 0.4878)2 = 0.3745536.

R would have given us the same result using the dbinom(2,4,0.4878) com-

mand.
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Solution to Exercise 8.8

(a) The random variable Y follows a Poisson distribution, see Theorem 8.2.1 for

more details.

(b) The fisherman catches, on average, 3 fish an hour. We can thus assume that the

rate λ is 3 and thus E(Y ) = λ = 3. Similarly, E(X) = 1
λ

= 1
3 which means that

it takes, on average, 20 min to catch another fish.

(c) Using the PDF of the Poisson distribution, we get:

P(Y = 5) = 35

5! exp(−3) = 0.1 = 10 %

P(Y < 1) = P(Y = 0) = 30

0! exp(−3) ≈ 0.0498 ≈ 5 %.

We would have obtained the same results in R using the dpois(5,3) and

dpois(0,3) commands.

Solution to Exercise 8.9 The random variable X = “choice of dessert” follows a

multinomial distribution. More precisely, X1 describes whether chocolate brownies

were chosen, X2 describes whether yoghurt was chosen, X3 describes whether lemon

tart was chosen and X = {X1, X2, X3}.

(a) Using the PMF of the multinomial distribution, we get

P(X1 = n1, X2 = n2, . . . , Xk = nk) = n!
n1!n2! · · · nk !

· p
n1
1 · · · p

nk

k

P(X1 = 2, X2 = 1, X3 = 2) = 5!
2!1!2! · 0.22 · 0.31 · 0.52

= 9 %.

We would have obtained the same results in R as follows:

dmultinom(c(2,1,2),prob=c(0.2,0.3,0.5))

(b) The probability of choosing lemon tart for the first two guests is 1. We thus need

to determine the probability that 3 out of the remaining 3 guests order lemon

tart:

P(X1 = 0, X2 = 0, X3 = 3) = 3!
0!0!3! · 0.20 · 0.30 · 0.53

= 12.5 %.

Using dmultinom(c(0,0,3),prob=c(0.2,0.3,0.5)) in R, we get the same

result.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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(c) The expectation vector is

E(X) = (np1, . . . , npk) = (20 · 0.2, 20 · 3, 20 · 0.5) = (4, 6, 10).

This means we expect 4 guests to order brownies, 6 to order yoghurt, and 10 to

order lemon tart. The covariance matrix can be determined as follows:

Cov(X i , X j ) =
{

npi (1 − pi ) if i = j

−npi p j if i �= j.

Using n = 20, p1 = 0.2, p2 = 0.3 and p3 = 0.5, we obtain the covariance

matrix as:
⎛

⎝

3.2 −1.2 −2

−1.2 4.2 −3

−2 −3 5

⎞

⎠

Solution to Exercise 8.10

P(S ≥ 1, W ≥ 1)
indep.= P(S ≥ 1) · P(W ≥ 1)

= (1 − P(S = 0)) · (1 − P(W = 0))

= (1 − e−3 30

0! ) · (1 − e−4 40

0! )

≈ 0.93.

Solution to Exercise 8.11

(a) Random numbers of a normal distribution can be generated using the rnorm

command. By default μ = 0 and σ = 1 (see ?rnorm), so we do not need to

specify these parameters. We simply need to set n = 1000. The mean of the

1000 realizations can thus be obtained using mean(rnorm(1000)). We can, for

example, write a for loop to repeat this process 1000 times. An empty (=NA)

vector of size 1000 can be used to store and evaluate the results:

set.seed(24121980)

R <- 1000

means <- c(rep(NA,R))

for(i in 1:R){means[i] <- mean(rnorm(1000))}

mean(means)

[1] -0.0007616465

var(means)

[1] 0.0009671311

plot(density(means))

We see that the mean of the arithmetic means is close to zero, but not exactly zero.

The variance is approximately σ2/n = 1/1000 = 0.001, as one would expect
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Fig. B.17 Kernel density

plot of the distribution

simulated in Exercise 8.11a
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from the Central Limit Theorem. The distribution is symmetric, similar to a

normal distribution, see Fig. B.17. It follows that X̄n is approximately N (μ, σ2

n
)

distributed, as one could expect from the Theorem of Large Numbers and the

Central Limit Theorem. It is important to understand that X̄ is not fixed but a

random variable which follows a distribution, i.e. the normal distribution.

(b) We can use the same code as above, except we use the exponential instead of

the normal distribution:

means2 <- c(rep(NA,R))

for(i in 1:R){means2[i] <- mean(rexp(1000))}

mean(means2)

[1] 1.001321

var(means2)

[1] 0.001056113

plot(density(means))

The realizations are i.i.d. observations. Once can see that, as in a), X̄n is approx-

imately N (μ, σ2

n
) = N (1, 1/1000) distributed. It is evident that the X i do not

necessarily need to follow a normal distribution for X̄ to follow a normal distri-

bution, see also Fig. B.18a.

(c) Increasing the number of repetitions makes the distribution look closer to a

normal distribution, see Fig. B.18b. This visualizes that as n tends to infinity X̄n

gets closer to a N (μ, σ2

n
)-distribution.
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(b) 10,000 repetitions

Fig. B.18 Kernel density plots for Exercises 8.11b and 8.11c

Chapter 9

Solution to Exercise 9.1

(a) The exercise tells us that X i
i id∼ Po(λ), i = 1, 2, . . . , n. Let us look at the real-

izations x1, x2, . . . , xn : under the assumption of independence, which we know

is fulfilled because the X i ’s are i.i.d., and we can write the likelihood function

as the product of the n PMF’s of the Poisson distribution:

L(θ; x) =
n
∏

i=1

f (xi ; θ) =
n
∏

i=1

λxi

xi !
e−λ = λ

∑

xi

∏

xi !
e−nλ.

It is better to work on a log-scale because it is easy to differentiate. The results

are identical no matter whether we use the likelihood function or the log-

likelihood function because the log transformation is monotone in nature. The

log-likelihood function is:

ln L =
∑

xi ln λ − ln(x1! · · · xn !) − nλ.

Differentiating with respect to λ yields

∂ ln L

∂λ
= 1

λ

∑

xi − n
!= 0

which gives us the ML estimate:

λ̂ = 1

n

∑

xi = x̄ .

We need to confirm that the second derivative is < 0 at λ̂ = x̄ ; otherwise, the

solution would be a minimum rather than a maximum. We get

∂2 ln L

∂λ2
= − 1

λ̂2

∑

xi = −n

λ̂
< 0.

http://dx.doi.org/10.1007/978-3-319-46162-5_9


Appendix B: Solutions to Exercises 385

It follows that the arithmetic mean x̄ = λ̂ is the maximum likelihood estimator

for the parameter λ of a Poisson distribution.

(b) Using the results from (a) we can write the log-likelihood function for x1 =
4, x2 = 3, x3 = 8, x4 = 6, x5 = 6 as:

ln L = 27 ln λ − ln(4! 3! 8! 6! 6!) − 5λ.

because
∑

xi = 27. We can write down this function in R as follows:

MLP <- function(lambda){

27∗log(lambda) - log(factorial(4)∗...∗factorial(6)) -

5∗lambda
}

The function can be plotted using the curve command:

curve(MLP, from=0, to=10)

Figure B.19 shows the log-likelihood function. It can be seen that the function

reaches its maximum at x̄ = 5.4.

(c) Using (a) we can write the likelihood function as

L(θ; x) =
n
∏

i=1

f (xi ; θ) =
n
∏

i=1

λxi

xi !
e−λ = λ

∑

xi

∏

xi !
e−nλ = λ

∑

xi e−nλ
︸ ︷︷ ︸

g(t,λ)

1
∏

xi !
︸ ︷︷ ︸

h(x1,...,xn)

.

Fig. B.19 Illustration of the

log-likelihood function
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This means T =
∑n

i=1 xi is sufficient for λ. The arithmetic mean, which is

the maximum likelihood estimate, is a one-to-one function of T and therefore

sufficient too.

Solution to Exercise 9.2

(a) The probability density function of a normal distribution equates to

f (x) = 1

σ
√

2π
exp

(

− (x − μ)2

2σ2

)

with ∞ < x < ∞, −∞ < μ < ∞, σ2 > 0. The likelihood function is therefore

L(x1, x2, . . . , xn|μ,σ2) =
(

1√
2πσ2

)n

exp

(

−
n
∑

i=1

(xi − μ)2

2σ2

)

.

To find the maximum of L(x1, x2, . . . , xn|μ,σ2), it is again easier to work with

the log-likelihood function, which is

l = ln L(x1, x2, . . . , xn|μ,σ2) = −n

2
ln 2π − n

2
ln σ2 −

n
∑

i=1

(
(xi − μ)2

2σ2

)

.

Assuming σ2 to be 1, differentiating the log-likelihood function with respect to

μ, and equating it to zero gives us

∂l

∂μ
= 2

n
∑

i=1

(
xi − μ

12

)

= 0 ⇔ nμ =
n
∑

i=1

xi .

The ML estimate is therefore μ̂ = x̄ .

(b) Looking at the differentiated log-likelihood function in (a) shows us that the ML

estimate of μ is always the arithmetic mean, no matter whether σ2 is 1 or any

other number.

(c) Differentiating the log-likelihood function from (a) with respect to σ2 yields

∂l

∂σ2
= −n

2

1

σ2
+ 1

2σ4

n
∑

i=1

(xi − μ)2 = 0.

Using μ̂ = x̄ we calculate ∂l
∂σ2 = 0 as

σ̂2 = 1

n

n
∑

i=1

(xi − μ̂)2 = 1

n

n
∑

i=1

(xi − x̄)2.

Since the parameter θ = (μ,σ2) is two-dimensional, it follows that one needs to

solve two ML equations, where μ̂ML is estimated first, and σ̂2
ML second (as we

did above). It follows further that one needs to look at the positive definiteness
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of a matrix (the so-called information matrix) when checking that the second-

order derivatives of the estimates are positive and therefore the estimates yield

a maximum rather then a minimum. However, we omit this lengthy and time-

consuming task here.

Solution to Exercise 9.3 The probability density function of U (0, θ) is

f (x) = 1

θ
if 0 < x < θ and 0 otherwise.

Note that this equates to the PDF from Definition 8.2.1 for a = 0 and b = θ. The

likelihood function is therefore

L(x1, x2, . . . , xn|θ) =
(

1

θ

)n

if 0 < xi < θ and 0 otherwise.

One can see that L(x1, x2, . . . , xn|θ) increases as θ decreases. The maximum of

the likelihood function is therefore achieved for the smallest valid θ. In particular, θ is

minimized when θ ≥ max (x1, x2, . . . , xn) = x(n). This follows from the definition

of the PDF which requires that 0 < xi < θ and therefore θ > xi . Thus, the maximum

likelihood estimate of θ is x(n), the greatest observed value in the sample.

Solution to Exercise 9.4

(a) Tn(X) is unbiased, and therefore also asymptotically unbiased, because

E(Tn(X)) = E(nXmin)
(7.29)= n

1

nλ
= 1

λ
= μ.

Similarly, Vn(X) is unbiased, and therefore also asymptotically unbiased,

because

E(Vn(X)) = E

(

1

n

n
∑

i=1

X i

)

(7.29)= 1

n

n
∑

i=1

E(X i ) = 1

n
n

1

λ
= μ.

(b) To calculate the MSE we need to determine the bias and the variance of the

estimators as we know from Eq. (9.5). It follows from (a) that both estimators

are unbiased and hence the bias is 0. For the variances we get:

Var(Tn(X)) = Var(nXmin)
(7.33)= n2Var(Xmin) = n2 1

n2λ2
= μ2.

Var(Vn(X)) = Var

(

1

n

n
∑

i=1

X i

)

(7.33)= 1

n2

n
∑

i=1

Var(X i ) = 1

n2
n

1

λ2
= 1

n
μ2.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_9
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Since the mean squared error consists of the sum of the variance and squared

bias, the MSE for Tn(X) and Vn(X) are μ2 and n−1μ2, respectively. One can

see that the larger n, the more superior Vn(X) over Tn(X) in terms of the mean

squared error. In other words, Vn(X) is more efficient than Tn(X) because its

variance is lower for any n > 1.

(c) Using the results from (b), we get

lim
n→∞

MSE(Vn(X)) = lim
n→∞

1

n
μ2 = 0.

This means the MSE approaches 0 as n tends to infinity. Therefore, Vn(X) is MSE

consistent for μ. Since Vn(X) is MSE consistent, it is also weakly consistent.

Solution to Exercise 9.5

(a) The point estimate of μ is x̄ which is

μ̂ = x̄ = 1

n

n
∑

i=1

xi = 1

24
(450 + · · · + 790) = 667.92.

The variance of σ2 can be estimated unbiasedly using s2:

σ̂2 = s2 = 1

n − 1

n
∑

i=1

(xi − x̄)2

= 1

23
((450 − 667.92)2 + · · · + (790 − 667.92)2) ≈ 18, 035.

(b) The variance is unknown and needs to be estimated. We thus need the t-

distribution to construct the confidence interval. We can determine t23;0.975 ≈
2.07 usingqt(0.975,23) or Table C.2 (though the latter is not detailed enough),

α = 0.05, x̄ = 667.97 and σ̂2 = 18, 035. This yields

Il(X) = x̄ − tn−1;1−α/2 · s√
n

= 667.92 − t23;0.975 ·
√

18, 035√
24

≈ 611.17,

Iu(X) = x̄ + tn−1;1−α/2 · s√
n

667.92 − t23;0.975 ·
√

18, 035√
24

≈ 724.66.

The confidence interval for μ is thus [611.17; 724.66].

(c) We can reproduce these results in R as follows:

eland <- c(450,730,700,600,620,,790)

t.test(eland)$conf.int
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Solution to Exercise 9.6

• Let us start with the confidence interval for the “Brose Baskets Bamberg”. Using

t15;0.975 = 2.1314 (qt(0.975,15) or Table C.2) and α = 0.05, we can determine

the confidence interval as follows:

Il(Ba) = x̄ − tn−1;1−α/2 · s√
n

= 199.06 − t15;0.975 · 7.047√
16

= 195.305,

Iu(Ba) = x̄ + tn−1;1−α/2 · s√
n

= 199.06 + t15;0.975 · 7.047√
16

= 202.815.

Thus, we get [195.305; 202.815].
• For the “Bayer Giants Leverkusen”, we use t13;0.975 = 2.1604 to get

Il(L) = x̄ − tn−1;1−α/2 · s√
n

= 196 − t13;0.975 · 9.782√
14

= 190.352,

Iu(L) = x̄ + tn−1;1−α/2 · s√
n

= 196 + t13;0.975 · 9.782√
14

= 201.648.

This leads to a confidence interval of [190.352; 201.648].
• For “Werder Bremen”, we need to use the quantile t22,0.975 = 2.0739 which yields

a confidence interval of

Il(Br) = x̄ − tn−1;1−α/2 · s√
n

= 187.52 − t22;0.975 · 5.239√
23

= 185.255,

Iu(Br) = x̄ + tn−1;1−α/2 · s√
n

= 187.25 + t22;0.975 · 5.239√
23

= 189.786.

The interval is therefore [185.255; 189.786].
• The mean heights of the basketball teams are obviously larger than the mean

height of the football team. The two confidence intervals of the basketball teams

overlap, whereas the intervals of the football team with the two basketball teams

do not overlap. It is evident that this indicates that the height of football players is

substantially less than the height of basketball players. In Chap. 10, we will learn

that confidence intervals can be used to test hypotheses about mean differences.

Solution to Exercise 9.7

(a) Using n = 98, we calculate an unbiased point estimate for p using x̄ = p̂. Note

that xi = 1 if the wife has to wash the dishes.

p̂ = 1

n

n
∑

i=1

xi = 1

98
· 59 = 59

98
≈ 0.602.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(b) Since n p̂(1 − p̂) = 98 · 0.602 · 0.398 = 23.48 > 9 and p is sufficiently large,

we can use the normal approximation to calculate a confidence interval for p.

Using z1−α/2 = z0.975 = 1.96, we obtain

Il(X) = 0.602 − 1.96

√

0.602 · 0.398

98
= 0.505,

Iu(X) = 0.602 + 1.96

√

0.602 · 0.398

98
= 0.699.

This yields a confidence interval of [0.505, 0.699]. Note that the confidence

interval does not contain p = 0.5 which is the probability that would be expected

if the coin was fair. This is a clear sign that the coin might be unfair.

(c) If the coin is fair, we can use p̂ = 0.5 as our prior judgement. We would then

need

n ≥
[ z1−α/2

Δ

]2
p̂(1 − p̂)

≥
[

1.96

0.005

]2

0.52 = 38, 416

dinners to get the desired precision—which is not possible as this would con-

stitute a time period of more than 100 years. This shows that the expectation of

such a high precision is unrealistic and needs to be modified. However, as the

results of (b) show, the coin may not be fair. If the coin is indeed unfair, we may

have, for example, p = 0.6 and 1 − p = 0.4 which gives a smaller sample size.

We can thus interpret the sample size as a conservative estimate of the highest

number of dinners needed.

Solution to Exercise 9.8 If a student fails then xi = 1. We know that
∑

xi = 11 and

n = 104.

(a) Using x̄ = p as point estimate, we get p̂ = 11
104 ≈ 0.106 = 10.6 %. Using

z1−α/2 = z0.975 = 1.96, we can calculate the confidence interval as

0.106 ± 1.96 ·
√

0.106 · 0.894

104
= [0.047; 0.165] .

Using R we get:

binom.test(11,104)$conf.int

[1] 0.05399514 0.18137316

This result is different because the above command does not use the normal

approximation. In addition, p is rather small which means that care must be

exercised when using the results of the confidence interval with normal approx-

imation in this context.
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(b) The point estimate of 10.6 % is substantially higher than 3.2 %. The lower bound

confidence interval is still larger than the proportion of failures at county level.

This indicates that the school is doing worse than most other schools in the

county.

Solution to Exercise 9.9

(a) Whether the i th household has switched on the TV and watches “Germany’s

next top model” (GNTM) relates to a random variable X i with

X i = 1 : if TV switched on and household watching GNTM

X i = 0 : if TV switched off or household watches another show.

It follows that X =
∑2500

i=1 X i is the random variable describing the number of

TVs, out of 2500 TVs, which are switched on and show GNTM. Since the X i ’s

can be assumed to be i.i.d., we can say that X follows a binomial distribution,

i.e. X ∼ B(2500; p) with p unknown. The length of the confidence interval for

p,
[

p̂ − z1−α/2

√

p̂(1 − p̂)

n
, p̂ + z1−α/2

√

p̂(1 − p̂)

n

]

,

is

L = 2z1−α/2

√

p̂(1 − p̂)

n
.

Unfortunately, p̂(1 − p̂) is unknown but p̂(1 − p̂) ≤ 1
4 because the maximum

value for p̂(1 − p̂) is 0.25 if p̂ = 0.5. Hence

L ≤ 2z1−α/2

√

1
4

n
= 1.96√

2500
= 0.0392.

This means the precision is half the length, i.e. ±0.0196 = ±1.96 %, in the worst

case.

(b) There is the danger of selection bias. A total of 500 households refused to

take part in the study. It may be that their preferences regarding TV shows are

different from the other 2500 households. For example, it may well be possible

that those watching almost no TV refuse to be included; or that those watching

TV shows which are considered embarrassing by society are refusing as well.

In general, missing data may cause point estimates to be biased, depending on

the underlying mechanism causing the absence.
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Solution to Exercise 9.10

(a) Using z1−α/2 = 1.96 and σ̂ = 0.233, we obtain an optimal sample size of at

least

nopt ≥
[

2
z1−α/2σ0

Δ

]2
=
[

2 · 1.96 · 0.233

0.2

]2

= 20.85.

To calculate a confidence interval with a width of not more than 0.2 s, the results

of at least 21 athletes are needed.

(b) The sample size is 30. Thus, the confidence interval width should be smaller

than 0.2 s. This is indeed true as the calculations show:

[10.93 ± t0.975;29
︸ ︷︷ ︸

2.045

·0.233√
30

] = [10.84; 11.02].

The width is only 0.18 s.

(c) If we calculate a 80 % confidence interval, then the lower confidence limit

corresponds to the running time which is achieved by only 10 % of the athletes

(of the population). Using t0.9;29 ≈ 1.31 we get

[10.93 ± 1.31 · 0.233√
30

] = [10.87; 10.99].

The athlete’s best time is thus below the lower confidence limit. He is among

the top 10 % of all athletes, using the results of the confidence interval.

Solution to Exercise 9.11

(a) The odds ratio is

O R = 163 · 477

475 · 151
≈ 1.08.

This means the chances that a pizza arrives in time are about 1.08 times higher

for Laura compared with Melissa. To calculate the 95 % confidence interval, we

need θ̂0 = ln(1.08) ≈ 0.077, z1−α/2 ≈ 1.96, and

σ̂
θ̂0

=
(

1

163
+ 1

475
+ 1

151
+ 1

477

) 1
2

= 0.13.

The interval for the log odds ratio is

[ln(1.08) ± 1.96 · 0.13] ≈ [−0.18; 0.33] .

Exponentiating the interval gives us the 95 % confidence interval for the odds

ratio which is [0.84; 1.39]. This indicates that the odds of Laura’s pizzas arriving

earlier than Melissa’s are not much different from one. While the point estimate

tells us that Laura’s pizzas are delivered 1.08 times faster, the confidence interval

tells us that there is uncertainty around this estimate in the sense that it could

also be smaller than 1 and Melissa may not necessarily work more slowly than

Laura.
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(b) We can reproduce the results in R by attaching the pizza data, creating a cat-

egorical delivery time variable (using cut) and then applying the oddsratio

command from the library epitools onto the contingency table:

attach(pizza)

timecat <- cut(time, breaks=c(-1,30,150))

library(epitools)

oddsratio(table(timecat,operator), method='wald')

Chapter 10

Solution to Exercise 10.1 A type I error is defined as the probability of rejecting H0

if H0 is true. This error occurs if A thinks that B does confess, but B does not. In this

scenario, A confesses, goes free, and B serves a three-year sentence. A type II error

is defined as the probability of accepting H0, despite the fact that H0 is wrong. In

this case, B does confess, but A does not. In this scenario, B goes free and A serves

a three-year sentence. A type II error is therefore worse for A. With a statistical test,

we always control the type I error, but not the type II error.

Solution to Exercise 10.2

(a) The hypotheses are

H0 : μ = 100 versus H1 : μ �= 100.

(b) It is a one-sample problem for μ: thus, for known variance, the Gauss test can

be used; the t-test otherwise, see also Appendix D. Since, in this exercise, σ

is assumed to be known we can use the Gauss test; i.e. we can compare the

test statistic with the normal distribution (as opposed to the t-distribution when

using the t-test). The sample size is small: we must therefore assume a normal

distribution for the data.

(c) To calculate the realized test statistic, we need the arithmetic mean x̄ = 98.08.

Then we obtain

t (x) = x̄ − μ

σ
·
√

n = 98.08 − 100

2
·
√

15 = −1.92

2
·
√

15 = −3.72.

We reject H0 if |t (x)| > z1− α
2

= 1.96. Since |t (x)| = 3.72 > 1.96, the null

hypothesis can be rejected. The test is significant. There is enough evidence

to suggest that the observed weights do not come from a normal distribution

with mean 100 g.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(d) To show that μ < 100, we need to conduct a one-sided test. Most importantly, the

research hypothesis of interest needs to be stated as the alternative hypothesis:

H0 : μ ≥ 100 versus H1 : μ < 100.

(e) The test statistic is the same as in (b): t (x) = −3.72. However, the critical region

changes. H0 gets rejected if t (x) < −z1−α = −1.64. Again, the null hypothesis

is rejected. The producer was right in hypothesizing that the average weight of

his chocolate bars was lower than 100 g.

Solution to Exercise 10.3

(a) We calculate

No auction Auction

x̄ 16.949 10.995

s2 2.948 2.461

s 1.717 1.569

v 0.101 0.143

Note that we use the unbiased estimates for the variance and the standard devia-

tion as explained in Chap. 9; i.e. we use 1/(n − 1) rather than 1/n. It is evident

that the mean price of the auctions (μa) is lower than the mean non-auction

price (μna), and also lower than the price from the online book store. There is,

however, a higher variability in relation to the mean for the auction prices. One

may speculate that the best offers are found in the auctions, but that there are no

major differences between the online store and the internet book store, i.e.

• μna �= e16.95,

• μa < e16.95,

• μna > μa .

(b) We can use the t-test to test the hypotheses

H0 : μna = 16.95 versus H1 : μna �= 16.95.

The test statistic is

t (x) = x̄ − μ

σ
·
√

n = 16.949 − 16.95

1.717
·
√

14 = −0.002.

Using the decision rules from Table 10.2, we conclude that H0 gets rejected if

|t (x)| > t13,0.975 = 2.16. We can calculate t13,0.975 either by using Table C.2

or by using R (qt(0.975,13)). Since |t (x)| = 0.002 ≯ 2.16, we keep the null

hypothesis. There is not enough evidence to suggest that the prices of the online

store differ from e16.95 (which is the price from the internet book store).

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(c) Using (9.6) we can calculate the upper and lower limits of the confidence interval

as,

x̄ + tn−1;1−α/2 · sX√
n

= 16.949 + t13;0.975
︸ ︷︷ ︸

=2.16

·1.717√
14

= 17.94

x̄ − tn−1;1−α/2 · sX√
n

= 16.949 − t13;0.975
︸ ︷︷ ︸

=2.16

·1.717√
14

= 15.96

respectively. The confidence interval does contain μ0 = 16.95; hence, the null

hypothesis μ = μ0 = 16.95 cannot be rejected. This is the same conclusion as

obtained from the one-sample t-test from above.

(d) We test the following hypotheses:

H0 : μa ≥ 16.95 versus H1 : μa < 16.95.

The realized test statistic is

t (x) = x̄ − μ

σ
·
√

n = 10.995 − 16.95

1.569
·
√

14 = −14.201.

Table 10.2 tells us that H0 gets rejected if t (x) < −t13,0.95. Since −14.201 <

−2.16 we reject H0. The test confirms our hypothesis that the mean auction

prices are lower than e16.95, i.e. the price from the book store.

(e) We need to conduct two tests: the two-sample t-test for the assumption of equal

variances and the Welch test for the assumption of different variances.

(i) Two-sample t-test:

H0 : μna ≤ μa versus H1 : μna > μa .

To calculate the test statistic (10.4), we need to determine the pooled sample

variance:

s2 = (nna − 1)s2
na + (na − 1)s2

a

nna + na − 2

= (14 − 1)2.948 + (14 − 1)2.461

14 + 14 − 2
≈ 2.705

The test statistic is

t (x) = x̄na − x̄a

s
·
√

nna · na

nna + na

= 16.949 − 10.995√
2.705

·
√

14 · 14

14 + 14

= 5.954

1.645
·
√

196

28
= 3.621 ·

√
7 = 9.578.

We reject H0 if t (x) > tnna+na−2,0.95 = t26,0.95 = 1.71. Table C.2 does not

list the quantile; thus, one uses R (qt(0.95,26)) to determine the quantile.

Since 9.578 > 1.71, we reject the null hypothesis. The test is significant.

There is enough evidence to conclude that the mean auction prices are lower

than the mean non-auction prices.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(ii) Welch test: For the Welch test, we calculate the test statistic, using (10.6)

as:

t (x) = |x̄na − x̄a |
√

s2
na

nna
+ s2

a

na

= |16.949 − 10.995|
√

2.948
14 + 2.461

14

= 9.578.

To calculate the critical value, we need the degrees of freedom:

v =
(

s2
na

nna

+ s2
a

na

)2

/

((

s2
na/nna

)2

nna − 1
+
(

s2
a/na

)2

na − 1

)

=
(

2.948

14
+ 2.461

14

)2

/

(

(2.948/14)2

13
+ (2.461/14)2

13

)

≈ 25.79

We reject H0 if t (x) > tv,0.95. Using tv,0.95 = 1.706 (in R obtained as

qt(0.95,25.79)) and t (x) = 9.578, we reject the null hypothesis. The

conclusions are identical to using the two-sample t-test (in this example).

Interestingly, the two test statistics are similar which indicates that the

assumption of equal variances in case (i) was not unreasonable.

(f) The F-test relies on the assumption of the normal distribution and tests the

hypotheses:

H0 : σ2
na = σ2

a versus H1 : σ2
na �= σ2

a .

We can calculate the test statistic as described in Appendix C:

t (x) = s2
na

s2
a

= 2.949

2.461
= 1.198.

The F-distribution is not symmetric around 0; thus, we need to calculate two crit-

ical values: fn1−1;n2−1;1−α/2 and fn1−1;n2−1;α/2. Using R we get f13,13,0.975 =
3.115 (qf(0.975,13,13)) and f13,13,0.025 = 1

3.115 = 0.321 (qf(0.025,13,13)).

H0 is rejected if t (x) > fn1−1;n2−1;1−α/2 or t (x) < fn1−1;n2−1;α/2. Since 0.321 <

1.198 < 3.115 we do not reject H0. This means there is strong evidence that the

two variances are equal. This is also reassuring with respect to using the two-

sample t-test above (which assumes equal variances). However, note that testing

the equality of variances with the F-test and then using the two-sample t-test or

Welch test based on the outcome of the F-test is not ideal and not necessarily

correct. In practice, it is best to simply use the Welch test (rather than the t-test),

which is also the default option in the R function t.test.

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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(g) We need the following table to calculate the rank sums:

Value 9.3 9.52 9.54 10.01 10.5 10.5 10.55 10.59 11.02 11.03

Sample a a a a a a a a a a

Rank 1 2 3 4 5 6 7 8 9 10

Value 11.89 11.99 12 13.79 15.49 15.9 15.9 15.9 15.9 15.9

Sample a a a na a na na na na na

Rank 11 12 13 14 15 16 17 18 19 20

Value 15.99 16.98 16.98 17.72 18.19 18.19 19.97 19.97

Sample na na na na na na na na

Rank 21 22 23 24 25 26 27 28

We can calculate the rank sums as Rna+ = 13 + 15 + · · · + 28 = 300 and

Ra+ = 1 + 2 + · · · + 13 + 15 = 106, respectively. Thus

U1 = 142 + 14 · 15

2
− 106 = 195; U2 = 142 + 14 · 15

2
− 300 = 1.

With U = min(195, 1) = 1 we can calculate the test statistic, which is approx-

imately normally distributed, as:

t (x, y) =
U − n1·n2

2
√

n1 · n2 · (n1 + n2 + 1)

12

=
1 − 142

2
√

14 · 14 · 29

12

≈ −4.46

Since |t (x, y)| = 4.46 > z1−α/2 = 1.96, the null hypothesis can be rejected. We

conclude that the locations of the two distributions are shifted. Obviously the

prices of the auction are smaller in general, and so is the median.

(h) We can type in the data and evaluate the summary statistics using the mean,

var, and sd commands:

na <- c(18.19,16.98,19.97,...,17.72)

a <- c(10.5,12.0, 9.54,..., 11.02)

mean(na)

mean(a)

var(na)

...

The t.test command can be used to answer questions (b)–(e). For (b) and (c)

we use

t.test(na,mu=16.95)



398 Appendix B: Solutions to Exercises

One-sample t-test

data: na

t = -0.0031129, df = 13, p-value = 0.9976

alternative hypothesis: true mean is not equal to 16.95

95 percent confidence interval:

15.95714 17.94001

sample estimates:

mean of x

16.94857

The test decision can be made by means of either the p-value (= 0.9976 > 0.05)

or the confidence interval ([15.95; 17.94], which covers 16.95). To answer (d)

and (e) we need to make use of the option alternative which specifies the

alternative hypothesis:

t.test(a,mu=16.95,alternative='less')

t.test(na,a, alternative='greater')

Note that the two-sample test provides a confidence interval for the difference

of the means. Questions (f) and (g) can be easily solved by using the var.test

and wilcox.test commands:

var.test(na,a)

wilcox.test(na,a)

F-test to compare two variances

data: na and a

F = 1.198, num df = 13, denom df = 13, p-value = 0.7496

alternative hypothesis: true ratio of variances not equal to 1

95 percent confidence interval:

0.3845785 3.7317371

sample estimates:

ratio of variances

1.197976

Wilcoxon rank sum test with continuity correction

data: na and a

W = 195, p-value = 8.644e-06

alternative hypothesis: true location shift is not equal to 0
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The test decision is best made by using the p-value.

Solution to Exercise 10.4 Since the data before and after the diet is dependent

(weight measured on the same subjects), we need to use the paired t-test. To calculate

the test statistic, we need to first determine the weight differences:

Person i 1 2 3 4 5 6 7 8 9 10

Before diet 80 95 70 82 71 70 120 105 111 90

After diet 78 94 69 83 65 69 118 103 112 88

Differences d 2 1 1 −1 6 1 2 2 −1 2

Using d̄ = 1.5 and

s2
d = 1

10 − 1
· (0.52 + 0.52 + 0.52 + 2.52 + 4.52 + · · · + 0.52) = 3.83,

we calculate the test statistic as

t (d) = d̄

sd

√
n = 1.5√

3.83

√
10 = 2.42.

The null hypothesis is rejected because |t (d)| = 2.42 > t9;0.975 = 2.26. This means

the mean weight before and after the diet is different. We would have obtained the

same results by calculating the confidence interval for the differences:

[

d̄ ± tn−1;1−α/2
sd√

n

]

⇔
[

1.5 ± 2.26 ·
√

3.83√
10

]

= [0.1; 2.9].

Since the confidence interval does not overlap with zero, we reject the null hypothesis;

there is enough evidence that the mean difference is different (i.e. greater) from zero.

While the test is significant and suggests a weight difference, it is worth noting that

the mean benefit from the diet is only 1.5 kg. Whether this is a relevant reduction in

weight has to be decided by the ten people experimenting with the diet.

Solution to Exercise 10.5

(a) The production is no longer profitable if the probability of finding a deficient

shirt is greater than 10 %. This equates to the hypotheses:

H0 : p ≤ 0.1 versus H0 : p > 0.1.
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The sample proportion of deficient shirts is p̂ = 35
230 = 7

46 . Since np(1 − p) =
230 · 1

10 · 9
10 > 9 we can use the test statistic

t (x) = p̂ − p0√
p0(1 − p0)

√
n =

7
46 − 1

10
√

1
10 · 9

10

·
√

230

= 6

115
· 10

3
·
√

230 = 4

23
·
√

230 = 2.638.

The null hypothesis gets rejected because t (x) = 2.638 > z0.95 = 1.64. It seems

the production is no longer profitable.

(b) The test statistic is t (x) =
∑

xi = 30. The critical region can be determined by

calculating

PH0(Y ≤ cl) ≤ 0.025 and PH0(Y ≥ cr ) ≤ 0.975.

Using R we get

qbinom(p=0.975,prob=0.1,size=230)

[1] 32

qbinom(p=0.025,prob=0.1,size=230)

[1] 14

The test statistic (t (x) = 30) does not fall outside the critical region ([14; 32]);

therefore, the null hypothesis is not rejected. The same result is obtained by

using the binomial test in R: binom.test(c(30,200),p=0.1). This yields

a p-value of 0.11239 and a confidence interval covering 10 % ([0.09; 0.18]).

Interestingly, the approximate binomial test rejects the null hypothesis, whereas

the exact test keeps it. Since the latter test is more precise, it is recommended to

follow its outcome.

(c) The research hypothesis is that the new machine produces fewer deficient shirts:

H0 : pnew ≥ pold versus H1 : pnew < pold.

To calculate the test statistic, we need the following:

d̂ = xnew

nnew
− xold

nold
= 7

115
− 7

46
= − 21

230

p̂ = xnew + xold

nnew + nold
= 7 + 35

230 + 115
= 42

345
= 14

115
.

This yields:

t (xnew, xold) = d̂
√

p̂(1 − p̂)( 1
nnew

+ 1
nold

)

=
− 21

230
√

14
115 · 101

115 ( 1
115 + 1

230 )

=
− 21

230√
0.1069 · 0.013

= −0.0913

0.0373
= −2.448.
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The null hypothesis is rejected because t (xnew, xold) = −2.448 < z0.05 =
−z0.95 = −1.64. This means we accept the alternative hypothesis that the new

machine is better than the old one.

(d) The data can be summarized in the following table:

Machine 1 Machine 2

Deficient 30 7

Fine 200 112

To test the hypotheses established in (c), we apply the fisher.test command

onto the contingency table:

fisher.test(matrix(c(30,200,7,112),ncol=2))

This yields a p-value of 0.0438 suggesting, as the test in (c), that the null hypoth-

esis should be rejected. Note that the confidence interval for the odds ratio, also

reported by R, does not necessarily yield the same conclusion as the test of

Fisher.

Solution to Exercise 10.6

(a) To compare the two means, we should use the Welch test (since the variances

cannot be assumed to be equal). The test statistic is

t (x, y) = |x̄ − ȳ|
√

s2
2

n2
+ s2

1
n1

= |103 − 101.8|
√

12599.56
10 + 62.84

10

≈ 0.0337.

The alternative hypothesis is H1 : μ2 > μ1; i.e. we deal with a one-sided hypoth-

esis. The null hypothesis is rejected if t (x, y) > tv;1−α. Calculating

v =
(

s2
1

n1
+ s2

2

n2

)2

/

((

s2
1/n1

)2

n1 − 1
+
(

s2
2/n2

)2

n2 − 1

)

=
(

62.844

10
+ 12599

10

)2

/

(

(62.844/10)2

9
+ (12599/10)2

9

)

≈ 9.09

yields t9.09;0.95 = 1.831 (using qt(0.95,9.09) in R; or looking at Table C.2

for 9 degrees of freedom). Therefore, t (x, y) < t9.09;0.95 and the null hypothesis

is not rejected. This means player 2 could not prove that he scores higher on

average.
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(b) We have to first rank the merged data:

Value 6 29 40 47 47 64 87 88 91 98

Sample 2 2 2 2 2 2 2 1 1 2

Rank 1 2 3 4 5 6 7 8 9 10

Value 99 99 101 104 105 108 111 112 261 351

Sample 1 1 1 1 1 1 1 1 2 2

Rank 11 12 13 14 15 16 17 18 19 20

This gives us R1+ = 8 + 9 + · · · + 18 = 133, R2+ = 1 + 2 + · · · + 20 = 77,

U1 = 102 + (10 · 11)/2 − 133 = 22, U2 = 102 + (10 · 11)/2 − 77 = 78, and

therefore U = 22. The test statistic can thus be calculated as

t (x, y) =
U − n1·n2

2
√

n1 · n2 · (n1 + n2 + 1)

12

=
22 − 102

2
√

10 · 10 · 21

12

≈= −2.12.

Since |t (x, y)| = 2.12 > z1−α = 1.64, the null hypothesis is rejected. The test

supports the alternative hypothesis of higher points for player 1. The U -test has

the advantage of not being focused on the expectation μ. The two samples are

clearly different: the second player scores with much more variability and his

distribution of scores is clearly not symmetric and normally distributed. Since

the sample is small, and the assumption of a normal distribution is likely not

met, it makes sense to not use the t-test. Moreover, because the distribution is

skewed the mean may not be a sensible measure of comparison. The two tests

yield different conclusions in this example which shows that one needs to be

careful in framing the right hypotheses. A drawback of the U -test is that it uses

only ranks and not the raw data: it thus uses less information than the t-test

which would be preferred when comparing means of a reasonably sized sample.

Solution to Exercise 10.7 Otto speculates that the probability of finding a bear

of colour i is 0.2, i.e. pwhite = 0.2, pred = 0.2, porange = 0.2, pyellow = 0.2, and

pgreen = 0.2. This hypothesis can be tested by using the χ2 goodness-of-fit test.

The test statistic is

t (x) = χ2 =
k
∑

i=1

(Ni − npi )
2

npi

= 1

250
(222 − 250)2 + (279 − 250)2

+ (251 − 250)2 + (232 − 250)2 + (266 − 250)2 = 8.824.

The null hypothesis cannot be rejected because t (x) = 8.824 ≯ c4−1−0;0.95 = 9.49.

While the small number of white bears might be disappointing, the test suggests that

there is not enough evidence to reject the hypothesis of equal probabilities.
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Solution to Exercise 10.8

(a) To answer this question, we need to conduct the χ2-independence test. The test

statistic t (x, y) is identical to Pearson’s χ2 statistic, introduced in Chap. 4. In

Exercise 4.4, we have calculated this statistic already, χ2 ≈ 182, see p. 350

for the details. The null hypothesis of independence is rejected if t (x, y) =
χ2 > c(I−1)(J−1);1−α. With I = 2 (number of rows), and J = 4 (number of

columns) we get c3;0.95 = 7.81 using Table C.3 (or qchisq(0.95,3) in R).

Since 182 > 7.81, we reject the null hypothesis of independence.

(b) The output refers to a χ2 test of homogeneity: the null hypothesis is that the

proportion of passengers rescued is identical for the different travel classes. This

hypothesis is rejected because p is smaller than α = 0.05. It is evident that the

proportions of rescued passengers in the first two classes (60 %, 43.9 %) are much

higher than in the other classes (25 %, 23.8 %). One can see that the test statistic

(182.06) is identical to (a). This is not surprising: the χ2-independence test and

the χ2 test of homogeneity are technically identical, but the null hypotheses

differ. In (a), we showed that “rescue status” and “travel class” are independent;

in (b), we have seen that the conditional distributions of rescue status given travel

class differ by travel class, i.e. that the proportions of those rescued differ by the

categories 1. class/2. class/3. class/staff.

(c) The summarized table is as follows:

1. Class/2. Class 3. Class/Staff Total

Rescued 327 391 718

Not rescued 295 1215 1510

Total 622 1606 2228

Using (4.7) we get

t (x, y) = χ2 = 2228(327 · 1215 − 295 · 391)2

718 · 1510 · 622 · 1606
= 163.55.

The χ2-independence test and the χ2 test of homogeneity are technically identi-

cal: H0 is rejected if t (x, y) > c(I−1)(J−1);1−α. Since 163.55 > c1;0.95 = 3.84

the null hypothesis is rejected. As highlighted in (b) this has two interpretations:

(i) “rescue status” and “travel class” are independent (independence test) and (ii)

the conditional distributions of rescue status given travel class differ by travel

class (homogeneity test). The second interpretation implies that the probability

of being rescued differs by travel class. The null hypothesis of the same prob-

abilities of being rescued is also rejected using the test of Fisher. Summarizing

the data in a matrix and applying the fisher.test command yields a p-value

smaller than α = 0.05.

fisher.test(matrix(c(327,295,391,1215),ncol=2,nrow=2))

http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Solution to Exercise 10.9

(a) The hypotheses are:

H0 : μX = μY 1 versus H1 : μX �= μY 1.

The pooled variance,

s2 = 19 · 2.94 + 19 · 2.46

39
= 102.6

39
= 2.631,

is needed to calculate the test statistic:

t (x, y) = 4.97 − 4.55

1.622
·
√

400

40
= 0.42

1.622
·
√

10 = 0.8188.

H0 is rejected if |t (x, y)| > t38,0.975 ≈ 2.02. Since |t (x, y)| = 0.8188 we do not

reject the null hypothesis.

(b) The hypotheses are:

H0 : μX = μY 2 versus H1 : μX �= μY 2.

The pooled variance,

s2 = 19 · 2.94 + 19 · 3.44

39
= 3.108,

is needed to calculate the test statistic:

t (x, y) = 4.97 − 3.27

1.763
·
√

10 = 3.049.

H0 is rejected because |t (x, y)| = 3.049 > t38,0.975 ≈ 2.02.

(c) In both (a) and (b), there exists a true difference in the mean. However, only in (b)

is the t-test able to detect the difference. This highlights that smaller differences

can only be detected if the sample size is sufficiently large. However, if the

sample size is very large, it may well be that the test detects a difference where

there is no difference.

Solution to Exercise 10.10

(a) After reading in and attaching the data, we can simply use the t.test command

to compare the expenditure of the two samples:

theatre <- read.csv('theatre.csv')

attach(theatre)

t.test(Culture[Sex==1],Culture[Sex==0])
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Welch Two-Sample t-test

data: Culture[Sex == 1] and Culture[Sex == 0]

t = -1.3018, df = 667.43, p-value = 0.1934

alternative hypothesis: true difference not equal to 0

95 percent confidence interval:

-12.841554 2.602222

sample estimates:

mean of x mean of y

217.5923 222.7120

We see that the null hypothesis is not rejected because p = 0.1934 > α (also,

the confidence interval overlaps with “0”).

(b) A two-sample t-test and a U -test yield the same conclusion. The p-values,

obtained with

wilcox.test(Culture[Sex==1],Culture[Sex==0])

t.test(Culture[Sex==1],Culture[Sex==0],var.equal=TRUE)

are 0.1946 and 0.145, respectively. Interestingly, the test statistic of the two-

sample t-test is almost identical to the one from the Welch test in (a) (−1.2983)—

this indicates that the assumption of equal variances may not be unreasonable.

(c) We can use the usual t.test command together with the option alternative

= ’greater’ to get the solution.

t.test(Theatre[Sex==1],Theatre[Sex==0],

alternative='greater')

Here, p is much smaller than 0.001; hence, the null hypothesis can be rejected.

Women spend more on theatre visits than men.

(d) We deal with dependent (paired) data because different variables (expenditure

this year versus expenditure last year) are measured on the same observations.

Thus, we need to use the paired t-test—which we can use in R by specifying

the paired option:

t.test(Theatre,Theatre_ly,paired=TRUE)
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Paired t-test

data: Theatre and Theatre_ly

t = 1.0925, df = 698, p-value = 0.275

alternative hypothesis: true difference in means is != 0

95 percent confidence interval:

-2.481496 8.707533

sample estimates:

mean of the differences

3.113019

Both the p-value (which is greater than 0.05) and the confidence interval (over-

lapping with “0”) state that the null hypothesis should be kept. The mean differ-

ence in expenditure (3.1 SFR) is not large enough to suggest that this difference

is not caused by chance. Visitors spend, on average, about the same in the two

years.

Solution to Exercise 10.11

(a) We can use the one-sample t-test to answer both questions:

t.test(temperature,mu=65,alternative='greater')

t.test(time,mu=30,alternative='less')

One-sample t-test

data: temperature

t = -11.006, df = 1265, p-value = 1

alternative hypothesis: true mean is greater than 65

...

data: time

t = 23.291, df = 1265, p-value = 1

alternative hypothesis: true mean is less than 30

We cannot confirm that the mean delivery time is less than 30 min and that

the mean temperature is greater than 65 ◦C. This is not surprising: we have

already seen in Exercise 3.10 that the manager should be unsatisfied with the

performance of his company.

(b) We can use the exact binomial test to investigate H0 : p ≥ 0.15 and H1 : p <

0.15. For the binom.test command, we need to know the numbers of successes

and failures, i.e. the number of deliveries where a free wine should have been
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given to the customer. Applying the table commands yields 229 and 1037

deliveries, respectively.

table(free_wine)

binom.test(c(229,1037),p=0.15,alternative='less')

Exact binomial test

data: c(229, 1037)

number of successes = 229, number of trials = 1266,

p-value = 0.9988 alternative hypothesis: true probability

is less than 0.15

95 percent confidence interval:

0.0000000 0.1996186

sample estimates, probability of success: 0.1808847

The null hypothesis cannot be rejected because p = 0.9988 > α = 0.05 and

because the confidence interval covers p = 0.15. We get the same results if we

use the variable “got_wine” instead of “free_wine”. While the test says that we

cannot exclude the possibility that the probability of receiving a free wine is

less than 15 %, the point estimate of 18 % suggests that the manager still has to

improve the timeliness of the deliveries or stop the offer of free wine.

(c) We first need to create a new categorical variable (using cut) which divides the

temperatures into two parts: below and above 65 ◦C. Then we can simply apply

the test commands (fisher.test, chisq.test, prop.test) to the table of

branch and temperature:

hot <- cut(temperature,breaks=c(-Inf,65,Inf))

fisher.test(table(hot,operator))

chisq.test(table(hot,operator))

prop.test(table(hot,operator))

We know that the two χ2 tests lead to identical results. For both of them the p-

value is 0.2283 which suggests that we should keep the null hypothesis. There

is not enough evidence which would support that the proportion of hot pizzas

differs by operator, i.e. that the two variables are independent! The test of Fisher

yields the same result (p = 0.2227).

(d) The null hypothesis is that the proportion of deliveries is the same for each

branch: H0 : pEast = pWest = pCentre. To test this hypothesis, we need a χ2

goodness-of-fit test:

chisq.test(table(branch))
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Chi-squared test for given probabilities

data: table(branch)

X-squared = 0.74408, df = 2, p-value = 0.6893

The null hypothesis of equal proportions is therefore not rejected (p > α =
0.05).

(e) To compare three proportions we need to use the χ2 homogeneity test:

prop.test(table(branch, operator))

X-squared = 0.15719, df = 2, p-value = 0.9244

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3

0.5059382 0.5097561 0.4965517

We can see that the proportions are almost identical and that the null hypothesis

is not rejected (p = 0.9244).

(f) To test this relationship, we use the χ2-independence test:

chisq.test(table(driver, branch))

X-squared = 56.856, df = 8, p-value = 1.921e-09

The null hypothesis of independence is rejected.

Solution to Exercise 10.12 To test the hypothesis pShalabh = pHeumann

= pSchomaker = 1/3 we use the χ2 goodness-of-fit test. The test statistic is

χ2 =
k
∑

i=1

(Ni − npi )
2

npi

= 1

111
[(110 − 111)2 + (118 − 111)2 + (105 − 111)2]

= (1 + 49 + 36)/111 ≈ 0.77

H0 gets rejected if χ2 = 0.77 > c3−1−0,1−0.01 = 9.21. Thus, the null hypothesis is

not rejected. We accept that all three authors took about one-third of the pictures.
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Chapter 11

Solution to Exercise 11.1

(a) Calculating x̄ = 1
6 (26 + 23 + 27 + 28 + 24 + 25) = 25.5 and ȳ = 1

6 (170 +
150 + 160 + 175 + 155 + 150) = 160, we obtain the following table needed

for the estimation of α̂ and β̂:

Body mass index Systolic blood pressure

xi xi − x̄ (xi − x̄)2 yi yi − ȳ (yi − ȳ)2 vi

26 0.5 0.25 170 10 100 5

23 −2.5 6.25 150 −10 100 25

27 1.5 2.25 160 0 0 0

28 2.5 6.25 175 15 225 37.5

24 −1.5 2.25 155 −5 25 7.5

25 −0.5 0.25 150 −10 100 5

Total 153 17.5 960 550 80

With
∑

i vi =
∑

i (xi − x̄) · (yi − ȳ) = 80, it follows that Sxy = 80. Moreover,

we get Sxx =
∑

i (xi − x̄)2 = 17.5 and Syy =
∑

i (yi − ȳ)2 = 550. The para-

meter estimates are therefore

β̂ = Sxy

Sxx

= 80

17.5
≈ 4.57,

α̂ = ȳ − β̂ x̄ = 160 − 4.57 · 25.5 = 43.465.

A one-unit increase in the BMI therefore relates to a 4.57 unit increase in the

blood pressure. The model suggests a positive association between BMI and

systolic blood pressure. It is impossible to have a BMI of 0; therefore, α̂ cannot

be interpreted meaningfully here.

(b) Using (11.14), we obtain R2 as

R2 = r2 =
(

Sxy
√

Sxx Syy

)2

=
(

80√
17.5 · 550

)2

≈ 0.66.

Thus 66 % of the data’s variability can be explained by the model. The goodness

of fit is good, but not perfect.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Solution to Exercise 11.2

(a) To estimate β̂, we use the second equality from (11.6):

β̂ =
∑n

i=1 xi yi − nx̄ ȳ
∑n

i=1 x2
i − nx̄2

.

Calculating x̄ = 1.333, ȳ = 5.556,
∑n

i=1 xi yi = 62.96,
∑n

i=1 x2
i = 24.24,

and
∑n

i=1 y2
i = 281.5 leads to

β̂ = 62.91 − 9 · 1.333 · 5.556

24.24 − 9 · 1.3332
≈ −3.695

8.248
≈ −0.45,

α̂ = ȳ − β̂ x̄ = 5.556 + 0.45 · 1.333 ≈ 6.16,

ŷi = 6.16 − 0.45xi .

For children who spend no time on the internet at all, this model predicts 6.16 h

of deep sleep. Each hour spent on the internet decreases the time in deep sleep

by 0.45 h which is 27 min.

(b) Using the results from (a) and Syy =
∑n

i=1 y2
i − n ȳ2 ≈ 3.678 yields:

R2 = r2 =
S2

xy

Sxx Syy

= (−3.695)2

8.248 · 3.678
≈ 0.45.

About 45 % of the variation can be explained by the model. The fit of the model

to the data is neither very good nor very bad.

(c) After collecting the data in two vectors (c()), printing a summary of the linear

model (summary(lm())) reproduces the results. A scatter plot can be produced

by plotting the two vectors against each other (plot()). The regression line can

be added with abline():

it <- c(0.3,2.2,...,2.3)

sleep <- c(5.8,4.4,...,6.1)

summary(lm(sleep∼it))

plot(it,sleep)

abline(a=6.16,b=-0.45)

The plot is displayed in Fig. B.20.

(d) Treating X as a binary variable yields the following values: 0, 1, 0, 0, 0, 1, 1, 0, 1.

We therefore have x̄ = 0.444,
∑

x2
i = 4, and

∑

xi yi = 4.4 + 5.0 + 4.8 +
6.1 = 20.3. Since the Y -values stay the same we calculate

β̂ =
∑n

i=1 xi yi − nx̄ ȳ
∑n

i=1 x2
i − nx̄2

= 20.3 − 9 · 5.556 · 0.444

4 − 9 · 0.4442
≈ −0.85.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Fig. B.20 Scatter plot and

regression line for the

association of internet use

and deep sleep

0.5 1.0 1.5 2.0 2.5 3.0

4
.5

5
.0

5
.5

6
.0

6
.5

internet time (in h)

d
e

e
p

 s
le

e
p

 (
in

 h
)

Thus, those children who are on the internet for a long time (i.e. >1 h) sleep on

average 0.85 h (=51 min) less. If we change the coding of 1’s and 0’s, β̂ will

just have a different sign: β̂ = 0.85. In this case, we can conclude that children

who spend less time on the internet sleep on average 0.85 h longer than children

who spend more time on the internet. This is the same conclusion and highlights

that the choice of coding does not affect the interpretation of the results.

Solution to Exercise 11.3

(a) The correlation coefficient is

r = Sxy
√

Syy Sxx

= 170, 821 − 17 · 166.65 · 60.12
√

(62, 184 − 17 · 60.122)(472, 569 − 17 · 166.652)

= 498.03√
738.955 · 441.22

= 0.87.

This indicates strong positive correlation: the higher the height, the higher

the weight. Since R2 = r2 = 0.872 ≈ 0.76, we already know that the fit of

a linear regression model will be good (no matter whether height or weight

is treated as outcome). From (11.11), we also know that β̂ will be positive.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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Fig. B.21 Scatter plot and regression line for both 17 and 19 observations

(b) We know from (a) that Sxy = 498.03 and that Sxx = 441.22. The least

squares estimates are therefore

β̂ = 498.03

441.22
= 1.129,

α̂ = 60.12 − 166.65 · 1.129 = −128.03.

Each centimetre difference in height therefore means a 1.129 kg difference

in weight. It is not possible to interpret α̂ meaningfully in this example.

(c) The prediction is

−128.03 + 1.129 · 175 = 69.545 kg.

(d)–(g) The black dots in Fig. B.21 show the scatter plot of the data. There is clearly

a positive association in that greater height implies greater weight. This is

also emphasized by the regression line estimated in (b). The two additional

points appear in dark grey in the plot. It is obvious that they do not match the

pattern observed in the original 17 data points. One may therefore speculate

that with the inclusion of the two new points β̂ will be smaller. To estimate

the new regression line we need

x̄ = 1

19
(17 · 166.65 + 150 + 175) = 166.21,

ȳ = 1

19
(17 · 60.12 + 75 + 55) = 60.63.
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This yields

β̂ =
∑n

i=1 xi yi − nx̄ ȳ
∑n

i=1 x2
i − nx̄2

= 191696 − 19 · 166.21 · 60.63

525694 − 19 · 166.212
= 227.0663

804.4821

≈ 0.28.

This shows that the two added points shrink the estimate from 1.129 to 0.28.

The association becomes less clear. This is an insightful example showing

that least squares estimates are generally sensitive to outliers which can

potentially affect the results.

Solution to Exercise 11.4

(a) The point estimate of β suggests a 0.077 % increase of hotel occupation for

each one degree increase in temperature. However, the null hypothesis of β = 0

cannot be rejected because p = 0.883 > 0.05. We therefore cannot show an

association between temperature and hotel occupation.

(b) The average hotel occupation is higher in Davos (7.9 %) and Polenca (0.9 %)

compared with Basel (reference category). However, these differences are not

significant. Both H0 : βDavos = 0 and H0 : βPolenca = 0 cannot be rejected.

The model cannot show a significant difference in hotel occupation between

Davos/Polenca and Basel.

(c) The analysis of variance table tells us that the null hypothesis of equal average

temperatures in the three cities (β1 = β2 = 0) cannot be rejected. Note that in

this example the overall F-test would have given us the same results.

(d) In the multivariate model, the main conclusions of (a) and (b) do not change:

testing H0 : β j = 0 never leads to the rejection of the null hypothesis. We cannot

show an association between temperature and hotel occupation (given the city);

and we cannot show an association between city and hotel occupation (given the

temperature).

(e) Stratifying the data yields considerably different results compared to (a)–(c): In

Davos, where tourists go for skiing, each increase of 1 ◦C relates to a drop in hotel

occupation of 2.7 %. The estimate β̂ ≈ −2.7 is also significantly different from

zero (p = 0.000231). In Polenca, a summer holiday destination, an increase of

1 ◦C implies an increase of hotel occupation of almost 4 %. This estimate is also

significantly different from zero (p = 0.00114 < 0.05). In Basel, a business

destination, there is a somewhat higher hotel occupation for higher temperatures

(β̂ = 1.3); however, the estimate is not significantly different from zero. While

there is no overall association between temperature and hotel occupation (see

(a) and (c)), there is an association between them if one looks at the different

cities separately. This suggests that an interaction between temperature and city

should be included in the model.
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(f) The design matrix contains a column of 1’s (to model the intercept), the temper-

ature and two dummies for the categorical variable “city” because it has three

categories. The matrix also contains the interaction terms which are both the

product of temperature and Davos and temperature and Polenca. The matrix has

36 rows because there are 36 observations: 12 for each city.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Int. Temp. Davos Polenca Temp.×Davos Temp.×Polenca

1 1 −6 1 0 −6 0

2 1 −5 1 0 −5 0
...

...
...

...
...

...
...

12 1 0 1 0 0 0

13 1 10 0 1 0 10
...

...
...

...
...

...
...

24 1 12 0 1 0 12

25 1 1 0 0 0 0
...

...
...

...
...

...
...

36 1 4 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(g) Both interaction terms are significantly different from zero (p = 0.000375 and

p = 0.033388). The estimate of temperature therefore differs by city, and the

estimate of city differs by temperature. For the reference city of Basel, the associ-

ation between temperature and hotel occupation is estimated as 1.31; for Davos

it is 1.31 − 4.00 = −2.69 and for Polenca 1.31 + 2.66 = 3.97. Note that these

results are identical to (d) where we fitted three different regressions—they are

just summarized in a different way.

(h) From (f) it follows that the point estimates for βtemperature are 1.31 for Basel,

−2.69 for Davos, and 3.97 for Polenca. Confidence intervals for these estimates

can be obtained via (11.29):

(β̂i + β̂ j ) ± tn−p−1;1−α/2 · σ̂
(β̂i +β̂ j )

.

We calculate tn−p−1;1−α/2 = t36−5−1,0.975 = t30,0.975 = 2.04. With

Var(βtemp.) = 0.478 (obtained via 0.69162 from the model output or from the

second row and second column of the covariance matrix), Var(βtemp:Davos) =
0.997, Var(βPolenca) = 1.43, Cov(βtemp.,βtemp:Davos) = −0.48, and also

Cov(βtemp., βtemp:Polenca) = −0.48 we obtain:

σ̂
(β̂temp.+β̂Davos)

=
√

0.478 + 0.997 − 2 · 0.48 ≈ 0.72,

σ̂
(β̂temp.+β̂Polenca)

=
√

0.478 + 1.43 − 2 · 0.48 ≈ 0.97,

σ̂
(β̂temp.+β̂Basel)

=
√

0.478 + 0 + 0 ≈ 0.69.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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The 95 % confidence intervals are therefore:

Davos: [−2.69 ± 2.04 · 0.72] ≈ [−4.2;−1.2],
Polenca: [3.97 ± 2.04 · 0.97] ≈ [2.0; 5.9],

Basel: [1.31 ± 2.04 · 0.69] ≈ [−0.1; 2.7].

Solution to Exercise 11.5

(a) The missing value [1] can be calculated as

T = β̂i − βi

σ̂
β̂i

= 0.39757 − 0

0.19689
= 2.019.

Since t699−5−1,0.975 = 1.96 and 2.019 > 1.96, it is clear that the p-value

from [2] is smaller than 0.05. The exact p-value can be calculated in R via

(1-pt(2.019, 693))*2 which yields 0.0439. The pt command gives the

probability value for the quantile of 2.019 (with 693 degrees of freedom):

0.978. Therefore, with probability (1 − 0.978) % a value is right of 2.019 in

the respective t-distribution which gives, multiplied by two to account for a

two-sided test, the p-value.

(b)–(c) The plot on the left shows that the residuals are certainly not normally distrib-

uted as required by the model assumptions. The dots do not approximately

match the bisecting line. There are too many high positive residuals which

means that we are likely dealing with a right-skewed distribution of residu-

als. The plot on the right looks alright: no systematic pattern can be seen; it

is a random plot. The histogram of both theatre expenditure and log(theatre

expenditure) suggests that a log-transformation may improve the model,

see Fig. B.22. Log-transformations are often helpful when the outcome’s

distribution is skewed to the right.

(d) Since the outcome is log-transformed, we can apply the interpretation of a

log-linear model:

• Each year’s increase in age yields an exp(0.0038) = 1.0038 times higher

(=0.38 %) expenditure on theatre visits. Therefore, a 10-year age dif-

ference relates to an exp(10 · 0.0038) = 1.038 times higher expenditure

(=3.8 %).

• Women (gender = 1) spend on average (given the other variables)

exp(0.179) ≈ 1.20 times more money on theatre visits.

• Each 1000 SFR more yearly income relates to an exp(0.0088) = 1.0088

times higher expenditure on theatre visits. A difference in 10,000 SFR per

year therefore amounts to an 8.8 % difference in expenditure.

• Each extra Swiss Franc spent on cultural activities is associated with an

exp(0.00353) = 1.0035 times higher expenditure on theatre visits.
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Fig. B.22 Histogram of the outcome

• Except for theatre expenditure from the preceding year, all β j are signifi-

cantly different from zero.

(e) While in (b) the residuals were clearly not normally distributed, this assump-

tion seems to be fulfilled now: the QQ-plot shows dots which lie approxi-

mately on the bisecting line. The fitted values versus residuals plot remains

a chaos plot. In conclusion, the log-transformation of the outcome helped

to improve the quality of the model.

Solution to Exercise 11.6

(a) The multivariate model is obtained by using the lm() command and separating

the covariates with the + sign. Applying summary() to the model returns the

comprehensive summary.

mp <- lm(time ∼ temperature + branch + day + operator + driver

+ bill + pizzas + discount_customer)

summary(mp)
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.42270 2.00446 20.166 < 2e-16 ***

temperature -0.20823 0.02594 -8.027 2.28e-15 ***

branchEast -1.60263 0.42331 -3.786 0.000160 ***

branchWest -0.11912 0.37330 -0.319 0.749708

dayMonday -1.15858 0.63300 -1.830 0.067443 .

daySaturday 0.88163 0.50161 1.758 0.079061 .

daySunday 1.01655 0.56103 1.812 0.070238 .

dayThursday 0.78895 0.53006 1.488 0.136895

dayTuesday 0.79284 0.62538 1.268 0.205117

dayWednesday 0.25814 0.60651 0.426 0.670468

operatorMelissa -0.15791 0.34311 -0.460 0.645435

driverDomenico -2.59296 0.73434 -3.531 0.000429 ***

driverLuigi -0.80863 0.58724 -1.377 0.168760

driverMario -0.39501 0.43678 -0.904 0.365973

driverSalvatore -0.50410 0.43480 -1.159 0.246519

bill 0.14102 0.01600 8.811 < 2e-16 ***

pizzas 0.55618 0.11718 4.746 2.31e-06 ***

discount_customer -0.28321 0.36848 -0.769 0.442291

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.373 on 1248 degrees of freedom

Multiple R-squared: 0.3178, Adjusted R-squared: 0.3085

F-statistic: 34.2 on 17 and 1248 DF, p-value: < 2.2e-16

The output shows that lower temperature, higher bills, and more ordered pizzas

increase the delivery times. The branch in the East is the fastest, and so is

the driver Domenico. While there are differences with respect to day, discount

customers, and the operator, they are not significant at the 5 % level.

(b) The confidence intervals are calculated as: β̂i ± tn−p−1;1−α/2 · σ̂
β̂

. We know

from the model output from (a) that there are 1248 degrees of freedom (1266

observations − 18 estimated coefficients). The respective quantile from the t-

distribution is obtained with the qt() function. The coefficients are accessed via

the coefficients command (alternatively: mp$coefficients); the variances

of the coefficients are either accessed via the diagonal elements of the covariance

matrix (diag(vcov(mp))) or the model summary

(summary(mp)[[4]][,2])—both of which are laborious. The summary of

coefficients, lower confidence limit (lcl), and upper confidence limit (ucl) may

be summarized in a matrix, e.g. via merging the individual columns with the

cbind command.
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lcl <- coefficients(mp) - qt(0.975,1248)*sqrt(diag(vcov(mp)))

ucl <- coefficients(mp) + qt(0.975,1248)*sqrt(diag(vcov(mp)))

cbind(coefficients(mp),lcl,ucl)

lcl ucl

(Intercept) 40.4227014 36.4902223 44.3551805

temperature -0.2082256 -0.2591146 -0.1573366

branchEast -1.6026299 -2.4331162 -0.7721436

branchWest -0.1191190 -0.8514880 0.6132501

dayMonday -1.1585828 -2.4004457 0.0832801

...

(c) The variance is estimated as the residual sum of squares divided by the degrees

of freedom, see also (11.27). Applying the residuals command to the model

and using other basic operations yields an estimated variance of 28.86936.

sum(residuals(mp)̂ 2)/(mp$df.residual)

Taking the square root of the result yields
√

28.86936 = 5.37 which is also

reported in the model output from (a) under “Residual standard error”.

(d) The sum of squares error is defined as
∑n

i=1(yi − ŷi )
2. The total sum of squares

is
∑n

i=1(yi − ȳ)2. This can be easily calculated in R. The goodness of fit is then

obtained as R2 = 1 − SQError/SQTotal = 0.3178. Dividing SQError by n − p −
1 = 1266 − 17 − 1 = 1248 and SQTotal by n − 1 = 1265 yields R2

adj = 0.3085.

This corresponds to the model output from (a).

SQE <- sum(residuals(mp)̂ 2)

SQT <- sum((time-mean(time))̂ 2)

1-(SQE/SQT)

1-((SQE/1248)/(SQT/1265))

(e) Applying stepAIC to the fitted model (with option “back” for backward selec-

tion) executes the model selection by means of AIC.

library(MASS)

stepAIC(mp, direction='back')

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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The output shows that the full model has an AIC of 4275.15. The smallest AIC

is achieved by removing the operator variable from the model.

Step: AIC=4275.15

time ~ temperature + branch + day + operator + driver + bill +

pizzas + discount_customer

Df Sum of Sq RSS AIC

- operator 1 6.11 36035 4273.4

- discount_customer 1 17.05 36046 4273.8

<none> 36029 4275.2

- day 6 448.79 36478 4278.8

- driver 4 363.91 36393 4279.9

- branch 2 511.10 36540 4289.0

- pizzas 1 650.39 36679 4295.8

- temperature 1 1860.36 37889 4336.9

- bill 1 2241.30 38270 4349.6

The reduced model has an AIC of 4273.37. Removing the discount customer

variable from the model yields an improved AIC (4272.0 < 4273.37).

Step: AIC=4273.37

time ~ temperature + branch + day + driver + bill + pizzas +

discount_customer

Df Sum of Sq RSS AIC

- discount_customer 1 17.57 36053 4272.0

<none> 36035 4273.4

- day 6 452.00 36487 4277.1

- driver 4 364.61 36400 4278.1

- branch 2 508.57 36544 4287.1

- pizzas 1 649.54 36685 4294.0

- temperature 1 1869.98 37905 4335.4

- bill 1 2236.19 38271 4347.6

The model selection procedure stops here as removing any variable would only

increase the AIC, not decrease it.

Step: AIC=4271.98

time ~ temperature + branch + day + driver + bill + pizzas

Df Sum of Sq RSS AIC

<none> 36053 4272.0

- day 6 455.62 36508 4275.9

- driver 4 368.18 36421 4276.8

- branch 2 513.17 36566 4285.9

- pizzas 1 657.07 36710 4292.8

- temperature 1 1878.24 37931 4334.3

- bill 1 2228.88 38282 4345.9
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The final model, based on backward selection with AIC, includes day, driver,

branch, number of pizzas ordered, temperature, and bill.

(f) Fitting the linear model with the variables obtained from (e) and obtaining the

summary of it yields an R2
adj of 0.3092.

mps <- lm(time ∼ temperature + branch + day + driver + bill +

pizzas)

summary(mps)

This is only marginally higher than the goodness of fit from the full model

(0.3092 > 0.3085). While the selected model is better than the model with all

variables, both, with respect to AIC and R2
adj, the results are very close and

remind us of the possible instability of applying automated model selection

procedures.

(g) Both the normality assumption and heteroscedasticity can be checked by apply-

ing plot() to the model. From the many graphs provided we concentrate on

the second and third of them:

plot(mps, which=2)

plot(mps, which=3)

Figure B.23a shows that the residuals are approximately normally distributed

because the dots lie approximately on the bisecting line. There are some smaller

deviations at the tails but they are not severe. The plot of the fitted values versus
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Fig. B.23 Checking the model assumptions
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the square root of the absolute values of the residuals shows no pattern; it is a

random plot (Fig. B.23b). There seems to be no heteroscedasticity.

(h) Not all variables identified in (e) represent necessarily a “cause” for delayed or

improved delivery time. It makes sense to speculate that because many pizzas are

being delivered (and need to be made!) the delivery time increases. There might

also be reasons why a certain driver is improving the delivery time: maybe he does

not care about red lights. This could be investigated further given the results of

the model above. However, high temperature does not cause the delivery time to

be shorter; likely it is the other way around: the temperature is hotter because the

delivery time is shorter. However, all of these considerations remain speculation.

A regression model only exhibits associations. If there is a significant association,

we know that given an accepted error (e.g. 5 %), values of x are higher when

values of y are higher. This is useful but it does not say whether x caused y or

vice versa.

(i) To check whether it is worth to add a polynomial, we simply add the squared

temperature to the model. To make R understand that we apply a transformation

we need to use I().

mps2 <- lm(time ∼ temperature + I(temperatureˆ2) +

I(temperatureˆ3) + branch + day + driver + bill + pizzas)

summary(mps2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -18.954965 8.795301 -2.155 0.03134 *

temperature 1.736692 0.282453 6.149 1.05e-09 ***

I(temperature^2) -0.015544 0.002247 -6.917 7.36e-12 ***

branchEast -1.429772 0.416107 -3.436 0.00061 ***

...

It can be seen that the null hypothesis H0 : βtemp2 = 0 is rejected. This indicates

that it is worthwhile to assume a quadratic relationship between temperature and

delivery time.

(j) The prediction can be obtained by the predict command as follows:

predict(mps,pizza[1266,])

The prediction is 36.5 min and therefore 0.8 min higher than the real delivery

time.
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More details on Chap. 3

Proof of equation (3.27).

s̃2 = 1

n

k
∑

j=1

∑

xi ∈K j

(xi − x̄)2 = 1

n

k
∑

j=1

∑

xi ∈K j

(xi − x̄ j + x̄ j − x̄)2

= 1

n

k
∑

j=1

∑

xi ∈K j

(xi − x̄ j )
2
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[i]

+ 1

n

k
∑

j=1

∑

xi ∈K j

(x̄ j − x̄)2

︸ ︷︷ ︸

[i i]
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k
∑

j=1

∑

xi ∈K j

(xi − x̄ j )(x̄ j − x̄)
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[i i i]
We obtain the following expressions for [i]–[i i i]:

[i] = 1

n

k
∑

j=1

n j

1

n j

∑

xi ∈K j

(xi − x̄ j )
2 = 1

n

k
∑

j=1

n j s̃
2
j ,

[i i] = 1

n

k
∑

j=1

n j (x̄ j − x̄)2 ,

[i i i] = 2

n

k
∑

j=1

(x̄ j − x̄)
∑

xi ∈K j

(xi − x̄ j ) = 2

n

k
∑

j=1

(x̄ j − x̄) 0 = 0.

Since [i] is the within-class variance and [i i] is the between-class variance, Eq. (3.27)

holds.
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More details on Chap. 7

Proof of Theorem 7.2.3. Consider the interval (x0 − δ, x0] with δ ≥ 0. From (7.12)

it follows that P(x0 − δ < X ≤ x0) = F(x0) − F(x0 − δ) and therefore

P(X = x0) = lim
δ→0

P(x0 − δ < X ≤ x0)

= lim
δ→0

[F(x0) − F(x0 − δ)]

= F(x0) − F(x0) = 0.

Proof of Theorem 7.3.1.

Var(X)
(7.17)= E(X − μ)2

= E(X2 − 2μX + μ2)
(7.28−7.31)= E(X2) − 2μE(X) + E(μ2)

= E(X2) − 2μ2 + μ2

= E(X2) − [E(X)]2.

Proof of Theorem 7.4.1. We define a discrete random variable Y as

Y =
{

0 if |X − μ| < c

c2 if |X − μ| ≥ c.
(C.1)

The respective probabilities are P(|X − μ| < c) = p1 and P(|X − μ| ≥ c) = p2.

The definition of Y in (C.1) implies that

Y ≤ |X − μ|2

since for |X − μ|2 < c2 Y takes the value y1 = 0 and therefore Y ≤ |X − μ|2. If

|X − μ|2 ≥ c2Y takes the value y2 = c2, and therefore Y ≤ |X − μ|2. Using this

knowledge, we obtain

E(Y ) ≤ E(X − μ)2 = Var(X).

However, for Y we also have

E(Y ) = 0 · p1 + c2 · p2 = c2 P(|X − μ| ≥ c)

which means that we can summarize the above findings in the following inequality:

c2 P(|X − μ| ≥ c) ≤ Var(X).

This equates to Tschebyschev’s inequality. Using P( Ā) = 1 − P(A), i.e.

P(|X − μ| ≥ c) = 1 − P(|X − μ| < c),

we obtain the second formula of Tschebyschev’s inequality:

P(|X − μ| < c) ≥ 1 − Var(X)

c2
.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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Proof of rule (7.30). For discrete variables, we have

E(a + bX)
(7.16)=

∑

i

(a + bxi )pi =
∑

api + bxi pi = a
∑

i

pi + b
∑

i

xi pi .

Since
∑

i pi = 1 and
∑

i xi pi = E(X), we obtain E(a + bX) = a + bE(X), which

is rule (7.30). In the continuous case, we have

E(a + bX) =
∫ ∞

−∞
(a + bx) f (x)dx =

∫ ∞

−∞
(a f (x)dx + bx f (x)dx)

= a

∫ ∞

−∞
f (x)dx + b

∫ ∞

−∞
x f (x)dx = a + bE(X).

Proof of rule (7.33). Using Var(X) = E(X2) − E(X)2, we can write the variance of

bX as

Var(bX) = E([bX ]2) + E(bX)2.

Using (7.29), we get E([bX ]2) = b2E(X2) and E(bX)2 = (bE(X))2. Therefore

Var(bX) = b2(E(X2) − E(X)2) = b2Var(X).

Proof of ρ = 1 for a perfect linear relationship. If Y = aX + b with a �= 0, we get

Cov(X, Y ) = E[(X − μX )(Y − μY )]
= aE[(X − μX )(X − μX )]

because Cov(aX + b, cY + d) = ac Cov(X, Y ), see p. 147. Then

Cov(X, Y ) = aVar(X),

Var(Y )
(7.33)= a2Var(X),

and therefore

ρ(X, Y ) = aVar(X)
√

a2Var(X)Var(X)
= a

|a| = 1

if a > 0. Similarly, if Y = aX + b with a < 0 we get ρ(X, Y ) = −1.

More details on Chap. 8

Theorem of Large Numbers. To explain the Theorem of Large Numbers, we first

need to first define stochastic convergence.

Definition C.1 A sequence of random variables, (Xn)n∈N, converges stochastically

to 0, if for any ǫ > 0

lim
n→∞

P(|Xn| > ǫ) = 0 (C.2)

holds.

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_8
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This is equivalent to limn→∞ P(|Xn| ≤ ǫ) = 1.

Theorem C.1 (Theorem of large numbers) Consider n i.i.d. random variables

X1, X2, . . . , Xn with E(X i ) = μ, Var(X i ) = σ2 and X̄n = 1
n

∑n
i=1 X i . It holds that

lim
n→∞

P(|X̄n − μ| < c) = 1, ∀ c ≥ 0. (C.3)

This implies that X̄n converges stochastically to μ. As another motivation, recall

Definition 7.6.1 where we define random variables X1, X2, . . . , Xn to be i.i.d. (inde-

pendently identically distributed) if all X i follow the same distribution and are inde-

pendent of each other. Under this assumption, we showed in (7.36) that Var(X̄) = σ2

n
.

It follows that the larger n, the smaller the variance. If we apply Tschebyschev’s

inequality (Theorem 7.4.1) to X̄ , we get the following equation for (X̄n − μ)n∈N:

P(|X̄n − μ| < c) ≥ 1 − Var(X̄n)

c2
= 1 − σ2

nc2
. (C.4)

This means that for each c ≥ 0, the right-hand side of the above equation tends to 1

as n → ∞ which gives a similar interpretation as the Theorem of Large Numbers.

Central Limit Theorem. Let X i (i = 1, 2, . . . , n) be n i.i.d. random variables

with E(X i ) = μ and Var(X i ) = σ2. If we consider the sum
∑n

i=1 X i , we obtain

E(
∑n

i=1 X i ) = nμ and Var(
∑n

i=1 X i ) = nσ2. If we want to standardize
∑n

i=1 X i

we can use Theorem 7.3.2 to obtain

Yn =
∑n

i=1 X i − nμ√
nσ2

, (C.5)

i.e. it holds that E(Yn) = 0 and Var(Yn) = 1.

Theorem C.2 (Central Limit Theorem) Let X i (i = 1, 2, . . . , n) be n i.i.d. random

variables with E(X i ) = μ and Var(X i ) = σ2. Yn denotes the standardized sum of

X i , i = 1, 2, . . . , n. The CDF of Yn is

lim
n→∞

P(Yn ≤ y) = Φ(y), ∀ y,

where Φ(y) denotes the CDF of the standard normal distribution.

This theorem tells us that Yn is approximately standard normal distributed if n is

large, i.e.

Yn ∼ N (0, 1) as n → ∞.

This is equivalent to saying that
∑n

i=1 X i is approximately N (nμ, nσ2) distributed

if n is large, i.e.
n
∑

i=1

X i ∼ N (nμ, nσ2). (C.6)

http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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As a consequence X̄n = 1
n

∑n
i=1 X i is N (μ, σ2

n
) distributed for large n, i.e.

X̄n ∼ N

(

μ,
σ2

n

)

.

In summary, the Theorem of Large Numbers tells us that X̄n converges stochas-

tically to μ, whereas the Central Limit Theorem tells us that X̄n converges to a

N (μ, σ2

n
)-distribution as n tends to infinity.

PDF of the χ2-Distribution. The PDF of the χ2-distribution, with n degrees of

freedom, is defined as

f (x) =
{

xn/2−1 exp(−x/2)

Γ (n/2)2n/2 if x > 0

0 otherwise.
(C.7)

Note that Γ (n) is the Gamma function, defined as Γ (n) = (n − 1)! for positive inte-

gers and Γ (x) =
∫∞

0 t x−1 exp(−t)dt otherwise.

PDF of the t-Distribution. The PDF of the t-distribution, with n degrees of freedom,

is defined as

f (x) =
Γ ( n+1

2 )

Γ (n/2)
√

nπ

(

1 + x2

n

)−(n+1)/2

− ∞ < x < ∞. (C.8)

Note that Γ (n) is the Gamma function, defined as Γ (n) = (n − 1)! for positive inte-

gers and Γ (x) =
∫∞

0 t x−1 exp(−t)dt otherwise.

PDF of the F-Distribution. The PDF of the F-distribution, with n and m degrees

of freedom, respectively, is defined as

f (x) =
Γ ( n+m

2 )( n
m

)n/2xn/2−1

Γ ( n
2 )Γ (m

2 )(1 + nx
m

)(n+m)/2
, x > 0. (C.9)

The PDF of the F-distribution with m and n degrees of freedom can be derived by

interchanging the roles of m and n.

More details on Chap. 9

Another Example of Sufficiency. Let X1, X2, . . . , Xn be a random sample from

N (μ,σ2) where μ and σ2 are both unknown. We attempt to find a sufficient statistic

for μ and σ2.

http://dx.doi.org/10.1007/978-3-319-46162-5_9
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f (x1, x2 . . . , xn;μ,σ2) =
(

1√
2π

)n

exp

[

−1

2

n
∑

i=1

(xi − μ)2

σ2

]

=
(

1√
2πσ

)n

exp

[

− 1

2σ2

(
n
∑

i=1

x2
i − 2μ

n
∑

i=1

xi + nμ2

)]

.

Here the joint density depends on x1, x2, . . . , xn through two statistics

t1(x1, x2, . . . , xn) =
∑n

i=1 xi and t2(x1, x2, . . . , xn) =
∑n

i=1 x2
i with h(x1, x2,

. . . , xn) = 1. Thus T1 =
∑n

i=1 X i and T2 =
∑n

i=1 X2
i are jointly sufficient for μ

and σ2. Therefore, X̄ and S2 = 1
n−1

∑n
i=1(X i − X̄)2 are jointly sufficient for μ and

σ2 as they are a one-to-one function of T1 and T2. They are the maximum likelihood

estimates for μ and σ2.

More details on Chap. 10

Exact Test of Fisher. Similar to the approximate two-sample binomial test in

Sect. 10.4.2, we assume two samples following a binomial distribution with para-

meters (n1, p1) and (n2, p2), respectively.

X = (X1, X2, . . . , Xn1), X i ∼ B(1; p1)

Y = (Y1, Y2, . . . , Yn2), Yi ∼ B(1; p2).

For the sums of these random variables, we get:

X =
n1∑

i=1

X i ∼ B(n1; p1), Y =
n2∑

i=1

Yi ∼ B(n2; p2).

Let Z = X + Y . The Exact Test of Fisher uses the fact that the row marginal fre-

quencies n1 and n2 in the following table

Success Failure Total

Population A X n1 − X n1

Population B Z − X = Y n2 − (Z − X) n2

Total Z (n1 + n2 − Z) n1 + n2

are fixed by the sample sizes n1 and n2. Conditional on the total number of successes

Z = z (i.e. the column margins are assumed to be fixed), the only remaining random

variable is X (since the other three entries of the table are then determined by the

realization x of X and the margins). Under H0 : p1 = p2 = p, it can be shown that

X ∼ H(n, n1, z),

http://dx.doi.org/10.1007/978-3-319-46162-5_10
http://dx.doi.org/10.1007/978-3-319-46162-5_10
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i.e.

P(X = x |Z = z) =
(

n1
x

)(
n−n1
z−x

)

(
n
z

) .

The proof is straightforward using the idea of conditioning on Z = z and the assump-
tion of independence of the two samples:

P(X = x |Z = z) = P(X = x, Z = z)

P(Z = z)
= P(X = x, Y = z − x)

P(Z = z)

= P(X = x)P(Y = z − x)

P(Z = z)

=
(n1

x

)

px (1 − p)n1−x
( n2
z−x

)

pz−x (1 − p)n2−(z−x)

(n
z

)

pz(1 − p)n−z

=
(n1

x

)( n2
z−x

)

(n
z

) =
(n1

x

)(n−n1
z−x

)

(n
z

) .

Note that in the equation above we use the fact that under H0, Z = X + Y is B(n, p)

distributed; see the additivity theorem for the binomial distribution, i.e. Theorem

8.1.1.

Example C.1 Consider two competing lotteries A and B. Say we buy 10 tickets from

each lottery and test the hypothesis of equal winning probabilities. The data can be

summarized in a 2 × 2 table:

Winning Not winning Total

Lottery A 1 24 25

Lottery B 7 18 25

Total 8 42 50

In R, we can use the command fisher.test to perform the test. Using the exam-

ple data and H1 : p1 �= p2, we get

ft <- matrix(nrow=2,ncol=2,data=cbind(c(1,7), c(24,18)))

fisher.test(x=ft)

with output

Fisher’s Exact Test for Count Data

data: fisher.table

p-value = 0.0488

alternative hypothesis: true odds ratio is not equal to 1

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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95 percent confidence interval:

0.002289885 0.992114690

sample estimates:

odds ratio

0.1114886

For the example data and α = 0.05, the null hypothesis is rejected, since the p-value

is lower than α. For the calculation of the p-value, the one-sided and two-sided cases

have to be distinguished. The idea is that while fixing the margins at the observed

values (i.e. 25, 25, 8, 42), we have to calculate the sum of the probabilities of all

tables which have lower probability than the observed table. In R, one can use the

functions dhyper and phyper for calculating (cumulative) probabilities. For exam-

ple, P(X = 1|Z = 8) can be calculated as

dhyper(1,25,25,8)

[1] 0.02238402

A more extreme table than the observed one is

0 25 25

8 17 25

8 42 50

with probability P(X = 0) = dhyper(0,25,25,8) = 0.002, which is lower than

P(X = 1). The sum is 0.0224 + 0.002 = 0.0244 which is the (left) one-sided p-

value. In this case (not generally true!), the two-sided p-value is simply two times

the one-sided value, i.e. 2 · 0.0244 = 0.0488.

Remark C.1 The two-sided version of the Exact Test of Fisher can also be used as

a test of independence of two binary variables. It is equivalent to the test of equality

of two proportions, see Example 10.8.2.

One-Sample χ2-Test for Testing Hypothesis About the Variance. We assume a

normal population, i.e. X ∼ N (μ,σ2) and an i.i.d. sample (X1, X2, . . . , Xn) distrib-

uted as X . We only introduce the test for two-sided hypotheses

H0 : σ2 = σ2
0

versus

H1 : σ2 �= σ2
0 .

http://dx.doi.org/10.1007/978-3-319-46162-5_10
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The test statistic

T (X) =
(n − 1)S2

X

σ2
0

follows a χ2
n−1-distribution under H0. The critical region is constructed by taking

the α/2- and (1 − α/2) quantile as critical values; i.e. H0 is rejected, if

t (x) < cn−1;α/2

or if

t (x) > cn−1;1−α/2,

where cn−1;α/2 and cn−1;1−α/2 are the desired quantiles of a χ2-distribution. In R,

the test can be called by the sigma.test function in the TeachingDemos library or

the varTest function in library EnvStats. Both functions also return a confidence

interval for the desired confidence level. Note that the test is biased. An unbiased

level α test would not take α/2 at the tails but two different tail probabilities α1 and

α2 with α1 + α2 = α.

F-Test for Comparing Two Variances. Comparing variances can be of interest

when comparing the variability, i.e. the “precision” of two industrial processes; or

when comparing two medical treatments with respect to their reliability. Consider

two populations characterized by two independent random variables X and Y which

follow normal distributions:

X ∼ N (μX ,σ2
X ), Y ∼ N (μY , σ2

Y ).

For now, we distinguish the following two hypotheses:

H0 : σ2
X = σ2

Y versus H1 : σ2
X �= σ2

Y , two-sided

H0 : σ2
X ≤ σ2

Y versus H1 : σ2
X > σ2

Y , one-sided.

The third hypothesis with H1 : σ2
X < σ2

Y is similar to the second hypothesis where

X and Y are replaced with each other.

Test Statistic

Let (X1, X2, . . . , Xn1) and (Y1, Y2, . . . , Yn2) be two independent random samples

of size n1 and n2. The test statistic is defined as the ratio of the two sample variances

T (X, Y) =
S2

X

S2
Y

, (C.10)

which is, under the null hypothesis, F-distributed with n1 − 1 and n2 − 1 degrees

of freedom, see also Sect. 8.3.3.

http://dx.doi.org/10.1007/978-3-319-46162-5_8
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Critical Region

Two-Sided Case. The motivation behind the construction of the critical region

for the two-sided case, H0: σ2
X = σ2

Y vs. H1: σ2
X �= σ2

Y , is that if the null hypothesis

is true (i.e. the two variances are equal) then the test statistic (C.10) would be 1;

also, T (X, Y) > 0. Therefore, very small (but positive) and very large values of

T (X, Y) should lead to a rejection of H0. The critical region can then be written as

K = [0, k1) ∪ (k2, ∞), where k1 and k2 are critical values such that

P(T (X, Y) < k1|H0) = α/2

P(T (X, Y) > k2|H0) = α/2.

Here k1 and k2 can be calculated from the quantile function of the F-distribution as

k1 = fn1−1,n2−1,α/2, k2 = fn1−1,n2−1,1−α/2.

Example C.2 Let n1 = 50, n2 = 60 and α = 0.05. Using the qf command in R, we

can determine the critical values as:

qf(q=0.025, df1=50-1, df2=60-1)

qf(q=0.975, df1=50-1, df2=60-1)

The results are k1 = 0.5778867 and k2 = 1.706867.

Remark C.2 There is the following relationship between quantiles of the F-distribution:

fn1−1;n2−1;α/2 = 1

fn2−1;n1−1;1−α/2
.

One-Sided Case. In the one-sided case, the alternative hypothesis is always for-

mulated in such a way that the variance in the numerator is greater than the vari-

ance in the denominator. The hypotheses are H0: σ2
X ≤ σ2

Y versus H1: σ2
X > σ2

Y

or H0: σ2
X/σ2

Y ≤ 1 versus H1: σ2
X/σ2

Y > 1. This means it does not matter whether

H1 : σ2
X > σ2

Y or H1 : σ2
X < σ2

Y ; by constructing the test statistic in the correct way,

we implicitly specify the hypothesis. The critical region K consists of the largest

values of T (X, Y), i.e. K = (k, ∞), where k has to fulfil the condition

P(T (X, Y) > k|H0) = α.

The resulting critical value is denoted by k = fn1−1;n2−1;1−α.
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Observed Test Statistic

Using the sample variances, the realized test statistic t is calculated as:

t (x, y) = s2
x

s2
y

, s2
x = 1

n1 − 1

n1∑

i=1

(xi − x̄)2, s2
y = 1

n2 − 1

n2∑

i=1

(yi − ȳ)2.

Test Decisions

Case H0 H1 Reject H0, if

(a) σX = σY σX �= σY t (x, y) > fn1−1;n2−1;1−α/2 or

t (x, y) < fn1−1;n2−1;α/2

(b) σX ≤ σY σX > σY t (x, y) > fn1−1;n2−1;1−α

Remark C.3 We have tacitly assumed that the expected values μX and μy are

unknown and have to be estimated. However, this happens rarely, if ever, in practice.

When estimating the expected values by the arithmetic means, it would be appropriate

to increase the degrees of freedom from n1 − 1 to n1 and n2 − 1 to n2. Interestingly,

standard software will not handle this case correctly.

Example C.3 A company is putting baked beans into cans. Two independent machines

at two sites are used. The filling weights are assumed to be normally distributed with

mean 1000 g. It is speculated that one machine is more precise than the other. Two

samples of the two machines give the following results:

Sample n x̄ s2

X 20 1000.49 72.38

Y 25 1000.26 45.42

With α = 0.1 and the hypotheses

H0 : σ2
X = σ2

Y versus H1 : σ2
X �= σ2

Y ,

we get the following quantiles
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qf(0.05, 20-1, 25-1)

[1] 0.4730049

qf(0.95, 20-1, 25-1)

[1] 2.039858

The observed test statistic is

t = 72.38

45.42
= 1.59.

Therefore, H0 is not rejected, since k1 ≤ t ≤ k2. We cannot reject the hypothesis

of equal variability of the two machines. In R, the F-test can be used using the

command var.test.

Remark C.4 For the t-test, we remarked that the assumption of normality is not cru-

cial because the test statistic is approximately normally distributed, even for moderate

sample sizes. However, the F-test relies heavily on the assumption of normality. This

is why alternative tests are often used, for example the Levene’s test.

More details on Chap. 11

Obtaining the Least Squares Estimates in the Linear Model. The function S(a, b)

describes our optimization problem of minimizing the residual sum of squares:

S(a, b) =
n
∑

i=1

e2
i =

n
∑

i=1

(yi − a − bxi )
2.

Minimizing S(a, b) is achieved using the principle of maxima and minima which

involves taking the partial derivatives of S(a, b) with respect to both a and b and

setting them equal to 0. The partial derivatives are

∂

∂a
S(a, b) =

n
∑

i=1

∂

∂a
(yi − a − bxi )

2 = −2

n
∑

i=1

(yi − a − bxi ), (C.11)

∂

∂b
S(a, b) =

n
∑

i=1

∂

∂b
(yi − a − bxi )

2 = −2

n
∑

i=1

(yi − a − bxi )xi . (C.12)

Now we set (C.11) and (C.12) as equal to zero, respectively:

(I)
∑n

i=1(yi − â − b̂xi ) = 0,

(II)
∑n

i=1(yi − â − b̂xi )xi = 0.

http://dx.doi.org/10.1007/978-3-319-46162-5_11
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This equates to

(I′) nâ + b̂
∑n

i=1 xi =
∑n

i=1 yi ,

(II′) â
∑n

i=1 xi + b̂
∑n

i=1 x2
i =

∑n
i=1 xi yi .

Multiplying (I′) by 1
n

yields

â + b̂x̄ = ȳ

which gives us the solution for a:

â = ȳ − b̂x̄ .

Putting this solution into (II′) gives us

(ȳ − b̂x̄)

n
∑

i=1

xi + b̂

n
∑

i=1

x2
i =

n
∑

i=1

xi yi .

Using
∑n

i=1 xi = nx̄ leads to

b̂

(
n
∑

i=1

x2
i − nx̄2

)

=
n
∑

i=1

xi yi − nx̄ ȳ.

If we use
n
∑

i=1

x2
i − nx̄2 =

n
∑

i=1

(xi − x̄)2 = Sxx

and

n
∑

i=1

xi yi − nx̄ ȳ =
n
∑

i=1

(xi − x̄)(yi − ȳ) = Sxy,

we eventually obtain the least squares estimate of b:

b̂ Sxx = Sxy

b̂ = Sxy

Sxx

=
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2
.

Remark C.5 To show that the above solutions really relate to a minimum, and not

to a maximum, we would need to look at all the second-order partial derivatives of

S(a, b) and prove that the bordered Hessian matrix containing these derivatives is

always positive definite. We omit this proof however.
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Variance Decomposition.

We start with the following equation:

yi − ŷi = (yi − ȳ) − (ŷi − ȳ).

If we square both sides we obtain

n
∑

i=1

(yi − ŷi )
2 =

n
∑

i=1

(yi − ȳ)2 +
n
∑

i=1

(ŷi − ȳ)2 − 2

n
∑

i=1

(yi − ȳ)(ŷi − ȳ).

The last term on the right-hand side is

n
∑

i=1

(yi − ȳ)(ŷi − ȳ)
(11.8)=

n
∑

i=1

(yi − ȳ)b̂(xi − x̄)

= b̂ Sxy
(11.6)= b̂2Sxx

(11.8)=
n
∑

i=1

(ŷi − ȳ)2.

We therefore obtain

n
∑

i=1

(yi − ŷi )
2 =

n
∑

i=1

(yi − ȳ)2 −
n
∑

i=1

(ŷi − ȳ)2,

which equates to

n
∑

i=1

(yi − ȳ)2 =
n
∑

i=1

(ŷi − ȳ)2 +
n
∑

i=1

(yi − ŷi )
2.

The Relation between R
2 and r .

SQResidual =
n
∑

i=1

(yi − (â + b̂xi ))
2 (11.8)=

n
∑

i=1

[(yi − ȳ) − b̂(xi − x̄)]2

= Syy + b̂2Sxx − 2b̂Sxy

= Syy − b̂2Sxx = Syy − (Sxy)
2

Sxx

SQRegression = Syy − SQResidual = (Sxy)
2

Sxx

.
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We therefore obtain

R2 = SQRegression

Syy

= (Sxy)
2

Sxx Syy

= r2.

The Least Squares Estimators are Unbiased.

E(β̂) = E((X′X)−1X′y)

Given that X in the model is assumed to be fixed (i.e. non-stochastic and not following

any distribution), we obtain

E(β̂) = (X′X)−1X′E(y).

Since E(ǫ) = 0 it follows that Ey = Xβ and therefore

E(β̂) = (X′X)−1X′Xβ = β.

How to Obtain the Variance of the Least Squares Estimator. With the same

arguments as above (i.e X is fixed and non-stochastic) and applying the rule

Var(bX) = b2Var(X) from the scalar case to matrices we obtain:

Var(β̂) = Var((X′X)−1X′y) = (X′X)−1X′Var(y)X(X′X)−1 = σ2(X′X)−1.

Maximum Likelihood Estimation in the Linear Model. The linear model follows

a normal distribution:

y = Xβ + ǫ ∼ N (Xβ, σ2I).

Therefore, the likelihood function of y also follows a normal distribution:

L(β,σ2) = (2πσ2)−n/2 exp

{

− 1

2σ2
(y − Xβ)′(y − Xβ)

}

.

The log-likelihood function is given by

l(β, σ2) = −n

2
ln(2πσ2) − 1

2σ2
(y − Xβ)′(y − Xβ).
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To obtain the maximum likelihood estimates of β and σ2, one needs to obtain the

maxima of the above function using the principle of maxima and minima that involves

setting the partial derivatives equal to zero and finding the solution:

∂l

∂β
= 1

2σ2
2X′(y − Xβ) = 0,

∂l

∂σ2
= − n

2σ2
+ 1

2(σ2)2
(y − Xβ)′(y − Xβ) = 0.

We therefore have

X′Xβ̂ = X′y, or β̂ = (X′X)−1X′y

σ̂2 = 1

n
(y − Xβ̂)′(y − Xβ̂)

which give us the ML estimates of β and σ2 in the linear regression model. Here,

we also need to check the Hessian matrix of second-order partial derivatives to show

that we really found a minimum and not a maximum. We omit this proof however.

Distribution Tables

See Tables C.1, C.2 and C.3.
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Table C.2 (1 − α) quantiles for the t-distribution. These values can also be obtained in R using

the qt(p,df) command.

d f 1 − α

0.95 0.975 0.99 0.995

1 6.3138 12.706 31.821 63.657

2 2.9200 4.3027 6.9646 9.9248

3 2.3534 3.1824 4.5407 5.8409

4 2.1318 2.7764 3.7469 4.6041

5 2.0150 2.5706 3.3649 4.0321

6 1.9432 2.4469 3.1427 3.7074

7 1.8946 2.3646 2.9980 3.4995

8 1.8595 2.3060 2.8965 3.3554

9 1.8331 2.2622 2.8214 3.2498

10 1.8125 2.2281 2.7638 3.1693

11 1.7959 2.2010 2.7181 3.1058

12 1.7823 2.1788 2.6810 3.0545

13 1.7709 2.1604 2.6503 3.0123

14 1.7613 2.1448 2.6245 2.9768

15 1.7531 2.1314 2.6025 2.9467

16 1.7459 2.1199 2.5835 2.9208

17 1.7396 2.1098 2.5669 2.8982

18 1.7341 2.1009 2.5524 2.8784

19 1.7291 2.0930 2.5395 2.8609

20 1.7247 2.0860 2.5280 2.8453

30 1.6973 2.0423 2.4573 2.7500

40 1.6839 2.0211 2.4233 2.7045

50 1.6759 2.0086 2.4033 2.6778

60 1.6706 2.0003 2.3901 2.6603

70 1.6669 1.9944 2.3808 2.6479

80 1.6641 1.9901 2.3739 2.6387

90 1.6620 1.9867 2.3685 2.6316

100 1.6602 1.9840 2.3642 2.6259

200 1.6525 1.9719 2.3451 2.6006

300 1.6499 1.9679 2.3388 2.5923

400 1.6487 1.9659 2.3357 2.5882

500 1.6479 1.9647 2.3338 2.5857
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Table C.3 (1 − α) quantiles of the χ2-distribution. These values can also be obtained in R using

the qchisq(p,df) command

d f 1 − α

0.01 0.025 0.05 0.95 0.975 0.99

1 0.0001 0.001 0.004 3.84 5.02 6.62

2 0.020 0.051 0.103 5.99 7.38 9.21

3 0.115 0.216 0.352 7.81 9.35 11.3

4 0.297 0.484 0.711 9.49 11.1 13.3

5 0.554 0.831 1.15 11.1 12.8 15.1

6 0.872 1.24 1.64 12.6 14.4 16.8

7 1.24 1.69 2.17 14.1 16.0 18.5

8 1.65 2.18 2.73 15.5 17.5 20.1

9 2.09 2.70 3.33 16.9 19.0 21.7

10 2.56 3.25 3.94 18.3 20.5 23.2

11 3.05 3.82 4.57 19.7 21.9 24.7

12 3.57 4.40 5.23 21.0 23.3 26.2

13 4.11 5.01 5.89 22.4 24.7 27.7

14 4.66 5.63 6.57 23.7 26.1 29.1

15 5.23 6.26 7.26 25.0 27.5 30.6

16 5.81 6.91 7.96 26.3 28.8 32.0

17 6.41 7.56 8.67 27.6 30.2 33.4

18 7.01 8.23 9.39 28.9 31.5 34.8

19 7.63 8.91 10.1 30.1 32.9 36.2

20 8.26 9.59 10.9 31.4 34.2 37.6

25 11.5 13.1 14.6 37.7 40.6 44.3

30 15.0 16.8 18.5 43.8 47.0 50.9

40 22.2 24.4 26.5 55.8 59.3 63.7

50 29.7 32.4 34.8 67.5 71.4 76.2

60 37.5 40.5 43.2 79.1 83.3 88.4

70 45.4 48.8 51.7 90.5 95.0 100.4

80 53.5 57.2 60.4 101.9 106.6 112.3

90 61.8 65.6 69.1 113.1 118.1 124.1

100 70.1 74.2 77.9 124.3 129.6 135.8

Quantiles of the F-Distribution. These quantiles can be obtained in R using the

qf(p,df1,df2) command.
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Descriptive Data Analysis

one variable

nominal ordinal continuous

bar chart
pie chart
freq. table

mode

bar chart
pie chart
freq. table
box plot
ECDF

median, mode,
quartiles,
range, IQR

box plot
histogram
kernel density plot
ECDF

median, mean,
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variance, absolute
median deviation,
range, IQR
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Summary of Tests for Continuous and Ordinal Variables
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Summary of Tests for Nominal Variables
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Index

A

Absolute

deviation, 51

mean deviation, 51

median deviation, 51

Additivity theorem, 116, 147

Akaike’s information criterion (AIC), 282

Analysis of variance, 274

ANOVA, 274

Arithmetic mean, 38

properties, 40

weighted, 38

Association, 67, 249

B

Backward selection, 282

Bar chart, 24

Behrens-Fisher problem, 222

Bernoulli distribution, 156

Bias, 184

Binomial

coefficient, 102

distribution, 157

Bivariate random variables, 140

Box plot, 56

C

Calculation rules

CDF, 133

expectation, 144

normal random variables, 168

probabilities, 117

variance, 144

Causation, 288

CDF, 129

calculation rules, 133

joint, 141

quantile, 137

quartile, 137

Central limit theorem, 426

Central tendency, 38

Certain event, 110

χ2

distribution, 171, 427

goodness-of-fit test, 235

independence test, 238

test of homogeneity, 240, 241

variance test, 430

Coding

dummy, 266

effect, 267

Coefficient

binomial, 102

of variation, 55

regression, 251

Combinations, 102

with order, 103, 104

with replacement, 103, 104

without order, 102, 103

without replacement, 102, 103

Combinatorics, 97

Complementary event, 110

Composite event, 110

Conditional

distribution, 141, 143

frequency distribution, 70

probability, 117

relative frequency distribution, 70

Confidence

bound, 196

interval, 196, 197

interval for μ; σ2 known, 197

interval for μ; σ2 unknown, 198

© Springer International Publishing Switzerland 2016

C. Heumann et al., Introduction to Statistics and Data Analysis,

DOI 10.1007/978-3-319-46162-5

451



452 Index

interval for p, 199

interval for the odds ratio, 201

level, 196

Consistency, 189

Contingency

coefficient, 77

table, 68, 140

Continuous variable, 6

Convergence

stochastic, 425

Correlation coefficient, 148

of Bravais–Pearson, 82

of Spearman, 84

product moment, 82

Covariance, 146, 147

Covariate, 251

Cramer’s V, 77

Cross tabulation, see contingency table

Cumulative

distribution function, 129

frequency, see frequency, cumulative

marginal distribution, 143

D

Data

matrix, 3, 9

observation, 3

set, 3, 9

transformation, 11

unit, 3

Decomposition

complete, 113

Degenerate distribution, 156

Density, 129

Design matrix, 263, 270

Dispersion, 48

absolute deviation, 51

absolute mean deviation, 51

absolute median deviation, 51

mean squared error, 51

measure, 49

range, 49

standard deviation, 51

Distribution, 19

Bernoulli, 156

Binomial, 157

χ2, 171, 427

conditional, 141, 143

conditional frequency, 70

conditional relative frequency, 70

continuous, 165

cumulative marginal, 143

degenerate, 156

exponential, 170

F, 427

Gauss, 166

geometric, 163

hypergeometric, 163

independent and identical, 145, 426

joint relative frequency, 70

marginal, 140, 142

marginal frequency, 70

marginal relative frequency, 70

multinomial, 161

normal, 166

Poisson, 160

standard, 154

Student, 172

t, 172, 427

uniform discrete, 154

Duality, 216

Dummy variable, 266

E

Efficiency, 185

Elementary event, 110

Empirical cumulative distribution function

(ECDF), 19

Epitools, see R packages

Error

type I, 213

type II, 213

Estimation

interval, 195

least squares, 252, 253, 264

maximum likelihood, 192

method of moments, 195

nonparametric, 182

parametric, 182

Event, 110

additive theorem, 116

certain, 110

composite, 110

disjoint, 112

elementary, 110

impossible, 110

simple, 110

sure, 110

theorem of additivity, 115, 116

Expectation, 134

calculation rules, 144

Expected frequencies, 74



Index 453

Experiment

Laplace, 114

random, 109

Exponential distribution, 170

F

Factorial function, see function, factorial

F-distribution, 173, 427

Fisher

exact test, 230

Foreign, see R packages

Frequency

absolute, 18, 69, 113

cumulative, 19

expected, 74

relative, 18, 21, 113

table, 19, 69

F-Test, 272, 431

Function

cumulative distribution, see CDF

empirical cumulative distribution, see

ECDF

factorial, 100

joint cumulative distribution, 141

joint probability distribution, 140, 141

probability mass, see PMF

step, 133

G

Gamma

of Goodman and Kruskal, 87

Gauss test

one-sample, 216

two-sample, 221

Generalized method of moments, 195

Geometric distribution, 163

Ggplot2, see R packages

Gini coefficient, 60

standardized, 61

Goodman and Kruskal’s γ, 87

Goodness of fit

adjusted measure, 281

measure, 258

test, 235

Graph

bar chart, 24

box plot, 56

histogram, 27

kernel density plot, 29

Lorenz curve, 58

pie chart, 26

QQ-plot, 44

random plot, 286

scatter plot, 80

Growth

factor, 46

rate, 46

H

Heteroscedasticity, 286

Histogram, 27

Homoscedasticity, 286

Hypergeometric distribution, 163

Hypothesis, 210

alternative, 211

linear, 280

null, 211

one-sided, 211

two-sided, 211

I

i.i.d., 145, 153, 426

Impossible event, 110

Independence, 73, 121

pairwise, 122

random variables, 143

stochastic, 121, 144

Ineq, see R packages

Inequality

Tschebyschev, 139

Inference, 181, 182

least squares, 252, 264

maximum likelihood, 192

method of moments, 195

Interaction, 276

Intercept, 251

Interquartile range, 49

Interval estimation, 195

J

Joint

cumulative distribution function, 141

frequency distribution, 70

probability distribution function, 140,

141

relative frequency distribution, 70

K

Kernel density plot, 29

Kolmogorov–Smirnov test, 237



454 Index

L

Laplace

experiment, 114

probability, 114

Lattice, see R packages

Least squares, 252

Life time, 170

Likelihood, 192

Line of equality, 59

Linear

hypotheses, 280

Linear model, 251

residuals, 270

Linear regression, 249

interaction, 276

Location parameter, 38

Log-linear model, 269

Lorenz curve, 58

M

Mann-Whitney U-test, 232

Marginal

distribution, 140, 142

frequency distribution, 70

relative frequency distribution, 70

MASS, see R packages

Matrix

covariance, 147

design, 263

Maximum likelihood estimation (MLE),

192

Mean

arithmetic, 38

properties, 40

weighted arithmetic, 38

Mean squared error (MSE), 51, 184

Measure

dispersion, 49

symmetric, 76

Measure of association

χ2 coefficient, 76

contingency coefficient C , 77

correlation coefficient, 82

Cramer’s V , 77

odds ratio, 78

rank correlation coefficient, 84

relative risk, 78

Memorylessness, 170

Method of moments, 195

Model

fitted regression model, 253

fitted value, 253

linear, 251

log-linear, 269

nonlinear, 251

Multinomial distribution, 161

Multiple linear regression, 262

Multiplication theorem of probability, 119

Multivariate, 249

Mvtnorm, see R packages

N

Namibia, 206

Newton–Raphson, 193

Nominal variable, 6

Normal distribution, 166

O

Observation, 3

Odds ratio, 78

One-sample problem, 209, 210

Ordered

set, 99

values, 20

Ordinal variable, 6

Outcome, 251

P

Parameter

location, 38

regression, 251

space, 184

PDF, 129

joint, 140, 141

Percentile, 43

Permutation, 101

with replacement, 101

without replacement, 101

Pie chart, 26

Plot

kernel density, 29

QQ, 44

random, 286

scatter, 79

trumpet, 286, 288

Poisson distribution, 160

Polynomial regression, 267

Population, 4

Power, 213

Probability

calculation rules, 117

conditional, 117, 119



Index 455

density function, 129

Laplace, 114

mass function, 132

posterior, 120

prior, 120

Probability theory

axioms, 115

p-value, 215

Q

QQ-plot, 44

Quantile, 42, 137

Quartile, 43, 137

Quintile, 43

R

R2

adjusted, 281

Random variables, 127

bivariate, 140

continuous, 129

discrete, 131

i.i.d, 153

independence, 144

standardization, 138

Range, 49

Real stories, 63, 124, 176, 244, 245

Realization, 128

Reference category, 266

Regression

line, 251

linear, 249

multiple linear, 262

polynomial, 267

Regressor, 251

Relationship, 249

Relative risk, 78

Residuals, 253, 270

standardized, 285

Response, 251

R packages

compositions, 219

epitools, 202

foreign, 12

ggplot2, 35, 73, 199

ineq, 59, 62

lattice, 73

MASS, 28, 283

mvtnorm, 316

ryouready, 87, 88

TeachingDemos, 445

vcd, 77

S

Sample

estimate, 182

pooled variance, 222

space, 110

variance, 51

Sampling

without replacement, 163

Scale

absolute, 7

continuous, 6

interval, 7

nominal, 6

ordinal, 6

ratio, 7

Scatter plot, 80

Set

ordered, 100

unordered, 100

Significance level, 213

Simple event, 110

Slope, 251

Standard deviation, 51, 136

Standard error, 189, 205

Standardization, 54, 138

Standard normal distribution, 166

Statistic, 146, 183

Step function, 20, 133

Stochastic convergence, 425

Stuart’s τc, 87

Sufficiency, 190

Sure event, 110

T

Table

contingency, 68, 69, 140

frequency, 19, 69

τc

of Stuart, 87

T-distribution, 172, 427

Test

ANOVA, 274

Binomial, 227

χ2 for variance, 232, 430

χ2 goodness of fit, 235

χ2 independence, 238

χ2 of homogeneity, 240

duality, 216

equivalence, 213
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F, 272, 431

Fisher, 230, 428

Friedman, 446

Kolmogorov–Smirnov, 237

Kruskal–Wallis, 446

Mann–Whitney U, 232

McNemar, 447

Mood, 446

one-sample Gauss test, 216

one-sample t-test, 219

one-sided, 211

overall F, 272

paired t-test, 225

sign, 446

significance, 213

two-sample binomial, 230

two-sample Gauss test, 221

two-sample t-test, 222

two-sided, 211

U, 232

Welch, 222

Wilcoxon rank sum, 232

Wilcoxon–Mann–Whitney, 232

Test distributions, 317

Theorem

additivity, 116, 147

additivity of χ2 variables, 172

additivity of disjoint events, 115

Bayes, 120

central limit, 426

i.i.d., 185

large numbers, 425, 426

law of total probability, 119

multiplication for probabilities, 119

Neyman–Fisher Factorization, 191

PDF, 129

standardization, 138

Student, 172

Tschebyschev, 139

variance decomposition, 136

Tie, 85, 86

Transformation, 11

T-test

one-sample, 219

paired, 225

two-sample, 222

Two-sample problem, 210

U

Uniform distribution

continuous, 165

discrete, 154

Unit, 3

Unordered set, 100

U test, 232

V

Variable, 4

binary, 7

bivariate random, 140

categorical, 7

continuous, 6

dependent, 251

discrete, 6

dummy, 266

grouped, 7

independent, 251

nominal, 6

ordinal, 6

random, 127

response, 251

standardized, 54

Variance, 51, 135

additivity theorem, 147

between classes, 53

calculation rules, 144

decomposition, 257

dispersion, 48

pooled, 222

within classes, 53

Vcd, see R packages

W

Welch test, 222

Whiskers, 56

Wilcoxon–Mann–Whitney test, 232
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