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Preface

Statistical learning refers to a set of tools for modeling and understanding
complex datasets. It is a recently developed area in statistics and blends
with parallel developments in computer science and, in particular, machine
learning. The field encompasses many methods such as the lasso and sparse
regression, classification and regression trees, and boosting and support
vector machines.

With the explosion of “Big Data” problems, statistical learning has be-
come a very hot field in many scientific areas as well as marketing, finance,
and other business disciplines. People with statistical learning skills are in
high demand.

One of the first books in this area—The Elements of Statistical Learning
(ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a
second edition in 2009. ESL has become a popular text not only in statis-
tics but also in related fields. One of the reasons for ESL’s popularity is
its relatively accessible style. But ESL is intended for individuals with ad-
vanced training in the mathematical sciences. An Introduction to Statistical
Learning (ISL) arose from the perceived need for a broader and less tech-
nical treatment of these topics. In this new book, we cover many of the
same topics as ESL, but we concentrate more on the applications of the
methods and less on the mathematical details. We have created labs illus-
trating how to implement each of the statistical learning methods using the
popular statistical software package R. These labs provide the reader with
valuable hands-on experience.

This book is appropriate for advanced undergraduates or master’s stu-
dents in statistics or related quantitative fields or for individuals in other

vii



viii Preface

disciplines who wish to use statistical learning tools to analyze their data.
It can be used as a textbook for a course spanning one or two semesters.

We would like to thank several readers for valuable comments on prelim-
inary drafts of this book: Pallavi Basu, Alexandra Chouldechova, Patrick
Danaher, Will Fithian, Luella Fu, Sam Gross, Max Grazier G’Sell, Court-
ney Paulson, Xinghao Qiao, Elisa Sheng, Noah Simon, Kean Ming Tan,
and Xin Lu Tan.

It’s tough to make predictions, especially about the future.

-Yogi Berra
Los Angeles, USA Gareth James
Seattle, USA Daniela Witten
Palo Alto, USA Trevor Hastie

Palo Alto, USA Robert Tibshirani
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1

Introduction

An Overview of Statistical Learning

Statistical learning refers to a vast set of tools for understanding data. These
tools can be classified as supervised or unsupervised. Broadly speaking,
supervised statistical learning involves building a statistical model for pre-
dicting, or estimating, an output based on one or more inputs. Problems of
this nature occur in fields as diverse as business, medicine, astrophysics, and
public policy. With unsupervised statistical learning, there are inputs but
no supervising output; nevertheless we can learn relationships and struc-
ture from such data. To provide an illustration of some applications of
statistical learning, we briefly discuss three real-world data sets that are
considered in this book.

Wage Data

In this application (which we refer to as the Wage data set throughout this
book), we examine a number of factors that relate to wages for a group of
males from the Atlantic region of the United States. In particular, we wish
to understand the association between an employee’s age and education, as
well as the calendar year, on his wage. Consider, for example, the left-hand
panel of Figure 1.1, which displays wage versus age for each of the individu-
als in the data set. There is evidence that wage increases with age but then
decreases again after approximately age 60. The blue line, which provides
an estimate of the average wage for a given age, makes this trend clearer.

G. James et al., An Introduction to Statistical Learning: with Applications in R, 1
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_1,
© Springer Science+Business Media New York 2013
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FIGURE 1.1. Wage data, which contains income survey information for males
from the central Atlantic region of the United States. Left: wage as a function of
age. On average, wage increases with age until about 60 years of age, at which
point it begins to decline. Center: wage as a function of year. There is a slow
but steady increase of approzimately $10,000 in the average wage between 2003
and 2009. Right: Bozxplots displaying wage as a function of education, with 1
indicating the lowest level (no high school diploma) and 5 the highest level (an
advanced graduate degree). On average, wage increases with the level of education.

Given an employee’s age, we can use this curve to predict his wage. However,
it is also clear from Figure 1.1 that there is a significant amount of vari-
ability associated with this average value, and so age alone is unlikely to
provide an accurate prediction of a particular man’s wage.

We also have information regarding each employee’s education level and
the year in which the wage was earned. The center and right-hand panels of
Figure 1.1, which display wage as a function of both year and education, in-
dicate that both of these factors are associated with wage. Wages increase
by approximately $10,000, in a roughly linear (or straight-line) fashion,
between 2003 and 2009, though this rise is very slight relative to the vari-
ability in the data. Wages are also typically greater for individuals with
higher education levels: men with the lowest education level (1) tend to
have substantially lower wages than those with the highest education level
(5). Clearly, the most accurate prediction of a given man’s wage will be
obtained by combining his age, his education, and the year. In Chapter 3,
we discuss linear regression, which can be used to predict wage from this
data set. Ideally, we should predict wage in a way that accounts for the
non-linear relationship between wage and age. In Chapter 7, we discuss a
class of approaches for addressing this problem.

Stock Market Data

The wage data involves predicting a continuous or quantitative output value.
This is often referred to as a regression problem. However, in certain cases
we may instead wish to predict a non-numerical value—that is, a categorical
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FIGURE 1.2. Left: Boxplots of the previous day’s percentage change in the S€P
index for the days for which the market increased or decreased, obtained from the
Smarket data. Center and Right: Same as left panel, but the percentage changes
for 2 and 3 days previous are shown.

or qualitative output. For example, in Chapter 4 we examine a stock mar-
ket data set that contains the daily movements in the Standard & Poor’s
500 (S&P) stock index over a 5-year period between 2001 and 2005. We
refer to this as the Smarket data. The goal is to predict whether the index
will increase or decrease on a given day using the past 5 days’ percentage
changes in the index. Here the statistical learning problem does not in-
volve predicting a numerical value. Instead it involves predicting whether
a given day’s stock market performance will fall into the Up bucket or the
Down bucket. This is known as a classification problem. A model that could
accurately predict the direction in which the market will move would be
very useful!

The left-hand panel of Figure 1.2 displays two boxplots of the previous
day’s percentage changes in the stock index: one for the 648 days for which
the market increased on the subsequent day, and one for the 602 days for
which the market decreased. The two plots look almost identical, suggest-
ing that there is no simple strategy for using yesterday’s movement in the
S&P to predict today’s returns. The remaining panels, which display box-
plots for the percentage changes 2 and 3 days previous to today, similarly
indicate little association between past and present returns. Of course, this
lack of pattern is to be expected: in the presence of strong correlations be-
tween successive days’ returns, one could adopt a simple trading strategy
to generate profits from the market. Nevertheless, in Chapter 4, we explore
these data using several different statistical learning methods. Interestingly,
there are hints of some weak trends in the data that suggest that, at least
for this 5-year period, it is possible to correctly predict the direction of
movement in the market approximately 60% of the time (Figure 1.3).
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FIGURE 1.3. We fit a quadratic discriminant analysis model to the subset
of the Smarket data corresponding to the 2001-2004 time period, and predicted
the probability of a stock market decrease using the 2005 data. On average, the
predicted probability of decrease is higher for the days in which the market does
decrease. Based on these results, we are able to correctly predict the direction of
movement in the market 60% of the time.

Gene Expression Data

The previous two applications illustrate data sets with both input and
output variables. However, another important class of problems involves
situations in which we only observe input variables, with no corresponding
output. For example, in a marketing setting, we might have demographic
information for a number of current or potential customers. We may wish to
understand which types of customers are similar to each other by grouping
individuals according to their observed characteristics. This is known as a
clustering problem. Unlike in the previous examples, here we are not trying
to predict an output variable.

We devote Chapter 10 to a discussion of statistical learning methods
for problems in which no natural output variable is available. We consider
the NCI60 data set, which consists of 6,830 gene expression measurements
for each of 64 cancer cell lines. Instead of predicting a particular output
variable, we are interested in determining whether there are groups, or
clusters, among the cell lines based on their gene expression measurements.
This is a difficult question to address, in part because there are thousands
of gene expression measurements per cell line, making it hard to visualize
the data.

The left-hand panel of Figure 1.4 addresses this problem by represent-
ing each of the 64 cell lines using just two numbers, Z; and Z,. These
are the first two principal components of the data, which summarize the
6,830 expression measurements for each cell line down to two numbers or
dimensions. While it is likely that this dimension reduction has resulted in
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FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in
a two-dimensional space, Z1 and Zz. Each point corresponds to one of the 64
cell lines. There appear to be four groups of cell lines, which we have represented
using different colors. Right: Same as left panel except that we have represented
each of the 14 different types of cancer using a different colored symbol. Cell lines
corresponding to the same cancer type tend to be nearby in the two-dimensional
space.

some loss of information, it is now possible to visually examine the data for
evidence of clustering. Deciding on the number of clusters is often a diffi-
cult problem. But the left-hand panel of Figure 1.4 suggests at least four
groups of cell lines, which we have represented using separate colors. We
can now examine the cell lines within each cluster for similarities in their
types of cancer, in order to better understand the relationship between
gene expression levels and cancer.

In this particular data set, it turns out that the cell lines correspond
to 14 different types of cancer. (However, this information was not used
to create the left-hand panel of Figure 1.4.) The right-hand panel of Fig-
ure 1.4 is identical to the left-hand panel, except that the 14 cancer types
are shown using distinct colored symbols. There is clear evidence that cell
lines with the same cancer type tend to be located near each other in this
two-dimensional representation. In addition, even though the cancer infor-
mation was not used to produce the left-hand panel, the clustering obtained
does bear some resemblance to some of the actual cancer types observed
in the right-hand panel. This provides some independent verification of the
accuracy of our clustering analysis.

A Brief History of Statistical Learning
Though the term statistical learning is fairly new, many of the concepts

that underlie the field were developed long ago. At the beginning of the
nineteenth century, Legendre and Gauss published papers on the method
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of least squares, which implemented the earliest form of what is now known
as linear regression. The approach was first successfully applied to problems
in astronomy. Linear regression is used for predicting quantitative values,
such as an individual’s salary. In order to predict qualitative values, such as
whether a patient survives or dies, or whether the stock market increases
or decreases, Fisher proposed linear discriminant analysis in 1936. In the
1940s, various authors put forth an alternative approach, logistic regression.
In the early 1970s, Nelder and Wedderburn coined the term generalized
linear models for an entire class of statistical learning methods that include
both linear and logistic regression as special cases.

By the end of the 1970s, many more techniques for learning from data
were available. However, they were almost exclusively linear methods, be-
cause fitting non-linear relationships was computationally infeasible at the
time. By the 1980s, computing technology had finally improved sufficiently
that non-linear methods were no longer computationally prohibitive. In mid
1980s Breiman, Friedman, Olshen and Stone introduced classification and
regression trees, and were among the first to demonstrate the power of a
detailed practical implementation of a method, including cross-validation
for model selection. Hastie and Tibshirani coined the term generalized addi-
tive models in 1986 for a class of non-linear extensions to generalized linear
models, and also provided a practical software implementation.

Since that time, inspired by the advent of machine learning and other
disciplines, statistical learning has emerged as a new subfield in statistics,
focused on supervised and unsupervised modeling and prediction. In recent
years, progress in statistical learning has been marked by the increasing
availability of powerful and relatively user-friendly software, such as the
popular and freely available R system. This has the potential to continue
the transformation of the field from a set of techniques used and developed
by statisticians and computer scientists to an essential toolkit for a much
broader community.

This Book

The Elements of Statistical Learning (ESL) by Hastie, Tibshirani, and
Friedman was first published in 2001. Since that time, it has become an
important reference on the fundamentals of statistical machine learning.
Its success derives from its comprehensive and detailed treatment of many
important topics in statistical learning, as well as the fact that (relative to
many upper-level statistics textbooks) it is accessible to a wide audience.
However, the greatest factor behind the success of ESL has been its topical
nature. At the time of its publication, interest in the field of statistical
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learning was starting to explode. ESL provided one of the first accessible
and comprehensive introductions to the topic.

Since ESL was first published, the field of statistical learning has con-
tinued to flourish. The field’s expansion has taken two forms. The most
obvious growth has involved the development of new and improved statis-
tical learning approaches aimed at answering a range of scientific questions
across a number of fields. However, the field of statistical learning has
also expanded its audience. In the 1990s, increases in computational power
generated a surge of interest in the field from non-statisticians who were
eager to use cutting-edge statistical tools to analyze their data. Unfortu-
nately, the highly technical nature of these approaches meant that the user
community remained primarily restricted to experts in statistics, computer
science, and related fields with the training (and time) to understand and
implement them.

In recent years, new and improved software packages have significantly
eased the implementation burden for many statistical learning methods.
At the same time, there has been growing recognition across a number of
fields, from business to health care to genetics to the social sciences and
beyond, that statistical learning is a powerful tool with important practical
applications. As a result, the field has moved from one of primarily academic
interest to a mainstream discipline, with an enormous potential audience.
This trend will surely continue with the increasing availability of enormous
quantities of data and the software to analyze it.

The purpose of An Introduction to Statistical Learning (ISL) is to facili-
tate the transition of statistical learning from an academic to a mainstream
field. ISL is not intended to replace ESL, which is a far more comprehen-
sive text both in terms of the number of approaches considered and the
depth to which they are explored. We consider ESL to be an important
companion for professionals (with graduate degrees in statistics, machine
learning, or related fields) who need to understand the technical details
behind statistical learning approaches. However, the community of users of
statistical learning techniques has expanded to include individuals with a
wider range of interests and backgrounds. Therefore, we believe that there
is now a place for a less technical and more accessible version of ESL.

In teaching these topics over the years, we have discovered that they are
of interest to master’s and PhD students in fields as disparate as business
administration, biology, and computer science, as well as to quantitatively-
oriented upper-division undergraduates. It is important for this diverse
group to be able to understand the models, intuitions, and strengths and
weaknesses of the various approaches. But for this audience, many of the
technical details behind statistical learning methods, such as optimiza-
tion algorithms and theoretical properties, are not of primary interest.
We believe that these students do not need a deep understanding of these
aspects in order to become informed users of the various methodologies, and
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in order to contribute to their chosen fields through the use of statistical
learning tools.
ISLR is based on the following four premises.

1. Many statistical learning methods are relevant and useful in a wide
range of academic and non-academic disciplines, beyond just the sta-
tistical sciences. We believe that many contemporary statistical learn-
ing procedures should, and will, become as widely available and used
as is currently the case for classical methods such as linear regres-
sion. As a result, rather than attempting to consider every possible
approach (an impossible task), we have concentrated on presenting
the methods that we believe are most widely applicable.

2. Statistical learning should not be viewed as a series of black bozes. No
single approach will perform well in all possible applications. With-
out understanding all of the cogs inside the box, or the interaction
between those cogs, it is impossible to select the best box. Hence, we
have attempted to carefully describe the model, intuition, assump-
tions, and trade-offs behind each of the methods that we consider.

3. While it is important to know what job is performed by each cog, it
is not necessary to have the skills to construct the machine inside the
box! Thus, we have minimized discussion of technical details related
to fitting procedures and theoretical properties. We assume that the
reader is comfortable with basic mathematical concepts, but we do
not assume a graduate degree in the mathematical sciences. For in-
stance, we have almost completely avoided the use of matrix algebra,
and it is possible to understand the entire book without a detailed
knowledge of matrices and vectors.

4. We presume that the reader is interested in applying statistical learn-
ing methods to real-world problems. In order to facilitate this, as well
as to motivate the techniques discussed, we have devoted a section
within each chapter to R computer labs. In each lab, we walk the
reader through a realistic application of the methods considered in
that chapter. When we have taught this material in our courses,
we have allocated roughly one-third of classroom time to working
through the labs, and we have found them to be extremely useful.
Many of the less computationally-oriented students who were ini-
tially intimidated by R’s command level interface got the hang of
things over the course of the quarter or semester. We have used R
because it is freely available and is powerful enough to implement all
of the methods discussed in the book. It also has optional packages
that can be downloaded to implement literally thousands of addi-
tional methods. Most importantly, R is the language of choice for
academic statisticians, and new approaches often become available in
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R years before they are implemented in commercial packages. How-
ever, the labs in ISL are self-contained, and can be skipped if the
reader wishes to use a different software package or does not wish to
apply the methods discussed to real-world problems.

Who Should Read This Book?

This book is intended for anyone who is interested in using modern statis-
tical methods for modeling and prediction from data. This group includes
scientists, engineers, data analysts, or quants, but also less technical indi-
viduals with degrees in non-quantitative fields such as the social sciences or
business. We expect that the reader will have had at least one elementary
course in statistics. Background in linear regression is also useful, though
not required, since we review the key concepts behind linear regression in
Chapter 3. The mathematical level of this book is modest, and a detailed
knowledge of matrix operations is not required. This book provides an in-
troduction to the statistical programming language R. Previous exposure
to a programming language, such as MATLAB or Python, is useful but not
required.

We have successfully taught material at this level to master’s and PhD
students in business, computer science, biology, earth sciences, psychology,
and many other areas of the physical and social sciences. This book could
also be appropriate for advanced undergraduates who have already taken
a course on linear regression. In the context of a more mathematically
rigorous course in which ESL serves as the primary textbook, ISL could
be used as a supplementary text for teaching computational aspects of the
various approaches.

Notation and Simple Matrix Algebra

Choosing notation for a textbook is always a difficult task. For the most
part we adopt the same notational conventions as ESL.

We will use n to represent the number of distinct data points, or observa-
tions, in our sample. We will let p denote the number of variables that are
available for use in making predictions. For example, the Wage data set con-
sists of 12 variables for 3,000 people, so we have n = 3,000 observations and
p = 12 variables (such as year, age, sex, and more). Note that throughout
this book, we indicate variable names using colored font: Variable Name.

In some examples, p might be quite large, such as on the order of thou-
sands or even millions; this situation arises quite often, for example, in the
analysis of modern biological data or web-based advertising data.
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In general, we will let x;; represent the value of the jth variable for the
ith observation, where ¢ = 1,2,...,n and j = 1,2,...,p. Throughout this
book, i will be used to index the samples or observations (from 1 to n) and
j will be used to index the variables (from 1 to p). We let X denote a n X p
matrix whose (7, j)th element is x;;. That is,

T T12 T1p

€21 T22 T2p
X = .

Tnl Tn2 Tnp

For readers who are unfamiliar with matrices, it is useful to visualize X as
a spreadsheet of numbers with n rows and p columns.

At times we will be interested in the rows of X, which we write as
T1,%2,...,Ty. Here x; is a vector of length p, containing the p variable
measurements for the ith observation. That is,

Zi1
Zi2
T; = . . (11)

Tip

(Vectors are by default represented as columns.) For example, for the Wage
data, x; is a vector of length 12, consisting of year, age, sex, and other
values for the ith individual. At other times we will instead be interested
in the columns of X, which we write as x1,Xg,...,x,. Each is a vector of
length n. That is,

For example, for the Wage data, x; contains the n = 3,000 values for year.
Using this notation, the matrix X can be written as

Xz(xl Xg - xp),
or
af
X = xQT
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The 7 notation denotes the transpose of a matrix or vector. So, for example,

Tr11 o1 e Tnl
T 12 22 ... TIp2
X = ,
Tip T2p .. Tpp
while
T
zi = (T T2 o Tip).

We use y; to denote the ith observation of the variable on which we
wish to make predictions, such as wage. Hence, we write the set of all n
observations in vector form as

Y1
Y2
y=1.
Yn
Then our observed data consists of {(z1,vy1), (z2,y2), .-, (Tn,yn)}, Wwhere

each z; is a vector of length p. (If p = 1, then a; is simply a scalar.)
In this text, a vector of length n will always be denoted in lower case
bold; e.g.

aj
ag

QAp

However, vectors that are not of length n (such as feature vectors of length
p, as in (1.1)) will be denoted in lower case normal font, e.g. a. Scalars will
also be denoted in lower case normal font, e.g. a. In the rare cases in which
these two uses for lower case normal font lead to ambiguity, we will clarify
which use is intended. Matrices will be denoted using bold capitals, such
as A. Random variables will be denoted using capital normal font, e.g. A,
regardless of their dimensions.

Occasionally we will want to indicate the dimension of a particular ob-
ject. To indicate that an object is a scalar, we will use the notation a € R.
To indicate that it is a vector of length k, we will use a € R* (or a € R”
if it is of length n). We will indicate that an object is a r X s matrix using
A e R™5,

We have avoided using matrix algebra whenever possible. However, in
a few instances it becomes too cumbersome to avoid it entirely. In these
rare instances it is important to understand the concept of multiplying
two matrices. Suppose that A € R™*? and B € R%*5. Then the product
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of A and B is denoted AB. The (4,j)th element of AB is computed by
multiplying each element of the ith row of A by the corresponding element
of the jth column of B. That is, (AB);; = 22:1 airbij. As an example,

consider
1 2 5 6
A—(3 4> and B—<7 8>'
Then

AB — 1 2\ (5 6\ (1x5+2x7 1x6+2x8\ (19 22
“\3 4)\7 8) \3x5+4xT7 3x6+4x8) \43 50/
Note that this operation produces an r X s matrix. It is only possible to

compute AB if the number of columns of A is the same as the number of
rows of B.

Organization of This Book

Chapter 2 introduces the basic terminology and concepts behind statisti-
cal learning. This chapter also presents the K -nearest neighbor classifier, a
very simple method that works surprisingly well on many problems. Chap-
ters 3 and 4 cover classical linear methods for regression and classification.
In particular, Chapter 3 reviews linear regression, the fundamental start-
ing point for all regression methods. In Chapter 4 we discuss two of the
most important classical classification methods, logistic regression and lin-
ear discriminant analysis.

A central problem in all statistical learning situations involves choosing
the best method for a given application. Hence, in Chapter 5 we intro-
duce cross-validation and the bootstrap, which can be used to estimate the
accuracy of a number of different methods in order to choose the best one.

Much of the recent research in statistical learning has concentrated on
non-linear methods. However, linear methods often have advantages over
their non-linear competitors in terms of interpretability and sometimes also
accuracy. Hence, in Chapter 6 we consider a host of linear methods, both
classical and more modern, which offer potential improvements over stan-
dard linear regression. These include stepwise selection, ridge regression,
principal components regression, partial least squares, and the lasso.

The remaining chapters move into the world of non-linear statistical
learning. We first introduce in Chapter 7 a number of non-linear methods
that work well for problems with a single input variable. We then show how
these methods can be used to fit non-linear additive models for which there
is more than one input. In Chapter 8, we investigate tree-based methods,
including bagging, boosting, and random forests. Support vector machines,
a set of approaches for performing both linear and non-linear classification,
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are discussed in Chapter 9. Finally, in Chapter 10, we consider a setting
in which we have input variables but no output variable. In particular, we
present principal components analysis, K-means clustering, and hierarchi-
cal clustering.

At the end of each chapter, we present one or more R lab sections in
which we systematically work through applications of the various meth-
ods discussed in that chapter. These labs demonstrate the strengths and
weaknesses of the various approaches, and also provide a useful reference
for the syntax required to implement the various methods. The reader may
choose to work through the labs at his or her own pace, or the labs may
be the focus of group sessions as part of a classroom environment. Within
each R lab, we present the results that we obtained when we performed
the lab at the time of writing this book. However, new versions of R are
continuously released, and over time, the packages called in the labs will be
updated. Therefore, in the future, it is possible that the results shown in
the lab sections may no longer correspond precisely to the results obtained
by the reader who performs the labs. As necessary, we will post updates to
the labs on the book website.

We use the @ symbol to denote sections or exercises that contain more
challenging concepts. These can be easily skipped by readers who do not
wish to delve as deeply into the material, or who lack the mathematical
background.

Data Sets Used in Labs and Exercises

In this textbook, we illustrate statistical learning methods using applica-
tions from marketing, finance, biology, and other areas. The ISLR package
available on the book website contains a number of data sets that are
required in order to perform the labs and exercises associated with this
book. One other data set is contained in the MASS library, and yet another
is part of the base R distribution. Table 1.1 contains a summary of the data
sets required to perform the labs and exercises. A couple of these data sets
are also available as text files on the book website, for use in Chapter 2.

Book Website

The website for this book is located at

www.StatLearning.com
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Name Description

Auto Gas mileage, horsepower, and other information for cars.
Boston Housing values and other information about Boston suburbs.
Caravan Information about individuals offered caravan insurance.
Carseats Information about car seat sales in 400 stores.

College Demographic characteristics, tuition, and more for USA colleges.
Default Customer default records for a credit card company.

Hitters Records and salaries for baseball players.

Khan Gene expression measurements for four cancer types.

NCI60 Gene expression measurements for 64 cancer cell lines.

0J Sales information for Citrus Hill and Minute Maid orange juice.
Portfolio Past values of financial assets, for use in portfolio allocation.
Smarket Daily percentage returns for S&P 500 over a 5-year period.
USArrests  Crime statistics per 100,000 residents in 50 states of USA.

Wage Income survey data for males in central Atlantic region of USA.
Weekly 1,089 weekly stock market returns for 21 years.

TABLE 1.1. A list of data sets needed to perform the labs and exercises in this
textbook. All data sets are available in the ISLR library, with the exception of
Boston (part of MASS) and USArrests (part of the base R distribution,).

It contains a number of resources, including the R package associated with
this book, and some additional data sets.

Acknowledgements

A few of the plots in this book were taken from ESL: Figures 6.7, 8.3,
and 10.12. All other plots are new to this book.
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Statistical Learning

2.1 What Is Statistical Learning?

In order to motivate our study of statistical learning, we begin with a
simple example. Suppose that we are statistical consultants hired by a
client to provide advice on how to improve sales of a particular product. The
Advertising data set consists of the sales of that product in 200 different
markets, along with advertising budgets for the product in each of those
markets for three different media: TV, radio, and newspaper. The data are
displayed in Figure 2.1. It is not possible for our client to directly increase
sales of the product. On the other hand, they can control the advertising
expenditure in each of the three media. Therefore, if we determine that
there is an association between advertising and sales, then we can instruct
our client to adjust advertising budgets, thereby indirectly increasing sales.
In other words, our goal is to develop an accurate model that can be used
to predict sales on the basis of the three media budgets.

In this setting, the advertising budgets are input variables while sales
is an output variable. The input variables are typically denoted using the
symbol X, with a subscript to distinguish them. So X; might be the TV
budget, Xo the radio budget, and X3 the newspaper budget. The inputs
go by different names, such as predictors, independent variables, features,
or sometimes just wvariables. The output variable—in this case, sales—is
often called the response or dependent variable, and is typically denoted
using the symbol Y. Throughout this book, we will use all of these terms
interchangeably.

G. James et al., An Introduction to Statistical Learning: with Applications in R, 15
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_2,
© Springer Science+Business Media New York 2013

input
variable

output
variable

predictor
independent
variable
feature
variable
response

dependent
variable
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FIGURE 2.1. The Advertising data set. The plot displays sales, in thousands
of units, as a function of TV, radio, and newspaper budgets, in thousands of
dollars, for 200 different markets. In each plot we show the simple least squares
fit of sales to that variable, as described in Chapter 3. In other words, each blue
line represents a simple model that can be used to predict sales using TV, radio,
and newspaper, respectively.

More generally, suppose that we observe a quantitative response Y and p
different predictors, Xi, X»,...,X,. We assume that there is some
relationship between Y and X = (X3, Xo,...,X,), which can be written
in the very general form

Y = f(X) +e (2.1)

Here f is some fixed but unknown function of X1, ..., X, and € is a random
error term, which is independent of X and has mean zero. In this formula-
tion, f represents the systematic information that X provides about Y.

As another example, consider the left-hand panel of Figure 2.2, a plot of
income versus years of education for 30 individuals in the Income data set.
The plot suggests that one might be able to predict income using years of
education. However, the function f that connects the input variable to the
output variable is in general unknown. In this situation one must estimate
f based on the observed points. Since Income is a simulated data set, f is
known and is shown by the blue curve in the right-hand panel of Figure 2.2.
The vertical lines represent the error terms e. We note that some of the
30 observations lie above the blue curve and some lie below it; overall, the
errors have approximately mean zero.

In general, the function f may involve more than one input variable.
In Figure 2.3 we plot income as a function of years of education and
seniority. Here f is a two-dimensional surface that must be estimated
based on the observed data.

error term

systematic
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2.1 What Is Statistical Learning?
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FIGURE 2.2. The Income data set. Left: The red dots are the observed values
of income (in tens of thousands of dollars) and years of education for 30 indi-
viduals. Right: The blue curve represents the true underlying relationship between
income and years of education, which is generally unknown (but is known in
this case because the data were simulated). The black lines represent the error
associated with each observation. Note that some errors are positive (if an ob-
servation lies above the blue curve) and some are negative (if an observation lies
below the curve). Overall, these errors have approzimately mean zero.

In essence, statistical learning refers to a set of approaches for estimating
f. In this chapter we outline some of the key theoretical concepts that arise
in estimating f, as well as tools for evaluating the estimates obtained.

2.1.1 Why Estimate f?

There are two main reasons that we may wish to estimate f: prediction
and inference. We discuss each in turn.

Prediction

In many situations, a set of inputs X are readily available, but the output
Y cannot be easily obtained. In this setting, since the error term averages
to zero, we can predict Y using

Y = f(X), (2.2)
where f represents our estimate for f, and Y represents the resulting pre-
diction for Y. In this setting, f is often treated as a black boz, in the sense
that one is not typically concerned with the exact form of f, provided that
it yields accurate predictions for Y.
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FIGURE 2.3. The plot displays income as a function of years of education
and seniority in the Income data set. The blue surface represents the true un-
derlying relationship between income and years of education and seniority,
which is known since the data are simulated. The red dots indicate the observed
values of these quantities for 30 individuals.

As an example, suppose that X1, ..., X, are characteristics of a patient’s
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient’s risk for a severe adverse reaction to a particular
drug. It is natural to seek to predict Y using X, since we can then avoid
giving the drug in question to patients who are at high risk of an adverse
reaction—that is, patients for whom the estimate of Y is high.

The accuracy of Y as a prediction for Y depends on two quantities,
which we will call the reducible error and the irreducible error. In general,
f will not be a perfect estimate for f, and this inaccuracy will introduce
some error. This error is reducible because we can potentially improve the
accuracy of f by using the most appropriate statistical learning technique to
estimate f. However, even if it were possible to form a perfect estimate for
f, so that our estimated response took the form Y = f (X), our prediction
would still have some error in it! This is because Y is also a function of
€, which, by definition, cannot be predicted using X . Therefore, variability
associated with e also affects the accuracy of our predictions. This is known
as the irreducible error, because no matter how well we estimate f, we
cannot reduce the error introduced by e.

Why is the irreducible error larger than zero? The quantity € may con-
tain unmeasured variables that are useful in predicting Y: since we don’t
measure them, f cannot use them for its prediction. The quantity € may
also contain unmeasurable variation. For example, the risk of an adverse
reaction might vary for a given patient on a given day, depending on

reducible
error
irreducible
error
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manufacturing variation in the drug itself or the patient’s general feeling
of well-being on that day.

Consider a given estimate f and a set of predictors X, which yields the
prediction Y = f (X). Assume for a moment that both f and X are fixed.
Then, it is easy to show that

E(Y-Y) = E[f(X)+e— f(X)]
= [f(X)-f(X)P+ Var(e) , (2.3)
—— N——
Reducible Irreducible

where E(Y — Y)Q represents the average, or expected value, of the squared
difference between the predicted and actual value of Y, and Var(e) repre-
sents the variance associated with the error term e.

The focus of this book is on techniques for estimating f with the aim of
minimizing the reducible error. It is important to keep in mind that the
irreducible error will always provide an upper bound on the accuracy of
our prediction for Y. This bound is almost always unknown in practice.

Inference

We are often interested in understanding the way that Y is affected as
X1,...,X, change. In this situation we wish to estimate f, but our goal is
not necessarily to make predictions for Y. We instead want to understand
the relationship between X and Y, or more specifically, to understand how
Y changes as a function of X1, ..., X,. Now f cannot be treated as a black
box, because we need to know its exact form. In this setting, one may be
interested in answering the following questions:

o Which predictors are associated with the response? It is often the case
that only a small fraction of the available predictors are substantially
associated with Y. Identifying the few important predictors among a
large set of possible variables can be extremely useful, depending on
the application.

o What is the relationship between the response and each predictor?
Some predictors may have a positive relationship with Y, in the sense
that increasing the predictor is associated with increasing values of
Y. Other predictors may have the opposite relationship. Depending
on the complexity of f, the relationship between the response and a
given predictor may also depend on the values of the other predictors.

e Can the relationship between Y and each predictor be adequately sum-
marized using a linear equation, or is the relationship more compli-
cated? Historically, most methods for estimating f have taken a linear
form. In some situations, such an assumption is reasonable or even de-
sirable. But often the true relationship is more complicated, in which
case a linear model may not provide an accurate representation of
the relationship between the input and output variables.

expected
value

variance
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In this book, we will see a number of examples that fall into the prediction
setting, the inference setting, or a combination of the two.

For instance, consider a company that is interested in conducting a
direct-marketing campaign. The goal is to identify individuals who will
respond positively to a mailing, based on observations of demographic vari-
ables measured on each individual. In this case, the demographic variables
serve as predictors, and response to the marketing campaign (either pos-
itive or negative) serves as the outcome. The company is not interested
in obtaining a deep understanding of the relationships between each in-
dividual predictor and the response; instead, the company simply wants
an accurate model to predict the response using the predictors. This is an
example of modeling for prediction.

In contrast, consider the Advertising data illustrated in Figure 2.1. One
may be interested in answering questions such as:

— Which media contribute to sales?
— Which media generate the biggest boost in sales? or

— How much increase in sales is associated with a given increase in TV
advertising?

This situation falls into the inference paradigm. Another example involves
modeling the brand of a product that a customer might purchase based on
variables such as price, store location, discount levels, competition price,
and so forth. In this situation one might really be most interested in how
each of the individual variables affects the probability of purchase. For
instance, what effect will changing the price of a product have on sales?
This is an example of modeling for inference.

Finally, some modeling could be conducted both for prediction and infer-
ence. For example, in a real estate setting, one may seek to relate values of
homes to inputs such as crime rate, zoning, distance from a river, air qual-
ity, schools, income level of community, size of houses, and so forth. In this
case one might be interested in how the individual input variables affect
the prices—that is, how much extra will a house be worth if it has a view
of the river? This is an inference problem. Alternatively, one may simply
be interested in predicting the value of a home given its characteristics: is
this house under- or over-valued? This is a prediction problem.

Depending on whether our ultimate goal is prediction, inference, or a
combination of the two, different methods for estimating f may be appro-
priate. For example, linear models allow for relatively simple and inter-
pretable inference, but may not yield as accurate predictions as some other
approaches. In contrast, some of the highly non-linear approaches that we
discuss in the later chapters of this book can potentially provide quite accu-
rate predictions for Y, but this comes at the expense of a less interpretable
model for which inference is more challenging.

linear model
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2.1.2 How Do We Estimate f?

Throughout this book, we explore many linear and non-linear approaches
for estimating f. However, these methods generally share certain charac-
teristics. We provide an overview of these shared characteristics in this
section. We will always assume that we have observed a set of n different
data points. For example in Figure 2.2 we observed n = 30 data points.
These observations are called the training data because we will use these
observations to train, or teach, our method how to estimate f. Let x;;
represent the value of the jth predictor, or input, for observation ¢, where
i =1,2,...,nand j = 1,2,...,p. Correspondingly, let y; represent the
response variable for the ith observation. Then our training data consist of
{(z1,91), (x2,92), ..., (Tn,yn)} where z; = (241,242, . .. ,zip)T

Our goal is to apply a statistical learning method to the training data
in order to estimate the unknown function f. In other words, we want to
find a function f such that Y ~ f(X) for any observation (X,Y). Broadly
speaking, most statistical learning methods for this task can be character-
ized as either parametric or non-parametric. We now briefly discuss these
two types of approaches.

Parametric Methods
Parametric methods involve a two-step model-based approach.

1. First, we make an assumption about the functional form, or shape,
of f. For example, one very simple assumption is that f is linear in
X:

F(X) = Bo+ BiXa + BoXo+ ... + BpXp. (2.4)
This is a linear model, which will be discussed extensively in Chap-
ter 3. Once we have assumed that f is linear, the problem of estimat-
ing f is greatly simplified. Instead of having to estimate an entirely
arbitrary p-dimensional function f(X), one only needs to estimate
the p + 1 coefficients 8o, B1, .. ., Bp.

2. After a model has been selected, we need a procedure that uses the
training data to fit or train the model. In the case of the linear model
(2.4), we need to estimate the parameters B, 51, ..., 3,. That is, we
want to find values of these parameters such that

Yzﬂ()"’ﬂle"’ﬂQXQ"’...‘l’ﬂpo.

The most common approach to fitting the model (2.4) is referred to
as (ordinary) least squares, which we discuss in Chapter 3. However,
least squares is one of many possible ways to fit the linear model. In
Chapter 6, we discuss other approaches for estimating the parameters

in (2.4).
The model-based approach just described is referred to as parametric;
it reduces the problem of estimating f down to one of estimating a set of

training data

parametric
non-
parametric

fit
train

least squares
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FIGURE 2.4. A linear model fit by least squares to the Income data from Fig-
ure 2.3. The observations are shown in red, and the yellow plane indicates the
least squares fit to the data.

parameters. Assuming a parametric form for f simplifies the problem of
estimating f because it is generally much easier to estimate a set of pa-
rameters, such as Sy, f1,. .., 5p in the linear model (2.4), than it is to fit
an entirely arbitrary function f. The potential disadvantage of a paramet-
ric approach is that the model we choose will usually not match the true
unknown form of f. If the chosen model is too far from the true f, then
our estimate will be poor. We can try to address this problem by choos-
ing flexible models that can fit many different possible functional forms
for f. But in general, fitting a more flexible model requires estimating a
greater number of parameters. These more complex models can lead to a
phenomenon known as overfitting the data, which essentially means they
follow the errors, or noise, too closely. These issues are discussed through-
out this book.

Figure 2.4 shows an example of the parametric approach applied to the
Income data from Figure 2.3. We have fit a linear model of the form

income = By + f1 X education+ P2 X seniority.

Since we have assumed a linear relationship between the response and the
two predictors, the entire fitting problem reduces to estimating 5y, 51, and
B2, which we do using least squares linear regression. Comparing Figure 2.3
to Figure 2.4, we can see that the linear fit given in Figure 2.4 is not quite
right: the true f has some curvature that is not captured in the linear fit.
However, the linear fit still appears to do a reasonable job of capturing the
positive relationship between years of education and income, as well as the

flexible

overfitting

noise
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FIGURE 2.5. A smooth thin-plate spline fit to the Income data from Figure 2.8
is shown in yellow; the observations are displayed in red. Splines are discussed in
Chapter 7.

slightly less positive relationship between seniority and income. It may be
that with such a small number of observations, this is the best we can do.

Non-parametric Methods

Non-parametric methods do not make explicit assumptions about the func-
tional form of f. Instead they seek an estimate of f that gets as close to the
data points as possible without being too rough or wiggly. Such approaches
can have a major advantage over parametric approaches: by avoiding the
assumption of a particular functional form for f, they have the potential
to accurately fit a wider range of possible shapes for f. Any parametric
approach brings with it the possibility that the functional form used to
estimate f is very different from the true f, in which case the resulting
model will not fit the data well. In contrast, non-parametric approaches
completely avoid this danger, since essentially no assumption about the
form of f is made. But non-parametric approaches do suffer from a major
disadvantage: since they do not reduce the problem of estimating f to a
small number of parameters, a very large number of observations (far more
than is typically needed for a parametric approach) is required in order to
obtain an accurate estimate for f.

An example of a non-parametric approach to fitting the Income data is
shown in Figure 2.5. A thin-plate spline is used to estimate f. This ap-
proach does not impose any pre-specified model on f. It instead attempts
to produce an estimate for f that is as close as possible to the observed
data, subject to the fit—that is, the yellow surface in Figure 2.5—being

thin-plate
spline
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FIGURE 2.6. A rough thin-plate spline fit to the Income data from Figure 2.3.
This fit makes zero errors on the training data.

smooth. In this case, the non-parametric fit has produced a remarkably ac-
curate estimate of the true f shown in Figure 2.3. In order to fit a thin-plate
spline, the data analyst must select a level of smoothness. Figure 2.6 shows
the same thin-plate spline fit using a lower level of smoothness, allowing
for a rougher fit. The resulting estimate fits the observed data perfectly!
However, the spline fit shown in Figure 2.6 is far more variable than the
true function f, from Figure 2.3. This is an example of overfitting the
data, which we discussed previously. It is an undesirable situation because
the fit obtained will not yield accurate estimates of the response on new
observations that were not part of the original training data set. We dis-
cuss methods for choosing the correct amount of smoothness in Chapter 5.
Splines are discussed in Chapter 7.

As we have seen, there are advantages and disadvantages to parametric
and non-parametric methods for statistical learning. We explore both types
of methods throughout this book.

2.1.3 The Trade-Off Between Prediction Accuracy and Model
Interpretability

Of the many methods that we examine in this book, some are less flexible,
or more restrictive, in the sense that they can produce just a relatively
small range of shapes to estimate f. For example, linear regression is a
relatively inflexible approach, because it can only generate linear functions
such as the lines shown in Figure 2.1 or the plane shown in Figure 2.4.
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FIGURE 2.7. A representation of the tradeoff between flexibility and inter-
pretability, using different statistical learning methods. In general, as the flexibil-
ity of a method increases, its interpretability decreases.

Other methods, such as the thin plate splines shown in Figures 2.5 and 2.6,
are considerably more flexible because they can generate a much wider
range of possible shapes to estimate f.

One might reasonably ask the following question: why would we ever
choose to use a more restrictive method instead of a very flexible approach?
There are several reasons that we might prefer a more restrictive model.
If we are mainly interested in inference, then restrictive models are much
more interpretable. For instance, when inference is the goal, the linear
model may be a good choice since it will be quite easy to understand
the relationship between Y and X, X»,...,X,. In contrast, very flexible
approaches, such as the splines discussed in Chapter 7 and displayed in
Figures 2.5 and 2.6, and the boosting methods discussed in Chapter 8, can
lead to such complicated estimates of f that it is difficult to understand
how any individual predictor is associated with the response.

Figure 2.7 provides an illustration of the trade-off between flexibility and
interpretability for some of the methods that we cover in this book. Least
squares linear regression, discussed in Chapter 3, is relatively inflexible but
is quite interpretable. The lasso, discussed in Chapter 6, relies upon the
linear model (2.4) but uses an alternative fitting procedure for estimating
the coefficients 3y, 81, ..., Bp. The new procedure is more restrictive in es-
timating the coefficients, and sets a number of them to exactly zero. Hence
in this sense the lasso is a less flexible approach than linear regression.
It is also more interpretable than linear regression, because in the final
model the response variable will only be related to a small subset of the
predictors—namely, those with nonzero coefficient estimates. Generalized

lasso
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additive models (GAMs), discussed in Chapter 7, instead extend the lin-
ear model (2.4) to allow for certain non-linear relationships. Consequently,
GAMs are more flexible than linear regression. They are also somewhat
less interpretable than linear regression, because the relationship between
each predictor and the response is now modeled using a curve. Finally, fully
non-linear methods such as bagging, boosting, and support vector machines
with non-linear kernels, discussed in Chapters 8 and 9, are highly flexible
approaches that are harder to interpret.

We have established that when inference is the goal, there are clear ad-
vantages to using simple and relatively inflexible statistical learning meth-
ods. In some settings, however, we are only interested in prediction, and
the interpretability of the predictive model is simply not of interest. For
instance, if we seek to develop an algorithm to predict the price of a
stock, our sole requirement for the algorithm is that it predict accurately—
interpretability is not a concern. In this setting, we might expect that it
will be best to use the most flexible model available. Surprisingly, this is
not always the case! We will often obtain more accurate predictions using
a less flexible method. This phenomenon, which may seem counterintuitive
at first glance, has to do with the potential for overfitting in highly flexible
methods. We saw an example of overfitting in Figure 2.6. We will discuss
this very important concept further in Section 2.2 and throughout this
book.

2.1.4 Superuvised Versus Unsupervised Learning

Most statistical learning problems fall into one of two categories: supervised
or unsupervised. The examples that we have discussed so far in this chap-
ter all fall into the supervised learning domain. For each observation of the
predictor measurement(s) z;, ¢ = 1,...,n there is an associated response
measurement y;. We wish to fit a model that relates the response to the
predictors, with the aim of accurately predicting the response for future
observations (prediction) or better understanding the relationship between
the response and the predictors (inference). Many classical statistical learn-
ing methods such as linear regression and logistic regression (Chapter 4), as
well as more modern approaches such as GAM, boosting, and support vec-
tor machines, operate in the supervised learning domain. The vast majority
of this book is devoted to this setting.

In contrast, unsupervised learning describes the somewhat more chal-
lenging situation in which for every observation ¢ = 1,...,n, we observe
a vector of measurements x; but no associated response y;. It is not pos-
sible to fit a linear regression model, since there is no response variable
to predict. In this setting, we are in some sense working blind; the sit-
uation is referred to as unsupervised because we lack a response vari-
able that can supervise our analysis. What sort of statistical analysis is

generalized
additive
model

bagging
boosting

support
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machine

supervised

unsupervised

logistic
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FIGURE 2.8. A clustering data set involving three groups. Fach group is shown
using a different colored symbol. Left: The three groups are well-separated. In
this setting, a clustering approach should successfully identify the three groups.
Right: There is some overlap among the groups. Now the clustering task is more
challenging.

possible? We can seek to understand the relationships between the variables

or between the observations. One statistical learning tool that we may use

in this setting is cluster analysis, or clustering. The goal of cluster analysis ustor
is to ascertain, on the basis of x1, ..., x,, whether the observations fall into analysis
relatively distinct groups. For example, in a market segmentation study we

might observe multiple characteristics (variables) for potential customers,

such as zip code, family income, and shopping habits. We might believe

that the customers fall into different groups, such as big spenders versus

low spenders. If the information about each customer’s spending patterns

were available, then a supervised analysis would be possible. However, this
information is not available—that is, we do not know whether each poten-

tial customer is a big spender or not. In this setting, we can try to cluster

the customers on the basis of the variables measured, in order to identify
distinct groups of potential customers. Identifying such groups can be of
interest because it might be that the groups differ with respect to some
property of interest, such as spending habits.

Figure 2.8 provides a simple illustration of the clustering problem. We
have plotted 150 observations with measurements on two variables, X;
and X5. Each observation corresponds to one of three distinct groups. For
illustrative purposes, we have plotted the members of each group using
different colors and symbols. However, in practice the group memberships
are unknown, and the goal is to determine the group to which each ob-
servation belongs. In the left-hand panel of Figure 2.8, this is a relatively
easy task because the groups are well-separated. In contrast, the right-hand
panel illustrates a more challenging problem in which there is some overlap
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between the groups. A clustering method could not be expected to assign
all of the overlapping points to their correct group (blue, green, or orange).

In the examples shown in Figure 2.8, there are only two variables, and
so one can simply visually inspect the scatterplots of the observations in
order to identify clusters. However, in practice, we often encounter data
sets that contain many more than two variables. In this case, we cannot
easily plot the observations. For instance, if there are p variables in our
data set, then p(p — 1)/2 distinct scatterplots can be made, and visual
inspection is simply not a viable way to identify clusters. For this reason,
automated clustering methods are important. We discuss clustering and
other unsupervised learning approaches in Chapter 10.

Many problems fall naturally into the supervised or unsupervised learn-
ing paradigms. However, sometimes the question of whether an analysis
should be considered supervised or unsupervised is less clear-cut. For in-
stance, suppose that we have a set of n observations. For m of the observa-
tions, where m < n, we have both predictor measurements and a response
measurement. For the remaining n — m observations, we have predictor
measurements but no response measurement. Such a scenario can arise if
the predictors can be measured relatively cheaply but the corresponding
responses are much more expensive to collect. We refer to this setting as
a semi-supervised learning problem. In this setting, we wish to use a sta-
tistical learning method that can incorporate the m observations for which
response measurements are available as well as the n — m observations for
which they are not. Although this is an interesting topic, it is beyond the
scope of this book.

2.1.5 Regression Versus Classification Problems

Variables can be characterized as either quantitative or qualitative (also
known as categorical). Quantitative variables take on numerical values.
Examples include a person’s age, height, or income, the value of a house,
and the price of a stock. In contrast, qualitative variables take on val-
ues in one of K different classes, or categories. Examples of qualitative
variables include a person’s gender (male or female), the brand of prod-
uct purchased (brand A, B, or C), whether a person defaults on a debt
(yes or no), or a cancer diagnosis (Acute Myelogenous Leukemia, Acute
Lymphoblastic Leukemia, or No Leukemia). We tend to refer to problems
with a quantitative response as regression problems, while those involv-
ing a qualitative response are often referred to as classification problems.
However, the distinction is not always that crisp. Least squares linear re-
gression (Chapter 3) is used with a quantitative response, whereas logistic
regression (Chapter 4) is typically used with a qualitative (two-class, or
binary) response. As such it is often used as a classification method. But
since it estimates class probabilities, it can be thought of as a regression
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supervised
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class

regression

classification
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method as well. Some statistical methods, such as K-nearest neighbors
(Chapters 2 and 4) and boosting (Chapter 8), can be used in the case of
either quantitative or qualitative responses.

We tend to select statistical learning methods on the basis of whether
the response is quantitative or qualitative; i.e. we might use linear regres-
sion when quantitative and logistic regression when qualitative. However,
whether the predictors are qualitative or quantitative is generally consid-
ered less important. Most of the statistical learning methods discussed in
this book can be applied regardless of the predictor variable type, provided
that any qualitative predictors are properly coded before the analysis is
performed. This is discussed in Chapter 3.

2.2 Assessing Model Accuracy

One of the key aims of this book is to introduce the reader to a wide range
of statistical learning methods that extend far beyond the standard linear
regression approach. Why is it necessary to introduce so many different
statistical learning approaches, rather than just a single best method? There
is no free lunch in statistics: no one method dominates all others over all
possible data sets. On a particular data set, one specific method may work
best, but some other method may work better on a similar but different
data set. Hence it is an important task to decide for any given set of data
which method produces the best results. Selecting the best approach can
be one of the most challenging parts of performing statistical learning in
practice.

In this section, we discuss some of the most important concepts that
arise in selecting a statistical learning procedure for a specific data set. As
the book progresses, we will explain how the concepts presented here can
be applied in practice.

2.2.1 Measuring the Quality of Fit

In order to evaluate the performance of a statistical learning method on
a given data set, we need some way to measure how well its predictions
actually match the observed data. That is, we need to quantify the extent
to which the predicted response value for a given observation is close to
the true response value for that observation. In the regression setting, the
most commonly-used measure is the mean squared error (MSE), given by

MSE == 3" (i~ f(a)), (25)

i=1

mean
squared
error
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where f(z;) is the prediction that f gives for the ith observation. The MSE
will be small if the predicted responses are very close to the true responses,
and will be large if for some of the observations, the predicted and true
responses differ substantially.

The MSE in (2.5) is computed using the training data that was used to
fit the model, and so should more accurately be referred to as the training
MSE. But in general, we do not really care how well the method works
on the training data. Rather, we are interested in the accuracy of the pre-
dictions that we obtain when we apply our method to previously unseen
test data. Why is this what we care about? Suppose that we are interested
in developing an algorithm to predict a stock’s price based on previous
stock returns. We can train the method using stock returns from the past
6 months. But we don’t really care how well our method predicts last week’s
stock price. We instead care about how well it will predict tomorrow’s price
or next month’s price. On a similar note, suppose that we have clinical
measurements (e.g. weight, blood pressure, height, age, family history of
disease) for a number of patients, as well as information about whether each
patient has diabetes. We can use these patients to train a statistical learn-
ing method to predict risk of diabetes based on clinical measurements. In
practice, we want this method to accurately predict diabetes risk for future
patients based on their clinical measurements. We are not very interested
in whether or not the method accurately predicts diabetes risk for patients
used to train the model, since we already know which of those patients
have diabetes.

To state it more mathematically, suppose that we fit our statistical learn-
ing method on our training observations {(z1,y1), (¥2,92),-- -, (Zn,yn)},
and we obtain the estimate f. We can then compute f(z), f(z ) ).
If these are approximately equal to y1,¥s2, ..., yn, then the training MSE
glven by (2.5) is small. However, we are really not interested in whether
f (z;) = y;; instead, we want to know whether f (z0) is approximately equal
to yo, where (xg, yo) is a previously unseen test observation not used to train
the statistical learning method. We want to choose the method that gives
the lowest test MSE, as opposed to the lowest training MSE. In other words,
if we had a large number of test observations, we could compute

Ave(yo — f(IO))2a (2.6)

the average squared prediction error for these test observations (zg,yo)-
We’d like to select the model for which the average of this quantity—the
test MSE—is as small as possible.

How can we go about trying to select a method that minimizes the test
MSE? In some settings, we may have a test data set available—that is,
we may have access to a set of observations that were not used to train
the statistical learning method. We can then simply evaluate (2.6) on the
test observations, and select the learning method for which the test MSE is

training

MSE

test data

test MSE
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FIGURE 2.9. Left: Data simulated from f, shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

smallest. But what if no test observations are available? In that case, one
might imagine simply selecting a statistical learning method that minimizes
the training MSE (2.5). This seems like it might be a sensible approach,
since the training MSE and the test MSE appear to be closely related.
Unfortunately, there is a fundamental problem with this strategy: there
is no guarantee that the method with the lowest training MSE will also
have the lowest test MSE. Roughly speaking, the problem is that many
statistical methods specifically estimate coefficients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.

Figure 2.9 illustrates this phenomenon on a simple example. In the left-
hand panel of Figure 2.9, we have generated observations from (2.1) with
the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with different levels of smoothness. It is
clear that as the level of flexibility increases, the curves fit the observed
data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many different fits to this data.

smoothing
spline
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We now move on to the right-hand panel of Figure 2.9. The grey curve
displays the average training MSE as a function of flexibility, or more for-
mally the degrees of freedom, for a number of smoothing splines. The de-
grees of freedom is a quantity that summarizes the flexibility of a curve; it
is discussed more fully in Chapter 7. The orange, blue and green squares
indicate the MSEs associated with the corresponding curves in the left-
hand panel. A more restricted and hence smoother curve has fewer degrees
of freedom than a wiggly curve—mnote that in Figure 2.9, linear regression
is at the most restrictive end, with two degrees of freedom. The training
MSE declines monotonically as flexibility increases. In this example the
true f is non-linear, and so the orange linear fit is not flexible enough to
estimate f well. The green curve has the lowest training MSE of all three
methods, since it corresponds to the most flexible of the three curves fit in
the left-hand panel.

In this example, we know the true function f, and so we can also com-
pute the test MSE over a very large test set, as a function of flexibility. (Of
course, in general f is unknown, so this will not be possible.) The test MSE
is displayed using the red curve in the right-hand panel of Figure 2.9. As
with the training MSE, the test MSE initially declines as the level of flex-
ibility increases. However, at some point the test MSE levels off and then
starts to increase again. Consequently, the orange and green curves both
have high test MSE. The blue curve minimizes the test MSE, which should
not be surprising given that visually it appears to estimate f the best in the
left-hand panel of Figure 2.9. The horizontal dashed line indicates Var(e),
the irreducible error in (2.3), which corresponds to the lowest achievable
test MSE among all possible methods. Hence, the smoothing spline repre-
sented by the blue curve is close to optimal.

In the right-hand panel of Figure 2.9, as the flexibility of the statistical
learning method increases, we observe a monotone decrease in the training
MSE and a U-shape in the test MSE. This is a fundamental property of
statistical learning that holds regardless of the particular data set at hand
and regardless of the statistical method being used. As model flexibility
increases, training MSE will decrease, but the test MSE may not. When
a given method yields a small training MSE but a large test MSE, we are
said to be overfitting the data. This happens because our statistical learning
procedure is working too hard to find patterns in the training data, and
may be picking up some patterns that are just caused by random chance
rather than by true properties of the unknown function f. When we overfit
the training data, the test MSE will be very large because the supposed
patterns that the method found in the training data simply don’t exist
in the test data. Note that regardless of whether or not overfitting has
occurred, we almost always expect the training MSE to be smaller than
the test MSE because most statistical learning methods either directly or
indirectly seek to minimize the training MSE. Overfitting refers specifically
to the case in which a less flexible model would have yielded a smaller
test MSE.

degrees of
freedom
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FIGURE 2.10. Details are as in Figure 2.9, using a different true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.

Figure 2.10 provides another example in which the true f is approxi-
mately linear. Again we observe that the training MSE decreases mono-
tonically as the model flexibility increases, and that there is a U-shape in
the test MSE. However, because the truth is close to linear, the test MSE
only decreases slightly before increasing again, so that the orange least
squares fit is substantially better than the highly flexible green curve. Fi-
nally, Figure 2.11 displays an example in which f is highly non-linear. The
training and test MSE curves still exhibit the same general patterns, but
now there is a rapid decrease in both curves before the test MSE starts to
increase slowly.

In practice, one can usually compute the training MSE with relative
ease, but estimating test MSE is considerably more difficult because usually
no test data are available. As the previous three examples illustrate, the
flexibility level corresponding to the model with the minimal test MSE can
vary considerably among data sets. Throughout this book, we discuss a
variety of approaches that can be used in practice to estimate this minimum
point. One important method is cross-validation (Chapter 5), which is a
method for estimating test MSE using the training data.

2.2.2  The Bias-Variance Trade-Off

The U-shape observed in the test MSE curves (Figures 2.9-2.11) turns out
to be the result of two competing properties of statistical learning methods.
Though the mathematical proof is beyond the scope of this book, it is
possible to show that the expected test MSE, for a given value xg, can

cross-
validation
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FIGURE 2.11. Details are as in Figure 2.9, using a different f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

always be decomposed into the sum of three fundamental quantities: the
variance of f(xg), the squared bias of f(z¢) and the variance of the error
terms e. That is,

B (v~ f(z0))” = Var(f(zo)) + [Bias(f(xo))]* + Var(e).  (27)

. 2
Here the notation F (yo —f (:vo)> defines the expected test MSE, and refers

to the average test MSE that we would obtain if we repeatedly estimated
f using a large number of training sets, and tested each at xy. The overall

R 2
expected test MSE can be computed by averaging E (yo —f (xo)) over all

possible values of xq in the test set.

Equation 2.7 tells us that in order to minimize the expected test error,
we need to select a statistical learning method that simultaneously achieves
low variance and low bias. Note that variance is inherently a nonnegative
quantity, and squared bias is also nonnegative. Hence, we see that the
expected test MSE can never lie below Var(e), the irreducible error from
(2.3).

What do we mean by the wvariance and bias of a statistical learning
method? Variance refers to the amount by which f would change if we
estimated it using a different training data set. Since the training data
are used to fit the statistical learning method, different training data sets
will result in a different f . But ideally the estimate for f should not vary
too much between training sets. However, if a method has high variance
then small changes in the training data can result in large changes in f .In
general, more flexible statistical methods have higher variance. Consider the

variance

bias

expected
test MSE
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green and orange curves in Figure 2.9. The flexible green curve is following
the observations very closely. It has high variance because changing any
one of these data points may cause the estimate f to change considerably.
In contrast, the orange least squares line is relatively inflexible and has low
variance, because moving any single observation will likely cause only a
small shift in the position of the line.

On the other hand, bias refers to the error that is introduced by approxi-
mating a real-life problem, which may be extremely complicated, by a much
simpler model. For example, linear regression assumes that there is a linear
relationship between Y and X;, X»,..., X,,. It is unlikely that any real-life
problem truly has such a simple linear relationship, and so performing lin-
ear regression will undoubtedly result in some bias in the estimate of f. In
Figure 2.11, the true f is substantially non-linear, so no matter how many
training observations we are given, it will not be possible to produce an
accurate estimate using linear regression. In other words, linear regression
results in high bias in this example. However, in Figure 2.10 the true f is
very close to linear, and so given enough data, it should be possible for
linear regression to produce an accurate estimate. Generally, more flexible
methods result in less bias.

As a general rule, as we use more flexible methods, the variance will
increase and the bias will decrease. The relative rate of change of these
two quantities determines whether the test MSE increases or decreases. As
we increase the flexibility of a class of methods, the bias tends to initially
decrease faster than the variance increases. Consequently, the expected
test MSE declines. However, at some point increasing flexibility has little
impact on the bias but starts to significantly increase the variance. When
this happens the test MSE increases. Note that we observed this pattern
of decreasing test MSE followed by increasing test MSE in the right-hand
panels of Figures 2.9-2.11.

The three plots in Figure 2.12 illustrate Equation 2.7 for the examples in
Figures 2.9-2.11. In each case the blue solid curve represents the squared
bias, for different levels of flexibility, while the orange curve corresponds to
the variance. The horizontal dashed line represents Var(e), the irreducible
error. Finally, the red curve, corresponding to the test set MSE;, is the sum
of these three quantities. In all three cases, the variance increases and the
bias decreases as the method’s flexibility increases. However, the flexibility
level corresponding to the optimal test MSE differs considerably among the
three data sets, because the squared bias and variance change at different
rates in each of the data sets. In the left-hand panel of Figure 2.12, the
bias initially decreases rapidly, resulting in an initial sharp decrease in the
expected test MSE. On the other hand, in the center panel of Figure 2.12
the true f is close to linear, so there is only a small decrease in bias as flex-
ibility increases, and the test MSE only declines slightly before increasing
rapidly as the variance increases. Finally, in the right-hand panel of Fig-
ure 2.12; as flexibility increases, there is a dramatic decline in bias because
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(e)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9-2.11.

The vertical dotted line indicates the flexibility level corresponding to the smallest
test MSE.

the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.

The relationship between bias, variance, and test set MSE given in Equa-
tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-off. Good test set performance of a statistical learning method re- Dinevariance
quires low variance as well as low squared bias. This is referred to as a trade-off
trade-off because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-off is one of the most important recurring themes in this book.

In a real-life situation in which f is unobserved, it is generally not pos-
sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-off in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
Chapter 5 we discuss cross-validation, which is a way to estimate the test
MSE using the training data.
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2.2.3 The Classification Setting

Thus far, our discussion of model accuracy has been focused on the regres-
sion setting. But many of the concepts that we have encountered, such
as the bias-variance trade-off, transfer over to the classification setting
with only some modifications due to the fact that y; is no longer numer-
ical. Suppose that we seek to estimate f on the basis of training obser-
vations {(z1,91),-.., (Zn,yn)}, where now yi,...,y, are qualitative. The
most common approach for quantifying the accuracy of our estimate f is
the training error rate, the proportion of mistakes that are made if we apply
our estimate f to the training observations:

=31 £ 60, (28)

Here g; is the predicted class label for the ith observation using f . And
I(y; # 4:) is an indicator variable that equals 1 if y; # §; and zero if y; = ;.
If I(y; # §;) = 0 then the ith observation was classified correctly by our
classification method; otherwise it was misclassified. Hence Equation 2.8
computes the fraction of incorrect classifications.

Equation 2.8 is referred to as the training error rate because it is com-
puted based on the data that was used to train our classifier. As in the
regression setting, we are most interested in the error rates that result from
applying our classifier to test observations that were not used in training.
The test error rate associated with a set of test observations of the form
(z0,y0) is given by

Ave (I(yo # 90)) » (2.9)

where g is the predicted class label that results from applying the classifier
to the test observation with predictor zo. A good classifier is one for which
the test error (2.9) is smallest.

The Bayes Classifier

It is possible to show (though the proof is outside of the scope of this
book) that the test error rate given in (2.9) is minimized, on average, by a
very simple classifier that assigns each observation to the most likely class,
given its predictor values. In other words, we should simply assign a test
observation with predictor vector zy to the class j for which

Pr(Y = j|X = xo) (2.10)

is largest. Note that (2.10) is a conditional probability: it is the probability
that Y = j, given the observed predictor vector xy. This very simple clas-
sifier is called the Bayes classifier. In a two-class problem where there are
only two possible response values, say class I or class 2, the Bayes classifier

error rate

indicator
variable

training
error

test error

conditional
probability

ayes
classifier
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FIGURE 2.13. A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange. The purple dashed line represents
the Bayes decision boundary. The orange background grid indicates the region
in which a test observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation will be assigned
to the blue class.

corresponds to predicting class one if Pr(Y = 1|X = z() > 0.5, and class
two otherwise.

Figure 2.13 provides an example using a simulated data set in a two-
dimensional space consisting of predictors X; and Xs. The orange and
blue circles correspond to training observations that belong to two different
classes. For each value of X; and X, there is a different probability of the
response being orange or blue. Since this is simulated data, we know how
the data were generated and we can calculate the conditional probabilities
for each value of X; and Xs. The orange shaded region reflects the set of
points for which Pr(Y = orange|X) is greater than 50 %, while the blue
shaded region indicates the set of points for which the probability is below
50 %. The purple dashed line represents the points where the probability
is exactly 50%. This is called the Bayes decision boundary. The Bayes
classifier’s prediction is determined by the Bayes decision boundary; an
observation that falls on the orange side of the boundary will be assigned
to the orange class, and similarly an observation on the blue side of the
boundary will be assigned to the blue class.

The Bayes classifier produces the lowest possible test error rate, called
the Bayes error rate. Since the Bayes classifier will always choose the class
for which (2.10) is largest, the error rate at X = zo will be 1 —max; Pr(Y =
71X = x0). In general, the overall Bayes error rate is given by

1-E (mJaxPr(Y - j|X)> 7 (2.11)

Bayes
decision
boundary

Bayes error
rate
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where the expectation averages the probability over all possible values of
X. For our simulated data, the Bayes error rate is 0.1304. It is greater than
zero, because the classes overlap in the true population so max; Pr(Y =
J|X = zp) < 1 for some values of xy. The Bayes error rate is analogous to
the irreducible error, discussed earlier.

K-Nearest Neighbors

In theory we would always like to predict qualitative responses using the
Bayes classifier. But for real data, we do not know the conditional distri-
bution of Y given X, and so computing the Bayes classifier is impossi-
ble. Therefore, the Bayes classifier serves as an unattainable gold standard
against which to compare other methods. Many approaches attempt to
estimate the conditional distribution of Y given X, and then classify a
given observation to the class with highest estimated probability. One such
method is the K-nearest neighbors (KNN) classifier. Given a positive in-
teger K and a test observation zp, the KNN classifier first identifies the
K points in the training data that are closest to zg, represented by Nj.
It then estimates the conditional probability for class j as the fraction of
points in Ny whose response values equal j:

Pr(Y =X =) = = 3 Iy = j). (2.12)
i€No

Finally, KNN applies Bayes rule and classifies the test observation xg to
the class with the largest probability.

Figure 2.14 provides an illustrative example of the KNN approach. In
the left-hand panel, we have plotted a small training data set consisting of
six blue and six orange observations. Our goal is to make a prediction for
the point labeled by the black cross. Suppose that we choose K = 3. Then
KNN will first identify the three observations that are closest to the cross.
This neighborhood is shown as a circle. It consists of two blue points and
one orange point, resulting in estimated probabilities of 2/3 for the blue
class and 1/3 for the orange class. Hence KNN will predict that the black
cross belongs to the blue class. In the right-hand panel of Figure 2.14 we
have applied the KNN approach with K = 3 at all of the possible values for
X1 and X5, and have drawn in the corresponding KNN decision boundary.

Despite the fact that it is a very simple approach, KNN can often pro-
duce classifiers that are surprisingly close to the optimal Bayes classifier.
Figure 2.15 displays the KNN decision boundary, using K = 10, when ap-
plied to the larger simulated data set from Figure 2.13. Notice that even
though the true distribution is not known by the KNN classifier, the KNN
decision boundary is very close to that of the Bayes classifier. The test error
rate using KNN is 0.1363, which is close to the Bayes error rate of 0.1304.

K-nearest
neighbors
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FIGURE 2.14. The KNN approach, using K = 3, is illustrated in a simple
situation with siz blue observations and siz orange observations. Left: a test ob-
servation at which a predicted class label is desired is shown as a black cross. The
three closest points to the test observation are identified, and it is predicted that
the test observation belongs to the most commonly-occurring class, in this case
blue. Right: The KNN decision boundary for this example is shown in black. The
blue grid indicates the region in which a test observation will be assigned to the
blue class, and the orange grid indicates the region in which it will be assigned to
the orange class.

The choice of K has a drastic effect on the KNN classifier obtained.
Figure 2.16 displays two KNN fits to the simulated data from Figure 2.13,
using K = 1 and K = 100. When K = 1, the decision boundary is overly
flexible and finds patterns in the data that don’t correspond to the Bayes
decision boundary. This corresponds to a classifier that has low bias but
very high variance. As K grows, the method becomes less flexible and
produces a decision boundary that is close to linear. This corresponds to
a low-variance but high-bias classifier. On this simulated data set, neither
K =1 nor K = 100 give good predictions: they have test error rates of
0.1695 and 0.1925, respectively.

Just as in the regression setting, there is not a strong relationship be-
tween the training error rate and the test error rate. With K = 1, the
KNN training error rate is 0, but the test error rate may be quite high. In
general, as we use more flexible classification methods, the training error
rate will decline but the test error rate may not. In Figure 2.17, we have
plotted the KNN test and training errors as a function of 1/K. As 1/K in-
creases, the method becomes more flexible. As in the regression setting, the
training error rate consistently declines as the flexibility increases. However,
the test error exhibits a characteristic U-shape, declining at first (with a
minimum at approximately K = 10) before increasing again when the
method becomes excessively flexible and overfits.
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KNN: K=10

~

FIGURE 2.15. The black curve indicates the KNN decision boundary on the
data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as
a purple dashed line. The KNN and Bayes decision boundaries are very similar.

KNN: K=1 KNN: K=100

FIGURE 2.16. A comparison of the KNN decision boundaries (solid black
curves) obtained using K = 1 and K = 100 on the data from Figure 2.15. With
K = 1, the decision boundary is overly flexible, while with K = 100 it is not
sufficiently flexible. The Bayes decision boundary is shown as a purple dashed
line.
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FIGURE 2.17. The KNN training error rate (blue, 200 observations) and test
error rate (orange, 5,000 observations) on the data from Figure 2.13, as the
level of flexibility (assessed using 1/K ) increases, or equivalently as the number
of neighbors K decreases. The black dashed line indicates the Bayes error rate.
The jumpiness of the curves is due to the small size of the training data set.

In both the regression and classification settings, choosing the correct
level of flexibility is critical to the success of any statistical learning method.
The bias-variance tradeoff, and the resulting U-shape in the test error, can
make this a difficult task. In Chapter 5, we return to this topic and discuss
various methods for estimating test error rates and thereby choosing the
optimal level of flexibility for a given statistical learning method.

2.3 Lab: Introduction to R

In this lab, we will introduce some simple R commands. The best way to
learn a new language is to try out the commands. R can be downloaded from

http://cran.r-project.org/
2.3.1 Basic Commands

R uses functions to perform operations. To run a function called funcname,
we type funcname (inputl, input2), where the inputs (or arguments) inputi

function

argument
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and input?2 tell R how to run the function. A function can have any number
of inputs. For example, to create a vector of numbers, we use the function
c() (for concatenate). Any numbers inside the parentheses are joined to-
gether. The following command instructs R to join together the numbers
1, 3, 2, and 5, and to save them as a vector named x. When we type x, it
gives us back the vector.

> x <- ¢(1,3,2,5)
> x
[1] 1 3 2 5

Note that the > is not part of the command; rather, it is printed by R to
indicate that it is ready for another command to be entered. We can also
save things using = rather than <-:

> x = c(1,6,2)
> X

[1] 1 6 2

>y = c¢c(1,4,3)

Hitting the up arrow multiple times will display the previous commands,
which can then be edited. This is useful since one often wishes to repeat
a similar command. In addition, typing ?funcname will always cause R to
open a new help file window with additional information about the function
funcname.

We can tell R to add two sets of numbers together. It will then add the
first number from x to the first number from y, and so on. However, x and
y should be the same length. We can check their length using the length()
function.

> length (x)
[11 3

> length (y)
[11 3

> X+y

[11 2 10 5

The 1s() function allows us to look at a list of all of the objects, such
as data and functions, that we have saved so far. The rm() function can be
used to delete any that we don’t want.

> 1s ()

[d] 0@ Dpo
> rm(x,y)

> 1s )
character (0)

It’s also possible to remove all objects at once:

> rm(list=1s())

cO

vector

length()

1s()
rm()
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The matrix () function can be used to create a matrix of numbers. Before
we use the matrix() function, we can learn more about it:

> ?matrix
The help file reveals that the matrix() function takes a number of inputs,
but for now we focus on the first three: the data (the entries in the matrix),

the number of rows, and the number of columns. First, we create a simple
matrix.

> x=matrix (data=c(1,2,3,4), nrow=2, ncol=2)

> x

[,11 [,2]
[1,]
[2,1 2 4

Note that we could just as well omit typing data=, nrow=, and ncol= in the
matrix() command above: that is, we could just type

> x=matrix(c(1,2,3,4),2,2)

and this would have the same effect. However, it can sometimes be useful to
specify the names of the arguments passed in, since otherwise R will assume
that the function arguments are passed into the function in the same order
that is given in the function’s help file. As this example illustrates, by
default R creates matrices by successively filling in columns. Alternatively,
the byrow=TRUE option can be used to populate the matrix in order of the
TOWS.

> matrix(c(1,2,3,4),2,2,byrow=TRUE)

[,11 [,2]
[1,] 1 2
[2,] 3 4

Notice that in the above command we did not assign the matrix to a value
such as x. In this case the matrix is printed to the screen but is not saved
for future calculations. The sqrt () function returns the square root of each
element of a vector or matrix. The command x"2 raises each element of x
to the power 2; any powers are possible, including fractional or negative
powers.
> sqrt(x)

[,11 [,2]
[1,] 1.00 1.73
[2,] 1.41 2.00

> x72

[,11 [,2]
[1,] 1 9
[2,1 4 16

The rnorm() function generates a vector of random normal variables,
with first argument n the sample size. Each time we call this function, we
will get a different answer. Here we create two correlated sets of numbers,
x and y, and use the cor() function to compute the correlation between
them.

matrix()

sqrt ()

rnorm()

cor()



2.3 Lab: Introduction to R 45

> x=rnorm (50)

> y=x+rnorm (50, mean=50,sd=.1)
> cor(x,y)

[1] 0.995

By default, rnorm() creates standard normal random variables with a mean
of 0 and a standard deviation of 1. However, the mean and standard devi-
ation can be altered using the mean and sd arguments, as illustrated above.
Sometimes we want our code to reproduce the exact same set of random
numbers; we can use the set.seed() function to do this. The set.seed()
function takes an (arbitrary) integer argument.

> set.seed(1303)

> rnorm (50)
[1] -1.1440 1.3421 2.1854 0.5364 0.0632 0.5022 -0.0004

We use set.seed() throughout the labs whenever we perform calculations
involving random quantities. In general this should allow the user to re-
produce our results. However, it should be noted that as new versions of
R become available it is possible that some small discrepancies may form
between the book and the output from R.

The mean() and var() functions can be used to compute the mean and
variance of a vector of numbers. Applying sqrt() to the output of var()
will give the standard deviation. Or we can simply use the sd() function.
> set.seed(3)
> y=rnorm (100)
> mean (y)

[1] 0.0110

> var (y)

[1] 0.7329

> sqrt(var(y))
[1] 0.8561

> sd(y)

[1] 0.8561

2.3.2  Graphics

The plot() function is the primary way to plot data in R. For instance,

plot(x,y) produces a scatterplot of the numbers in x versus the numbers

in y. There are many additional options that can be passed in to the plot()

function. For example, passing in the argument xlab will result in a label

on the z-axis. To find out more information about the plot() function,

type 7plot.

x=rnorm (100)

y=rnorm (100)

plot(x,y)

plot(x,y,xlab="this is the x-axis",ylab="this is the y-axis",
main="Plot of X vs Y")

vV V Vv Vv

set.seed ()

mean ()
var ()

sd()

plot ()
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We will often want to save the output of an R plot. The command that we
use to do this will depend on the file type that we would like to create. For
instance, to create a pdf, we use the pdf () function, and to create a jpeg,

. af
we use the jpeg() function. pdf 0

jpegQ
> pdf ("Figure.pdf")
> plot(x,y,col="green")
> dev.off ()
null device
1

The function dev.off () indicates to R that we are done creating the plot.
Alternatively, we can simply copy the plot window and paste it into an
appropriate file type, such as a Word document.

The function seq() can be used to create a sequence of numbers. For
instance, seq(a,b) makes a vector of integers between a and b. There are
many other options: for instance, seq(0,1,length=10) makes a sequence of
10 numbers that are equally spaced between 0 and 1. Typing 3:11 is a
shorthand for seq(3,11) for integer arguments.

dev.off ()

seq()

> x=seq(1,10)
> x

[1] 1 2 3 4 5 6 7 8 9 10
> x=1:10
> x

[1] 1 2 3 4 5 6 7 8 9 10
> x=seq(-pi,pi,length=50)

We will now create some more sophisticated plots. The contour () func-
tion produces a contour plot in order to represent three-dimensional data;
it is like a topographical map. It takes three arguments:

contour ()

contour plot

1. A vector of the x values (the first dimension),
2. A vector of the y values (the second dimension), and

3. A matrix whose elements correspond to the z value (the third dimen-
sion) for each pair of (x,y) coordinates.

As with the plot () function, there are many other inputs that can be used
to fine-tune the output of the contour() function. To learn more about
these, take a look at the help file by typing ?contour.

y=x

f=outer (x,y,function (x,y)cos(y)/(1+x"2))
contour (x,y,f)

contour (x,y,f,nlevels=45,add=T)
fa=(f-t(£f))/2

contour (x,y,fa,nlevels=15)

V V. V V V VvV

The image() function works the same way as contour(), except that it

L. i O
produces a color-coded plot whose colors depend on the z value. This is naee
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known as a heatmap, and is sometimes used to plot temperature in weather
forecasts. Alternatively, persp() can be used to produce a three-dimensional
plot. The arguments theta and phi control the angles at which the plot is
viewed.

heatmap

persp()

image (x,y,fa)

persp(x,y,fa)
persp(x,y,fa,theta=30)
persp(x,y,fa,theta=30,phi=20)
persp(x,y,fa,theta=30,phi=70)
persp(x,y,fa,theta=30,phi=40)

V V.V V V VvV

2.3.83 Indexing Data

We often wish to examine part of a set of data. Suppose that our data is
stored in the matrix A.

> A=matrix(1:16,4,4)

> A

[,11 [,2] [,3] [,4]
[1,1] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

Then, typing

> A[2,3]
[11 10

will select the element corresponding to the second row and the third col-
umn. The first number after the open-bracket symbol [ always refers to
the row, and the second number always refers to the column. We can also
select multiple rows and columns at a time, by providing vectors as the
indices.

> A[c(1,3),c(2,4)]

[,11 [,2]
[1,] 5 13
[2,1 7 15

> A[1:3,2:4]
[,11 [,2]1 [,3]

[1,1 5 9 13
[2,1] 6 10 14
[3,1] 7 11 15
> A[1:2,]

[,11 [,2] [,3] [,4]
[1,1 1 5 9 13
[2,1 2 6 10 14
> A[,1:2]

[,11 [,2]
[1,1 1 5
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(3.1 3 7
(4,1 4 8

The last two examples include either no index for the columns or no index
for the rows. These indicate that R should include all columns or all rows,
respectively. R treats a single row or column of a matrix as a vector.

> A[1,]
[1] 1 5 9 13

The use of a negative sign - in the index tells R to keep all rows or columns
except those indicated in the index.

> A[-c(1,3),]
[,11 [,21 [,3] [,4]

[1,] 2 6 10 14
2,1 4 8 12 16
> A[-c(1,3),-c(1,3,4)]
[1] 6 8

The dim() function outputs the number of rows followed by the number of

. . dim()
columns of a given matrix.

> dim (A)
[1] 4 4

2.3.4 Loading Data

For most analyses, the first step involves importing a data set into R. The
read.table() function is one of the primary ways to do this. The help file
contains details about how to use this function. We can use the function
write.table() to export data. .
write.

Before attempting to load a data set, we must make sure that R knows ;1.
to search for the data in the proper directory. For example on a Windows
system one could select the directory using the Change dir... option under
the File menu. However, the details of how to do this depend on the op-
erating system (e.g. Windows, Mac, Unix) that is being used, and so we
do not give further details here. We begin by loading in the Auto data set.
This data is part of the ISLR library (we discuss libraries in Chapter 3) but
to illustrate the read.table() function we load it now from a text file. The
following command will load the Auto.data file into R and store it as an
object called Auto, in a format referred to as a data frame. (The text file
can be obtained from this book’s website.) Once the data has been loaded,
the fix() function can be used to view it in a spreadsheet like window.
However, the window must be closed before further R commands can be
entered.

read.table()

data frame

> Auto=read.table ("Auto.data")
> fix (Auto)
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Note that Auto.data is simply a text file, which you could alternatively
open on your computer using a standard text editor. It is often a good idea
to view a data set using a text editor or other software such as Excel before
loading it into R.

This particular data set has not been loaded correctly, because R has
assumed that the variable names are part of the data and so has included
them in the first row. The data set also includes a number of missing
observations, indicated by a question mark 7. Missing values are a common
occurrence in real data sets. Using the option header=T (or header=TRUE) in
the read.table() function tells R that the first line of the file contains the
variable names, and using the option na.strings tells R that any time it
sees a particular character or set of characters (such as a question mark),
it should be treated as a missing element of the data matrix.

> Auto=read.table ("Auto.data",header=T,na.strings="7")
> fix (Auto)

Excel is a common-format data storage program. An easy way to load such
data into R is to save it as a csv (comma separated value) file and then use
the read.csv() function to load it in.

> Auto=read.csv("Auto.csv",header=T,na.strings="7")
> fix (Auto)

> dim (Auto)

[1] 397 9

> Auto[1:4,]

The dim() function tells us that the data has 397 observations, or rows, and
nine variables, or columns. There are various ways to deal with the missing
data. In this case, only five of the rows contain missing observations, and
so we choose to use the na.omit() function to simply remove these rows.

dim()

na.omit ()
> Auto=na.omit (Auto)

> dim (Auto)

[1] 392 9

Once the data are loaded correctly, we can use names() to check the

K names ()
variable names.

> names (Auto)

[1] "mpg" "cylinders" "displacement" "horsepower"
[5] "weight" "acceleration" "year" "origin"

[9] "name"

2.3.5 Additional Graphical and Numerical Summaries

We can use the plot () function to produce scatterplots of the quantitative
variables. However, simply typing the variable names will produce an error
message, because R does not know to look in the Auto data set for those
variables.

scatterplot
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> plot(cylinders, mpg)
Error in plot(cylinders, mpg) : object ’cylinders’ not found

To refer to a variable, we must type the data set and the variable name
joined with a $ symbol. Alternatively, we can use the attach() function in
order to tell R to make the variables in this data frame available by name.
> plot (Auto$cylinders , Auto$mpg)

> attach (Auto)
> plot(cylinders, mpg)

The cylinders variable is stored as a numeric vector, so R has treated it
as quantitative. However, since there are only a small number of possible
values for cylinders, one may prefer to treat it as a qualitative variable.
The as.factor() function converts quantitative variables into qualitative
variables.

> cylinders=as.factor (cylinders)

If the variable plotted on the z-axis is categorial, then boxplots will
automatically be produced by the plot() function. As usual, a number
of options can be specified in order to customize the plots.

plot (cylinders, mpg)

plot(cylinders, mpg, col="red")

plot (cylinders, mpg, col="red", varwidth=T)
plot(cylinders, mpg, col="red", varwidth=T,horizontal=T)

vV V. V V VvV

plot (cylinders, mpg, col="red", varwidth=T, xlab="cylinders",
ylab="MPG")

The hist() function can be used to plot a histogram. Note that col=2
has the same effect as col="red".
> hist (mpg)

> hist (mpg,col=2)
> hist (mpg,col=2,breaks=15)

The pairs () function creates a scatterplot matrizi.e. a scatterplot for every
pair of variables for any given data set. We can also produce scatterplots
for just a subset of the variables.

> pairs (Auto)

> pairs(~ mpg + displacement + horsepower + weight +
acceleration, Auto)

In conjunction with the plot() function, identify() provides a useful
interactive method for identifying the value for a particular variable for
points on a plot. We pass in three arguments to identify(): the z-axis
variable, the y-axis variable, and the variable whose values we would like
to see printed for each point. Then clicking on a given point in the plot
will cause R to print the value of the variable of interest. Right-clicking on
the plot will exit the identify() function (control-click on a Mac). The
numbers printed under the identify() function correspond to the rows for
the selected points.

attach()

as.factor()

boxplot

hist()

histogram

scatterplot
matrix

identify ()



> plot (horsepower ,mpg)

> identify (horsepower ,mpg,name)

The summary () function produces a numerical summary of each variable in

a particular data set.

> summary (Auto)

mpg

Min. )
1st Qu.:17.
Median :22
Mean :23.
3rd Qu.:29.
Max . 146

horsepowe
Min. : 46.
1st Qu.: 75.
Median : 93.
Mean :104.
3rd Qu.:126.
Max . :230.

year

Min. :70.
1st Qu.:73.
Median :76
Mean :75
3rd Qu.:79.
Max . :82

For qualitative variables such as name, R will list the number of observations
that fall in each category. We can also produce a summary of just a single

variable.

.00

00

.75

45
00

.60

r

o O U U1 O O

00

.00
.98

00

.00

> summary (mpg)

Min.
9.00

Once we have finished using R, we type q() in order to shut it down, or
quit. When exiting R, we have the option to save the current workspace so
that all objects (such as data sets) that we have created in this R session
will be available next time. Before exiting R, we may want to save a record
of all of the commands that we typed in the most recent session; this can
be accomplished using the savehistory() function. Next time we enter R,

1st Qu.
17.00

cylinders

Min. :3.000
1st Qu.:4.000
Median :4.000
Mean :5.472
3rd Qu.:8.000
Max . :8.000
weight
Min. :1613
1st Qu.:2225
Median :2804
Mean 12978
3rd Qu.:3615
Max . :5140
origin
Min . :1.000
1st Qu.:1.000
Median :1.000
Mean :1.577
3rd Qu.:2.000
Max . :3.000

Median
22.75

Mean 3rd Qu.
23.45

2.3 Lab: Introduction to R

displacemen
Min. : 68.
1st Qu.:105.
Median :151.
Mean :194.
3rd Qu.:275.
Max . :455.

acceleration

Min. : 8.00
1st Qu.:13.78
Median :15.50
Mean :15.54
3rd Qu.:17.02
Max . :24.80

amc matador
ford pinto

toyota corolla

amc gremlin
amc hornet
chevrolet
(Other)

29.00

t

O WP OO O

Max .
46.60

name

chevette:
: 36

we can load that history using the loadhistory() function.

[S2 B SN S ¢ A B e
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summary ()

qO

workspace

savehistory ()

loadhistory ()
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2.4 Exercises

Conceptual

1. For each of parts (a) through (d), indicate whether we would generally
expect the performance of a flexible statistical learning method to be
better or worse than an inflexible method. Justify your answer.

(a)
(b)
(c)
(d)

The sample size n is extremely large, and the number of predic-
tors p is small.

The number of predictors p is extremely large, and the number
of observations n is small.

The relationship between the predictors and response is highly
non-linear.

The variance of the error terms, i.e. 0> = Var(e), is extremely
high.

2. Explain whether each scenario is a classification or regression prob-
lem, and indicate whether we are most interested in inference or pre-
diction. Finally, provide n and p.

()

We collect a set of data on the top 500 firms in the US. For each
firm we record profit, number of employees, industry and the
CEO salary. We are interested in understanding which factors
affect CEO salary.

We are considering launching a new product and wish to know
whether it will be a success or a failure. We collect data on 20
similar products that were previously launched. For each prod-
uct we have recorded whether it was a success or failure, price
charged for the product, marketing budget, competition price,
and ten other variables.

We are interested in predicting the % change in the USD/Euro
exchange rate in relation to the weekly changes in the world
stock markets. Hence we collect weekly data for all of 2012. For
each week we record the % change in the USD/Euro, the %
change in the US market, the % change in the British market,
and the % change in the German market.

3. We now revisit the bias-variance decomposition.

(a) Provide a sketch of typical (squared) bias, variance, training er-

ror, test error, and Bayes (or irreducible) error curves, on a sin-
gle plot, as we go from less flexible statistical learning methods
towards more flexible approaches. The z-axis should represent
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the amount of flexibility in the method, and the y-axis should
represent the values for each curve. There should be five curves.
Make sure to label each one.

(b) Explain why each of the five curves has the shape displayed in
part (a).

4. You will now think of some real-life applications for statistical learn-
ing.

(a) Describe three real-life applications in which classification might
be useful. Describe the response, as well as the predictors. Is the
goal of each application inference or prediction? Explain your
answer.

(b) Describe three real-life applications in which regression might
be useful. Describe the response, as well as the predictors. Is the
goal of each application inference or prediction? Explain your
answer.

(¢) Describe three real-life applications in which cluster analysis
might be useful.

5. What are the advantages and disadvantages of a very flexible (versus
a less flexible) approach for regression or classification? Under what
circumstances might a more flexible approach be preferred to a less
flexible approach? When might a less flexible approach be preferred?

6. Describe the differences between a parametric and a non-parametric
statistical learning approach. What are the advantages of a para-
metric approach to regression or classification (as opposed to a non-
parametric approach)? What are its disadvantages?

7. The table below provides a training data set containing six observa-
tions, three predictors, and one qualitative response variable.

Obs. | X X X Y
Red
Red
Red
Green
Green

Red

i
[
w

S U W N =
—=—_ O O NO
—_ O = = O W
=N W oo

Suppose we wish to use this data set to make a prediction for Y when
X1 = X9 = X3 =0 using K-nearest neighbors.

(a) Compute the Euclidean distance between each observation and
the test point, X; = Xo = X3 =0.
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(b) What is our prediction with K = 1?7 Why?
(c) What is our prediction with K = 37 Why?

(d) If the Bayes decision boundary in this problem is highly non-
linear, then would we expect the best value for K to be large or
small? Why?

Applied
8. This exercise relates to the College data set, which can be found in
the file College.csv. It contains a number of variables for 777 different
universities and colleges in the US. The variables are
e Private : Public/private indicator
e Apps : Number of applications received
e Accept : Number of applicants accepted
e Enroll : Number of new students enrolled
e TopiOperc : New students from top 10 % of high school class
e Top25perc : New students from top 25 % of high school class
e F.Undergrad : Number of full-time undergraduates
e P.Undergrad : Number of part-time undergraduates
e Outstate : Out-of-state tuition
e Room.Board : Room and board costs
e Books : Estimated book costs
e Personal : Estimated personal spending
e PhD : Percent of faculty with Ph.D.’s
e Terminal : Percent of faculty with terminal degree
e S.F.Ratio : Student/faculty ratio
e perc.alumni : Percent of alumni who donate
e Expend : Instructional expenditure per student
e Grad.Rate : Graduation rate

Before reading the data into R, it can be viewed in Excel or a text
editor.

(a) Use the read.csv() function to read the data into R. Call the
loaded data college. Make sure that you have the directory set
to the correct location for the data.

(b) Look at the data using the fix() function. You should notice
that the first column is just the name of each university. We don’t
really want R to treat this as data. However, it may be handy to
have these names for later. Try the following commands:
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> rownames (college)=college[,1]
> fix(college)

You should see that there is now a row.names column with the
name of each university recorded. This means that R has given
each row a name corresponding to the appropriate university. R
will not try to perform calculations on the row names. However,
we still need to eliminate the first column in the data where the
names are stored. Try

> college=college [,-1]
> fix(college)

Now you should see that the first data column is Private. Note
that another column labeled row.names now appears before the
Private column. However, this is not a data column but rather
the name that R is giving to each row.

i. Use the summary () function to produce a numerical summary
of the variables in the data set.

ii. Use the pairs() function to produce a scatterplot matrix of
the first ten columns or variables of the data. Recall that
you can reference the first ten columns of a matrix A using
A[,1:10].

iii. Use the plot () function to produce side-by-side boxplots of
Outstate versus Private.

iv. Create a new qualitative variable, called Elite, by binning
the TopilOperc variable. We are going to divide universities
into two groups based on whether or not the proportion
of students coming from the top 10% of their high school
classes exceeds 50 %.

Elite=rep("No",nrow(college))
Elite[college$ToplOperc >50]="Yes"
Elite=as.factor (Elite)
college=data.frame(college ,Elite)

vV V Vv Vv

Use the summary() function to see how many elite univer-
sities there are. Now use the plot() function to produce
side-by-side boxplots of Outstate versus Elite.

v. Use the hist() function to produce some histograms with
differing numbers of bins for a few of the quantitative vari-
ables. You may find the command par (mfrow=c(2,2)) useful:
it will divide the print window into four regions so that four
plots can be made simultaneously. Modifying the arguments
to this function will divide the screen in other ways.

vi. Continue exploring the data, and provide a brief summary
of what you discover.
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9. This exercise involves the Auto data set studied in the lab. Make sure
that the missing values have been removed from the data.

(a)

Which of the predictors are quantitative, and which are quali-
tative?

What is the range of each quantitative predictor? You can an-
swer this using the range() function.

What is the mean and standard deviation of each quantitative
predictor?

Now remove the 10th through 85th observations. What is the
range, mean, and standard deviation of each predictor in the
subset of the data that remains?

Using the full data set, investigate the predictors graphically,
using scatterplots or other tools of your choice. Create some plots
highlighting the relationships among the predictors. Comment
on your findings.

Suppose that we wish to predict gas mileage (mpg) on the basis
of the other variables. Do your plots suggest that any of the
other variables might be useful in predicting mpg? Justify your
answer.

10. This exercise involves the Boston housing data set.

(a)

To begin, load in the Boston data set. The Boston data set is
part of the MASS lzbrary in R.

> library (MASS)

Now the data set is contained in the object Boston.

> Boston

Read about the data set:

> 7Boston

How many rows are in this data set? How many columns? What
do the rows and columns represent?

Make some pairwise scatterplots of the predictors (columns) in
this data set. Describe your findings.

Are any of the predictors associated with per capita crime rate?
If so, explain the relationship.

Do any of the suburbs of Boston appear to have particularly
high crime rates? Tax rates? Pupil-teacher ratios? Comment on
the range of each predictor.

How many of the suburbs in this data set bound the Charles
river?

range ()



(f)
(g)
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What is the median pupil-teacher ratio among the towns in this
data set?

Which suburb of Boston has lowest median value of owner-
occupied homes? What are the values of the other predictors
for that suburb, and how do those values compare to the overall
ranges for those predictors? Comment on your findings.

In this data set, how many of the suburbs average more than
seven rooms per dwelling? More than eight rooms per dwelling?
Comment on the suburbs that average more than eight rooms
per dwelling.
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Linear Regression

This chapter is about linear regression, a very simple approach for
supervised learning. In particular, linear regression is a useful tool for pre-
dicting a quantitative response. Linear regression has been around for a
long time and is the topic of innumerable textbooks. Though it may seem
somewhat dull compared to some of the more modern statistical learning
approaches described in later chapters of this book, linear regression is still
a useful and widely used statistical learning method. Moreover, it serves
as a good jumping-off point for newer approaches: as we will see in later
chapters, many fancy statistical learning approaches can be seen as gener-
alizations or extensions of linear regression. Consequently, the importance
of having a good understanding of linear regression before studying more
complex learning methods cannot be overstated. In this chapter, we review
some of the key ideas underlying the linear regression model, as well as the
least squares approach that is most commonly used to fit this model.

Recall the Advertising data from Chapter 2. Figure 2.1 displays sales
(in thousands of units) for a particular product as a function of advertis-
ing budgets (in thousands of dollars) for TV, radio, and newspaper media.
Suppose that in our role as statistical consultants we are asked to suggest,
on the basis of this data, a marketing plan for next year that will result in
high product sales. What information would be useful in order to provide
such a recommendation? Here are a few important questions that we might
seek to address:

1. Is there a relationship between advertising budget and sales?
Our first goal should be to determine whether the data provide

G. James et al., An Introduction to Statistical Learning: with Applications in R, 59
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_3,
© Springer Science+Business Media New York 2013
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evidence of an association between advertising expenditure and sales.
If the evidence is weak, then one might argue that no money should
be spent on advertising!

2. How strong is the relationship between advertising budget and sales?
Assuming that there is a relationship between advertising and sales,
we would like to know the strength of this relationship. In other
words, given a certain advertising budget, can we predict sales with
a high level of accuracy? This would be a strong relationship. Or is
a prediction of sales based on advertising expenditure only slightly
better than a random guess? This would be a weak relationship.

3. Which media contribute to sales?
Do all three media—TYV, radio, and newspaper—contribute to sales,
or do just one or two of the media contribute? To answer this question,
we must find a way to separate out the individual effects of each
medium when we have spent money on all three media.

4. How accurately can we estimate the effect of each medium on sales?
For every dollar spent on advertising in a particular medium, by
what amount will sales increase? How accurately can we predict this
amount of increase?

5. How accurately can we predict future sales?
For any given level of television, radio, or newspaper advertising, what
is our prediction for sales, and what is the accuracy of this prediction?

6. Is the relationship linear?
If there is approximately a straight-line relationship between advertis-
ing expenditure in the various media and sales, then linear regression
is an appropriate tool. If not, then it may still be possible to trans-
form the predictor or the response so that linear regression can be
used.

7. Is there synergy among the advertising media?
Perhaps spending $50,000 on television advertising and $50,000 on
radio advertising results in more sales than allocating $100,000 to
either television or radio individually. In marketing, this is known as

a synergy effect, while in statistics it is called an interaction effect. =

interaction

It turns out that linear regression can be used to answer each of these
questions. We will first discuss all of these questions in a general context,
and then return to them in this specific context in Section 3.4.
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3.1 Simple Linear Regression

Simple linear regression lives up to its name: it is a very straightforward
approach for predicting a quantitative response Y on the basis of a sin-
gle predictor variable X. It assumes that there is approximately a linear
relationship between X and Y. Mathematically, we can write this linear
relationship as

Y = po+ /1 X. (3.1)

You might read “x” as “is approximately modeled as”. We will sometimes
describe (3.1) by saying that we are regressing Y on X (or Y onto X).
For example, X may represent TV advertising and Y may represent sales.
Then we can regress sales onto TV by fitting the model

sales = By + 51 X TV.

In Equation 3.1, By and (; are two unknown constants that represent
the intercept and slope terms in the linear model. Together, 5y and [, are
known as the model coefficients or parameters. Once we have used our
training data to produce estimates ﬂo and 51 for the model coefficients, we
can predict future sales on the basis of a particular value of TV advertising
by computing

g =Po+ bz, (32)
where ¢ indicates a prediction of Y on the basis of X = x. Here we use a
hat symbol, ~ | to denote the estimated value for an unknown parameter

or coefficient, or to denote the predicted value of the response.

3.1.1 FEstimating the Coefficients

In practice, Sy and /31 are unknown. So before we can use (3.1) to make
predictions, we must use data to estimate the coeflicients. Let

((Ela y1)7 (‘T?a y2)7 ey (mnu yn)

represent n observation pairs, each of which consists of a measurement
of X and a measurement of Y. In the Advertising example, this data
set consists of the TV advertising budget and product sales in n = 200
different markets. (Recall that the data are dlsplayed in Figure 2.1.) Our
goal is to obtain coefficient estimates ﬂo and 51 such that the linear model
(3.1) fits the available data well—that is, so that y; ~ 50 + 51% for 1 =
1,...,n. In other words, we want to find an intercept ﬂo and a slope 51 such
that the resulting line is as close as possible to the n = 200 data points.
There are a number of ways of measuring closeness. However, by far the
most common approach involves minimizing the least squares criterion,
and we take that approach in this chapter. Alternative approaches will be
considered in Chapter 6.

simple linear
regression

intercept
slope
coefficient
parameter

least squares
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Fach grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let g; = Bg + lei be the prediction for Y based on the ith value of X.
Then e; = y; — ; represents the ith residual—this is the difference between
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual

residual sum
of squares

RSS =e€f +e5+ - +e2,
or equivalently as
RSS = (y1 = Bo— B121)* + (y2 — fo— Prw2)* +. .+ (yn — Bo— Prwn)*. (3.3)

The least squares approach chooses Bo and Bl to minimize the RSS. Using
some calculus, one can show that the minimizers are

B = Do (@i — %) (yi — 9)
Y@ -z (3.4)
BO = g - Blja

where § = %2?21 y; and T = %2?21 x; are the sample means. In other
words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

Figure 3.1 displays the simple linear regression fit to the Advertising

data, where By = 7.03 and B; = 0.0475. In other words, according to
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FIGURE 3.2. Contour and three-dimensional plots of the RSS on the
Advertising data, using sales as the response and TV as the predictor. The
red dots correspond to the least squares estimates Bo and 1, given by (3.4).

this approximation, an additional $1,000 spent on TV advertising is asso-
ciated with selling approximately 47.5 additional units of the product. In
Figure 3.2, we have computed RSS for a number of values of 5y and £,
using the advertising data with sales as the response and TV as the predic-
tor. In each plot, the red dot represents the pair of least squares estimates
(Bo, B1) given by (3.4). These values clearly minimize the RSS.

3.1.2  Assessing the Accuracy of the Coefficient Estimates

Recall from (2.1) that we assume that the true relationship between X and
Y takes the form Y = f(X) + ¢ for some unknown function f, where €
is a mean-zero random error term. If f is to be approximated by a linear
function, then we can write this relationship as

Y = Bo+ i X +e. (3.5)

Here Sy is the intercept term—that is, the expected value of Y when X = 0,
and [ is the slope—the average increase in Y associated with a one-unit
increase in X. The error term is a catch-all for what we miss with this
simple model: the true relationship is probably not linear, there may be
other variables that cause variation in Y, and there may be measurement
error. We typically assume that the error term is independent of X.

The model given by (3.5) defines the population regression line, which
is the best linear approximation to the true relationship between X and
Y.! The least squares regression coefficient estimates (3.4) characterize the
least squares line (3.2). The left-hand panel of Figure 3.3 displays these

1The assumption of linearity is often a useful working model. However, despite what
many textbooks might tell us, we seldom believe that the true relationship is linear.

population
regression
line

least squares
line
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2+ 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y's from the model

Y =2+43X +¢ (3.6)

where ¢ was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2+ 3X, while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.

At first glance, the difference between the population regression line and
the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the
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concept of these two lines is a natural extension of the standard statistical
approach of using information from a sample to estimate characteristics of a
large population. For example, suppose that we are interested in knowing
the population mean p of some random variable Y. Unfortunately, u is
unknown, but we do have access to n observations from Y, which we can
write as vi,...,Yn, and which we can use to estimate u. A reasonable
estimate is i = g, where § = %ELI y; is the sample mean. The sample
mean and the population mean are different, but in general the sample
mean will provide a good estimate of the population mean. In the same
way, the unknown coeflicients 5y and (31 in linear regression define the
population regression line. We seek to estimate these unknown coefficients
using (o and 3 given in (3.4). These coefficient estimates define the least
squares line.

The analogy between linear regression and estimation of the mean of a
random variable is an apt one based on the concept of bias. If we use the
sample mean [ to estimate pu, this estimate is unbiased, in the sense that
on average, we expect fi to equal . What exactly does this mean? It means
that on the basis of one particular set of observations yi,...,yn, ft might
overestimate p, and on the basis of another set of observations, ji might
underestimate p. But if we could average a huge number of estimates of
1 obtained from a huge number of sets of observations, then this average
would ezxactly equal pi. Hence, an unbiased estimator does not systematically
over- or under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates given by (3.4) as well: if
we estimate By and (31 on the basis of a particular data set, then our
estimates won’t be exactly equal to Sy and (1. But if we could average
the estimates obtained over a huge number of data sets, then the average
of these estimates would be spot on! In fact, we can see from the right-
hand panel of Figure 3.3 that the average of many least squares lines, each
estimated from a separate data set, is pretty close to the true population
regression line.

We continue the analogy with the estimation of the population mean
w1 of a random variable Y. A natural question is as follows: how accurate
is the sample mean /i as an estimate of u? We have established that the
average of fi’s over many data sets will be very close to p, but that a
single estimate i may be a substantial underestimate or overestimate of p.
How far off will that single estimate of ji be? In general, we answer this
question by computing the standard error of fi, written as SE(fi). We have
the well-known formula

Var(f1) = SE(2)* = —, (3.7)

bias

unbiased

standard
error
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where o is the standard deviation of each of the realizations y; of V.2
Roughly speaking, the standard error tells us the average amount that this
estimate /1 differs from the actual value of uu. Equation 3.7 also tells us how
this deviation shrinks with n—the more observations we have, the smaller
the standard error of fi. In a similar vein, we can wonder how close Bg
and 81 are to the true values 5y and S1. To compute the standard errors
associated with BO and Bl, we use the following formulas:

1 z2 A2 o?

~ 2 2

SE(o) =0 |~ + N R SE(f1) ST (@ =3
where 02 = Var(e). For these formulas to be strictly valid, we need to as-
sume that the errors ¢; for each observation are uncorrelated with common
variance 2. This is clearly not true in Figure 3.1, but the formula still
turns out to be a good approximation. Notice in the formula that SE(Bl) is
smaller when the z; are more spread out; intuitively we have more leverage
to estimate a slope when this is the case. We also see that SE(BO) would be
the same as SE(1) if Z were zero (in which case By would be equal to 7). In
general, o2 is not known, but can be estimated from the data. The estimate

of o is known as the residual standard error, and is given by the formula
RSE = /RSS/(n — 2). Strictly speaking, when o? is estimated from the

data we should write S/}\*](Bl) to indicate that an estimate has been made,
but for simplicity of notation we will drop this extra “hat”.

Standard errors can be used to compute confidence intervals. A 95%
confidence interval is defined as a range of values such that with 95%
probability, the range will contain the true unknown value of the parameter.
The range is defined in terms of lower and upper limits computed from the
sample of data. For linear regression, the 95% confidence interval for (;
approximately takes the form

(3.8)

B1 +2- SE(By). (3.9)
That is, there is approximately a 95 % chance that the interval
|31 —2-SE(B), B +2-SE(B) (3.10)

will contain the true value of 3;. Similarly, a confidence interval for S,
approximately takes the form

Bo %2+ SE(). (3.11)

2This formula holds provided that the n observations are uncorrelated.

3 Approzimately for several reasons. Equation 3.10 relies on the assumption that the
errors are Gaussian. Also, the factor of 2 in front of the SE(Bl) term will vary slightly
depending on the number of observations n in the linear regression. To be precise, rather
than the number 2, (3.10) should contain the 97.5% quantile of a t-distribution with
n—2 degrees of freedom. Details of how to compute the 95 % confidence interval precisely
in R will be provided later in this chapter.

residual
standard
error

confidence
interval
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In the case of the advertising data, the 95% confidence interval for f3
is [6.130,7.935] and the 95% confidence interval for £y is [0.042,0.053].
Therefore, we can conclude that in the absence of any advertising, sales will,
on average, fall somewhere between 6,130 and 7,940 units. Furthermore,
for each $1,000 increase in television advertising, there will be an average
increase in sales of between 42 and 53 units.

Standard errors can also be used to perform hypothesis tests on the
coefficients. The most common hypothesis test involves testing the null
hypothesis of

Hy : There is no relationship between X and Y (3.12)
versus the alternative hypothesis
H, : There is some relationship between X and Y. (3.13)
Mathematically, this corresponds to testing
Hy:p51=0

versus
Ha : 51 7£ 0,

since if 81 = 0 then the model (3.5) reduces to Y = Sy + ¢, and X is
not associated with Y. To test the null hypothesis, we need to determine
whether Bl, our estimate for 3, is sufficiently far from zero that we can
be confident that (1 is non-zero. How far is far enough? This of course
depends on the accuracy of B1—that s, it depends on SE(Bl) If SE(Bl) is
small, then even relatively small values of 51 may provide strong evidence
that 81 # 0, and hence that there is a relationship between X and Y. In
contrast, if SE(Bl) is large, then Bl must be large in absolute value in order
for us to reject the null hypothesis. In practice, we compute a t-statistic,
given by

_ B1—0
SE(f31)’

which measures the number of standard deviations that Bl is away from
0. If there really is no relationship between X and Y, then we expect
that (3.14) will have a ¢-distribution with n — 2 degrees of freedom. The t-
distribution has a bell shape and for values of n greater than approximately
30 it is quite similar to the normal distribution. Consequently, it is a simple
matter to compute the probability of observing any number equal to |t| or
larger in absolute value, assuming 5 = 0. We call this probability the p-value.
Roughly speaking, we interpret the p-value as follows: a small p-value indicates
that it is unlikely to observe such a substantial association between the pre-
dictor and the response due to chance, in the absence of any real association
between the predictor and the response. Hence, if we see a small p-value,

(3.14)

hypothesis
test

null
hypothesis

alternative
hypothesis

t-statistic

p-value
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then we can infer that there is an association between the predictor and the
response. We reject the null hypothesis—that is, we declare a relationship
to exist between X and Y—if the p-value is small enough. Typical p-value
cutoffs for rejecting the null hypothesis are 5 or 1%. When n = 30, these
correspond to t-statistics (3.14) of around 2 and 2.75, respectively.

Coefficient  Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

TABLE 3.1. For the Advertising data, coefficients of the least squares model
for the regression of number of units sold on TV advertising budget. An increase
of $1,000 in the TV advertising budget is associated with an increase in sales by
around 50 units (Recall that the sales variable is in thousands of units, and the
TV wariable is in thousands of dollars).

Table 3.1 provides details of the least squares model for the regression of
number of units sold on TV advertising budget for the Advertising data.
Notice that the coefficients for BO and Bl are very large relative to their
standard errors, so the t-statistics are also large; the probabilities of seeing
such values if Hy is true are virtually zero. Hence we can conclude that

Bo # 0 and By # 0.4

3.1.8 Assessing the Accuracy of the Model

Once we have rejected the null hypothesis (3.12) in favor of the alternative
hypothesis (3.13), it is natural to want to quantify the extent to which the
model fits the data. The quality of a linear regression fit is typically assessed
using two related quantities: the residual standard error (RSE) and the R?
statistic.

Table 3.2 displays the RSE, the R? statistic, and the F-statistic (to be
described in Section 3.2.2) for the linear regression of number of units sold
on TV advertising budget.

Residual Standard Error

Recall from the model (3.5) that associated with each observation is an
error term €. Due to the presence of these error terms, even if we knew the
true regression line (i.e. even if 5y and (; were known), we would not be
able to perfectly predict Y from X. The RSE is an estimate of the standard

4In Table 3.1, a small p-value for the intercept indicates that we can reject the null
hypothesis that 8o = 0, and a small p-value for TV indicates that we can reject the null
hypothesis that 81 = 0. Rejecting the latter null hypothesis allows us to conclude that
there is a relationship between TV and sales. Rejecting the former allows us to conclude
that in the absence of TV expenditure, sales are non-zero.
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Quantity Value
Residual standard error | 3.26

R? 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of €. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

[ 1 1 <
= = C—0.)2
RSE — 2RSS — E (yi — 9:)2. (3.15)

i=1

Note that RSS was defined in Section 3.1.1, and is given by the formula

n

RSS = (v —§:)°. (3.16)

=1

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients g
and ;1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23 %.

The RSE is considered a measure of the lack of fit of the model (3.5) to
the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if §; ~ y; for ¢ = 1,...,n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ; is very far from y; for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R? Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y, it is not always
clear what constitutes a good RSE. The R? statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y.
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To calculate R2, we use the formula

_ TSS—RSS _ RSS
T TSSO TSS

where TSS = 3" (y; — 9)? is the total sum of squares, and RSS is defined
in (3.16). TSS measures the total variance in the response Y, and can be
thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, T'SS — RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R? measures the proportion
of variability in' Y that can be explained using X. An R? statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error o2 is high,
or both. In Table 3.2, the R? was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.

The R? statistic (3.17) has an interpretational advantage over the RSE
(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R? value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R? value that
is extremely close to 1, and a substantially smaller R? value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R? value well below 0.1 might be more realistic!

The R? statistic is a measure of the linear relationship between X and
Y. Recall that correlation, defined as

n — p—
Cor(X,Y) = nZiZI(Ii z)(y; Y) __ (3.18)
\/Zizl(zi - 55)2\/21‘:1(% -y)?

is also a measure of the linear relationship between X and Y.% This sug-
gests that we might be able to use r = Cor(X,Y) instead of R? in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R? = r2. In other words, the squared correlation

R? (3.17)

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write Cor(X,Y); however, we omit the “hat” for ease of
notation.

total sum of
squares

correlation
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and the R? statistic are identical. However, in the next section we will
discuss the multiple linear regression problem, in which we use several pre-
dictors simultaneously to predict the response. The concept of correlation
between the predictors and the response does not extend automatically to
this setting, since correlation quantifies the association between a single
pair of variables rather than between a larger number of variables. We will
see that R2 fills this role.

3.2  Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the
basis of a single predictor variable. However, in practice we often have more
than one predictor. For example, in the Advertising data, we have examined
the relationship between sales and TV advertising. We also have data for
the amount of money spent advertising on the radio and in newspapers,
and we may want to know whether either of these two media is associated
with sales. How can we extend our analysis of the advertising data in order
to accommodate these two additional predictors?

One option is to run three separate simple linear regressions, each of
which uses a different advertising medium as a predictor. For instance,
we can fit a simple linear regression to predict sales on the basis of the
amount spent on radio advertisements. Results are shown in Table 3.3 (top
table). We find that a $1,000 increase in spending on radio advertising is
associated with an increase in sales by around 203 units. Table 3.3 (bottom
table) contains the least squares coefficients for a simple linear regression of
sales onto newspaper advertising budget. A $1,000 increase in newspaper
advertising budget is associated with an increase in sales by approximately
55 units.

However, the approach of fitting a separate simple linear regression model
for each predictor is not entirely satisfactory. First of all, it is unclear how to
make a single prediction of sales given levels of the three advertising media
budgets, since each of the budgets is associated with a separate regression
equation. Second, each of the three regression equations ignores the other
two media in forming estimates for the regression coefficients. We will see
shortly that if the media budgets are correlated with each other in the 200
markets that constitute our data set, then this can lead to very misleading
estimates of the individual media effects on sales.

Instead of fitting a separate simple linear regression model for each pre-
dictor, a better approach is to extend the simple linear regression model
(3.5) so that it can directly accommodate multiple predictors. We can do
this by giving each predictor a separate slope coefficient in a single model.
In general, suppose that we have p distinct predictors. Then the multiple
linear regression model takes the form

Y =080+ 01X1+ BeXo+ -+ BpXp + 6 (3.19)
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Simple regression of sales on radio

Coefficient  Std. error t-statistic p-value
Intercept 9.312 0.563 16.54 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Simple regression of sales on newspaper

Coefficient  Std. error t-statistic p-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115

TABLE 3.3. More simple linear regression models for the Advertising data. Co-
efficients of the simple linear regression model for number of units sold on Top:
radio advertising budget and Bottom: newspaper advertising budget. A $1,000 in-
crease in spending on radio advertising is associated with an average increase in
sales by around 203 units, while the same increase in spending on newspaper ad-
vertising is associated with an average increase in sales by around 55 units (Note
that the sales wvariable is in thousands of units, and the radio and newspaper
variables are in thousands of dollars).

where X, represents the jth predictor and ; quantifies the association
between that variable and the response. We interpret ; as the average
effect on Y of a one unit increase in X, holding all other predictors fized.
In the advertising example, (3.19) becomes

sales = B9 + B1 X TV + B2 X radio + (B3 X newspaper + €. (3.20)

3.2.1 FEstimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coef-
ficients 5o, f1, - - -, Bp in (3.19) are unknown, and must be estimated. Given

estimates By, f1, ..., Bp, we can make predictions using the formula

= Bo+ Pra1 + Porz + -+ + By (3.21)

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose 5, 31,..., 05,
to minimize the sum of squared residuals

RSS = Z(yi — i)
i=1
= Z(yz - Bo - Blzz‘l - Bzxiz — = Bpxip)z. (3.22)

.
Il
-
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FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values (o, B1, . . ., Bp that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression
estimates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV,
radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000
on radio advertising leads to an increase in sales by approximately 189
units. Comparing these coeflicient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper
in the multiple regression model is close to zero, and the corresponding
p-value is no longer significant, with a value around 0.86. This illustrates
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Coefficient  Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the
multiple linear regression of number of units sold on radio, TV, and newspaper
advertising budgets.

that the simple and multiple regression coefficients can be quite different.
This difference stems from the fact that in the simple regression case, the
slope term represents the average effect of a $1,000 increase in newspaper
advertising, ignoring other predictors such as TV and radio. In contrast, in
the multiple regression setting, the coefficient for newspaper represents the
average effect of increasing newspaper spending by $1,000 while holding TV
and radio fixed.

Does it make sense for the multiple regression to suggest no relationship
between sales and newspaper while the simple linear regression implies the
opposite? In fact it does. Consider the correlation matrix for the three
predictor variables and response variable, displayed in Table 3.5. Notice
that the correlation between radio and newspaper is 0.35. This reveals a
tendency to spend more on newspaper advertising in markets where more
is spent on radio advertising. Now suppose that the multiple regression is
correct and newspaper advertising has no direct impact on sales, but radio
advertising does increase sales. Then in markets where we spend more
on radio our sales will tend to be higher, and as our correlation matrix
shows, we also tend to spend more on newspaper advertising in those same
markets. Hence, in a simple linear regression which only examines sales
versus newspaper, we will observe that higher values of newspaper tend to be
associated with higher values of sales, even though newspaper advertising
does not actually affect sales. So newspaper sales are a surrogate for radio
advertising; newspaper gets “credit” for the effect of radio on sales.

This slightly counterintuitive result is very common in many real life
situations. Consider an absurd example to illustrate the point. Running
a regression of shark attacks versus ice cream sales for data collected at
a given beach community over a period of time would show a positive
relationship, similar to that seen between sales and newspaper. Of course
no one (yet) has suggested that ice creams should be banned at beaches
to reduce shark attacks. In reality, higher temperatures cause more people
to visit the beach, which in turn results in more ice cream sales and more
shark attacks. A multiple regression of attacks versus ice cream sales and
temperature reveals that, as intuition implies, the former predictor is no
longer significant after adjusting for temperature.
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TV radio  newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

TABLE 3.5. Correlation matriz for TV, radio, newspaper, and sales for the
Advertising data.

3.2.2  Some Important Questions
When we perform multiple linear regression, we usually are interested in

answering a few important questions.

1. Is at least one of the predictors X1, Xa,..., X, useful in predicting
the response?

2. Do all the predictors help to explain Y, or is only a subset of the
predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine
whether there is a relationship between the response and the predictor we
can simply check whether 81 = 0. In the multiple regression setting with p
predictors, we need to ask whether all of the regression coefficients are zero,
i.e. whether 81 = B2 = -+ = f, = 0. As in the simple linear regression
setting, we use a hypothesis test to answer this question. We test the null
hypothesis,

Hy:81=p2=--=0,=0

versus the alternative
H, : at least one 3; is non-zero.

This hypothesis test is performed by computing the F-statistic,

~ (TSS—RSS)/p

F-statistic
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Quantity Value
Residual standard error | 1.69
R? 0.897
F-statistic 570

TABLE 3.6. More information about the least squares model for the regression
of number of units sold on TV, newspaper, and radio advertising budgets in the
Advertising data. Other information about this model was displayed in Table 3.4.

where, as with simple linear regression, TSS = Y (y; — #)? and RSS =
S~ (yi —§:)?. If the linear model assumptions are correct, one can show that

E{RSS/(n —p—1)} = o>
and that, provided Hy is true,
E{(TSS — RSS)/p} = o>

Hence, when there is no relationship between the response and predictors,
one would expect the F-statistic to take on a value close to 1. On the other
hand, if H, is true, then E{(TSS — RSS)/p} > o2, so we expect F to be
greater than 1.

The F-statistic for the multiple linear regression model obtained by re-
gressing sales onto radio, TV, and newspaper is shown in Table 3.6. In this
example the F-statistic is 570. Since this is far larger than 1, it provides
compelling evidence against the null hypothesis Hy. In other words, the
large F-statistic suggests that at least one of the advertising media must
be related to sales. However, what if the F-statistic had been closer to
1?7 How large does the F-statistic need to be before we can reject Hy and
conclude that there is a relationship? It turns out that the answer depends
on the values of n and p. When n is large, an F-statistic that is just a
little larger than 1 might still provide evidence against Hy. In contrast,
a larger F-statistic is needed to reject Hy if n is small. When Hj is true
and the errors ¢; have a normal distribution, the F-statistic follows an
F-distribution.® For any given value of n and p, any statistical software
package can be used to compute the p-value associated with the F-statistic
using this distribution. Based on this p-value, we can determine whether
or not to reject Hy. For the advertising data, the p-value associated with
the F-statistic in Table 3.6 is essentially zero, so we have extremely strong
evidence that at least one of the media is associated with increased sales.

In (3.23) we are testing Hy that all the coefficients are zero. Sometimes
we want to test that a particular subset of ¢ of the coefficients are zero.
This corresponds to a null hypothesis

Ho: Bp—gt1=PBp—gt2="-..=Bp =0,

6Even if the errors are not normally-distributed, the F-statistic approximately follows
an F-distribution provided that the sample size n is large.
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where for convenience we have put the variables chosen for omission at the
end of the list. In this case we fit a second model that uses all the variables
except those last q. Suppose that the residual sum of squares for that model
is RSSp. Then the appropriate F-statistic is

»_ (RSSo —RSS)/q

— W. (3-24)

Notice that in Table 3.4, for each individual predictor a t-statistic and
a p-value were reported. These provide information about whether each
individual predictor is related to the response, after adjusting for the other
predictors. It turns out that each of these are exactly equivalent” to the
F-test that omits that single variable from the model, leaving all the others
in—i.e. ¢=1 in (3.24). So it reports the partial effect of adding that variable
to the model. For instance, as we discussed earlier, these p-values indicate
that TV and radio are related to sales, but that there is no evidence that
newspaper is associated with sales, in the presence of these two.

Given these individual p-values for each variable, why do we need to look
at the overall F-statistic? After all, it seems likely that if any one of the
p-values for the individual variables is very small, then at least one of the
predictors is related to the response. However, this logic is flawed, especially
when the number of predictors p is large.

For instance, consider an example in which p = 100 and Hy : 51 = B2 =
... = Bp = 01is true, so no variable is truly associated with the response. In
this situation, about 5% of the p-values associated with each variable (of
the type shown in Table 3.4) will be below 0.05 by chance. In other words,
we expect to see approximately five small p-values even in the absence of
any true association between the predictors and the response. In fact, we
are almost guaranteed that we will observe at least one p-value below 0.05
by chance! Hence, if we use the individual t-statistics and associated p-
values in order to decide whether or not there is any association between
the variables and the response, there is a very high chance that we will
incorrectly conclude that there is a relationship. However, the F-statistic
does not suffer from this problem because it adjusts for the number of
predictors. Hence, if Hy is true, there is only a 5% chance that the F-
statistic will result in a p-value below 0.05, regardless of the number of
predictors or the number of observations.

The approach of using an F-statistic to test for any association between
the predictors and the response works when p is relatively small, and cer-
tainly small compared to n. However, sometimes we have a very large num-
ber of variables. If p > n then there are more coefficients 3; to estimate
than observations from which to estimate them. In this case we cannot
even fit the multiple linear regression model using least squares, so the

"The square of each t-statistic is the corresponding F-statistic.
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F-statistic cannot be used, and neither can most of the other concepts that
we have seen so far in this chapter. When p is large, some of the approaches
discussed in the next section, such as forward selection, can be used. This
high-dimensional setting is discussed in greater detail in Chapter 6.

Two: Deciding on Important Variables

As discussed in the previous section, the first step in a multiple regression
analysis is to compute the F-statistic and to examine the associated p-
value. If we conclude on the basis of that p-value that at least one of the
predictors is related to the response, then it is natural to wonder which are
the guilty ones! We could look at the individual p-values as in Table 3.4,
but as discussed, if p is large we are likely to make some false discoveries.

It is possible that all of the predictors are associated with the response,
but it is more often the case that the response is only related to a subset of
the predictors. The task of determining which predictors are associated with
the response, in order to fit a single model involving only those predictors,
is referred to as variable selection. The variable selection problem is studied
extensively in Chapter 6, and so here we will provide only a brief outline
of some classical approaches.

Ideally, we would like to perform variable selection by trying out a lot of
different models, each containing a different subset of the predictors. For
instance, if p = 2, then we can consider four models: (1) a model contain-
ing no variables, (2) a model containing X only, (3) a model containing
Xo only, and (4) a model containing both X; and Xs. We can then se-
lect the best model out of all of the models that we have considered. How
do we determine which model is best? Various statistics can be used to
judge the quality of a model. These include Mallow’s C,, Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), and adjusted
R?. These are discussed in more detail in Chapter 6. We can also deter-
mine which model is best by plotting various model outputs, such as the
residuals, in order to search for patterns.

Unfortunately, there are a total of 2P models that contain subsets of p
variables. This means that even for moderate p, trying out every possible
subset of the predictors is infeasible. For instance, we saw that if p = 2, then
there are 22 = 4 models to consider. But if p = 30, then we must consider
230 = 1,073,741,824 models! This is not practical. Therefore, unless p is very
small, we cannot consider all 2P models, and instead we need an automated
and efficient approach to choose a smaller set of models to consider. There
are three classical approaches for this task:

o Forward selection. We begin with the null model—a model that con-
tains an intercept but no predictors. We then fit p simple linear re-
gressions and add to the null model the variable that results in the
lowest RSS. We then add to that model the variable that results
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in the lowest RSS for the new two-variable model. This approach is
continued until some stopping rule is satisfied.

e Backward selection. We start with all variables in the model, and
remove the variable with the largest p-value—that is, the variable
that is the least statistically significant. The new (p — 1)-variable
model is fit, and the variable with the largest p-value is removed. This
procedure continues until a stopping rule is reached. For instance, we
may stop when all remaining variables have a p-value below some
threshold.

o Mizxed selection. This is a combination of forward and backward se-
lection. We start with no variables in the model, and as with forward
selection, we add the variable that provides the best fit. We con-
tinue to add variables one-by-one. Of course, as we noted with the
Advertising example, the p-values for variables can become larger as
new predictors are added to the model. Hence, if at any point the
p-value for one of the variables in the model rises above a certain
threshold, then we remove that variable from the model. We con-
tinue to perform these forward and backward steps until all variables
in the model have a sufficiently low p-value, and all variables outside
the model would have a large p-value if added to the model.

Backward selection cannot be used if p > n, while forward selection can
always be used. Forward selection is a greedy approach, and might include
variables early that later become redundant. Mixed selection can remedy
this.

Three: Model Fit

Two of the most common numerical measures of model fit are the RSE and
R?, the fraction of variance explained. These quantities are computed and
interpreted in the same fashion as for simple linear regression.

Recall that in simple regression, R? is the square of the correlation of the
response and the variable. In multiple linear regression, it turns out that it
equals Cor(Y, }7)2, the square of the correlation between the response and
the fitted linear model; in fact one property of the fitted linear model is
that it maximizes this correlation among all possible linear models.

An R? value close to 1 indicates that the model explains a large portion
of the variance in the response variable. As an example, we saw in Table 3.6
that for the Advertising data, the model that uses all three advertising me-
dia to predict sales has an R? of 0.8972. On the other hand, the model that
uses only TV and radio to predict sales has an R? value of 0.89719. In other
words, there is a small increase in R? if we include newspaper advertising
in the model that already contains TV and radio advertising, even though
we saw earlier that the p-value for newspaper advertising in Table 3.4 is not
significant. It turns out that R? will always increase when more variables

backward
selection

mixed
selection
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are added to the model, even if those variables are only weakly associated
with the response. This is due to the fact that adding another variable to
the least squares equations must allow us to fit the training data (though
not necessarily the testing data) more accurately. Thus, the R? statistic,
which is also computed on the training data, must increase. The fact that
adding newspaper advertising to the model containing only TV and radio
advertising leads to just a tiny increase in R? provides additional evidence
that newspaper can be dropped from the model. Essentially, newspaper pro-
vides no real improvement in the model fit to the training samples, and its
inclusion will likely lead to poor results on independent test samples due
to overfitting.

In contrast, the model containing only TV as a predictor had an R? of 0.61
(Table 3.2). Adding radio to the model leads to a substantial improvement
in R?. This implies that a model that uses TV and radio expenditures to
predict sales is substantially better than one that uses only TV advertis-
ing. We could further quantify this improvement by looking at the p-value
for the radio coefficient in a model that contains only TV and radio as
predictors.

The model that contains only TV and radio as predictors has an RSE
of 1.681, and the model that also contains newspaper as a predictor has
an RSE of 1.686 (Table 3.6). In contrast, the model that contains only TV
has an RSE of 3.26 (Table 3.2). This corroborates our previous conclusion
that a model that uses TV and radio expenditures to predict sales is much
more accurate (on the training data) than one that only uses TV spending.
Furthermore, given that TV and radio expenditures are used as predictors,
there is no point in also using newspaper spending as a predictor in the
model. The observant reader may wonder how RSE can increase when
newspaper is added to the model given that RSS must decrease. In general
RSE is defined as

RSE = ;RS& (3.25)
n—p-—1
which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.

In addition to looking at the RSE and R? statistics just discussed, it
can be useful to plot the data. Graphical summaries can reveal problems
with a model that are not visible from numerical statistics. For example,
Figure 3.5 displays a three-dimensional plot of TV and radio versus sales.
We see that some observations lie above and some observations lie below
the least squares regression plane. In particular, the linear model seems to
overestimate sales for instances in which most of the advertising money
was spent exclusively on either TV or radio. It underestimates sales for
instances where the budget was split between the two media. This pro-
nounced non-linear pattern cannot be modeled accurately using linear re-
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FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data. The positive residuals
(those visible above the surface), tend to lie along the 45-degree line, where TV
and Radio budgets are split evenly. The negative residuals (most not visible), tend
to lie away from this line, where budgets are more lopsided.

gression. It suggests a synergy or interaction effect between the advertising
media, whereby combining the media together results in a bigger boost to
sales than using any single medium. In Section 3.3.2, we will discuss ex-
tending the linear model to accommodate such synergistic effects through
the use of interaction terms.

Four: Predictions

Once we have fit the multiple regression model, it is straightforward to
apply (3.21) in order to predict the response Y on the basis of a set of
values for the predictors X1, X», ..., X,. However, there are three sorts of
uncertainty associated with this prediction.

1. The coefficient estimates Bo, Bl, ey Bp are estimates for Bo, f1, . . ., Bp.
That is, the least squares plane

YV =P+ AiXi 4+ BpX,
is only an estimate for the true population regression plane
fX) =B+ B X1+ + BpXp.
The inaccuracy in the coefficient estimates is related to the reducible

error from Chapter 2. We can compute a confidence interval in order
to determine how close Y will be to f(X).
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2. Of course, in practice assuming a linear model for f(X) is almost
always an approximation of reality, so there is an additional source of
potentially reducible error which we call model bias. So when we use a
linear model, we are in fact estimating the best linear approximation
to the true surface. However, here we will ignore this discrepancy,
and operate as if the linear model were correct.

3. Even if we knew f(X)—that is, even if we knew the true values
for By, B1,...,Bp—the response value cannot be predicted perfectly
because of the random error € in the model (3.21). In Chapter 2, we
referred to this as the irreducible error. How much will Y vary from
Y7 We use prediction intervals to answer this question. Prediction
intervals are always wider than confidence intervals, because they
incorporate both the error in the estimate for f(X) (the reducible
error) and the uncertainty as to how much an individual point will
differ from the population regression plane (the irreducible error).

We use a confidence interval to quantify the uncertainty surrounding
the average sales over a large number of cities. For example, given that
$100,000 is spent on TV advertising and $20,000 is spent on radio advertising
in each city, the 95% confidence interval is [10,985, 11,528]. We interpret
this to mean that 95 % of intervals of this form will contain the true value of
f(X).® On the other hand, a prediction interval can be used to quantify the
uncertainty surrounding sales for a particular city. Given that $100,000 is
spent on TV advertising and $20,000 is spent on radio advertising in that city
the 95% prediction interval is [7,930, 14,580]. We interpret this to mean
that 95 % of intervals of this form will contain the true value of Y for this
city. Note that both intervals are centered at 11,256, but that the prediction
interval is substantially wider than the confidence interval, reflecting the
increased uncertainty about sales for a given city in comparison to the
average sales over many locations.

3.3 Other Considerations in the Regression Model

3.3.1 Qualitative Predictors

In our discussion so far, we have assumed that all variables in our linear
regression model are quantitative. But in practice, this is not necessarily
the case; often some predictors are qualitative.

8Tn other words, if we collect a large number of data sets like the Advertising data
set, and we construct a confidence interval for the average sales on the basis of each
data set (given $100,000 in TV and $20,000 in radio advertising), then 95 % of these
confidence intervals will contain the true value of average sales.

confidence
interval

prediction
interval
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For example, the Credit data set displayed in Figure 3.6 records balance
(average credit card debt for a number of individuals) as well as several
quantitative predictors: age, cards (number of credit cards), education
(years of education), income (in thousands of dollars), limit (credit limit),
and rating (credit rating). Each panel of Figure 3.6 is a scatterplot for a
pair of variables whose identities are given by the corresponding row and
column labels. For example, the scatterplot directly to the right of the word
“Balance” depicts balance versus age, while the plot directly to the right
of “Age” corresponds to age versus cards. In addition to these quantitative
variables, we also have four qualitative variables: gender, student (student
status), status (marital status), and ethnicity (Caucasian, African Amer-
ican or Asian).
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.
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Coefficient  Std. error t-statistic p-value
Intercept 509.80 33.13 15.389 < 0.0001
gender [Female] 19.73 46.05 0.429 0.6690

TABLE 3.7. Least squares coefficient estimates associated with the regression of
balance onto gender in the Credit data set. The linear model is given in (3.27).
That is, gender is encoded as a dummy variable, as in (3.26).

Predictors with Only Two Levels

Suppose that we wish to investigate differences in credit card balance be-
tween males and females, ignoring the other variables for the moment. If a
qualitative predictor (also known as a factor) only has two levels, or possi-
ble values, then incorporating it into a regression model is very simple. We
simply create an indicator or dummy wvariable that takes on two possible
numerical values. For example, based on the gender variable, we can create
a new variable that takes the form

(3.26)

1 if 7th person is female
T; =
‘ 0 if 7th person is male,

and use this variable as a predictor in the regression equation. This results
in the model

(3.27)

Bo + Buzi + {50 + B+ € if 4th person is female
Yi = Po 1T T € =

Bo + €; if 7th person is male.

Now [, can be interpreted as the average credit card balance among males,
Bo + B1 as the average credit card balance among females, and (5, as the
average difference in credit card balance between females and males.

Table 3.7 displays the coefficient estimates and other information asso-
ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
that there is no statistical evidence of a difference in average credit card
balance between the genders.

The decision to code females as 1 and males as 0 in (3.27) is arbitrary, and
has no effect on the regression fit, but does alter the interpretation of the
coefficients. If we had coded males as 1 and females as 0, then the estimates
for By and 1 would have been 529.53 and —19.73, respectively, leading once
again to a prediction of credit card debt of $529.53 — $19.73 = $509.80 for
males and a prediction of $529.53 for females. Alternatively, instead of a
0/1 coding scheme, we could create a dummy variable

factor
level

dummy
variable
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{1 if 7th person is female
€Tr; =

-1 if 7th person is male

and use this variable in the regression equation. This results in the model

Bo + Bozi + {50 + p1+ € if 4th person is female
Yi = Po 1T; T € =

Bo— P11+ € if ith person is male.

Now [y can be interpreted as the overall average credit card balance (ig-
noring the gender effect), and 37 is the amount that females are above the
average and males are below the average. In this example, the estimate for
Bo would be $519.665, halfway between the male and female averages of
$509.80 and $529.53. The estimate for 31 would be $9.865, which is half of
$19.73, the average difference between females and males. It is important to
note that the final predictions for the credit balances of males and females
will be identical regardless of the coding scheme used. The only difference
is in the way that the coefficients are interpreted.

Qualitative Predictors with More than Two Levels

When a qualitative predictor has more than two levels, a single dummy
variable cannot represent all possible values. In this situation, we can create
additional dummy variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

1 if 7th person is Asian
Ti1 = e . . (3.28)
0 if 4th person is not Asian,
and the second could be
i — 1 %f z:th person %s Caucasian . (3.29)
0 if 4th person is not Caucasian.

Then both of these variables can be used in the regression equation, in
order to obtain the model

Bo+P1+e; if ith person is Asian
yi = Pot+Lizii+LPaxio+€; = { Bo+B2+e€; if ith person is Caucasian
Bo+e€; if 7th person is African American.
(3.30)
Now [y can be interpreted as the average credit card balance for African
Americans, $; can be interpreted as the difference in the average balance
between the Asian and African American categories, and P2 can be inter-
preted as the difference in the average balance between the Caucasian and
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Coefficient  Std. error t-statistic p-value
Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] —18.69 65.02 —0.287 0.7740
ethnicity[Caucasian] —12.50 56.68 —0.221 0.8260

TABLE 3.8. Least squares coefficient estimates associated with the regression
of balance onto ethnicity in the Credit data set. The linear model is given in
(3.30). That is, ethnicity is encoded via two dummy variables (3.28) and (3.29).

African American categories. There will always be one fewer dummy vari-
able than the number of levels. The level with no dummy variable—African
American in this example—is known as the baseline.

From Table 3.8, we see that the estimated balance for the baseline,
African American, is $531.00. It is estimated that the Asian category will
have $18.69 less debt than the African American category, and that the
Caucasian category will have $12.50 less debt than the African American
category. However, the p-values associated with the coefficient estimates for
the two dummy variables are very large, suggesting no statistical evidence
of a real difference in credit card balance between the ethnicities. Once
again, the level selected as the baseline category is arbitrary, and the final
predictions for each group will be the same regardless of this choice. How-
ever, the coeflicients and their p-values do depend on the choice of dummy
variable coding. Rather than rely on the individual coefficients, we can use
an F-test to test Hy : f1 = B2 = 0; this does not depend on the coding.
This F-test has a p-value of 0.96, indicating that we cannot reject the null
hypothesis that there is no relationship between balance and ethnicity.

Using this dummy variable approach presents no difficulties when in-
corporating both quantitative and qualitative predictors. For example, to
regress balance on both a quantitative variable such as income and a qual-
itative variable such as student, we must simply create a dummy variable
for student and then fit a multiple regression model using income and the
dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides
the dummy variable approach taken here. All of these approaches lead to
equivalent model fits, but the coefficients are different and have different
interpretations, and are designed to measure particular contrasts. This topic
is beyond the scope of the book, and so we will not pursue it further.

3.3.2  FExtensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results
and works quite well on many real-world problems. However, it makes sev-
eral highly restrictive assumptions that are often violated in practice. Two
of the most important assumptions state that the relationship between the
predictors and response are additive and linear. The additive assumption

baseline

contrast

additive
linear
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means that the effect of changes in a predictor X; on the response Y is
independent of the values of the other predictors. The linear assumption
states that the change in the response Y due to a one-unit change in X is
constant, regardless of the value of X;. In this book, we examine a number
of sophisticated methods that relax these two assumptions. Here, we briefly
examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV
and radio seem to be associated with sales. The linear models that formed
the basis for this conclusion assumed that the effect on sales of increasing
one advertising medium is independent of the amount spent on the other
media. For example, the linear model (3.20) states that the average effect
on sales of a one-unit increase in TV is always /31, regardless of the amount
spent on radio.

However, this simple model may be incorrect. Suppose that spending
money on radio advertising actually increases the effectiveness of TV ad-
vertising, so that the slope term for TV should increase as radio increases.
In this situation, given a fixed budget of $100,000, spending half on radio
and half on TV may increase sales more than allocating the entire amount
to either TV or to radio. In marketing, this is known as a synergy effect,
and in statistics it is referred to as an interaction effect. Figure 3.5 sug-
gests that such an effect may be present in the advertising data. Notice
that when levels of either TV or radio are low, then the true sales are lower
than predicted by the linear model. But when advertising is split between
the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

Y = 5o+ 1 X1+ foXo + e

According to this model, if we increase X7 by one unit, then Y will increase
by an average of 31 units. Notice that the presence of X, does not alter
this statement—that is, regardless of the value of X5, a one-unit increase
in X; will lead to a 8;-unit increase in Y. One way of extending this model
to allow for interaction effects is to include a third predictor, called an
interaction term, which is constructed by computing the product of X3
and Xs. This results in the model

Y = Po+ 01Xy + P2 Xo + B3 X1 X + e (3.31)

How does inclusion of this interaction term relax the additive assumption?
Notice that (3.31) can be rewritten as

Y = o+ (~51 + B3 X2) X1 + B2 Xo + € (3.32)
= Bo+ X1+ BXote
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Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates asso-
ciated with the regression of sales onto TV and radio, with an interaction term,
as in (3.33).

where Bl = 1 + B3 X5. Since Bl changes with X5, the effect of X; on Y is
no longer constant: adjusting Xo will change the impact of X; on Y.

For example, suppose that we are interested in studying the productiv-
ity of a factory. We wish to predict the number of units produced on the
basis of the number of production lines and the total number of workers.
It seems likely that the effect of increasing the number of production lines
will depend on the number of workers, since if no workers are available
to operate the lines, then increasing the number of lines will not increase
production. This suggests that it would be appropriate to include an inter-
action term between lines and workers in a linear model to predict units.
Suppose that when we fit the model, we obtain

units =& 1.2+ 3.4 X lines + 0.22 X workers + 1.4 X (lines X workers)
1.2+ (3.4 4 1.4 X workers) X lines + 0.22 X workers.

In other words, adding an additional line will increase the number of units
produced by 3.4 + 1.4 x workers. Hence the more workers we have, the
stronger will be the effect of lines.

We now return to the Advertising example. A linear model that uses
radio, TV, and an interaction between the two to predict sales takes the
form

sales = g+ 1 X TV + (2 X radio + 3 X (radio X TV) +e€
= fo+ (1 + B3 X radio) X TV + B2 X radio + €. (3.33)

We can interpret (B3 as the increase in the effectiveness of TV advertising
for a one unit increase in radio advertising (or vice-versa). The coefficients
that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the
interaction term is superior to the model that contains only main effects.
The p-value for the interaction term, TVxradio, is extremely low, indicating
that there is strong evidence for H, : 53 # 0. In other words, it is clear that
the true relationship is not additive. The R? for the model (3.33) is 96.8 %,
compared to only 89.7% for the model that predicts sales using TV and
radio without an interaction term. This means that (96.8 — 89.7)/(100 —
89.7) = 69 % of the variability in sales that remains after fitting the ad-
ditive model has been explained by the interaction term. The coeflicient

main effect
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estimates in Table 3.9 suggest that an increase in TV advertising of $1,000 is
associated with increased sales of (Bl + B3 x radio) x 1,000 = 19+1.1 X radio
units. And an increase in radio advertising of $1,000 will be associated with
an increase in sales of (Bg + B3 x TV) x 1,000 = 29 4 1.1 X TV units.

In this example, the p-values associated with TV, radio, and the interac-
tion term all are statistically significant (Table 3.9), and so it is obvious
that all three variables should be included in the model. However, it is
sometimes the case that an interaction term has a very small p-value, but
the associated main effects (in this case, TV and radio) do not. The hier-
archical principle states that if we include an interaction in a model, we
should also include the main effects, even if the p-values associated with
their coefficients are not significant. In other words, if the interaction be-
tween X7 and X5 seems important, then we should include both X; and
X5 in the model even if their coefficient estimates have large p-values. The
rationale for this principle is that if X; x X5 is related to the response,
then whether or not the coefficients of X; or X5 are exactly zero is of lit-
tle interest. Also X3 x X5 is typically correlated with X; and X3, and so
leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and
radio, both of which are quantitative variables. However, the concept of
interactions applies just as well to qualitative variables, or to a combination
of quantitative and qualitative variables. In fact, an interaction between
a qualitative variable and a quantitative variable has a particularly nice
interpretation. Consider the Credit data set from Section 3.3.1, and suppose
that we wish to predict balance using the income (quantitative) and student
(qualitative) variables. In the absence of an interaction term, the model
takes the form

if 7th person is a student

B2
balance; ~ + X income; +
‘ bo+ 5 ’ {O if 4th person is not a student

Bo + [ if 7th person is a student

5o if 4th person is not a student.
(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, Sy + B2 versus [y, but the same slope, 8. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, cre-
ated by multiplying income with the dummy variable for student. Our

1 X income; + {

hierarchical
principle
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(8.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

model now becomes

balance; ~ [+ 1 X income; +

B2 + B3 X income; if student
if not student

(Bo + B2) + (B1 + B3) X income; if student
Bo + B1 X income; if not student

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,
Bo+ B2 versus g, as well as different slopes, 51+ 33 versus 81. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In
later chapters, we will present more complex approaches for performing
non-linear fits in more general settings.

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)
versus horsepower is shown for a number of cars in the Auto data set. The

polynomial
regression
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for a
model that includes horsepower” is shown as a blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

orange line represents the linear regression fit. There is a pronounced rela-
tionship between mpg and horsepower, but it seems clear that this relation-
ship is in fact non-linear: the data suggest a curved relationship. A simple
approach for incorporating non-linear associations in a linear model is to
include transformed versions of the predictors in the model. For example,
the points in Figure 3.8 seem to have a quadratic shape, suggesting that a
model of the form

mpg = By + B1 X horsepower + 32 X horsepower? + ¢ (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a
non-linear function of horsepower. But it is still a linear model! That is,
(3.36) is simply a multiple linear regression model with X; = horsepower
and X5 = horsepower”. So we can use standard linear regression software to
estimate (g, 51, and f2 in order to produce a non-linear fit. The blue curve
in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic
fit appears to be substantially better than the fit obtained when just the
linear term is included. The R? of the quadratic fit is 0.688, compared to
0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term
is highly significant.

If including horsepower? led to such a big improvement in the model, why
not include horsepower37 horsepower47 or even horsepower‘r’? The green curve

quadratic
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Coefficient  Std. error t-statistic p-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower —0.4662 0.0311 —15.0 < 0.0001
horsepower? 0.0012 0.0001 10.1 < 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated
with the regression of mpg onto horsepower and horsepower?.

in Figure 3.8 displays the fit that results from including all polynomials up
to fifth degree in the model (3.36). The resulting fit seems unnecessarily
wiggly—that is, it is unclear that including the additional terms really has
led to a better fit to the data.

The approach that we have just described for extending the linear model
to accommodate non-linear relationships is known as polynomial regres-
sion, since we have included polynomial functions of the predictors in the
regression model. We further explore this approach and other non-linear
extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many prob-
lems may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships.
Correlation of error terms.

Non-constant variance of error terms.

Oudtliers.

High-leverage points.

A A o

Collinearity.

In practice, identifying and overcoming these problems is as much an
art as a science. Many pages in countless books have been written on this
topic. Since the linear regression model is not our primary focus here, we
will provide only a brief summary of some key points.

1. Non-linearity of the Data

The linear regression model assumes that there is a straight-line relation-
ship between the predictors and the response. If the true relationship is
far from linear, then virtually all of the conclusions that we draw from the
fit are suspect. In addition, the prediction accuracy of the model can be
significantly reduced.

Residual plots are a useful graphical tool for identifying non-linearity.
Given a simple linear regression model, we can plot the residuals, e; =
y; — Ui, versus the predictor x;. In the case of a multiple regression model,

residual plot
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FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto
data set. In each plot, the red line is a smooth fit to the residuals, intended to make
it easier to identify a trend. Left: A linear regression of mpg on horsepower. A
strong pattern in the residuals indicates non-linearity in the data. Right: A linear
regression of mpg on horsepower and horsepower”®. There is little pattern in the
residuals.

since there are multiple predictors, we instead plot the residuals versus
the predicted (or fitted) values g;. Ideally, the residual plot will show no
discernible pattern. The presence of a pattern may indicate a problem with
some aspect of the linear model.

The left panel of Figure 3.9 displays a residual plot from the linear
regression of mpg onto horsepower on the Auto data set that was illustrated
in Figure 3.8. The red line is a smooth fit to the residuals, which is displayed
in order to make it easier to identify any trends. The residuals exhibit a
clear U-shape, which provides a strong indication of non-linearity in the
data. In contrast, the right-hand panel of Figure 3.9 displays the residual
plot that results from the model (3.36), which contains a quadratic term.
There appears to be little pattern in the residuals, suggesting that the
quadratic term improves the fit to the data.

If the residual plot indicates that there are non-linear associations in the
data, then a simple approach is to use non-linear transformations of the
predictors, such as log X, v/ X, and X2, in the regression model. In the
later chapters of this book, we will discuss other more advanced non-linear
approaches for addressing this issue.

fitted

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error
terms, €1, ¢€s,...,€,, are uncorrelated. What does this mean? For instance,
if the errors are uncorrelated, then the fact that ¢; is positive provides
little or no information about the sign of €;11. The standard errors that
are computed for the estimated regression coefficients or the fitted values
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are based on the assumption of uncorrelated error terms. If in fact there
is correlation among the error terms, then the estimated standard errors
will tend to underestimate the true standard errors. As a result, confi-
dence and prediction intervals will be narrower than they should be. For
example, a 95 % confidence interval may in reality have a much lower prob-
ability than 0.95 of containing the true value of the parameter. In addition,
p-values associated with the model will be lower than they should be; this
could cause us to erroneously conclude that a parameter is statistically
significant. In short, if the error terms are correlated, we may have an
unwarranted sense of confidence in our model.

As an extreme example, suppose we accidentally doubled our data, lead-
ing to observations and error terms identical in pairs. If we ignored this, our
standard error calculations would be as if we had a sample of size 2n, when
in fact we have only n samples. Our estimated parameters would be the
same for the 2n samples as for the n samples, but the confidence intervals
would be narrower by a factor of V2!

Why might correlations among the error terms occur? Such correlations
frequently occur in the context of time series data, which consists of ob-
servations for which measurements are obtained at discrete points in time.
In many cases, observations that are obtained at adjacent time points will
have positively correlated errors. In order to determine if this is the case for
a given data set, we can plot the residuals from our model as a function of
time. If the errors are uncorrelated, then there should be no discernible pat-
tern. On the other hand, if the error terms are positively correlated, then
we may see tracking in the residuals—that is, adjacent residuals may have
similar values. Figure 3.10 provides an illustration. In the top panel, we see
the residuals from a linear regression fit to data generated with uncorre-
lated errors. There is no evidence of a time-related trend in the residuals.
In contrast, the residuals in the bottom panel are from a data set in which
adjacent errors had a correlation of 0.9. Now there is a clear pattern in the
residuals—adjacent residuals tend to take on similar values. Finally, the
center panel illustrates a more moderate case in which the residuals had a
correlation of 0.5. There is still evidence of tracking, but the pattern is less
clear.

Many methods have been developed to properly take account of corre-
lations in the error terms in time series data. Correlation among the error
terms can also occur outside of time series data. For instance, consider a
study in which individuals’ heights are predicted from their weights. The
assumption of uncorrelated errors could be violated if some of the individ-
uals in the study are members of the same family, or eat the same diet,
or have been exposed to the same environmental factors. In general, the
assumption of uncorrelated errors is extremely important for linear regres-
sion as well as for other statistical methods, and good experimental design
is crucial in order to mitigate the risk of such correlations.

time series

tracking
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FIGURE 3.10. Plots of residuals from simulated time series data sets generated

with differing levels of correlation p between error terms for adjacent time points.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the
error terms have a constant variance, Var(e;) = o2. The standard errors,
confidence intervals, and hypothesis tests associated with the linear model

rely upon this assumption.

Unfortunately, it is often the case that the variances of the error terms are
non-constant. For instance, the variances of the error terms may increase
with the value of the response. One can identify non-constant variances in
the errors, or heteroscedasticity, from the presence of a funnel shape in
the residual plot. An example is shown in the left-hand panel of Figure 3.11, sticity

in which the magnitude of the residuals tends to increase with the
values. When faced with this problem, one possible solution is to

form the response Y using a concave function such as logY or VY.

fitted
trans-
Such

a transformation results in a greater amount of shrinkage of the larger re-
sponses, leading to a reduction in heteroscedasticity. The right-hand panel
of Figure 3.11 displays the residual plot after transforming the response

heterosceda-
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FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the
residuals, intended to make it easier to identify a trend. The blue lines track the
outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape
indicates heteroscedasticity. Right: The response has been log transformed, and
there is now no evidence of heteroscedasticity.

using log Y. The residuals now appear to have constant variance, though
there is some evidence of a slight non-linear relationship in the data.

Sometimes we have a good idea of the variance of each response. For
example, the ith response could be an average of n; raw observations. If
each of these raw observations is uncorrelated with variance o2, then their
average has variance 0? = 02 /n;. In this case a simple remedy is to fit our
model by weighted least squares, with weights proportional to the inverse
variances—i.e. w; = n; in this case. Most linear regression software allows
for observation weights.

4. Outliers

An outlier is a point for which y; is far from the value predicted by the
model. Outliers can arise for a variety of reasons, such as incorrect recording
of an observation during data collection.

The red point (observation 20) in the left-hand panel of Figure 3.12
illustrates a typical outlier. The red solid line is the least squares regression
fit, while the blue dashed line is the least squares fit after removal of the
outlier. In this case, removing the outlier has little effect on the least squares
line: it leads to almost no change in the slope, and a miniscule reduction
in the intercept. It is typical for an outlier that does not have an unusual
predictor value to have little effect on the least squares fit. However, even
if an outlier does not have much effect on the least squares fit, it can cause
other problems. For instance, in this example, the RSE is 1.09 when the
outlier is included in the regression, but it is only 0.77 when the outlier
is removed. Since the RSE is used to compute all confidence intervals and

weighted
least squares

outlier
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FIGURE 3.12. Left: The least squares regression line is shown in red, and the
regression line after removing the outlier is shown in blue. Center: The residual
plot clearly identifies the outlier. Right: The outlier has a studentized residual of
6; typically we expect values between —3 and 3.

p-values, such a dramatic increase caused by a single data point can have
implications for the interpretation of the fit. Similarly, inclusion of the
outlier causes the R? to decline from 0.892 to 0.805.

Residual plots can be used to identify outliers. In this example, the out-
lier is clearly visible in the residual plot illustrated in the center panel of
Figure 3.12. But in practice, it can be difficult to decide how large a resid-
ual needs to be before we consider the point to be an outlier. To address
this problem, instead of plotting the residuals, we can plot the studentized
residuals, computed by dividing each residual e; by its estimated standard
error. Observations whose studentized residuals are greater than 3 in abso-
lute value are possible outliers. In the right-hand panel of Figure 3.12, the
outlier’s studentized residual exceeds 6, while all other observations have
studentized residuals between —2 and 2.

If we believe that an outlier has occurred due to an error in data collec-
tion or recording, then one solution is to simply remove the observation.
However, care should be taken, since an outlier may instead indicate a
deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response y; is
unusual given the predictor x;. In contrast, observations with high leverage
have an unusual value for z;. For example, observation 41 in the left-hand
panel of Figure 3.13 has high leverage, in that the predictor value for this
observation is large relative to the other observations. (Note that the data
displayed in Figure 3.13 are the same as the data displayed in Figure 3.12,
but with the addition of a single high leverage observation.) The red solid
line is the least squares fit to the data, while the blue dashed line is the
fit produced when observation 41 is removed. Comparing the left-hand
panels of Figures 3.12 and 3.13, we observe that removing the high leverage
observation has a much more substantial impact on the least squares line

studentized
residual

high leverage



98 3. Linear Regression

w H 020
o Y7
E 410
D © 4
?
&
>~ s
8
ils
g @
3 o 5
7]
-~ | 00
180 9
T

T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

X X Leverage

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not.
The red line is the fit to all the data, and the blue line is the fit with observation
41 removed. Center: The red observation is not unusual in terms of its X1 value
or its Xa wvalue, but still falls outside the bulk of the data, and hence has high
leverage. Right: Observation 41 has a high leverage and a high residual.

than removing the outlier. In fact, high leverage observations tend to have
a sizable impact on the estimated regression line. It is cause for concern if
the least squares line is heavily affected by just a couple of observations,
because any problems with these points may invalidate the entire fit. For
this reason, it is important to identify high leverage observations.

In a simple linear regression, high leverage observations are fairly easy to
identify, since we can simply look for observations for which the predictor
value is outside of the normal range of the observations. But in a multiple
linear regression with many predictors, it is possible to have an observation
that is well within the range of each individual predictor’s values, but that
is unusual in terms of the full set of predictors. An example is shown in
the center panel of Figure 3.13, for a data set with two predictors, X; and
X5. Most of the observations’ predictor values fall within the blue dashed
ellipse, but the red observation is well outside of this range. But neither its
value for X7 nor its value for X5 is unusual. So if we examine just X; or
just X5, we will fail to notice this high leverage point. This problem is more
pronounced in multiple regression settings with more than two predictors,
because then there is no simple way to plot all dimensions of the data
simultaneously.

In order to quantify an observation’s leverage, we compute the leverage
statistic. A large value of this statistic indicates an observation with high
leverage. For a simple linear regression,

h; = l + M
n Zi/zl(zi/ - I)2

It is clear from this equation that h; increases with the distance of x; from z.
There is a simple extension of h; to the case of multiple predictors, though
we do not provide the formula here. The leverage statistic h; is always

between 1/n and 1, and the average leverage for all the observations is
always equal to (p+1)/n. So if a given observation has a leverage statistic

(3.37)

leverage
statistic
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FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left:
A plot of age versus limit. These two variables are not collinear. Right: A plot
of rating versus limit. There is high collinearity.

that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized
residuals versus h; for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high
leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables
are closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors 1imit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.
Figure 3.15 illustrates some of the difficulties that can result from collinear-
ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed

collinearity
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
B for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (BLimit, Brating) With a similar value for RSS.

lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots
of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the 1imit coefficient now runs
from roughly —0.2 to 0.2; this is an eight-fold increase over the plausible
range of the 1imit coefficient in the regression with age. Interestingly, even
though the 1imit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the 1imit and rating
coefficients to be —0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.
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Coefficient  Std. error t-statistic p-value

Intercept —173.411 43.828 —3.957 < 0.0001

Model 1 age —2.292 0.672 —3.407 0.0007
limit 0.173 0.005 34.496 < 0.0001

Intercept —377.537 45.254 —8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012

TABLE 3.11. The results for two multiple regression models involving the
Credit data set are shown. Model 1 is a regression of balance on age and limit,
and Model 2 a regression of balance on rating and limit. The standard error
of Blimit increases 12-fold in the second regression, due to collinearity.

Since collinearity reduces the accuracy of the estimates of the regression
coefficients, it causes the standard error for 3; to grow. Recall that the

t-statistic for each predictor is calculated by dividing Bj by its standard
error. Consequently, collinearity results in a decline in the ¢-statistic. As a
result, in the presence of collinearity, we may fail to reject Hy : 5; = 0. This
means that the power of the hypothesis test—the probability of correctly
detecting a non-zero coeflicient—is reduced by collinearity.

Table 3.11 compares the coefficient estimates obtained from two separate
multiple regression models. The first is a regression of balance on age and
limit, and the second is a regression of balance on rating and limit. In the
first regression, both age and limit are highly significant with very small p-
values. In the second, the collinearity between 1imit and rating has caused
the standard error for the 1imit coefficient estimate to increase by a factor
of 12 and the p-value to increase to 0.701. In other words, the importance
of the 1imit variable has been masked due to the presence of collinearity.
To avoid such a situation, it is desirable to identify and address potential
collinearity problems while fitting the model.

A simple way to detect collinearity is to look at the correlation matrix
of the predictors. An element of this matrix that is large in absolute value
indicates a pair of highly correlated variables, and therefore a collinearity
problem in the data. Unfortunately, not all collinearity problems can be
detected by inspection of the correlation matrix: it is possible for collinear-
ity to exist between three or more variables even if no pair of variables
has a particularly high correlation. We call this situation multicollinearity.
Instead of inspecting the correlation matrix, a better way to assess multi-
collinearity is to compute the variance inflation factor (VIF). The VIF is
the ratio of the variance of Bj when fitting the full model divided by the

variance of Bj if it on its own. The smallest possible value for VIF is 1,
which indicates the complete absence of collinearity. Typically in practice
there is a small amount of collinearity among the predictors. As a rule of
thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of

power

multi-
collinearity

variance
inflation
factor



102 3. Linear Regression

collinearity. The VIF for each variable can be computed using the formula

N 1
VIF(3;) = ———
’ 1= RgfﬂX—j
where R?le x_, is the R? from a regression of X; onto all of the other

predictors. If R%m X is close to one, then collinearity is present, and so
the VIF will be large.

In the Credit data, a regression of balance on age, rating, and limit
indicates that the predictors have VIF values of 1.01, 160.67, and 160.59.
As we suspected, there is considerable collinearity in the data!

When faced with the problem of collinearity, there are two simple solu-
tions. The first is to drop one of the problematic variables from the regres-
sion. This can usually be done without much compromise to the regression
fit, since the presence of collinearity implies that the information that this
variable provides about the response is redundant in the presence of the
other variables. For instance, if we regress balance onto age and limit,
without the rating predictor, then the resulting VIF values are close to
the minimum possible value of 1, and the R? drops from 0.754 to 0.75.
So dropping rating from the set of predictors has effectively solved the
collinearity problem without compromising the fit. The second solution is
to combine the collinear variables together into a single predictor. For in-
stance, we might take the average of standardized versions of limit and
rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data
that we set out to answer at the beginning of this chapter.

1. Is there a relationship between advertising sales and budget?

This question can be answered by fitting a multiple regression model
of sales onto TV, radio, and newspaper, as in (3.20), and testing the
hypothesis Hy : Bty = Bradio = Bnewspaper = 0. In Section 3.2.2,
we showed that the F-statistic can be used to determine whether or
not we should reject this null hypothesis. In this case the p-value
corresponding to the F-statistic in Table 3.6 is very low, indicating
clear evidence of a relationship between advertising and sales.

2. How strong is the relationship?
We discussed two measures of model accuracy in Section 3.1.3. First,
the RSE estimates the standard deviation of the response from the
population regression line. For the Advertising data, the RSE is 1,681
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units while the mean value for the response is 14,022, indicating a
percentage error of roughly 12%. Second, the R? statistic records
the percentage of variability in the response that is explained by
the predictors. The predictors explain almost 90 % of the variance in
sales. The RSE and R? statistics are displayed in Table 3.6.

. Which media contribute to sales?

To answer this question, we can examine the p-values associated with
each predictor’s t-statistic (Section 3.1.2). In the multiple linear re-
gression displayed in Table 3.4, the p-values for TV and radio are low,
but the p-value for newspaper is not. This suggests that only TV and
radio are related to sales. In Chapter 6 we explore this question in
greater detail.

. How large is the effect of each medium on sales?

We saw in Section 3.1.2 that the standard error of Bj can be used
to construct confidence intervals for ;. For the Advertising data,
the 95% confidence intervals are as follows: (0.043,0.049) for TV,
(0.172,0.206) for radio, and (—0.013,0.011) for newspaper. The confi-
dence intervals for TV and radio are narrow and far from zero, provid-
ing evidence that these media are related to sales. But the interval
for newspaper includes zero, indicating that the variable is not statis-
tically significant given the values of TV and radio.

We saw in Section 3.3.3 that collinearity can result in very wide stan-
dard errors. Could collinearity be the reason that the confidence in-
terval associated with newspaper is so wide? The VIF scores are 1.005,
1.145, and 1.145 for TV, radio, and newspaper, suggesting no evidence
of collinearity.

In order to assess the association of each medium individually on
sales, we can perform three separate simple linear regressions. Re-
sults are shown in Tables 3.1 and 3.3. There is evidence of an ex-
tremely strong association between TV and sales and between radio
and sales. There is evidence of a mild association between newspaper
and sales, when the values of TV and radio are ignored.

. How accurately can we predict future sales?

The response can be predicted using (3.21). The accuracy associ-
ated with this estimate depends on whether we wish to predict an
individual response, Y = f(X) + ¢, or the average response, f(X)
(Section 3.2.2). If the former, we use a prediction interval, and if the
latter, we use a confidence interval. Prediction intervals will always
be wider than confidence intervals because they account for the un-
certainty associated with e, the irreducible error.
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6. Is the relationship linear?

In Section 3.3.3, we saw that residual plots can be used in order to
identify non-linearity. If the relationships are linear, then the residual
plots should display no pattern. In the case of the Advertising data,
we observe a non-linear effect in Figure 3.5, though this effect could
also be observed in a residual plot. In Section 3.3.2, we discussed the
inclusion of transformations of the predictors in the linear regression
model in order to accommodate non-linear relationships.

7. Is there synergy among the advertising media?

The standard linear regression model assumes an additive relation-
ship between the predictors and the response. An additive model is
easy to interpret because the effect of each predictor on the response is
unrelated to the values of the other predictors. However, the additive
assumption may be unrealistic for certain data sets. In Section 3.3.2,
we showed how to include an interaction term in the regression model
in order to accommodate non-additive relationships. A small p-value
associated with the interaction term indicates the presence of such
relationships. Figure 3.5 suggested that the Advertising data may
not be additive. Including an interaction term in the model results in
a substantial increase in R?, from around 90 % to almost 97 %.

3.5 Comparison of Linear Regression
with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric
approach because it assumes a linear functional form for f(X). Parametric
methods have several advantages. They are often easy to fit, because one
need estimate only a small number of coefficients. In the case of linear re-
gression, the coefficients have simple interpretations, and tests of statistical
significance can be easily performed. But parametric methods do have a
disadvantage: by construction, they make strong assumptions about the
form of f(X). If the specified functional form is far from the truth, and
prediction accuracy is our goal, then the parametric method will perform
poorly. For instance, if we assume a linear relationship between X and Y
but the true relationship is far from linear, then the resulting model will
provide a poor fit to the data, and any conclusions drawn from it will be
suspect.

In contrast, non-parametric methods do not explicitly assume a para-
metric form for f(X), and thereby provide an alternative and more flexi-
ble approach for performing regression. We discuss various non-parametric
methods in this book. Here we consider one of the simplest and best-known
non-parametric methods, K -nearest neighbors regression (KNN regression).

K-nearest
neighbors
regression
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FIGURE 3.16. Plots of f(X) using KNN regression on a two-dimensional data
set with 64 observations (orange dots). Left: K =1 results in a rough step func-
tion fit. Right: K =9 produces a much smoother fit.

The KNN regression method is closely related to the KNN classifier dis-
cussed in Chapter 2. Given a value for K and a prediction point 2o, KNN
regression first identifies the K training observations that are closest to
xo, represented by Ny. It then estimates f(zg) using the average of all the
training responses in Ng. In other words,

f (o) :% Z Yi-

z;ENo

Figure 3.16 illustrates two KNN fits on a data set with p = 2 predictors.
The fit with K = 1 is shown in the left-hand panel, while the right-hand
panel corresponds to K = 9. We see that when K = 1, the KNN fit perfectly
interpolates the training observations, and consequently takes the form of
a step function. When K = 9, the KNN fit still is a step function, but
averaging over nine observations results in much smaller regions of constant
prediction, and consequently a smoother fit. In general, the optimal value
for K will depend on the bias-variance tradeoff, which we introduced in
Chapter 2. A small value for K provides the most flexible fit, which will
have low bias but high variance. This variance is due to the fact that the
prediction in a given region is entirely dependent on just one observation.
In contrast, larger values of K provide a smoother and less variable fit; the
prediction in a region is an average of several points, and so changing one
observation has a smaller effect. However, the smoothing may cause bias by
masking some of the structure in f(X). In Chapter 5, we introduce several
approaches for estimating test error rates. These methods can be used to
identify the optimal value of K in KNN regression.
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In what setting will a parametric approach such as least squares linear re-
gression outperform a non-parametric approach such as KNN regression?
The answer is simple: the parametric approach will outperform the non-
parametric approach if the parametric form that has been selected is close
to the true form of f. Figure 3.17 provides an example with data generated
from a one-dimensional linear regression model. The black solid lines rep-
resent f(X), while the blue curves correspond to the KNN fits using K = 1
and K = 9. In this case, the K = 1 predictions are far too variable, while
the smoother K = 9 fit is much closer to f(X). However, since the true
relationship is linear, it is hard for a non-parametric approach to compete
with linear regression: a non-parametric approach incurs a cost in variance
that is not offset by a reduction in bias. The blue dashed line in the left-
hand panel of Figure 3.18 represents the linear regression fit to the same
data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that
linear regression outperforms KNN for this data. The green solid line, plot-
ted as a function of 1/ K, represents the test set mean squared error (MSE)
for KNN. The KNN errors are well above the black dashed line, which is
the test MSE for linear regression. When the value of K is large, then KNN
performs only a little worse than least squares regression in terms of MSE.
It performs far worse when K is small.

In practice, the true relationship between X and Y is rarely exactly lin-
ear. Figure 3.19 examines the relative performances of least squares regres-
sion and KNN under increasing levels of non-linearity in the relationship
between X and Y. In the top row, the true relationship is nearly linear.
In this case we see that the test MSE for linear regression is still superior
to that of KNN for low values of K. However, for K > 4, KNN out-
performs linear regression. The second row illustrates a more substantial
deviation from linearity. In this situation, KNN substantially outperforms
linear regression for all values of K. Note that as the extent of non-linearity
increases, there is little change in the test set MSE for the non-parametric
KNN method, but there is a large increase in the test set MSE of linear
regression.

Figures 3.18 and 3.19 display situations in which KNN performs slightly
worse than linear regression when the relationship is linear, but much better
than linear regression for non-linear situations. In a real life situation in
which the true relationship is unknown, one might draw the conclusion that
KNN should be favored over linear regression because it will at worst be
slightly inferior than linear regression if the true relationship is linear, and
may give substantially better results if the true relationship is non-linear.
But in reality, even when the true relationship is highly non-linear, KNN
may still provide inferior results to linear regression. In particular, both
Figures 3.18 and 3.19 illustrate settings with p = 1 predictor. But in higher
dimensions, KNN often performs worse than linear regression.

Figure 3.20 considers the same strongly non-linear situation as in the
second row of Figure 3.19, except that we have added additional noise



3.5 Comparison of Linear Regression with K-Nearest Neighbors 107

<
<
™ - o -
> o > o
T T T T T T T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X

FIGURE 3.17. Plots of f(X) using KNN regression on a one-dimensional data
set with 100 observations. The true relationship is given by the black solid line.
Left: The blue curve corresponds to K = 1 and interpolates (i.e. passes directly
through) the training data. Right: The blue curve corresponds to K = 9, and
represents a smoother fit.
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FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further.
Left: The blue dashed line is the least squares fit to the data. Since f(X) is in
fact linear (displayed as the black line), the least squares regression line provides
a very good estimate of f(X). Right: The dashed horizontal line represents the
least squares test set MSE, while the green solid line corresponds to the MSE
for KNN as a function of 1/K (on the log scale). Linear regression achieves a
lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN
regression, the best results occur with a very large value of K, corresponding to a
small value of 1/K.
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FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship
between X and Y (solid black line), the KNN fits with K =1 (blue) and K =9
(red) are displayed. Top Right: For the slightly non-linear data, the test set MSE
for least squares regression (horizontal black) and K NN with various values of
1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel,
but with a strongly non-linear relationship between X and Y .

predictors that are not associated with the response. When p =1 or p = 2,
KNN outperforms linear regression. But for p = 3 the results are mixed,
and for p > 4 linear regression is superior to KNN. In fact, the increase in
dimension has only caused a small deterioration in the linear regression test
set MSE, but it has caused more than a ten-fold increase in the MSE for
KNN. This decrease in performance as the dimension increases is a common
problem for KNN, and results from the fact that in higher dimensions
there is effectively a reduction in sample size. In this data set there are
100 training observations; when p = 1, this provides enough information to
accurately estimate f(X). However, spreading 100 observations over p = 20
dimensions results in a phenomenon in which a given observation has no
nearby neighbors—this is the so-called curse of dimensionality. That is,
the K observations that are nearest to a given test observation zy may be
very far away from x( in p-dimensional space when p is large, leading to a

curse of di-
mensionality
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FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN
(green curves) as the number of variables p increases. The true function is non—
linear in the first variable, as in the lower panel in Figure 3.19, and does not
depend on the additional variables. The performance of linear regression deteri-
orates slowly in the presence of these additional noise variables, whereas KNN’s
performance degrades much more quickly as p increases.

very poor prediction of f(z() and hence a poor KNN fit. As a general rule,
parametric methods will tend to outperform non-parametric approaches
when there is a small number of observations per predictor.

Even in problems in which the dimension is small, we might prefer linear
regression to KNN from an interpretability standpoint. If the test MSE
of KNN is only slightly lower than that of linear regression, we might be
willing to forego a little bit of prediction accuracy for the sake of a simple
model that can be described in terms of just a few coefficients, and for
which p-values are available.

3.6 Lab: Linear Regression

3.6.1 Libraries

The library() function is used to load libraries, or groups of functions and
data sets that are not included in the base R distribution. Basic functions
that perform least squares linear regression and other simple analyses come
standard with the base distribution, but more exotic functions require ad-
ditional libraries. Here we load the MASS package, which is a very large
collection of data sets and functions. We also load the ISLR package, which
includes the data sets associated with this book.

> library (MASS)
> library (ISLR)

If you receive an error message when loading any of these libraries, it
likely indicates that the corresponding library has not yet been installed
on your system. Some libraries, such as MASS, come with R and do not need to
be separately installed on your computer. However, other packages, such as

library ()
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ISLR, must be downloaded the first time they are used. This can be done di-
rectly from within R. For example, on a Windows system, select the Install
package option under the Packages tab. After you select any mirror site, a
list of available packages will appear. Simply select the package you wish to
install and R will automatically download the package. Alternatively, this
can be done at the R command line via install.packages("ISLR"). This in-
stallation only needs to be done the first time you use a package. However,
the library() function must be called each time you wish to use a given
package.

3.6.2  Simple Linear Regression

The MAsS library contains the Boston data set, which records medv (median
house value) for 506 neighborhoods around Boston. We will seek to predict
medv using 13 predictors such as rm (average number of rooms per house),
age (average age of houses), and 1stat (percent of households with low
socioeconomic status).

> fix (Boston)

> names (Boston)

[1] "CI‘im" "Zn“ llindusll "ChaS" ||noxll llrm“ n agell
[8] "dis" "rad" "tax" "ptratio" "black" "lstat" ‘"medv"

To find out more about the data set, we can type ?Boston.

We will start by using the 1m() function to fit a simple linear regression
model, with medv as the response and lstat as the predictor. The basic
syntax is 1lm(y~x,data), where y is the response, x is the predictor, and
data is the data set in which these two variables are kept.

> Im.fit=1m(medv~1lstat)
Error in eval(expr, envir, enclos) : Object "medv" not found

The command causes an error because R does not know where to find
the variables medv and 1stat. The next line tells R that the variables are
in Boston. If we attach Boston, the first line works fine because R now
recognizes the variables.

> Im.fit=1m(medv~lstat ,data=Boston)

> attach (Boston)
> Im.fit=1m(medv~lstat)

If we type 1m.fit, some basic information about the model is output.
For more detailed information, we use summary(lm.fit). This gives us p-
values and standard errors for the coefficients, as well as the R? statistic
and F-statistic for the model.

> Im.fit

Call:
Im(formula = medv ~ lstat)

Im()
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Coefficients:
(Intercept) lstat
34.55 -0.95

> summary (lm.fit)

Call:
Im(formula = medv ~ lstat)

Residuals:
Min 1Q Median 3Q Max
-15.17 -3.99 -1.32 2.03 24.50

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 34.5538 0.5626 61.4 <2e-16 **x*
lstat -0.9500 0.0387 -24.5 <2e-16 *x*x*

Signif. codes: O *x*x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 6.22 on 504 degrees of freedom
Multiple R-squared: 0.544, Adjusted R-squared: 0.543
F-statistic: 602 on 1 and 504 DF, p-value: <2e-16

We can use the names() function in order to find out what other pieces
of information are stored in 1m.fit. Although we can extract these quan- B
tities by name—e.g. Im.fit$coefficients—it is safer to use the extractor
functions like coef () to access them.

ames ()

coef ()
> names (1lm.fit)
[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df .residual" "xlevels™"
[10] "call" "terms" "model"
> coef(1lm.fit)
(Intercept) lstat
34.55 -0.95
In order to obtain a confidence interval for the coefficient estimates, we can
use the confint () command. i
confint ()
> confint (1lm.fit)
2.5 % 97.5 %
(Intercept) 33.45 35.659
1stat -1.03 -0.874
The predict() function can be used to produce confidence intervals and predict()

prediction intervals for the prediction of medv for a given value of 1stat.

> predict (lm.fit,data.frame(lstat=c(5,10,15)),
interval="confidence ")
fit lwr upr
1 29.80 29.01 30.60
2 25.05 24.47 25.63
3 20.30 19.73 20.87
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> predict (lm.fit,data.frame(lstat=c(5,10,15)),
interval="prediction")
fit lwr upr
1 29.80 17.566 42.04
2 25.05 12.828 37.28
3 20.30 8.078 32.53

For instance, the 95% confidence interval associated with a 1stat value of
10 is (24.47,25.63), and the 95% prediction interval is (12.828,37.28). As
expected, the confidence and prediction intervals are centered around the
same point (a predicted value of 25.05 for medv when 1stat equals 10), but
the latter are substantially wider.

We will now plot medv and 1stat along with the least squares regression
line using the plot () and abline() functions.

> plot(lstat ,medv)
> abline (1lm.fit)

There is some evidence for non-linearity in the relationship between 1stat
and medv. We will explore this issue later in this lab.

The abline() function can be used to draw any line, not just the least
squares regression line. To draw a line with intercept a and slope b, we
type abline(a,b). Below we experiment with some additional settings for
plotting lines and points. The 1wd=3 command causes the width of the
regression line to be increased by a factor of 3; this works for the plot ()
and lines () functions also. We can also use the pch option to create different
plotting symbols.
abline (Ilm.fit ,1lwd=3)
abline (1m.fit,lwd=3,col="red")
plot (lstat ,medv,col="red")
plot (1lstat ,medv ,pch=20)
plot (lstat ,medv ,pch="+")
plot(1:20,1:20,pch=1:20)

V V. V V Vv Vv

Next we examine some diagnostic plots, several of which were discussed

in Section 3.3.3. Four diagnostic plots are automatically produced by ap-
plying the plot () function directly to the output from 1m(). In general, this
command will produce one plot at a time, and hitting Enter will generate
the next plot. However, it is often convenient to view all four plots together.
We can achieve this by using the par () function, which tells R to split the
display screen into separate panels so that multiple plots can be viewed si-
multaneously. For example, par (mfrow=c(2,2)) divides the plotting region
into a 2 x 2 grid of panels.
> par (mfrow=c(2,2))
> plot(lm.fit)
Alternatively, we can compute the residuals from a linear regression fit
using the residuals() function. The function rstudent() will return the
studentized residuals, and we can use this function to plot the residuals
against the fitted values.

abline()

par()

residuals()
rstudent ()
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> plot(predict (1lm.fit), residuals (lm.fit))
> plot(predict (Im.fit), rstudent (lm.fit))

On the basis of the residual plots, there is some evidence of non-linearity.
Leverage statistics can be computed for any number of predictors using the

hatvalues() function.
hatvalues()

> plot(hatvalues (1m.fit))
> which.max (hatvalues (1m.fit))
375

The which.max() function identifies the index of the largest element of a
vector. In this case, it tells us which observation has the largest leverage
statistic.

which.max ()

3.0.3 Multiple Linear Regression

In order to fit a multiple linear regression model using least squares, we
again use the 1m() function. The syntax 1m(y~x1+x2+x3) is used to fit a
model with three predictors, x1, x2, and x3. The summary() function now
outputs the regression coefficients for all the predictors.

> 1m.fit=1m(medv~lstat+age,data=Boston)
> summary (lm.fit)

Call:
Im(formula = medv ~ lstat + age, data = Boston)

Residuals :
Min 1Q Median 3Q Max
-15.98 -3.98 -1.28 1.97 23.16

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 33.2228 0.7308 45.46 <2e-16 *xx
lstat -1.0321 0.0482 -21.42 <2e-16 *x*x
age 0.0345 0.0122 2.83 0.0049 x*x

Signif. codes: O *x*x 0.001 **x 0.01 * 0.05 . 0.1 1

Residual standard error: 6.17 on 503 degrees of freedom
Multiple R-squared: 0.551, Adjusted R-squared: 0.549
F-statistic: 309 on 2 and 503 DF, p-value: <2e-16

The Boston data set contains 13 variables, and so it would be cumbersome
to have to type all of these in order to perform a regression using all of the
predictors. Instead, we can use the following short-hand:

> 1m.fit=1m(medv~.,data=Boston)
> summary (Im.fit)

Call:
1m(formula = medv ~ ., data = Boston)
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Residuals :
Min
-15.594

1Q
-2.730

Coefficients:

3. Linear Regression

Median
-0.518

3Q
1.777

Max

26.199

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *xxx
crim -1.080e-01 3.286e-02 -3.287 0.001087 =*x*
zn 4.642e-02 1.373e-02 3.382 0.000778 *xxx*
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 x*x
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 **x*
rm 3.810e+00 4.179e-01 9.116 < 2e-16 *x*xx*
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 **x
rad 3.060e-01 6.635e-02 4.613 5.07e-06 *xxx
tax -1.233e-02 3.761e-03 -3.280 0.001112 ==
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *x*x
black 9.312e-03 2.686e-03 3.467 0.000573 *xxx*
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *x*xx
Signif. codes: 0 “x*xx’ 0.001 ‘*x%x’ 0.01 ‘x> 0.05 .’ 0.1 ¢ ’ 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

We can access the individual components of a summary object by name
(type 7summary.lm to see what is available). Hence summary(1m.fit)$r.sq
gives us the R?, and summary(lm.fit)$sigma gives us the RSE. The vif ()
function, part of the car package, can be used to compute variance inflation
factors. Most VIF’s are low to moderate for this data. The car package is
not part of the base R installation so it must be downloaded the first time
you use it via the install.packages option in R.

if O

> library (car)
> vif (1Im.fit)

crim zn indus chas nox rm age
1.79 2.30 3.99 1.07 4.39 1.93 3.10
dis rad tax ptratio black lstat
3.96 7.48 9.01 1.80 1.35 2.94

What if we would like to perform a regression using all of the variables but
one? For example, in the above regression output, age has a high p-value.
So we may wish to run a regression excluding this predictor. The following
syntax results in a regression using all predictors except age.

> Im.fitl=1m(medv~.-age,data=Boston)
> summary (Im.fit1)

Alternatively, the update() function can be used.
update ()
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> Im.fitl=update (lm.fit, ~.-age)

3.6.4 Interaction Terms

It is easy to include interaction terms in a linear model using the 1m() func-
tion. The syntax 1stat:black tells R to include an interaction term between
1stat and black. The syntax lstat*age simultaneously includes 1lstat, age,
and the interaction term lstatXxage as predictors; it is a shorthand for
lstat+age+lstat:age.

> summary (1lm(medv~lstat*age,data=Boston))

Call:
Im(formula = medv ~ lstat * age, data = Boston)

Residuals :
Min 1Q Median 3Q Max
-15.81 -4.04 -1.33 2.08 27.55

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 36.088536 1.469835 24.55 < 2e-16 *xx*

lstat -1.392117 0.167456 -8.31 8.8e-16 *x*x*

age -0.000721 0.019879 -0.04 0.971

lstat:age 0.004156 0.001852 2.24 0.025 =*

Signif. codes: O ’x*x%%x’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’.’ 0.1 °’> ’ 1

Residual standard error: 6.15 on 502 degrees of freedom
Multiple R-squared: 0.556, Adjusted R-squared: 0.553
F-statistic: 209 on 3 and 502 DF, p-value: <2e-16

3.6.5 Non-linear Transformations of the Predictors

The 1m() function can also accommodate non-linear transformations of the
predictors. For instance, given a predictor X, we can create a predictor X?2
using I(X~2). The function I() is needed since the ~ has a special meaning
in a formula; wrapping as we do allows the standard usage in R, which is
to raise X to the power 2. We now perform a regression of medv onto lstat
and 1stat?.

> Im.fit2=1m(medv~lstat+I(lstat~2))
> summary (1lm.fit2)

Call:
Im(formula = medv ~ lstat + I(lstat”~2))

Residuals :
Min 1Q Median 3Q Max
-15.28 -3.83 -0.53 2.31 25.41



116 3. Linear Regression

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 42.86201 0.87208 49.1 <2e-16 **x
lstat -2.33282 0.12380 -18.8 <2e-16 *xx
I(1lstat~2) 0.04355 0.00375 11.6 <2e-16 **x
Signif. codes: O ’xx%%x’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’.’ 0.1 °’> ’ 1

Residual standard error: 5.52 on 503 degrees of freedom
Multiple R-squared: 0.641, Adjusted R-squared: 0.639
F-statistic: 449 on 2 and 503 DF, p-value: <2e-16

The near-zero p-value associated with the quadratic term suggests that
it leads to an improved model. We use the anova() function to further

quantify the extent to which the quadratic fit is superior to the linear fit. anova()

> Im.fit=1m(medv~1lstat)
> anova(lm.fit,1lm.fit2)
Analysis of Variance Table

Model 1: medv ~ lstat
Model 2: medv ~ lstat + I(lstat~2)
Res .Df RSS Df Sum of Sq F Pr(>F)
1 504 19472
2 503 15347 1 4125 135 <2e-16 **x*

Signif. codes: O ’*x%x’ 0.001 ’x*x’ 0.01 ’%’ 0.05 ’.” 0.1 ’ ’ 1

Here Model 1 represents the linear submodel containing only one predictor,
1stat, while Model 2 corresponds to the larger quadratic model that has two
predictors, 1stat and 1stat?. The anova() function performs a hypothesis
test comparing the two models. The null hypothesis is that the two models
fit the data equally well, and the alternative hypothesis is that the full
model is superior. Here the F-statistic is 135 and the associated p-value is
virtually zero. This provides very clear evidence that the model containing
the predictors lstat and lstat® is far superior to the model that only
contains the predictor 1stat. This is not surprising, since earlier we saw
evidence for non-linearity in the relationship between medv and 1stat. If we

type

> par (mfrow=c(2,2))
> plot(lm.fit2)

then we see that when the 1stat? term is included in the model, there is
little discernible pattern in the residuals.

In order to create a cubic fit, we can include a predictor of the form
I1(X"3). However, this approach can start to get cumbersome for higher-
order polynomials. A better approach involves using the poly() function
to create the polynomial within 1m(). For example, the following command
produces a fifth-order polynomial fit:

poly()
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> 1m.fit5=1m(medv~poly(lstat ,5))
> summary (1lm.fit5)

Call:
Im(formula = medv ~ poly(lstat, 5))

Residuals :
Min 1Q Median 3Q Max
-13.543 -3.104 -0.705 2.084 27.115

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 22.533 0.232 97.20 < 2e-16 *xx*
poly(lstat, 5)1 -152.460 5.215 -29.24 < 2e-16 **x
poly(lstat, 5)2 64.227 5.215 12.32 < 2e-16 *x*x*
poly(lstat, 5)3 =-27.051 5.215  -5.19 3.1e-07 ***
poly(lstat, 5)4 25.452 5.215 4.88 1.4e-06 x*xxx
poly(lstat, 5)5 -19.252 5.215 -3.69 0.00025 *x*x
Signif. codes: O ’xx%%x’ 0.001 ’*%’ 0.01 ’%’ 0.05 ’.’ 0.1 °’> ’ 1

Residual standard error: 5.21 on 500 degrees of freedom
Multiple R-squared: 0.682, Adjusted R-squared: 0.679
F-statistic: 214 on 5 and 500 DF, p-value: <2e-16

This suggests that including additional polynomial terms, up to fifth order,
leads to an improvement in the model fit! However, further investigation of
the data reveals that no polynomial terms beyond fifth order have signifi-
cant p-values in a regression fit.

Of course, we are in no way restricted to using polynomial transforma-
tions of the predictors. Here we try a log transformation.

> summary (1m (medv~log(rm) ,data=Boston))

3.6.6 Qualitative Predictors

We will now examine the Carseats data, which is part of the ISLR library.
We will attempt to predict Sales (child car seat sales) in 400 locations
based on a number of predictors.

> fix(Carseats)
> names (Carseats)

[1] "Sales" "CompPrice" "Income" "Advertising"
[6] "Population" "Price" "ShelveLoc" "Age"
[9] "Education" "Urban" "ys"

The Carseats data includes qualitative predictors such as Shelveloc, an in-
dicator of the quality of the shelving location—that is, the space within
a store in which the car seat is displayed—at each location. The pre-
dictor Shelveloc takes on three possible values, Bad, Medium, and Good.
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Given a qualitative variable such as Shelveloc, R generates dummy variables
automatically. Below we fit a multiple regression model that includes some
interaction terms.

> Im.fit=1lm(Sales~.+Income:Advertising+Price:Age,data=Carseats)
> summary (lm.fit)

Call:
Im(formula = Sales ~ . + Income:Advertising + Price:Age, data =
Carseats)

Residuals :
Min 1Q Median 3Q Max
-2.921 -0.750 0.018 0.675 3.341

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 6.575565 1.008747 6.52 2.2e-10 *xx*
CompPrice 0.092937 0.004118 22.57 < 2e-16 *x*x*
Income 0.010894 0.002604 4.18 3.6e-05 *x*x
Advertising 0.070246 0.022609 3.11 0.00203 =*x
Population 0.000159 0.000368 0.43 0.66533
Price -0.100806 0.007440 -13.55 < 2e-16 *x**
ShelveLocGood 4.848676 0.152838 31.72 < 2e-16 *x*x*
ShelveLocMedium 1.953262 0.125768 15.563 < 2e-16 **x
Age -0.057947 0.015951 -3.63 0.00032 **x
Education -0.020852 0.019613 -1.06 0.28836
UrbanYes 0.140160 0.112402 1.256 0.21317
USYes -0.157557 0.148923 -1.06 0.29073
Income:Advertising 0.000751 0.000278 2.70 0.00729 *x
Price:Age 0.000107 0.000133 0.80 0.42381
Signif. codes: O ’*x%x’ 0.001 ’x*x’ 0.01 ’%’ 0.05 ’.” 0.1 ’ ’ 1

Residual standard error: 1.01 on 386 degrees of freedom
Multiple R-squared: 0.876, Adjusted R-squared: 0.872
F-statistic: 210 on 13 and 386 DF, p-value: <2e-16

The contrasts() function returns the coding that R uses for the dummy

. contrasts()
variables.

> attach(Carseats)
> contrasts (ShelveLoc)
Good Medium

Bad 0 0
Good 1 0
Medium 0 1

Use ?contrasts to learn about other contrasts, and how to set them.

R has created a ShelveLocGood dummy variable that takes on a value of
1 if the shelving location is good, and 0 otherwise. It has also created a
ShelveLocMedium dummy variable that equals 1 if the shelving location is
medium, and 0 otherwise. A bad shelving location corresponds to a zero
for each of the two dummy variables. The fact that the coefficient for
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ShelveLocGood in the regression output is positive indicates that a good
shelving location is associated with high sales (relative to a bad location).
And shelveLocMedium has a smaller positive coefficient, indicating that a
medium shelving location leads to higher sales than a bad shelving location
but lower sales than a good shelving location.

3.6.7 Writing Functions

As we have seen, R comes with many useful functions, and still more func-
tions are available by way of R libraries. However, we will often be inter-
ested in performing an operation for which no function is available. In this
setting, we may want to write our own function. For instance, below we
provide a simple function that reads in the ISLR and MASS libraries, called
LoadLibraries (). Before we have created the function, R returns an error if
we try to call it.

> LoadLibraries

Error: object ’LoadLibraries’ not found

> LoadLibraries ()

Error: could not find function "LoadLibraries"

We now create the function. Note that the + symbols are printed by R and
should not be typed in. The { symbol informs R that multiple commands
are about to be input. Hitting Enter after typing { will cause R to print the
+ symbol. We can then input as many commands as we wish, hitting Enter
after each one. Finally the } symbol informs R that no further commands
will be entered.

> LoadLibraries=function () {

+ library (ISLR)

+ library (MASS)

+ print ("The libraries have been loaded.")
+

}

Now if we type in LoadLibraries, R will tell us what is in the function.

> LoadLibraries

function () {

library (ISLR)

library (MASS)

print ("The libraries have been loaded.")

}

If we call the function, the libraries are loaded in and the print statement
is output.

> LoadLibraries ()
[1] "The libraries have been loaded."
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3.7 Exercises

Conceptual

1. Describe the null hypotheses to which the p-values given in Table 3.4

correspond. Explain what conclusions you can draw based on these
p-values. Your explanation should be phrased in terms of sales, TV,
radio, and newspaper, rather than in terms of the coefficients of the
linear model.

Carefully explain the differences between the KNN classifier and KNN
regression methods.

Suppose we have a data set with five predictors, X7 = GPA, X, = 1Q),
X3 = Gender (1 for Female and 0 for Male), X4 = Interaction between
GPA and IQ, and X5 = Interaction between GPA and Gender. The
response is starting salary after graduation (in thousands of dollars).

Suppose we use least squares to fit the model, and get BQ =50, Bl =
20, B2 = 0.07, 83 = 35, 84 = 0.01, B85 = —10.

(a) Which answer is correct, and why?
i. For a fixed value of IQ and GPA, males earn more on average
than females.

ii. For a fixed value of IQ and GPA, females earn more on
average than males.

iii. For a fixed value of IQ and GPA, males earn more on average
than females provided that the GPA is high enough.

iv. For a fixed value of 1Q and GPA, females earn more on
average than males provided that the GPA is high enough.
(b) Predict the salary of a female with IQ of 110 and a GPA of 4.0.

(¢) True or false: Since the coefficient for the GPA/IQ interaction
term is very small, there is very little evidence of an interaction
effect. Justify your answer.

4. T collect a set of data (n = 100 observations) containing a single

predictor and a quantitative response. I then fit a linear regression
model to the data, as well as a separate cubic regression, i.e. ¥ =
ﬂo + ﬂlX + BQXQ + 53X3 + €.

(a) Suppose that the true relationship between X and Y is linear,
ie. Y = By + 1 X + €. Consider the training residual sum of
squares (RSS) for the linear regression, and also the training
RSS for the cubic regression. Would we expect one to be lower
than the other, would we expect them to be the same, or is there
not enough information to tell? Justify your answer.
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(b) Answer (a) using test rather than training RSS.

(¢) Suppose that the true relationship between X and Y is not linear,
but we don’t know how far it is from linear. Consider the training
RSS for the linear regression, and also the training RSS for the
cubic regression. Would we expect one to be lower than the
other, would we expect them to be the same, or is there not
enough information to tell? Justify your answer.

(d) Answer (c) using test rather than training RSS.
5. Consider the fitted values that result from performing linear regres-

sion without an intercept. In this setting, the ith fitted value takes
the form

where
8= (Z :cy) / <Z :c2> : (3.38)

Show that we can write

n
Z}i = Z Q'Y .

/=1

What is a;/?

Note: We interpret this result by saying that the fitted values from
linear regression are linear combinations of the response values.

6. Using (3.4), argue that in the case of simple linear regression, the
least squares line always passes through the point (Z, 7).

7. It is claimed in the text that in the case of simple linear regression @
of Y onto X, the R? statistic (3.17) is equal to the square of the
correlation between X and Y (3.18). Prove that this is the case. For
simplicity, you may assume that £ =y = 0.

Applied

8. This question involves the use of simple linear regression on the Auto
data set.

(a) Use the 1m() function to perform a simple linear regression with
mpg as the response and horsepower as the predictor. Use the
summary () function to print the results. Comment on the output.
For example:
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i. Is there a relationship between the predictor and the re-
sponse?

ii. How strong is the relationship between the predictor and
the response?

iii. Is the relationship between the predictor and the response
positive or negative?

iv. What is the predicted mpg associated with a horsepower of
987 What are the associated 95 % confidence and prediction
intervals?

(b) Plot the response and the predictor. Use the abline() function
to display the least squares regression line.

(c) Use the plot() function to produce diagnostic plots of the least
squares regression fit. Comment on any problems you see with
the fit.

9. This question involves the use of multiple linear regression on the

Auto data set.

(a) Produce a scatterplot matrix which includes all of the variables
in the data set.

(b) Compute the matrix of correlations between the variables using
the function cor(). You will need to exclude the name variable,
which is qualitative.

(c) Use the 1m() function to perform a multiple linear regression
with mpg as the response and all other variables except name as
the predictors. Use the summary() function to print the results.
Comment on the output. For instance:

i. Is there a relationship between the predictors and the re-
sponse?
ii. Which predictors appear to have a statistically significant
relationship to the response?
iii. What does the coefficient for the year variable suggest?

(d) Use the plot () function to produce diagnostic plots of the linear
regression fit. Comment on any problems you see with the fit.
Do the residual plots suggest any unusually large outliers? Does
the leverage plot identify any observations with unusually high
leverage?

(e) Use the * and : symbols to fit linear regression models with
interaction effects. Do any interactions appear to be statistically
significant?

(f) Try a few different transformations of the variables, such as
log(X), v X, X2. Comment on your findings.

cor()
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10. This question should be answered using the Carseats data set.

(a)

Fit a multiple regression model to predict Sales using Price,
Urban, and US.

Provide an interpretation of each coefficient in the model. Be
careful—some of the variables in the model are qualitative!
Write out the model in equation form, being careful to handle
the qualitative variables properly.

For which of the predictors can you reject the null hypothesis
Eﬂ)Iﬁ% :20?

On the basis of your response to the previous question, fit a
smaller model that only uses the predictors for which there is
evidence of association with the outcome.

How well do the models in (a) and (e) fit the data?

Using the model from (e), obtain 95% confidence intervals for
the coefficient(s).

Is there evidence of outliers or high leverage observations in the
model from (e)?

11. In this problem we will investigate the t-statistic for the null hypoth-
esis Hy : 8 = 0 in simple linear regression without an intercept. To
begin, we generate a predictor x and a response y as follows.

> set.seed (1)
> x=rnorm (100)
> y=2%x+rnorm (100)

(a)

Perform a simple linear regression of y onto x, without an in-
tercept. Report the coefficient estimate B, the standard error of
this coefficient estimate, and the t-statistic and p-value associ-
ated with the null hypothesis Hy : f = 0. Comment on these
results. (You can perform regression without an intercept using
the command 1m(y~x+0).)

Now perform a simple linear regression of x onto y without an
intercept, and report the coefficient estimate, its standard error,
and the corresponding t-statistic and p-values associated with
the null hypothesis Hy : § = 0. Comment on these results.
What is the relationship between the results obtained in (a) and
(b)?

For the regression of Y onto X without an intercept, the t-
statistic for Hy : 8 = 0 takes the form B/SE(B), where 3 is
given by (3.38), and where

Z?:l(yi - 5518)2
(n=1) 302

SE(8) =
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(These formulas are slightly different from those given in Sec-
tions 3.1.1 and 3.1.2, since here we are performing regression
without an intercept.) Show algebraically, and confirm numeri-
cally in R, that the t-statistic can be written as

(Vn—1)370 wiyi
VO ) (o vi) — o wye)?
Using the results from (d), argue that the t-statistic for the re-

gression of y onto x is the same as the t-statistic for the regression
of x onto y.

In R, show that when regression is performed with an intercept,
the t-statistic for Hp : 51 = 0 is the same for the regression of y
onto x as it is for the regression of x onto y.

12. This problem involves simple linear regression without an intercept.

(a)

(b)

(c)

Recall that the coefficient estimate 3 for the linear regression of
Y onto X without an intercept is given by (3.38). Under what
circumstance is the coefficient estimate for the regression of X
onto Y the same as the coefficient estimate for the regression of
Y onto X7?

Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is different
from the coefficient estimate for the regression of Y onto X.

Generate an example in R with n = 100 observations in which
the coefficient estimate for the regression of X onto Y is the
same as the coeflicient estimate for the regression of Y onto X.

13. In this exercise you will create some simulated data and will fit simple
linear regression models to it. Make sure to use set.seed(1) prior to
starting part (a) to ensure consistent results.

(a)

(b)

Using the rnorm() function, create a vector, x, containing 100
observations drawn from a N(0,1) distribution. This represents
a feature, X.

Using the rnorm() function, create a vector, eps, containing 100
observations drawn from a N(0,0.25) distribution i.e. a normal
distribution with mean zero and variance 0.25.

Using x and eps, generate a vector y according to the model
Y =-1+05X+e (3.39)

What is the length of the vector y? What are the values of 5y
and (p in this linear model?
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(e)

(f)

()
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Create a scatterplot displaying the relationship between x and
y. Comment on what you observe.

Fit a least squares linear model to predlct y using x. Comment
on the model obtained. How do ﬂo and 51 compare to By and
B1?

Display the least squares line on the scatterplot obtained in (d).
Draw the population regression line on the plot, in a different
color. Use the legend() command to create an appropriate leg-
end.

Now fit a polynomial regression model that predicts y using x
and x*. Is there evidence that the quadratic term improves the
model fit? Explain your answer.

Repeat (a)—(f) after modifying the data generation process in
such a way that there is less noise in the data. The model (3.39)
should remain the same. You can do this by decreasing the vari-
ance of the normal distribution used to generate the error term
e in (b). Describe your results.

Repeat (a)—(f) after modifying the data generation process in
such a way that there is more noise in the data. The model
(3.39) should remain the same. You can do this by increasing
the variance of the normal distribution used to generate the
error term € in (b). Describe your results.

What are the confidence intervals for 5y and p; based on the
original data set, the noisier data set, and the less noisy data
set? Comment on your results.

14. This problem focuses on the collinearity problem.

(a)

Perform the following commands in R:

set.seed (1)

x1=runif (100)
x2=0.5*x1+rnorm (100) /10
y=2+2%x1+0.3*x2+rnorm (100)

vV V Vv Vv

The last line corresponds to creating a linear model in which y is
a function of x1 and x2. Write out the form of the linear model.
What are the regression coefficients?

What is the correlation between x1 and x27 Create a scatterplot
displaying the relationship between the variables.

Using this data, fit a least squares regression to predict y using
x1 and x2. Describe the results obtained. What are 807 Bl, and
Bg? How do these relate to the true Sy, 1, and (2?7 Can you
reject the null hypothesis Hy : 1 = 07 How about the null
hypothesis Hy : f2 = 07
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Now fit a least squares regression to predict y using only x1.
Comment on your results. Can you reject the null hypothesis
H() : Bl =07

Now fit a least squares regression to predict y using only x2.
Comment on your results. Can you reject the null hypothesis
H() : Bl =07

Do the results obtained in (¢)—(e) contradict each other? Explain
your answer.

Now suppose we obtain one additional observation, which was
unfortunately mismeasured.
> x1=c(x1, 0.1)

> x2=c(x2, 0.8)
> y=c(y,6)

Re-fit the linear models from (c) to (e) using this new data. What
effect does this new observation have on the each of the models?
In each model, is this observation an outlier? A high-leverage
point? Both? Explain your answers.

15. This problem involves the Boston data set, which we saw in the lab
for this chapter. We will now try to predict per capita crime rate
using the other variables in this data set. In other words, per capita
crime rate is the response, and the other variables are the predictors.

(a)

For each predictor, fit a simple linear regression model to predict
the response. Describe your results. In which of the models is
there a statistically significant association between the predictor
and the response? Create some plots to back up your assertions.

Fit a multiple regression model to predict the response using
all of the predictors. Describe your results. For which predictors
can we reject the null hypothesis Hy : 8; = 07

How do your results from (a) compare to your results from (b)?
Create a plot displaying the univariate regression coefficients
from (a) on the z-axis, and the multiple regression coefficients
from (b) on the y-axis. That is, each predictor is displayed as a
single point in the plot. Its coefficient in a simple linear regres-
sion model is shown on the z-axis, and its coefficient estimate
in the multiple linear regression model is shown on the y-axis.

Is there evidence of non-linear association between any of the
predictors and the response? To answer this question, for each
predictor X, fit a model of the form

Y:50+51X+52X2+53X3+6.
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Classification

The linear regression model discussed in Chapter 3 assumes that the re-
sponse variable Y is quantitative. But in many situations, the response
variable is instead qualitative. For example, eye color is qualitative, taking
on values blue, brown, or green. Often qualitative variables are referred
to as categorical; we will use these terms interchangeably. In this chapter,
we study approaches for predicting qualitative responses, a process that
is known as classification. Predicting a qualitative response for an obser-
vation can be referred to as classifying that observation, since it involves
assigning the observation to a category, or class. On the other hand, often
the methods used for classification first predict the probability of each of
the categories of a qualitative variable, as the basis for making the classi-
fication. In this sense they also behave like regression methods.

There are many possible classification techniques, or classifiers, that one
might use to predict a qualitative response. We touched on some of these
in Sections 2.1.5 and 2.2.3. In this chapter we discuss three of the most
widely-used classifiers: logistic regression, linear discriminant analysis, and
K -nearest neighbors. We discuss more computer-intensive methods in later
chapters, such as generalized additive models (Chapter 7), trees, random
forests, and boosting (Chapter 8), and support vector machines (Chap-
ter 9).

G. James et al., An Introduction to Statistical Learning: with Applications in R, 127
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_4,
© Springer Science+Business Media New York 2013

qualitative

classification

classifier
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regression
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analysis

K-nearest
neighbors
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4.1 An Overview of Classification

Classification problems occur often, perhaps even more so than regression
problems. Some examples include:

1. A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical conditions.
Which of the three conditions does the individual have?

2. An online banking service must be able to determine whether or not
a transaction being performed on the site is fraudulent, on the basis
of the user’s IP address, past transaction history, and so forth.

3. On the basis of DNA sequence data for a number of patients with
and without a given disease, a biologist would like to figure out which
DNA mutations are deleterious (disease-causing) and which are not.

Just as in the regression setting, in the classification setting we have a
set of training observations (21,y1),..., (Zn,y,) that we can use to build
a classifier. We want our classifier to perform well not only on the training
data, but also on test observations that were not used to train the classifier.

In this chapter, we will illustrate the concept of classification using the
simulated Default data set. We are interested in predicting whether an
individual will default on his or her credit card payment, on the basis of
annual income and monthly credit card balance. The data set is displayed
in Figure 4.1. We have plotted annual income and monthly credit card
balance for a subset of 10, 000 individuals. The left-hand panel of Figure 4.1
displays individuals who defaulted in a given month in orange, and those
who did not in blue. (The overall default rate is about 3%, so we have
plotted only a fraction of the individuals who did not default.) It appears
that individuals who defaulted tended to have higher credit card balances
than those who did not. In the right-hand panel of Figure 4.1, two pairs
of boxplots are shown. The first shows the distribution of balance split by
the binary default variable; the second is a similar plot for income. In this
chapter, we learn how to build a model to predict default (V) for any
given value of balance (X7) and income (X3). Since Y is not quantitative,
the simple linear regression model of Chapter 3 is not appropriate.

It is worth noting that Figure 4.1 displays a very pronounced relation-
ship between the predictor balance and the response default. In most real
applications, the relationship between the predictor and the response will
not be nearly so strong. However, for the sake of illustrating the classifica-
tion procedures discussed in this chapter, we use an example in which the
relationship between the predictor and the response is somewhat exagger-
ated.
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Bozxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y, as follows:

1 if stroke;
Y = (¢ 2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors Xy, ..., X,. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the difference
between stroke and drug overdose is the same as the difference between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

1 if epileptic seizure;
Y =<2 if stroke;

3 if drug overdose.
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which would imply a totally different relationship among the three condi-
tions. Each of these codings would produce fundamentally different linear
models that would ultimately lead to different sets of predictions on test
observations.

If the response variable’s values did take on a natural ordering, such as
mild, moderate, and severe, and we felt the gap between mild and moderate
was similar to the gap between moderate and severe, then a 1, 2, 3 coding
would be reasonable. Unfortunately, in general there is no natural way to
convert a qualitative response variable with more than two levels into a
quantitative response that is ready for linear regression.

For a binary (two level) qualitative response, the situation is better. For
instance, perhaps there are only two possibilities for the patient’s med-
ical condition: stroke and drug overdose. We could then potentially use
the dummy variable approach from Section 3.3.1 to code the response as

follows:
v — {0 if stroke;

1 if drug overdose.

We could then fit a linear regression to this binary response, and predict
drug overdose if Y > 0.5 and stroke otherwise. In the binary case it is not
hard to show that even if we flip the above coding, linear regression will
produce the same final predictions.

For a binary response with a 0/1 coding as above, regression by least
squares does make sense; it can be shown that the X B obtained using linear
regression is in fact an estimate of Pr(drug overdose|X) in this special
case. However, if we use linear regression, some of our estimates might be
outside the [0, 1] interval (see Figure 4.2), making them hard to interpret
as probabilities! Nevertheless, the predictions provide an ordering and can
be interpreted as crude probability estimates. Curiously, it turns out that
the classifications that we get if we use linear regression to predict a binary
response will be the same as for the linear discriminant analysis (LDA)
procedure we discuss in Section 4.4.

However, the dummy variable approach cannot be easily extended to
accommodate qualitative responses with more than two levels. For these
reasons, it is preferable to use a classification method that is truly suited
for qualitative response values, such as the ones presented next.

4.3 Logistic Regression

Consider again the Default data set, where the response default falls into
one of two categories, Yes or No. Rather than modeling this response Y
directly, logistic regression models the probability that Y belongs to a par-
ticular category.

binary
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.

For the Default data, logistic regression models the probability of default.
For example, the probability of default given balance can be written as

Pr(default = Yes|balance).

The values of Pr(default = Yes|balance), which we abbreviate
p(balance), will range between 0 and 1. Then for any given value of balance,
a prediction can be made for default. For example, one might predict
default = Yes for any individual for whom p(balance) > 0.5. Alterna-
tively, if a company wishes to be conservative in predicting individuals who
are at risk for default, then they may choose to use a lower threshold, such
as p(balance) > 0.1.

4.8.1 The Logistic Model

How should we model the relationship between p(X) = Pr(Y = 1|X) and
X7 (For convenience we are using the generic 0/1 coding for the response).
In Section 4.2 we talked of using a linear regression model to represent
these probabilities:

p(X) = Bo+ i X. (4.1)

If we use this approach to predict default=Yes using balance, then we
obtain the model shown in the left-hand panel of Figure 4.2. Here we see
the problem with this approach: for balances close to zero we predict a
negative probability of default; if we were to predict for very large balances,
we would get values bigger than 1. These predictions are not sensible, since
of course the true probability of default, regardless of credit card balance,
must fall between 0 and 1. This problem is not unique to the credit default
data. Any time a straight line is fit to a binary response that is coded as
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0 or 1, in principle we can always predict p(X) < 0 for some values of X
and p(X) > 1 for others (unless the range of X is limited).

To avoid this problem, we must model p(X) using a function that gives
outputs between 0 and 1 for all values of X. Many functions meet this
description. In logistic regression, we use the logistic function,

ePot+prX

p(X) = T choimx: (4.2)

To fit the model (4.2), we use a method called mazimum likelihood, which
we discuss in the next section. The right-hand panel of Figure 4.2 illustrates
the fit of the logistic regression model to the Default data. Notice that for
low balances we now predict the probability of default as close to, but never
below, zero. Likewise, for high balances we predict a default probability
close to, but never above, one. The logistic function will always produce
an S-shaped curve of this form, and so regardless of the value of X, we
will obtain a sensible prediction. We also see that the logistic model is
better able to capture the range of probabilities than is the linear regression
model in the left-hand plot. The average fitted probability in both cases is
0.0333 (averaged over the training data), which is the same as the overall
proportion of defaulters in the data set.
After a bit of manipulation of (4.2), we find that

p(X) — PothiX
ey . (4.3)

The quantity p(X)/[1 —p(X)] is called the odds, and can take on any value
between 0 and co. Values of the odds close to 0 and oo indicate very low
and very high probabilities of default, respectively. For example, on average
1 in 5 people with an odds of 1/4 will default, since p(X) = 0.2 implies an

odds of % = 1/4. Likewise on average nine out of every ten people with
an odds of 9 will default, since p(X) = 0.9 implies an odds of 225 = 9.

Odds are traditionally used instead of probabilities in horse-racing, since
they relate more naturally to the correct betting strategy.
By taking the logarithm of both sides of (4.3), we arrive at

p(X)
log(l_p(X)>—5o+51X. (4.4)
The left-hand side is called the log-odds or logit. We see that the logistic
regression model (4.2) has a logit that is linear in X.

Recall from Chapter 3 that in a linear regression model, 3; gives the
average change in Y associated with a one-unit increase in X. In contrast,
in a logistic regression model, increasing X by one unit changes the log odds
by B1 (4.4), or equivalently it multiplies the odds by e’ (4.3). However,
because the relationship between p(X) and X in (4.2) is not a straight line,

logistic
function

maximum
likelihood

odds

log-odds

logit
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B1 does not correspond to the change in p(X) associated with a one-unit
increase in X. The amount that p(X) changes due to a one-unit change in
X will depend on the current value of X. But regardless of the value of X,
if By is positive then increasing X will be associated with increasing p(X),
and if 8 is negative then increasing X will be associated with decreasing
p(X). The fact that there is not a straight-line relationship between p(X)
and X, and the fact that the rate of change in p(X) per unit change in X
depends on the current value of X, can also be seen by inspection of the
right-hand panel of Figure 4.2.

4.3.2  Estimating the Regression Coefficients

The coefficients 3y and By in (4.2) are unknown, and must be estimated
based on the available training data. In Chapter 3, we used the least squares
approach to estimate the unknown linear regression coefficients. Although
we could use (non-linear) least squares to fit the model (4.4), the more
general method of mazimum likelihood is preferred, since it has better sta-
tistical properties. The basic intuition behind using maximum likelihood
to fit a logistic regression model is as follows: we seek estimates for 5y and
B1 such that the predicted probability p(x;) of default for each individual,
using (4.2), corresponds as closely as possible to the individual’s observed
default status. In other words, we try to find BO and Bl such that plugging
these estimates into the model for p(X), given in (4.2), yields a number
close to one for all individuals who defaulted, and a number close to zero
for all individuals who did not. This intuition can be formalized using a
mathematical equation called a likelihood function:

U(Bo, Br) = H p(xi) H (L = p(zs)). (4.5)
2:y;=1 iy =0
The estimates Bg and Bl are chosen to mazimize this likelihood function.

Maximum likelihood is a very general approach that is used to fit many
of the non-linear models that we examine throughout this book. In the
linear regression setting, the least squares approach is in fact a special case
of maximum likelihood. The mathematical details of maximum likelihood
are beyond the scope of this book. However, in general, logistic regression
and other models can be easily fit using a statistical software package such
as R, and so we do not need to concern ourselves with the details of the
maximum likelihood fitting procedure.

Table 4.1 shows the coefficient estimates and related information that
result from fitting a logistic regression model on the Default data in order
to predict the probability of default=Yes using balance. We see that Bl =
0.0055; this indicates that an increase in balance is associated with an
increase in the probability of default. To be precise, a one-unit increase in
balance is associated with an increase in the log odds of default by 0.0055
units.

likelihood
function
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Coefficient  Std. error Z-statistic = P-value
Intercept —10.6513 0.3612 —-29.5 <0.0001
balance 0.0055 0.0002 24.9 <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
ston model that predicts the probability of default using balance. A one-unit
increase in balance is associated with an increase in the log odds of default by
0.0055 wunits.

Many aspects of the logistic regression output shown in Table 4.1 are
similar to the linear regression output of Chapter 3. For example, we can
measure the accuracy of the coefficient estimates by computing their stan-
dard errors. The z-statistic in Table 4.1 plays the same role as the ¢-statistic
in the linear regression output, for example in Table 3.1 on page 68. For
instance, the z-statistic associated with 7 is equal to BAl/S’E(Bl)7 and so a
large (absolute) value of the z-statistic indicates evidence against the null
hypothesis Hy : $1 = 0. This null hypothesis implies that p(X) = 1i” ——
in other words, that the probability of default does not depend on balance.
Since the p-value associated with balance in Table 4.1 is tiny, we can reject
Hj. In other words, we conclude that there is indeed an association between
balance and probability of default. The estimated intercept in Table 4.1
is typically not of interest; its main purpose is to adjust the average fitted

probabilities to the proportion of ones in the data.

4.3.3 Making Predictions

Once the coefficients have been estimated, it is a simple matter to compute
the probability of default for any given credit card balance. For example,
using the coefficient estimates given in Table 4.1, we predict that the default
probability for an individual with a balance of $1,000 is

eBo+BiX ¢—10.6513+0.0055x 1,000

pX) = 1+ chotBiX T 1+ ¢ 10.6513-0.0055% 1,000

= 0.00576,

which is below 1%. In contrast, the predicted probability of default for an
individual with a balance of $2,000 is much higher, and equals 0.586 or
58.6 %.

One can use qualitative predictors with the logistic regression model
using the dummy variable approach from Section 3.3.1. As an example,
the Default data set contains the qualitative variable student. To fit the
model we simply create a dummy variable that takes on a value of 1 for
students and 0 for non-students. The logistic regression model that results
from predicting probability of default from student status can be seen in
Table 4.2. The coefficient associated with the dummy variable is positive,
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Coefficient  Std. error Z-statistic = P-value
Intercept —3.5041 0.0707 —49.55 <0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regres-
ston model that predicts the probability of default using student status. Student
status is encoded as a dummy variable, with a value of 1 for a student and a value
of 0 for a non-student, and represented by the variable student [Yes] in the table.

and the associated p-value is statistically significant. This indicates that
students tend to have higher default probabilities than non-students:

673.5041+0.4049>< 1

ID\r(defaultZYes|student=Yes) = = 0.0431,

1 + ¢—3-5041+0.4049x 1

e—3.5041+0.4049><0

Pr(default=Yes|student=No) = [ ¢ 350117000150 — 0.0292.
3. .

4.3.4  Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple
predictors. By analogy with the extension from simple to multiple linear
regression in Chapter 3, we can generalize (4.4) as follows:

p(X)
1 — ) = X1+ X 4.6
Og(l—p(X)) 50+61 1+ +Bp P ( )
where X = (X3,...,X,) are p predictors. Equation 4.6 can be rewritten as

eﬁoJrﬁle +4Bp Xy

p(X) = 1+ cPotPiXit B X, "

(4.7)

Just as in Section 4.3.2, we use the maximum likelihood method to estimate
Bo, 1, -+ Bp-

Table 4.3 shows the coefficient estimates for a logistic regression model
that uses balance, income (in thousands of dollars), and student status to
predict probability of default. There is a surprising result here. The p-
values associated with balance and the dummy variable for student status
are very small, indicating that each of these variables is associated with
the probability of default. However, the coefficient for the dummy variable
is negative, indicating that students are less likely to default than non-
students. In contrast, the coeflicient for the dummy variable is positive in
Table 4.2. How is it possible for student status to be associated with an
increase in probability of default in Table 4.2 and a decrease in probability
of default in Table 4.37 The left-hand panel of Figure 4.3 provides a graph-
ical illustration of this apparent paradox. The orange and blue solid lines
show the average default rates for students and non-students, respectively,
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Coefficient  Std. error Z-statistic = P-value

Intercept —10.8690 0.4923 —22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student [Yes] —0.6468 0.2362 —2.74 0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using balance, income, and
student status. Student status is encoded as a dummy variable student[Yes],
with a value of 1 for a student and a value of 0 for a non-student. In fitting this
model, income was measured in thousands of dollars.

as a function of credit card balance. The negative coefficient for student in
the multiple logistic regression indicates that for a fized value of balance
and income, a student is less likely to default than a non-student. Indeed,
we observe from the left-hand panel of Figure 4.3 that the student default
rate is at or below that of the non-student default rate for every value of
balance. But the horizontal broken lines near the base of the plot, which
show the default rates for students and non-students averaged over all val-
ues of balance and income, suggest the opposite effect: the overall student
default rate is higher than the non-student default rate. Consequently, there
is a positive coefficient for student in the single variable logistic regression
output shown in Table 4.2.

The right-hand panel of Figure 4.3 provides an explanation for this dis-
crepancy. The variables student and balance are correlated. Students tend
to hold higher levels of debt, which is in turn associated with higher prob-
ability of default. In other words, students are more likely to have large
credit card balances, which, as we know from the left-hand panel of Fig-
ure 4.3, tend to be associated with high default rates. Thus, even though
an individual student with a given credit card balance will tend to have a
lower probability of default than a non-student with the same credit card
balance, the fact that students on the whole tend to have higher credit card
balances means that overall, students tend to default at a higher rate than
non-students. This is an important distinction for a credit card company
that is trying to determine to whom they should offer credit. A student is
riskier than a non-student if no information about the student’s credit card
balance is available. However, that student is less risky than a non-student
with the same credit card balance!

This simple example illustrates the dangers and subtleties associated
with performing regressions involving only a single predictor when other
predictors may also be relevant. As in the linear regression setting, the
results obtained using one predictor may be quite different from those ob-
tained using multiple predictors, especially when there is correlation among
the predictors. In general, the phenomenon seen in Figure 4.3 is known as
confounding.

confounding
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FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown
for students (orange) and non-students (blue). The solid lines display default rate
as a function of balance, while the horizontal broken lines display the overall
default rates. Right: Boxplots of balance for students (orange) and non-students
(blue) are shown.

By substituting estimates for the regression coefficients from Table 4.3
into (4.7), we can make predictions. For example, a student with a credit
card balance of $1,500 and an income of $40, 000 has an estimated proba-
bility of default of

e~ 10.869-+0.00574x1,500+0.003x40—0.6468x 1

pX) = 1 + ¢—10.869+0.00574x1,500+0.003x 40—0.6468x 1 0.058. (4.8)

A non-student with the same balance and income has an estimated prob-
ability of default of

6710.869+0.00574><1,500+0.003><4070.6468><0
=0.105.  (4.9)

p(X) = 1+ e—10.869+0.00574x1,5004-0.003x40—0.6468 x 0

(Here we multiply the income coefficient estimate from Table 4.3 by 40,
rather than by 40,000, because in that table the model was fit with income
measured in units of $1,000.)

4.3.5  Logistic Regression for >2 Response Classes

We sometimes wish to classify a response variable that has more than two
classes. For example, in Section 4.2 we had three categories of medical con-
dition in the emergency room: stroke, drug overdose, epileptic seizure.
In this setting, we wish to model both Pr(Y = stroke|X) and Pr(Y =
drug overdose|X), with the remaining Pr(Y = epileptic seizure|X) =
1 — Pr(Y = stroke|X) — Pr(Y = drug overdose|X). The two-class logis-
tic regression models discussed in the previous sections have multiple-class
extensions, but in practice they tend not to be used all that often. One of
the reasons is that the method we discuss in the next section, discriminant
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analysis, is popular for multiple-class classification. So we do not go into
the details of multiple-class logistic regression here, but simply note that
such an approach is possible, and that software for it is available in R.

4.4 Linear Discriminant Analysis

Logistic regression involves directly modeling Pr(Y = k|X = z) using the
logistic function, given by (4.7) for the case of two response classes. In
statistical jargon, we model the conditional distribution of the response Y,
given the predictor(s) X. We now consider an alternative and less direct
approach to estimating these probabilities. In this alternative approach,
we model the distribution of the predictors X separately in each of the
response classes (i.e. given Y), and then use Bayes’ theorem to flip these
around into estimates for Pr(Y = k|X = x). When these distributions are
assumed to be normal, it turns out that the model is very similar in form
to logistic regression.

Why do we need another method, when we have logistic regression?
There are several reasons:

e When the classes are well-separated, the parameter estimates for the
logistic regression model are surprisingly unstable. Linear discrimi-
nant analysis does not suffer from this problem.

e If n is small and the distribution of the predictors X is approximately
normal in each of the classes, the linear discriminant model is again
more stable than the logistic regression model.

e As mentioned in Section 4.3.5, linear discriminant analysis is popular
when we have more than two response classes.

4.4.1 Using Bayes’ Theorem for Classification

Suppose that we wish to classify an observation into one of K classes, where
K > 2. In other words, the qualitative response variable Y can take on K
possible distinct and unordered values. Let m, represent the overall or prior
probability that a randomly chosen observation comes from the kth class;
this is the probability that a given observation is associated with the kth
category of the response variable Y. Let fi(x) = Pr(X = x|Y = k)! denote
the density function of X for an observation that comes from the kth class.
In other words, fi(z) is relatively large if there is a high probability that
an observation in the kth class has X ~ z, and fi(z) is small if it is very

ITechnically this definition is only correct if X is a discrete random variable. If X
is continuous then fk (.’E)d;v would correspond to the probability of X falling in in a small
region da around x.

prior

density
function
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unlikely that an observation in the kth class has X ~ x. Then Bayes’
theorem states that

_ _mfu(@)
Sy mufi(x)

In accordance with our earlier notation, we will use the abbreviation py(X)
= Pr(Y = k|X). This suggests that instead of directly computing py(X)
as in Section 4.3.1, we can simply plug in estimates of 7, and fi(X) into
(4.10). In general, estimating 7 is easy if we have a random sample of
Y's from the population: we simply compute the fraction of the training
observations that belong to the kth class. However, estimating fi(X) tends
to be more challenging, unless we assume some simple forms for these
densities. We refer to pr(x) as the posterior probability that an observation
X = x belongs to the kth class. That is, it is the probability that the
observation belongs to the kth class, given the predictor value for that
observation.

We know from Chapter 2 that the Bayes classifier, which classifies an
observation to the class for which pp(X) is largest, has the lowest possible
error rate out of all classifiers. (This is of course only true if the terms
in (4.10) are all correctly specified.) Therefore, if we can find a way to
estimate fr(X), then we can develop a classifier that approximates the
Bayes classifier. Such an approach is the topic of the following sections.

Pr(Y = k|X = z) (4.10)

4.4.2  Linear Discriminant Analysis for p =1

For now, assume that p = 1—that is, we have only one predictor. We
would like to obtain an estimate for fi(z) that we can plug into (4.10) in
order to estimate pi(z). We will then classify an observation to the class
for which pg(z) is greatest. In order to estimate fi(x), we will first make
some assumptions about its form.

Suppose we assume that fi(z) is normal or Gaussian. In the one-
dimensional setting, the normal density takes the form

1 1
ile) = o ex (—27,3@ ). (4.11)

where py, and o7 are the mean and variance parameters for the kth class.
For now, let us further assume that o = ... = o%: that is, there is a shared
variance term across all K classes, which for simplicity we can denote by
0. Plugging (4.11) into (4.10), we find that

1 1 2
Tk exp (— 5,z (T — px)
pe(z) = —% 2””1 (Cz - )2 . (4.12)
Zl:l 7Tl%exp (_m(z _,UJZ) )

(Note that in (4.12), 7, denotes the prior probability that an observation
belongs to the kth class, not to be confused with 7 ~ 3.14159, the math-
ematical constant.) The Bayes classifier involves assigning an observation

Bayes’
theorem

posterior

normal

Gaussian
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FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.

X = x to the class for which (4.12) is largest. Taking the log of (4.12)
and rearranging the terms, it is not hard to show that this is equivalent to
assigning the observation to the class for which

2
_ Hk My
5k(l‘) =x- ; — 270’2 + log(my) (4.13)
is largest. For instance, if K = 2 and m; = 7, then the Bayes classifier
assigns an observation to class 1 if 2z (uy — p2) > p? — p3, and to class
2 otherwise. In this case, the Bayes decision boundary corresponds to the
point where

2 2
M1 — Ha M1+ 2
xr = = . 4.14
2(#1 - Hz) 2 ( )

An example is shown in the left-hand panel of Figure 4.4. The two normal
density functions that are displayed, f1(x) and fa(x), represent two distinct
classes. The mean and variance parameters for the two density functions
are py = —1.25, us = 1.25, and 07 = 03 = 1. The two densities overlap,
and so given that X = z, there is some uncertainty about the class to which
the observation belongs. If we assume that an observation is equally likely
to come from either class—that is, m; = w3 = 0.5—then by inspection of
(4.14), we see that the Bayes classifier assigns the observation to class 1
if £ < 0 and class 2 otherwise. Note that in this case, we can compute
the Bayes classifier because we know that X is drawn from a Gaussian
distribution within each class, and we know all of the parameters involved.
In a real-life situation, we are not able to calculate the Bayes classifier.

In practice, even if we are quite certain of our assumption that X is drawn
from a Gaussian distribution within each class, we still have to estimate
the parameters j1,..., K, T1,...,Tk, and o2. The linear discriminant
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analysis (LDA) method approximates the Bayes classifier by plugging esti-
mates for my, ug, and o2 into (4.13). In particular, the following estimates
are used:

. 1
M= > @i
ki:yi:k
K

62 = n_lKZ > (@i — )’ (4.15)

k=114y,=k

where n is the total number of training observations, and ny is the number
of training observations in the kth class. The estimate for p is simply the
average of all the training observations from the kth class, while 62 can
be seen as a weighted average of the sample variances for each of the K
classes. Sometimes we have knowledge of the class membership probabili-
ties m1,..., Tk, which can be used directly. In the absence of any additional
information, LDA estimates 73 using the proportion of the training obser-
vations that belong to the kth class. In other words,

ﬁ'k = nk/n. (416)

The LDA classifier plugs the estimates given in (4.15) and (4.16) into (4.13),
and assigns an observation X = x to the class for which

§(z) = - % - % +log(#n) (4.17)
is largest. The word linear in the classifier’s name stems from the fact
that the discriminant functions oy (x) in (4.17) are linear functions of z (as
opposed to a more complex function of ).

The right-hand panel of Figure 4.4 displays a histogram of a random
sample of 20 observations from each class. To implement LDA, we began
by estimating 7y, jux, and o2 using (4.15) and (4.16). We then computed the
decision boundary, shown as a black solid line, that results from assigning
an observation to the class for which (4.17) is largest. All points to the left
of this line will be assigned to the green class, while points to the right of
this line are assigned to the purple class. In this case, since n; = ny = 20,
we have 1 = 72. As a result, the decision boundary corresponds to the
midpoint between the sample means for the two classes, (fi; + fi2)/2. The
figure indicates that the LDA decision boundary is slightly to the left of
the optimal Bayes decision boundary, which instead equals (u1 + p2)/2 =
0. How well does the LDA classifier perform on this data? Since this is
simulated data, we can generate a large number of test observations in order
to compute the Bayes error rate and the LDA test error rate. These are
10.6 % and 11.1 %, respectively. In other words, the LDA classifier’s error
rate is only 0.5 % above the smallest possible error rate! This indicates that
LDA is performing pretty well on this data set.

linear
discriminant
analysis

discriminant
function
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FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.

To reiterate, the LDA classifier results from assuming that the observa-
tions within each class come from a normal distribution with a class-specific
mean vector and a common variance 02, and plugging estimates for these
parameters into the Bayes classifier. In Section 4.4.4, we will consider a less
stringent set of assumptions, by allowing the observations in the kth class
to have a class-specific variance, o7.

4.4.3  Linear Discriminant Analysis for p >1

We now extend the LDA classifier to the case of multiple predictors. To
do this, we will assume that X = (X1, Xo,..., X}) is drawn from a multi-
variate Gaussian (or multivariate normal) distribution, with a class-specific
mean vector and a common covariance matrix. We begin with a brief review
of such a distribution.

The multivariate Gaussian distribution assumes that each individual pre-
dictor follows a one-dimensional normal distribution, as in (4.11), with some
correlation between each pair of predictors. Two examples of multivariate
Gaussian distributions with p = 2 are shown in Figure 4.5. The height of
the surface at any particular point represents the probability that both X3
and X fall in a small region around that point. In either panel, if the sur-
face is cut along the X axis or along the X5 axis, the resulting cross-section
will have the shape of a one-dimensional normal distribution. The left-hand
panel of Figure 4.5 illustrates an example in which Var(X;) = Var(Xs) and
Cor (X1, X2) = 0; this surface has a characteristic bell shape. However, the
bell shape will be distorted if the predictors are correlated or have unequal
variances, as is illustrated in the right-hand panel of Figure 4.5. In this
situation, the base of the bell will have an elliptical, rather than circular,

multivariate
Gaussian
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Xy

FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matriz. Left: Ellipses that contain
95 % of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed
lines.

shape. To indicate that a p-dimensional random variable X has a multi-
variate Gaussian distribution, we write X ~ N(u,X). Here E(X) = p is
the mean of X (a vector with p components), and Cov(X) = X is the
p X p covariance matrix of X. Formally, the multivariate Gaussian density
is defined as

fz) = W exp (—%(ax - M)TEfl(a: — u)) . (4.18)

In the case of p > 1 predictors, the LDA classifier assumes that the
observations in the kth class are drawn from a multivariate Gaussian dis-
tribution N (ug, X), where py is a class-specific mean vector, and X is a
covariance matrix that is common to all K classes. Plugging the density
function for the kth class, fi(X = x), into (4.10) and performing a little
bit of algebra reveals that the Bayes classifier assigns an observation X = x
to the class for which

_ 1 .
Sp(z) = 2TZ 1y — 5/1}52 Y + log T (4.19)

is largest. This is the vector/matrix version of (4.13).

An example is shown in the left-hand panel of Figure 4.6. Three equally-
sized Gaussian classes are shown with class-specific mean vectors and a
common covariance matrix. The three ellipses represent regions that con-
tain 95 % of the probability for each of the three classes. The dashed lines
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are the Bayes decision boundaries. In other words, they represent the set
of values x for which dy(x) = d,(x); i.e.

e S - %Mngluk =a"'S - %MzTE*lm (4.20)
for k # I. (The logm term from (4.19) has disappeared because each of
the three classes has the same number of training observations; i.e. m is
the same for each class.) Note that there are three lines representing the
Bayes decision boundaries because there are three pairs of classes among
the three classes. That is, one Bayes decision boundary separates class 1
from class 2, one separates class 1 from class 3, and one separates class 2
from class 3. These three Bayes decision boundaries divide the predictor
space into three regions. The Bayes classifier will classify an observation
according to the region in which it is located.

Once again, we need to estimate the unknown parameters pq, ..., g,
m,...,TK, and 3; the formulas are similar to those used in the one-
dimensional case, given in (4.15). To assign a new observation X = z,
LDA plugs these estimates into (4.19) and classifies to the class for which
51 (x) is largest. Note that in (4.19) 6 (z) is a linear function of z; that is,
the LDA decision rule depends on x only through a linear combination of
its elements. Once again, this is the reason for the word linear in LDA.

In the right-hand panel of Figure 4.6, 20 observations drawn from each of
the three classes are displayed, and the resulting LDA decision boundaries
are shown as solid black lines. Overall, the LDA decision boundaries are
pretty close to the Bayes decision boundaries, shown again as dashed lines.
The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770,
respectively. This indicates that LDA is performing well on this data.

We can perform LDA on the Default data in order to predict whether
or not an individual will default on the basis of credit card balance and
student status. The LDA model fit to the 10,000 training samples results
in a training error rate of 2.75 %. This sounds like a low error rate, but two
caveats must be noted.

e First of all, training error rates will usually be lower than test error
rates, which are the real quantity of interest. In other words, we
might expect this classifier to perform worse if we use it to predict
whether or not a new set of individuals will default. The reason is
that we specifically adjust the parameters of our model to do well on
the training data. The higher the ratio of parameters p to number
of samples n, the more we expect this overfitting to play a role. For
these data we don’t expect this to be a problem, since p = 2 and
n = 10, 000.

e Second, since only 3.33% of the individuals in the training sample
defaulted, a simple but useless classifier that always predicts that

overfitting
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True default status
No Yes | Total
Predicted No 9,644 252 | 9,896

default status  Yes 23 81 104
Total | 9,667 333 | 10,000

TABLE 4.4. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set. Ele-
ments on the diagonal of the matriz represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that
were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.

each individual will not default, regardless of his or her credit card
balance and student status, will result in an error rate of 3.33 %. In
other words, the trivial null classifier will achieve an error rate that
is only a bit higher than the LDA training set error rate.

In practice, a binary classifier such as this one can make two types of
errors: it can incorrectly assign an individual who defaults to the no default
category, or it can incorrectly assign an individual who does not default to
the default category. It is often of interest to determine which of these two
types of errors are being made. A confusion matriz, shown for the Default
data in Table 4.4, is a convenient way to display this information. The
table reveals that LDA predicted that a total of 104 people would default.
Of these people, 81 actually defaulted and 23 did not. Hence only 23 out
of 9,667 of the individuals who did not default were incorrectly labeled.
This looks like a pretty low error rate! However, of the 333 individuals who
defaulted, 252 (or 75.7 %) were missed by LDA. So while the overall error
rate is low, the error rate among individuals who defaulted is very high.
From the perspective of a credit card company that is trying to identify
high-risk individuals, an error rate of 252/333 = 75.7 % among individuals
who default may well be unacceptable.

Class-specific performance is also important in medicine and biology,
where the terms sensitivity and specificity characterize the performance of
a classifier or screening test. In this case the sensitivity is the percentage of
true defaulters that are identified, a low 24.3 % in this case. The specificity
is the percentage of non-defaulters that are correctly identified, here (1 —
23/9,667) x 100 = 99.8 %.

Why does LDA do such a poor job of classifying the customers who de-
fault? In other words, why does it have such a low sensitivity? As we have
seen, LDA is trying to approximate the Bayes classifier, which has the low-
est total error rate out of all classifiers (if the Gaussian model is correct).
That is, the Bayes classifier will yield the smallest possible total number
of misclassified observations, irrespective of which class the errors come
from. That is, some misclassifications will result from incorrectly assigning

null
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True default status
No Yes | Total
Predicted No 9,432 138 | 9,570

default status  Yes 235 195 430
Total | 9,667 333 | 10,000

TABLE 4.5. A confusion matriz compares the LDA predictions to the true de-
fault statuses for the 10,000 training observations in the Default data set, using
a modified threshold value that predicts default for any individuals whose posterior
default probability exceeds 20 %.

a customer who does not default to the default class, and others will re-
sult from incorrectly assigning a customer who defaults to the non-default
class. In contrast, a credit card company might particularly wish to avoid
incorrectly classifying an individual who will default, whereas incorrectly
classifying an individual who will not default, though still to be avoided,
is less problematic. We will now see that it is possible to modify LDA in
order to develop a classifier that better meets the credit card company’s
needs.

The Bayes classifier works by assigning an observation to the class for
which the posterior probability py(X) is greatest. In the two-class case, this
amounts to assigning an observation to the default class if

Pr(default = Yes|X = z) > 0.5. (4.21)

Thus, the Bayes classifier, and by extension LDA, uses a threshold of 50 %
for the posterior probability of default in order to assign an observation
to the default class. However, if we are concerned about incorrectly pre-
dicting the default status for individuals who default, then we can consider
lowering this threshold. For instance, we might label any customer with a
posterior probability of default above 20% to the default class. In other
words, instead of assigning an observation to the default class if (4.21)
holds, we could instead assign an observation to this class if

Pr(default = Yes|X =) > 0.2. (4.22)

The error rates that result from taking this approach are shown in Table 4.5.
Now LDA predicts that 430 individuals will default. Of the 333 individuals
who default, LDA correctly predicts all but 138, or 41.4 %. This is a vast
improvement over the error rate of 75.7% that resulted from using the
threshold of 50 %. However, this improvement comes at a cost: now 235
individuals who do not default are incorrectly classified. As a result, the
overall error rate has increased slightly to 3.73 %. But a credit card company
may consider this slight increase in the total error rate to be a small price to
pay for more accurate identification of individuals who do indeed default.

Figure 4.7 illustrates the trade-off that results from modifying the thresh-
old value for the posterior probability of default. Various error rates are



4.4 Linear Discriminant Analysis 147

’——
-—
© I—
S ] ’/
[0]
T -~
C < -
LO ’
5 -
=
Lu(\l
§
o _| T e e e e e e v v s s v s s s s s s
o
T T T T T I
0.0 0.1 0.2 0.3 0.4 0.5
Threshold

FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and
the orange dotted line indicates the fraction of errors among the non-defaulting
customers.

shown as a function of the threshold value. Using a threshold of 0.5, as in
(4.21), minimizes the overall error rate, shown as a black solid line. This
is to be expected, since the Bayes classifier uses a threshold of 0.5 and is
known to have the lowest overall error rate. But when a threshold of 0.5 is
used, the error rate among the individuals who default is quite high (blue
dashed line). As the threshold is reduced, the error rate among individuals
who default decreases steadily, but the error rate among the individuals
who do not default increases. How can we decide which threshold value is
best? Such a decision must be based on domain knowledge, such as detailed
information about the costs associated with default.

The ROC curve is a popular graphic for simultaneously displaying the
two types of errors for all possible thresholds. The name “ROC” is his-
toric, and comes from communications theory. It is an acronym for receiver
operating characteristics. Figure 4.8 displays the ROC curve for the LDA
classifier on the training data. The overall performance of a classifier, sum-
marized over all possible thresholds, is given by the area under the (ROC)
curve (AUC). An ideal ROC curve will hug the top left corner, so the larger
the AUC the better the classifier. For this data the AUC is 0.95, which is
close to the maximum of one so would be considered very good. We expect
a classifier that performs no better than chance to have an AUC of 0.5
(when evaluated on an independent test set not used in model training).
ROC curves are useful for comparing different classifiers, since they take
into account all possible thresholds. It turns out that the ROC curve for the
logistic regression model of Section 4.3.4 fit to these data is virtually indis-
tinguishable from this one for the LDA model, so we do not display it here.

As we have seen above, varying the classifier threshold changes its true
positive and false positive rate. These are also called the sensitivity and one

ROC curve

area under
the (ROC)

curve

sensitivity
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ROC Curve
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FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
is the sensitivity: the fraction of defaulters that are correctly identified, using
a given threshold value. The false positive rate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance
are not associated with probability of default.

Predicted class
— or Null + or Non-null | Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class + or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N* pP*

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

minus the specificity of our classifier. Since there is an almost bewildering
array of terms used in this context, we now give a summary. Table 4.6
shows the possible results when applying a classifier (or diagnostic test)
to a population. To make the connection with the epidemiology literature,
we think of “4” as the “disease” that we are trying to detect, and “—” as
the “non-disease” state. To make the connection to the classical hypothesis
testing literature, we think of “—” as the null hypothesis and “+” as the
alternative (non-null) hypothesis. In the context of the Default data, “+”
indicates an individual who defaults, and “—” indicates one who does not.

specificity
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Name Definition Synonyms

False Pos. rate FP/N | Type I error, 1—Specificity

True Pos. rate TP/P | 1-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* | Precision, 1—false discovery proportion
Neg. Pred. value TN/N*

TABLE 4.7. Important measures for classification and diagnostic testing,
derived from quantities in Table 4.6.

Table 4.7 lists many of the popular performance measures that are used in
this context. The denominators for the false positive and true positive rates
are the actual population counts in each class. In contrast, the denominators
for the positive predictive value and the negative predictive value are the
total predicted counts for each class.

4.4.4  Quadratic Discriminant Analysis

As we have discussed, LDA assumes that the observations within each
class are drawn from a multivariate Gaussian distribution with a class-
specific mean vector and a covariance matrix that is common to all K
classes. Quadratic discriminant analysis (QDA) provides an alternative
approach. Like LDA, the QDA classifier results from assuming that the
observations from each class are drawn from a Gaussian distribution, and
plugging estimates for the parameters into Bayes’ theorem in order to per-
form prediction. However, unlike LDA, QDA assumes that each class has
its own covariance matrix. That is, it assumes that an observation from the
kth class is of the form X ~ N(ug,Xy), where Xy is a covariance matrix
for the kth class. Under this assumption, the Bayes classifier assigns an
observation X = x to the class for which

1 _ 1
Ok(x) = =5 — )" B (@ = ) — 5 log [By| + log
1 _ _ 1 _ 1
= —§zT2k1z+:cT2kluk—iufgkluk—§log|2k|+logﬂ'k

(4.23)

is largest. So the QDA classifier involves plugging estimates for Xy, ug,
and 7, into (4.23), and then assigning an observation X = x to the class
for which this quantity is largest. Unlike in (4.19), the quantity = appears
as a quadratic function in (4.23). This is where QDA gets its name.

Why does it matter whether or not we assume that the K classes share a
common covariance matrix? In other words, why would one prefer LDA to
QDA, or vice-versa? The answer lies in the bias-variance trade-off. When
there are p predictors, then estimating a covariance matrix requires esti-
mating p(p+1)/2 parameters. QDA estimates a separate covariance matrix
for each class, for a total of Kp(p+1)/2 parameters. With 50 predictors this

quadratic
discriminant
analysis
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FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with 31 = Xa. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approzimated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that 31 # 3s. Since the Bayes decision
boundary is non-linear, it is more accurately approzimated by QDA than by LDA.

is some multiple of 1,275, which is a lot of parameters. By instead assum-
ing that the K classes share a common covariance matrix, the LDA model
becomes linear in z, which means there are Kp linear coefficients to esti-
mate. Consequently, LDA is a much less flexible classifier than QDA, and
so has substantially lower variance. This can potentially lead to improved
prediction performance. But there is a trade-off: if LDA’s assumption that
the K classes share a common covariance matrix is badly off, then LDA
can suffer from high bias. Roughly speaking, LDA tends to be a better bet
than QDA if there are relatively few training observations and so reducing
variance is crucial. In contrast, QDA is recommended if the training set is
very large, so that the variance of the classifier is not a major concern, or if
the assumption of a common covariance matrix for the K classes is clearly
untenable.

Figure 4.9 illustrates the performances of LDA and QDA in two scenarios.
In the left-hand panel, the two Gaussian classes have a common correla-
tion of 0.7 between X; and Xo. As a result, the Bayes decision boundary
is linear and is accurately approximated by the LDA decision boundary.
The QDA decision boundary is inferior, because it suffers from higher vari-
ance without a corresponding decrease in bias. In contrast, the right-hand
panel displays a situation in which the orange class has a correlation of 0.7
between the variables and the blue class has a correlation of —0.7. Now
the Bayes decision boundary is quadratic, and so QDA more accurately
approximates this boundary than does LDA.
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4.5 A Comparison of Classification Methods

In this chapter, we have considered three different classification approaches:
logistic regression, LDA, and QDA. In Chapter 2, we also discussed the
K-nearest neighbors (KNN) method. We now consider the types of
scenarios in which one approach might dominate the others.

Though their motivations differ, the logistic regression and LDA methods
are closely connected. Consider the two-class setting with p = 1 predictor,
and let py (x) and p2(x) = 1—p1(x) be the probabilities that the observation
X =z belongs to class 1 and class 2, respectively. In the LDA framework,
we can see from (4.12) to (4.13) (and a bit of simple algebra) that the log
odds is given by

log (M> = log (pl(x)> =co+ 1z, (4.24)

1 —pi(z) p2(7)

where ¢y and ¢; are functions of 1, 2, and o2. From (4.4), we know that
in logistic regression,

log ( a ) = Bo + P (4.25)
1—pm

Both (4.24) and (4.25) are linear functions of z. Hence, both logistic re-
gression and LDA produce linear decision boundaries. The only difference
between the two approaches lies in the fact that Sy and ($; are estimated
using maximum likelihood, whereas ¢y and ¢y are computed using the esti-
mated mean and variance from a normal distribution. This same connection
between LDA and logistic regression also holds for multidimensional data
with p > 1.

Since logistic regression and LDA differ only in their fitting procedures,
one might expect the two approaches to give similar results. This is often,
but not always, the case. LDA assumes that the observations are drawn
from a Gaussian distribution with a common covariance matrix in each
class, and so can provide some improvements over logistic regression when
this assumption approximately holds. Conversely, logistic regression can
outperform LDA if these Gaussian assumptions are not met.

Recall from Chapter 2 that KNN takes a completely different approach
from the classifiers seen in this chapter. In order to make a prediction for
an observation X = x, the K training observations that are closest to x are
identified. Then X is assigned to the class to which the plurality of these
observations belong. Hence KNN is a completely non-parametric approach:
no assumptions are made about the shape of the decision boundary. There-
fore, we can expect this approach to dominate LDA and logistic regression
when the decision boundary is highly non-linear. On the other hand, KNN
does not tell us which predictors are important; we don’t get a table of
coefficients as in Table 4.3.
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FIGURE 4.10. Bozxplots of the test error rates for each of the linear scenarios
described in the main text.

SCENARIO 4 SCENARIO 5 SCENARIO 6

—_
'
'
"
'
'
'

' —_
' '
'
'
'
'
'
0 '
' I
'
'
'
- . &
' 5
' —_
d ' ' . . —_
| T -
| '
. ' '
- | '
T o '
' S ' '
4 ' ' ' '
I ' '
- '
! -
'
'
'
-

—_

0.40
0.35 0.40
028 030 032

0.35
il
0.30

0.25
2 0.24
F

0.30
0.20

- .

-

0.20
0.18

KNN-1 KNN-CV  LDA  Logistic ~ QDA KNN-1 KNN-CV  LDA  Logistc ~ QDA KNN-1 KNN-CV  LDA  Logistic ~ QDA

FIGURE 4.11. Bozplots of the test error rates for each of the mon-linear sce-
narios described in the main text.

Finally, QDA serves as a compromise between the non-parametric KNN
method and the linear LDA and logistic regression approaches. Since QDA
assumes a quadratic decision boundary, it can accurately model a wider
range of problems than can the linear methods. Though not as flexible
as KNN, QDA can perform better in the presence of a limited number of
training observations because it does make some assumptions about the
form of the decision boundary.

To illustrate the performances of these four classification approaches,
we generated data from six different scenarios. In three of the scenarios,
the Bayes decision boundary is linear, and in the remaining scenarios it
is non-linear. For each scenario, we produced 100 random training data
sets. On each of these training sets, we fit each method to the data and
computed the resulting test error rate on a large test set. Results for the
linear scenarios are shown in Figure 4.10, and the results for the non-linear
scenarios are in Figure 4.11. The KNN method requires selection of K, the
number of neighbors. We performed KNN with two values of K: K = 1,
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and a value of K that was chosen automatically using an approach called
cross-validation, which we discuss further in Chapter 5.

In each of the six scenarios, there were p = 2 predictors. The scenarios
were as follows:

Scenario 1: There were 20 training observations in each of two classes.
The observations within each class were uncorrelated random normal
variables with a different mean in each class. The left-hand panel
of Figure 4.10 shows that LDA performed well in this setting, as
one would expect since this is the model assumed by LDA. KNN
performed poorly because it paid a price in terms of variance that
was not offset by a reduction in bias. QDA also performed worse
than LDA, since it fit a more flexible classifier than necessary. Since
logistic regression assumes a linear decision boundary, its results were
only slightly inferior to those of LDA.

Scenario 2: Details are as in Scenario 1, except that within each
class, the two predictors had a correlation of —0.5. The center panel
of Figure 4.10 indicates little change in the relative performances of
the methods as compared to the previous scenario.

Scenario 3: We generated X7 and Xs from the t-distribution, with .
50 observations per class. The t-distribution has a similar shape to distribution
the normal distribution, but it has a tendency to yield more extreme
points—that is, more points that are far from the mean. In this set-
ting, the decision boundary was still linear, and so fit into the logistic
regression framework. The set-up violated the assumptions of LDA,
since the observations were not drawn from a normal distribution.
The right-hand panel of Figure 4.10 shows that logistic regression
outperformed LDA, though both methods were superior to the other
approaches. In particular, the QDA results deteriorated considerably
as a consequence of non-normality.

Scenario 4: The data were generated from a normal distribution,
with a correlation of 0.5 between the predictors in the first class,
and correlation of —0.5 between the predictors in the second class.
This setup corresponded to the QDA assumption, and resulted in
quadratic decision boundaries. The left-hand panel of Figure 4.11
shows that QDA outperformed all of the other approaches.

Scenario 5: Within each class, the observations were generated from
a normal distribution with uncorrelated predictors. However, the re-
sponses were sampled from the logistic function using X7, X2, and
X7 x X5 as predictors. Consequently, there is a quadratic decision
boundary. The center panel of Figure 4.11 indicates that QDA once
again performed best, followed closely by KNN-CV. The linear meth-
ods had poor performance.
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Scenario 6: Details are as in the previous scenario, but the responses
were sampled from a more complicated non-linear function. As a re-
sult, even the quadratic decision boundaries of QDA could not ade-
quately model the data. The right-hand panel of Figure 4.11 shows
that QDA gave slightly better results than the linear methods, while
the much more flexible KNN-CV method gave the best results. But
KNN with K = 1 gave the worst results out of all methods. This
highlights the fact that even when the data exhibits a complex non-
linear relationship, a non-parametric method such as KNN can still
give poor results if the level of smoothness is not chosen correctly.

These six examples illustrate that no one method will dominate the oth-
ers in every situation. When the true decision boundaries are linear, then
the LDA and logistic regression approaches will tend to perform well. When
the boundaries are moderately non-linear, QDA may give better results.
Finally, for much more complicated decision boundaries, a non-parametric
approach such as KNN can be superior. But the level of smoothness for a
non-parametric approach must be chosen carefully. In the next chapter we
examine a number of approaches for choosing the correct level of smooth-
ness and, in general, for selecting the best overall method.

Finally, recall from Chapter 3 that in the regression setting we can accom-
modate a non-linear relationship between the predictors and the response
by performing regression using transformations of the predictors. A similar
approach could be taken in the classification setting. For instance, we could
create a more flexible version of logistic regression by including X2, X3,
and even X* as predictors. This may or may not improve logistic regres-
sion’s performance, depending on whether the increase in variance due to
the added flexibility is offset by a sufficiently large reduction in bias. We
could do the same for LDA. If we added all possible quadratic terms and
cross-products to LDA, the form of the model would be the same as the
QDA model, although the parameter estimates would be different. This
device allows us to move somewhere between an LDA and a QDA model.

4.6 Lab: Logistic Regression, LDA, QDA, and
KNN

4.6.1 The Stock Market Data

We will begin by examining some numerical and graphical summaries of
the smarket data, which is part of the ISLR library. This data set consists of
percentage returns for the S&P 500 stock index over 1,250 days, from the
beginning of 2001 until the end of 2005. For each date, we have recorded
the percentage returns for each of the five previous trading days, Lagl
through Lags. We have also recorded Volume (the number of shares traded
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on the previous day, in billions), Today (the percentage return on the date
in question) and Direction (whether the market was Up or Down on this
date).

> library (ISLR)
> names (Smarket)

[1] "Year" "Lagl" "Lag2" "Lag3" "Lag4"
[6] "Lagh" "Volume" "Today" "Direction"
> dim(Smarket)
[1] 1250 9
> summary (Smarket)
Year Lagl Lag2
Min. 12001 Min. :-4.92200 Min. :-4.92200

1st Qu.:2002 1st Qu.:-0.63950 1st Qu.:-0.63950
Median :2003 Median : 0.03900 Median : 0.03900

Mean :2003 Mean : 0.00383 Mean : 0.00392

3rd Qu.:2004 3rd Qu.: 0.59675 3rd Qu.: 0.59675

Max . 12005 Max . : 5.73300 Max . : 5.73300
Lag3 Lag4 Lagb

Min. :-4.92200 Min . :-4.92200 Min. :-4.92200

1st Qu.:-0.64000 1st Qu.:-0.64000 1st Qu.:-0.64000

Median : 0.03850 Median : 0.03850 Median : 0.03850

Mean : 0.00172 Mean : 0.00164 Mean : 0.00561

3rd Qu.: 0.59675 3rd Qu.: 0.59675 3rd Qu.: 0.59700

Max . : 5.73300 Max . 5.73300 Max . 5.73300
Volume Today Direction

Min. :0.3566 Min . :—-4.92200 Down : 602

1st Qu.:1.257 1st Qu.:-0.63950 Up 1648

Median :1.423 Median : 0.03850

Mean 1.478 Mean : 0.00314

3rd Qu.:1.642 3rd Qu.: 0.59675

Max . :3.152 Max . 5.73300

> pairs(Smarket)

The cor() function produces a matrix that contains all of the pairwise
correlations among the predictors in a data set. The first command below
gives an error message because the Direction variable is qualitative.

> cor (Smarket)

Error in cor (Smarket) : ’x’ must be numeric
> cor (Smarket [,-9])

Year Lagil Lag2 Lag3 Lag4 Lagb
Year .0000 0.02970 0.03060 0.03319 0.03569 0.02979
Lagil .0297 1.00000 -0.02629 -0.01080 -0.00299 -0.00567
Lag2 .0306 -0.02629 1.00000 -0.02590 -0.01085 -0.00356
Lag3 .0332 -0.01080 -0.02590 1.00000 -0.02405 -0.01881

Lag5h .0298 -0.00567 -0.00356 -0.01881 -0.02708 1.00000

Volume 0.5390 0.04091 -0.04338 -0.04182 -0.04841 -0.02200

Today .0301 -0.02616 -0.01025 -0.00245 -0.00690 -0.03486
Volume Today

Year 0.5390 0.03010

1
0
0
0
Lag4 0.0357 -0.00299 -0.01085 -0.02405 1.00000 -0.02708
0
0
0
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Lagil 0.0409 -0.02616
Lag2 -0.0434 -0.01025
Lag3 -0.0418 -0.00245
Lag4 -0.0484 -0.00690
Lagh -0.0220 -0.03486

Volume 1.0000 0.01459
Today 0.0146 1.00000

As one would expect, the correlations between the lag variables and to-
day’s returns are close to zero. In other words, there appears to be little
correlation between today’s returns and previous days’ returns. The only
substantial correlation is between Year and Volume. By plotting the data we
see that Volume is increasing over time. In other words, the average number
of shares traded daily increased from 2001 to 2005.

> attach (Smarket)
> plot(Volume)

4.6.2  Logistic Regression

Next, we will fit a logistic regression model in order to predict Direction
using Lagl through Lag5s and Volume. The glm() function fits generalized
linear models, a class of models that includes logistic regression. The syntax
of the glm() function is similar to that of Im(), except that we must pass in
the argument family=binomial in order to tell R to run a logistic regression
rather than some other type of generalized linear model.

> glm.fits=glm(Direction~Lagl+Lag2+Lag3+Lag4+Lagb+Volume,
data=Smarket ,family=binomial)
> summary (glm.fits)

Call:
glm (formula = Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagh
+ Volume, family = binomial, data = Smarket)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.45 -1.20 1.07 1.15 1.33

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.24074 -0.52 0.60
Lagil -0.07307 0.05017 -1.46 0.15
Lag2 -0.04230 0.05009 -0.84 0.40
Lag3 0.01109 0.04994 0.22 0.82
Lag4 0.00936 0.04997 0.19 0.85
Lagh 0.01031 0.04951 0.21 0.83
Volume 0.13544 0.15836 0.86 0.39

glm()

generalized
linear model
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1731.2 on 1249 degrees of freedom
Residual deviance: 1727.6 on 1243 degrees of freedom
AIC: 1742

Number of Fisher Scoring iterations: 3

The smallest p-value here is associated with Lagi. The negative coefficient
for this predictor suggests that if the market had a positive return yesterday,
then it is less likely to go up today. However, at a value of 0.15, the p-value
is still relatively large, and so there is no clear evidence of a real association
between Lagl and Direction.

We use the coef () function in order to access just the coefficients for this
fitted model. We can also use the summary() function to access particular
aspects of the fitted model, such as the p-values for the coefficients.

> coef (glm.fits)

(Intercept) Lagil Lag?2 Lag3 Lag4

-0.12600 -0.07307 -0.04230 0.01109 0.00936
Lagh Volume
0.01031 0.13544

> summary (glm.fits)$coef
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.12600 0.2407 -0.523 0.601

Lagil -0.07307 0.0502 -1.457 0.145

Lag2 -0.04230 0.0501 -0.845 0.398

Lag3 0.01109 0.0499 0.222 0.824

Lag4 0.00936 0.0500 0.187 0.851

Lagb 0.01031 0.0495 0.208 0.835

Volume 0.13544 0.1584 0.855 0.392

> summary (glm.fits)$coef [,4]

(Intercept) Lagil Lag?2 Lag3 Lag4
0.601 0.145 0.398 0.824 0.851
Lagb Volume
0.835 0.392

The predict() function can be used to predict the probability that the
market will go up, given values of the predictors. The type="response"
option tells R to output probabilities of the form P(Y = 1|X), as opposed
to other information such as the logit. If no data set is supplied to the
predict() function, then the probabilities are computed for the training
data that was used to fit the logistic regression model. Here we have printed
only the first ten probabilities. We know that these values correspond to
the probability of the market going up, rather than down, because the
contrasts() function indicates that R has created a dummy variable with
a 1 for Up.
> glm.probs=predict (glm.fits,type="response")
> glm.probs [1:10]

1 2 3 4 5 6 7 8 9 10
0.507 0.481 0.481 0.515 0.511 0.507 0.493 0.509 0.518 0.489
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> contrasts (Direction)

Up
Down O
Up 1

In order to make a prediction as to whether the market will go up or
down on a particular day, we must convert these predicted probabilities
into class labels, Up or Down. The following two commands create a vector
of class predictions based on whether the predicted probability of a market
increase is greater than or less than 0.5.

> glm.pred=rep ("Down",1250)
> glm.pred[glm.probs>.5]="Up"

The first command creates a vector of 1,250 Down elements. The second line
transforms to Up all of the elements for which the predicted probability of a
market increase exceeds 0.5. Given these predictions, the table() function
can be used to produce a confusion matrix in order to determine how many
observations were correctly or incorrectly classified.

> table(glm.pred,Direction)
Direction
glm.pred Down Up
Down 145 141
Up 457 507
> (507+145) /1250
[11 0.5216
> mean(glm.pred==Direction)
[11 0.5216

The diagonal elements of the confusion matrix indicate correct predictions,
while the off-diagonals represent incorrect predictions. Hence our model
correctly predicted that the market would go up on 507 days and that
it would go down on 145 days, for a total of 507 + 145 = 652 correct
predictions. The mean() function can be used to compute the fraction of
days for which the prediction was correct. In this case, logistic regression
correctly predicted the movement of the market 52.2% of the time.

At first glance, it appears that the logistic regression model is working
a little better than random guessing. However, this result is misleading
because we trained and tested the model on the same set of 1,250 observa-
tions. In other words, 100 — 52.2 = 47.8 % is the training error rate. As we
have seen previously, the training error rate is often overly optimistic—it
tends to underestimate the test error rate. In order to better assess the ac-
curacy of the logistic regression model in this setting, we can fit the model
using part of the data, and then examine how well it predicts the held out
data. This will yield a more realistic error rate, in the sense that in prac-
tice we will be interested in our model’s performance not on the data that
we used to fit the model, but rather on days in the future for which the
market’s movements are unknown.

table()
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To implement this strategy, we will first create a vector corresponding
to the observations from 2001 through 2004. We will then use this vector
to create a held out data set of observations from 2005.
> train=(Year <2005)
> Smarket .2005=Smarket [!train,]
> dim(Smarket .2005)

[1] 252 9
> Direction .2005=Direction [!train]

The object train is a vector of 1,250 elements, corresponding to the ob-
servations in our data set. The elements of the vector that correspond to
observations that occurred before 2005 are set to TRUE, whereas those that
correspond to observations in 2005 are set to FALSE. The object train is
a Boolean vector, since its elements are TRUE and FALSE. Boolean vectors
can be used to obtain a subset of the rows or columns of a matrix. For
instance, the command Smarket [train,] would pick out a submatrix of the
stock market data set, corresponding only to the dates before 2005, since
those are the ones for which the elements of train are TRUE. The ! symbol
can be used to reverse all of the elements of a Boolean vector. That is,
train is a vector similar to train, except that the elements that are TRUE
in train get swapped to FALSE in !train, and the elements that are FALSE
in train get swapped to TRUE in !train. Therefore, Smarket[!train,] yields
a submatrix of the stock market data containing only the observations for
which train is FALSE—that is, the observations with dates in 2005. The
output above indicates that there are 252 such observations.

We now fit a logistic regression model using only the subset of the obser-
vations that correspond to dates before 2005, using the subset argument.
We then obtain predicted probabilities of the stock market going up for
each of the days in our test set—that is, for the days in 2005.
> glm.fits=glm(Direction~Lagl+Lag2+Lag3+Lag4+Lagb+Volume,

data=Smarket ,family=binomial ,subset=train)
> glm.probs=predict (glm.fits, Smarket .2005, type="response")

Notice that we have trained and tested our model on two completely sep-
arate data sets: training was performed using only the dates before 2005,
and testing was performed using only the dates in 2005. Finally, we com-
pute the predictions for 2005 and compare them to the actual movements
of the market over that time period.
> glm.pred=rep ("Down" ,252)
> glm.pred[glm.probs>.5]="Up"
> table(glm.pred,Direction .2005)
Direction .2005

glm.pred Down Up

Down 77T 97

Up 34 44
> mean (glm.pred==Direction .2005)

boolean
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[1] 0.48
> mean(glm.pred!=Direction .2005)
[1] 0.52

The !'= notation means not equal to, and so the last command computes
the test set error rate. The results are rather disappointing: the test error
rate is 52 %, which is worse than random guessing! Of course this result
is not all that surprising, given that one would not generally expect to be
able to use previous days’ returns to predict future market performance.
(After all, if it were possible to do so, then the authors of this book would
be out striking it rich rather than writing a statistics textbook.)

We recall that the logistic regression model had very underwhelming p-
values associated with all of the predictors, and that the smallest p-value,
though not very small, corresponded to Lagl. Perhaps by removing the
variables that appear not to be helpful in predicting Direction, we can
obtain a more effective model. After all, using predictors that have no
relationship with the response tends to cause a deterioration in the test
error rate (since such predictors cause an increase in variance without a
corresponding decrease in bias), and so removing such predictors may in
turn yield an improvement. Below we have refit the logistic regression using
just Lagl and Lag2, which seemed to have the highest predictive power in
the original logistic regression model.

> glm.fits=glm(Direction~Lagl+Lag2,data=Smarket ,family=binomial,
subset=train)
glm.probs=predict (glm.fits, Smarket .2005, type="response")
glm.pred=rep ("Down" ,252)
glm.pred[glm.probs>.5]="Up"
table (glm.pred,Direction .2005)
Direction .2005

glm.pred Down Up

Down 35 35

Up 76 106
> mean(glm.pred==Direction .2005)
[11 0.56
> 106/(106+76)
[1] 0.582

vV V. V VvV

Now the results appear to be a little better: 56% of the daily movements
have been correctly predicted. It is worth noting that in this case, a much
simpler strategy of predicting that the market will increase every day will
also be correct 56% of the time! Hence, in terms of overall error rate, the
logistic regression method is no better than the naive approach. However,
the confusion matrix shows that on days when logistic regression predicts
an increase in the market, it has a 58% accuracy rate. This suggests a
possible trading strategy of buying on days when the model predicts an in-
creasing market, and avoiding trades on days when a decrease is predicted.
Of course one would need to investigate more carefully whether this small
improvement was real or just due to random chance.
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Suppose that we want to predict the returns associated with particular
values of Lagl and Lag2. In particular, we want to predict Direction on a
day when Lagl and Lag2 equal 1.2 and 1.1, respectively, and on a day when
they equal 1.5 and —0.8. We do this using the predict() function.
> predict (glm.fits,newdata=data.frame(Lagl=c(1.2,1.5),

Lag2=c(1.1,-0.8)) ,type="response")
1 2
0.4791 0.4961

4.6.3 Linear Discriminant Analysis

Now we will perform LDA on the Smarket data. In R, we fit an LDA model
using the 1da() function, which is part of the MASS library. Notice that the
syntax for the 1da() function is identical to that of 1m(), and to that of
glm() except for the absence of the family option. We fit the model using
only the observations before 2005.

> library (MASS)

> lda.fit=1da(Direction~Lagl+Lag2,data=Smarket ,subset=train)

> lda.fit

Call:

lda(Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.492 0.508

Group means:

Lagl Lag2
Down 0.0428 0.0339
Up -0.0395 -0.0313

Coefficients of linear discriminants:
LD1

Lagl -0.642

Lag2 -0.514

> plot(lda.fit)

The LDA output indicates that 71 = 0.492 and 75 = 0.508; in other words,
49.2% of the training observations correspond to days during which the
market went down. It also provides the group means; these are the average
of each predictor within each class, and are used by LDA as estimates
of pg. These suggest that there is a tendency for the previous 2 days’
returns to be negative on days when the market increases, and a tendency
for the previous days’ returns to be positive on days when the market
declines. The coefficients of linear discriminants output provides the linear
combination of Lagl and Lag2 that are used to form the LDA decision rule.
In other words, these are the multipliers of the elements of X = z in
(4.19). If —0.642 x Lagl —0.514 x Lag2 is large, then the LDA classifier will

1da()
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predict a market increase, and if it is small, then the LDA classifier will
predict a market decline. The plot() function produces plots of the linear
discriminants, obtained by computing —0.642 x Lagl — 0.514 x Lag2 for
each of the training observations.

The predict() function returns a list with three elements. The first ele-
ment, class, contains LDA’s predictions about the movement of the market.
The second element, posterior, is a matrix whose kth column contains the
posterior probability that the corresponding observation belongs to the kth
class, computed from (4.10). Finally, x contains the linear discriminants,
described earlier.

> lda.pred=predict (1lda.fit, Smarket .2005)
> names (lda.pred)

[1] "class" "posterior" "x"

As we observed in Section 4.5, the LDA and logistic regression predictions
are almost identical.

> lda.class=1da.pred$class
> table(lda.class ,Direction .2005)
Direction .2005
lda.pred Down Up
Down 35 35

Up 76 106
> mean(lda.class==Direction .2005)
[1] 0.56

Applying a 50 % threshold to the posterior probabilities allows us to recre-
ate the predictions contained in 1da.pred$class.

> sum(lda.pred$posterior[,1]>=.5)
[11 70
> sum(lda.pred$posterior[,1]1<.5)
[1] 182

Notice that the posterior probability output by the model corresponds to
the probability that the market will decrease:

> lda.pred$posterior[1:20,1]
> 1lda.class [1:20]

If we wanted to use a posterior probability threshold other than 50 % in
order to make predictions, then we could easily do so. For instance, suppose
that we wish to predict a market decrease only if we are very certain that the
market will indeed decrease on that day—say, if the posterior probability
is at least 90 %.

> sum(lda.pred$posterior[,1]>.9)
[11 0

No days in 2005 meet that threshold! In fact, the greatest posterior prob-
ability of decrease in all of 2005 was 52.02 %.
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4.6.4  Quadratic Discriminant Analysis

We will now fit a QDA model to the Smarket data. QDA is implemented
in R using the qda() function, which is also part of the MASS library. The
syntax is identical to that of 1da().

> qda.fit=qda(Direction~Lagl+Lag2,data=Smarket ,subset=train)

> qda.fit

Call:

gqda(Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.492 0.508

Group means:

Lagl Lag2
Down 0.0428 0.0339
Up -0.0395 -0.0313

The output contains the group means. But it does not contain the coef-
ficients of the linear discriminants, because the QDA classifier involves a
quadratic, rather than a linear, function of the predictors. The predict ()
function works in exactly the same fashion as for LDA.

> qda.class=predict (qda.fit, Smarket .2005) $class
> table(qda.class ,Direction .2005)
Direction .2005
qda.class Down Up
Down 30 20

Up 81 121
> mean(qda.class==Direction .2005)
[1] 0.599

Interestingly, the QDA predictions are accurate almost 60 % of the time,
even though the 2005 data was not used to fit the model. This level of accu-
racy is quite impressive for stock market data, which is known to be quite
hard to model accurately. This suggests that the quadratic form assumed
by QDA may capture the true relationship more accurately than the linear
forms assumed by LDA and logistic regression. However, we recommend
evaluating this method’s performance on a larger test set before betting
that this approach will consistently beat the market!

4.6.5 K-Nearest Neighbors

We will now perform KNN using the knn() function, which is part of the
class library. This function works rather differently from the other model-
fitting functions that we have encountered thus far. Rather than a two-step
approach in which we first fit the model and then we use the model to make
predictions, knn() forms predictions using a single command. The function
requires four inputs.

qda()

knn

O
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1. A matrix containing the predictors associated with the training data,
labeled train.X below.

2. A matrix containing the predictors associated with the data for which
we wish to make predictions, labeled test.X below.

3. A vector containing the class labels for the training observations,
labeled train.Direction below.

4. A value for K, the number of nearest neighbors to be used by the
classifier.

We use the cbind() function, short for column bind, to bind the Lagil and
Lag2 variables together into two matrices, one for the training set and the
other for the test set.

library (class)

train.X=cbind (Lagl,Lag2) [train,]
test.X=cbind(Lagl,Lag2) [!train,]
train.Direction=Direction [train]

vV V Vv Vv

Now the knn() function can be used to predict the market’s movement for
the dates in 2005. We set a random seed before we apply knn() because
if several observations are tied as nearest neighbors, then R will randomly
break the tie. Therefore, a seed must be set in order to ensure reproducibil-
ity of results.

> set.seed (1)
> knn.pred=knn (train.X,test.X,train.Direction , k=1)
> table(knn.pred,Direction .2005)
Direction .2005
knn.pred Down Up
Down 43 58

Up 68 83
> (83+43) /252
[1] 0.5

The results using K = 1 are not very good, since only 50 % of the observa-
tions are correctly predicted. Of course, it may be that K = 1 results in an
overly flexible fit to the data. Below, we repeat the analysis using K = 3.

> knn.pred=knn (train.X,test.X,train.Direction , k=3)
> table (knn.pred,Direction .2005)
Direction .2005
knn.pred Down Up
Down 48 54

Up 63 87
> mean (knn.pred==Direction .2005)
[1] 0.536

The results have improved slightly. But increasing K further turns out
to provide no further improvements. It appears that for this data, QDA
provides the best results of the methods that we have examined so far.

cbind )
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4.6.6  An Application to Caravan Insurance Data

Finally, we will apply the KNN approach to the Caravan data set, which is
part of the ISLR library. This data set includes 85 predictors that measure
demographic characteristics for 5,822 individuals. The response variable is
Purchase, which indicates whether or not a given individual purchases a
caravan insurance policy. In this data set, only 6% of people purchased
caravan insurance.
> dim(Caravan)
[1] 5822 86
> attach(Caravan)
> summary (Purchase)

No Yes
5474 348
> 348/5822
[1] 0.0598

Because the KNN classifier predicts the class of a given test observation by
identifying the observations that are nearest to it, the scale of the variables
matters. Any variables that are on a large scale will have a much larger
effect on the distance between the observations, and hence on the KNN
classifier, than variables that are on a small scale. For instance, imagine a
data set that contains two variables, salary and age (measured in dollars
and years, respectively). As far as KNN is concerned, a difference of $1,000
in salary is enormous compared to a difference of 50 years in age. Conse-
quently, salary will drive the KNN classification results, and age will have
almost no effect. This is contrary to our intuition that a salary difference
of $1,000 is quite small compared to an age difference of 50 years. Further-
more, the importance of scale to the KNN classifier leads to another issue:
if we measured salary in Japanese yen, or if we measured age in minutes,
then we’d get quite different classification results from what we get if these
two variables are measured in dollars and years.

A good way to handle this problem is to standardize the data so that all
variables are given a mean of zero and a standard deviation of one. Then
all variables will be on a comparable scale. The scale() function does just
this. In standardizing the data, we exclude column 86, because that is the
qualitative Purchase variable.
> standardized.X=scale(Caravan[,-86])
> var (Caravan[,1])

[1] 165

> var (Caravan [,2])

[1] 0.165

> var (standardized.X[,1])

[1] 1

> var (standardized.X[,2])

[1] 1

Now every column of standardized.X has a standard deviation of one and
a mean of zero.

standardize

scale()
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We now split the observations into a test set, containing the first 1,000
observations, and a training set, containing the remaining observations.
We fit a KNN model on the training data using K = 1, and evaluate its
performance on the test data.

test=1:1000
train.X=standardized.X[-test,]
test.X=standardized.X[test,]
train.Y=Purchase [-test]
test.Y=Purchase [test]
set.seed (1)

knn.pred=knn (train.X,test.X,train.Y,k=1)
mean(test.Y!=knn.pred)

[1] 0.118

> mean(test.Y!="No")

[1] 0.059

V V.V V V V VvV

The vector test is numeric, with values from 1 through 1,000. Typing
standardized.X[test,] yields the submatrix of the data containing the ob-
servations whose indices range from 1 to 1,000, whereas typing
standardized.X[-test,] yields the submatrix containing the observations
whose indices do not range from 1 to 1,000. The KNN error rate on the
1,000 test observations is just under 12%. At first glance, this may ap-
pear to be fairly good. However, since only 6 % of customers purchased
insurance, we could get the error rate down to 6 % by always predicting No
regardless of the values of the predictors!

Suppose that there is some non-trivial cost to trying to sell insurance
to a given individual. For instance, perhaps a salesperson must visit each
potential customer. If the company tries to sell insurance to a random
selection of customers, then the success rate will be only 6 %, which may
be far too low given the costs involved. Instead, the company would like
to try to sell insurance only to customers who are likely to buy it. So the
overall error rate is not of interest. Instead, the fraction of individuals that
are correctly predicted to buy insurance is of interest.

It turns out that KNN with K = 1 does far better than random guessing
among the customers that are predicted to buy insurance. Among 77 such
customers, 9, or 11.7 %, actually do purchase insurance. This is double the
rate that one would obtain from random guessing.

> table (knn.pred,test.Y)
test.Y
knn.pred No Yes
No 873 50
Yes 68 9
> 9/(68+9)
[11 0.117

Using K = 3, the success rate increases to 19 %, and with K = 5 the rate is
26.7 %. This is over four times the rate that results from random guessing.
It appears that KNN is finding some real patterns in a difficult data set!
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> knn.pred=knn (train.X,test.X,train.Y,k=3)
> table (knn.pred,test.Y)
test.Y
knn.pred No Yes
No 920 54
Yes 21 5
> 5/26
[1] 0.192
> knn.pred=knn (train.X,test.X,train.Y,k=5)
> table (knn.pred,test.Y)
test.Y
knn.pred No Yes
No 930 55
Yes 11 4
> 4/15
[1] 0.267

As a comparison, we can also fit a logistic regression model to the data.
If we use 0.5 as the predicted probability cut-off for the classifier, then
we have a problem: only seven of the test observations are predicted to
purchase insurance. Even worse, we are wrong about all of these! However,
we are not required to use a cut-off of 0.5. If we instead predict a purchase
any time the predicted probability of purchase exceeds 0.25, we get much
better results: we predict that 33 people will purchase insurance, and we
are correct for about 33% of these people. This is over five times better
than random guessing!

> glm.fits=glm(Purchase~.,data=Caravan,family=binomial,

subset=-test)
Warning message:
glm.fits: fitted probabilities numerically O or 1 occurred
> glm.probs=predict (glm.fits,Caravan[test,],type="response")
> glm.pred=rep("No",1000)
> glm.pred[glm.probs>.5]="Yes"
> table(glm.pred,test.Y)

test.Y

glm.pred No Yes

No 934 59

Yes 7 0
> glm.pred=rep ("No",1000)
> glm.pred[glm.probs>.25]="Yes"
> table(glm.pred,test.Y)

test.Y

glm.pred ©No Yes

No 919 48

Yes 22 11
> 11/(22+11)
[1]1 0.333
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4.7 Exercises

Conceptual

1. Using a little bit of algebra, prove that (4.2) is equivalent to (4.3). In

other words, the logistic function representation and logit represen-
tation for the logistic regression model are equivalent.

. It was stated in the text that classifying an observation to the class

for which (4.12) is largest is equivalent to classifying an observation
to the class for which (4.13) is largest. Prove that this is the case. In
other words, under the assumption that the observations in the kth
class are drawn from a N (ug,o?) distribution, the Bayes’ classifier
assigns an observation to the class for which the discriminant function
is maximized.

This problem relates to the QDA model, in which the observations
within each class are drawn from a normal distribution with a class-
specific mean vector and a class specific covariance matrix. We con-
sider the simple case where p = 1; i.e. there is only one feature.

Suppose that we have K classes, and that if an observation belongs
to the kth class then X comes from a one-dimensional normal dis-
tribution, X ~ N(uk,0%). Recall that the density function for the
one-dimensional normal distribution is given in (4.11). Prove that in
this case, the Bayes’ classifier is not linear. Argue that it is in fact
quadratic.

Hint: For this problem, you should follow the arguments laid out in

Section 4.4.2, but without making the assumption that o3 = ... = 0%

. When the number of features p is large, there tends to be a deteri-

oration in the performance of KNN and other local approaches that
perform prediction using only observations that are near the test ob-
servation for which a prediction must be made. This phenomenon is
known as the curse of dimensionality, and it ties into the fact that
non-parametric approaches often perform poorly when p is large. We
will now investigate this curse.

(a) Suppose that we have a set of observations, each with measure-
ments on p = 1 feature, X. We assume that X is uniformly
(evenly) distributed on [0, 1]. Associated with each observation
is a response value. Suppose that we wish to predict a test obser-
vation’s response using only observations that are within 10 % of
the range of X closest to that test observation. For instance, in
order to predict the response for a test observation with X = 0.6,

@

curse of di-
mensionality
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we will use observations in the range [0.55,0.65]. On average,
what fraction of the available observations will we use to make
the prediction?

Now suppose that we have a set of observations, each with
measurements on p = 2 features, X; and X,. We assume that
(X1, X2) are uniformly distributed on [0, 1] x [0, 1]. We wish to
predict a test observation’s response using only observations that
are within 10 % of the range of X; and within 10 % of the range
of X5 closest to that test observation. For instance, in order to
predict the response for a test observation with X; = 0.6 and
X2 = 0.35, we will use observations in the range [0.55, 0.65] for
X1 and in the range [0.3,0.4] for X5. On average, what fraction
of the available observations will we use to make the prediction?

Now suppose that we have a set of observations on p = 100 fea-
tures. Again the observations are uniformly distributed on each
feature, and again each feature ranges in value from 0 to 1. We
wish to predict a test observation’s response using observations
within the 10 % of each feature’s range that is closest to that test
observation. What fraction of the available observations will we
use to make the prediction?

Using your answers to parts (a)—(c), argue that a drawback of
KNN when p is large is that there are very few training obser-
vations “near” any given test observation.

Now suppose that we wish to make a prediction for a test obser-
vation by creating a p-dimensional hypercube centered around
the test observation that contains, on average, 10 % of the train-
ing observations. For p = 1,2, and 100, what is the length of
each side of the hypercube? Comment on your answer.

Note: A hypercube is a generalization of a cube to an arbitrary
number of dimensions. When p =1, a hypercube is simply a line
segment, when p = 2 it is a square, and when p = 100 it is a
100-dimensional cube.

5. We now examine the differences between LDA and QDA.

If the Bayes decision boundary is linear, do we expect LDA or
QDA to perform better on the training set? On the test set?

If the Bayes decision boundary is non-linear, do we expect LDA
or QDA to perform better on the training set? On the test set?

In general, as the sample size n increases, do we expect the test
prediction accuracy of QDA relative to LDA to improve, decline,
or be unchanged? Why?
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(d) True or False: Even if the Bayes decision boundary for a given
problem is linear, we will probably achieve a superior test er-
ror rate using QDA rather than LDA because QDA is flexible
enough to model a linear decision boundary. Justify your answer.

. Suppose we collect data for a group of students in a statistics class

with variables X7 =hours studied, X, =undergrad GPA, and Y =
receive an A. We fit a logistic regression and produce estimated
coefficient, By = —6, 81 = 0.05, B2 = 1.

(a) Estimate the probability that a student who studies for 40h and
has an undergrad GPA of 3.5 gets an A in the class.

(b) How many hours would the student in part (a) need to study to
have a 50 % chance of getting an A in the class?

Suppose that we wish to predict whether a given stock will issue a
dividend this year (“Yes” or “No”) based on X, last year’s percent
profit. We examine a large number of companies and discover that the
mean value of X for companies that issued a dividend was X = 10,
while the mean for those that didn’t was X = 0. In addition, the
variance of X for these two sets of companies was 62 = 36. Finally,
80 % of companies issued dividends. Assuming that X follows a nor-
mal distribution, predict the probability that a company will issue
a dividend this year given that its percentage profit was X = 4 last

year.

Hint: Recall that the densitg; function for a mormal random variable

is f(x) = \/#767(967“)2/20 . You will need to use Bayes’ theorem.

Suppose that we take a data set, divide it into equally-sized training
and test sets, and then try out two different classification procedures.
First we use logistic regression and get an error rate of 20 % on the
training data and 30 % on the test data. Next we use 1-nearest neigh-
bors (i.e. K = 1) and get an average error rate (averaged over both
test and training data sets) of 18 %. Based on these results, which
method should we prefer to use for classification of new observations?
Why?

This problem has to do with odds.
(a) On average, what fraction of people with an odds of 0.37 of
defaulting on their credit card payment will in fact default?

(b) Suppose that an individual has a 16 % chance of defaulting on
her credit card payment. What are the odds that she will de-
fault?
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10. This question should be answered using the Weekly data set, which
is part of the ISLR package. This data is similar in nature to the
Smarket data from this chapter’s lab, except that it contains 1,089
weekly returns for 21 years, from the beginning of 1990 to the end of
2010.

(a)
(b)

Produce some numerical and graphical summaries of the Weekly
data. Do there appear to be any patterns?

Use the full data set to perform a logistic regression with
Direction as the response and the five lag variables plus Volume
as predictors. Use the summary function to print the results. Do
any of the predictors appear to be statistically significant? If so,
which ones?

Compute the confusion matrix and overall fraction of correct
predictions. Explain what the confusion matrix is telling you
about the types of mistakes made by logistic regression.

Now fit the logistic regression model using a training data period
from 1990 to 2008, with Lag2 as the only predictor. Compute the
confusion matrix and the overall fraction of correct predictions
for the held out data (that is, the data from 2009 and 2010).

Repeat (d) using LDA.

Repeat (d) using QDA.

Repeat (d) using KNN with K = 1.

Which of these methods appears to provide the best results on
this data?

Experiment with different combinations of predictors, includ-
ing possible transformations and interactions, for each of the
methods. Report the variables, method, and associated confu-
sion matrix that appears to provide the best results on the held
out data. Note that you should also experiment with values for
K in the KNN classifier.

11. In this problem, you will develop a model to predict whether a given
car gets high or low gas mileage based on the Auto data set.

(a)

Create a binary variable, mpg01, that contains a 1 if mpg contains
a value above its median, and a 0 if mpg contains a value below
its median. You can compute the median using the median()
function. Note you may find it helpful to use the data.frame()
function to create a single data set containing both mpgo1 and
the other Auto variables.
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(b)

Classification

Explore the data graphically in order to investigate the associ-
ation between mpg01 and the other features. Which of the other
features seem most likely to be useful in predicting mpg01? Scat-
terplots and boxplots may be useful tools to answer this ques-
tion. Describe your findings.

Split the data into a training set and a test set.

Perform LDA on the training data in order to predict mpg01
using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

Perform QDA on the training data in order to predict mpg01
using the variables that seemed most associated with mpg01 in
(b). What is the test error of the model obtained?

Perform logistic regression on the training data in order to pre-
dict mpg01 using the variables that seemed most associated with
mpgO1 in (b). What is the test error of the model obtained?

Perform KNN on the training data, with several values of K, in
order to predict mpg01. Use only the variables that seemed most
associated with mpgo1 in (b). What test errors do you obtain?
Which value of K seems to perform the best on this data set?

12. This problem involves writing functions.

(a)

Write a function, Power (), that prints out the result of raising 2
to the 3rd power. In other words, your function should compute
23 and print out the results.
Hint: Recall that x~a raises x to the power a. Use the print()
function to output the result.

Create a new function, Power2(), that allows you to pass any
two numbers, x and a, and prints out the value of x~a. You can
do this by beginning your function with the line

> Power2=function(x,a){

You should be able to call your function by entering, for instance,

> Power2(3,8)

on the command line. This should output the value of 3%, namely,
6,561.

Using the Power2() function that you just wrote, compute 103,
817 and 1313

Now create a new function, Power3(), that actually returns the
result x~a as an R object, rather than simply printing it to the
screen. That is, if you store the value x~a in an object called
result within your function, then you can simply return() this
result, using the following line:

return()
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return (result)

The line above should be the last line in your function, before
the } symbol.

(e) Now using the Power3() function, create a plot of f(z) = 2.

The z-axis should display a range of integers from 1 to 10, and
the y-axis should display 22. Label the axes appropriately, and
use an appropriate title for the figure. Consider displaying either
the z-axis, the y-axis, or both on the log-scale. You can do this
by using log=‘‘x’’, log=‘‘y’’, or log="‘‘xy’’ as arguments to
the plot () function.

(f) Create a function, PlotPower (), that allows you to create a plot
of x against x~a for a fixed a and for a range of values of x. For
instance, if you call

> PlotPower (1:10,3)

then a plot should be created with an z-axis taking on values
1,2,...,10, and a y-axis taking on values 13,23, ...,103.

13. Using the Boston data set, fit classification models in order to predict
whether a given suburb has a crime rate above or below the median.
Explore logistic regression, LDA, and KNN models using various sub-
sets of the predictors. Describe your findings.
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Resampling Methods

Resampling methods are an indispensable tool in modern statistics. They
involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training
data, fit a linear regression to each new sample, and then examine the
extent to which the resulting fits differ. Such an approach may allow us to
obtain information that would not be available from fitting the model only
once using the original training sample.

Resampling approaches can be computationally expensive, because they
involve fitting the same statistical method multiple times using different
subsets of the training data. However, due to recent advances in computing
power, the computational requirements of resampling methods generally
are not prohibitive. In this chapter, we discuss two of the most commonly
used resampling methods, cross-validation and the bootstrap. Both methods
are important tools in the practical application of many statistical learning
procedures. For example, cross-validation can be used to estimate the test
error associated with a given statistical learning method in order to evaluate
its performance, or to select the appropriate level of flexibility. The process
of evaluating a model’s performance is known as model assessment, whereas
the process of selecting the proper level of flexibility for a model is known as
model selection. The bootstrap is used in several contexts, most commonly
to provide a measure of accuracy of a parameter estimate or of a given
statistical learning method.

G. James et al., An Introduction to Statistical Learning: with Applications in R, 175
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_5,
© Springer Science+Business Media New York 2013
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5.1 Cross-Validation

In Chapter 2 we discuss the distinction between the test error rate and the
training error rate. The test error is the average error that results from using
a statistical learning method to predict the response on a new observation—
that is, a measurement that was not used in training the method. Given
a data set, the use of a particular statistical learning method is warranted
if it results in a low test error. The test error can be easily calculated if a
designated test set is available. Unfortunately, this is usually not the case.
In contrast, the training error can be easily calculated by applying the
statistical learning method to the observations used in its training. But as
we saw in Chapter 2, the training error rate often is quite different from the
test error rate, and in particular the former can dramatically underestimate
the latter.

In the absence of a very large designated test set that can be used to
directly estimate the test error rate, a number of techniques can be used
to estimate this quantity using the available training data. Some methods
make a mathematical adjustment to the training error rate in order to
estimate the test error rate. Such approaches are discussed in Chapter 6.
In this section, we instead consider a class of methods that estimate the
test error rate by holding out a subset of the training observations from the
fitting process, and then applying the statistical learning method to those
held out observations.

In Sections 5.1.1-5.1.4, for simplicity we assume that we are interested
in performing regression with a quantitative response. In Section 5.1.5 we
consider the case of classification with a qualitative response. As we will
see, the key concepts remain the same regardless of whether the response
is quantitative or qualitative.

5.1.1 The Validation Set Approach

Suppose that we would like to estimate the test error associated with fit-
ting a particular statistical learning method on a set of observations. The
validation set approach, displayed in Figure 5.1, is a very simple strategy
for this task. It involves randomly dividing the available set of observa-
tions into two parts, a training set and a wvalidation set or hold-out set. The
model is fit on the training set, and the fitted model is used to predict the
responses for the observations in the validation set. The resulting validation
set error rate—typically assessed using MSE in the case of a quantitative
response—provides an estimate of the test error rate.

We illustrate the validation set approach on the Auto data set. Recall from
Chapter 3 that there appears to be a non-linear relationship between mpg
and horsepower, and that a model that predicts mpg using horsepower and
horsepower” gives better results than a model that uses only a linear term.
It is natural to wonder whether a cubic or higher-order fit might provide

validation
set approach

validation
set,
hold-out set
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123 n
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72213 91

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 18, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

even better results. We answer this question in Chapter 3 by looking at
the p-values associated with a cubic term and higher-order polynomial
terms in a linear regression. But we could also answer this question using
the validation method. We randomly split the 392 observations into two
sets, a training set containing 196 of the data points, and a validation set
containing the remaining 196 observations. The validation set error rates
that result from fitting various regression models on the training sample
and evaluating their performance on the validation sample, using MSE
as a measure of validation set error, are shown in the left-hand panel of
Figure 5.2. The validation set MSE for the quadratic fit is considerably
smaller than for the linear fit. However, the validation set MSE for the cubic
fit is actually slightly larger than for the quadratic fit. This implies that
including a cubic term in the regression does not lead to better prediction
than simply using a quadratic term.

Recall that in order to create the left-hand panel of Figure 5.2, we ran-
domly divided the data set into two parts, a training set and a validation
set. If we repeat the process of randomly splitting the sample set into two
parts, we will get a somewhat different estimate for the test MSE. As an
illustration, the right-hand panel of Figure 5.2 displays ten different vali-
dation set MSE curves from the Auto data set, produced using ten different
random splits of the observations into training and validation sets. All ten
curves indicate that the model with a quadratic term has a dramatically
smaller validation set MSE than the model with only a linear term. Fur-
thermore, all ten curves indicate that there is not much benefit in including
cubic or higher-order polynomial terms in the model. But it is worth noting
that each of the ten curves results in a different test MSE estimate for each
of the ten regression models considered. And there is no consensus among
the curves as to which model results in the smallest validation set MSE.
Based on the variability among these curves, all that we can conclude with
any confidence is that the linear fit is not adequate for this data.

The validation set approach is conceptually simple and is easy to imple-
ment. But it has two potential drawbacks:
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FIGURE 5.2. The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg using polynomial
functions of horsepower. Left: Validation error estimates for a single split into
training and validation data sets. Right: The validation method was repeated ten
times, each time using a different random split of the observations into a training
set and a validation set. This illustrates the variability in the estimated test MSE
that results from this approach.

1. Asis shown in the right-hand panel of Figure 5.2, the validation esti-
mate of the test error rate can be highly variable, depending on pre-
cisely which observations are included in the training set and which
observations are included in the validation set.

2. In the validation approach, only a subset of the observations—those
that are included in the training set rather than in the validation
set—are used to fit the model. Since statistical methods tend to per-
form worse when trained on fewer observations, this suggests that the
validation set error rate may tend to overestimate the test error rate
for the model fit on the entire data set.

In the coming subsections, we will present cross-validation, a refinement of
the validation set approach that addresses these two issues.

5.1.2 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation
set approach of Section 5.1.1, but it attempts to address that method’s
drawbacks.

Like the validation set approach, LOOCYV involves splitting the set of
observations into two parts. However, instead of creating two subsets of
comparable size, a single observation (z1,y1) is used for the validation
set, and the remaining observations {(z2,¥2),...,(Zn,ys)} make up the
training set. The statistical learning method is fit on the n — 1 training
observations, and a prediction ¢; is made for the excluded observation,
using its value x1. Since (21, y1) was not used in the fitting process, MSE; =

leave-one-
out

Cross-
validation
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FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set
contains all but observation 1, the second training set contains all but observation
2, and so forth.

(y1 — 91)? provides an approximately unbiased estimate for the test error.
But even though MSE; is unbiased for the test error, it is a poor estimate
because it is highly variable, since it is based upon a single observation
(z1,91)-

We can repeat the procedure by selecting (x2,y2) for the validation
data, training the statistical learning procedure on the n — 1 observations
{(z1,91), (¥3,93), - - -, (T, yn) }, and computing MSEy = (y2—12)%. Repeat-
ing this approach n times produces n squared errors, MSE;, ..., MSE,,.
The LOOCYV estimate for the test MSE is the average of these n test error
estimates:

1 n
CVn) =~ > MSE;. (5.1)
i=1

A schematic of the LOOCV approach is illustrated in Figure 5.3.
LOOCYV has a couple of major advantages over the validation set ap-
proach. First, it has far less bias. In LOOCYV, we repeatedly fit the sta-
tistical learning method using training sets that contain n — 1 observa-
tions, almost as many as are in the entire data set. This is in contrast to
the validation set approach, in which the training set is typically around
half the size of the original data set. Consequently, the LOOCV approach
tends not to overestimate the test error rate as much as the validation
set approach does. Second, in contrast to the validation approach which
will yield different results when applied repeatedly due to randomness in
the training/validation set splits, performing LOOCV multiple times will
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FIGURE 5.4. Cross-validation was used on the Auto data set in order to es-
timate the test error that results from predicting mpg using polynomial functions
of horsepower. Left: The LOOCYV error curve. Right: 10-fold C'V was run nine
separate times, each with a different random split of the data into ten parts. The
figure shows the nine slightly different C'V error curves.

always yield the same results: there is no randomness in the training/vali-
dation set splits.

We used LOOCYV on the Auto data set in order to obtain an estimate
of the test set MSE that results from fitting a linear regression model to
predict mpg using polynomial functions of horsepower. The results are shown
in the left-hand panel of Figure 5.4.

LOOCYV has the potential to be expensive to implement, since the model
has to be fit n times. This can be very time consuming if n is large, and if
each individual model is slow to fit. With least squares linear or polynomial
regression, an amazing shortcut makes the cost of LOOCYV the same as that
of a single model fit! The following formula holds:

L (i
CVmy =~ > (ﬁ) : (5.2)

i=1

where g; is the ith fitted value from the original least squares fit, and h; is
the leverage defined in (3.37) on page 98. This is like the ordinary MSE,
except the ith residual is divided by 1 — h;. The leverage lies between 1/n
and 1, and reflects the amount that an observation influences its own fit.
Hence the residuals for high-leverage points are inflated in this formula by
exactly the right amount for this equality to hold.

LOOCYV is a very general method, and can be used with any kind of
predictive modeling. For example we could use it with logistic regression
or linear discriminant analysis, or any of the methods discussed in later
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FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

chapters. The magic formula (5.2) does not hold in general, in which case
the model has to be refit n times.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold C'V. This approach involves randomly
dividing the set of observations into k groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method
is fit on the remaining & — 1 folds. The mean squared error, MSEy, is
then computed on the observations in the held-out fold. This procedure is
repeated k times; each time, a different group of observations is treated
as a validation set. This process results in & estimates of the test error,
MSE;, MSE,, ..., MSEy. The k-fold CV estimate is computed by averaging
these values,

k
CVy = 7 > _MSE,. (5.3)
=1

& =

Figure 5.5 illustrates the k-fold CV approach.

It is not hard to see that LOOCYV is a special case of k-fold CV in which &
is set to equal n. In practice, one typically performs k-fold CV using &k =5
or k = 10. What is the advantage of using k = 5 or &k = 10 rather than
k = n? The most obvious advantage is computational. LOOCV requires
fitting the statistical learning method n times. This has the potential to be
computationally expensive (except for linear models fit by least squares,
in which case formula (5.2) can be used). But cross-validation is a very
general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive
fitting procedures, and so performing LOOCV may pose computational
problems, especially if n is extremely large. In contrast, performing 10-fold

k-fold CV
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FIGURE 5.6. True and estimated test MSE for the simulated data sets in Fig-
ures 2.9 (left), 2.10 (center), and 2.11 (right). The true test MSE is shown in
blue, the LOOCYV estimate is shown as a black dashed line, and the 10-fold C'V
estimate is shown in orange. The crosses indicate the minimum of each of the
MSE curves.

CV requires fitting the learning procedure only ten times, which may be
much more feasible. As we see in Section 5.1.4, there also can be other
non-computational advantages to performing 5-fold or 10-fold CV, which
involve the bias-variance trade-off.

The right-hand panel of Figure 5.4 displays nine different 10-fold CV
estimates for the Auto data set, each resulting from a different random
split of the observations into ten folds. As we can see from the figure, there
is some variability in the CV estimates as a result of the variability in how
the observations are divided into ten folds. But this variability is typically
much lower than the variability in the test error estimates that results from
the validation set approach (right-hand panel of Figure 5.2).

When we examine real data, we do not know the true test MSE, and
so it is difficult to determine the accuracy of the cross-validation estimate.
However, if we examine simulated data, then we can compute the true
test MSE, and can thereby evaluate the accuracy of our cross-validation
results. In Figure 5.6, we plot the cross-validation estimates and true test
error rates that result from applying smoothing splines to the simulated
data sets illustrated in Figures 2.9-2.11 of Chapter 2. The true test MSE
is displayed in blue. The black dashed and orange solid lines respectively
show the estimated LOOCYV and 10-fold CV estimates. In all three plots,
the two cross-validation estimates are very similar. In the right-hand panel
of Figure 5.6, the true test MSE and the cross-validation curves are almost
identical. In the center panel of Figure 5.6, the two sets of curves are similar
at the lower degrees of flexibility, while the CV curves overestimate the test
set MSE for higher degrees of flexibility. In the left-hand panel of Figure 5.6,
the CV curves have the correct general shape, but they underestimate the
true test MSE.
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When we perform cross-validation, our goal might be to determine how
well a given statistical learning procedure can be expected to perform on
independent data; in this case, the actual estimate of the test MSE is
of interest. But at other times we are interested only in the location of
the minimum point in the estimated test MSE curve. This is because we
might be performing cross-validation on a number of statistical learning
methods, or on a single method using different levels of flexibility, in order
to identify the method that results in the lowest test error. For this purpose,
the location of the minimum point in the estimated test MSE curve is
important, but the actual value of the estimated test MSE is not. We find
in Figure 5.6 that despite the fact that they sometimes underestimate the
true test MSE, all of the CV curves come close to identifying the correct
level of flexibility—that is, the flexibility level corresponding to the smallest
test MSE.

5.1.4  Bias-Variance Trade-Off for k-Fold Cross-Validation

We mentioned in Section 5.1.3 that k-fold CV with k£ < n has a compu-
tational advantage to LOOCYV. But putting computational issues aside,
a less obvious but potentially more important advantage of k-fold CV is
that it often gives more accurate estimates of the test error rate than does
LOOCYV. This has to do with a bias-variance trade-off.

It was mentioned in Section 5.1.1 that the validation set approach can
lead to overestimates of the test error rate, since in this approach the
training set used to fit the statistical learning method contains only half
the observations of the entire data set. Using this logic, it is not hard to
see that LOOCYV will give approximately unbiased estimates of the test
error, since each training set contains n — 1 observations, which is almost
as many as the number of observations in the full data set. And performing
k-fold CV for, say, k = 5 or k = 10 will lead to an intermediate level of
bias, since each training set contains (k — 1)n/k observations—fewer than
in the LOOCYV approach, but substantially more than in the validation set
approach. Therefore, from the perspective of bias reduction, it is clear that
LOOCYV is to be preferred to k-fold CV.

However, we know that bias is not the only source for concern in an esti-
mating procedure; we must also consider the procedure’s variance. It turns
out that LOOCYV has higher variance than does k-fold CV with k < n. Why
is this the case? When we perform LOOCYV, we are in effect averaging the
outputs of n fitted models, each of which is trained on an almost identical
set of observations; therefore, these outputs are highly (positively) corre-
lated with each other. In contrast, when we perform k-fold CV with k& < n,
we are averaging the outputs of k fitted models that are somewhat less
correlated with each other, since the overlap between the training sets in
each model is smaller. Since the mean of many highly correlated quantities
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has higher variance than does the mean of many quantities that are not
as highly correlated, the test error estimate resulting from LOOCYV tends
to have higher variance than does the test error estimate resulting from
k-fold CV.

To summarize, there is a bias-variance trade-off associated with the
choice of k in k-fold cross-validation. Typically, given these considerations,
one performs k-fold cross-validation using k = 5 or k = 10, as these values
have been shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance.

5.1.5  Cross-Validation on Classification Problems

In this chapter so far, we have illustrated the use of cross-validation in the
regression setting where the outcome Y is quantitative, and so have used
MSE to quantify test error. But cross-validation can also be a very useful
approach in the classification setting when Y is qualitative. In this setting,
cross-validation works just as described earlier in this chapter, except that
rather than using MSE to quantify test error, we instead use the number
of misclassified observations. For instance, in the classification setting, the
LOOCYV error rate takes the form

1 n
CVimy = > Err, (5.4)
=1

where Err; = I(y; # ¢;). The k-fold CV error rate and validation set error
rates are defined analogously.

As an example, we fit various logistic regression models on the two-
dimensional classification data displayed in Figure 2.13. In the top-left
panel of Figure 5.7, the black solid line shows the estimated decision bound-
ary resulting from fitting a standard logistic regression model to this data
set. Since this is simulated data, we can compute the true test error rate,
which takes a value of 0.201 and so is substantially larger than the Bayes
error rate of 0.133. Clearly logistic regression does not have enough flexi-
bility to model the Bayes decision boundary in this setting. We can easily
extend logistic regression to obtain a non-linear decision boundary by using
polynomial functions of the predictors, as we did in the regression setting in
Section 3.3.2. For example, we can fit a quadratic logistic regression model,
given by

o ( ﬁ) = o+ B X1 + Bo X7 + B3 Xz + BuX3. (5.5)

The top-right panel of Figure 5.7 displays the resulting decision boundary,
which is now curved. However, the test error rate has improved only slightly,
to 0.197. A much larger improvement is apparent in the bottom-left panel
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Degree=1 Degree=2

Degree=3 Degree=4

FIGURE 5.7. Logistic regression fits on the two-dimensional classification data
displayed in Figure 2.13. The Bayes decision boundary is represented using a
purple dashed line. Estimated decision boundaries from linear, quadratic, cubic
and quartic (degrees 1-4) logistic regressions are displayed in black. The test error
rates for the four logistic regression fits are respectively 0.201, 0.197, 0.160, and
0.162, while the Bayes error rate is 0.133.

of Figure 5.7, in which we have fit a logistic regression model involving
cubic polynomials of the predictors. Now the test error rate has decreased
to 0.160. Going to a quartic polynomial (bottom-right) slightly increases
the test error.

In practice, for real data, the Bayes decision boundary and the test er-
ror rates are unknown. So how might we decide between the four logistic
regression models displayed in Figure 5.77 We can use cross-validation in
order to make this decision. The left-hand panel of Figure 5.8 displays in
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FIGURE 5.8. Test error (brown), training error (blue), and 10-fold C'V error
(black) on the two-dimensional classification data displayed in Figure 5.7. Left:
Logistic regression wusing polynomial functions of the predictors. The order of
the polynomials used is displayed on the x-azis. Right: The KNN classifier with
different values of K, the number of neighbors used in the KNN classifier.

black the 10-fold CV error rates that result from fitting ten logistic regres-
sion models to the data, using polynomial functions of the predictors up
to tenth order. The true test errors are shown in brown, and the training
errors are shown in blue. As we have seen previously, the training error
tends to decrease as the flexibility of the fit increases. (The figure indicates
that though the training error rate doesn’t quite decrease monotonically,
it tends to decrease on the whole as the model complexity increases.) In
contrast, the test error displays a characteristic U-shape. The 10-fold CV
error rate provides a pretty good approximation to the test error rate.
While it somewhat underestimates the error rate, it reaches a minimum
when fourth-order polynomials are used, which is very close to the min-
imum of the test curve, which occurs when third-order polynomials are
used. In fact, using fourth-order polynomials would likely lead to good test
set performance, as the true test error rate is approximately the same for
third, fourth, fifth, and sixth-order polynomials.

The right-hand panel of Figure 5.8 displays the same three curves us-
ing the KNN approach for classification, as a function of the value of K
(which in this context indicates the number of neighbors used in the KNN
classifier, rather than the number of CV folds used). Again the training
error rate declines as the method becomes more flexible, and so we see that
the training error rate cannot be used to select the optimal value for K.
Though the cross-validation error curve slightly underestimates the test
error rate, it takes on a minimum very close to the best value for K.
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5.2 The Bootstrap

The bootstrap is a widely applicable and extremely powerful statistical tool
that can be used to quantify the uncertainty associated with a given esti-
mator or statistical learning method. As a simple example, the bootstrap
can be used to estimate the standard errors of the coefficients from a linear
regression fit. In the specific case of linear regression, this is not particularly
useful, since we saw in Chapter 3 that standard statistical software such as
R outputs such standard errors automatically. However, the power of the
bootstrap lies in the fact that it can be easily applied to a wide range of
statistical learning methods, including some for which a measure of vari-
ability is otherwise difficult to obtain and is not automatically output by
statistical software.

In this section we illustrate the bootstrap on a toy example in which we
wish to determine the best investment allocation under a simple model.
In Section 5.3 we explore the use of the bootstrap to assess the variability
associated with the regression coefficients in a linear model fit.

Suppose that we wish to invest a fixed sum of money in two financial
assets that yield returns of X and Y, respectively, where X and Y are
random quantities. We will invest a fraction « of our money in X, and will
invest the remaining 1 — « in Y. Since there is variability associated with
the returns on these two assets, we wish to choose o to minimize the total
risk, or variance, of our investment. In other words, we want to minimize
Var(aX + (1 — @)Y). One can show that the value that minimizes the risk
is given by

2
0y — OXY
0% + 02 — 20 ’
X Y XY

a= (5.6)

where 0% = Var(X), 0% = Var(Y), and oxy = Cov(X,Y).
In reality, the quantities 0%, 0%, and oxy are unknown. We can compute
estimates for these quantities, &gﬁ &32/7 and 6xy, using a data set that

contains past measurements for X and Y. We can then estimate the value
of a that minimizes the variance of our investment using

A2 A~

Oy —O0XY
~2 ~2 S :
0% + 03 —20xy

o= (5.7)
Figure 5.9 illustrates this approach for estimating o on a simulated data
set. In each panel, we simulated 100 pairs of returns for the investments
X and Y. We used these returns to estimate 0%, 0%, and oxy, which we
then substituted into (5.7) in order to obtain estimates for . The value of
& resulting from each simulated data set ranges from 0.532 to 0.657.

It is natural to wish to quantify the accuracy of our estimate of a. To
estimate the standard deviation of &, we repeated the process of simu-
lating 100 paired observations of X and Y, and estimating « using (5.7),

bootstrap
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FIGURE 5.9. Each panel displays 100 simulated returns for investments
X and Y. From left to right and top to bottom, the resulting estimates for «
are 0.576, 0.532, 0.657, and 0.651.

1,000 times. We thereby obtained 1,000 estimates for «, which we can call
G, Ga, ..., 01 000. The left-hand panel of Figure 5.10 displays a histogram
of the resulting estimates. For these simulations the parameters were set to
ogf =1, 012/ = 1.25, and oxy = 0.5, and so we know that the true value of
a is 0.6. We indicated this value using a solid vertical line on the histogram.
The mean over all 1,000 estimates for « is

1 1,000
&= 1500 ; &y = 0.5996,

very close to a = 0.6, and the standard deviation of the estimates is

1,000

> (4 —a)® =0.083.

1,000 — 1

This gives us a very good idea of the accuracy of &: SE(&) = 0.083. So
roughly speaking, for a random sample from the population, we would
expect & to differ from « by approximately 0.08, on average.

In practice, however, the procedure for estimating SE(&) outlined above
cannot be applied, because for real data we cannot generate new samples
from the original population. However, the bootstrap approach allows us
to use a computer to emulate the process of obtaining new sample sets,
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FIGURE 5.10. Left: A histogram of the estimates of o obtained by generating
1,000 simulated data sets from the true population. Center: A histogram of the
estimates of a obtained from 1,000 bootstrap samples from a single data set.
Right: The estimates of « displayed in the left and center panels are shown as
boxplots. In each panel, the pink line indicates the true value of a.

so that we can estimate the variability of & without generating additional
samples. Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly sampling
observations from the original data set.

This approach is illustrated in Figure 5.11 on a simple data set, which
we call Z, that contains only n = 3 observations. We randomly select n
observations from the data set in order to produce a bootstrap data set,
Z*!. The sampling is performed with replacement, which means that the
same observation can occur more than once in the bootstrap data set. In
this example, Z*! contains the third observation twice, the first observation
once, and no instances of the second observation. Note that if an observation
is contained in Z*!, then both its X and Y values are included. We can use
Z*! to produce a new bootstrap estimate for «, which we call &*'. This
procedure is repeated B times for some large value of B, in order to produce
B different bootstrap data sets, Z*!, Z*2 ..., Z*B and B corresponding o
estimates, &*!, &*2,...,&*B. We can compute the standard error of these
bootstrap estimates using the formula

1 & 1 & ’
SEg(a) = mZG‘*T—E a> (5.8)

r=1 r'=1

This serves as an estimate of the standard error of & estimated from the
original data set.

The bootstrap approach is illustrated in the center panel of Figure 5.10,
which displays a histogram of 1,000 bootstrap estimates of a, each com-
puted using a distinct bootstrap data set. This panel was constructed on
the basis of a single data set, and hence could be created using real data.

replacement
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FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Fach bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data
set is used to obtain an estimate of .

Note that the histogram looks very similar to the left-hand panel which dis-
plays the idealized histogram of the estimates of o obtained by generating
1,000 simulated data sets from the true population. In particular the boot-
strap estimate SE(&) from (5.8) is 0.087, very close to the estimate of 0.083
obtained using 1,000 simulated data sets. The right-hand panel displays the
information in the center and left panels in a different way, via boxplots of
the estimates for o obtained by generating 1,000 simulated data sets from
the true population and using the bootstrap approach. Again, the boxplots
are quite similar to each other, indicating that the bootstrap approach can
be used to effectively estimate the variability associated with &.

5.3 Lab: Cross-Validation and the Bootstrap

In this lab, we explore the resampling techniques covered in this chapter.
Some of the commands in this lab may take a while to run on your com-
puter.
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5.83.1 The Validation Set Approach

We explore the use of the validation set approach in order to estimate the
test error rates that result from fitting various linear models on the Auto
data set.

Before we begin, we use the set.seed() function in order to set a seed for
R’s random number generator, so that the reader of this book will obtain
precisely the same results as those shown below. It is generally a good idea
to set a random seed when performing an analysis such as cross-validation
that contains an element of randomness, so that the results obtained can
be reproduced precisely at a later time.

We begin by using the sample() function to split the set of observations
into two halves, by selecting a random subset of 196 observations out of
the original 392 observations. We refer to these observations as the training
set.

> library (ISLR)
> set.seed (1)
> train=sample (392,196)

(Here we use a shortcut in the sample command; see ?sample for details.)
We then use the subset option in 1m() to fit a linear regression using only
the observations corresponding to the training set.

> 1m.fit=1m(mpg~horsepower ,data=Auto,subset=train)

We now use the predict() function to estimate the response for all 392
observations, and we use the mean() function to calculate the MSE of the
196 observations in the validation set. Note that the -train index below
selects only the observations that are not in the training set.

> attach (Auto)
> mean ((mpg-predict (1lm.fit,Auto)) [-train]~2)
[1] 26.14

Therefore, the estimated test MSE for the linear regression fit is 26.14. We
can use the poly() function to estimate the test error for the quadratic
and cubic regressions.

> Im.fit2=1m (mpg~poly (horsepower ,2) ,data=Auto,subset=train)
> mean ((mpg-predict (1lm.£fit2,Auto)) [-train]~2)

[1] 19.82

> Im.fit3=1m(mpg~poly (horsepower ,3) ,data=Auto,subset=train)
> mean ((mpg-predict (lm.fit3,Auto))[-train]~2)

[1] 19.78

These error rates are 19.82 and 19.78, respectively. If we choose a different
training set instead, then we will obtain somewhat different errors on the
validation set.

> set.seed(2)
> train=sample (392,196)
> Im.fit=1m(mpg~horsepower ,subset=train)

seed

sample ()
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> mean ((mpg-predict (1lm.fit,Auto)) [-train]~2)

[1] 23.30

> Im.fit2=1m(mpg~poly (horsepower ,2) ,data=Auto,subset=train)
> mean ((mpg-predict (1lm.£fit2,Auto)) [-train]~2)

[1] 18.90

> Im.fit3=1m(mpg~poly (horsepower ,3) ,data=Auto,subset=train)
> mean ((mpg-predict (lm.fit3,Auto))[-train]~2)

[1] 19.26

Using this split of the observations into a training set and a validation
set, we find that the validation set error rates for the models with linear,
quadratic, and cubic terms are 23.30, 18.90, and 19.26, respectively.
These results are consistent with our previous findings: a model that
predicts mpg using a quadratic function of horsepower performs better than
a model that involves only a linear function of horsepower, and there is
little evidence in favor of a model that uses a cubic function of horsepower.

5.3.2 Leave-One-Out Cross-Validation

The LOOCYV estimate can be automatically computed for any generalized
linear model using the glm() and cv.glm() functions. In the lab for Chap-
ter 4, we used the glm() function to perform logistic regression by passing
in the family="binomial" argument. But if we use glm() to fit a model
without passing in the family argument, then it performs linear regression,
just like the 1m() function. So for instance,

> glm.fit=glm(mpg~horsepower ,data=Auto)

> coef (glm.fit)

(Intercept) horsepower
39.936 -0.158

and

> Im.fit=1m(mpg~horsepower ,data=Auto)
> coef (lm.fit)
(Intercept) horsepower

39.936 -0.158

yield identical linear regression models. In this lab, we will perform linear
regression using the glm() function rather than the 1m() function because
the former can be used together with cv.glm(). The cv.glm() function is
part of the boot library.

> library (boot)
> glm.fit=glm (mpg~horsepower ,data=Auto)
> cv.err=cv.glm(Auto,glm.fit)
> cv.err$delta
1 1
24.23 24.23

The cv.glm() function produces a list with several components. The two
numbers in the delta vector contain the cross-validation results. In this

cv.glm()
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case the numbers are identical (up to two decimal places) and correspond
to the LOOCYV statistic given in (5.1). Below, we discuss a situation in
which the two numbers differ. Our cross-validation estimate for the test
error is approximately 24.23.

We can repeat this procedure for increasingly complex polynomial fits.
To automate the process, we use the for() function to initiate a for loop
which iteratively fits polynomial regressions for polynomials of order i = 1
to i = 5, computes the associated cross-validation error, and stores it in
the ith element of the vector cv.error. We begin by initializing the vector.
This command will likely take a couple of minutes to run.

> cv.error=rep (0,5)

> for (i in 1:5){

+ glm.fit=glm(mpg~poly (horsepower ,i),data=Auto)
+ cv.error[i]l=cv.glm(Auto,glm.fit) $delta [1]

+ 3

>

L

cv.error
1] 24.23 19.25 19.33 19.42 19.03

As in Figure 5.4, we see a sharp drop in the estimated test MSE between
the linear and quadratic fits, but then no clear improvement from using
higher-order polynomials.

5.3.3 k-Fold Cross-Validation

The cv.glm() function can also be used to implement k-fold CV. Below we
use k£ = 10, a common choice for k, on the Auto data set. We once again set
a random seed and initialize a vector in which we will store the CV errors
corresponding to the polynomial fits of orders one to ten.

> set.seed (17)

> cv.error.10=rep (0,10)

> for (i in 1:10){

+ glm.fit=glm(mpg~poly (horsepower ,i),data=Auto)

+ cv.error.10[i]l=cv.glm (Auto,glm.fit ,K=10) $delta [1]
+ 1}

>
L

cv.error.10
1] 24.21 19.19 19.31 19.34 18.88 19.02 18.90 19.71 18.95 19.50

Notice that the computation time is much shorter than that of LOOCV.
(In principle, the computation time for LOOCYV for a least squares linear
model should be faster than for k-fold CV, due to the availability of the
formula (5.2) for LOOCV; however, unfortunately the cv.glm() function
does not make use of this formula.) We still see little evidence that using
cubic or higher-order polynomial terms leads to lower test error than simply
using a quadratic fit.

We saw in Section 5.3.2 that the two numbers associated with delta are
essentially the same when LOOCYV is performed. When we instead perform
k-fold CV, then the two numbers associated with delta differ slightly. The

for()

for loop
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first is the standard k-fold CV estimate, as in (5.3). The second is a bias-
corrected version. On this data set, the two estimates are very similar to
each other.

5.3.4  The Bootstrap

We illustrate the use of the bootstrap in the simple example of Section 5.2,
as well as on an example involving estimating the accuracy of the linear
regression model on the Auto data set.

Estimating the Accuracy of a Statistic of Interest

One of the great advantages of the bootstrap approach is that it can be
applied in almost all situations. No complicated mathematical calculations
are required. Performing a bootstrap analysis in R entails only two steps.
First, we must create a function that computes the statistic of interest.
Second, we use the boot() function, which is part of the boot library, to
perform the bootstrap by repeatedly sampling observations from the data
set with replacement.

The Portfolio data set in the ISLR package is described in Section 5.2.
To illustrate the use of the bootstrap on this data, we must first create
a function, alpha.fn(), which takes as input the (X,Y) data as well as
a vector indicating which observations should be used to estimate a. The
function then outputs the estimate for o based on the selected observations.

alpha.fn=function (data, index){

X=data$X [index]

Y=data$Y [index]

return ((var(Y)-cov(X,Y))/(var(X)+var (Y) -2*cov(X,Y)))
¥

+ + + + Vv

This function returns, or outputs, an estimate for a based on applying
(5.7) to the observations indexed by the argument index. For instance, the
following command tells R to estimate o using all 100 observations.

> alpha.fn(Portfolio ,1:100)
[1] 0.576

The next command uses the sample() function to randomly select 100 ob-
servations from the range 1 to 100, with replacement. This is equivalent
to constructing a new bootstrap data set and recomputing & based on the
new data set.

> set.seed (1)

> alpha.fn(Portfolio,sample (100,100, replace=T))
[1] 0.596

We can implement a bootstrap analysis by performing this command many
times, recording all of the corresponding estimates for «, and computing

boot ()
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the resulting standard deviation. However, the boot () function automates

. . b
this approach. Below we produce R = 1,000 bootstrap estimates for a. 0ot 0

> boot (Portfolio,alpha.fn,R=1000)
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = Portfolio, statistic = alpha.fn, R = 1000)

Bootstrap Statistics
original bias std. error
tl*x 0.5758 -7.315e-05 0.0886

The final output shows that using the original data, & = 0.5758, and that
the bootstrap estimate for SE(&) is 0.0886.

Estimating the Accuracy of a Linear Regression Model

The bootstrap approach can be used to assess the variability of the coef-
ficient estimates and predictions from a statistical learning method. Here
we use the bootstrap approach in order to assess the variability of the
estimates for By and [, the intercept and slope terms for the linear regres-
sion model that uses horsepower to predict mpg in the Auto data set. We
will compare the estimates obtained using the bootstrap to those obtained
using the formulas for SE(fy) and SE(j3;) described in Section 3.1.2.

We first create a simple function, boot.fn(), which takes in the Auto data
set as well as a set of indices for the observations, and returns the intercept
and slope estimates for the linear regression model. We then apply this
function to the full set of 392 observations in order to compute the esti-
mates of By and 51 on the entire data set using the usual linear regression
coeflicient estimate formulas from Chapter 3. Note that we do not need the
{ and } at the beginning and end of the function because it is only one line
long.
> boot.fn=function (data, index)

+ return (coef (lm(mpg~horsepower ,data=data,subset=index)))
> boot.fn(Auto,1:392)

(Intercept) horsepower
39.936 -0.158

The boot.fn() function can also be used in order to create bootstrap esti-
mates for the intercept and slope terms by randomly sampling from among
the observations with replacement. Here we give two examples.

> set.seed (1)
> boot.fn(Auto,sample (392,392, replace=T))
(Intercept) horsepower

38.739 -0.148
> boot.fn(Auto,sample (392,392, replace=T))
(Intercept) horsepower

40.038 -0.160
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Next, we use the boot () function to compute the standard errors of 1,000
bootstrap estimates for the intercept and slope terms.

> boot (Auto ,boot.fn,1000)
ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = Auto, statistic = boot.fn, R = 1000)

Bootstrap Statistics

original bias std. error
tl* 39.936 0.0297 0.8600
t2% -0.158 -0.0003 0.0074

This indicates that the bootstrap estimate for SE(fo) is 0.86, and that
the bootstrap estimate for SE(f) is 0.0074. As discussed in Section 3.1.2,
standard formulas can be used to compute the standard errors for the
regression coeflicients in a linear model. These can be obtained using the
summary () function.

> summary (lm (mpg~horsepower ,data=Auto)) $coef
Estimate Std. Error t value Pr(>|tl)

(Intercept) 39.936 0.71750 55.7 1.22e-187

horsepower -0.158 0.00645 -24.5 7.03e-81

The standard error estimates for BO and Bl obtained using the formulas
from Section 3.1.2 are 0.717 for the intercept and 0.0064 for the slope.
Interestingly, these are somewhat different from the estimates obtained
using the bootstrap. Does this indicate a problem with the bootstrap? In
fact, it suggests the opposite. Recall that the standard formulas given in
Equation 3.8 on page 66 rely on certain assumptions. For example, they
depend on the unknown parameter o2, the noise variance. We then estimate
o2 using the RSS. Now although the formula for the standard errors do not
rely on the linear model being correct, the estimate for o2 does. We see in
Figure 3.8 on page 91 that there is a non-linear relationship in the data, and
so the residuals from a linear fit will be inflated, and so will 62. Secondly,
the standard formulas assume (somewhat unrealistically) that the z; are
fixed, and all the variability comes from the variation in the errors ¢;. The
bootstrap approach does not rely on any of these assumptions, and so it is
likely giving a more accurate estimate of the standard errors of 8y and S
than is the summary() function.

Below we compute the bootstrap standard error estimates and the stan-
dard linear regression estimates that result from fitting the quadratic model
to the data. Since this model provides a good fit to the data (Figure 3.8),
there is now a better correspondence between the bootstrap estimates and
the standard estimates of SE(Sy), SE(51) and SE(52).
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> boot.fn=function (data,index)

+ coefficients (lm(mpg~horsepower +I(horsepower "2) ,data=data,
subset=index))

> set.seed (1)

> boot (Auto ,boot.fn,1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot (data = Auto, statistic = boot.fn, R = 1000)

Bootstrap Statistics

original bias std. error
tl*x 56.900 6.098e-03 2.0945
t2% -0.466 -1.777e-04 0.0334
t3*% 0.001 1.324e-06 0.0001

> summary (lm (mpg~horsepower +I (horsepower "2) ,data=Auto)) $coef
Estimate Std. Error t value Pr(>|t])

(Intercept) 56.9001 1.80043 32 1.7e-109
horsepower -0.4662 0.03112 -15 2.3e-40
I(horsepower "2) 0.0012 0.00012 10 2.2e-21

5.4  Exercises

Conceptual

1. Using basic statistical properties of the variance, as well as single-
variable calculus, derive (5.6). In other words, prove that a given by
(5.6) does indeed minimize Var(aX + (1 — «)Y).

2. We will now derive the probability that a given observation is part
of a bootstrap sample. Suppose that we obtain a bootstrap sample
from a set of n observations.

(a) What is the probability that the first bootstrap observation is
not the jth observation from the original sample? Justify your
answer.

(b) What is the probability that the second bootstrap observation
is not the jth observation from the original sample?

(¢) Argue that the probability that the jth observation is not in the
bootstrap sample is (1 — 1/n)".

(d) When n =5, what is the probability that the jth observation is
in the bootstrap sample?

(e) When n = 100, what is the probability that the jth observation
is in the bootstrap sample?
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(f) When n = 10,000, what is the probability that the jth observa-
tion is in the bootstrap sample?

(g) Create a plot that displays, for each integer value of n from 1
to 100,000, the probability that the jth observation is in the
bootstrap sample. Comment on what you observe.

(h) We will now investigate numerically the probability that a boot-
strap sample of size n = 100 contains the jth observation. Here
7 = 4. We repeatedly create bootstrap samples, and each time
we record whether or not the fourth observation is contained in
the bootstrap sample.

> store=rep(NA, 10000)
> for(i in 1:10000) {

store[i]=sum(sample (1:100, rep=TRUE)==4)>0
I

> mean(store)
Comment on the results obtained.
3. We now review k-fold cross-validation.

(a) Explain how k-fold cross-validation is implemented.

(b) What are the advantages and disadvantages of k-fold cross-
validation relative to:

i. The validation set approach?
ii. LOOCV?

4. Suppose that we use some statistical learning method to make a pre-
diction for the response Y for a particular value of the predictor X.
Carefully describe how we might estimate the standard deviation of
our prediction.

Applied

5. In Chapter 4, we used logistic regression to predict the probability of
default using income and balance on the Default data set. We will
now estimate the test error of this logistic regression model using the
validation set approach. Do not forget to set a random seed before
beginning your analysis.

(a) Fit a logistic regression model that uses income and balance to
predict default.

(b) Using the validation set approach, estimate the test error of this
model. In order to do this, you must perform the following steps:

i. Split the sample set into a training set and a validation set.



(c)

(d)
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ii. Fit a multiple logistic regression model using only the train-
ing observations.

iii. Obtain a prediction of default status for each individual in
the validation set by computing the posterior probability of
default for that individual, and classifying the individual to
the default category if the posterior probability is greater
than 0.5.

iv. Compute the validation set error, which is the fraction of
the observations in the validation set that are misclassified.

Repeat the process in (b) three times, using three different splits
of the observations into a training set and a validation set. Com-
ment on the results obtained.

Now consider a logistic regression model that predicts the prob-
ability of default using income, balance, and a dummy variable
for student. Estimate the test error for this model using the val-
idation set approach. Comment on whether or not including a
dummy variable for student leads to a reduction in the test error
rate.

6. We continue to consider the use of a logistic regression model to
predict the probability of default using income and balance on the
Default data set. In particular, we will now compute estimates for
the standard errors of the income and balance logistic regression co-
efficients in two different ways: (1) using the bootstrap, and (2) using
the standard formula for computing the standard errors in the glm()
function. Do not forget to set a random seed before beginning your
analysis.

(a)

(d)

Using the summary() and glm() functions, determine the esti-
mated standard errors for the coefficients associated with income
and balance in a multiple logistic regression model that uses
both predictors.

Write a function, boot . £fn(), that takes as input the Default data
set as well as an index of the observations, and that outputs
the coefficient estimates for income and balance in the multiple
logistic regression model.

Use the boot () function together with your boot.fn() function to
estimate the standard errors of the logistic regression coefficients
for income and balance.

Comment on the estimated standard errors obtained using the
glm() function and using your bootstrap function.

7. In Sections 5.3.2 and 5.3.3, we saw that the cv.glm() function can be
used in order to compute the LOOCYV test error estimate. Alterna-
tively, one could compute those quantities using just the glm() and
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predict.glm() functions, and a for loop. You will now take this ap-
proach in order to compute the LOOCYV error for a simple logistic
regression model on the Weekly data set. Recall that in the context
of classification problems, the LOOCV error is given in (5.4).

(a) Fit a logistic regression model that predicts Direction using Lagl
and Lag2.

(b) Fit a logistic regression model that predicts Direction using Lagl
and Lag2 using all but the first observation.

(c) Use the model from (b) to predict the direction of the first obser-
vation. You can do this by predicting that the first observation
will go up if P(Direction="Up"|Lagl, Lag2) > 0.5. Was this ob-
servation correctly classified?

(d) Write a for loop from ¢ = 1 to i = n, where n is the number of
observations in the data set, that performs each of the following
steps:

i. Fit a logistic regression model using all but the ith obser-
vation to predict Direction using Lagl and Lag2.
ii. Compute the posterior probability of the market moving up
for the ith observation.
iii. Use the posterior probability for the ith observation in order
to predict whether or not the market moves up.
iv. Determine whether or not an error was made in predicting

the direction for the ith observation. If an error was made,
then indicate this as a 1, and otherwise indicate it as a 0.

(e) Take the average of the n numbers obtained in (d)iv in order to
obtain the LOOCYV estimate for the test error. Comment on the
results.

8. We will now perform cross-validation on a simulated data set.

(a) Generate a simulated data set as follows:

> set.seed (1)
> x=rnorm (100)
> y=x-2*x"2+rnorm (100)

In this data set, what is n and what is p? Write out the model
used to generate the data in equation form.
(b) Create a scatterplot of X against Y. Comment on what you find.

(¢) Set a random seed, and then compute the LOOCV errors that
result from fitting the following four models using least squares:
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i. Y:ﬂo+51X+€

ii. Y260+51X—|—52X2+6

ii. Y =080+ /X —|-52X2 +53X3 +e€

iv. Y = fo+ 51X +ﬂ2X2 +B3X3 +ﬂ4X4 + €.
Note you may find it helpful to use the data.frame() function
to create a single data set containing both X and Y.
Repeat (c) using another random seed, and report your results.
Are your results the same as what you got in (¢)? Why?
Which of the models in (c¢) had the smallest LOOCV error? Is
this what you expected? Explain your answer.
Comment on the statistical significance of the coefficient esti-
mates that results from fitting each of the models in (c¢) using
least squares. Do these results agree with the conclusions drawn
based on the cross-validation results?

9. We will now consider the Boston housing data set, from the MASS
library.

(a)
(b)

Based on this data set, provide an estimate for the population
mean of medv. Call this estimate fi.

Provide an estimate of the standard error of fi. Interpret this
result.

Hint: We can compute the standard error of the sample mean by
dividing the sample standard deviation by the square root of the
number of observations.

Now estimate the standard error of fi using the bootstrap. How
does this compare to your answer from (b)?

Based on your bootstrap estimate from (c), provide a 95 % con-
fidence interval for the mean of medv. Compare it to the results
obtained using t.test (Boston$medv).

Hint: You can approximate a 95 % confidence interval using the
formula [t — 2SE(f1), i + 2SE(f1)].

Based on this data set, provide an estimate, jimeq, for the median
value of medv in the population.

We now would like to estimate the standard error of fi,,eq. Unfor-
tunately, there is no simple formula for computing the standard
error of the median. Instead, estimate the standard error of the
median using the bootstrap. Comment on your findings.

Based on this data set, provide an estimate for the tenth per-
centile of medv in Boston suburbs. Call this quantity fig.1. (You
can use the quantile() function.)

Use the bootstrap to estimate the standard error of fig. 1. Com-
ment on your findings.
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Linear Model Selection
and Regularization

In the regression setting, the standard linear model
Y=0+pX1+ -+ 58Xy +e (6.1)

is commonly used to describe the relationship between a response Y and
a set of variables Xi, X»,...,X,. We have seen in Chapter 3 that one
typically fits this model using least squares.

In the chapters that follow, we consider some approaches for extending
the linear model framework. In Chapter 7 we generalize (6.1) in order to
accommodate non-linear, but still additive, relationships, while in Chap-
ter 8 we consider even more general non-linear models. However, the linear
model has distinct advantages in terms of inference and, on real-world prob-
lems, is often surprisingly competitive in relation to non-linear methods.
Hence, before moving to the non-linear world, we discuss in this chapter
some ways in which the simple linear model can be improved, by replacing
plain least squares fitting with some alternative fitting procedures.

Why might we want to use another fitting procedure instead of least
squares? As we will see, alternative fitting procedures can yield better pre-
diction accuracy and model interpretability.

e Prediction Accuracy: Provided that the true relationship between the
response and the predictors is approximately linear, the least squares
estimates will have low bias. If n > p—that is, if n, the number of
observations, is much larger than p, the number of variables—then the
least squares estimates tend to also have low variance, and hence will
perform well on test observations. However, if n is not much larger

G. James et al., An Introduction to Statistical Learning: with Applications in R, 203
Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_6,
© Springer Science+Business Media New York 2013
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than p, then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future
observations not used in model training. And if p > n, then there
is no longer a unique least squares coefficient estimate: the variance
is infinite so the method cannot be used at all. By constraining or
shrinking the estimated coefficients, we can often substantially reduce
the variance at the cost of a negligible increase in bias. This can
lead to substantial improvements in the accuracy with which we can
predict the response for observations not used in model training.

Model Interpretability: 1t is often the case that some or many of the
variables used in a multiple regression model are in fact not associ-
ated with the response. Including such irrelevant variables leads to
unnecessary complexity in the resulting model. By removing these
variables—that is, by setting the corresponding coeflicient estimates
to zero—we can obtain a model that is more easily interpreted. Now
least squares is extremely unlikely to yield any coefficient estimates
that are exactly zero. In this chapter, we see some approaches for au-
tomatically performing feature selection or variable selection—that is,
for excluding irrelevant variables from a multiple regression model.

There are many alternatives, both classical and modern, to using least
squares to fit (6.1). In this chapter, we discuss three important classes of
methods.

e Subset Selection. This approach involves identifying a subset of the p

predictors that we believe to be related to the response. We then fit
a model using least squares on the reduced set of variables.

Shrinkage. This approach involves fitting a model involving all p pre-
dictors. However, the estimated coefficients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also known as
regularization) has the effect of reducing variance. Depending on what
type of shrinkage is performed, some of the coefficients may be esti-
mated to be exactly zero. Hence, shrinkage methods can also perform
variable selection.

Dimension Reduction. This approach involves projecting the p predic-
tors into a M-dimensional subspace, where M < p. This is achieved
by computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit a
linear regression model by least squares.

In the following sections we describe each of these approaches in greater de-
tail, along with their advantages and disadvantages. Although this chapter
describes extensions and modifications to the linear model for regression
seen in Chapter 3, the same concepts apply to other methods, such as the
classification models seen in Chapter 4.

feature
selection
variable
selection
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6.1 Subset Selection

In this section we consider some methods for selecting subsets of predictors.
These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection

To perform best subset selection, we fit a separate least squares regression
for each possible combination of the p predictors. That is, we fit all p models
that contain exactly one predictor, all (127) = p(p—1)/2 models that contain
exactly two predictors, and so forth. We then look at all of the resulting
models, with the goal of identifying the one that is best.

The problem of selecting the best model from among the 2P possibilities
considered by best subset selection is not trivial. This is usually broken up
into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection

1. Let Mg denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2. For k=1,2,...p:

(a) Fit all (¥) models that contain exactly k predictors.

(b) Pick the best among these (}) models, and call it M. Here best
is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C,, (AIC), BIC, or adjusted R

In Algorithm 6.1, Step 2 identifies the best model (on the training data)
for each subset size, in order to reduce the problem from one of 2P possible
models to one of p + 1 possible models. In Figure 6.1, these models form
the lower frontier depicted in red.

Now in order to select a single best model, we must simply choose among
these p + 1 options. This task must be performed with care, because the
RSS of these p 4+ 1 models decreases monotonically, and the R? increases
monotonically, as the number of features included in the models increases.
Therefore, if we use these statistics to select the best model, then we will
always end up with a model involving all of the variables. The problem is
that a low RSS or a high R? indicates a model with a low training error,
whereas we wish to choose a model that has a low test error. (As shown
in Chapter 2 in Figures 2.9-2.11, training error tends to be quite a bit
smaller than test error, and a low training error by no means guarantees
a low test error.) Therefore, in Step 3, we use cross-validated prediction

best subset
selection
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FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R? are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R?. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.

error, Cp, BIC, or adjusted R? in order to select among Mg, My, ..., M,,.
These approaches are discussed in Section 6.1.3.

An application of best subset selection is shown in Figure 6.1. Each
plotted point corresponds to a least squares regression model fit using a
different subset of the 11 predictors in the Credit data set, discussed in
Chapter 3. Here the variable ethnicity is a three-level qualitative variable,
and so is represented by two dummy variables, which are selected separately
in this case. We have plotted the RSS and R? statistics for each model, as
a function of the number of variables. The red curves connect the best
models for each model size, according to RSS or R?. The figure shows that,
as expected, these quantities improve as the number of variables increases;
however, from the three-variable model on, there is little improvement in
RSS and R? as a result of including additional predictors.

Although we have presented best subset selection here for least squares
regression, the same ideas apply to other types of models, such as logistic
regression. In the case of logistic regression, instead of ordering models by
RSS in Step 2 of Algorithm 6.1, we instead use the deviance, a measure
that plays the role of RSS for a broader class of models. The deviance is
negative two times the maximized log-likelihood; the smaller the deviance,
the better the fit.

While best subset selection is a simple and conceptually appealing ap-
proach, it suffers from computational limitations. The number of possible
models that must be considered grows rapidly as p increases. In general,
there are 2P models that involve subsets of p predictors. So if p = 10,
then there are approximately 1,000 possible models to be considered, and if

deviance
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p = 20, then there are over one million possibilities! Consequently, best sub-
set selection becomes computationally infeasible for values of p greater than
around 40, even with extremely fast modern computers. There are compu-
tational shortcuts—so called branch-and-bound techniques—for eliminat-
ing some choices, but these have their limitations as p gets large. They also
only work for least squares linear regression. We present computationally
efficient alternatives to best subset selection next.

For computational reasons, best subset selection cannot be applied with
very large p. Best subset selection may also suffer from statistical problems
when p is large. The larger the search space, the higher the chance of finding
models that look good on the training data, even though they might not
have any predictive power on future data. Thus an enormous search space
can lead to overfitting and high variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore a far more
restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

Forward stepwise selection is a computationally efficient alternative to best
subset selection. While the best subset selection procedure considers all
2P possible models containing subsets of the p predictors, forward step-
wise considers a much smaller set of models. Forward stepwise selection
begins with a model containing no predictors, and then adds predictors
to the model, one-at-a-time, until all of the predictors are in the model.
In particular, at each step the variable that gives the greatest additional
improvement to the fit is added to the model. More formally, the forward
stepwise selection procedure is given in Algorithm 6.2.

Algorithm 6.2 Forward stepwise selection

1. Let Mg denote the null model, which contains no predictors.
2. For k=0,...,p—1:

(a) Consider all p — k models that augment the predictors in M
with one additional predictor.

(b) Choose the best among these p — k models, and call it My41.
Here best is defined as having smallest RSS or highest R?.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C,, (AIC), BIC, or adjusted R

forward
stepwise
selection
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Unlike best subset selection, which involved fitting 2P models, forward
stepwise selection involves fitting one null model, along with p — k models
in the kth iteration, for £ = 0,...,p — 1. This amounts to a total of 1 4
Zi;é(p— k) =1+p(p+1)/2 models. This is a substantial difference: when
p = 20, best subset selection requires fitting 1,048,576 models, whereas
forward stepwise selection requires fitting only 211 models.*

In Step 2(b) of Algorithm 6.2, we must identify the best model from
among those p—k that augment M), with one additional predictor. We can
do this by simply choosing the model with the lowest RSS or the highest
R?. However, in Step 3, we must identify the best model among a set of
models with different numbers of variables. This is more challenging, and
is discussed in Section 6.1.3.

Forward stepwise selection’s computational advantage over best subset
selection is clear. Though forward stepwise tends to do well in practice,
it is not guaranteed to find the best possible model out of all 2P mod-
els containing subsets of the p predictors. For instance, suppose that in a
given data set with p = 3 predictors, the best possible one-variable model
contains X7, and the best possible two-variable model instead contains X5
and X3. Then forward stepwise selection will fail to select the best possible
two-variable model, because M7 will contain X7, so My must also contain
X1 together with one additional variable.

Table 6.1, which shows the first four selected models for best subset
and forward stepwise selection on the Credit data set, illustrates this phe-
nomenon. Both best subset selection and forward stepwise selection choose
rating for the best one-variable model and then include income and student
for the two- and three-variable models. However, best subset selection re-
places rating by cards in the four-variable model, while forward stepwise
selection must maintain rating in its four-variable model. In this example,
Figure 6.1 indicates that there is not much difference between the three-
and four-variable models in terms of RSS, so either of the four-variable
models will likely be adequate.

Forward stepwise selection can be applied even in the high-dimensional
setting where n < p; however, in this case, it is possible to construct sub-
models My, ..., M, _; only, since each submodel is fit using least squares,
which will not yield a unique solution if p > n.

Backward Stepwise Selection

Like forward stepwise selection, backward stepwise selection provides an
efficient alternative to best subset selection. However, unlike forward

IThough forward stepwise selection considers p(p + 1)/2 + 1 models, it performs a
guided search over model space, and so the effective model space considered contains
substantially more than p(p + 1)/2 + 1 models.

backward
stepwise
selection
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# Variables | Best subset Forward stepwise

One rating rating

Two rating, income rating, income

Three rating, income, student rating, income, student

Four cards, income, rating, income,
student, limit student, limit

TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

stepwise selection, it begins with the full least squares model containing
all p predictors, and then iteratively removes the least useful predictor,
one-at-a-time. Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection

1. Let M, denote the full model, which contains all p predictors.
2. Fork=p,p—1,...,1:

(a) Consider all k& models that contain all but one of the predictors
in My, for a total of k£ — 1 predictors.

(b) Choose the best among these k models, and call it My_1. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among My,..., M, using cross-
validated prediction error, C,, (AIC), BIC, or adjusted R

Like forward stepwise selection, the backward selection approach searches
through only 14 p(p+1)/2 models, and so can be applied in settings where
p is too large to apply best subset selection.? Also like forward stepwise
selection, backward stepwise selection is not guaranteed to yield the best
model containing a subset of the p predictors.

Backward selection requires that the number of samples n is larger than
the number of variables p (so that the full model can be fit). In contrast,
forward stepwise can be used even when n < p, and so is the only viable
subset method when p is very large.

2Like forward stepwise selection, backward stepwise selection performs a guided
search over model space, and so effectively considers substantially more than 1+p(p+1)/2
models.
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Hybrid Approaches

The best subset, forward stepwise, and backward stepwise selection ap-
proaches generally give similar but not identical models. As another al-
ternative, hybrid versions of forward and backward stepwise selection are
available, in which variables are added to the model sequentially, in analogy
to forward selection. However, after adding each new variable, the method
may also remove any variables that no longer provide an improvement in
the model fit. Such an approach attempts to more closely mimic best sub-
set selection while retaining the computational advantages of forward and
backward stepwise selection.

6.1.3 Choosing the Optimal Model

Best subset selection, forward selection, and backward selection result in
the creation of a set of models, each of which contains a subset of the p pre-
dictors. In order to implement these methods, we need a way to determine
which of these models is best. As we discussed in Section 6.1.1, the model
containing all of the predictors will always have the smallest RSS and the
largest R?, since these quantities are related to the training error. Instead,
we wish to choose a model with a low test error. As is evident here, and as
we show in Chapter 2, the training error can be a poor estimate of the test
error. Therefore, RSS and R? are not suitable for selecting the best model
among a collection of models with different numbers of predictors.

In order to select the best model with respect to test error, we need to
estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting.

2. We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

Cp, AIC, BIC, and Adjusted R?

We show in Chapter 2 that the training set MSE is generally an under-
estimate of the test MSE. (Recall that MSE = RSS/n.) This is because
when we fit a model to the training data using least squares, we specifi-
cally estimate the regression coefficients such that the training RSS (but
not the test RSS) is as small as possible. In particular, the training error
will decrease as more variables are included in the model, but the test error
may not. Therefore, training set RSS and training set R? cannot be used
to select from among a set of models with different numbers of variables.
However, a number of techniques for adjusting the training error for the
model size are available. These approaches can be used to select among a set
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FIGURE 6.2. C,, BIC, and adjusted R* are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

of models with different numbers of variables. We now consider four such
approaches: Cp, Akatke information criterion (AIC), Bayesian information o
criterion (BIC), and adjusted R?. Figure 6.2 displays Cj,, BIC, and adjusted A;ﬂkc
R? for the best model of each size produced by best subset selection on the information

Credit data set. g“eri‘"‘
For a fitted least squares model containing d predictors, the C, estimate ;1 mation

of test MSE is computed using the equation criterion
adjusted R?

Cp = % (RSS + 2d5?), (6.2)
where 62 is an estimate of the variance of the error ¢ associated with each
response measurement in (6.1).3 Typically 42 is estimated using the full
model containing all predictors. Essentially, the C,, statistic adds a penalty
of 2d#? to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error. Clearly, the penalty increases as
the number of predictors in the model increases; this is intended to adjust
for the corresponding decrease in training RSS. Though it is beyond the
scope of this book, one can show that if 62 is an unbiased estimate of o2 in
(6.2), then C), is an unbiased estimate of test MSE. As a consequence, the
C), statistic tends to take on a small value for models with a low test error,
so when determining which of a set of models is best, we choose the model
with the lowest C), value. In Figure 6.2, C), selects the six-variable model
containing the predictors income, limit, rating, cards, age and student.

3Mallow’s C), is sometimes defined as C, = RSS/42 + 2d — n. This is equivalent to

the definition given above in the sense that Cp = %(}2 (C}, +n), and so the model with
smallest Cp also has smallest C),.
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The AIC criterion is defined for a large class of models fit by maximum
likelihood. In the case of the model (6.1) with Gaussian errors, maximum
likelihood and least squares are the same thing. In this case AIC is given by

1 R

where, for simplicity, we have omitted an additive constant. Hence for least
squares models, C}, and AIC are proportional to each other, and so only
C) is displayed in Figure 6.2.

BIC is derived from a Bayesian point of view, but ends up looking similar
to Cp (and AIC) as well. For the least squares model with d predictors, the
BIC is, up to irrelevant constants, given by

BIC = LQ (RSS + log(n)ds?) . (6.3)
no

Like C), the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the lowest
BIC value. Notice that BIC replaces the 2d5? used by C, with a log(n)ds>
term, where n is the number of observations. Since logn > 2 for any n > 7,
the BIC statistic generally places a heavier penalty on models with many
variables, and hence results in the selection of smaller models than C,,.
In Figure 6.2, we see that this is indeed the case for the Credit data set;
BIC chooses a model that contains only the four predictors income, limit,
cards, and student. In this case the curves are very flat and so there does
not appear to be much difference in accuracy between the four-variable and
six-variable models.

The adjusted R? statistic is another popular approach for selecting among
a set of models that contain different numbers of variables. Recall from
Chapter 3 that the usual R? is defined as 1 — RSS/TSS, where TSS =
S~ (y; —y)? is the total sum of squares for the response. Since RSS always
decreases as more variables are added to the model, the R? always increases
as more variables are added. For a least squares model with d variables,
the adjusted R? statistic is calculated as

RSS/(n—d—1)
TSS/(n —1)

Adjusted R =1 — (6.4)
Unlike C,, AIC, and BIC, for which a small value indicates a model with
a low test error, a large value of adjusted R? indicates a model with a

small test error. Maximizing the adjusted R? is equivalent to minimizing

RSS
n—d—1"

While RSS always decreases as the number of variables in the model
RSS

increases, ==

denominator.
The intuition behind the adjusted R? is that once all of the correct

variables have been included in the model, adding additional noise variables

may increase or decrease, due to the presence of d in the
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will lead to only a very small decrease in RSS. Since adding noise variables
RSS

n—d—1"
and consequently a decrease in the adjusted R2. Therefore, in theory, the
model with the largest adjusted R? will have only correct variables and
no noise variables. Unlike the R? statistic, the adjusted R? statistic pays
a price for the inclusion of unnecessary variables in the model. Figure 6.2
displays the adjusted R? for the Credit data set. Using this statistic results
in the selection of a model that contains seven variables, adding gender to
the model selected by C, and AIC.

Cp, AIC, and BIC all have rigorous theoretical justifications that are
beyond the scope of this book. These justifications rely on asymptotic ar-
guments (scenarios where the sample size n is very large). Despite its pop-
ularity, and even though it is quite intuitive, the adjusted R? is not as well
motivated in statistical theory as AIC, BIC, and C),. All of these measures
are simple to use and compute. Here we have presented the formulas for
AIC, BIC, and C), in the case of a linear model fit using least squares;
however, these quantities can also be defined for more general types of
models.

leads to an increase in d, such variables will lead to an increase in

Validation and Cross-Validation

As an alternative to the approaches just discussed, we can directly esti-
mate the test error using the validation set and cross-validation methods
discussed in Chapter 5. We can compute the validation set error or the
cross-validation error for each model under consideration, and then select
the model for which the resulting estimated test error is smallest. This pro-
cedure has an advantage relative to AIC, BIC, C), and adjusted R?, in that
it provides a direct estimate of the test error, and makes fewer assumptions
about the true underlying model. It can also be used in a wider range of
model selection tasks, even in cases where it is hard to pinpoint the model
degrees of freedom (e.g. the number of predictors in the model) or hard to
estimate the error variance o2.

In the past, performing cross-validation was computationally prohibitive
for many problems with large p and/or large n, and so AIC, BIC, Cp,
and adjusted R? were more attractive approaches for choosing among a
set of models. However, nowadays with fast computers, the computations
required to perform cross-validation are hardly ever an issue. Thus, cross-
validation is a very attractive approach for selecting from among a number
of models under consideration.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and
cross-validation errors on the Credit data, for the best d-variable model.
The validation errors were calculated by randomly selecting three-quarters
of the observations as the training set, and the remainder as the valida-
tion set. The cross-validation errors were computed using k£ = 10 folds.
In this case, the validation and cross-validation methods both result in a
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.

six-variable model. However, all three approaches suggest that the four-,
five-, and six-variable models are roughly equivalent in terms of their test
errors.

In fact, the estimated test error curves displayed in the center and right-
hand panels of Figure 6.3 are quite flat. While a three-variable model clearly
has lower estimated test error than a two-variable model, the estimated test
errors of the 3- to 11-variable models are quite similar. Furthermore, if we
repeated the validation set approach using a different split of the data into
a training set and a validation set, or if we repeated cross-validation using
a different set of cross-validation folds, then the precise model with the
lowest estimated test error would surely change. In this setting, we can
select a model using the one-standard-error rule. We first calculate the
standard error of the estimated test MSE for each model size, and then
select the smallest model for which the estimated test error is within one
standard error of the lowest point on the curve. The rationale here is that
if a set of models appear to be more or less equally good, then we might
as well choose the simplest model—that is, the model with the smallest
number of predictors. In this case, applying the one-standard-error rule
to the validation set or cross-validation approach leads to selection of the
three-variable model.

6.2 Shrinkage Methods

The subset selection methods described in Section 6.1 involve using least
squares to fit a linear model that contains a subset of the predictors. As an
alternative, we can fit a model containing all p predictors using a technique
that constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero. It may not be immediately

one-
standard-
error

rule
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obvious why such a constraint should improve the fit, but it turns out that
shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates
Bo, B1, ..., Bp using the values that minimize

2
n

P
RSS = Z Yi — Bo — Zﬁjffij

i=1 j=1

Ridge regression is very similar to least squares, except that the coefficients
are estimated by minimizing a slightly different quantity. In particular, the
ridge regression coefficient estimates 3 are the values that minimize

2
n

p p b
S lwi—B0=> Bimij | +AD _BI=RSS+A> 5, (6.5)
j=1 j=1

i=1 j=1

where A > 0 is a tuning parameter, to be determined separately. Equa-
tion 6.5 trades off two different criteria. As with least squares, ridge regres-
sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, )\Zj 657 called a shrinkage penalty, is
small when (31, ..., 3, are close to zero, and so it has the effect of shrinking
the estimates of 8; towards zero. The tuning parameter A serves to control
the relative impact of these two terms on the regression coefficient esti-
mates. When A = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as A — oo, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coeflicient
estimates, Bf, for each value of \. Selecting a good value for A is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.
Note that in (6.5), the shrinkage penalty is applied to (i,...,08p, but
not to the intercept [By. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when x;1 = 230 = ... = z;, = 0. If we assume that the variables—that is,
the columns of the data matrix X—have been centered to have mean zero
before ridge regression is performed, then the estimated intercept will take

the form BO =y = Ezlzl yi/n.

ridge
regression

tuning
parameter

shrinkage
penalty
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FIGURE 6.4. The standardized ridge regression cer}fﬁcients are displayed for
the Credit data set, as a function of X and ||BE|2/]|8]|2.

An Application to the Credit Data

In Figure 6.4, the ridge regression coefficient estimates for the Credit data
set are displayed. In the left-hand panel, each curve corresponds to the
ridge regression coefficient estimate for one of the ten variables, plotted
as a function of \. For example, the black solid line represents the ridge
regression estimate for the income coefficient, as \ is varied. At the extreme
left-hand side of the plot, A is essentially zero, and so the corresponding
ridge coefficient estimates are the same as the usual least squares esti-
mates. But as A increases, the ridge coefficient estimates shrink towards
zero. When A is extremely large, then all of the ridge coefficient estimates
are basically zero; this corresponds to the null model that contains no pre-
dictors. In this plot, the income, 1imit, rating, and student variables are
displayed in distinct colors, since these variables tend to have by far the
largest coefficient estimates. While the ridge coefficient estimates tend to
decrease in aggregate as A increases, individual coefficients, such as rating
and income, may occasionally increase as A increases.

The right-hand panel of Figure 6.4 displays the same ridge coefficient
estimates as the left-hand panel, but instead of displaying A on the z-axis,
we now display [|5%]|2/||5]l2, where 3 denotes the vector of least squares
coefficient estimates. The notation ||3||2 denotes the ¢o norm (pronounced

“ell 27) of a vector, and is defined as ||3|2

P p2
=1 85" It measures

the distance of 8 from zero. As A increases, the £ norm of Bf will always
decrease, and so will ||Bf||2/||ﬁ||2 The latter quantity ranges from 1 (when
A = 0, in which case the ridge regression coefficient estimate is the same
as the least squares estimate, and so their 5 norms are the same) to 0
(when A\ = oo, in which case the ridge regression coefficient estimate is a
vector of zeros, with ¢o norm equal to zero). Therefore, we can think of the
z-axis in the right-hand panel of Figure 6.4 as the amount that the ridge

£ norm
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regression coefficient estimates have been shrunken towards zero; a small
value indicates that they have been shrunken very close to zero.

The standard least squares coefficient estimates discussed in Chapter 3
are scale equivariant: multiplying X; by a constant ¢ simply leads to a
scaling of the least squares coefficient estimates by a factor of 1/c. In other
words, regardless of how the jth predictor is scaled, Xij will remain the
same. In contrast, the ridge regression coefficient estimates can change sub-
stantially when multiplying a given predictor by a constant. For instance,
consider the income variable, which is measured in dollars. One could rea-
sonably have measured income in thousands of dollars, which would result
in a reduction in the observed values of income by a factor of 1,000. Now due
to the sum of squared coefficients term in the ridge regression formulation
(6.5), such a change in scale will not simply cause the ridge regression co-
efficient estimate for income to change by a factor of 1,000. In other words,
X; Bf)\ will depend not only on the value of A\, but also on the scaling of the

jth predictor. In fact, the value of X; BfA may even depend on the scaling
of the other predictors! Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

Iij

)
\/% i (@i —T5)?

(6.6)

Tij =

so that they are all on the same scale. In (6.6), the denominator is the
estimated standard deviation of the jth predictor. Consequently, all of the
standardized predictors will have a standard deviation of one. As a re-
sult the final fit will not depend on the scale on which the predictors are
measured. In Figure 6.4, the y-axis displays the standardized ridge regres-
sion coefficient estimates—that is, the coefficient estimates that result from
performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression’s advantage over least squares is rooted in the bias-variance
trade-off. As X increases, the flexibility of the ridge regression fit decreases,
leading to decreased variance but increased bias. This is illustrated in the
left-hand panel of Figure 6.5, using a simulated data set containing p = 45
predictors and n = 50 observations. The green curve in the left-hand panel
of Figure 6.5 displays the variance of the ridge regression predictions as a
function of . At the least squares coefficient estimates, which correspond
to ridge regression with A = 0, the variance is high but there is no bias. But
as A increases, the shrinkage of the ridge coeflicient estimates leads to a
substantial reduction in the variance of the predictions, at the expense of a
slight increase in bias. Recall that the test mean squared error (MSE), plot-
ted in purple, is a function of the variance plus the squared bias. For values

scale
equivariant
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FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of X and ||3¥]|2/||Bl2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.

of A up to about 10, the variance decreases rapidly, with very little increase
in bias, plotted in black. Consequently, the MSE drops considerably as A
increases from 0 to 10. Beyond this point, the decrease in variance due to
increasing A slows, and the shrinkage on the coefficients causes them to be
significantly underestimated, resulting in a large increase in the bias. The
minimum MSE is achieved at approximately A = 30. Interestingly, because
of its high variance, the MSE associated with the least squares fit, when
A =0, is almost as high as that of the null model for which all coefficient
estimates are zero, when A\ = co. However, for an intermediate value of A,
the MSE is considerably lower.

The right-hand panel of Figure 6.5 displays the same curves as the left-
hand panel, this time plotted against the ¢ norm of the ridge regression
coefficient estimates divided by the f5 norm of the least squares estimates.
Now as we move from left to right, the fits become more flexible, and so
the bias decreases and the variance increases.

In general, in situations where the relationship between the response
and the predictors is close to linear, the least squares estimates will have
low bias but may have high variance. This means that a small change in
the training data can cause a large change in the least squares coeflicient
estimates. In particular, when the number of variables p is almost as large
as the number of observations n, as in the example in Figure 6.5, the
least squares estimates will be extremely variable. And if p > n, then the
least squares estimates do not even have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in bias for a
large decrease in variance. Hence, ridge regression works best in situations
where the least squares estimates have high variance.

Ridge regression also has substantial computational advantages over best
subset selection, which requires searching through 2P models. As we
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discussed previously, even for moderate values of p, such a search can
be computationally infeasible. In contrast, for any fixed value of A, ridge
regression only fits a single model, and the model-fitting procedure can
be performed quite quickly. In fact, one can show that the computations
required to solve (6.5), simultaneously for all values of X, are almost iden-
tical to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty A 532- in (6.5)
will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless A = oo). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit
data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of A will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.

The lasso is a relatively recent alternative to ridge regression that over-
comes this disadvantage. The lasso coefficients, Bf, minimize the quantity

2
n

p D p
Dolvi—Bo=D Biwy | +AD 181 =RSS+AY |6 (6.7)
i=1 i=1 i=1

i=1

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the 632» term in the ridge
regression penalty (6.5) has been replaced by |5;| in the lasso penalty (6.7).
In statistical parlance, the lasso uses an ¢; (pronounced “ell 1”) penalty
instead of an ¢y penalty. The ¢; norm of a coefficient vector /3 is given by
181 = S15;1-

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero. However, in the case of the lasso, the ¢; penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when
the tuning parameter A is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models—that is,
models that involve only a subset of the variables. As in ridge regression,
selecting a good value of A for the lasso is critical; we defer this discussion
to Section 6.2.3, where we use cross-validation.

lasso

sparse
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of X and ||BL|1/118|1-

As an example, consider the coeflicient plots in Figure 6.6, which are gen-
erated from applying the lasso to the Credit data set. When A\ = 0, then
the lasso simply gives the least squares fit, and when A becomes sufficiently
large, the lasso gives the null model in which all coefficient estimates equal
zero. However, in between these two extremes, the ridge regression and
lasso models are quite different from each other. Moving from left to right
in the right-hand panel of Figure 6.6, we observe that at first the lasso re-
sults in a model that contains only the rating predictor. Then student and
limit enter the model almost simultaneously, shortly followed by income.
Eventually, the remaining variables enter the model. Hence, depending on
the value of A, the lasso can produce a model involving any number of vari-
ables. In contrast, ridge regression will always include all of the variables in
the model, although the magnitude of the coefficient estimates will depend
on A.

Another Formulation for Ridge Regression and the Lasso

One can show that the lasso and ridge regression coeflicient estimates solve
the problems

2
n p P
minimize Z yi — Po — Z BTij subject to Z 18| < s
o i=1 j=1 j=1
(6.8)
and
2
n p P
miniﬁmize Z Yi — Bo — Zﬁjxij subject to Z 532_ <s,
i=1 j=1 j=1

(6.9)
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respectively. In other words, for every value of A, there is some s such that
the Equations (6.7) and (6.8) will give the same lasso coefficient estimates.
Similarly, for every value of A there is a corresponding s such that Equa-
tions (6.5) and (6.9) will give the same ridge regression coefficient estimates.
When p = 2, then (6.8) indicates that the lasso coefficient estimates have
the smallest RSS out of all points that lie within the diamond defined by
|B1] + |B2] < s. Similarly, the ridge regression estimates have the smallest
RSS out of all points that lie within the circle defined by 8% + 53 < s.

We can think of (6.8) as follows. When we perform the lasso we are trying
to find the set of coeflicient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large 3°7_, [B;| can be.
When s is extremely large, then this budget is not very restrictive, and so
the coeflicient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then >37_, |8;] must be
small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that

"_, 87 not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

2
n

P P
minimize Z yi — Bo — Zﬂjzij subject to Zl(ﬂj #£0) <s.
A i=1 j=1 j=1

(6.10)
Here I(3; # 0) is an indicator variable: it takes on a value of 1 if 3; # 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient es-
timates such that RSS is as small as possible, subject to the constraint that
no more than s coefficients can be nonzero. The problem (6.10) is equivalent
to best subset selection. Unfortunately, solving (6.10) is computationally
infeasible when p is large, since it requires considering all (’; ) models con-
taining s predictors. Therefore, we can interpret ridge regression and the
lasso as computationally feasible alternatives to best subset selection that
replace the intractable form of the budget in (6.10) with forms that are
much easier to solve. Of course, the lasso is much more closely related to
best subset selection, since only the lasso performs feature selection for s
sufficiently small in (6.8).

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient
estimates that are exactly equal to zero? The formulations (6.8) and (6.9)
can be used to shed light on the issue. Figure 6.7 illustrates the situation.
The least squares solution is marked as B, while the blue diamond and
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |B1| + |B2| < s and BT + B3 < s, while the red ellipses are the contours of
the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9),
respectively. If s is sufficiently large, then the constraint regions will con-
tain 3, and so the ridge regression and lasso estimates will be the same as
the least squares estimates. (Such a large value of s corresponds to A =0
in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie
outside of the diamond and the circle, and so the least squares estimates
are not the same as the lasso and ridge regression estimates.

The ellipses that are centered around [ represent regions of constant
RSS. In other words, all of the points on a given ellipse share a common
value of the RSS. As the ellipses expand away from the least squares co-
efficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate
that the lasso and ridge regression coefficient estimates are given by the
first point at which an ellipse contacts the constraint region. Since ridge
regression has a circular constraint with no sharp points, this intersection
will not generally occur on an axis, and so the ridge regression coefficient
estimates will be exclusively non-zero. However, the lasso constraint has
corners at each of the axes, and so the ellipse will often intersect the con-
straint region at an axis. When this occurs, one of the coefficients will equal
zero. In higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 6.7, the intersection occurs at 5; = 0, and so the
resulting model will only include fs.

In Figure 6.7, we considered the simple case of p = 2. When p = 3,
then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dotted). Both are plotted
against their R* on the training data, as a common form of indexing. The crosses
in both plots indicate the lasso model for which the MSE is smallest.

constraint for ridge regression becomes a hypersphere, and the constraint
for the lasso becomes a polytope. However, the key ideas depicted in Fig-
ure 6.7 still hold. In particular, the lasso leads to feature selection when
p > 2 due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression

It is clear that the lasso has a major advantage over ridge regression, in
that it produces simpler and more interpretable models that involve only a
subset of the predictors. However, which method leads to better prediction
accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of
the lasso applied to the same simulated data as in Figure 6.5. Clearly the
lasso leads to qualitatively similar behavior to ridge regression, in that as A
increases, the variance decreases and the bias increases. In the right-hand
panel of Figure 6.8, the dotted lines represent the ridge regression fits.
Here we plot both against their R? on the training data. This is another
useful way to index models, and can be used to compare models with
different types of regularization, as is the case here. In this example, the
lasso and ridge regression result in almost identical biases. However, the
variance of ridge regression is slightly lower than the variance of the lasso.
Consequently, the minimum MSE of ridge regression is slightly smaller than
that of the lasso.

However, the data in Figure 6.8 were generated in such a way that all 45
predictors were related to the response—that is, none of the true coefficients
051, ..., 845 equaled zero. The lasso implicitly assumes that a number of the
coefficients truly equal zero. Consequently, it is not surprising that ridge
regression outperforms the lasso in terms of prediction error in this setting.
Figure 6.9 illustrates a similar situation, except that now the response is a
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE
(purple) for the lasso. The simulated data is similar to that in Figure 6.8, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance and test MSE between lasso (solid) and ridge (dotted). Both
are plotted against their R* on the training data, as a common form of indexing.
The crosses in both plots indicate the lasso model for which the MSE is smallest.

function of only 2 out of 45 predictors. Now the lasso tends to outperform
ridge regression in terms of bias, variance, and MSE.

These two examples illustrate that neither ridge regression nor the lasso
will universally dominate the other. In general, one might expect the lasso
to perform better in a setting where a relatively small number of predictors
have substantial coefficients, and the remaining predictors have coefficients
that are very small or that equal zero. Ridge regression will perform better
when the response is a function of many predictors, all with coefficients of
roughly equal size. However, the number of predictors that is related to the
response is never known a priori for real data sets. A technique such as
cross-validation can be used in order to determine which approach is better
on a particular data set.

As with ridge regression, when the least squares estimates have exces-
sively high variance, the lasso solution can yield a reduction in variance
at the expense of a small increase in bias, and consequently can gener-
ate more accurate predictions. Unlike ridge regression, the lasso performs
variable selection, and hence results in models that are easier to interpret.

There are very efficient algorithms for fitting both ridge and lasso models;
in both cases the entire coefficient paths can be computed with about the
same amount of work as a single least squares fit. We will explore this
further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso

In order to obtain a better intuition about the behavior of ridge regression
and the lasso, consider a simple special case with n = p, and X a diag-
onal matrix with 1’s on the diagonal and 0’s in all off-diagonal elements.
To simplify the problem further, assume also that we are performing regres-
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sion without an intercept. With these assumptions, the usual least squares
problem simplifies to finding 31, ..., 3, that minimize

> - B)* (6.11)

j=1

In this case, the least squares solution is given by

By =yj.
And in this setting, ridge regression amounts to finding g, . .., 8, such that
P P
> (i =B+ A5 (6.12)
j=1 j=1

is minimized, and the lasso amounts to finding the coefficients such that

P

D Wi =B+ A 18] (6.13)

Jj=1 Jj=1

is minimized. One can show that in this setting, the ridge regression esti-
mates take the form

B =i /(L +N), (6.14)

and the lasso estimates take the form

yi — A2 iy > A/
Bl =Sy + N2 ify; < -\/2 (6.15)
0 if ly;| < A/2.

Figure 6.10 displays the situation. We can see that ridge regression and
the lasso perform two very different types of shrinkage. In ridge regression,
each least squares coefficient estimate is shrunken by the same proportion.
In contrast, the lasso shrinks each least squares coefficient towards zero by
a constant amount, \/2; the least squares coefficients that are less than
A/2 in absolute value are shrunken entirely to zero. The type of shrink-
age performed by the lasso in this simple setting (6.15) is known as soft-
thresholding. The fact that some lasso coefficients are shrunken entirely to
zero explains why the lasso performs feature selection.

In the case of a more general data matrix X, the story is a little more
complicated than what is depicted in Figure 6.10, but the main ideas still
hold approximately: ridge regression more or less shrinks every dimension
of the data by the same proportion, whereas the lasso more or less shrinks
all coeflicients toward zero by a similar amount, and sufficiently small co-
efficients are shrunken all the way to zero.

soft-
thresholding
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matriz with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

Bayesian Interpretation for Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through
a Bayesian lens. A Bayesian viewpoint for regression assumes that the
coefficient vector 8 has some prior distribution, say p(8), where § =
(Bo, B1, -+, Bp)T. The likelihood of the data can be written as f(Y]X, ),
where X = (X1,...,X,). Multiplying the prior distribution by the likeli-
hood gives us (up to a proportionality constant) the posterior distribution,
which takes the form

p(BIX,Y) o« f(YIX, B)p(B|X) = f(VIX, B)p(B),

where the proportionality above follows from Bayes’ theorem, and the
equality above follows from the assumption that X is fixed.
We assume the usual linear model,

Y:B()—l—Xlﬁl—l—...—f—Xpﬁp—f—E,

and suppose that the errors are independent and drawn from a normal dis-
tribution. Furthermore, assume that p(8) = ?:1 g(B;), for some density
function g. It turns out that ridge regression and the lasso follow naturally
from two special cases of g:

e If g is a Gaussian distribution with mean zero and standard deviation
a function of A, then it follows that the posterior mode for f—that
is, the most likely value for g, given the data—is given by the ridge
regression solution. (In fact, the ridge regression solution is also the
posterior mean.)

®

posterior
distribution

posterior
mode
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FIGURE 6.11. Left: Ridge regression is the posterior mode for 5 under a Gaus-
sian prior. Right: The lasso is the posterior mode for 3 under a double-exponential
prior.

e If g is a double-exponential (Laplace) distribution with mean zero
and scale parameter a function of A\, then it follows that the posterior
mode for S is the lasso solution. (However, the lasso solution is not
the posterior mean, and in fact, the posterior mean does not yield a
sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11.
Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow
directly from assuming the usual linear model with normal errors, together
with a simple prior distribution for 8. Notice that the lasso prior is steeply
peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the
lasso expects a priori that many of the coefficients are (exactly) zero, while
ridge assumes the coefficients are randomly distributed about zero.

6.2.3 Selecting the Tuning Parameter

Just as the subset selection approaches considered in Section 6.1 require
a method to determine which of the models under consideration is best,
implementing ridge regression and the lasso requires a method for selecting
a value for the tuning parameter A in (6.5) and (6.7), or equivalently, the
value of the constraint s in (6.9) and (6.8). Cross-validation provides a sim-
ple way to tackle this problem. We choose a grid of A values, and compute
the cross-validation error for each value of A, as described in Chapter 5. We
then select the tuning parameter value for which the cross-validation error
is smallest. Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter.

Figure 6.12 displays the choice of A\ that results from performing leave-
one-out cross-validation on the ridge regression fits from the Credit data
set. The dashed vertical lines indicate the selected value of A. In this case
the value is relatively small, indicating that the optimal fit only involves a
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various value of X. Right: The coefficient
estimates as a function of X\. The vertical dashed lines indicate the value of A
selected by cross-validation.

small amount of shrinkage relative to the least squares solution. In addition,
the dip is not very pronounced, so there is rather a wide range of values
that would give very similar error. In a case like this we might simply use
the least squares solution.

Figure 6.13 provides an illustration of ten-fold cross-validation applied to
the lasso fits on the sparse simulated data from Figure 6.9. The left-hand
panel of Figure 6.13 displays the cross-validation error, while the right-hand
panel displays the coefficient estimates. The vertical dashed lines indicate
the point at which the cross-validation error is smallest. The two colored
lines in the right-hand panel of Figure 6.13 represent the two predictors
that are related to the response, while the grey lines represent the unre-
lated predictors; these are often referred to as signal and noise variables,
respectively. Not only has the lasso correctly given much larger coeffi-
cient estimates to the two signal predictors, but also the minimum cross-
validation error corresponds to a set of coefficient estimates for which only
the signal variables are non-zero. Hence cross-validation together with the
lasso has correctly identified the two signal variables in the model, even
though this is a challenging setting, with p = 45 variables and only n = 50
observations. In contrast, the least squares solution—displayed on the far
right of the right-hand panel of Figure 6.13—assigns a large coeflicient
estimate to only one of the two signal variables.

6.3 Dimension Reduction Methods

The methods that we have discussed so far in this chapter have controlled
variance in two different ways, either by using a subset of the original vari-
ables, or by shrinking their coefficients toward zero. All of these methods

signal
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit
for which the cross-validation error is smallest.

are defined using the original predictors, X, X»,..., X,,. We now explore
a class of approaches that transform the predictors and then fit a least
squares model using the transformed variables. We will refer to these tech-

niques as dimension reduction methods. ) )
dimension

Let Z1,Zs, ..., Zy represent M < p linear combinations of our original reduction
p predictors. That is, linear
P combination
Zm = ¢imX; (6.16)
j=1
for some constants ¢1p,, 2m ..., Ppm, m =1,..., M. We can then fit the

linear regression model

M
yZZGQ—F Zﬂmzim+ei, i:l,...,n, (617)

m=1

using least squares. Note that in (6.17), the regression coefficients are given
by 6o, 01,...,0. If the constants @1, Pomm, - - . ; Ppm are chosen wisely, then
such dimension reduction approaches can often outperform least squares
regression. In other words, fitting (6.17) using least squares can lead to
better results than fitting (6.1) using least squares.

The term dimension reduction comes from the fact that this approach
reduces the problem of estimating the p+1 coefficients Sy, 51, ..., Bp to the
simpler problem of estimating the M + 1 coefficients 6y, 01, ..., 05, where
M < p. In other words, the dimension of the problem has been reduced
from p+ 1 to M + 1.

Notice that from (6.16),

M M P p M P
Z emzlm = Z Gm Zd’jmzij = Z Z 9m¢jmzij = Zﬂjzijv
m=1 m=1 7j=1 Jj=1

j=1m=1
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.

where
M
Bj = Z 9m¢jm- (618)
m=1

Hence (6.17) can be thought of as a special case of the original linear
regression model given by (6.1). Dimension reduction serves to constrain
the estimated f§; coefficients, since now they must take the form (6.18).
This constraint on the form of the coefficients has the potential to bias the
coefficient estimates. However, in situations where p is large relative to n,
selecting a value of M < p can significantly reduce the variance of the fitted
coefficients. If M = p, and all the Z,, are linearly independent, then (6.18)
poses no constraints. In this case, no dimension reduction occurs, and so
fitting (6.17) is equivalent to performing least squares on the original p

predictors.

All dimension reduction methods work in two steps. First, the trans-
formed predictors Zi, Zs,...,Zp; are obtained. Second, the model is fit
using these M predictors. However, the choice of Z1, Zs, ..., Zy, or equiv-

alently, the selection of the ¢;,,’s, can be achieved in different ways. In this
chapter, we will consider two approaches for this task: principal components
and partial least squares.

6.3.1 Principal Components Regression

Principal components analysis (PCA) is a popular approach for deriving =

a low-dimensional set of features from a large set of variables. PCA is Séiﬁ;ﬁfim
discussed in greater detail as a tool for unsupervised learning in Chapter 10. analysis
Here we describe its use as a dimension reduction technique for regression.
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An Overview of Principal Components Analysis

PCA is a technique for reducing the dimension of a n x p data matrix X.
The first principal component direction of the data is that along which the
observations vary the most. For instance, consider Figure 6.14, which shows
population size (pop) in tens of thousands of people, and ad spending for a
particular company (ad) in thousands of dollars, for 100 cities. The green
solid line represents the first principal component direction of the data. We
can see by eye that this is the direction along which there is the greatest
variability in the data. That is, if we projected the 100 observations onto
this line (as shown in the left-hand panel of Figure 6.15), then the resulting
projected observations would have the largest possible variance; projecting
the observations onto any other line would yield projected observations
with lower variance. Projecting a point onto a line simply involves finding
the location on the line which is closest to the point.

The first principal component is displayed graphically in Figure 6.14, but
how can it be summarized mathematically? It is given by the formula

Z1 = 0.839 x (pop — pop) + 0.544 x (ad — ad). (6.19)

Here ¢11 = 0.839 and ¢o; = 0.544 are the principal component loadings,
which define the direction referred to above. In (6.19), pop indicates the
mean of all pop values in this data set, and ad indicates the mean of all ad-
vertising spending. The idea is that out of every possible linear combination
of pop and ad such that ¢%, + ¢3; = 1, this particular linear combination
yields the highest variance: i.e. this is the linear combination for which
Var(¢11 X (pop — Pop) + ¢21 X (ad — ad)) is maximized. It is necessary to
consider only linear combinations of the form ¢7, +#3; = 1, since otherwise
we could increase ¢11 and ¢ arbitrarily in order to blow up the variance.
In (6.19), the two loadings are both positive and have similar size, and so
Z1 is almost an average of the two variables.

Since n = 100, pop and ad are vectors of length 100, and so is Z; in
(6.19). For instance,

zi1 = 0.839 x (pop; — pop) + 0.544 X (ad; — ad). (6.20)

The values of z11, ..., z,1 are known as the principal component scores, and
can be seen in the right-hand panel of Figure 6.15.

There is also another interpretation for PCA: the first principal compo-
nent vector defines the line that is as close as possible to the data. For
instance, in Figure 6.14, the first principal component line minimizes the
sum of the squared perpendicular distances between each point and the
line. These distances are plotted as dashed line segments in the left-hand
panel of Figure 6.15, in which the crosses represent the projection of each
point onto the first principal component line. The first principal component
has been chosen so that the projected observations are as close as possible
to the original observations.
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FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop, ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the z-axis.

In the right-hand panel of Figure 6.15, the left-hand panel has been
rotated so that the first principal component direction coincides with the
z-axis. It is possible to show that the first principal component score for
the ith observation, given in (6.20), is the distance in the z-direction of the
ith cross from zero. So for example, the point in the bottom-left corner of
the left-hand panel of Figure 6.15 has a large negative principal component

score, z;1 = —26.1, while the point in the top-right corner has a large
positive score, z;; = 18.7. These scores can be computed directly using
(6.20).

We can think of the values of the principal component Z; as single-
number summaries of the joint pop and ad budgets for each location. In
this example, if z;; = 0.839 x (pop; — pop) + 0.544 x (ad; — ad) < 0,
then this indicates a city with below-average population size and below-
average ad spending. A positive score suggests the opposite. How well can a
single number represent both pop and ad? In this case, Figure 6.14 indicates
that pop and ad have approximately a linear relationship, and so we might
expect that a single-number summary will work well. Figure 6.16 displays
z;1 versus both pop and ad.* The plots show a strong relationship between
the first principal component and the two features. In other words, the first
principal component appears to capture most of the information contained
in the pop and ad predictors.

So far we have concentrated on the first principal component. In gen-
eral, one can construct up to p distinct principal components. The second
principal component Zs is a linear combination of the variables that is un-
correlated with Z;, and has largest variance subject to this constraint. The
second principal component direction is illustrated as a dashed blue line in
Figure 6.14. It turns out that the zero correlation condition of Z; with Zs

4The principal components were calculated after first standardizing both pop and ad,
a common approach. Hence, the x-axes on Figures 6.15 and 6.16 are not on the same scale.
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FIGURE 6.16. Plots of the first principal component scores zj1 versus pop and

ad. The relationships are strong.

is equivalent to the condition that the direction must be perpendicular, or
orthogonal, to the first principal component direction. The second principal

component is given by the for

mula

Z5 = 0.544 x (pop — pop) — 0.839 x (ad — ad).

perpendicular

orthogonal

Since the advertising data has two predictors, the first two principal com-
ponents contain all of the information that is in pop and ad. However, by
construction, the first component will contain the most information. Con-
sider, for example, the much larger variability of z;; (the z-axis) versus
zi2 (the y-axis) in the right-hand panel of Figure 6.15. The fact that the
second principal component scores are much closer to zero indicates that
this component captures far less information. As another illustration, Fig-
ure 6.17 displays z;2 versus pop and ad. There is little relationship between
the second principal component and these two predictors, again suggesting
that in this case, one only needs the first principal component in order to

accurately represent the pop and ad budgets.

With two-dimensional data, such as in our advertising example, we can
construct at most two principal components. However, if we had other
predictors, such as population age, income level, education, and so forth,
then additional components could be constructed. They would successively
maximize variance, subject to the constraint of being uncorrelated with the

preceding components.

The Principal Components Regression Approach

The principal components regression (PCR) approach involves constructing
the first M principal components, Z1, . .

nents as the predictors in a linear regression model that
using least squares. The key idea is that often a small number of prin-
cipal components suffice to explain most of the variability in the data, as
well as the relationship with the response. In other words, we assume that

the directions in which X1, ...

principal

.y Zr, and then using these compo- components

is fit regression

, X, show the most variation are the direc-

tions that are associated with Y. While this assumption is not guaranteed
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FIGURE 6.17. Plots of the second principal component scores zi2 versus pop
and ad. The relationships are weak.

o
~ 84 — m Squared Bias
5 g1 5 N\ L Tes_t MSE
= = = Variance
w o - w
kel T 8 4
° -~ g =
© < ©
2 >
a8 (%]
o _|
§ o S 3
(ORI (]
= . =
o o
T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40
Number of Components Number of Components

FIGURE 6.18. PCR was applied to two simulated data sets. Left: Simulated
data from Figure 6.8. Right: Simulated data from Figure 6.9.

to be true, it often turns out to be a reasonable enough approximation to
give good results.
If the assumption underlying PCR holds, then fitting a least squares

model to Z1,..., Zy will lead to better results than fitting a least squares
model to X1,..., X, since most or all of the information in the data that
relates to the response is contained in Z1,..., Zys, and by estimating only

M < p coefficients we can mitigate overfitting. In the advertising data, the
first principal component explains most of the variance in both pop and ad,
so a principal component regression that uses this single variable to predict
some response of interest, such as sales, will likely perform quite well.
Figure 6.18 displays the PCR fits on the simulated data sets from
Figures 6.8 and 6.9. Recall that both data sets were generated using n = 50
observations and p = 45 predictors. However, while the response in the first
data set was a function of all the predictors, the response in the second data
set was generated using only two of the predictors. The curves are plotted
as a function of M, the number of principal components used as predic-
tors in the regression model. As more principal components are used in
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FIGURE 6.19. PCR, ridge regression, and the lasso were applied to a simulated
data set in which the first five principal components of X contain all the informa-
tion about the response Y. In each panel, the irreducible error Var(e) is shown as
a horizontal dashed line. Left: Results for PCR. Right: Results for lasso (solid)
and ridge regression (dotted). The x-axis displays the shrinkage factor of the co-
efficient estimates, defined as the f2 morm of the shrunken coefficient estimates
divided by the €2 norm of the least squares estimate.

the regression model, the bias decreases, but the variance increases. This
results in a typical U-shape for the mean squared error. When M = p = 45,
then PCR amounts simply to a least squares fit using all of the original
predictors. The figure indicates that performing PCR with an appropriate
choice of M can result in a substantial improvement over least squares, es-
pecially in the left-hand panel. However, by examining the ridge regression
and lasso results in Figures 6.5, 6.8, and 6.9, we see that PCR does not
perform as well as the two shrinkage methods in this example.

The relatively worse performance of PCR in Figure 6.18 is a consequence
of the fact that the data were generated in such a way that many princi-
pal components are required in order to adequately model the response.
In contrast, PCR will tend to do well in cases when the first few principal
components are sufficient to capture most of the variation in the predictors
as well as the relationship with the response. The left-hand panel of Fig-
ure 6.19 illustrates the results from another simulated data set designed to
be more favorable to PCR. Here the response was generated in such a way
that it depends exclusively on the first five principal components. Now the
bias drops to zero rapidly as M, the number of principal components used
in PCR, increases. The mean squared error displays a clear minimum at
M = 5. The right-hand panel of Figure 6.19 displays the results on these
data using ridge regression and the lasso. All three methods offer a signif-
icant improvement over least squares. However, PCR and ridge regression
slightly outperform the lasso.

We note that even though PCR provides a simple way to perform
regression using M < p predictors, it is not a feature selection method.
This is because each of the M principal components used in the regression
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FIGURE 6.20. Left: PCR standardized coefficient estimates on the Credit data
set for different values of M. Right: The ten-fold cross validation MSE obtained
using PCR, as a function of M.

is a linear combination of all p of the original features. For instance, in
(6.19), Z; was a linear combination of both pop and ad. Therefore, while
PCR often performs quite well in many practical settings, it does not result
in the development of a model that relies upon a small set of the original
features. In this sense, PCR is more closely related to ridge regression than
to the lasso. In fact, one can show that PCR and ridge regression are very
closely related. One can even think of ridge regression as a continuous ver-
sion of PCR!*

In PCR, the number of principal components, M, is typically chosen by
cross-validation. The results of applying PCR to the Credit data set are
shown in Figure 6.20; the right-hand panel displays the cross-validation
errors obtained, as a function of M. On these data, the lowest cross-
validation error occurs when there are M = 10 components; this corre-
sponds to almost no dimension reduction at all, since PCR with M = 11
is equivalent to simply performing least squares.

When performing PCR, we generally recommend standardizing each
predictor, using (6.6), prior to generating the principal components. This
standardization ensures that all variables are on the same scale. In the
absence of standardization, the high-variance variables will tend to play a
larger role in the principal components obtained, and the scale on which
the variables are measured will ultimately have an effect on the final PCR
model. However, if the variables are all measured in the same units (say,
kilograms, or inches), then one might choose not to standardize them.

4More details can be found in Section 3.5 of Elements of Statistical Learning by
Hastie, Tibshirani, and Friedman.
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FIGURE 6.21. For the advertising data, the first PLS direction (solid line) and
first PCR direction (dotted line) are shown.

6.3.2 Partial Least Squares

The PCR approach that we just described involves identifying linear combi-
nations, or directions, that best represent the predictors Xy, ..., X,. These
directions are identified in an unsupervised way, since the response Y is not
used to help determine the principal component directions. That is, the
response does not supervise the identification of the principal components.
Consequently, PCR suffers from a drawback: there is no guarantee that the
directions that best explain the predictors will also be the best directions
to use for predicting the response. Unsupervised methods are discussed
further in Chapter 10.

We now present partial least squares (PLS), a supervised alternative to )
PCR. Like PCR, PLS is a dimension reduction method, which first identifies Sj:lzlislcabt
a new set of features 71, ..., Z); that are linear combinations of the original
features, and then fits a linear model via least squares using these M new
features. But unlike PCR, PLS identifies these new features in a supervised
way—that is, it makes use of the response Y in order to identify new
features that not only approximate the old features well, but also that are
related to the response. Roughly speaking, the PLS approach attempts to
find directions that help explain both the response and the predictors.

We now describe how the first PLS direction is computed. After stan-
dardizing the p predictors, PLS computes the first direction Z; by setting
each ¢;1 in (6.16) equal to the coefficient from the simple linear regression
of Y onto X;. One can show that this coefficient is proportional to the cor-
relation between Y and X;. Hence, in computing Z; = Z?Zl »i1X;, PLS
places the highest weight on the variables that are most strongly related
to the response.

Figure 6.21 displays an example of PLS on a synthetic dataset with Sales in
each of 100 regions as the response, and two predictors; Population Size
and Advertising Spending.® The solid green line indicates the first PLS
direction, while the dotted line shows the first principal component direction.
PLS has chosen a direction that has less change in the ad dimension per unit

6This dataset is distinct from the Advertising data discussed in Chapter 3.
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change in the pop dimension, relative to PCA. This suggests that pop is
more highly correlated with the response than is ad. The PLS direction
does not fit the predictors as closely as does PCA | but it does a better job
explaining the response.

To identify the second PLS direction we first adjust each of the variables
for Z7, by regressing each variable on Z; and taking residuals. These resid-
uals can be interpreted as the remaining information that has not been
explained by the first PLS direction. We then compute Z, using this or-
thogonalized data in exactly the same fashion as Z; was computed based
on the original data. This iterative approach can be repeated M times to
identify multiple PLS components Z1,..., Zy;. Finally, at the end of this
procedure, we use least squares to fit a linear model to predict Y using
Z1,...,Z in exactly the same fashion as for PCR.

As with PCR, the number M of partial least squares directions used in
PLS is a tuning parameter that is typically chosen by cross-validation. We
generally standardize the predictors and response before performing PLS.

PLS is popular in the field of chemometrics, where many variables arise
from digitized spectrometry signals. In practice it often performs no better
than ridge regression or PCR. While the supervised dimension reduction
of PLS can reduce bias, it also has the potential to increase variance, so
that the overall benefit of PLS relative to PCR is a wash.

6.4 Considerations in High Dimensions

6.4.1 High-Dimensional Data

Most traditional statistical techniques for regression and classification are
intended for the low-dimensional setting in which n, the number of ob-
servations, is much greater than p, the number of features. This is due in
part to the fact that throughout most of the field’s history, the bulk of sci-
entific problems requiring the use of statistics have been low-dimensional.
For instance, consider the task of developing a model to predict a patient’s
blood pressure on the basis of his or her age, gender, and body mass index
(BMI). There are three predictors, or four if an intercept is included in
the model, and perhaps several thousand patients for whom blood pressure
and age, gender, and BMI are available. Hence n > p, and so the problem
is low-dimensional. (By dimension here we are referring to the size of p.)

In the past 20 years, new technologies have changed the way that data
are collected in fields as diverse as finance, marketing, and medicine. It is
now commonplace to collect an almost unlimited number of feature mea-
surements (p very large). While p can be extremely large, the number of
observations n is often limited due to cost, sample availability, or other
considerations. Two examples are as follows:

1. Rather than predicting blood pressure on the basis of just age, gen-
der, and BMI, one might also collect measurements for half a million

low-
dimensional
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single nucleotide polymorphisms (SNPs; these are individual DNA
mutations that are relatively common in the population) for inclu-
sion in the predictive model. Then n &~ 200 and p ~ 500,000.

2. A marketing analyst interested in understanding people’s online shop-
ping patterns could treat as features all of the search terms entered
by users of a search engine. This is sometimes known as the “bag-of-
words” model. The same researcher might have access to the search
histories of only a few hundred or a few thousand search engine users
who have consented to share their information with the researcher.
For a given user, each of the p search terms is scored present (0) or
absent (1), creating a large binary feature vector. Then n =~ 1,000
and p is much larger.

Data sets containing more features than observations are often referred
to as high-dimensional. Classical approaches such as least squares linear
regression are not appropriate in this setting. Many of the issues that arise
in the analysis of high-dimensional data were discussed earlier in this book,
since they apply also when n > p: these include the role of the bias-variance
trade-off and the danger of overfitting. Though these issues are always rele-
vant, they can become particularly important when the number of features
is very large relative to the number of observations.

We have defined the high-dimensional setting as the case where the num-
ber of features p is larger than the number of observations n. But the con-
siderations that we will now discuss certainly also apply if p is slightly
smaller than n, and are best always kept in mind when performing super-
vised learning.

6.4.2 What Goes Wrong in High Dimensions?

In order to illustrate the need for extra care and specialized techniques
for regression and classification when p > n, we begin by examining what
can go wrong if we apply a statistical technique not intended for the high-
dimensional setting. For this purpose, we examine least squares regression.
But the same concepts apply to logistic regression, linear discriminant anal-
ysis, and other classical statistical approaches.

When the number of features p is as large as, or larger than, the number
of observations n, least squares as described in Chapter 3 cannot (or rather,
should not) be performed. The reason is simple: regardless of whether or
not there truly is a relationship between the features and the response,
least squares will yield a set of coeflicient estimates that result in a perfect
fit to the data, such that the residuals are zero.

An example is shown in Figure 6.22 with p = 1 feature (plus an intercept)
in two cases: when there are 20 observations, and when there are only
two observations. When there are 20 observations, n > p and the least

high-
dimensional
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FIGURE 6.22. Left: Least squares regression in the low-dimensional setting.
Right: Least squares regression with n = 2 observations and two parameters to be
estimated (an intercept and a coefficient).

squares regression line does not perfectly fit the data; instead, the regression
line seeks to approximate the 20 observations as well as possible. On the
other hand, when there are only two observations, then regardless of the
values of those observations, the regression line will fit the data exactly.
This is problematic because this perfect fit will almost certainly lead to
overfitting of the data. In other words, though it is possible to perfectly fit
the training data in the high-dimensional setting, the resulting linear model
will perform extremely poorly on an independent test set, and therefore
does not constitute a useful model. In fact, we can see that this happened
in Figure 6.22: the least squares line obtained in the right-hand panel will
perform very poorly on a test set comprised of the observations in the left-
hand panel. The problem is simple: when p > n or p = n, a simple least
squares regression line is too flexible and hence overfits the data.

Figure 6.23 further illustrates the risk of carelessly applying least squares
when the number of features p is large. Data were simulated with n = 20
observations, and regression was performed with between 1 and 20 features,
each of which was completely unrelated to the response. As shown in the
figure, the model R? increases to 1 as the number of features included in the
model increases, and correspondingly the training set MSE decreases to 0
as the number of features increases, even though the features are completely
unrelated to the response. On the other hand, the MSE on an independent
test set becomes extremely large as the number of features included in the
model increases, because including the additional predictors leads to a vast
increase in the variance of the coefficient estimates. Looking at the test
set MSE, it is clear that the best model contains at most a few variables.
However, someone who carelessly examines only the R? or the training set
MSE might erroneously conclude that the model with the greatest number
of variables is best. This indicates the importance of applying extra care
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FIGURE 6.23. On a simulated example with n = 20 training observations,
features that are completely unrelated to the outcome are added to the model.
Left: The R? increases to 1 as more features are included. Center: The training
set MSE decreases to 0 as more features are included. Right: The test set MSE
increases as more features are included.

when analyzing data sets with a large number of variables, and of always
evaluating model performance on an independent test set.

In Section 6.1.3, we saw a number of approaches for adjusting the training
set RSS or R? in order to account for the number of variables used to fit
a least squares model. Unfortunately, the C,, AIC, and BIC approaches
are not appropriate in the high-dimensional setting, because estimating &2
is problematic. (For instance, the formula for 62 from Chapter 3 yields an
estimate 62 = 0 in this setting.) Similarly, problems arise in the application
of adjusted R? in the high-dimensional setting, since one can easily obtain
a model with an adjusted R? value of 1. Clearly, alternative approaches
that are better-suited to the high-dimensional setting are required.

6.4.3 Regression in High Dimensions

It turns out that many of the methods seen in this chapter for fitting
less flexible least squares models, such as forward stepwise selection, ridge
regression, the lasso, and principal components regression, are particularly
useful for performing regression in the high-dimensional setting. Essentially,
these approaches avoid overfitting by using a less flexible fitting approach
than least squares.

Figure 6.24 illustrates the performance of the lasso in a simple simulated
example. There are p = 20, 50, or 2,000 features, of which 20 are truly
associated with the outcome. The lasso was performed on n = 100 training
observations, and the mean squared error was evaluated on an independent
test set. As the number of features increases, the test set error increases.
When p = 20, the lowest validation set error was achieved when A in
(6.7) was small; however, when p was larger then the 