

Understanding Cryptography

Christof Paar · Jan Pelzl

Understanding Cryptography

A Textbook for Students and Practitioners

Foreword by Bart Preneel

123

Prof. Dr.-Ing. Christof Paar
Lehrstuhl für Kommunikationssicherheit
Fakultät für Elektrotechnik und
Informationstechnik
Ruhr-Universität Bochum
44780 Bochum
Germany
christof.paar@rub.de

Dr. Jan Pelzl
escrypt GmbH - Embedded Security
Zentrum für IT-Sicherheit
Lise-Meitner-Allee 4
44801 Bochum
Germany
jpelzl@escrypt.com

ISBN 978-3-642-44649-8 ISBN 978-3-642-04101-3 (eBook)
DOI 10.1007/978-3-642-04101-3
Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): E.3, K.4.4, K.6.5.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Library of Congress Control Number: 2009940447

c© Springer-Verlag Berlin Heidelberg 2010, 2nd Corrected printing 2010

To

Flora, Maja, Noah and Sarah

as well as to

Karl, Greta and Nele

While writing this book we noticed that for some reason the names of our spouses

and children are limited to five letters. As far as we know, this has no cryptographic

relevance.

Foreword

Academic research in cryptology started in the mid-1970s; today it is a mature re-

search discipline with an established professional organization (IACR, International

Association for Cryptologic Research), thousands of researchers, and dozens of in-

ternational conferences. Every year more than a thousand scientific papers are pub-

lished on cryptology and its applications.

Until the 1970s, cryptography was almost exclusively found in diplomatic, mili-

tary and government applications. During the 1980s, the financial and telecommuni-

cations industries deployed hardware cryptographic devices. The first mass-market

cryptographic application was the digital mobile phone system of the late 1980s.

Today, everyone uses cryptography on a daily basis: Examples include unlocking

a car or garage door with a remote-control device, connecting to a wireless LAN,

buying goods with a credit or debit card in a brick and mortar store or on the Inter-

net, installing a software update, making a phone call via voice-over-IP, or paying

for a ride on a public transport system. There is no doubt that emerging application

areas such as e-health, car telematics and smart buildings will make cryptography

even more ubiquitous.

Cryptology is a fascinating discipline at the intersection of computer science,

mathematics and electrical engineering. As cryptology is moving fast, it is hard to

keep up with all the developments. During the last 25 years, the theoretical foun-

dations of the area have been strengthened; we now have a solid understanding of

security definitions and of ways to prove constructions secure. Also in the area of

applied cryptography we witness very fast developments: old algorithms are broken

and withdrawn and new algorithms and protocols emerge.

While several excellent textbooks on cryptology have been published in the last

decade, they tend to focus on readers with a strong mathematical background. More-

over, the exciting new developments and advanced protocols form a temptation to

add ever more fancy material. It is the great merit of this textbook that it restricts

itself to those topics that are relevant to practitioners today. Moreover, the mathe-

matical background and formalism is limited to what is strictly necessary and it is

introduced exactly in the place where it is needed. This “less is more” approach is

very suitable to address the needs of newcomers in the field, as they get introduced

vii

viii Foreword

step by step to the basic concepts and judiciously chosen algorithms and protocols.

Each chapter contains very helpful pointers to further reading, for those who want

to expand and deepen their knowledge.

Overall, I am very pleased that the authors have succeeded in creating a highly

valuable introduction to the subject of applied cryptography. I hope that it can serve

as a guide for practitioners to build more secure systems based on cryptography, and

as a stepping stone for future researchers to explore the exciting world of cryptog-

raphy and its applications.

Leuven, August 2009 Bart Preneel

Preface

Cryptography has crept into everything, from Web browsers and e-mail programs

to cell phones, bank cards, cars and even into medical implants. In the near fu-

ture we will see many new exciting applications for cryptography such as radio

frequency identification (RFID) tags for anti-counterfeiting or car-to-car commu-

nications (we’ve worked on securing both of these applications). This is quite a

change from the past, where cryptography had been traditionally confined to very

specific applications, especially government communications and banking systems.

As a consequence of the pervasiveness of crypto algorithms, an increasing number

of people must understand how they work and how they can be applied in prac-

tice. This book addresses this issue by providing a comprehensive introduction to

modern applied cryptography that is equally suited for students and practitioners in

industry.

Our book provides the reader with a deep understanding of how modern cryp-

tographic schemes work. We introduce the necessary mathematical concepts in a

way that is accessible for every reader with a minimum background in college-level

calculus. It is thus equally well suited as a textbook for undergraduate or begin-

ning graduate classes, or as a reference book for practicing engineers and computer

scientists who are interested in a solid understanding of modern cryptography.

The book has many features that make it a unique source for practitioners and stu-

dents. We focused on practical relevance by introducing most crypto algorithms that

are used in modern real-world applications. For every crypto scheme, up-to-date se-

curity estimations and key length recommendations are given. We also discuss the

important issue of software and hardware implementation for every algorithm. In

addition to crypto algorithms, we introduce topics such as important cryptographic

protocols, modes of operation, security services and key establishment techniques.

Many very timely topics, e.g., lightweight ciphers which are optimized for con-

strained applications (such as RFID tags or smart cards) or new modes of operations,

are also contained in the book.

A discussion section at the end of each chapter with annotated references pro-

vides plenty of material for further reading. For classroom use, these sections are

ix

x Preface

an excellent source for course projects. In particular, when used as a textbook, the

companion website for the book is highly recommended:

www.crypto-textbook.com

Readers will find many ideas for course projects, links to open-source software, test

vectors, and much more information on contemporary cryptography. In addition,

links to video lectures are provided.

How to Use the Book

The material in this book has evolved over many years and is “classroom proven”.

We’ve taught it both as a course for beginning graduate students and advanced un-

dergraduate students and as a pure undergraduate course for students majoring in

our IT security programs. We found that one can teach most of the book content

in a two-semester course, with 90 minutes of lecture time plus 45 minutes of help

session with exercises per week (total of 10 ECTS credits). In a typical US-style

three-credit course, or in a one-semester European course, some of the material

should be omitted. Here are some reasonable choices for a one-semester course:

Curriculum 1 Focus on the application of cryptography, e.g., in a computer sci-

ence or electrical engineering program. This crypto course is a good addition

to courses in computer networks or more advanced security courses: Chap. 1;

Sects. 2.1–2.2; Chap. 4; Sect. 5.1; Chap. 6; Sects. 7.1–7.3; Sects. 8.1–8.4; Sects. 10.1–

10.2; Chap. 11; Chap. 12; and Chap. 13.

Curriculum 2 Focus on cryptographic algorithms and their mathematical back-

ground, e.g., as an applied cryptography course in computer science, electrical engi-

neering or in an (undergraduate) math program. This crypto course works also nicely

as preparation for a more theoretical graduate courses in cryptography: Chap. 1;

Chap. 2; Chap. 3; Chap. 4; Chap. 6; Chap. 7; Sects. 8.1– 8.4; Chap. 9; Chap. 10;

and Sects. 11.1–11.2.

Trained as engineers, we have worked in applied cryptography and security for

more than 15 years and hope that the readers will have as much fun with this fasci-

nating field as we’ve had!

Bochum, Christof Paar

September 2009 Jan Pelzl

Acknowledgements

Writing this book would have been impossible without the help of many people. We

hope we did not forget anyone in our list.

We are grateful for the excellent work of Daehyun Strobel and Pascal Wißmann,

who provided most of the artwork in the book and never complained about our many

changes. Axel Poschmann provided the section about the PRESENT block cipher,

a very timely topic, and we are thankful for his excellent work. Help with technical

questions was provided by Frederick Armknecht (stream ciphers), Roberto Avanzi

(finite fields and elliptic curves), Alex May (number theory), Alfred Menezes and

Neal Koblitz (history of elliptic curve cryptography), Matt Robshaw (AES), and

Damian Weber (discrete logarithms).

Many thanks go the members of the Embedded Security group at the Univer-

sity of Bochum — Andrey Bogdanov, Benedikt Driessen, Thomas Eisenbarth, Tim

Güneysu, Stefan Heyse, Markus Kasper, Timo Kasper, Amir Moradi and Daehyun

Strobel — who did much of the technical proofreading and provided numerous sug-

gestions for improving the presentation of the material. Special thanks to Daehyun

for helping with examples and some advanced LATEX work, and to Markus for his

help with problems. Olga Paustjan’s help with artwork and typesetting is also very

much appreciated.

An earlier generation of doctoral students from our group — Sandeep Kumar,

Kerstin Lemke-Rust, Andy Rupp, Kai Schramm, and Marko Wolf — helped to cre-

ate an online course that covered similar material. Their work was very useful and

was a great inspiration when writing the book.

Bart Preneel’s willingness to provide the Foreword is a great honor for us and

we would like to thank him at this point again. Last but not least, we thank the

people from Springer for their support and encouragement. In particular, thanks to

our editor Ronan Nugent and to Alfred Hofmann.

xi

Table of Contents

1 Introduction to Cryptography and Data Security 1

1.1 Overview of Cryptology (and This Book) . 2

1.2 Symmetric Cryptography . 4

1.2.1 Basics . 4

1.2.2 Simple Symmetric Encryption: The Substitution Cipher 6

1.3 Cryptanalysis . 9

1.3.1 General Thoughts on Breaking Cryptosystems 9

1.3.2 How Many Key Bits Are Enough? . 11

1.4 Modular Arithmetic and More Historical Ciphers 13

1.4.1 Modular Arithmetic . 13

1.4.2 Integer Rings . 16

1.4.3 Shift Cipher (or Caesar Cipher) . 18

1.4.4 Affine Cipher . 19

1.5 Discussion and Further Reading . 20

1.6 Lessons Learned . 22

Problems . 24

2 Stream Ciphers . 29

2.1 Introduction . 30

2.1.1 Stream Ciphers vs. Block Ciphers . 30

2.1.2 Encryption and Decryption with Stream Ciphers 31

2.2 Random Numbers and an Unbreakable Stream Cipher 34

2.2.1 Random Number Generators . 34

2.2.2 The One-Time Pad . 36

2.2.3 Towards Practical Stream Ciphers . 38

2.3 Shift Register-Based Stream Ciphers . 41

2.3.1 Linear Feedback Shift Registers (LFSR) 41

2.3.2 Known-Plaintext Attack Against Single LFSRs 45

2.3.3 Trivium . 46

2.4 Discussion and Further Reading . 49

2.5 Lessons Learned . 50

xiii

xiv Table of Contents

Problems . 52

3 The Data Encryption Standard (DES) and Alternatives 55

3.1 Introduction to DES . 56

3.1.1 Confusion and Diffusion . 57

3.2 Overview of the DES Algorithm . 58

3.3 Internal Structure of DES . 61

3.3.1 Initial and Final Permutation . 61

3.3.2 The f -Function . 62

3.3.3 Key Schedule . 67

3.4 Decryption . 69

3.5 Security of DES . 72

3.5.1 Exhaustive Key Search . 73

3.5.2 Analytical Attacks . 75

3.6 Implementation in Software and Hardware . 75

3.7 DES Alternatives . 77

3.7.1 The Advanced Encryption Standard (AES) and the AES

Finalist Ciphers . 77

3.7.2 Triple DES (3DES) and DESX . 78

3.7.3 Lightweight Cipher PRESENT . 78

3.8 Discussion and Further Reading . 81

3.9 Lessons Learned . 82

Problems . 83

4 The Advanced Encryption Standard (AES) . 87

4.1 Introduction . 88

4.2 Overview of the AES Algorithm . 89

4.3 Some Mathematics: A Brief Introduction to Galois Fields 90

4.3.1 Existence of Finite Fields . 90

4.3.2 Prime Fields . 93

4.3.3 Extension Fields GF(2m) . 94

4.3.4 Addition and Subtraction in GF(2m) . 95

4.3.5 Multiplication in GF(2m) . 96

4.3.6 Inversion in GF(2m) . 98

4.4 Internal Structure of AES . 99

4.4.1 Byte Substitution Layer . 101

4.4.2 Diffusion Layer . 103

4.4.3 Key Addition Layer . 106

4.4.4 Key Schedule . 106

4.5 Decryption . 110

4.6 Implementation in Software and Hardware . 115

4.7 Discussion and Further Reading . 116

4.8 Lessons Learned . 117

Problems . 118

Table of Contents xv

5 More About Block Ciphers . 123

5.1 Encryption with Block Ciphers: Modes of Operation 124

5.1.1 Electronic Codebook Mode (ECB) . 124

5.1.2 Cipher Block Chaining Mode (CBC) . 128

5.1.3 Output Feedback Mode (OFB) . 130

5.1.4 Cipher Feedback Mode (CFB) . 131

5.1.5 Counter Mode (CTR) . 132

5.1.6 Galois Counter Mode (GCM) . 134

5.2 Exhaustive Key Search Revisited . 136

5.3 Increasing the Security of Block Ciphers . 137

5.3.1 Double Encryption and Meet-in-the-Middle Attack 138

5.3.2 Triple Encryption . 140

5.3.3 Key Whitening . 141

5.4 Discussion and Further Reading . 143

5.5 Lessons Learned . 144

Problems . 145

6 Introduction to Public-Key Cryptography . 149

6.1 Symmetric vs. Asymmetric Cryptography . 150

6.2 Practical Aspects of Public-Key Cryptography 153

6.2.1 Security Mechanisms . 154

6.2.2 The Remaining Problem: Authenticity of Public Keys 154

6.2.3 Important Public-Key Algorithms . 155

6.2.4 Key Lengths and Security Levels . 156

6.3 Essential Number Theory for Public-Key Algorithms 157

6.3.1 Euclidean Algorithm . 157

6.3.2 Extended Euclidean Algorithm . 160

6.3.3 Euler’s Phi Function . 164

6.3.4 Fermat’s Little Theorem and Euler’s Theorem 166

6.4 Discussion and Further Reading . 168

6.5 Lessons Learned . 169

Problems . 170

7 The RSA Cryptosystem . 173

7.1 Introduction . 174

7.2 Encryption and Decryption . 174

7.3 Key Generation and Proof of Correctness . 175

7.4 Encryption and Decryption: Fast Exponentiation 179

7.5 Speed-up Techniques for RSA . 183

7.5.1 Fast Encryption with Short Public Exponents 183

7.5.2 Fast Decryption with the Chinese Remainder Theorem 184

7.6 Finding Large Primes . 187

7.6.1 How Common Are Primes? . 187

7.6.2 Primality Tests . 188

7.7 RSA in Practice: Padding . 192

xvi Table of Contents

7.8 Attacks . 194

7.9 Implementation in Software and Hardware . 197

7.10 Discussion and Further Reading . 198

7.11 Lessons Learned . 199

Problems . 200

8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem 205

8.1 Diffie–Hellman Key Exchange . 206

8.2 Some Algebra . 208

8.2.1 Groups . 208

8.2.2 Cyclic Groups . 210

8.2.3 Subgroups . 214

8.3 The Discrete Logarithm Problem . 216

8.3.1 The Discrete Logarithm Problem in Prime Fields 216

8.3.2 The Generalized Discrete Logarithm Problem 218

8.3.3 Attacks Against the Discrete Logarithm Problem 219

8.4 Security of the Diffie–Hellman Key Exchange 225

8.5 The Elgamal Encryption Scheme . 226

8.5.1 From Diffie–Hellman Key Exchange to Elgamal Encryption 226

8.5.2 The Elgamal Protocol . 227

8.5.3 Computational Aspects . 229

8.5.4 Security . 230

8.6 Discussion and Further Reading . 232

8.7 Lessons Learned . 233

Problems . 234

9 Elliptic Curve Cryptosystems . 239

9.1 How to Compute with Elliptic Curves . 240

9.1.1 Definition of Elliptic Curves . 241

9.1.2 Group Operations on Elliptic Curves . 242

9.2 Building a Discrete Logarithm Problem with Elliptic Curves 246

9.3 Diffie–Hellman Key Exchange with Elliptic Curves 249

9.4 Security . 251

9.5 Implementation in Software and Hardware . 252

9.6 Discussion and Further Reading . 253

9.7 Lessons Learned . 255

Problems . 256

10 Digital Signatures . 259

10.1 Introduction . 260

10.1.1 Odd Colors for Cars, or: Why Symmetric Cryptography Is

Not Sufficient . 260

10.1.2 Principles of Digital Signatures . 261

10.1.3 Security Services . 263

10.2 The RSA Signature Scheme . 264

Table of Contents xvii

10.2.1 Schoolbook RSA Digital Signature . 265

10.2.2 Computational Aspects . 267

10.2.3 Security . 267

10.3 The Elgamal Digital Signature Scheme . 270

10.3.1 Schoolbook Elgamal Digital Signature 270

10.3.2 Computational Aspects . 273

10.3.3 Security . 274

10.4 The Digital Signature Algorithm (DSA) . 277

10.4.1 The DSA Algorithm . 277

10.4.2 Computational Aspects . 280

10.4.3 Security . 281

10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA) 282

10.5.1 The ECDSA Algorithm . 282

10.5.2 Computational Aspects . 285

10.5.3 Security . 286

10.6 Discussion and Further Reading . 287

10.7 Lessons Learned . 288

Problems . 289

11 Hash Functions . 293

11.1 Motivation: Signing Long Messages . 294

11.2 Security Requirements of Hash Functions . 296

11.2.1 Preimage Resistance or One-Wayness 297

11.2.2 Second Preimage Resistance or Weak Collision Resistance . 297

11.2.3 Collision Resistance and the Birthday Attack 299

11.3 Overview of Hash Algorithms . 303

11.3.1 Dedicated Hash Functions: The MD4 Family 304

11.3.2 Hash Functions from Block Ciphers . 305

11.4 The Secure Hash Algorithm SHA-1 . 307

11.4.1 Preprocessing . 308

11.4.2 Hash Computation . 309

11.4.3 Implementation . 312

11.5 Discussion and Further Reading . 312

11.6 Lessons Learned . 313

Problems . 315

12 Message Authentication Codes (MACs) . 319

12.1 Principles of Message Authentication Codes . 320

12.2 MACs from Hash Functions: HMAC . 321

12.3 MACs from Block Ciphers: CBC-MAC . 325

12.4 Galois Counter Message Authentication Code (GMAC) 326

12.5 Discussion and Further Reading . 327

12.6 Lessons Learned . 328

Problems . 329

xviii Table of Contents

13 Key Establishment . 331

13.1 Introduction . 332

13.1.1 Some Terminology . 332

13.1.2 Key Freshness and Key Derivation . 332

13.1.3 The n2 Key Distribution Problem . 334

13.2 Key Establishment Using Symmetric-Key Techniques 336

13.2.1 Key Establishment with a Key Distribution Center 336

13.2.2 Kerberos . 339

13.2.3 Remaining Problems with Symmetric-Key Distribution 341

13.3 Key Establishment Using Asymmetric Techniques 342

13.3.1 Man-in-the-Middle Attack . 342

13.3.2 Certificates . 344

13.3.3 Public-Key Infrastructures (PKI) and CAs 347

13.4 Discussion and Further Reading . 350

13.5 Lessons Learned . 352

Problems . 353

References . 359

Index . 367

Chapter 1

Introduction to Cryptography and Data Security

This section will introduce the most important terms of modern cryptology and will

teach an important lesson about proprietary vs. openly known algorithms. We will

also introduce modular arithmetic which is also of major importance in public-key

cryptography.

In this chapter you will learn:

� The general rules of cryptography

� Key lengths for short-, medium- and long-term security

� The difference between different types of attacks against ciphers

� A few historical ciphers, and on the way we will learn about modular arithmetic,

which is of major importance for modern cryptography as well

� Why one should only use well-established encryption algorithms

1

2 1 Introduction to Cryptography and Data Security

1.1 Overview of Cryptology (and This Book)

If we hear the word cryptography our first associations might be e-mail encryption,

secure website access, smart cards for banking applications or code breaking during

World War II, such as the famous attack against the German Enigma encryption

machine (Fig. 1.1).

Fig. 1.1 The German Enigma encryption machine (reproduced with permission from the
Deutsches Museum, Munich)

Cryptography seems closely linked to modern electronic communication. How-

ever, cryptography is a rather old business, with early examples dating back to about

2000 B.C., when non-standard “secret” hieroglyphics were used in ancient Egypt.

Since Egyptian days cryptography has been used in one form or the other in many,

if not most, cultures that developed written language. For instance, there are doc-

umented cases of secret writing in ancient Greece, namely the scytale of Sparta

(Fig. 1.2), or the famous Caesar cipher in ancient Rome, about which we will learn

later in this chapter. This book, however, strongly focuses on modern cryptographic

T H E S C Y T A L

E I S A T R A N

S P O S I T I O

N C I P H E R

Fig. 1.2 Scytale of Sparta

methods and also teaches many data security issues and their relationship with cryp-

tography.

Let’s now have a look at the field of cryptography (Fig. 1.3). The first thing

1.1 Overview of Cryptology (and This Book) 3

Fig. 1.3 Overview of the field of cryptology

that we notice is that the most general term is cryptology and not cryptography.

Cryptology splits into two main branches:

Cryptography is the science of secret writing with the goal of hiding the mean-

ing of a message.

Cryptanalysis is the science and sometimes art of breaking cryptosystems. You

might think that code breaking is for the intelligence community or perhaps or-

ganized crime, and should not be included in a serious classification of a scien-

tific discipline. However, most cryptanalysis is done by respectable researchers

in academia nowadays. Cryptanalysis is of central importance for modern cryp-

tosystems: without people who try to break our crypto methods, we will never

know whether they are really secure or not. See Sect. 1.3 for more discussion

about this issue.

Because cryptanalysis is the only way to assure that a cryptosystem is secure,

it is an integral part of cryptology. Nevertheless, the focus of this book is on

cryptography: We introduce most important practical crypto algorithms in detail.

These are all crypto algorithms that have withstood cryptanalysis for a long time, in

most cases for several decades. In the case of cryptanalysis we will mainly restrict

ourselves to providing state-of-the-art results with respect to breaking the crypto al-

gorithms that are introduced, e.g., the factoring record for breaking the RSA scheme.

Let’s now go back to Fig. 1.3. Cryptography itself splits into three main branches:

Symmetric Algorithms are what many people assume cryptography is about:

two parties have an encryption and decryption method for which they share a

secret key. All cryptography from ancient times until 1976 was exclusively based

on symmetric methods. Symmetric ciphers are still in widespread use, especially

for data encryption and integrity check of messages.

Asymmetric (or Public-Key) Algorithms In 1976 an entirely different type of

cipher was introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle. In

public-key cryptography, a user possesses a secret key as in symmetric cryptog-

raphy but also a public key. Asymmetric algorithms can be used for applications

such as digital signatures and key establishment, and also for classical data en-

cryption.

Cryptographic Protocols Roughly speaking, crypto protocols deal with the ap-

plication of cryptographic algorithms. Symmetric and asymmetric algorithms

4 1 Introduction to Cryptography and Data Security

can be viewed as building blocks with which applications such as secure Inter-

net communication can be realized. The Transport Layer Security (TLS) scheme,

which is used in every Web browser, is an example of a cryptographic protocol.

Strictly speaking, hash functions, which will be introduced in Chap. 11, form

a third class of algorithms but at the same time they share some properties with

symmetric ciphers.

In the majority of cryptographic applications in practical systems, symmetric and

asymmetric algorithms (and often also hash functions) are all used together. This is

sometimes referred to as hybrid schemes. The reason for using both families of

algorithms is that each has specific strengths and weaknesses.

The main focus of this book is on symmetric and asymmetric algorithms, as

well as hash functions. However, we will also introduce basic security protocols. In

particular, we will introduce several key establishment protocols and what can be

achieved with crypto protocols: confidentiality of data, integrity of data, authentica-

tion of data, user identification, etc.

1.2 Symmetric Cryptography

This section deals with the concepts of symmetric ciphers and it introduces the

historic substitution cipher. Using the substitution cipher as an example, we will

learn the difference between brute-force and analytical attacks.

1.2.1 Basics

Symmetric cryptographic schemes are also referred to as symmetric-key, secret-key,

and single-key schemes or algorithms. Symmetric cryptography is best introduced

with an easy to understand problem: There are two users, Alice and Bob, who want

to communicate over an insecure channel (Fig. 1.4). The term channel might sound

a bit abstract but it is just a general term for the communication link: This can be the

Internet, a stretch of air in the case of mobile phones or wireless LAN communica-

tion, or any other communication media you can think of. The actual problem starts

with the bad guy, Oscar1, who has access to the channel, for instance, by hacking

into an Internet router or by listening to the radio signals of a Wi-Fi communica-

tion. This type of unauthorized listening is called eavesdropping. Obviously, there

are many situations in which Alice and Bob would prefer to communicate without

Oscar listening. For instance, if Alice and Bob represent two offices of a car man-

ufacturer, and they are transmitting documents containing the business strategy for

the introduction of new car models in the next few years, these documents should

1 The name Oscar was chosen to remind us of the word opponent.

1.2 Symmetric Cryptography 5

not get into the hands of their competitors, or of foreign intelligence agencies for

that matter.

Fig. 1.4 Communication over an insecure channel

In this situation, symmetric cryptography offers a powerful solution: Alice en-

crypts her message x using a symmetric algorithm, yielding the ciphertext y. Bob

receives the ciphertext and decrypts the message. Decryption is, thus, the inverse

process of encryption (Fig. 1.5). What is the advantage? If we have a strong encryp-

tion algorithm, the ciphertext will look like random bits to Oscar and will contain

no information whatsoever that is useful to him.

Fig. 1.5 Symmetric-key cryptosystem

The variables x, y and k in Fig. 1.5 are important in cryptography and have special

names:

� x is called plaintext or cleartext,

� y is called ciphertext,

� k is called the key,

� the set of all possible keys is called the key space.

The system needs a secure channel for distribution of the key between Alice

and Bob. The secure channel shown in Fig. 1.5 can, for instance, be a human who

is transporting the key in a wallet between Alice and Bob. This is, of course, a

somewhat cumbersome method. An example where this method works nicely is

the pre-shared keys used in Wi-Fi Protected Access (WPA) encryption in wireless

6 1 Introduction to Cryptography and Data Security

LANs. Later in this book we will learn methods for establishing keys over insecure

channels. In any case, the key has only to be transmitted once between Alice and

Bob and can then be used for securing many subsequent communications.

One important and also counterintuitive fact in this situation is that both the en-

cryption and the decryption algorithms are publicly known. It seems that keeping

the encryption algorithm secret should make the whole system harder to break.

However, secret algorithms also mean untested algorithms: The only way to find

out whether an encryption method is strong, i.e., cannot be broken by a determined

attacker, is to make it public and have it analyzed by other cryptographers. Please

see Sect. 1.3 for more discussion on this topic. The only thing that should be kept

secret in a sound cryptosystem is the key.

Remarks:

1. Of course, if Oscar gets hold of the key, he can easily decrypt the message since

the algorithm is publicly known. Hence it is crucial to note that the problem of

transmitting a message securely is reduced to the problems of transmitting a key

secretly and of storing the key in a secure fashion.

2. In this scenario we only consider the problem of confidentiality, that is, of hiding

the contents of the message from an eavesdropper. We will see later in this book

that there are many other things we can do with cryptography, such as preventing

Oscar from making unnoticed changes to the message (message integrity) or

assuring that a message really comes from Alice (sender authentication).

1.2.2 Simple Symmetric Encryption: The Substitution Cipher

We will now learn one of the simplest methods for encrypting text, the substitution

(= replacement) cipher. Historically this type of cipher has been used many times,

and it is a good illustration of basic cryptography. We will use the substitution cipher

for learning some important facts about key lengths and about different ways of

attacking ciphers.

The goal of the substitution cipher is the encryption of text (as opposed to bits

in modern digital systems). The idea is very simple: We substitute each letter of the

alphabet with another one.

Example 1.1.

A → k

B → d

C → w

· · ·

For instance, the pop group ABBA would be encrypted as kddk.

⋄

1.2 Symmetric Cryptography 7

We assume that we choose the substitution table completely randomly, so that

an attacker is not able to guess it. Note that the substitution table is the key of this

cryptosystem. As always in symmetric cryptography, the key has to be distributed

between Alice and Bob in a secure fashion.

Example 1.2. Let’s look at another ciphertext:

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb

hcc hwwhbsqvqbre hwq vhlq

⋄

This does not seem to make too much sense and looks like decent cryptography.

However, the substitution cipher is not secure at all! Let’s look at ways of breaking

the cipher.

First Attack: Brute-Force or Exhaustive Key Search

Brute-force attacks are based on a simple concept: Oscar, the attacker, has the ci-

phertext from eavesdropping on the channel and happens to have a short piece of

plaintext, e.g., the header of a file that was encrypted. Oscar now simply decrypts

the first piece of ciphertext with all possible keys. Again, the key for this cipher is

the substitution table. If the resulting plaintext matches the short piece of plaintext,

he knows that he has found the correct key.

Definition 1.2.1 Basic Exhaustive Key Search or Brute-force At-

tack

Let (x,y) denote the pair of plaintext and ciphertext, and let K =
{k1, ...,kκ} be the key space of all possible keys ki. A brute-force

attack now checks for every ki ∈ K if

dki
(y)

?
= x.

If the equality holds, a possible correct key is found; if not, proceed

with the next key.

In practice, a brute-force attack can be more complicated because incorrect keys

can give false positive results. We will address this issue in Sect. 5.2.

It is important to note that a brute-force attack against symmetric ciphers is al-

ways possible in principle. Whether it is feasible in practice depends on the key

space, i.e., on the number of possible keys that exist for a given cipher. If testing all

the keys on many modern computers takes too much time, i.e., several decades, the

cipher is computationally secure against a brute-force attack.

8 1 Introduction to Cryptography and Data Security

Let’s determine the key space of the substitution cipher: When choosing the re-

placement for the first letter A, we randomly choose one letter from the 26 letters of

the alphabet (in the example above we chose k). The replacement for the next al-

phabet letter B was randomly chosen from the remaining 25 letters, etc. Thus there

exist the following number of different substitution tables:

key space of the substitution cipher = 26 ·25 · · ·3 ·2 ·1 = 26! ≈ 288

Even with hundreds of thousands of high-end PCs such a search would take

several decades! Thus, we are tempted to conclude that the substitution cipher is

secure. But this is incorrect because there is another, more powerful attack.

Second Attack: Letter Frequency Analysis

First we note that the brute-force attack from above treats the cipher as a black box,

i.e., we do not analyze the internal structure of the cipher. The substitution cipher

can easily be broken by such an analytical attack.

The major weakness of the cipher is that each plaintext symbol always maps to

the same ciphertext symbol. That means that the statistical properties of the plaintext

are preserved in the ciphertext. If we go back to the second example we observe that

the letter q occurs most frequently in the text. From this we know that q must be the

substitution for one of the frequent letters in the English language.

For practical attacks, the following properties of language can be exploited:

1. Determine the frequency of every ciphertext letter. The frequency distribution,

often even of relatively short pieces of encrypted text, will be close to that of

the given language in general. In particular, the most frequent letters can often

easily be spotted in ciphertexts. For instance, in English E is the most frequent

letter (about 13%), T is the second most frequent letter (about 9%), A is the third

most frequent letter (about 8%), and so on. Table 1.1 lists the letter frequency

distribution of English.

2. The method above can be generalized by looking at pairs or triples, or quadru-

ples, and so on of ciphertext symbols. For instance, in English (and some other

European languages), the letter Q is almost always followed by a U. This behavior

can be exploited to detect the substitution of the letter Q and the letter U.

3. If we assume that word separators (blanks) have been found (which is only some-

times the case), one can often detect frequent short words such as THE, AND, etc.

Once we have identified one of these words, we immediately know three letters

(or whatever the length of the word is) for the entire text.

In practice, the three techniques listed above are often combined to break substi-

tution ciphers.

Example 1.3. If we analyze the encrypted text from Example 1.2, we obtain:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON

ALL ARRANGEMENTS ARE MADE

1.3 Cryptanalysis 9

Table 1.1 Relative letter frequencies of the English language

Letter Frequency Letter Frequency

A 0.0817 N 0.0675
B 0.0150 O 0.0751
C 0.0278 P 0.0193
D 0.0425 Q 0.0010
E 0.1270 R 0.0599
F 0.0223 S 0.0633
G 0.0202 T 0.0906
H 0.0609 U 0.0276
I 0.0697 V 0.0098
J 0.0015 W 0.0236
K 0.0077 X 0.0015
L 0.0403 Y 0.0197
M 0.0241 Z 0.0007

⋄

Lesson learned Good ciphers should hide the statistical properties of the encrypted

plaintext. The ciphertext symbols should appear to be random. Also, a large key

space alone is not sufficient for a strong encryption function.

1.3 Cryptanalysis

This section deals with recommended key lengths of symmetric ciphers and differ-

ent ways of attacking crypto algorithms. It is stressed that a cipher should be secure

even if the attacker knows the details of the algorithm.

1.3.1 General Thoughts on Breaking Cryptosystems

If we ask someone with some technical background what breaking ciphers is about,

he/she will most likely say that code breaking has to do with heavy mathematics,

smart people and large computers. We have images in mind of the British code

breakers during World War II, attacking the German Enigma cipher with extremely

smart mathematicians (the famous computer scientist Alan Turing headed the ef-

forts) and room-sized electro-mechanical computers. However, in practice there are

also other methods of code breaking. Let’s look at different ways of breaking cryp-

tosystems in the real world (Fig. 1.6).

10 1 Introduction to Cryptography and Data Security

Fig. 1.6 Overview of cryptanalysis

Classical Cryptanalysis

Classical cryptanalysis is understood as the science of recovering the plaintext x

from the ciphertext y, or, alternatively, recovering the key k from the ciphertext y.

We recall from the earlier discussion that cryptanalysis can be divided into ana-

lytical attacks, which exploit the internal structure of the encryption method, and

brute-force attacks, which treat the encryption algorithm as a black box and test all

possible keys.

Implementation Attacks

Side-channel analysis can be used to obtain a secret key, for instance, by measuring

the electrical power consumption of a processor which operates on the secret key.

The power trace can then be used to recover the key by applying signal processing

techniques. In addition to power consumption, electromagnetic radiation or the run-

time behavior of algorithms can give information about the secret key and are, thus,

useful side channels.2 Note also that implementation attacks are mostly relevant

against cryptosystems to which an attacker has physical access, such as smart cards.

In most Internet-based attacks against remote systems, implementation attacks are

usually not a concern.

Social Engineering Attacks

Bribing, blackmailing, tricking or classical espionage can be used to obtain a secret

key by involving humans. For instance, forcing someone to reveal his/her secret key,

e.g., by holding a gun to his/her head can be quite successful. Another, less violent,

attack is to call people whom we want to attack on the phone, and say: “This is

2 Before you switch on the digital oscilloscope in your lab in order to reload your Geldkarte (the
Geldkarte is the electronic wallet function integrated in most German bank cards) to the maximum
amount of e 200: Modern smart cards have built-in countermeasures against side channel attacks
and are very hard to break.

1.3 Cryptanalysis 11

the IT department of your company. For important software updates we need your

password”. It is always surprising how many people are naı̈ve enough to actually

give out their passwords in such situations.

This list of attacks against cryptographic system is certainly not exhaustive. For

instance, buffer overflow attacks or malware can also reveal secret keys in software

systems. You might think that many of these attacks, especially social engineering

and implementation attacks, are “unfair,” but there is little fairness in real-world

cryptography. If people want to break your IT system, they are already breaking the

rules and are, thus, unfair. The major point to learn here is:

An attacker always looks for the weakest link in your cryptosystem. That

means we have to choose strong algorithms and we have to make sure that

social engineering and implementation attacks are not practical.

Even though both implementation attacks and social engineering attacks can be

quite powerful in practice, this book mainly assumes attacks based on mathematical

cryptanalysis.

Solid cryptosystems should adhere to Kerckhoffs’ Principle, postulated by Au-

guste Kerckhoffs in 1883:

Definition 1.3.1 Kerckhoffs’ Principle

A cryptosystem should be secure even if the attacker (Oscar) knows

all details about the system, with the exception of the secret key. In

particular, the system should be secure when the attacker knows the

encryption and decryption algorithms.

Important Remark: Kerckhoffs’ Principle is counterintuitive! It is extremely tempt-

ing to design a system which appears to be more secure because we keep the details

hidden. This is called security by obscurity. However, experience and military his-

tory has shown time and again that such systems are almost always weak, and they

are very often broken easily as soon as the secret design has been reverse-engineered

or leaked out through other means. An example is the Content Scrambling System

(CSS) for DVD content protection, which was broken easily once it was reverse-

engineered. This is why a cryptographic scheme must remain secure even if its de-

scription becomes available to an attacker.

1.3.2 How Many Key Bits Are Enough?

During the 1990s there was much public discussion about the key length of ciphers.

Before we provide some guidelines, there are two crucial aspects to remember:

1. The discussion of key lengths for symmetric crypto algorithms is only relevant

if a brute-force attack is the best known attack. As we saw in Sect. 1.2.2 during

the security analysis of the substitution cipher, if there is an analytical attack that

12 1 Introduction to Cryptography and Data Security

works, a large key space does not help at all. Of course, if there is the possibility

of social engineering or implementation attacks, a long key also does not help.

2. The key lengths for symmetric and asymmetric algorithms are dramatically dif-

ferent. For instance, an 80-bit symmetric key provides roughly the same security

as a 1024-bit RSA (RSA is a popular asymmetric algorithm) key.

Both facts are often misunderstood, especially in the semitechnical literature.

Table 1.2 gives a rough indication of the security of symmetric ciphers with re-

spect to brute-force attacks. As described in Sect. 1.2.2, a large key space is a nec-

essary but not sufficient condition for a secure symmetric cipher. The cipher must

also be strong against analytical attacks.

Table 1.2 Estimated time for successful brute-force attacks on symmetric algorithms with different
key lengths

Key length Security estimation

56–64 bits short term: a few hours or days

112–128 bits long term: several decades in the absence of quantum computers

256 bits long term: several decades, even with quantum computers
that run the currently known quantum computing algorithms

Foretelling the Future Of course, predicting the future tends to be tricky: We can’t

really foresee new technical or theoretical developments with certainty. As you can

imagine, it is very hard to know what kinds of computers will be available in the

year 2030. For medium-term predictions, Moore’s Law is often assumed. Roughly

speaking, Moore’s Law states that computing power doubles every 18 months while

the costs stay constant. This has the following implications in cryptography: If today

we need one month and computers worth $1,000,000 to break a cipher X , then:

� The cost for breaking the cipher will be $500,000 in 18 months (since we only

have to buy half as many computers),

� $250,000 in 3 years,

� $125,000 in 4.5 years, and so on.

It is important to stress that Moore’s Law is an exponential function. In 15 years,

i.e., after 10 iterations of computer power doubling, we can do 210 = 1024 as many

computations for the same money we would need to spend today. Stated differently,

we only need to spend about 1/1000th of today’s money to do the same computation.

In the example above that means that we can break cipher X in 15 years within one

month at a cost of about $1,000,000/1024≈ $1000. Alternatively, with $1,000,000,

an attack can be accomplished within 45 minutes in 15 years from now. Moore’s

Law behaves similarly to a bank account with a 50% interest rate: The compound

interest grows very, very quickly. Unfortunately, there are few trustworthy banks

which offer such an interest rate.

1.4 Modular Arithmetic and More Historical Ciphers 13

1.4 Modular Arithmetic and More Historical Ciphers

In this section we use two historical ciphers to introduce modular arithmetic with

integers. Even though the historical ciphers are no longer relevant, modular arith-

metic is extremely important in modern cryptography, especially for asymmetric

algorithms. Ancient ciphers date back to Egypt, where substitution ciphers were

used. A very popular special case of the substitution cipher is the Caesar cipher,

which is said to have been used by Julius Caesar to communicate with his army.

The Caesar cipher simply shifts the letters in the alphabet by a constant number of

steps. When the end of the alphabet is reached, the letters repeat in a cyclic way,

similar to numbers in modular arithmetic.

To make computations with letters more practicable, we can assign each letter of

the alphabet a number. By doing so, an encryption with the Caesar cipher simply

becomes a (modular) addition with a fixed value. Instead of just adding constants,

a multiplication with a constant can be applied as well. This leads us to the affine

cipher.

Both the Caesar cipher and the affine cipher will now be discussed in more detail.

1.4.1 Modular Arithmetic

Almost all crypto algorithms, both symmetric ciphers and asymmetric ciphers, are

based on arithmetic within a finite number of elements. Most number sets we are

used to, such as the set of natural numbers or the set of real numbers, are infinite. In

the following we introduce modular arithmetic, which is a simple way of performing

arithmetic in a finite set of integers.

Let’s look at an example of a finite set of integers from everyday life:

Example 1.4. Consider the hours on a clock. If you keep adding one hour, you ob-

tain:

1h,2h,3h, . . . ,11h,12h,1h,2h,3h, . . . ,11h,12h,1h,2h,3h, . . .

Even though we keep adding one hour, we never leave the set.

⋄

Let’s look at a general way of dealing with arithmetic in such finite sets.

Example 1.5. We consider the set of the nine numbers:

{0,1,2,3,4,5,6,7,8}

We can do regular arithmetic as long as the results are smaller than 9. For instance:

2×3 = 6

4+4 = 8

14 1 Introduction to Cryptography and Data Security

But what about 8+4? Now we try the following rule: Perform regular integer arith-

metic and divide the result by 9. We then consider only the remainder rather than

the original result. Since 8+4 = 12, and 12/9 has a remainder of 3, we write:

8+4 ≡ 3 mod 9

⋄

We now introduce an exact definition of the modulo operation:

Definition 1.4.1 Modulo Operation

Let a,r,m ∈Z (where Z is a set of all integers) and m > 0. We write

a ≡ r mod m

if m divides a− r.

m is called the modulus and r is called the remainder.

There are a few implications from this definition which go beyond the casual rule

“divide by the modulus and consider the remainder.” We discuss these implications

below.

Computation of the Remainder

It is always possible to write a ∈ Z, such that

a = q ·m+ r for 0 ≤ r < m (1.1)

Since a− r = q ·m (m divides a− r) we can now write: a ≡ r mod m. Note that

r ∈ {0,1,2, . . . ,m−1}.

Example 1.6. Let a = 42 and m = 9. Then

42 = 4 ·9+6

and therefore 42 ≡ 6 mod 9.

⋄

The Remainder Is Not Unique

It is somewhat surprising that for every given modulus m and number a, there are

(infinitely) many valid remainders. Let’s look at another example:

Example 1.7. We want to reduce 12 modulo 9. Here are several results which are

correct according to the definition:

1.4 Modular Arithmetic and More Historical Ciphers 15

� 12 ≡ 3 mod 9, 3 is a valid remainder since 9|(12−3)
� 12 ≡ 21 mod 9, 21 is a valid remainder since 9|(21−3)
� 12 ≡−6 mod 9, −6 is a valid remainder since 9|(−6−3)

where the “x|y” means “x divides y”. There is a system behind this behavior. The set

of numbers

{. . . ,−24,−15,−6,3,12,21,30, . . .}
form what is called an equivalence class. There are eight other equivalence classes

for the modulus 9:

{. . . ,−27,−18,−9, 0, 9,18,27, . . .}
{. . . ,−26,−17,−8, 1, 10,19,28, . . .}

...

{. . . ,−19,−10,−1, 8, 17,26,35, . . .}

⋄

All Members of a Given Equivalence Class Behave Equivalently

For a given modulus m, it does not matter which element from a class we choose

for a given computation. This property of equivalent classes has major practical

implications. If we have involved computations with a fixed modulus — which is

usually the case in cryptography — we are free to choose the class element that

results in the easiest computation. Let’s look first at an example:

Example 1.8. The core operation in many practical public-key schemes is an expo-

nentiation of the form xe mod m, where x,e,m are very large integers, say, 2048 bits

each. Using a toy-size example, we can demonstrate two ways of doing modular ex-

ponentiation. We want to compute 38 mod 7. The first method is the straightforward

approach, and for the second one we switch between equivalent classes.

� 38 = 6561 ≡ 2 mod 7, since 6561 = 937 ·7+2

Note that we obtain the fairly large intermediate result 6561 even though we

know that our final result cannot be larger than 6.

� Here is a much smarter method: First we perform two partial exponentiations:

38 = 34 ·34 = 81 ·81

We can now replace the intermediate results 81 by another member of the same

equivalence class. The smallest positive member modulo 7 in the class is 4 (since

81 = 11 ·7+4). Hence:

38 = 81 ·81 ≡ 4 ·4 = 16 mod 7

16 1 Introduction to Cryptography and Data Security

From here we obtain the final result easily as 16 ≡ 2 mod 7.

Note that we could perform the second method without a pocket calculator since

the numbers never become larger than 81. For the first method, on the other hand,

dividing 6561 by 7 is mentally already a bit challenging. As a general rule we should

remember that it is almost always of computational advantage to apply the modulo

reduction as soon as we can in order to keep the numbers small.

⋄

Of course, the final result of any modulo computation is always the same, no

matter how often we switch back and forth between equivalent classes.

Which Remainder Do We Choose?

By agreement, we usually choose r in Eq. (1.1) such that:

0 ≤ r ≤ m−1.

However, mathematically it does not matter which member of an equivalent class

we use.

1.4.2 Integer Rings

After studying the properties of modulo reduction we are now ready to define in

more general terms a structure that is based on modulo arithmetic. Let’s look at the

mathematical construction that we obtain if we consider the set of integers from

zero to m−1 together with the operations addition and multiplication:

Definition 1.4.2 Ring

The integer ring Zm consists of:

1. The set Zm = {0,1,2, . . . ,m−1}
2. Two operations “+” and “×” for all a,b ∈ Zm such that:

1. a+b ≡ c mod m , (c ∈ Zm)
2. a×b ≡ d mod m , (d ∈ Zm)

Let’s first look at an example for a small integer ring.

Example 1.9. Let m = 9, i.e., we are dealing with the ring Z9 = {0,1,2,3,4,5,6,7,8}.

Let’s look at a few simple arithmetic operations:

6+8 = 14 ≡ 5 mod 9

6×8 = 48 ≡ 3 mod 9

1.4 Modular Arithmetic and More Historical Ciphers 17

⋄
More about rings and finite fields which are related to rings is discussed in

Sect. 4.2. At this point, the following properties of rings are important:

� We can add and multiply any two numbers and the result is always in the ring. A

ring is said to be closed.

� Addition and multiplication are associative, e.g., a +(b + c) = (a + b)+ c, and

a · (b · c) = (a ·b) · c for all a,b,c ∈ Zm.

� There is the neutral element 0 with respect to addition, i.e., for every element

a ∈ Zm it holds that a+0 ≡ a mod m.

� For any element a in the ring, there is always the negative element −a such that

a+(−a) ≡ 0 mod m, i.e., the additive inverse always exists.

� There is the neutral element 1 with respect to multiplication, i.e., for every ele-

ment a ∈ Zm it holds that a×1 ≡ a mod m.

� The multiplicative inverse exists only for some, but not for all, elements. Let

a ∈ Z, the inverse a−1 is defined such that

a ·a−1 ≡ 1 mod m

If an inverse exists for a, we can divide by this element since b/a ≡ b ·a−1 mod

m.

� It takes some effort to find the inverse (usually employing the Euclidean algo-

rithm, which is taught in Sect. 6.3). However, there is an easy way of telling

whether an inverse for a given element a exists or not:

An element a ∈ Z has a multiplicative inverse a−1 if and only if gcd(a,m) = 1,

where gcd is the greatest common divisor , i.e., the largest integer that divides

both numbers a and m. The fact that two numbers have a gcd of 1 is of great

importance in number theory, and there is a special name for it: if gcd(a,m) = 1,

then a and m are said to be relatively prime or coprime.

Example 1.10. Let’s see whether the multiplicative inverse of 15 exists in Z26.

Because

gcd(15,26) = 1

the inverse must exist. On the other hand, since

gcd(14,26) = 2 �= 1

the multiplicative inverse of 14 does not exist in Z26.

⋄

Another ring property is that a× (b + c) = (a× b)+ (a× c) for all a,b,c ∈ Zm,

i.e., the distributive law holds. In summary, roughly speaking, we can say that the

ring Zm is the set of integers {0,1,2, . . . ,m − 1} in which we can add, subtract,

multiply, and sometimes divide.

As mentioned earlier, the ring Zm, and thus integer arithmetic with the modulo

operation, is of central importance to modern public-key cryptography. In practice,

18 1 Introduction to Cryptography and Data Security

the integers involved have a length of 150–4096 bits so that efficient modular com-

putations are a crucial aspect.

1.4.3 Shift Cipher (or Caesar Cipher)

We now introduce another historical cipher, the shift cipher. It is actually a special

case of the substitution cipher and has a very elegant mathematical description.

The shift cipher itself is extremely simple: We simply shift every plaintext letter

by a fixed number of positions in the alphabet. For instance, if we shift by 3 posi-

tions, A would be substituted by d, B by e, etc. The only problem arises towards

the end of the alphabet: what should we do with X, Y, Z? As you might have

guessed, they should “wrap around”. That means X should become a, Y should be-

come b, and Z is replaced by c. Allegedly, Julius Caesar used this cipher with a

three-position shift.

The shift cipher also has an elegant description using modular arithmetic. For

the mathematical statement of the cipher, the letters of the alphabet are encoded as

numbers, as depicted in Table 1.3.

Table 1.3 Encoding of letters for the shift cipher

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Both the plaintext letters and the ciphertext letters are now elements of the ring

Z26. Also, the key, i.e., the number of shift positions, is also in Z26 since more than

26 shifts would not make sense (27 shifts would be the same as 1 shift, etc.). The

encryption and decryption of the shift cipher follows now as:

Definition 1.4.3 Shift Cipher

Let x,y,k ∈ Z26.

Encryption: ek(x) ≡ x+ k mod 26

Decryption: dk(y) ≡ y− k mod 26

Example 1.11. Let the key be k = 17, and the plaintext is:

ATTACK= x1,x2, . . . ,x6 = 0,19,19,0,2,10.

The ciphertext is then computed as

y1,y2, . . . ,y6 = 17,10,10,17,19,1 = rkkrtb

1.4 Modular Arithmetic and More Historical Ciphers 19

⋄

As you can guess from the discussion of the substitution cipher earlier in this

book, the shift cipher is not secure at all. There are two ways of attacking it:

1. Since there are only 26 different keys (shift positions), one can easily launch a

brute-force attack by trying to decrypt a given ciphertext with all possible 26

keys. If the resulting plaintext is readable text, you have found the key.

2. As for the substitution cipher, one can also use letter frequency analysis.

1.4.4 Affine Cipher

Now, we try to improve the shift cipher by generalizing the encryption function.

Recall that the actual encryption of the shift cipher was the addition of the key

yi = xi + k mod 26. The affine cipher encrypts by multiplying the plaintext by one

part of the key followed by addition of another part of the key.

Definition 1.4.4 Affine Cipher

Let x,y,a,b ∈ Z26.

Encryption: ek(x) = y ≡ a · x+b mod 26

Decryption: dk(y) = x ≡ a−1 · (y−b) mod 26

with the key: k = (a,b), which has the restriction: gcd(a,26) = 1.

The decryption is easily derived from the encryption function:

a · x+b ≡ y mod 26

a · x ≡ (y−b) mod 26

x ≡ a−1 · (y−b) mod 26

The restriction gcd(a,26) = 1 stems from the fact that the key parameter a needs

to be inverted for decryption. We recall from Sect. 1.4.2 that an element a and the

modulus must be relatively prime for the inverse of a to exist. Thus, a must be in

the set:

a ∈ {1,3,5,7,9,11,15,17,19,21,23,25} (1.2)

But how do we find a−1? For now, we can simply compute it by trial and error:

For a given a we simply try all possible values a−1 until we obtain:

a ·a−1 ≡ 1 mod 26

For instance, if a = 3, then a−1 = 9 since 3 ·9 = 27 ≡ 1 mod 26. Note that a−1 also

always fulfills the condition gcd(a−1,26) = 1 since the inverse of a−1 always exists.

In fact, the inverse of a−1 is a itself. Hence, for the trial-and-error determination of

a−1 one only has to check the values given in Eq. (1.2).

20 1 Introduction to Cryptography and Data Security

Example 1.12. Let the key be k = (a,b) = (9,13), and the plaintext be

ATTACK= x1,x2, . . . ,x6 = 0,19,19,0,2,10.

The inverse a−1 of a exists and is given by a−1 = 3. The ciphertext is computed as

y1,y2, . . . ,y6 = 13,2,2,13,5,25 = nccnfz

⋄

Is the affine cipher secure? No! The key space is only a bit larger than in the case

of the shift cipher:

key space = (#values for a)× (#values for b)

= 12×26 = 312

A key space with 312 elements can, of course, still be searched exhaustively, i.e.,

brute-force attacked, in a fraction of a second with current desktop PCs. In addition,

the affine cipher has the same weakness as the shift and substitution cipher: The

mapping between plaintext letters and ciphertext letters is fixed. Hence, it can easily

be broken with letter frequency analysis.

The remainder of this book deals with strong cryptographic algorithms which are

of practical relevance.

1.5 Discussion and Further Reading

This book addresses practical aspects of cryptography and data security and is in-

tended to be used as an introduction; it is suited for classroom use, distance learning

and self-study. At the end of each chapter, we provide a discussion section in which

we briefly describe topics for readers interested in further study of the material.

About This Chapter: Historical Ciphers and Modular Arithmetic This chapter

introduced a few historical ciphers. However, there are many, many more, ranging

from ciphers in ancient times to WW II encryption methods. To readers who wish to

learn more about historical ciphers and the role they played over the centuries, the

books by Bauer [13], Kahn [97] and Singh [157] are highly recommended. Besides

making fascinating bedtime reading, these books help one to understand the role

that military and diplomatic intelligence played in shaping world history. They also

help to show modern cryptography in a larger context.

The mathematics introduced in this chapter, modular arithmetic, belongs to the

field of number theory. This is a fascinating subject area which is, unfortunately,

historically viewed as a “branch of mathematics without applications”. Thus, it is

rarely taught outside mathematics curricula. There is a wealth of books on number

theory. Among the classic introductory books are references [129, 148]. A particu-

larly accessible book written for non-mathematications is [156].

1.5 Discussion and Further Reading 21

Research Community and General References Even though cryptography has

matured considerably over the last 30 years, it is still a relatively young field com-

pared to other disciplines, and every year brings many new developments and dis-

coveries. Many research results are published at events organized by the Interna-

tional Association for Cryptologic Research (IACR). The proceedings of the three

IACR conferences CRYPTO, EUROCRYPT, and ASIACRYPT as well as the IACR

workshops Cryptographic Hardware and Embedded Systems (CHES), Fast Soft-

ware Encryption (FSE), Public Key Cryptography (PKC) and Theory of Cryp-

tograpy (TCC), are excellent sources for tracking the recent developments in the

field of cryptology at large. Two important conferences which deal with the larger

issue of security (of which cryptography is one aspect) are the IEEE Symposium on

Security and Privacy and the USENIX Security forum. All of the events listed take

place annually.

There are several good books on cryptography. As reference sources, the Hand-

book of Applied Cryptography [120] and the more recent Encyclopedia of Cryptog-

raphy and Security [168] are highly recommended; both make excellent additions

to this textbook.

Provable Security Due to our focus on practical cryptography, this book omits

most aspects related to the theoretical foundations of crypto algorithms and proto-

cols. Especially in modern cryptographic research, there is a strong desire to provide

statements about cryptographic schemes which are provable in a strict mathematical

sense. For this, the goals of both a security system and the adversary are described

in a formal model. Often, proofs are achieved by reducing the security of a system to

certain assumptions, e.g., that factorization of integers is hard or that a hash function

is collision free.

The field of provable security is quite large. We list now some important subareas.

A recent survey on the specific area of provable public-key encryption is given in

[55]. Provable security is closely related to cryptographic foundations, which stud-

ies the general assumptions and approaches needed. For instance, the interrelation-

ship between certain presumably hard problems (e.g., integer factorization and dis-

crete logarithm) are studied. The standard references are [81, 83]. Zero-knowledge

proofs are concerned with proving a certain knowledge towards another party with-

out revealing the secret. They were originally motivated by proving an entity’s iden-

tity without revealing a password or key. However, they are typically not used that

way any more. An early reference is [139], and a more recent tutorial is given in

[82]. Multiparty computation can be used to compute answers such as the outcome

of an election or determining the highest bid in an auction based on encrypted data.

The interesting part is that when the protocol is completed the participants know

only their own input and the answer but nothing about the encrypted data of the

other participants. Good reference sources are [112] and [83, Chap. 7].

A few times this book also touches upon provable security, for instance the re-

lationship between Diffie–Hellman key exchange and the Diffie–Hellman problem

(cf. Sect. 8.4), the block cipher based hash functions in Sect. 11.3.2 or the security

of the HMAC message authentication scheme in Sect. 12.2.

22 1 Introduction to Cryptography and Data Security

As a word of caution, it should be mentioned that even though very practical

results have been derived from research in the provable security of crypto schemes,

many findings are only of limited practical value. Also, the whole field is not without

controversy [84, 102].

Secure System Design Cryptography is often an important tool for building a se-

cure system, but on the other hand secure system design encompasses many other

aspects. Security systems are intended to protect something valuable, e.g., informa-

tion, monetary values, personal property, etc. The main objective of secure system

design is to make breaking the system more costly than the value of the protected

assets, where the “cost” should be measured in monetary value but also in more

abstract terms such as effort or reputation. Generally speaking, adding security to a

system often narrows its usability.

In order to approach the problem systematically, several general frameworks ex-

ist. They typically require that assets and corresponding security needs have to be

defined, and that the attack potential and possible attack paths must be evaluated.

Finally, adequate countermeasures have to be specified in order to realize an appro-

priate level of security for a particular application or environment.

There are standards which can be used for evaluation and help to define a se-

cure system. Among the more prominent ones are ISO/IEC [94] (15408, 15443-1,

15446, 19790, 19791, 19792, 21827), the Common Criteria for Information Tech-

nology Security Evaluation [46], the German IT-Grundschutzhandbuch [37], FIPS

PUBS [77] and many more.

1.6 Lessons Learned

� Never ever develop your own crypto algorithm unless you have a team of expe-

rienced cryptanalysts checking your design.

� Do not use unproven crypto algorithms (i.e., symmetric ciphers, asymmetric ci-

phers, hash functions) or unproven protocols.

� Attackers always look for the weakest point of a cryptosystem. For instance, a

large key space by itself is no guarantee for a cipher being secure; the cipher

might still be vulnerable against analytical attacks.

� Key lengths for symmetric algorithms in order to thwart exhaustive key-search

attacks are:

� 64 bits: insecure except for data with extremely short-term value.

� 112–128 bits: long-term security of several decades, including attacks by in-

telligence agencies unless they possess quantum computers. Based on our cur-

rent knowledge, attacks are only feasible with quantum computers (which do

not exist and perhaps never will).

� 256 bit: as above, but possibly against attacks by quantum computers.

1.6 Lessons Learned 23

� Modular arithmetic is a tool for expressing historical encryption schemes, such

as the affine cipher, in a mathematically elegant way.

24 1 Introduction to Cryptography and Data Security

Problems

1.1. The ciphertext below was encrypted using a substitution cipher. Decrypt the ci-

phertext without knowledge of the key.

lrvmnir bpr sumvbwvr jx bpr lmiwv yjeryrkbi jx qmbm wi

bpr xjvni mkd ymibrut jx irhx wi bpr riirkvr jx

ymbinlmtmipw utn qmumbr dj w ipmhh but bj rhnvwdmbr bpr

yjeryrkbi jx bpr qmbm mvvjudwko bj yt wkbrusurbmbwjk

lmird jk xjubt trmui jx ibndt

wb wi kjb mk rmit bmiq bj rashmwk rmvp yjeryrkb mkd wbi

iwokwxwvmkvr mkd ijyr ynib urymwk nkrashmwkrd bj ower m

vjyshrbr rashmkmbwjk jkr cjnhd pmer bj lr fnmhwxwrd mkd

wkiswurd bj invp mk rabrkb bpmb pr vjnhd urmvp bpr ibmbr

jx rkhwopbrkrd ywkd vmsmlhr jx urvjokwgwko ijnkdhrii

ijnkd mkd ipmsrhrii ipmsr w dj kjb drry ytirhx bpr xwkmh

mnbpjuwbt lnb yt rasruwrkvr cwbp qmbm pmi hrxb kj djnlb

bpmb bpr xjhhjcwko wi bpr sujsru msshwvmbwjk mkd

wkbrusurbmbwjk w jxxru yt bprjuwri wk bpr pjsr bpmb bpr

riirkvr jx jqwkmcmk qmumbr cwhh urymwk wkbmvb

1. Compute the relative frequency of all letters A...Z in the ciphertext. You may

want to use a tool such as the open-source program CrypTool [50] for this task.

However, a paper and pencil approach is also still doable.

2. Decrypt the ciphertext with the help of the relative letter frequency of the English

language (see Table 1.1 in Sect. 1.2.2). Note that the text is relatively short and

that the letter frequencies in it might not perfectly align with that of general

English language from the table.

3. Who wrote the text?

1.2. We received the following ciphertext which was encoded with a shift cipher:

xultpaajcxitltlxaarpjhtiwtgxktghidhipxciwtvgtpilpit

ghlxiwiwtxgqadds.

1. Perform an attack against the cipher based on a letter frequency count: How

many letters do you have to identify through a frequency count to recover the

key? What is the cleartext?

2. Who wrote this message?

1.3. We consider the long-term security of the Advanced Encryption Standard

(AES) with a key length of 128-bit with respect to exhaustive key-search attacks.

AES is perhaps the most widely used symmetric cipher at this time.

1. Assume that an attacker has a special purpose application specific integrated cir-

cuit (ASIC) which checks 5 · 108 keys per second, and she has a budget of $1

million. One ASIC costs $50, and we assume 100% overhead for integrating

1.6 Problems 25

the ASIC (manufacturing the printed circuit boards, power supply, cooling, etc.).

How many ASICs can we run in parallel with the given budget? How long does

an average key search take? Relate this time to the age of the Universe, which is

about 1010 years.

2. We try now to take advances in computer technology into account. Predicting

the future tends to be tricky but the estimate usually applied is Moore’s Law,

which states that the computer power doubles every 18 months while the costs

of integrated circuits stay constant. How many years do we have to wait until a

key-search machine can be built for breaking AES with 128 bit with an average

search time of 24 hours? Again, assume a budget of $1 million (do not take

inflation into account).

1.4. We now consider the relation between passwords and key size. For this purpose

we consider a cryptosystem where the user enters a key in the form of a password.

1. Assume a password consisting of 8 letters, where each letter is encoded by the

ASCII scheme (7 bits per character, i.e., 128 possible characters). What is the

size of the key space which can be constructed by such passwords?

2. What is the corresponding key length in bits?

3. Assume that most users use only the 26 lowercase letters from the alphabet in-

stead of the full 7 bits of the ASCII-encoding. What is the corresponding key

length in bits in this case?

4. At least how many characters are required for a password in order to generate a

key length of 128 bits in case of letters consisting of

a. 7-bit characters?

b. 26 lowercase letters from the alphabet?

1.5. As we learned in this chapter, modular arithmetic is the basis of many cryp-

tosystems. As a consequence, we will address this topic with several problems in

this and upcoming chapters.

Let’s start with an easy one: Compute the result without a calculator.

1. 15 ·29 mod 13

2. 2 ·29 mod 13

3. 2 ·3 mod 13

4. −11 ·3 mod 13

The results should be given in the range from 0,1, . . . , modulus-1. Briefly describe

the relation between the different parts of the problem.

1.6. Compute without a calculator:

1. 1/5 mod 13

2. 1/5 mod 7

3. 3 ·2/5 mod 7

1.7. We consider the ring Z4. Construct a table which describes the addition of all

elements in the ring with each other:

26 1 Introduction to Cryptography and Data Security

+ 0 1 2 3

0 0 1 2 3

1 1 2 · · ·
2 · · ·
3

1. Construct the multiplication table for Z4.

2. Construct the addition and multiplication tables for Z5.

3. Construct the addition and multiplication tables for Z6.

4. There are elements in Z4 and Z6 without a multiplicative inverse. Which ele-

ments are these? Why does a multiplicative inverse exist for all nonzero elements

in Z5?

1.8. What is the multiplicative inverse of 5 in Z11, Z12, and Z13? You can do a

trial-and-error search using a calculator or a PC.

With this simple problem we want now to stress the fact that the inverse of an

integer in a given ring depends completely on the ring considered. That is, if the

modulus changes, the inverse changes. Hence, it doesn’t make sense to talk about

an inverse of an element unless it is clear what the modulus is. This fact is crucial

for the RSA cryptosystem, which is introduced in Chap. 7. The extended Euclidean

algorithm, which can be used for computing inverses efficiently, is introduced in

Sect. 6.3.

1.9. Compute x as far as possible without a calculator. Where appropriate, make use

of a smart decomposition of the exponent as shown in the example in Sect. 1.4.1:

1. x = 32 mod 13

2. x = 72 mod 13

3. x = 310 mod 13

4. x = 7100 mod 13

5. 7x = 11 mod 13

The last problem is called a discrete logarithm and points to a hard problem which

we discuss in Chap. 8. The security of many public-key schemes is based on the

hardness of solving the discrete logarithm for large numbers, e.g., with more than

1000 bits.

1.10. Find all integers n between 0 ≤ n < m that are relatively prime to m for m =
4,5,9,26. We denote the number of integers n which fulfill the condition by φ(m),
e.g. φ(3) = 2. This function is called “Euler’s phi function”. What is φ(m) for m =
4,5,9,26?

1.11. This problem deals with the affine cipher with the key parameters a = 7, b =
22.

1. Decrypt the text below:

falszztysyjzyjkywjrztyjztyynaryjkyswarztyegyyj

2. Who wrote the line?

1.6 Problems 27

1.12. Now, we want to extend the affine cipher from Sect. 1.4.4 such that we can

encrypt and decrypt messages written with the full German alphabet. The German

alphabet consists of the English one together with the three umlauts, Ä, Ö, Ü, and the

(even stranger) “double s” character ß. We use the following mapping from letters

to integers:

A ↔ 0 B ↔ 1 C ↔ 2 D ↔ 3 E ↔ 4 F ↔ 5

G ↔ 6 H ↔ 7 I ↔ 8 J ↔ 9 K ↔ 10 L ↔ 11

M ↔ 12 N ↔ 13 O ↔ 14 P ↔ 15 Q ↔ 16 R ↔ 17

S ↔ 18 T ↔ 19 U ↔ 20 V ↔ 21 W ↔ 22 X ↔ 23

Y ↔ 24 Z ↔ 25 Ä ↔ 26 Ö ↔ 27 Ü ↔ 28 ß ↔ 29

1. What are the encryption and decryption equations for the cipher?

2. How large is the key space of the affine cipher for this alphabet?

3. The following ciphertext was encrypted using the key (a = 17,b = 1). What is

the corresponding plaintext?

ä u ß w ß

4. From which village does the plaintext come?

1.13. In an attack scenario, we assume that the attacker Oscar manages somehow

to provide Alice with a few pieces of plaintext that she encrypts. Show how Oscar

can break the affine cipher by using two pairs of plaintext–ciphertext, (x1,y1) and

(x2,y2). What is the condition for choosing x1 and x2?

Remark: In practice, such an assumption turns out to be valid for certain settings,

e.g., encryption by Web servers, etc. This attack scenario is, thus, very important and

is denoted as a chosen plaintext attack.

1.14. An obvious approach to increase the security of a symmetric algorithm is to

apply the same cipher twice, i.e.:

y = ek2(ek1(x))

As is often the case in cryptography, things are very tricky and results are often dif-

ferent from the expected and/ or desired ones. In this problem we show that a double

encryption with the affine cipher is only as secure as single encryption! Assume two

affine ciphers ek1 = a1x+b1 and ek2 = a2x+b2.

1. Show that there is a single affine cipher ek3 = a3x + b3 which performs exactly

the same encryption (and decryption) as the combination ek2(ek1(x)).
2. Find the values for a3,b3 when a1 = 3,b1 = 5 and a2 = 11,b2 = 7.

3. For verification: (1) encrypt the letter K first with ek1 and the result with ek2, and

(2) encrypt the letter K with ek3.

4. Briefly describe what happens if an exhaustive key-search attack is applied to a

double-encrypted affine ciphertext. Is the effective key space increased?

Remark: The issue of multiple encryption is of great practical importance in the

case of the Data Encryption Standard (DES), for which multiple encryption (in par-

ticular, triple encryption) does increase security considerably.

Chapter 2

Stream Ciphers

If we look at the types of cryptographic algorithms that exist in a little bit more

detail, we see that the symmetric ciphers can be divided into stream ciphers and

block ciphers, as shown in Fig. 2.1.

Fig. 2.1 Main areas within cryptography

This chapter gives an introduction to stream ciphers:

� The pros and cons of stream ciphers

� Random and pseudorandom number generators

� A truly unbreakable cipher: the One-Time Pad (OTP)

� Linear feedback shift registers and Trivium, a modern stream cipher

29

30 2 Stream Ciphers

2.1 Introduction

2.1.1 Stream Ciphers vs. Block Ciphers

Symmetric cryptography is split into block ciphers and stream ciphers, which are

easy to distinguish. Figure 2.2 depicts the operational differences between stream

(Fig. 2.2a) and block (Fig. 2.2b) ciphers when we want to encrypt b bits at a time,

where b is the width of the block cipher.

(a) (b)

Fig. 2.2 Principles of encrypting b bits with a stream (a) and a block (b) cipher

A description of the principles of the two types of symmetric ciphers follows.

Stream ciphers encrypt bits individually. This is achieved by adding a bit from

a key stream to a plaintext bit. There are synchronous stream ciphers where

the key stream depends only on the key, and asynchronous ones where the key

stream also depends on the ciphertext. If the dotted line in Fig. 2.3 is present,

the stream cipher is an asynchronous one. Most practical stream ciphers are syn-

chronous ones and Sect. 2.3 of this chapter will deal with them. An example of

an asynchronous stream cipher is the cipher feedback (CFB) mode introduced in

Sect. 5.1.4.

Fig. 2.3 Synchronous and asynchronous stream ciphers

Block ciphers encrypt an entire block of plaintext bits at a time with the same

key. This means that the encryption of any plaintext bit in a given block depends

on every other plaintext bit in the same block. In practice, the vast majority of

block ciphers either have a block length of 128 bits (16 bytes) such as the ad-

vanced encryption standard (AES), or a block length of 64 bits (8 bytes) such as

2.1 Introduction 31

the data encryption standard (DES) or triple DES (3DES) algorithm. All of these

ciphers are introduced in later chapters.

This chapter gives an introduction to stream ciphers. Before we go into more

detail, it will be helpful to learn some useful facts about stream ciphers vs. block

ciphers:

1. In practice, in particular for encrypting computer communication on the Internet,

block ciphers are used more often than stream ciphers.

2. Because stream ciphers tend to be small and fast, they are particularly relevant

for applications with little computational resources, e.g., for cell phones or other

small embedded devices. A prominent example for a stream cipher is the A5/1

cipher, which is part of the GSM mobile phone standard and is used for voice

encryption. However, stream ciphers are sometimes also used for encrypting In-

ternet traffic, especially the stream cipher RC4.

3. Traditionally, it was assumed that stream ciphers tended to encrypt more effi-

ciently than block ciphers. Efficient for software-optimized stream ciphers means

that they need fewer processor instructions (or processor cycles) to encrypt one

bit of plaintext. For hardware-optimized stream ciphers, efficient means they need

fewer gates (or smaller chip area) than a block cipher for encrypting at the same

data rate. However, modern block ciphers such as AES are also very efficient in

software. Moreover, for hardware, there are also highly efficient block ciphers,

such as PRESENT, which are as efficient as very compact stream ciphers.

2.1.2 Encryption and Decryption with Stream Ciphers

As mentioned above, stream ciphers encrypt plaintext bits individually. The question

now is: How does encryption of an individual bit work? The answer is surprisingly

simple: Each bit xi is encrypted by adding a secret key stream bit si modulo 2.

Definition 2.1.1 Stream Cipher Encryption and Decryption

The plaintext, the ciphertext and the key stream consist of individ-

ual bits,

i.e., xi,yi,si ∈ {0,1}.

Encryption: yi = esi
(xi) ≡ xi + si mod 2

Decryption: xi = dsi
(yi) ≡ yi + si mod 2

Since encryption and decryption functions are both simple additions modulo 2,

we can depict the basic operation of a stream cipher as shown in Fig. 2.4. Note that

we use a circle with an addition sign as the symbol for modulo 2 addition.

Just looking at the formulae, there are three points about the stream cipher en-

cryption and decryption function which we should clarify:

1. Encryption and decryption are the same functions!

32 2 Stream Ciphers

Fig. 2.4 Encryption and decryption with stream ciphers

2. Why can we use a simple modulo 2 addition as encryption?

3. What is the nature of the key stream bits si?

The following discussion of these three items will give us already an understanding

of some important stream cipher properties.

Why Are Encryption and Decryption the Same Function?

The reason for the similarity of the encryption and decryption function can easily

be shown. We must prove that the decryption function actually produces the plain-

text bit xi again. We know that ciphertext bit yi was computed using the encryption

function yi ≡ xi + si mod 2. We insert this encryption expression in the decryption

function:

dsi
(yi) ≡ yi + si mod 2

≡ (xi + si)+ si mod 2

≡ xi + si + si mod 2

≡ xi +2si mod 2

≡ xi +0 mod 2

≡ xi mod 2 Q.E.D.

The trick here is that the expression (2si mod 2) has always the value zero since

2 ≡ 0 mod 2. Another way of understanding this is as follows: If si has either the

value 0, in which case 2si = 2 · 0 ≡ 0 mod 2. If si = 1, we have 2si = 2 · 1 = 2 ≡
0 mod 2.

Why Is Modulo 2 Addition a Good Encryption Function?

A mathematical explanation for this is given in the context of the One-Time Pad in

Sect. 2.2.2. However, it is worth having a closer look at addition modulo 2. If we do

arithmetic modulo 2, the only possible values are 0 and 1 (because if you divide by

2, the only possible remainders are 0 and 1). Thus, we can treat arithmetic modulo

2 as Boolean functions such as AND gates, OR gates, NAND gates, etc. Let’s look

at the truth table for modulo 2 addition:

This should look familiar to most readers: It is the truth table of the exclusive-OR,

also called XOR, gate. This is in important fact: Modulo 2 addition is equivalent to

2.1 Introduction 33

xi si yi ≡ xi + si mod 2

0 0 0
0 1 1
1 0 1
1 1 0

the XOR operation. The XOR operation plays a major role in modern cryptography

and will be used many times in the remainder of this book.

The question now is, why is the XOR operation so useful, as opposed to, for

instance, the AND operation? Let’s assume we want to encrypt the plaintext bit

xi = 0. If we look at the truth table we find that we are on either the 1st or 2nd line

of the truth table:

Table 2.1 Truth table of the XOR operation

xi si yi

0 0 0

0 1 1

1 0 1
1 1 0

Depending on the key bit, the ciphertext yi is either a zero (si = 0) or one (si = 1).

If the key bit si behaves perfectly randomly, i.e., it is unpredictable and has exactly a

50% chance to have the value 0 or 1, then both possible ciphertexts also occur with

a 50% likelihood. Likewise, if we encrypt the plaintext bit xi = 1, we are on line 3

or 4 of the truth table. Again, depending on the value of the key stream bit si, there

is a 50% chance that the ciphertext is either a 1 or a 0.

We just observed that the XOR function is perfectly balanced, i.e., by observing

an output value, there is exactly a 50% chance for any value of the input bits. This

distinguishes the XOR gate from other Boolean functions such as the OR, AND or

NAND gate. Moreover, AND and NAND gates are not invertible. Let’s look at a

very simple example for stream cipher encryption.

Example 2.1. Alice wants to encrypt the letter A, where the letter is given in ASCII

code. The ASCII value for A is 6510 = 10000012. Let’s furthermore assume that the

first key stream bits are (s0, . . . ,s6) = 0101100.

Alice Oscar Bob

x0, . . . ,x6 = 1000001 = A

⊕
s0, . . . ,s6 = 0101100
y0, . . . ,y6 = 1101101 = m

.
m=1101101−−−−−−−−−−−−→

y0, . . . ,y6 = 1101101
⊕

s0, . . . ,s6 = 0101100
x0, . . . ,x6 = 1000001 = A

34 2 Stream Ciphers

Note that the encryption by Alice turns the uppercase A into the lower case letter

m. Oscar, the attacker who eavesdrops on the channel, only sees the ciphertext letter

m. Decryption by Bob with the same key stream reproduces the plaintext A again.

⋄

So far, stream ciphers look unbelievably easy: One simply takes the plaintext,

performs an XOR operation with the key and obtains the ciphertext. On the receiving

side, Bob does the same. The “only” thing left to discuss is the last question from

above.

What Exactly Is the Nature of the Key Stream?

It turns out that the generation of the values si, which are called the key stream, is

the central issue for the security of stream ciphers. In fact, the security of a stream

cipher completely depends on the key stream. The key stream bits si are not the key

bits themselves. So, how do we get the key stream? Generating the key stream is

pretty much what stream ciphers are about. This is a major topic and is discussed

later in this chapter. However, we can already guess that a central requirement for

the key stream bits should be that they appear like a random sequence to an attacker.

Otherwise, an attacker Oscar could guess the bits and do the decryption by himself.

Hence, we first need to learn more about random numbers.

Historical Remark Stream ciphers were invented in 1917 by Gilbert Vernam, even

though they were not called stream ciphers back at that time. He built an elec-

tromechanical machine which automatically encrypted teletypewriter communica-

tion. The plaintext was fed into the machine as one paper tape, and the key stream

as a second tape. This was the first time that encryption and transmission was au-

tomated in one machine. Vernam studied electrical engineering at Worcester Poly-

technic Institute (WPI) in Massachusetts where, by coincidence, one of the authors

of this book was a professor in the 1990s. Stream ciphers are sometimes referred to

as Vernam ciphers. Occasionally, one-time pads are also called Vernam ciphers. For

further reading on Vernam’s machine, the book by Kahn [97] is recommended.

2.2 Random Numbers and an Unbreakable Stream Cipher

2.2.1 Random Number Generators

As we saw in the previous section, the actual encryption and decryption of stream

ciphers is extremely simple. The security of stream ciphers hinges entirely on a

“suitable” key stream s0,s1,s2, Since randomness plays a major role, we will first

learn about the three types of random number generators (RNG) that are important

for us.

2.2 Random Numbers and an Unbreakable Stream Cipher 35

True Random Number Generators (TRNG)

True random number generators (TRNGs) are characterized by the fact that their

output cannot be reproduced. For instance, if we flip a coin 100 times and record the

resulting sequence of 100 bits, it will be virtually impossible for anyone on Earth

to generate the same 100 bit sequence. The chance of success is 1/2100, which is

an extremely small probability. TRNGs are based on physical processes. Examples

include coin flipping, rolling of dice, semiconductor noise, clock jitter in digital

circuits and radioactive decay. In cryptography, TRNGs are often needed for gener-

ating session keys, which are then distributed between Alice and Bob, and for other

purposes.

(General) Pseudorandom Number Generators (PRNG)

Pseudorandom number generators (PRNGs) generate sequences which are com-

puted from an initial seed value. Often they are computed recursively in the follow-

ing way:

s0 = seed

si+1 = f (si), i = 0,1, . . .

A generalization of this are generators of the form si+1 = f (si,si−1, . . . ,si−t), where

t is a fixed integer. A popular example is the linear congruential generator:

s0 = seed

si+1 ≡ asi +b mod m, i = 0,1, . . .

where a, b, m are integer constants. Note that PRNGs are not random in a true sense

because they can be computed and are thus completely deterministic. A widely used

example is the rand() function used in ANSI C. It has the parameters:

s0 = 12345

si+1 ≡ 1103515245si +12345 mod 231, i = 0,1, . . .

A common requirement of PRNGs is that they possess good statistical proper-

ties, meaning their output approximates a sequence of true random numbers. There

are many mathematical tests, e.g., the chi-square test, which can verify the statistical

behavior of PRNG sequences. Note that there are many, many applications for pseu-

dorandom numbers outside cryptography. For instance, many types of simulations

or testing, e.g., of software or of VLSI chips, need random data as input. That is the

reason why a PRNG is included in the ANSI C specification.

36 2 Stream Ciphers

Cryptographically Secure Pseudorandom Number Generators (CSPRNG)

Cryptographically secure pseudorandom number generators (CSPRNGs) are a spe-

cial type of PRNG which possess the following additional property: A CSPRNG is

PRNG which is unpredictable. Informally, this means that given n output bits of the

key stream si,si+1, . . . ,si+n−1, where n is some integer, it is computationally infea-

sible to compute the subsequent bits si+n,si+n+1, A more exact definition is that

given n consecutive bits of the key stream, there is no polynomial time algorithm

that can predict the next bit sn+1 with better than 50% chance of success. Another

property of CSPRNG is that given the above sequence, it should be computationally

infeasible to compute any preceding bits si−1,si−2,
Note that the need for unpredictability of CSPRNGs is unique to cryptography.

In virtually all other situations where pseudorandom numbers are needed in com-

puter science or engineering, unpredictability is not needed. As a consequence, the

distinction between PRNG and CSPRN and their relevance for stream ciphers is of-

ten not clear to non-cryptographers. Almost all PRNG that were designed without

the clear purpose of being stream ciphers are not CSPRNGs.

2.2.2 The One-Time Pad

In the following we discuss what happens if we use the three types of random num-

bers as generators for the key stream sequence s0,s1,s2, . . . of a stream cipher. Let’s

first define what a perfect cipher should be:

Definition 2.2.1 Unconditional Security

A cryptosystem is unconditionally or information-theoretically se-

cure if it cannot be broken even with infinite computational re-

sources.

Unconditional security is based on information theory and assumes no limit on

the attacker’s computational power. This looks like a pretty straightforward defini-

tion. It is in fact straightforward, but the requirements for a cipher to be uncondi-

tionally secure are tremendous. Let’s look at it using a gedankenexperiment: As-

sume we have a symmetric encryption algorithm (it doesn’t matter whether it’s a

block cipher or stream cipher) with a key length of 10,000 bits, and the only attack

that works is an exhaustive key search, i.e, a brute-force attack. From the discussion

in Sect. 1.3.2, we recall that 128 bits are more than enough for long-term security.

So, is a cipher with 10,000 bits unconditionally secure? The answer is simple: No!

Since an attacker can have infinite computational resources, we can simply assume

that the attacker has 210000 computers available and every computer checks exactly

one key. This will give us a correct key in one time step. Of course, there is no way

that 210000 computer can ever be built, the number is too large. (It is estimated that

2.2 Random Numbers and an Unbreakable Stream Cipher 37

there are “only” about 2266 atoms in the known universe.) The cipher would merely

be computationally secure but not unconditionally.

All this said, we now show a way to build an unconditionally secure cipher that

is quite simple. This cipher is called the One-Time Pad.

Definition 2.2.2 One-Time Pad (OTP)

A stream cipher for which

1. the key stream s0,s1,s2, . . . is generated by a true random num-

ber generator, and

2. the key stream is only known to the legitimate communicating

parties, and

3. every key stream bit si is only used once

is called a one-time pad. The one-time pad is unconditionally se-

cure.

It is easy to show why the OTP is unconditionally secure. Here is a sketch of a

proof. For every ciphertext bit we get an equation of this form:

y0 ≡ x0 + s0 mod 2

y1 ≡ x1 + s1 mod 2

...

Each individual relation is a linear equation modulo 2 with two unknowns. They

are impossible to solve. If the attacker knows the value for y0 (0 or 1), he cannot

determine the value of x0. In fact, the solutions x0 = 0 and x0 = 1 are exactly equally

likely if s0 stems from a truly random source and there is 50% chance that it has the

value 0 and 1. The situation is identical for the second equation and all subsequent

ones. Note that the situation is different if the values si are not truly random. In this

case, there is some functional relationship between them, and the equations shown

above are not independent. Even though it might still be hard to solve the system of

equations, it is not provably secure!

So, now we have a simple cipher which is perfectly secure. There are rumors

that the red telephone between the White House and the Kremlin was encrypted

using an OTP during the Cold War. Obviously there must be a catch since OTPs are

not used for Web browsers, e-mail encryption, smart cards, mobile phones, or other

important applications. Let’s look at the implications of the three requirements in

Defintion 2.2.2. The first requirement means that we need a TRNG. That means we

need a device, e.g., based on white noise of a semiconductor, that generates truly

random bits. Since standard PCs do not have TRNG, this requirement might not be

that convenient but can certainly be met. The second requirement means that Alice

has to get the random bits securely to Bob. In practice that could mean that Alice

burns the true random bits on a CD ROM and sends them securely, e.g., with a

trusted courier, to Bob. Still doable, but not great. The third requirement is probably

38 2 Stream Ciphers

the most impractical one: Key stream bits cannot be re-used. This implies that we

need one key bit for every bit of plaintext. Hence, our key is as long as the plaintext!

This is probably the major drawback of the OTP. Even if Alice and Bob share a CD

with 1 MByte of true random numbers, we run quickly into limits. If they send a

single email with an attachment of 1 MByte, they could encrypt and decrypt it, but

after that they would need to exchange a true random key stream again.

For these reasons OTPs are rarely used in practice. However, they give us a great

design idea for secure ciphers: If we XOR truly random bits and plaintext, we get

ciphertext that can certainly not be broken by an attacker. We will see in the next

section how we can use this fact to build practical stream ciphers.

2.2.3 Towards Practical Stream Ciphers

In the previous section we saw that OTPs are unconditionally secure, but that they

have drawbacks which make them impractical. What we try to do with practical

stream ciphers is to replace the truly random key stream bits by a pseudorandom

number generator where the key k serves as a seed. The principle of practical stream

ciphers is shown in Fig. 2.5.

Fig. 2.5 Practical stream ciphers

Before we turn to stream ciphers used in the real world, it should be stressed that

practical stream ciphers are not unconditionally secure. In fact, all known practical

crypto algorithms (stream ciphers, block ciphers, public-key algorithms) are not

unconditionally secure. The best we can hope for is computational security, which

we define as follows:

Definition 2.2.3 Computational Security

A cryptosystem is computationally secure if the best known algo-

rithm for breaking it requires at least t operations.

2.2 Random Numbers and an Unbreakable Stream Cipher 39

This seems like a reasonable definition, but there are still several problems with

it. First, often we do not know what the best algorithm for a given attack is. A

prime example is the RSA public-key scheme, which can be broken by factoring

large integers. Even though many factoring algorithms are known, we do not know

whether there exist any better ones. Second, even if a lower bound on the complexity

of one attack is known, we do not know whether any other, more powerful attacks

are possible. We saw this in Sect. 1.2.2 during the discussion about the substitution

cipher: Even though we know the exact computational complexity for an exhaustive

key search, there exist other more powerful attacks. The best we can do in practice

is to design crypto schemes for which it is assumed that they are computationally

secure. For symmetric ciphers this usually means one hopes that there is no attack

method with a complexity better than an exhaustive key search.

Let’s go back to Fig. 2.5. This design emulates (“behaves like”) a one-time pad.

It has the major advantage over the OTP that Alice and Bob only need to exchange a

secret key that is at most a few 100 bits long, and that does not have to be as long as

the message we want to encrypt. We now have to think carefully about the properties

of the key stream s0,s1,s2, . . . that is generated by Alice and Bob. Obviously, we

need some type of random number generator to derive the key stream. First, we note

that we cannot use a TRNG since, by definition, Alice and Bob will not be able to

generate the same key stream. Instead we need deterministic, i.e., pseudorandom,

number generators. We now look at the other two generators that were introduced

in the previous section.

Building Key Streams from PRNGs

Here is an idea that seems promising (but in fact is pretty bad): Many PRNGs pos-

sess good statistical properties, which are necessary for a strong stream cipher. If

we apply statistical tests to the key stream sequence, the output should pretty much

behave like the bit sequence generated by tossing a coin. So it is tempting to assume

that a PRNG can be used to generate the key stream. But all of this is not sufficient

for a stream cipher since our opponent, Oscar, is smart. Consider the following at-

tack:

Example 2.2. Let’s assume a PRNG based on the linear congruential generator:

S0 = seed

Si+1 ≡ ASi +B mod m, i = 0,1, . . .

where we choose m to be 100 bits long and Si,A,B ∈ {0,1, . . . ,m−1}. Note that this

PRNG can have excellent statistical properties if we choose the parameters carefully.

The modulus m is part of the encryption scheme and is publicly known. The secret

key comprises the values (A,B) and possibly the seed S0, each with a length of 100.

That gives us a key length of 200 bit, which is more than sufficient to protect against

a brute-force attack. Since this is a stream cipher, Alice can encrypt:

40 2 Stream Ciphers

yi ≡ xi + si mod 2

where si are the bits of the binary representation of the PRNG output symbols S j.

But Oscar can easily launch an attack. Assume he knows the first 300 bits of

plaintext (this is only 300/8=37.5 byte), e.g., file header information, or he guesses

part of the plaintext. Since he certainly knows the ciphertext, he can now compute

the first 300 bits of key stream as:

si ≡ yi + xi mod m , i = 1,2, . . . ,300

These 300 bits immediately give the first three output symbols of the PRNG: S1 =
(s1, . . . ,s100), S2 = (s101, . . . ,s200) and S3 = (s201, . . . ,s300). Oscar can now generate

two equations:

S2 ≡ AS1 +B mod m

S3 ≡ AS2 +B mod m

This is a system of linear equations over Zm with two unknowns A and B. But those

two values are the key, and we can immediately solve the system, yielding:

A ≡ (S2 −S3)/(S1 −S2) mod m

B ≡ S2 −S1(S2 −S3)/(S1 −S2) mod m

In case gcd((S1−S2),m)) �= 1 we get multiple solutions since this is an equation sys-

tem over Zm. However, with a fourth piece of known plaintext the key can uniquely

be detected in almost all cases. Alternatively, Oscar simply tries to encrypt the mes-

sage with each of the multiple solutions found. Hence, in summary: if we know a

few pieces of plaintext, we can compute the key and decrypt the entire ciphertext!

⋄

This type of attack is why the notation of CSPRNG was invented.

Building Key Streams from CSPRNGs

What we need to do to prevent the attack above is to use a CSPRNG, which assures

that the key stream is unpredictable. We recall that this means that given the first n

output bits of the key stream s1,s2, . . . ,sn, it is computationally infeasible to com-

pute the bits sn+1,sn+2, Unfortunately, pretty much all pseudorandom number

generators that are used for applications outside cryptography are not cryptograph-

ically secure. Hence, in practice, we need to use specially designed pseudorandom

number generators for stream ciphers.

The question now is how practical stream ciphers actually look. There are many

proposals for stream ciphers out in the literature. They can roughly be classified as

ciphers either optimized for software implementation or optimized for hardware im-

plementation. In the former case, the ciphers typically require few CPU instructions

2.3 Shift Register-Based Stream Ciphers 41

to compute one key stream bit. In the latter case, they tend to be based on operations

which can easily be realized in hardware. A popular example is shift registers with

feedback, which are discussed in the next section. A third class of stream ciphers

is realized by using block ciphers as building blocks. The cipher feedback mode,

output feedback mode and counter mode to be introduced in Chap. 5 are examples

of stream ciphers derived from block ciphers.

It could be argued that the state-of-the-art in block cipher design is more ad-

vanced than stream ciphers. Currently it seems to be easier for scientists to design

“secure” block ciphers than stream ciphers. Subsequent chapters deal in great detail

with the two most popular and standardized block ciphers, DES and AES.

2.3 Shift Register-Based Stream Ciphers

As we have learned so far, practical stream ciphers use a stream of key bits s1,s2, . . .
that are generated by the key stream generator, which should have certain properties.

An elegant way of realizing long pseudorandom sequences is to use linear feedback

shift registers (LFSRs). LFSRs are easily implemented in hardware and many, but

certainly not all, stream ciphers make use of LFSRs. A prominent example is the

A5/1 cipher, which is standardized for voice encryption in GSM. As we will see,

even though a plain LFSR produces a sequence with good statistical properties, it

is cryptographically weak. However, combinations of LFSRs, such as A5/1 or the

cipher Trivium, can make secure stream ciphers. It should be stressed that there

are many ways for constructing stream ciphers. This section only introduces one of

several popular approaches.

2.3.1 Linear Feedback Shift Registers (LFSR)

An LFSR consists of clocked storage elements (flip-flops) and a feedback path. The

number of storage elements gives us the degree of the LFSR. In other words, an

LFSR with m flip-flops is said to be of degree m. The feedback network computes

the input for the last flip-flop as XOR-sum of certain flip-flops in the shift register.

Example 2.3. Simple LFSR We consider an LFSR of degree m = 3 with flip-flops

FF2, FF1, FF0, and a feedback path as shown in Fig. 2.6. The internal state bits are

denoted by si and are shifted by one to the right with each clock tick. The rightmost

state bit is also the current output bit. The leftmost state bit is computed in the

feedback path, which is the XOR sum of some of the flip-flop values in the previous

clock period. Since the XOR is a linear operation, such circuits are called linear

feedback shift registers. If we assume an initial state of (s2 = 1,s1 = 0,s0 = 0),
Table 2.2 gives the complete sequence of states of the LFSR. Note that the rightmost

column is the output of the LFSR. One can see from this example that the LFSR

42 2 Stream Ciphers

Fig. 2.6 Linear feedback shift register of degree 3 with initial values s2, s1, s0

Table 2.2 Sequence of states of the LFSR

clk FF2 FF1 FF0 = si

0 1 0 0
1 0 1 0
2 1 0 1
3 1 1 0
4 1 1 1
5 0 1 1
6 0 0 1
7 1 0 0
8 0 1 0

starts to repeat after clock cycle 6. This means the LFSR output has period of length

7 and has the form:

0010111 0010111 0010111 . . .

There is a simple formula which determines the functioning of this LFSR. Let’s

look at how the output bits si are computed, assuming the initial state bits s0,s1,s2:

s3 ≡ s1 + s0 mod 2

s4 ≡ s2 + s1 mod 2

s5 ≡ s3 + s2 mod 2

...

In general, the output bit is computed as:

si+3 ≡ si+1 + si mod 2

where i = 0,1,2, . . .
⋄

This was, of course, a simple example. However, we could already observe many

important properties. We will now look at general LFSRs.

2.3 Shift Register-Based Stream Ciphers 43

A Mathematical Description of LFSRs

The general form of an LFSR of degree m is shown in Fig. 2.7. It shows m flip-flops

and m possible feedback locations, all combined by the XOR operation. Whether a

feedback path is active or not, is defined by the feedback coefficient p0, p1, . . . , pm−1:

� If pi = 1 (closed switch), the feedback is active.

� If pi = 0 (open switch), the corresponding flip-flop output is not used for the

feedback.

With this notation, we obtain an elegant mathematical description for the feedback

path. If we multiply the output of flip-flop i by its coefficient pi, the result is either

the output value if pi = 1, which corresponds to a closed switch, or the value zero if

pi = 0, which corresponds to an open switch. The values of the feedback coefficients

are crucial for the output sequence produced by the LFSR.

Fig. 2.7 General LFSR with feedback coefficients pi and initial values sm−1, . . . ,s0

Let’s assume the LFSR is initially loaded with the values s0, . . . ,sm−1. The next

output bit of the LFSR sm, which is also the input to the leftmost flip-flop, can be

computed by the XOR-sum of the products of flip-flop outputs and corresponding

feedback coefficient:

sm ≡ sm−1 pm−1 + · · ·+ s1 p1 + s0 p0 mod 2

The next LFSR output can be computed as:

sm+1 ≡ sm pm−1 + · · ·+ s2 p1 + s1 p0 mod 2

In general, the output sequence can be described as:

si+m ≡
m−1

∑
j=0

p j · si+ j mod 2; si, p j ∈ {0,1}; i = 0,1,2, . . . (2.1)

Clearly, the output values are given through a combination of some previous output

values. LFSRs are sometimes referred to as linear recurrences.

44 2 Stream Ciphers

Due to the finite number of recurring states, the output sequence of an LFSR re-

peats periodically. This was also illustrated in Example 2.3. Moreover, an LFSR can

produce output sequences of different lengths, depending on the feedback coeffi-

cients. The following theorem gives us the maximum length of an LFSR as function

of its degree.

Theorem 2.3.1 The maximum sequence length generated by an

LFSR of degree m is 2m −1.

It is easy to show that this theorem holds. The state of an LFSR is uniquely deter-

mined by the m internal register bits. Given a certain state, the LFSR deterministi-

cally assumes its next state. Because of this, as soon as an LFSR assumes a previous

state, it starts to repeat. Since an m-bit state vector can only assume 2m −1 nonzero

states, the maximum sequence length before repetition is 2m − 1. Note that the all-

zero state must be excluded. If an LFSR assumes this state, it will get “stuck” in

it, i.e., it will never be able to leave it again. Note that only certain configurations

(p0, . . . , pm−1) yield maximum length LFSRs. We give a small example for this be-

low.

Example 2.4. LFSR with maximum-length output sequence

Given an LFSR of degree m = 4 and the feedback path (p3 = 0, p2 = 0, p1 =
1, p0 = 1), the output sequence of the LFSR has a period of 2m − 1 = 15, i.e., it

is a maximum-length LFSR.

⋄

Example 2.5. LFSR with non-maximum output sequence

Given an LFSR of degree m = 4 and (p3 = 1, p2 = 1, p1 = 1, p0 = 1), then the output

sequence has period of 5; therefore, it is not a maximum-length LFSR. ⋄

The mathematical background of the properties of LFSR sequences is beyond

the scope of this book. However, we conclude this introduction to LFSRs with some

additional facts. LFSRs are often specified by polynomials using the following no-

tation: An LFSR with a feedback coefficient vector (pm−1, . . . , p1, p0) is represented

by the polynomial

P(x) = xm + pm−1xm−1 + . . .+ p1x+ p0

For instance, the LFSR from the example above with coefficients (p3 = 0, p2 =
0, p1 = 1, p0 = 1) can alternatively be specified by the polynomial x4 + x + 1.

This seemingly odd notation as a polynomial has several advantages. For instance,

maximum-length LFSRs have what is called primitive polynomials. Primitive poly-

nomials are a special type of irreducible polynomial. Irreducible polynomials are

roughly comparable with prime numbers, i.e., their only factors are 1 and the

polynomial itself. Primitive polynomials can relatively easily be computed. Hence,

maximum-length LFSRs can easily be found. Table 2.3 shows one primitive poly-

nomial for every value of m in the range from m = 2,3, . . . ,128. As an example,

2.3 Shift Register-Based Stream Ciphers 45

the notation (0,2,5) refers to the polynomial 1 + x2 + x5. Note that there are many

primitive polynomials for every given degree m. For instance, there exist 69,273,666

different primitive polynomials of degree m = 31.

Table 2.3 Primitive polynomials for maximum-length LFSRs

(0,1,2) (0,1,3,4,24) (0,1,46) (0,1,5,7,68) (0,2,3,5,90) (0,3,4,5,112)
(0,1,3) (0,3,25) (0,5,47) (0,2,5,6,69) (0,1,5,8,91) (0,2,3,5,113)
(0,1,4) (0,1,3,4,26) (0,2,3,5,48) (0,1,3,5,70) (0,2,5,6,92) (0,2,3,5,114)
(0,2,5) (0,1,2,5,27) (0,4,5,6,49) (0,1,3,5,71) (0,2,93) (0,5,7,8,115)
(0,1,6) (0,1,28) (0,2,3,4,50) (0,3,9,10,72) (0,1,5,6,94) (0,1,2,4,116)
(0,1,7) (0,2,29) (0,1,3,6,51) (0,2,3,4,73) (0,11,95) (0,1,2,5,117)
(0,1,3,4,8) (0,1,30) (0,3,52) (0,1,2,6,74) (0,6,9,10,96) (0,2,5,6,118)
(0,1,9) (0,3,31) (0,1,2,6,53) (0,1,3,6,75) (0,6,97) (0,8,119)
(0,3,10) (0,2,3,7,32) (0,3,6,8,54) (0,2,4,5,76) (0,3,4,7,98) (0,1,3,4,120)
(0,2,11) (0,1,3,6,33) (0,1,2,6,55) (0,2,5,6,77) (0,1,3,6,99) (0,1,5,8,121)
(0,3,12) (0,1,3,4,34) (0,2,4,7,56) (0,1,2,7,78) (0,2,5,6,100) (0,1,2,6,122)
(0,1,3,4,13) (0,2,35) (0,4,57) (0,2,3,4,79) (0,1,6,7,101) (0,2,123)
(0,5,14) (0,2,4,5,36) (0,1,5,6,58) (0,2,4,9,80) (0,3,5,6,102) (0,37,124)
(0,1,15) (0,1,4,6,37) (0,2,4,7,59) (0,4,81) (0,9,103) (0,5,6,7,125)
(0,1,3,5,16) (0,1,5,6,38) (0,1,60) (0,4,6,9,82) (0,1,3,4,104) (0,2,4,7,126)
(0,3,17) (0,4,39) (0,1,2,5,61) (0,2,4,7,83) (0,4,105) (0,1,127)
(0,3,18) (0,3,4,5,40) (0,3,5,6,62) (0,5,84) (0,1,5,6,106) (0,1,2,7,128)
(0,1,2,5,19) (0,3,41) (0,1,63) (0,1,2,8,85) (0,4,7,9,107)
(0,3,20) (0,1,2,5,42) (0,1,3,4,64) (0,2,5,6,86) (0,1,4,6,108)
(0,2,21) (0,3,4,6,43) (0,1,3,4,65) (0,1,5,7,87) (0,2,4,5,109)
(0,1,22) (0,5,44) (0,3,66) (0,8,9,11,88) (0,1,4,6,110)
(0,5,23) (0,1,3,4,45) (0,1,2,5,67) (0,3,5,6,89) (0,2,4,7,111)

2.3.2 Known-Plaintext Attack Against Single LFSRs

As indicated by its name, LFSRs are linear. Linear systems are governed by linear

relationships between their inputs and outputs. Since linear dependencies can rela-

tively easily be analyzed, this can be a major advantage, e.g., in communication sys-

tems. However, a cryptosystem where the key bits only occur in linear relationships

makes a highly insecure cipher. We will now investigate how the linear behavior of

a LFSR leads to a powerful attack.

If we use an LFSR as a stream cipher, the secret key k is the feedback coefficient

vector (pm−1, . . . , p1, p0). An attack is possible if the attacker Oscar knows some

plaintext and the corresponding ciphertext. We further assume that Oscar knows the

degree m of the LFSR. The attack is so efficient that he can easily try a large num-

ber of possible m values, so that this assumption is not a major restriction. Let the

known plaintext be given by x0,x1, . . . ,x2m−1 and the corresponding ciphertext by

y0,y1, . . . ,y2m−1. With these 2m pairs of plaintext and ciphertext bits, Oscar recon-

structs the first 2m key stream bits:

si ≡ xi + yi mod 2; i = 0,1, . . . ,2m−1.

The goal is now to find the key which is given by the feedback coefficients pi.

46 2 Stream Ciphers

Eq. (2.1) is a description of the relationship of the unknown key bits pi and the

key stream output. We repeat the equation here for convenience:

si+m ≡
m−1

∑
j=0

p j · si+ j mod 2; si, p j ∈ {0,1}; i = 0,1,2, . . .

Note that we get a different equation for every value of i. Moreover, the equations

are linearly independent. With this knowledge, Oscar can generate m equations for

the first m values of i:

i = 0, sm ≡ pm−1sm−1 + . . .+ p1s1 + p0s0 mod 2

i = 1, sm+1 ≡ pm−1sm + . . .+ p1s2 + p0s1 mod 2
...

...
...

...
...

i = m−1, s2m−1 ≡ pm−1s2m−2 + . . .+ p1sm + p0sm−1 mod 2

(2.2)

He has now m linear equations in m unknowns p0, p1, . . . , pm−1. This system can

easily be solved by Oscar using Gaussian elimination, matrix inversion or any other

algorithm for solving systems of linear equations. Even for large values of m, this

can be done easily with a standard PC.

This situation has major consequences: as soon as Oscar knows 2m output bits

of an LFSR of degree m, the pi coefficients can exactly be constructed by merely

solving a system of linear equations. Once he has computed these feedback coef-

ficients, he can “build” the LFSR and load it with any m consecutive output bits

that he already knows. Oscar can now clock the LFSR and produce the entire output

sequence. Because of this powerful attack, LFSRs by themselves are extremely inse-

cure! They are a good example of a PRNG with good statistical properties but with

terrible cryptographical ones. Nevertheless, all is not lost. There are many stream

ciphers which use combinations of several LFSRs to build strong cryptosystems.

The cipher Trivium in the next section is an example.

2.3.3 Trivium

Trivium is a relatively new stream cipher which uses an 80-bit key. It is based on a

combination of three shift registers. Even though these are feedback shift registers,

there are nonlinear components used to derive the output of each register, unlike the

LFSRs that we studied in the previous section.

Description of Trivium

As shown in Fig. 2.8, at the heart of Trivium are three shift registers, A, B and C.

The lengths of the registers are 93, 84 and 111, respectively. The XOR-sum of all

three register outputs forms the key stream si. A specific feature of the cipher is that

2.3 Shift Register-Based Stream Ciphers 47

Fig. 2.8 Internal structure of the stream cipher Trivium

the output of each register is connected to the input of another register. Thus, the

registers are arranged in circle-like fashion. The cipher can be viewed as consisting

of one circular register with a total length of 93+84+111 = 288. Each of the three

registers has similar structure as described below.

The input of each register is computed as the XOR-sum of two bits:

� The output bit of another register according to Fig. 2.8. For instance, the output

of register A is part of the input of register B.

� One register bit at a specific location is fed back to the input. The positions are

given in Table 2.4. For instance, bit 69 of register A is fed back to its input.

The output of each register is computed as the XOR-sum of three bits:

� The rightmost register bit.

� One register bit at a specific location is fed forward to the output. The positions

are given in Table 2.4. For instance, bit 66 of register A is fed to its output.

� The output of a logical AND function whose input is two specific register bits.

Again, the positions of the AND gate inputs are given in Table 2.4.

Table 2.4 Specification of Trivium

register length feedback bit feedforward bit AND inputs

A 93 69 66 91, 92
B 84 78 69 82, 83
C 111 87 66 109, 110

Note that the AND operation is equal to multiplication in modulo 2 arithmetic.

If we multiply two unknowns, and the register contents are the unknowns that an at-

tacker wants to recover, the resulting equations are no longer linear as they contain

products of two unknowns. Thus, the feedforward paths involving the AND opera-

tion are crucial for the security of Trivium as they prevent attacks that exploit the

48 2 Stream Ciphers

linearity of the cipher, as the one applicable to plain LFSRs shown in the previous

section.

Encryption with Trivium

Almost all modern stream ciphers have two input parameters: a key k and an ini-

tialization vector IV . The former is the regular key that is used in every symmetric

crypto system. The IV serves as a randomizer and should take a new value for every

encryption session. It is important to note that the IV does not have to be kept secret,

it merely must change for every session. Such values are often referred to as nonces,

which stands for “number used once”. Its main purpose is that two key streams pro-

duced by the cipher should be different, even though the key has not changed. If this

were not the case, the following attack becomes possible. If an attacker has known

plaintext from a first encryption, he can compute the corresponding key stream. The

second encryption using the same key stream can now immediately be deciphered.

Without a changing IV, stream cipher encryption is highly deterministic. Methods

for generating IVs are discussed in Sect. 5.1.2. Let’s look at the details of running

Trivium:

Initialization Initially, an 80-bit IV is loaded into the 80 leftmost locations of reg-

ister A, and an 80-bit key is loaded in the 80 leftmost locations of register B. All

other register bits are set to zero with the exception of the three rightmost bits of

register C, i.e., bits c109, c110 and c111, which are set to 1.

Warm-up Phase In the first phase, the cipher is clocked 4×288 = 1152 times. No

cipher output is generated.

Encryption Phase The bits produced hereafter, i.e., starting with the output bit of

cycle 1153, form the key stream.

The warm-up phase is needed for randomizing the cipher sufficiently. It makes

sure that the key stream depends on both the key k and the IV .

An attractive feature of Trivium is its compactness, especially if implemented

in hardware. It mainly consists of a 288-bit shift register and a few Boolean oper-

ations. It is estimated that a hardware implementation of the cipher occupies and

area of between about 3500 and 5500 gate equivalences, depending on the degree

of parallelization. (A gate equivalence is the chip area occupied by a 2-input NAND

gate.) For instance, an implementation with 4000 gates computes the key stream at

a rate of 16 bits/clock cycle. This is considerably smaller than most block ciphers

such as AES and is very fast. If we assume that this hardware design is clocked at a

moderate 125 MHz, the encryption rate would be 16bit×125MHz = 2 Gbit/sec. In

software, it is estimated that computing 8 output bits takes 12 cycles on a 1.5 GHz

Intel CPU, resulting in a theoretical encryption rate of 1 Gbit/sec.

Even though there are no known attacks at the time of writing, one should keep

in mind that Trivium is a relatively new cipher and attacks in the future are certainly

2.4 Discussion and Further Reading 49

a possibility. In the past, many other stream ciphers were found to be not secure.

More information on Trivium can be found in [164].

2.4 Discussion and Further Reading

Established Stream Ciphers Even though many stream ciphers have been pro-

posed over the years, there are considerably fewer well-investigated ones. The se-

curity of many proposed stream ciphers is unknown, and many stream ciphers have

been broken. In the case of software-oriented stream ciphers, arguably the best-

investigated ones are RC4 [144] and SEAL [120, Sect. 6.4.1]. Note that there are

some known weaknesses in RC4, even though it is still secure in practice if it is used

correctly [142]. The SEAL cipher, on the other hand, is patented.

In the case of hardware-oriented ciphers, there is a wealth of LFSR-based al-

gorithms. Many proposed ciphers have been broken; see references [8, 85] for an

introduction. Among the best-studied ones are the A5/1 and A5/2 algorithms which

are used in GSM mobile networks for voice encryption between cell phones and

base stations. A5/1, which is the cipher used in most industrialized nations, had

originally been kept secret but was reverse-engineered and published on the Internet

in 1998. The cipher is borderline secure today [22], whereas the weaker A5/2 has

much more serious flaws [11]. Neither of the two ciphers is recommended based on

today’s understanding of cryptanalysis. For 3GPP mobile communication, a differ-

ent cipher A5/3 (also named KASUMI) is used, but it is a block cipher.

This somewhat pessimistic outlook on the state-of-the-art in stream ciphers

changed with the eSTREAM project, described below.

eSTREAM Project The eSTREAM project had the explicit goal to advance the

state-of-the-art knowledge about stream cipher design. As part of this objective,

new stream ciphers that might become suitable for widespread adoption were in-

vestigated. eSTREAM was organized by the European Network of Excellence in

Cryptography (ECRYPT). The call for stream ciphers was first issued in November

2004 and ended in 2008. The ciphers were divided into two “profiles”, depending

on the intended application:

� Profile 1: Stream ciphers for software applications with high throughput require-

ments.

� Profile 2: Stream ciphers for hardware applications with restricted resources such

as limited storage, gate count, or power consumption.

Some cryptographers had emphasized the importance of including an authentication

method, and hence two further profiles were also included to deal with ciphers that

also provide authentication.

A total of 34 candidates were submitted to eSTREAM. At the end of the project

four software-oriented (“Profile 1”) ciphers were found to have desirable properties:

HC-128, Rabbit, Salsa20/12 and SOSEMANUK. With respect to hardware-oriented

ciphers (“Profile 2”), the following three ciphers were selected: Grain v1, MICKEY

50 2 Stream Ciphers

v2 and Trivium. Note that all of these are relatively new ciphers and only time

will tell whether they are really cryptographically strong. The algorithm descrip-

tion, source code and the results of the four-year evaluation process are available

online [69], and the official book provides more detailed information [146].

It is important to keep in mind that ECRYPT is not a standardization body, so the

status of the eSTREAM finalist ciphers cannot be compared to that of AES at the

end of its selection process (cf. Sect. 4.1).

True Random Number Generation We introduced in this chapter different classes

of RNGs, and found that cryptographically secure pseudorandom number genera-

tors are of central importance for stream ciphers. For other cryptographic appli-

cations, true random number generators are important. For instance, true random

numbers are needed for the generation of cryptographic keys which are then to be

distributed. Many ciphers and modes of operation rely on initial values that are of-

ten generated from TRNGs. Also, many protocols require nonces (numbers used

only once), which may stem from a TRNG. All TRNGs need to exploit some en-

tropy source, i.e., some process which behaves truly randomly. Many TRNG designs

have been proposed over the years. They can coarsely be classified as approaches

that use specially designed hardware as an entropy source or as TRNGs that exploit

external sources of randomness. Examples of the former are circuits with random

behavior, e.g., that are based on semiconductor noise or on several uncorrelated os-

cillators. Reference [104, Chap. 5] contains a good survey. Examples of the latter

ones are computer systems which measure the times between key strokes or the

arrival times of packets at a network interface. In all these cases, one has to be ex-

tremely careful to make sure that the noise source in fact has enough entropy. There

are many examples of TRNG designs which turned out to have poor random behav-

ior and which constitute a serious security weakness, depending on how they are

used. There are tools available that test the statistical properties of TRNG output

sequences [56, 125]. There are also standards with which TRNGs can be formally

evaluated [80].

2.5 Lessons Learned

� Stream ciphers are less popular than block ciphers in most domains such as Inter-

net security. There are exceptions, for instance, the popular stream cipher RC4.

� Stream ciphers sometimes require fewer resources, e.g., code size or chip area,

for implementation than block ciphers, and they are attractive for use in con-

strained environments such as cell phones.

� The requirements for a cryptographically secure pseudorandom number gener-

ator are far more demanding than the requirements for pseudorandom number

generators used in other applications such as testing or simulation.

2.5 Lessons Learned 51

� The One-Time Pad is a provable secure symmetric cipher. However, it is highly

impractical for most applications because the key length has to equal the message

length.

� Single LFSRs make poor stream ciphers despite their good statistical properties.

However, careful combinations of several LFSR can yield strong ciphers.

52 2 Stream Ciphers

Problems

2.1. The stream cipher described in Definition 2.1.1 can easily be generalized to

work in alphabets other than the binary one. For manual encryption, an especially

useful one is a stream cipher that operates on letters.

1. Develop a scheme which operates with the letters A, B,. . ., Z, represented by the

numbers 0,1,. . .,25. What does the key (stream) look like? What are the encryp-

tion and decryption functions?

2. Decrypt the following cipher text:

bsaspp kkuosp

which was encrypted using the key:

rsidpy dkawoa

3. How was the young man murdered?

2.2. Assume we store a one-time key on a CD-ROM with a capacity of 1 Gbyte.

Discuss the real-life implications of a One-Time-Pad (OTP) system. Address issues

such as life cycle of the key, storage of the key during the life cycle/after the life

cycle, key distribution, generation of the key, etc.

2.3. Assume an OTP-like encryption with a short key of 128 bit. This key is then

being used periodically to encrypt large volumes of data. Describe how an attack

works that breaks this scheme.

2.4. At first glance it seems as though an exhaustive key search is possible against

an OTP system. Given is a short message, let’s say 5 ASCII characters represented

by 40 bit, which was encrypted using a 40-bit OTP. Explain exactly why an exhaus-

tive key search will not succeed even though sufficient computational resources are

available. This is a paradox since we know that the OTP is unconditionally secure.

That is, explain why a brute-force attack does not work.

Note: You have to resolve the paradox! That means answers such as “The OTP

is unconditionally secure and therefore a brute-force attack does not work” are not

valid.

2.5. We will now analyze a pseudorandom number sequence generated by a LFSR

characterized by (c2 = 1,c1 = 0,c0 = 1).

1. What is the sequence generated from the initialization vector (s2 = 1,s1 = 0,s0 =
0)?

2. What is the sequence generated from the initialization vector (s2 = 0,s1 = 1,s0 =
1)?

3. How are the two sequences related?

2.6. Assume we have a stream cipher whose period is quite short. We happen to

know that the period is 150–200 bit in length. We assume that we do not know

anything else about the internals of the stream cipher. In particular, we should not

assume that it is a simple LFSR. For simplicity, assume that English text in ASCII

format is being encrypted.

2.5 Problems 53

Describe in detail how such a cipher can be attacked. Specify exactly what Oscar

has to know in terms of plaintext/ciphertext, and how he can decrypt all ciphertext.

2.7. Compute the first two output bytes of the LFSR of degree 8 and the feedback

polynomial from Table 2.3 where the initialization vector has the value FF in hex-

adecimal notation.

2.8. In this problem we will study LFSRs in somewhat more detail. LFSRs come in

three flavors:

� LFSRs which generate a maximum-length sequence. These LFSRs are based on

primitive polynomials.

� LFSRs which do not generate a maximum-length sequence but whose sequence

length is independent of the initial value of the register. These LFSRs are based

on irreducible polynomials that are not primitive. Note that all primitive polyno-

mials are also irreducible.

� LFSRs which do not generate a maximum-length sequence and whose sequence

length depends on the initial values of the register. These LFSRs are based on

reducible polynomials.

We will study examples in the following. Determine all sequences generated by

1. x4 + x+1

2. x4 + x2 +1

3. x4 + x3 + x2 + x+1

Draw the corresponding LFSR for each of the three polynomials. Which of the

polynomials is primitive, which is only irreducible, and which one is reducible?

Note that the lengths of all sequences generated by each of the LFSRs should add

up to 2m −1.

2.9. Given is a stream cipher which uses a single LFSR as key stream generator. The

LFSR has a degree of 256.

1. How many plaintext/ciphertext bit pairs are needed to launch a successful attack?

2. Describe all steps of the attack in detail and develop the formulae that need to be

solved.

3. What is the key in this system? Why doesn’t it make sense to use the initial

contents of the LFSR as the key or as part of the key?

2.10. We conduct a known-plaintext attack on an LFSR-based stream cipher. We

know that the plaintext sent was:

1001 0010 0110 1101 1001 0010 0110

By tapping the channel we observe the following stream:

1011 1100 0011 0001 0010 1011 0001

1. What is the degree m of the key stream generator?

2. What is the initialization vector?

3. Determine the feedback coefficients of the LFSR.

54 2 Stream Ciphers

4. Draw a circuit diagram and verify the output sequence of the LFSR.

2.11. We want to perform an attack on another LFSR-based stream cipher. In order

to process letters, each of the 26 uppercase letters and the numbers 0, 1, 2, 3, 4, 5

are represented by a 5-bit vector according to the following mapping:

A ↔ 0 = 000002

...

Z ↔ 25 = 110012

0 ↔ 26 = 110102

...

5 ↔ 31 = 111112

We happen to know the following facts about the system:

� The degree of the LFSR is m = 6.

� Every message starts with the header WPI.

We observe now on the channel the following message (the fourth letter is a

zero):

j5a0edj2b

1. What is the initialization vector?

2. What are the feedback coefficients of the LFSR?

3. Write a program in your favorite programming language which generates the

whole sequence, and find the whole plaintext.

4. Where does the thing after WPI live?

5. What type of attack did we perform?

2.12. Assume the IV and the key of Trivium each consist of 80 all-zero bits. Com-

pute the first 70 bits s1, . . . ,s70 during the warm-up phase of Trivium. Note that

these are only internal bits which are not used for encryption since the warm-up

phase lasts for 1152 clock cycles.

Chapter 3

The Data Encryption Standard (DES) and
Alternatives

The Data Encryption Standard (DES) has been by far the most popular block ci-

pher for most of the last 30 years. Even though it is nowadays not considered secure

against a determined attacker because the DES key space is too small, it is still

used in legacy applications. Furthermore, encrypting data three times in a row with

DES — a process referred to as 3DES or triple DES — yields a very secure cipher

which is still widely used today (Section 3.5 deals with 3DES.) Perhaps what is

more important, since DES is by far the best-studied symmetric algorithm, its de-

sign principles have inspired many current ciphers. Hence, studying DES helps us

to understand many other symmetric algorithms.

In this chapter you will learn:

� The design process of DES, which is very helpful for understanding the technical

and political evolution of modern cryptography

� Basic design ideas of block ciphers, including confusion and diffusion, which are

important properties of all modern block ciphers

� The internal structure of DES, including Feistel networks, S-boxes and the key

schedule

� Security analysis of DES

� Alternatives to DES, including 3DES

55

56 3 The Data Encryption Standard (DES) and Alternatives

3.1 Introduction to DES

In 1972 a mildly revolutionary act was performed by the US National Bureau of

Standards (NBS), which is now called National Institute of Standards and Tech-

nology (NIST): the NBS initiated a request for proposals for a standardized cipher

in the USA. The idea was to find a single secure cryptographic algorithm which

could be used for a variety of applications. Up to this point in time governments had

always considered cryptography, and in particular cryptanalysis, so crucial for na-

tional security that it had to be kept secret. However, by the early 1970s the demand

for encryption for commercial applications such as banking had become so pressing

that it could not be ignored without economic consequences.

The NBS received the most promising candidate in 1974 from a team of cryp-

tographers working at IBM. The algorithm IBM submitted was based on the cipher

Lucifer. Lucifer was a family of ciphers developed by Horst Feistel in the late 1960s,

and was one of the first instances of block ciphers operating on digital data. Lucifer

is a Feistel cipher which encrypts blocks of 64 bits using a key size of 128 bits.

In order to investigate the security of the submitted ciphers, the NBS requested the

help of the National Security Agency (NSA), which did not even admit its existence

at that point in time. It seems certain that the NSA influenced changes to the cipher,

which was rechristened DES. One of the changes that occurred was that DES is

specifically designed to withstand differential cryptanalysis, an attack not known to

the public until 1990. It is not clear whether the IBM team developed the knowl-

edge about differential cryptanalysis by themselves or whether they were guided by

the NSA. Allegedly, the NSA also convinced IBM to reduce the Lucifer key length

of 128 bit to 56 bit, which made the cipher much more vulnerable to brute-force

attacks.

The NSA involvement worried some people because it was feared that a secret

trapdoor, i.e., a mathematical property with which DES could be broken but which is

only known to NSA, might have been the real reason for the modifications. Another

major complaint was the reduction of the key size. Some people conjectured that

the NSA would be able to search through a key space of 256, thus breaking it by

brute-force. In later decades, most of these concerns turned out to be unfounded.

Section 3.5 provides more information about real and perceived security weaknesses

of DES.

Despite of all the criticism and concerns, in 1977 the NBS finally released all

specifications of the modified IBM cipher as the Data Encryption Standard (FIPS

PUB 46) to the public. Even though the cipher is described down to the bit level in

the standard, the motivation for parts of the DES design (the so-called design crite-

ria), especially the choice of the substitution boxes, were never officially released.

With the rapid increase in personal computers in the early 1980s and all specifica-

tions of DES being publicly available, it become easier to analyze the inner structure

of the cipher. During this period, the civilian cryptography research community also

grew and DES underwent major scrutiny. However, no serious weaknesses were

found until 1990. Originally, DES was only standardized for 10 years, until 1987.

Due to the wide use of DES and the lack of security weaknesses, the NIST reaf-

3.1 Introduction to DES 57

firmed the federal use of the cipher until 1999, when it was finally replaced by the

Advanced Encryption Standard (AES).

3.1.1 Confusion and Diffusion

Before we start with the details of DES, it is instructive to look at primitive op-

erations which can be applied in order to achieve strong encryption. According to

the famous information theorist Claude Shannon, there are two primitive operations

with which strong encryption algorithms can be built:

1. Confusion is an encryption operation where the relationship between key and

ciphertext is obscured. Today, a common element for achieving confusion is sub-

stitution, which is found in both DES and AES.

2. Diffusion is an encryption operation where the influence of one plaintext symbol

is spread over many ciphertext symbols with the goal of hiding statistical proper-

ties of the plaintext. A simple diffusion element is the bit permutation, which is

used frequently within DES. AES uses the more advanced Mixcolumn operation.

Ciphers which only perform confusion, such as the Shift Cipher (cf. Sect. 1.4.3)

or the World War II encryption machine Enigma, are not secure. Neither are ci-

phers which only perform diffusion. However, through the concatenation of such

operations, a strong cipher can be built. The idea of concatenating several encryp-

tion operation was also proposed by Shannon. Such ciphers are known as product

ciphers. All of today’s block ciphers are product ciphers as they consist of rounds

which are applied repeatedly to the data (Fig. 3.1).

Fig. 3.1 Principle of an N round product cipher, where each round performs a confusion and
diffusion operation

Modern block ciphers possess excellent diffusion properties. On a cipher level

this means that changing of one bit of plaintext results on average in the change of

58 3 The Data Encryption Standard (DES) and Alternatives

half the output bits, i.e., the second ciphertext looks statistically independent of the

first one. This is an important property to keep in mind when dealing with block

ciphers. We demonstrate this behavior with the following simple example.

Example 3.1. Let’s assume a small block cipher with a block length of 8 bits. En-

cryption of two plaintexts x1 and x2, which differ only by one bit, should roughly

result in something as shown in Fig. 3.2.

Block Cipher
= 0110 11002

y = 1011 10011

x = 0000 10112

x = 0010 10111

y

Fig. 3.2 Principle of diffusion of a block cipher

Note that modern block ciphers have block lengths of 64 or 128 bit but they show

exactly the same behavior if one input bit is flipped.

⋄

3.2 Overview of the DES Algorithm

DES is a cipher which encrypts blocks of length of 64 bits with a key of size of 56

bits (Fig. 3.3).

64

64

k
56

x

y

DES

Fig. 3.3 DES block cipher

DES is a symmetric cipher, i.e., the same same key is used for encryption and

decryption. DES is, like virtually all modern block ciphers, an iterative algorithm.

For each block of plaintext, encryption is handled in 16 rounds which all perform

the identical operation. Figure 3.4 shows the round structure of DES. In every round

a different subkey is used and all subkeys ki are derived from the main key k.

Let’s now have a more detailed view on the internals of DES, as shown in

Fig. 3.5.The structure in the figure is called a Feistel network. It can lead to very

strong ciphers if carefully designed. Feistel networks are used in many, but cer-

tainly not in all, modern block ciphers. (In fact, AES is not a Feistel cipher.) In

addition to its potential cryptographic strength, one advantage of Feistel networks is

that encryption and decryption are almost the same operation. Decryption requires

3.2 Overview of the DES Algorithm 59

Permutation
Initial

Permutation
Final

Round 16
Encryption

Round 1
Encryption

y

x

k
1

k
16

k

Fig. 3.4 Iterative structure of DES

only a reversed key schedule, which is an advantage in software and hardware im-

plementations. We discuss the Feistel network in the following.

After the initial bitwise permutation IP of a 64-bit plaintext x, the plaintext is

split into two halves L0 and R0. These two 32-bit halves are the input to the Feistel

network, which consists of 16 rounds. The right half Ri is fed into the function

f . The output of the f function is XORed (as usually denoted by the symbol ⊕)

with the left 32-bit half Li. Finally, the right and left half are swapped. This process

repeats in the next round and can be expressed as:

Li = Ri−1,

Ri = Li−1 ⊕ f (Ri−1,ki)

where i= 1,. . . ,16. After round 16, the 32-bit halves L16 and R16 are swapped again,

and the final permutation IP−1 is the last operation of DES. As the notation suggests,

the final permutation IP−1 is the inverse of the initial permutation IP. In each round,

a round key ki is derived from the main 56-bit key using what is called the key

schedule.

It is crucial to note that the Feistel structure really only encrypts (decrypts) half

of the input bits per each round, namely the left half of the input. The right half

is copied to the next round unchanged. In particular, the right half is not encrypted

with the f function. In order to get a better understanding of the working of Feistel

cipher, the following interpretation is helpful: Think of the f function as a pseu-

dorandom generator with the two input parameters Ri−1 and ki. The output of the

pseudorandom generator is then used to encrypt the left half Li−1 with an XOR op-

eration. As we saw in Chap. 2, if the output of the f function is not predictable for

an attacker, this results in a strong encryption method.

60 3 The Data Encryption Standard (DES) and Alternatives

64

k xDES ()y =

Round 1

56

56

16k

48

1k

48

1R1L

Plaintext x

IP(x)

Initial Permutation

16R16L

15R15L

0R0L

.
.

.

.
.

.

.
.

.

.
.

.

Ciphertext

IP ()

Transform 16

Transform 1

PC−1

Key k

Round 16

−1

Final Permutation

32

32

3232

f

32

32

3232

f

64

Fig. 3.5 The Feistel structure of DES

The two aforementioned basic properties of ciphers, i.e., confusion and diffusion,

are realized within the f -function. In order to thwart advanced analytical attacks,

the f -function must be designed extremely carefully. Once the f -function has been

designed securely, the security of a Feistel cipher increases with the number of key

bits used and the number of rounds.

Before we discuss all components of DES in detail, here is an algebraic descrip-

tion of the Feistel network for the mathematically inclined reader. The Feistel struc-

ture of each round bijectively maps a block of 64 input bits to 64 output bits (i.e.,

every possible input is mapped uniquely to exactly one output, and vice versa). This

mapping remains bijective for some arbitrary function f , i.e., even if the embedded

function f is not bijective itself. In the case of DES, the function f is in fact a sur-

3.3 Internal Structure of DES 61

jective (many-to-one) mapping. It uses nonlinear building blocks and maps 32 input

bits to 32 output bits using a 48-bit round key ki, with 1 ≤ i ≤ 16.

3.3 Internal Structure of DES

The structure of DES as depicted in Fig. 3.5 shows the internal functions which we

will discuss in this section. The building blocks are the initial and final permutation,

the actual DES rounds with its core, the f -function, and the key schedule.

3.3.1 Initial and Final Permutation

As shown in Figs. 3.6 and 3.7, the initial permutation IP and the final permuta-

tion IP−1 are bitwise permutations. A bitwise permutation can be viewed as simple

crosswiring. Interestingly, permutations can be very easily implemented in hardware

but are not particularly fast in software. Note that both permutations do not increase

the security of DES at all. The exact rationale for the existence of these two permu-

tations is not known, but it seems likely that their original purpose was to arrange

the plaintext, ciphertext and bits in a bytewise manner to make data fetches easier

for 8-bit data busses, which were the state-of-the-art register size in the early 1970s.

.

.

21

1 50

IP(x)

x

6458

40

Fig. 3.6 Examples for the bit swaps of the initial permutation

−1

64

. . .

5850

. . .

. . .

1

21 40

. . .

. . . IP (z)

z

Fig. 3.7 Examples for the bit swaps of the final permutation

The details of the transformation IP are given in Table 3.1. This table, like all

other tables in this chapter, should be read from left to right, top to bottom. The table

indicates that input bit 58 is mapped to output position 1, input bit 50 is mapped to

62 3 The Data Encryption Standard (DES) and Alternatives

the second output position, and so forth. The final permutation IP−1 performs the

inverse operation of IP as shown in Table 3.2.

Table 3.1 Initial permutation IP

IP

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 3.2 Final permutation IP−1

IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

3.3.2 The f -Function

As mentioned earlier, the f -function plays a crucial role for the security of DES.

In round i it takes the right half Ri−1 of the output of the previous round and the

current round key ki as input. The output of the f -function is used as an XOR-mask

for encrypting the left half input bits Li−1.

Permutation

Expansion

i−1E(R)

R i−1

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

6

4 4 4 4 4 4 4 4

32

32

k i

32

48

48

48

6 6 66 6 6 6

P

Fig. 3.8 Block diagram of the f -function

3.3 Internal Structure of DES 63

The structure of the f -function is shown in Fig. 3.8. First, the 32-bit input is ex-

panded to 48 bits by partitioning the input into eight 4-bit blocks and by expanding

each block to 6 bits. This happens in the E-box, which is a special type of permuta-

tion. The first block consists of the bits (1,2,3,4), the second one of (5,6,7,8), etc.

The expansion to six bits can be seen in Fig. 3.9.

48

2 3 5 326

3 4 5 8 9 1110 47

1 4 7 8 9

142

. . .

. . .1 6 7 12 13

Fig. 3.9 Examples for the bit swaps of the expansion function E

As can be seen from the Table 3.3, exactly 16 of the 32 input bits appear twice in

the output. However, an input bit never appears twice in the same 6-bit output block.

The expansion box increases the diffusion behavior of DES since certain input bits

influence two different output locations.

Table 3.3 Expansion permutation E

E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Next, the 48-bit result of the expansion is XORed with the round key ki, and

the eight 6-bit blocks are fed into eight different substition boxes, which are often

referred to as S-boxes. Each S-box is a lookup table that maps a 6-bit input to a

4-bit output. Larger tables would have been cryptographically better, but they also

become much larger; eight 4-by-6 tables were probably close the maximum size

which could be fit on a single integrated circuit in 1974. Each S-box contains 26 = 64

entries, which are typically represented by a table with 16 columns and 4 rows.

Each entry is a 4-bit value. All S-boxes are listed in Tables 3.4 to 3.11. Note that all

S-boxes are different. The tables are to be read as indicated in Fig. 3.10: the most

significant bit (MSB) and the least significant bit (LSB) of each 6-bit input select the

row of the table, while the four inner bits select the column. The integers 0,1,. . . ,15

of each entry in the table represent the decimal notation of a 4-bit value.

64 3 The Data Encryption Standard (DES) and Alternatives

Example 3.2. The S-box input b = (100101)2 indicates the row 112 = 3 (i.e., fourth

row, numbering starts with 002) and the column 00102 = 2 (i.e., the third column).

If the input b is fed into S-box 1, the output is S1(37 = 1001012) = 8 = 10002.

fourth row

1 0 0 1 0 1

11

0 0 1 0 third column

Fig. 3.10 Example of the decoding of the input 1001012 by S-box 1

⋄

Table 3.4 S-box S1

S1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 07
1 00 15 07 04 14 02 13 01 10 06 12 11 09 05 03 08
2 04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00
3 15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13

Table 3.5 S-box S2

S2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 01 08 14 06 11 03 04 09 07 02 13 12 00 05 10
1 03 13 04 07 15 02 08 14 12 00 01 10 06 09 11 05
2 00 14 07 11 10 04 13 01 05 08 12 06 09 03 02 15
3 13 08 10 01 03 15 04 02 11 06 07 12 00 05 14 09

Table 3.6 S-box S3

S3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 00 09 14 06 03 15 05 01 13 12 07 11 04 02 08
1 13 07 00 09 03 04 06 10 02 08 05 14 12 11 15 01
2 13 06 04 09 08 15 03 00 11 01 02 12 05 10 14 07
3 01 10 13 00 06 09 08 07 04 15 14 03 11 05 02 12

The S-boxes are the core of DES in terms of cryptographic strength. They are

the only nonlinear element in the algorithm and provide confusion. Even though the

entire specification of DES was released by NBS/NIST in 1977, the motivation for

the choice of the S-box tables was never completely revealed. This often gave rise

3.3 Internal Structure of DES 65

Table 3.7 S-box S4

S4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 07 13 14 03 00 06 09 10 01 02 08 05 11 12 04 15
1 13 08 11 05 06 15 00 03 04 07 02 12 01 10 14 09
2 10 06 09 00 12 11 07 13 15 01 03 14 05 02 08 04
3 03 15 00 06 10 01 13 08 09 04 05 11 12 07 02 14

Table 3.8 S-box S5

S5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 02 12 04 01 07 10 11 06 08 05 03 15 13 00 14 09
1 14 11 02 12 04 07 13 01 05 00 15 10 03 09 08 06
2 04 02 01 11 10 13 07 08 15 09 12 05 06 03 00 14
3 11 08 12 07 01 14 02 13 06 15 00 09 10 04 05 03

Table 3.9 S-box S6

S6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 01 10 15 09 02 06 08 00 13 03 04 14 07 05 11
1 10 15 04 02 07 12 09 05 06 01 13 14 00 11 03 08
2 09 14 15 05 02 08 12 03 07 00 04 10 01 13 11 06
3 04 03 02 12 09 05 15 10 11 14 01 07 06 00 08 13

Table 3.10 S-box S7

S7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 04 11 02 14 15 00 08 13 03 12 09 07 05 10 06 01
1 13 00 11 07 04 09 01 10 14 03 05 12 02 15 08 06
2 01 04 11 13 12 03 07 14 10 15 06 08 00 05 09 02
3 06 11 13 08 01 04 10 07 09 05 00 15 14 02 03 12

Table 3.11 S-box S8

S8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 02 08 04 06 15 11 01 10 09 03 14 05 00 12 07
1 01 15 13 08 10 03 07 04 12 05 06 11 00 14 09 02
2 07 11 04 01 09 12 14 02 00 06 10 13 15 03 05 08
3 02 01 14 07 04 10 08 13 15 12 09 00 03 05 06 11

to speculation, in particular with respect to the possible existence of a secret back

door or some other intentionally constructed weakness, which could be exploited by

the NSA. However, now we know that the S-boxes were designed according to the

criteria listed below.

1. Each S-box has six input bits and four output bits.

2. No single output bit should be too close to a linear combination of the input bits.

3. If the lowest and the highest bits of the input are fixed and the four middle bits

are varied, each of the possible 4-bit output values must occur exactly once.

4. If two inputs to an S-box differ in exactly one bit, their outputs must differ in at

least two bits.

66 3 The Data Encryption Standard (DES) and Alternatives

5. If two inputs to an S-box differ in the two middle bits, their outputs must differ

in at least two bits.

6. If two inputs to an S-box differ in their first two bits and are identical in their last

two bits, the two outputs must be different.

7. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs

of inputs exhibiting that difference may result in the same output difference.

8. A collision (zero output difference) at the 32-bit output of the eight S-boxes is

only possible for three adjacent S-boxes.

Note that some of these design criteria were not revealed until the 1990s. More

information about the issue of the secrecy of the design criteria is found in Sect. 3.5.

The S-boxes are the most crucial elements of DES because they introduce a non-

linearity to the cipher, i.e.,

S(a)⊕S(b) �= S(a⊕b).

Without a nonlinear building block, an attacker could express the DES input and

output with a system of linear equations where the key bits are the unknowns. Such

systems can easily be solved, a fact that was used in the LFSR attack in Sect. 2.3.2.

However, the S-boxes were carefully designed to also thwart advanced mathematical

attacks, in particular differential cryptanalysis. Interestingly, differential cryptanal-

ysis was first discovered in the research community in 1990. At this point, the IBM

team declared that the attack was known to the designers at least 16 years earlier,

and that DES was especially designed to withstand differential cryptanalysis.

Finally, the 32-bit output is permuted bitwise according to the P permutation,

which is given in Table 3.12. Unlike the initial permutation IP and its inverse IP−1,

the permutation P introduces diffusion because the four output bits of each S-box

are permuted in such a way that they affect several different S-boxes in the follow-

ing round. The diffusion caused by the expansion, S-boxes and the permutation P

guarantees that every bit at the end of the fifth round is a function of every plaintext

bit and every key bit. This behavior is known as the avalanche effect.

Table 3.12 The permutation P within the f -function

P

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

3.3 Internal Structure of DES 67

3.3.3 Key Schedule

The key schedule derives 16 round keys ki, each consisting of 48 bits, from the

original 56-bit key. Another term for round key is subkey. First, note that the DES

input key is often stated as 64-bit, where every eighth bit is used as an odd parity

bit over the preceding seven bits. It is not quite clear why DES was specified that

way. In any case, the eight parity bits are not actual key bits and do not increase the

security. DES is a 56-bit cipher, not a 64-bit one.

As shown in Fig. 3.11, the 64-bit key is first reduced to 56 bits by ignoring every

eighth bit, i.e., the parity bits are stripped in the initial PC−1 permutation. Again,

the parity bits certainly do not increase the key space! The name PC−1 stands for

“permuted choice one”. The exact bit connections that are realized by PC − 1 are

given in Table 3.13.

. . .

MSB LSB

P

64

P = parity bit

17 17

P

Fig. 3.11 Location of the eight parity bits for a 64-bit input key

Table 3.13 Initial key permutation PC−1

PC−1

57 49 41 33 25 17 9 1
58 50 42 34 26 18 10 2
59 51 43 35 27 19 11 3
60 52 44 36 63 55 47 39
31 23 15 7 62 54 46 38
30 22 14 6 61 53 45 37
29 21 13 5 28 20 12 4

The resulting 56-bit key is split into two halves C0 and D0, and the actual key

schedule starts as shown in Fig. 3.12. The two 28-bit halves are cyclically shifted,

i.e., rotated, left by one or two bit positions depending on the round i according to

the following rules:

� In rounds i = 1,2,9,16, the two halves are rotated left by one bit.

� In the other rounds where i �= 1,2,9,16, the two halves are rotated left by two

bits.

Note that the rotations only take place within either the left or the right half. The

total number of rotation positions is 4 ·1 + 12 ·2 = 28. This leads to the interesting

property that C0 = C16 and D0 = D16. This is very useful for the decryption key

68 3 The Data Encryption Standard (DES) and Alternatives

schedule where the subkeys have to be generated in reversed order, as we will see

in Sect. 3.4.

Transform 1

16

1

.
.

.

.
.

.

.
.

.

PC − 1

PC − 2

PC − 2

1
LS

00

1

11

22

1616

1616

DC

LS

DC

LS LS

LS LS

DCk

k

k

64

56

56

56

28

48

48
2828

2828

28

Fig. 3.12 Key schedule for DES encryption

To derive the 48-bit round keys ki, the two halves are permuted bitwise again

with PC− 2, which stands for “permuted choice 2”. PC− 2 permutes the 56 input

bits coming from Ci and Di and ignores 8 of them. The exact bit-connections of

PC−2 are given in Table 3.14.

Table 3.14 Round key permutation PC−2

PC−2

14 17 11 24 1 5 3 28
15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32

3.4 Decryption 69

Note that every round key is a selection of 48 permuted bits of the input key k.

The key schedule is merely a method of realizing the 16 permutations systemati-

cally. Especially in hardware, the key schedule is very easy to implement. The key

schedule is also designed so that each of the 56 key bits is used in different round

keys; each bit is used in approximately 14 of the 16 round keys.

3.4 Decryption

One advantage of DES is that decryption is essentially the same function as en-

cryption. This is because DES is based on a Feistel network. Figure 3.13 shows a

block diagram for DES decryption. Compared to encryption, only the key schedule

is reversed, i.e., in decryption round 1, subkey 16 is needed; in round 2, subkey 15;

etc. Thus, when in decryption mode, the key schedule algorithm has to generate the

round keys as the sequence k16,k15, . . . ,k1.

Reversed Key Schedule

The first question that we have to clarify is how, given the initial DES key k, can we

easily generate k16? Note that we saw above that C0 = C16 and D0 = D16. Hence k16

can be directly derived after PC−1.

k16 = PC−2(C16,D16)

= PC−2(C0,D0)

= PC−2(PC−1(k))

To compute k15 we need the intermediate variables C15 and D15, which can be de-

rived from C16,D16 through cyclic right shifts (RS):

k15 = PC−2(C15,D15)

= PC−2(RS2(C16),RS2(D16))

= PC−2(RS2(C0),RS2(D0))

The subsequent round keys k14,k13, . . . ,k1 are derived via right shifts in a similar

fashion. The number of bits shifted right for each round key in decryption mode

� In decryption round 1, the key is not rotated.

� In decryption rounds 2, 9, and 16 the two halves are rotated right by one bit.

� In the other rounds 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 and 15 the two halves are

rotated right by two bits.

Figure 3.14 shows the reversed key schedule for decryption.

70 3 The Data Encryption Standard (DES) and Alternatives

1k

16k

k xDES ()y =

Round 1

56

56

1R1L

IP(x)

Initial Permutation

16R16L

15R

0R0L

dd

dd

dd

dd

Message
−1
k yDES ()x =

48

48

Transform 1

Transform 16

Ciphertext

IP ()

PC−1

Key k

Round 16

−1

Final Permutation

32

32

3232

f

32

32

3232

15

f

L

Fig. 3.13 DES decryption

Decryption in Feistel Networks

We have not addressed the core question: Why is the decryption function essentially

the same as the encryption function? The basic idea is that the decryption function

reverses the DES encryption in a round-by-round manner. That means that decryp-

tion round 1 reverses encryption round 16, decryption round 2 reverses encryption

round 15, and so on. Let’s first look at the initial stage of decryption by looking at

Fig. 3.13. Note that the right and left halves are swapped in the last round of DES:

(Ld
0 ,Rd

0) = IP(Y) = IP(IP−1(R16,L16)) = (R16,L16)

And thus:

Ld
0 = R16

Rd
0 = L16 = R15

3.4 Decryption 71

.
.

.

.
.

.

.
.

.

1

15

16

Transform 1

PC − 2

1616

11

1515

22

15 15

11

DC

RS RS

DC

RS RS

RS RS

DCk

k

48 56

k

48 56

k

64

56

56

28

48

2828

2828

28

PC − 2

PC − 2

PC − 1

Fig. 3.14 Reversed key schedule for decryption of DES

Note that all variables in the decryption routine are marked with the superscript

d, whereas the encryption variables do not have superscripts. The derived equation

simply says that the input of the first round of decryption is the output of the last

round of encryption because final and initial permutations cancel each other out. We

will now show that the first decryption round reverses the last encryption round. For

this, we have to express the output values (Ld
1 ,Rd

1) of the first decryption round 1

in terms of the input values of the last encryption round (L15,R15) . The first one is

easy:

Ld
1 = Rd

0 = L16 = R15

We now look at how Rd
1 is computed:

Rd
1 = Ld

0 ⊕ f (Rd
0 ,k16) = R16 ⊕ f (L16,k16)

Rd
1 = [L15 ⊕ f (R15,k16)]⊕ f (R15,k16)

Rd
1 = L15 ⊕ [f (R15,k16)⊕ f (R15,k16)] = L15

The crucial step is shown in the last equation above: An identical output of the

f -function is XORed twice to L15. These operations cancel each other out, so that

72 3 The Data Encryption Standard (DES) and Alternatives

Rd
1 = L15. Hence, after the first decryption round, we in fact have computed the same

values we had before the last encryption round. Thus, the first decryption round

reverses the last encryption round. This is an iterative process which continues in

the next 15 decryption rounds and that can be expressed as:

Ld
i = R16−i,

Rd
i = L16−i

where i = 0,1, . . . ,16. In particular, after the last decryption round:

Ld
16 = R16−16 = R0

Rd
16 = L0

Finally, at the end of the decryption process, we have to reverse the initial per-

mutation:

IP−1(Rd
16,L

d
16) = IP−1(L0,R0) = IP−1(IP(x)) = x

where x is the plaintext that was the input to the DES encryption.

3.5 Security of DES

As we discussed in Sect. 1.2.2, ciphers can be attacked in several ways. With respect

to cryptographic attacks, we distinguish between exhaustive key search or brute-

force attacks, and analytical attacks. The latter was demonstrated with the LFSR

attack in Sect. 2.3.2, where we could easily break a stream cipher by solving a

system of linear equations. Shortly after DES was proposed, two major criticisms

against the cryptographic strength of DES centered around two arguments:

1. The key space is too small, i.e., the algorithm is vulnerable against brute-force

attacks.

2. The design criteria of the S-boxes was kept secret and there might have existed an

analytical attack that exploits mathematical properties of the S-boxes, but which

is only known to the DES designers.

We discuss both types of attacks below. However, we also state the main con-

clusion about DES security already here: Despite very intensive cryptanalysis over

the lifetime of DES, current analytical attacks are not very efficient. However, DES

can relatively easily be broken with an exhaustive key-search attack and, thus, plain

DES is not suited for most applications any more.

3.5 Security of DES 73

3.5.1 Exhaustive Key Search

The first criticism is nowadays certainly justified. The original cipher proposed by

IBM had a key length of 128 bits and it is suspicious that it was reduced to 56 bits.

The official statement that a cipher with a shorter key length made it easier to im-

plement the DES algorithm on a single chip in 1974 does not sound too convincing.

For clarification, let’s recall the principle of an exhaustive key search (or brute-force

attack):

Definition 3.5.1 DES Exhaustive key search

Input: at least one pair of plaintext–ciphertext (x,y)
Output: k, such that y = DESk(x)
Attack: Test all 256 possible keys until the following condition is

fulfilled:

DES−1
ki

(y)
?
= x , i = 0,1, . . . ,256 −1.

Note that there is a small chance of 1/216 that an incorrect key is found, i.e., a key

k which decrypts only the one ciphertext y correctly but not subsequent ciphertexts.

If one wants to rule out this possibility, an attacker must check such a key candidate

with a second plaintext–ciphertext pair. More about this is found in Sect. 5.2.

Regular computers are not particularly well suited to perform the 256 key tests

necessary, but special-purpose key-search machines are an option. It seems highly

likely that large (government) institutions have long been able to build such brute-

force crackers, which can break DES in a matter of days. In 1977, Whitfield Diffie

and Martin Hellman [59] estimated that it was possible to build an exhaustive key-

search machine for approximately $20,000,000. Even though they later stated that

their cost estimate had been too optimistic, it was clear from the beginning that a

cracker could be built with sufficient funding.

At the rump session of the CRYPTO 1993 conference, Michael Wiener proposed

the design of a very efficient key-search machine which used pipelining techniques.

An update of his proposal can be found in [174]. He estimated the cost of his de-

sign at approximately $1,000,000, and the time required to find the key at 1.5 days.

This was a proposal only, and the machine was not built. In 1998, however, the EFF

(Electronic Frontier Foundation) built the hardware machine Deep Crack, which

performed a brute-force attack against DES in 56 hours. Figure 3.15 shows a photo

of Deep Crack. The machine consisted of 1800 integrated circuits, where each had

24 key-test units. The average search time of Deep Crack was 15 days, and the ma-

chine was built for less than $250,000. The successful break with Deep Crack was

considered the official demonstration that DES is no longer secure against deter-

mined attacks by many people. Please note that this break does not imply that a

weak algorithm had been in use for more than 20 years. It was only possible to build

Deep Crack at such a relatively low price because digital hardware had become

74 3 The Data Encryption Standard (DES) and Alternatives

cheap. In the 1980s it would have been impossible to build a DES cracker with-

out spending many millions of dollars. It can be speculated that only government

agencies were willing to spend such an amount of money for code breaking.

Fig. 3.15 Deep Crack — the hardware exhaustive key-search machine that broke DES in 1998
(reproduced with permission from Paul Kocher)

DES brute-force attacks also provide an excellent case study for the continuing

decrease in hardware costs. In 2006, the COPACOBANA (Cost-Optimized Parallel

Code-Breaker) machine was built based on commercial integrated circuits by a team

of researchers from the Universities of Bochum and Kiel in Germany (the authors of

this book were heavily involved in this effort). COPACOBANA allows one to break

DES with an average search time of less than 7 days. The interesting part of this

undertaking is that the machine could be built with hardware costs in the $10,000

range. Figure 3.16 shows a picture of COPACOBANA.

Fig. 3.16 COPACOBANA — A cost-optimized parallel code breaker

In summary, a key size of 56 bits is too short to encrypt confidential data nowa-

days. Hence, single DES should only be used for applications where only short-term

security is needed — say, a few hours — or where the value of the encrypted data is

very low. However, variants of DES, in particular 3DES, are still secure.

3.6 Implementation in Software and Hardware 75

3.5.2 Analytical Attacks

As was shown in the first chapter, analytical attacks can be very powerful. Since

the introduction of DES in the mid-1970s, many excellent researchers in academia

(and without doubt many excellent researchers in intelligence agencies) tried to find

weaknesses in the structure of DES which allowed them to break the cipher. It is

a major triumph for the designers of DES that no weakness was found until 1990.

In this year, Eli Biham and Adi Shamir discovered what is called differential crypt-

analysis (DC). This is a powerful attack which is in principle applicable to any block

cipher. However, it turned out that the DES S-boxes are particularly resistant against

this attack. In fact, one member of the original IBM design team declared after the

discovery of DC that they had been aware of the attack at the time of design. Al-

legedly, the reason why the S-box design criteria were not made public was that the

design team did not want to make such a powerful attack public. If this claim is true

— and all circumstances support it — it means that the IBM and NSA team was

15 years ahead of the research community. It should be noted, however, that in the

1970s and 1980s relatively few people did active research in cryptography.

In 1993 a related but distinct analytical attack was published by Mitsuru Matsui,

which was named linear cryptanalysis (LC). Similar to differential cryptanalysis,

the effectiveness of this attack also heavily depends on the structure of the S-boxes.

What is the practical relevance of these two analytical attacks against DES? It

turns out that an attacker needs 247 plaintext–ciphertext pairs for a successful DC

attack. This assumes particularly chosen plaintext blocks; for random plaintext 255

pairs are needed! In the case of LC, an attacker needs 243 plaintext–ciphertext pairs.

All these numbers seem highly impractical for several reasons. First, an attacker

needs to know an extremely large number of plaintexts, i.e., pieces of data which

are supposedly encrypted and thus hidden from the attacker. Second, collecting and

storing such an amount of data takes a long time and requires considerable memory

resources. Third, the attack only recovers one key. (This is actually one of many

arguments for introducing key freshness in cryptographic applications.) As a result

of all these arguments, it does not seem likely that DES can be broken with either

DC or LC in real-world systems. However, both DC and LC are very powerful

attacks which are applicable to many other block ciphers. Table 3.15 provides an

overview of proposed and realized attacks against DES over the last three decades.

Some entries refer to what is known as the DES Challenges. Starting in 1997, several

DES-breaking challenges were organized by the company RSA Security.

3.6 Implementation in Software and Hardware

In the following, we provide a brief assessment of DES implementation properties in

software and hardware. When we talk about software, we refer to DES implemen-

tations running on desktop CPUs or embedded microprocessors like smart cards

76 3 The Data Encryption Standard (DES) and Alternatives

Table 3.15 History of full-round DES attacks

Date Proposed or implemented attacks

1977 W. Diffie and M. Hellman propose cost estimate for key-search machine

1990 E. Biham and A. Shamir propose differential cryptanalysis, which requires 247

chosen plaintexts
1993 M. Wiener proposes detailed hardware design for key-search machine with an

average search time of 36 h and estimated cost of $1,000,000

1993 M. Matsui proposes linear cryptanalysis, which requires 243 chosen ciphertexts
Jun. 1997 DES Challenge I broken through brute-force; distributed effort on the Internet

took 4.5 months
Feb. 1998 DES Challenge II–1 broken through brute-force; distributed effort on the Inter-

net took 39 days
Jul. 1998 DES Challenge II–2 broken through brute-force; Electronic Frontier Founda-

tion built the Deep Crack key-search machine for about $250,000. The attack
took 56 h (15 days average)

Jan. 1999 DES Challenge III broken through brute-force by distributed Internet effort
combined with Deep Crack and a total search time of 22 hours

Apr. 2006 Universities of Bochum and Kiel built COPACOBANA key-search machine
based on low-cost FPGAs for approximately $10,000. Average search time is
7 days

or cell phones. Hardware refers to DES implementations running on ICs such as

application-specific integrated circuits (ASICs) or field programmable gate arrays

(FPGAs).

Software

A straightforward software implementation which follows the data flow of most

DES descriptions, such as the one presented in this chapter, results in a very poor

performance. This is due to the fact that many of the atomic DES operations involve

bit permutation, in particular the E and P permutation, which are slow in software.

Similarly, small S-boxes such as used in DES are efficient in hardware but only mod-

erately efficient on modern CPUs. There have been numerous methods proposed for

accelerating DES software implementations. The general idea is to use tables with

precomputed values of several DES operations, e.g., of several S-boxes and the per-

mutation. Optimized implementations require about 240 cycles for encrypting one

block on a 32-bit CPU. On a 2-GHz CPU this translates into a theoretical throughput

of about 533 Mbits/s. 3DES, which is considerably more secure than single DES,

runs at almost exactly 1/3 of the DES speed. Note that nonoptimized implementa-

tions are considerably slower, often below 100 Mbit/s.

A notable method for accelerating software implementations of DES is bit-

slicing, developed by Eli Biham [20]. On a 300-MHz DEC Alpha workstation an

encryption rate of 137 Mbit/sec has been reported, which was much faster than a

standard DES implementation at that time. The limitation of bit-slicing, however, is

that several blocks are encrypted in parallel, which can be a drawback for certain

3.7 DES Alternatives 77

modes of operation such as Cipher Block Chaining (CBC) and Output Feedback

(OFB) mode (cf. Chap. 5).

Hardware

One design criterion for DES was its efficiency in hardware. Permutations such as

the E, P, IP and IP−1 permutations are very easy to implement in hardware, as

they only require wiring but no logic. The small 6-by-4 S-boxes are also relatively

easily realizable in hardware. Typically, they are implemented with Boolean logic,

i.e., logic gates. On average, one S-box requires about 100 gates.

An area-efficient implementation of a single DES round can be done with less

than 3000 gates. If a high throughput is desired, DES can be implemented extremely

fast by fitting multiple rounds in one circuit, e.g., by using pipelining. On modern

ASICs and FPGAs throughput rates of several 100 Gbit/sec are possible. On the

other end of the performance spectrum, very small implementations with fewer than

3000 gates even fit onto lowcost radio frequency identification (RFID) chips.

3.7 DES Alternatives

There exist a wealth of other block ciphers. Even though there are many ciphers

which have security weaknesses or which are not well investigated, there are also

many block ciphers which appear very strong. In the following a brief list of ciphers

is given which can be of interest depending on the application needs.

3.7.1 The Advanced Encryption Standard (AES) and the AES

Finalist Ciphers

By now, the algorithm of choice for many, many applications has become the Ad-

vanced Encryption Standard (AES), which will be introduced in detail in the follow-

ing chapter. AES is with its three key lengths of 128, 192 and 256 bit secure against

brute-force attacks for several decades, and there are no analytical attacks with any

reasonable chance of success known.

AES was the result of an open competition, and in the last stage of the selection

process there were four other finalist algorithms. These are the block ciphers Mars,

RC6, Serpent and Twofish. All of them are cryptographically strong and quite fast,

especially in software. Based on today’s knowledge, they can all be recommended.

Mars, Serpent and Twofish can be used royalty-free.

78 3 The Data Encryption Standard (DES) and Alternatives

3.7.2 Triple DES (3DES) and DESX

An alternative to AES or the AES finalist algorithms is triple DES, often denoted as

3DES. 3DES consists of three subsequent DES encryptions

y = DESk3
(DESk2

(DESk1
(x)))

with different keys, as shown in Fig. 3.17.

y

1 k2 k3

DESDESDESx

k

Fig. 3.17 Triple DES (3DES)

3DES seems resistant to both brute-force attacks and any analytical attack imag-

inable at the moment. See Chap. 5 for more information on double and triple en-

cryption. Another version of 3DES is

y = DESk3
(DES−1

k2
(DESk1

(x))).

The advantage here is that 3DES performs single DES encryption if k3 = k2 = k1,

which is sometimes desired in implementations that should also support single DES

for legacy reasons. 3DES is very efficient in hardware but not particularly in soft-

ware. It is popular in financial applications as well as for protecting biometric infor-

mation in electronic passports.

A different approach for strengthening DES is to use key whitening. For this, two

additional 64-bit keys k1 and k2 are XORed to the plaintext and ciphertext, respec-

tively, prior to and after the DES algorithm. This yields the following encryption

scheme:

y = DESk,k1,k2
(x) = DESk(x⊕ k1)⊕ k2

This surprisingly simple modification makes DES much more resistant against ex-

haustive key searches. More about key whitening is said in Sect. 5.3.3.

3.7.3 Lightweight Cipher PRESENT

Over the last few years, several new block algorithms which are classified as

“lightweight ciphers” have been proposed. Lightweight commonly refers to algo-

rithms with a very low implementation complexity, especially in hardware. Trivium

(Sect. 2.3.3) is an example of a lightweight stream cipher. A promising block cipher

candidate is PRESENT , which was designed specifically for applications such as

3.7 DES Alternatives 79

RFID tags or other pervasive computing applications that are extremely power or

cost constrained. (One of the book authors participated in the design of PRESENT.)

Fig. 3.18 Internal structure and pseudocode of the block cipher PRESENT

Unlike DES, PRESENT is not based on a Feistel network. Instead it is a

substitution-permutation network (SP-network) and consists of 31 rounds. The

block length is 64 bits, and two key lengths of 80 and 128 bits are supported.

Each of the 31 rounds consists of an XOR operation to introduce a round key Ki

for 1 ≤ i ≤ 32, where K32 is used after round 31, a nonlinear substitution layer

(sBoxLayer) and a linear bitwise permutation (pLayer). The nonlinear layer uses a

single 4-bit S-box S, which is applied 16 times in parallel in each round. The key

schedule generates 32 round keys from the user supplied key. The encryption rou-

tine of the cipher is described in pseudocode in Fig. 3.18, and each stage is now

specified in turn.

addRoundKey At the beginning of each round, the round key Ki is XORed to the

current STATE.

sBoxLayer PRESENT uses a single 4-bit to 4-bit S-box. This is a direct conse-

quence of the pursuit of hardware efficiency, since such an S-Box allows a much

more compact implementation than, e.g., an 8-bit S-box. The S-box entries in hex-

adecimal notation are given in Table 3.16.

Table 3.16 The PRESENT S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The 64 bit data path b63 . . .b0 is referred to as state. For the sBoxLayer the cur-

rent state is considered as sixteen 4-bit words w15 . . .w0, where wi = b4∗i+3||b4∗i+2||
b4∗i+1||b4∗i for 0 ≤ i ≤ 15, and the output are the 16 words S[wi].

80 3 The Data Encryption Standard (DES) and Alternatives

pLayer Just like DES, the mixing layer was chosen as a bit permutation, which

can be implemented extremely compactly in hardware. The bit permutation used in

PRESENT is given by Table 3.17. Bit i of STATE is moved to bit position P(i).

Table 3.17 The permutation layer of PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The bit permutation is quite regular and can in fact be expressed in the following

way:

P(i) =

{
i ·16 mod 63, i ∈ {0, . . . ,62}
63, i = 63.

Key Schedule We describe in the following the key schedule for PRESENT with

an 80-bit key. Since the main applications of PRESENT are low-cost systems, this

key length is in most cases appropriate. (Details of the key schedule for PRESENT-

128 can be found in [29].) The user-supplied key is stored in a key register K and

is represented as k79k78 . . .k0. At round i the 64-bit round key Ki = κ63κ62 . . .κ0

consists of the 64 leftmost bits of the current contents of register K. Thus at round i

we have:

Ki = κ63κ62 . . .κ0 = k79k78 . . .k16

The first subkey K1 is a direct copy of 64 bit of the user supplied key. For the fol-

lowing subkeys K2, . . . ,K32 the key register K = k79k78 . . .k0 is updated as follows:

1. [k79k78 . . .k1k0] = [k18k17 . . .k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕round_counter

Thus, the key schedule consists of three operations: (1) the key register is ro-

tated by 61 bit positions to the left, (2) the leftmost four bits are passed through

the PRESENT S-box, and (3) the round_counter value i is XORed with bits

k19k18k17k16k15 of K, where the least significant bit of round_counter is on

the right. This counter is a simple integer which takes the values (00001,00010, . . .
,11111). Note that for the derivation of K2 the counter value 00001 is used; for K3,

the counter value 00010; and so on.

Implementation As a result of the aggressively hardware-optimized design of

PRESENT, its software performance is not very competitive relative to modern ci-

phers like AES. An optimized software implementation on a Pentium III CPU in

3.8 Discussion and Further Reading 81

C achieves a throughput of about 60 Mbit/s at a frequency of 1 GHz. However, it

performs quite well on small microprocessors, which are common in inexpensive

consumer products.

PRESENT-80 can be implemented in hardware with area requirements of ap-

proximately 1600 gate equivalences [147], where the encryption of one 64-bit plain-

text block requires 32 clock cycles. As an example, at a clock rate of 1 MHz, which

is quite typical on low-cost devices, a throughput of 2 Mbit/s is achieved, which is

sufficient for most such applications. It is possible to realize the cipher with as few

as approximately 1000 gate equivalences, where the encryption of one 64-bit plain-

text requires 547 clock cycles. A fully pipelined implementation of PRESENT with

31 encryption stages achieves a throughput of 64 bit per clock cycle, which can be

tranlsated into encryption throughputs of more than 50 Gbit/s.

Even though no attacks against PRESENT are known at the time of writing, it

should be noted that it is a relatively new block cipher.

3.8 Discussion and Further Reading

DES History and Attacks Even though plain DES (i.e., non-3DES) is today

mainly used in legacy applications, its history helps us understand the evolution

of cryptography since the mid-1970s from an obscure discipline almost solely stud-

ied in government organizations towards an open discipline with many players in

industry and academia. A summary of the DES history can be found in [165]. The

two main analytical attacks developed against DES, differential and linear crypt-

analysis, are today among the most powerful general methods for breaking block

ciphers. Readers interested in the theory of block ciphers are encouraged to study

these attacks. Good descriptions are given in [21, 114].

As we have seen in this chapter, DES should no longer be used since a brute-force

attack can be accomplished at low cost in little time with cryptanalytical hardware.

The two machines built outside governments, Deep Crack and COPACOBANA, are

instructive examples of how to build low-cost “supercomputers” for very narrowly

defined computational tasks. More information about Deep Crack can be found on

the Internet [78] and about COPACOBANA in the articles [105, 88] and online

at [47]. Readers interested in the fascinating area of cryptanalytical computers in

general should take a look at the SHARCS (Special-purpose Hardware for Attacking

Cryptographic Systems) workshop series, which started in 2005 and has information

online [170].

DES Alternatives It should be noted that hundreds of block ciphers have been

proposed over the last three decades, especially in the late 1980s and in the 1990s.

DES has influenced the design of many other encryption algorithms. It is probably

fair to say that the majority of today’s successful block ciphers have borrowed ideas

from DES. Some of the popular block ciphers are also based on Feistel networks

as is DES. Examples of Feistel ciphers include Blowfish, CAST, KASUMI, Mars,

82 3 The Data Encryption Standard (DES) and Alternatives

MISTY1, Twofish and RC6. One cipher which is well known and markedly different

from DES is IDEA; it uses arithmetic in three different algebraic structures as atomic

operations.

DES is a good example of a block cipher which is very efficient in hardware. The

recent advent of pervasive computing has created a need for extremely small ciphers

for applications such as RFID tags or low-cost smart cards, e.g., for high-volume

public transportation payment tickets. Good references for PRESENT are [29, 147].

In addition to PRESENT, other recently proposed very small block ciphers include

Clefia [48], HIGHT [93] and mCrypton [111]. A good overview of the new field of

lightweight cryptography is given in the surveys [71, 98]. A more in-depth treatment

of lightweight algorithms can be found in the Ph.D. dissertation [135].

Implementation With respect to software implementation of DES, an early refer-

ence is [20]. More advanced techniques are described in [106]. The powerful method

of bit-slicing is applicable not only to DES but to most other ciphers.

Regarding DES hardware implementation, an early but still very interesting ref-

erence is [169]. There are many descriptions of high-performance implementations

of DES on a variety of hardware platforms, including FPGAs [163], standard ASICs

as well as more exotic semiconductor technology [67].

3.9 Lessons Learned

� DES was the dominant symmetric encryption algorithm from the mid-1970s to

the mid-1990s. Since 56-bit keys are no longer secure, the Advanced Encryption

Standard (AES) was created.

� Standard DES with 56-bit key length can be broken relatively easily nowadays

through an exhaustive key search.

� DES is quite robust against known analytical attacks: In practice it is very diffi-

cult to break the cipher with differential or linear cryptanalysis.

� DES is reasonably efficient in software and very fast and small in hardware.

� By encrypting with DES three times in a row, triple DES (3DES) is created,

against which no practical attack is currently known.

� The “default” symmetric cipher is nowadays often AES. In addition, the other

four AES finalist ciphers all seem very secure and efficient.

� Since about 2005 several proposals for lightweight ciphers have been made. They

are suited for resource-constrained applications.

3.9 Problems 83

Problems

3.1. As stated in Sect. 3.5.2, one important property which makes DES secure is that

the S-boxes are nonlinear. In this problem we verify this property by computing the

output of S1 for several pairs of inputs.

Show that S1(x1)⊕S1(x2) �= S1(x1 ⊕ x2), where “⊕” denotes bitwise XOR, for:

1. x1 = 000000, x2 = 000001

2. x1 = 111111, x2 = 100000

3. x1 = 101010, x2 = 010101

3.2. We want to verify that IP(·) and IP−1(·) are truly inverse operations. We con-

sider a vector x = (x1,x2, . . . ,x64) of 64 bit. Show that IP−1(IP(x)) = x for the first

five bits of x, i.e. for xi, i = 1,2,3,4,5.

3.3. What is the output of the first round of the DES algorithm when the plaintext

and the key are both all zeros?

3.4. What is the output of the first round of the DES algorithm when the plaintext

and the key are both all ones?

3.5. Remember that it is desirable for good block ciphers that a change in one input

bit affects many output bits, a property that is called diffusion or the avalanche

effect. We try now to get a feeling for the avalanche property of DES. We apply an

input word that has a “1” at bit position 57 and all other bits as well as the key are

zero. (Note that the input word has to run through the initial permutation.)

1. How many S-boxes get different inputs compared to the case when an all-zero

plaintext is provided?

2. What is the minimum number of output bits of the S-boxes that will change

according to the S-box design criteria?

3. What is the output after the first round?

4. How many output bit after the first round have actually changed compared to

the case when the plaintext is all zero? (Observe that we only consider a single

round here. There will be more and more output differences after every new

round. Hence the term avalanche effect.)

3.6. An avalanche effect is also desirable for the key: A one-bit change in a key

should result in a dramatically different ciphertext if the plaintext is unchanged.

1. Assume an encryption with a given key. Now assume the key bit at position 1

(prior to PC− 1) is being flipped. Which S-boxes in which rounds are affected

by the bit flip during DES encryption?

2. Which S-boxes in which DES rounds are affected by this bit flip during DES

decryption?

3.7. A DES key Kw is called a weak key if encryption and decryption are identical

operations:

DESKw(x) = DES−1
Kw

(x), for all x (3.1)

84 3 The Data Encryption Standard (DES) and Alternatives

1. Describe the relationship of the subkeys in the encryption and decryption algo-

rithm that is required so that Eq. (3.1) is fulfilled.

2. There are four weak DES keys. What are they?

3. What is the likelihood that a randomly selected key is weak?

3.8. DES has a somewhat surprising property related to bitwise complements of its

inputs and outputs. We investigate the property in this problem.

We denote the bitwise complement of a number A (that is, all bits are flipped) by

A′. Let ⊕ denote bitwise XOR. We want to show that if

y = DESk(x)

then

y′ = DESk′(x
′). (3.2)

This states that if we complement the plaintext and the key, then the ciphertext

output will also be the complement of the original ciphertext. Your task is to prove

this property.

Try to prove this property using the following steps:

1. Show that for any bit strings A,B of equal length,

A′⊕B′ = A⊕B

and

A′⊕B = (A⊕B)′.

(These two operations are needed for some of the following steps.)

2. Show that PC−1(k′) = (PC−1(k))′.
3. Show that LSi(C

′
i−1) = (LSi(Ci−1))

′.
4. Using the two results from above, show that if ki are the keys generated from k,

then k′i are the keys generated from k′, where i = 1,2, . . . ,16.

5. Show that IP(x′) = (IP(x))′.
6. Show that E(R′

i) = (E(Ri))
′.

7. Using all previous results, show that if Ri−1,Li−1,ki generate Ri, then R′
i−1,L

′
i−1,k

′
i

generate R′
i.

8. Show that Eq. (3.2) is true.

3.9. Assume we perform a known-plaintext attack against DES with one pair of

plaintext and ciphertext. How many keys do we have to test in a worst-case sce-

nario if we apply an exhaustive key search in a straightforward way? How many on

average?

3.10. In this problem we want to study the clock frequency requirements for a hard-

ware implementation of DES in real-world applications. The speed of a DES im-

plementation is mainly determined by the time required to do one core iteration.

This hardware kernel is then used 16 consecutive times in order to generate the en-

crypted output. (An alternative approach would be to build a hardware pipeline with

16 stages, resulting in 16-fold increased hardware costs.)

3.9 Problems 85

1. Let’s assume that one core iteration can be performed in one clock cycle. De-

velop an expression for the required clock frequency for encrypting a stream of

data with a data rate r [bit/sec]. Ignore the time needed for the initial and final

permutation.

2. What clock frequency is required for encrypting a fast network link running at a

speed of 1 Gb/sec? What is the clock frequency if we want to support a speed of

8 Gb/sec?

3.11. As the example of COPACOBANA [105] shows, key-search machines need

not be prohibitive from a monetary point of view. We now consider a simple brute-

force attack on DES which runs on COPACOBANA.

1. Compute the runtime of an average exhaustive key-search on DES assuming the

following implementational details:

� COPACOBANA platform with 20 FPGA modules

� 6 FPGAs per FPGA module

� 4 DES engines per FPGA

� Each DES engine is fully pipelined and is capable of performing one encryp-

tion per clock cycle

� 100 MHz clock frequency

2. How many COPACOBANA machines do we need in the case of an average

search time of one hour?

3. Why does any design of a key-search machine constitute only an upper security

threshold? By upper security threshold we mean a (complexity) measure which

describes the maximum security that is provided by a given cryptographic algo-

rithm.

3.12. We study a real-world case in this problem. A commercial file encryption

program from the early 1990s used standard DES with 56 key bits. In those days,

performing an exhaustive key search was considerably harder than nowadays, and

thus the key length was sufficient for some applications. Unfortunately, the imple-

mentation of the key generation was flawed, which we are going to analyze. Assume

that we can test 106 keys per second on a conventional PC.

The key is generated from a password consisting of 8 characters. The key is a

simple concatenation of the 8 ASCII characters, yielding 64 = 8 · 8 key bits. With

the permutation PC− 1 in the key schedule, the least significant bit (LSB) of each

8-bit character is ignored, yielding 56 key bits.

1. What is the size of the key space if all 8 characters are randomly chosen 8-bit

ASCII characters? How long does an average key search take with a single PC?

2. How many key bits are used, if the 8 characters are randomly chosen 7-bit ASCII

characters (i.e., the most significant bit is always zero)? How long does an aver-

age key search take with a single PC?

3. How large is the key space if, in addition to the restriction in Part 2, only let-

ters are used as characters. Furthermore, unfortunately, all letters are converted

86 3 The Data Encryption Standard (DES) and Alternatives

to capital letters before generating the key in the software. How long does an

average key search take with a single PC?

3.13. This problem deals with the lightweight cipher PRESENT.

1. Calculate the state of PRESENT-80 after the execution of one round. You can use

the following table to solve this problem with paper and pencil. Use the following

values (in hexadecimal notation):

plaintext = 0000 0000 0000 0000,

key = BBBB 5555 5555 EEEE FFFF.

Plaintext 0000 0000 0000 0000

Round key

State after KeyAdd

State after S-Layer

State after P-Layer

2. Now calculate the round key for the second round using the following table.

Key BBBB 5555 5555 EEEE FFFF

Key state after rotation

Key state after S-box

Key state after CounterAdd

Round key for Round 2

Chapter 4

The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is the most widely used symmetric cipher

today. Even though the term “Standard” in its name only refers to US government

applications, the AES block cipher is also mandatory in several industry standards

and is used in many commercial systems. Among the commercial standards that

include AES are the Internet security standard IPsec, TLS, the Wi-Fi encryption

standard IEEE 802.11i, the secure shell network protocol SSH (Secure Shell), the

Internet phone Skype and numerous security products around the world. To date,

there are no attacks better than brute-force known against AES.

In this chapter you will learn:

� The design process of the US symmetric encryption standard, AES

� The encryption and decryption function of AES

� The internal structure of AES, namely:

� byte substitution layer

� diffusion layer

� key addition layer

� key schedule

� Basic facts about Galois fields

� Efficiency of AES implementations

87

88 4 The Advanced Encryption Standard (AES)

4.1 Introduction

In 1999 the US National Institute of Standards and Technology (NIST) indicated

that DES should only be used for legacy systems and instead triple DES (3DES)

should be used. Even though 3DES resists brute-force attacks with today’s technol-

ogy, there are several problems with it. First, it is not very efficient with regard to

software implementations. DES is already not particularly well suited for software

and 3DES is three times slower than DES. Another disadvantage is the relatively

short block size of 64 bits, which is a drawback in certain applications, e.g., if one

wants to built a hash function from a block cipher (cf. Sect. 11.3.2). Finally, if one

is worried about attacks with quantum computers, which might become reality in a

few decades, key lengths on the order of 256 bits are desirable. All these consider-

ation led NIST to the conclusion that an entirely new block cipher was needed as a

replacement for DES.

In 1997 NIST called for proposals for a new Advanced Encryption Standard

(AES). Unlike the DES development, the selection of the algorithm for AES was

an open process administered by NIST. In three subsequent AES evaluation rounds,

NIST and the international scientific community discussed the advantages and dis-

advantages of the submitted ciphers and narrowed down the number of potential

candidates. In 2001, NIST declared the block cipher Rijndael as the new AES and

published it as a final standard (FIPS PUB 197). Rijndael was designed by two

young Belgian cryptographers.

Within the call for proposals, the following requirements for all AES candidate

submissions were mandatory:

� block cipher with 128 bit block size

� three key lengths must be supported: 128, 192 and 256 bit

� security relative to other submitted algorithms

� efficiency in software and hardware

The invitation for submitting suitable algorithms and the subsequent evaluation

of the successor of DES was a public process. A compact chronology of the AES

selection process is given here:

� The need for a new block cipher was announced on January 2, 1997, by NIST.

� A formal call for AES was announced on September 12, 1997.

� Fifteen candidate algorithms were submitted by researchers from several coun-

tries by August 20, 1998.

� On August 9, 1999, five finalist algorithms were announced:

� Mars by IBM Corporation

� RC6 by RSA Laboratories

� Rijndael, by Joan Daemen and Vincent Rijmen

� Serpent, by Ross Anderson, Eli Biham and Lars Knudsen

� Twofish, by Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris

Hall and Niels Ferguson

4.2 Overview of the AES Algorithm 89

� On October 2, 2000, NIST announced that it had chosen Rijndael as the AES.

� On November 26, 2001, AES was formally approved as a US federal standard.

It is expected that AES will be the dominant symmetric-key algorithm for many

commercial applications for the next few decades. It is also remarkable that in 2003

the US National Security Agency (NSA) announced that it allows AES to encrypt

classified documents up to the level SECRET for all key lengths, and up to the TOP

SECRET level for key lengths of either 192 or 256 bits. Prior to that date, only

non-public algorithms had been used for the encryption of classified documents.

4.2 Overview of the AES Algorithm

The AES cipher is almost identical to the block cipher Rijndael. The Rijndael block

and key size vary between 128, 192 and 256 bits. However, the AES standard only

calls for a block size of 128 bits. Hence, only Rijndael with a block length of 128

bits is known as the AES algorithm. In the remainder of this chapter, we only discuss

the standard version of Rijndael with a block length of 128 bits.

AES k
128/192/256

128

128

x

y

Fig. 4.1 AES input/output parameters

As mentioned previously, three key lengths must be supported by Rijndael as this

was an NIST design requirement. The number of internal rounds of the cipher is a

function of the key length according to Table 4.1.

Table 4.1 Key lengths and number of rounds for AES

key lengths # rounds = nr

128 bit 10
192 bit 12
256 bit 14

In contrast to DES, AES does not have a Feistel structure. Feistel networks do

not encrypt an entire block per iteration, e.g., in DES, 64/2 = 32 bits are encrypted

90 4 The Advanced Encryption Standard (AES)

in one round. AES, on the other hand, encrypts all 128 bits in one iteration. This is

one reason why it has a comparably small number of rounds.

AES consists of so-called layers. Each layer manipulates all 128 bits of the data

path. The data path is also referred to as the state of the algorithm. There are only

three different types of layers. Each round, with the exception of the first, consists

of all three layers as shown in Fig. 4.2: the plaintext is denoted as x, the ciphertext

as y and the number of rounds as nr. Moreover, the last round nr does not make

use of the MixColumn transformation, which makes the encryption and decryption

scheme symmetric.

We continue with a brief description of the layers:

Key Addition layer A 128-bit round key, or subkey, which has been derived from

the main key in the key schedule, is XORed to the state.

Byte Substitution layer (S-Box) Each element of the state is nonlinearly trans-

formed using lookup tables with special mathematical properties. This introduces

confusion to the data, i.e., it assures that changes in individual state bits propagate

quickly across the data path.

Diffusion layer It provides diffusion over all state bits. It consists of two sublayers,

both of which perform linear operations:

� The ShiftRows layer permutes the data on a byte level.

� The MixColumn layer is a matrix operation which combines (mixes) blocks of

four bytes.

Similar to DES, the key schedule computes round keys, or subkeys, (k0,k1, . . . ,knr)
from the original AES key.

Before we describe the internal functions of the layers in Sect. 4.4, we have to

introduce a new mathematical concept, namely Galois fields. Galois field computa-

tions are needed for all operations within the AES layers.

4.3 Some Mathematics: A Brief Introduction to Galois Fields

In AES, Galois field arithmetic is used in most layers, especially in the S-Box and

the MixColumn layer. Hence, for a deeper understanding of the internals of AES, we

provide an introduction to Galois fields as needed for this purpose before we con-

tinue with the algorithm in Sect. 4.4. A background on Galois fields is not required

for a basic understanding of AES, and the reader can skip this section.

4.3.1 Existence of Finite Fields

A finite field, sometimes also called Galois field, is a set with a finite number of

elements. Roughly speaking, a Galois field is a finite set of elements in which we

4.3 Some Mathematics: A Brief Introduction to Galois Fields 91

Transform

Byte Substitution Layer

Key Addition Layer

MixColumn Layer

ShiftRows Layer

Diffusion Layer

Key Addition Layer

x

Plaintext

Byte Substitution Layer

Key Addition Layer

MixColumn Layer

ShiftRows Layer

Key Addition Layer

ShiftRows Layer

Byte Substitution Layer

xy=AES()

 r
kn

k
 rn −1

last round

round −1

round 1

n r

rn

k

r

r

Key

0k

1k

Ciphertext

1Transform

0Transform

n −1Transform

n

Fig. 4.2 AES encryption block diagram

can add, subtract, multiply and invert. Before we introduce the definition of a field,

we first need the concept of a a simpler algebraic structure, a group.

92 4 The Advanced Encryption Standard (AES)

Definition 4.3.1 Group

A group is a set of elements G together with an operation ◦ which

combines two elements of G. A group has the following properties:

1. The group operation ◦ is closed. That is, for all a,b,∈G, it holds

that a◦b = c ∈ G.

2. The group operation is associative. That is, a◦(b◦c) = (a◦b)◦c

for all a,b,c ∈ G.

3. There is an element 1∈G, called the neutral element (or identity

element), such that a◦1 = 1◦a = a for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G, called the in-

verse of a, such that a◦a−1 = a−1 ◦a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b =
b◦a for all a,b ∈ G.

Roughly speaking, a group is set with one operation and the corresponding in-

verse operation. If the operation is called addition, the inverse operation is subtrac-

tion; if the operation is multiplication, the inverse operation is division (or multipli-

cation with the inverse element).

Example 4.1. The set of integers Zm = {0,1, . . . ,m−1} and the operation addition

modulo m form a group with the neutral element 0. Every element a has an inverse

−a such that a+(−a) = 0 mod m. Note that this set does not form a group with the

operation multiplication because most elements a do not have an inverse such that

aa−1 = 1 mod m.

⋄

In order to have all four basic arithmetic operations (i.e., addition, subtraction,

multiplication, division) in one structure, we need a set which contains an additive

and a multiplicative group. This is what we call a field.

Definition 4.3.2 Field

A field F is a set of elements with the following properties:

� All elements of F form an additive group with the group opera-

tion “+” and the neutral element 0.

� All elements of F except 0 form a multiplicative group with the

group operation “×” and the neutral element 1.

� When the two group operations are mixed, the distributivity law

holds, i.e., for all a,b,c ∈ F: a(b+ c) = (ab)+(ac).

Example 4.2. The set R of real numbers is a field with the neutral element 0 for the

additive group and the neutral element 1 for the multiplicative group. Every real

number a has an additive inverse, namely −a, and every nonzero element a has a

multiplicative inverse 1/a.

4.3 Some Mathematics: A Brief Introduction to Galois Fields 93

⋄

In cryptography, we are almost always interested in fields with a finite number of

elements, which we call finite fields or Galois fields. The number of elements in the

field is called the order or cardinality of the field. Of fundamental importance is the

following theorem:

Theorem 4.3.1 A field with order m only exists if m is a prime

power, i.e., m = pn, for some positive integer n and prime integer

p. p is called the characteristic of the finite field.

This theorem implies that there are, for instance, finite fields with 11 elements,

or with 81 elements (since 81 = 34) or with 256 elements (since 256 = 28, and 2 is

a prime). However, there is no finite field with 12 elements since 12 = 22 · 3, and

12 is thus not a prime power. In the remainder of this section we look at how finite

fields can be built, and more importantly for our purpose, how we can do arithmetic

in them.

4.3.2 Prime Fields

The most intuitive examples of finite fields are fields of prime order, i.e., fields with

n = 1. Elements of the field GF(p) can be represented by integers 0,1, . . . , p−1. The

two operations of the field are modular integer addition and integer multiplication

modulo p.

Theorem 4.3.2 Let p be a prime. The integer ring Zp is denoted

as GF(p) and is referred to as a prime field, or as a Galois field

with a prime number of elements. All nonzero elements of GF(p)
have an inverse. Arithmetic in GF(p) is done modulo p.

This means that if we consider the integer ring Zm which was introduced in

Sect. 1.4.2, i.e., integers with modular addition and multiplication, and m happens

to be a prime, Zm is not only a ring but also a finite field.

In order to do arithmetic in a prime field, we have to follow the rules for integer

rings: Addition and multiplication are done modulo p, the additive inverse of any

element a is given by a + (−a) = 0 mod p, and the multiplicative inverse of any

nonzero element a is defined as a · a−1 = 1. Let’s have a look at an example of a

prime field.

Example 4.3. We consider the finite field GF(5) = {0,1,2,3,4}. The tables below

describe how to add and multiply any two elements, as well as the additive and

94 4 The Advanced Encryption Standard (AES)

addition

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

additive inverse

−0 = 0
−1 = 4
−2 = 3
−3 = 2
−4 = 1

multiplication

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

multiplicative inverse

0−1 does not exist

1−1 = 1

2−1 = 3

3−1 = 2

4−1 = 4

multiplicative inverse of the field elements. Using these tables, we can perform all

calculations in this field without using modular reduction explicitly.

⋄

A very important prime field is GF(2), which is the smallest finite field that

exists. Let’s have a look at the multiplication and addition tables for the field.

Example 4.4. Let’s consider the small finite field GF(2) = {0,1}. Arithmetic is sim-

ply done modulo 2, yielding the following arithmetic tables:

addition
+ 0 1

0 0 1
1 1 0

multiplication

× 0 1

0 0 0
1 0 1

⋄

As we saw in Chap. 2 on stream ciphers, GF(2) addition, i.e., modulo 2 addition,

is equivalent to an XOR gate. What we learn from the example above is that GF(2)
multiplication is equivalent to the logical AND gate. The field GF(2) is important

for AES.

4.3.3 Extension Fields GF(2m)

In AES the finite field contains 256 elements and is denoted as GF(28). This field

was chosen because each of the field elements can be represented by one byte. For

the S-Box and MixColumn transforms, AES treats every byte of the internal data

4.3 Some Mathematics: A Brief Introduction to Galois Fields 95

path as an element of the field GF(28) and manipulates the data by performing

arithmetic in this finite field.

However, if the order of a finite field is not prime, and 28 is clearly not a prime,

the addition and multiplication operation cannot be represented by addition and mul-

tiplication of integers modulo 28. Such fields with m > 1 are called extension fields.

In order to deal with extension fields we need (1) a different notation for field ele-

ments and (2) different rules for performing arithmetic with the elements. We will

see in the following that elements of extension fields can be represented as poly-

nomials, and that computation in the extension field is achieved by performing a

certain type of polynomial arithmetic.

In extension fields GF(2m) elements are not represented as integers but as poly-

nomials with coefficients in GF(2). The polynomials have a maximum degree of

m−1, so that there are m coefficients in total for every element. In the field GF(28),
which is used in AES, each element A ∈ GF(28) is thus represented as:

A(x) = a7x7 + · · ·+a1x+a0, ai ∈ GF(2) = {0,1}.

Note that there are exactly 256 = 28 such polynomials. The set of these 256 polyno-

mials is the finite field GF(28). It is also important to observe that every polynomial

can simply be stored in digital form as an 8-bit vector

A = (a7,a6,a5,a4,a3,a2,a1,a0).

In particular, we do not have to store the factors x7, x6, etc. It is clear from the bit

positions to which power xi each coefficient belongs.

4.3.4 Addition and Subtraction in GF(2m)

Let’s now look at addition and subtraction in extension fields. The key addition layer

of AES uses addition. It turns out that these operations are straightforward. They are

simply achieved by performing standard polynomial addition and subtraction: We

merely add or subtract coefficients with equal powers of x. The coefficient additions

or subtractions are done in the underlying field GF(2).

96 4 The Advanced Encryption Standard (AES)

Definition 4.3.3 Extension field addition and subtraction

Let A(x),B(x)∈ GF(2m). The sum of the two elements is then com-

puted according to:

C(x) = A(x)+B(x) =
m−1

∑
i=0

cix
i, ci ≡ ai +bi mod 2

and the difference is computed according to:

C(x) = A(x)−B(x) =
m−1

∑
i=0

cix
i, ci ≡ ai −bi ≡ ai +bi mod 2.

Note that we perform modulo 2 addition (or subtraction) with the coefficients. As

we saw in Chap. 2, addition and subtraction modulo 2 are the same operation. More-

over, addition modulo 2 is equal to bitwise XOR. Let’s have a look at an example in

the field GF(28) which is used in AES:

Example 4.5. Here is how the sum C(x) = A(x)+B(x) of two elements from GF(28)
is computed:

A(x) = x7+ x6+ x4+ 1

B(x) = x4+ x2+ 1

C(x) = x7+ x6+ x2

⋄
Note that if we computed the difference of the two polynomials A(x)−B(x) from

the example above, we would get the same result as for the sum.

4.3.5 Multiplication in GF(2m)

Multiplication in GF(28) is the core operation of the MixColumn transformation of

AES. In a first step, two elements (represented by their polynomials) of a finite field

GF(2m) are multiplied using the standard polynomial multiplication rule:

A(x) ·B(x) = (am−1xm−1 + · · ·+a0) · (bm−1xm−1 + · · ·+b0)

C′(x) = c′2m−2x2m−2 + · · ·+ c′0,

where:

c′0 = a0b0 mod 2

c′1 = a0b1 +a1b0 mod 2

...

c′2m−2 = am−1bm−1 mod 2.

4.3 Some Mathematics: A Brief Introduction to Galois Fields 97

Note that all coefficients ai, bi and ci are elements of GF(2), and that coeffi-

cient arithmetic is performed in GF(2). In general, the product polynomial C(x)
will have a degree higher than m−1 and has to be reduced. The basic idea is an ap-

proach similar to the case of multiplication in prime fields: in GF(p), we multiply

the two integers, divide the result by a prime, and consider only the remainder. Here

is what we are doing in extension fields: The product of the multiplication is divided

by a certain polynomial, and we consider only the remainder after the polynomial

division. We need irreducible polynomials for the module reduction. We recall from

Sect. 2.3.1 that irreducible polynomials are roughly comparable to prime numbers,

i.e., their only factors are 1 and the polynomial itself.

Definition 4.3.4 Extension field multiplication

Let A(x),B(x) ∈ GF(2m) and let

P(x) ≡
m

∑
i=0

pix
i, pi ∈ GF(2)

be an irreducible polynomial. Multiplication of the two elements

A(x),B(x) is performed as

C(x) ≡ A(x) ·B(x) mod P(x).

Thus, every field GF(2m) requires an irreducible polynomial P(x) of degree m

with coefficients from GF(2). Note that not all polynomials are irreducible. For

example, the polynomial x4 + x3 + x+1 is reducible since

x4 + x3 + x+1 = (x2 + x+1)(x2 +1)

and hence cannot be used to construct the extension field GF(24). Since primitive

polynomials are a special type of irreducible polynomial, the polynomials in Ta-

ble 2.3 can be used for constructing fields GF(2m). For AES, the irreducible poly-

nomial

P(x) = x8 + x4 + x3 + x+1

is used. It is part of the AES specification.

Example 4.6. We want to multiply the two polynomials A(x) = x3 + x2 + 1 and

B(x) = x2 + x in the field GF(24). The irreducible polynomial of this Galois field is

given as

P(x) = x4 + x+1.

The plain polynomial product is computed as:

C′(x) = A(x) ·B(x) = x5 + x3 + x2 + x.

We can now reduce C′(x) using the polynomial division method we learned in

school. However, sometimes it is easier to reduce each of the leading terms x4 and

98 4 The Advanced Encryption Standard (AES)

x5 individually:

x4 = 1 ·P(x)+(x+1)

x4 ≡ x+1 mod P(x)

x5 ≡ x2 + x mod P(x).

Now, we only have to insert the reduced expression for x5 into the intermediate

result C′(x):

C(x) ≡ x5 + x3 + x2 + x mod P(x)

C(x) ≡ (x2 + x)+(x3 + x2 + x) = x3

A(x) ·B(x) ≡ x3.

⋄

It is important not to confuse multiplication in GF(2m) with integer multiplica-

tion, especially if we are concerned with software implementations of Galois fields.

Recall that the polynomials, i.e., the field elements, are normally stored as bit vec-

tors in the computers. If we look at the multiplication from the previous example,

the following very atypical operation is being performed on the bit level:

A · B = C

(x3 + x2 +1) · (x2 + x) = x3

(1 1 0 1) · (0 1 1 0) = (1 0 0 0).

This computation is not identical to integer arithmetic. If the polynomials are in-

terpreted as integers, i.e., (1101)2 = 1310 and (0110)2 = 610, the result would have

been (1001110)2 = 7810, which is clearly not the same as the Galois field multipli-

cation product. Hence, even though we can represent field elements as integers data

types, we cannot make use of the integer arithmetic provided

4.3.6 Inversion in GF(2m)

Inversion in GF(28) is the core operation of the Byte Substitution transformation,

which contains the AES S-Boxes. For a given finite field GF(2m) and the corre-

sponding irreducible reduction polynomial P(x), the inverse A−1 of a nonzero ele-

ment A ∈ GF(2m) is defined as:

A−1(x) ·A(x) = 1 mod P(x).

For small fields — in practice this often means fields with 216 or fewer elements

— lookup tables which contain the precomputed inverses of all field elements are

often used. Table 4.2 shows the values which are used within the S-Box of AES.

The table contains all inverses in GF(28) modulo P(x) = x8 + x4 + x3 + x + 1 in

hexadecimal notation. A special case is the entry for the field element 0, for which

4.4 Internal Structure of AES 99

an inverse does not exist. However, for the AES S-Box, a substitution table is needed

that is defined for every possible input value. Hence, the designers defined the S-Box

such that the input value 0 is mapped to the output value 0.

Table 4.2 Multiplicative inverse table in GF(28) for bytes xy used within the AES S-Box

Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09

5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82

X 8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6

D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

Example 4.7. From Table 4.2 the inverse of

x7 + x6 + x = (11000010)2 = (C2)hex = (xy)

is given by the element in row C, column 2:

(2F)hex = (00101111)2 = x5 + x3 + x2 + x+1.

This can be verified by multiplication:

(x7 + x6 + x) · (x5 + x3 + x2 + x+1) ≡ 1 mod P(x).

⋄

Note that the table above does not contain the S-Box itself, which is a bit more

complex and will be described in Sect. 4.4.1.

As an alternative to using lookup tables, one can also explicitly compute inverses.

The main algorithm for computing multiplicative inverses is the extended Euclidean

algorithm, which is introduced in Sect. 6.3.1.

4.4 Internal Structure of AES

In the following, we examine the internal structure of AES. Figure 4.3 shows the

graph of a single AES round. The 16-byte input A0, . . . ,A15 is fed byte-wise into the

100 4 The Advanced Encryption Standard (AES)

S-Box. The 16-byte output B0, . . . ,B15 is permuted byte-wise in the ShiftRows layer

and mixed by the MixColumn transformation c(x). Finally, the 128-bit subkey ki is

XORed with the intermediate result. We note that AES is a byte-oriented cipher.

Key Addition

s s s s s s s s s s s s s s s s

0A 1A 2A 3A 6A5A4A 7A 8A 9A 11A 12A 13A 14A 15A10A

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B

1C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C 14C 15C0C

k i

Byte Substitution

MixColumn

ShiftRows

Fig. 4.3 AES round function for rounds 1,2, . . . ,nr −1

This is in contrast to DES, which makes heavy use of bit permutation and can thus

be considered to have a bit-oriented structure.

In order to understand how the data moves through AES, we first imagine that the

state A (i.e., the 128-bit data path) consisting of 16 bytes A0,A1, . . . ,A15 is arranged

in a four-by-four byte matrix:

A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15

As we will see in the following, AES operates on elements, columns or rows of

the current state matrix. Similarly, the key bytes are arranged into a matrix with four

rows and four (128-bit key), six (192-bit key) or eight (256-bit key) columns. Here

is, as an example, the state matrix of a 192-bit key:

4.4 Internal Structure of AES 101

K0 K4 K8 K12 K16 K20

K1 K5 K9 K13 K17 K21

K2 K6 K10 K14 K18 K22

K3 K7 K11 K15 K19 K23

We discuss now what happens in each of the layers.

4.4.1 Byte Substitution Layer

As shown in Fig. 4.3, the first layer in each round is the Byte Substitution layer. The

Byte Substitution layer can be viewed as a row of 16 parallel S-Boxes, each with

8 input and output bits. Note that all 16 S-Boxes are identical, unlike DES where

eight different S-Boxes are used. In the layer, each state byte Ai is replaced, i.e.,

substituted, by another byte Bi:

S(Ai) = Bi.

The S-Box is the only nonlinear element of AES, i.e., it holds that ByteSub(A)+
ByteSub(B) �= ByteSub(A + B) for two states A and B. The S-Box substitution is a

bijective mapping, i.e., each of the 28 = 256 possible input elements is one-to-one

mapped to one output element. This allows us to uniquely reverse the S-Box, which

is needed for decryption. In software implementations the S-Box is usually realized

as a 256-by-8 bit lookup table with fixed entries, as given in Table 4.3.

Table 4.3 AES S-Box: Substitution values in hexadecimal notation for input byte (xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

x 8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Example 4.8. Let’s assume the input byte to the S-Box is Ai = (C2)hex, then the

substituted value is

S((C2)hex) = (25)hex.

102 4 The Advanced Encryption Standard (AES)

On a bit level — and remember, the only thing that is ultimate of interest in encryp-

tion is the manipulation of bits — this substitution can be described as:

S(11000010) = (00100101).

⋄

Even though the S-Box is bijective, it does not have any fixed points, i.e., there

aren’t any input values Ai such that S(Ai) = Ai. Even the zero-input is not a fixed

point: S(00000000) = (01100011).

Example 4.9. Let’s assume the input to the Byte Substitution layer is

(C2,C2, . . . ,C2)

in hexadecimal notation. The output state is then

(25,25, . . . ,25).

⋄

Mathematical description of the S-Box For readers who are interested in how

the S-Box entries are constructed, a more detailed description now follows. This

description, however, is not necessary for a basic understanding of AES, and the

remainder of this subsection can be skipped without problem. Unlike the DES S-

Boxes, which are essentially random tables that fulfill certain properties, the AES

S-Boxes have a strong algebraic structure. An AES S-Box can be viewed as a two-

step mathematical transformation (Fig. 4.4).

Fig. 4.4 The two operations within the AES S-Box which computes the function Bi = S(Ai)

The first part of the substitution is a Galois field inversion, the mathematics of

which were introduced in Sect. 4.3.2. For each input element Ai, the inverse is com-

puted: B′
i = A−1

i , where both Ai and B′
i are considered elements in the field GF(28)

with the fixed irreducible polynomial P(x) = x8 + x4 + x3 + x + 1. A lookup table

with all inverses is shown in Table 4.2. Note that the inverse of the zero element does

not exist. However, for AES it is defined that the zero element Ai = 0 is mapped to

itself.

In the second part of the substitution, each byte B′
i is multiplied by a constant bit-

matrix followed by the addition of a constant 8-bit vector. The operation is described

by:

4.4 Internal Structure of AES 103

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

b2

b3

b4

b5

b6

b7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

1

0

0

0

1

1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

mod 2.

Note that B′ = (b′7, . . . ,b
′
0) is the bitwise vector representation of B′

i(x) = A−1
i (x).

This second step is referred to as affine mapping. Let’s look at an example of how

the S-Box computations work.

Example 4.10. We assume the S-Box input Ai = (11000010)2 = (C2)hex. From Ta-

ble 4.2 we can see that the inverse is:

A−1
i = B′

i = (2F)hex = (00101111)2.

We now apply the B′
i bit vector as input to the affine transformation. Note that the

least significant bit (lsb) b′0 of B′
i is at the rightmost position.

Bi = (00100101) = (25)hex

Thus, S((C2)hex) = (25)hex, which is exactly the result that is also given in the S-Box

Table 4.3.

⋄

If one computes both steps for all 256 possible input elements of the S-Box and

stores the results, one obtains Table 4.3. In most AES implementations, in particular

in virtually all software realizations of AES, the S-Box outputs are not explicitly

computed as shown here, but rather lookup tables like Table 4.3 are used. However,

for hardware implementations it is sometimes advantageous to realize the S-Boxes

as digital circuits which actually compute the inverse followed by the affine map-

ping.

The advantage of using inversion in GF(28) as the core function of the Byte

Substitution layer is that it provides a high degree of nonlinearity, which in turn

provides optimum protection against some of the strongest known analytical attacks.

The affine step “destroys” the algebraic structure of the Galois field, which in turn

is needed to prevent attacks that would exploit the finite field inversion.

4.4.2 Diffusion Layer

In AES, the Diffusion layer consists of two sublayers, the ShiftRows transformation

and the MixColumn transformation. We recall that diffusion is the spreading of the

influence of individual bits over the entire state. Unlike the nonlinear S-Box, the

104 4 The Advanced Encryption Standard (AES)

diffusion layer performs a linear operation on state matrices A,B, i.e., DIFF(A)+
DIFF(B) = DIFF(A+B).

ShiftRows Sublayer

The ShiftRows transformation cyclically shifts the second row of the state matrix

by three bytes to the right, the third row by two bytes to the right and the fourth

row by one byte to the right. The first row is not changed by the ShiftRows trans-

formation. The purpose of the ShiftRows transformation is to increase the diffusion

properties of AES. If the input of the ShiftRows sublayer is given as a state matrix

B = (B0,B1, . . . ,B15):

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

the output is the new state:

B0 B4 B8 B12 no shift

B5 B9 B13 B1 −→ three positions right shift

B10 B14 B2 B6 −→ two positions right shift

B15 B3 B7 B11 −→ one position right shift

(4.1)

MixColumn Sublayer

The MixColumn step is a linear transformation which mixes each column of the

state matrix. Since every input byte influences four output bytes, the MixColumn

operation is the major diffusion element in AES. The combination of the ShiftRows

and MixColumn layer makes it possible that after only three rounds every byte of

the state matrix depends on all 16 plaintext bytes.

In the following, we denote the 16-byte input state by B and the 16-byte output

state by C:

MixColumn(B) = C,

where B is the state after the ShiftRows operation as given in Expression (4.1).

Now, each 4-byte column is considered as a vector and multiplied by a fixed

4× 4 matrix. The matrix contains constant entries. Multiplication and addition of

the coefficients is done in GF(28). As an example, we show how the first four output

bytes are computed:

4.4 Internal Structure of AES 105

⎛

⎜
⎜
⎝

C0

C1

C2

C3

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

B0

B5

B10

B15

⎞

⎟
⎟
⎠

.

The second column of output bytes (C4,C5,C6,C7) is computed by multiplying

the four input bytes (B4,B9,B14,B3) by the same constant matrix, and so on. Fig-

ure 4.3 shows which input bytes are used in each of the four MixColumn operations.

We discuss now the details of the vector–matrix multiplication which forms the

MixColum operations. We recall that each state byte Ci and Bi is an 8-bit value

representing an element from GF(28). All arithmetic involving the coefficients is

done in this Galois field. For the constants in the matrix a hexadecimal notation is

used: “01” refers to the GF(28) polynomial with the coefficients (00000001), i.e., it

is the element 1 of the Galois field; “02” refers to the polynomial with the bit vector

(00000010), i.e., to the polynomial x; and “03” refers to the polynomial with the bit

vector (00000011), i.e., the Galois field element x+1.

The additions in the vector–matrix multiplication are GF(28) additions, that is

simple bitwise XORs of the respective bytes. For the multiplication of the con-

stants, we have to realize multiplications with the constants 01, 02 and 03. These

are quite efficient, and in fact, the three constants were chosen such that software

implementation is easy. Multiplication by 01 is multiplication by the identity and

does not involve any explicit operation. Multiplication by 02 and 03 can be done

through table look-up in two 256-by-8 tables. As an alternative, multiplication by

02 can also be implemented as a multiplication by x, which is a left shift by one bit,

and a modular reduction with P(x) = x8 + x4 + x3 + x +1. Similarly, multiplication

by 03, which represents the polynomial (x + 1), can be implemented by a left shift

by one bit and addition of the original value followed by a modular reduction with

P(x).

Example 4.11. We continue with our example from Sect. 4.4.1 and assume that the

input state to the MixColumn layer is

B = (25,25, . . . ,25).

In this special case, only two multiplications in GF(28) have to be done. These are

02 ·25 and 03 ·25, which can be computed in polynomial notation:

02 ·25 = x · (x5 + x2 +1)

= x6 + x3 + x,

03 ·25 = (x+1) · (x5 + x2 +1)

= (x6 + x3 + x)+(x5 + x2 +1)

= x6 + x5 + x3 + x2 + x+1.

Since both intermediate values have a degree smaller than 8, no modular reduction

with P(x) is necessary.

The output bytes of C result from the following addition in GF(28):

106 4 The Advanced Encryption Standard (AES)

01 ·25 = x5+ x2+ 1

01 ·25 = x5+ x2+ 1

02 ·25 = x6+ x3+ x

03 ·25 = x6+ x5+ x3+ x2+ x+ 1

Ci = x5+ x2+ 1,

where i = 0, . . . ,15. This leads to the output state C = (25,25, . . . ,25).
⋄

4.4.3 Key Addition Layer

The two inputs to the Key Addition layer are the current 16-byte state matrix and

a subkey which also consists of 16 bytes (128 bits). The two inputs are combined

through a bitwise XOR operation. Note that the XOR operation is equal to addi-

tion in the Galois field GF(2). The subkeys are derived in the key schedule that is

described below in Sect. 4.4.4.

4.4.4 Key Schedule

The key schedule takes the original input key (of length 128, 192 or 256 bit) and

derives the subkeys used in AES. Note that an XOR addition of a subkey is used

both at the input and output of AES. This process is sometimes referred to as key

whitening. The number of subkeys is equal to the number of rounds plus one, due

to the key needed for key whitening in the first key addition layer, cf. Fig. 4.2.

Thus, for the key length of 128 bits, the number of rounds is nr = 10, and there are

11 subkeys, each of 128 bits. The AES with a 192-bit key requires 13 subkeys of

length 128 bits, and AES with a 256-bit key has 15 subkeys. The AES subkeys are

computed recursively, i.e., in order to derive subkey ki, subkey ki−1 must be known,

etc.

The AES key schedule is word-oriented, where 1 word = 32 bits. Subkeys are

stored in a key expansion array W that consists of words. There are different key

schedules for the three different AES key sizes of 128, 192 and 256 bit, which are

all fairly similar. We introduce the three key schedules in the following.

Key Schedule for 128-Bit Key AES

The ll subkeys are stored in a key expansion array with the elements W [0], . . . ,W [43].
The subkeys are computed as depicted in Fig. 4.5. The elements K0, . . . ,K15 denote

the bytes of the original AES key.

First, we note that the first subkey k0 is the original AES key, i.e., the key is

copied into the first four elements of the key array W . The other array elements are

4.4 Internal Structure of AES 107

K

gfunction of round

32

8

RC[i]

3V2V1V0V

SSSS

88 8 8

32

2V 0V1V 3V

W[7]W[6]W[5]W[4]

W[3]W[2]W[1]W[0]

W[43]W[42]W[41]W[40]

W[39]W[38]W[37]W[36]

K K K K K K K K K K K K0 1 2 3

32 32 32 32

g

round key 10

round key 9

round key 1

round key 0

g

..
..

..
..

..
..

4 5 6 7 8 9 10 11 12 13 14 15KKK

i

Fig. 4.5 AES key schedule for 128-bit key size

computed as follows. As can be seen in the figure, the leftmost word of a subkey

W [4i], where i = 1, . . . ,10, is computed as:

W [4i] = W [4(i−1)]+g(W [4i−1]).

Here g() is a nonlinear function with a four-byte input and output. The remaining

three words of a subkey are computed recursively as:

W [4i+ j] = W [4i+ j−1]+W [4(i−1)+ j],

where i = 1, . . . ,10 and j = 1,2,3. The function g() rotates its four input bytes,

performs a byte-wise S-Box substitution, and adds a round coefficient RC to it. The

round coefficient is an element of the Galois field GF(28), i.e, an 8-bit value. It is

only added to the leftmost byte in the function g(). The round coefficients vary from

round to round according to the following rule:

108 4 The Advanced Encryption Standard (AES)

RC[1] = x0 = (00000001)2,

RC[2] = x1 = (00000010)2,

RC[3] = x2 = (00000100)2,
...

RC[10] = x9 = (00110110)2.

The function g() has two purposes. First, it adds nonlinearity to the key sched-

ule. Second, it removes symmetry in AES. Both properties are necessary to thwart

certain block cipher attacks.

Key Schedule for 192-Bit Key AES

AES with 192-bit key has 12 rounds and, thus, 13 subkeys of 128 bit each. The

subkeys require 52 words, which are stored in the array elements W [0], . . . ,W [51].
The computation of the array elements is quite similar to the 128-bit key case and is

shown in Fig. 4.6. There are eight iterations of the key schedule. (Note that these key

schedule iterations do not correspond to the 12 AES rounds.) Each iteration com-

putes six new words of the subkey array W . The subkey for the first AES round

is formed by the array elements (W [0],W [1],W [2],W [3]), the second subkey by

the elements (W [4],W [5],W [6],W [7]), and so on. Eight round coefficients RC[i] are

needed within the function g(). They are computed as in the 128-bit case and range

from RC[1], . . . ,RC[8].

Key Schedule for 256-Bit Key AES

AES with 256-bit key needs 15 subkeys. The subkeys are stored in the 60 words

W [0], . . . ,W [59]. The computation of the array elements is quite similar to the 128-

bit key case and is shown in Fig. 4.7. The key schedule has seven iterations, where

each iteration computes eight words for the subkeys. (Again, note that these key

schedule iterations do not correspond to the 14 AES rounds.) The subkey for the

first AES round is formed by the array elements (W [0],W [1],W [2],W [3]), the second

subkey by the elements (W [4],W [5],W [6],W [7]), and so on. There are seven round

coefficients RC[1], . . . ,RC[7] within the function g() needed, that are computed as

in the 128-bit case. This key schedule also has a function h() with 4-byte input and

output. The function applies the S-Box to all four input bytes.

In general, when implementing any of the key schedules, two different ap-

proaches exist:

1. Precomputation All subkeys are expanded first into the array W . The encryption

(decryption) of a plaintext (ciphertext) is executed afterwards. This approach is often

taken in PC and server implementations of AES, where large pieces of data are

encrypted under one key. Please note that this approach requires (nr + 1) ·16 bytes

of memory, e.g., 11 · 16 = 176 bytes if the key size is 128 bits. This is the reason

4.4 Internal Structure of AES 109

K

gfunction of round

32

8

RC[i]

3V2V1V0V

SSSS

88 8 8

32

2V 0V1V 3V

W[51]W[50]W[49]W[48]

W[47]W[46]W[45]W[44]W[43]W[42]

W[11]W[10]W[9]W[8]W[7]W[6]

W[5]W[4]W[3]W[2]W[1]W[0]

0 1 2 3 4 5 6 7 8 9 10 11

g

..
..

..
..

..
..

..
..

..
..

g

323232 32 32 32

12 13 14 15 16 17 18 19 232220 21KKKK K K K KKKKKKKKKKKKKKKK

i

Fig. 4.6 AES key schedule for 192-bit key sizes

why such an implementation on a device with limited memory resources, such as a

smart card, is sometimes not desireable.

2. On-the-fly A new subkey is derived for every new round during the encryption

(decryption) of a plaintext (ciphertext). Please note that when decrypting cipher-

texts, the last subkey is XORed first with the ciphertext. Therefore, it is required to

recursively derive all subkeys first and then start with the decryption of a ciphertext

and the on-the-fly generation of subkeys. As a result of this overhead, the decryption

of a ciphertext is always slightly slower than the encryption of a plaintext when the

on-the-fly generation of subkeys is used.

110 4 The Advanced Encryption Standard (AES)

W[0]

W[56] W[57] W[58] W[59]

W[8] W[9] W[10] W[11] W[12] W[13] W[14] W[15]

g

W[48] W[49] W[50] W[51] W[52] W[53] W[54] W[55]

g

h

32

V0 V1 V2 V3

S S S S

32

 −functionh

V3V1 V0V2

32

888 8

S S S S

V0 V1 V2 V3

32

RC[i]

8

function of round g i

K K31302928

32323232 32 32 32 32

..
..

..
..

..
..

..
..

..
..

..
..

..
..

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27KKKK

W[7]W[6]W[5]W[4]W[3]W[2]W[1]

Fig. 4.7 AES key schedule for 256-bit key size

4.5 Decryption

Because AES is not based on a Feistel network, all layers must actually be in-

verted, i.e., the Byte Substitution layer becomes the Inv Byte Substitution layer,

the ShiftRows layer becomes the Inv ShiftRows layer, and the MixColumn layer

becomes Inv MixColumn layer. However, as we will see, it turns out that the inverse

layer operations are fairly similar to the layer operations used for encryption. In ad-

4.5 Decryption 111

dition, the order of the subkeys is reversed, i.e., we need a reversed key schedule. A

block diagram of the decryption function is shown in Fig. 4.8.

Plaintext

n Transform −1

1Transform

0Transform

rn

inverse of round n r

inverse of round −1n r

Inv Byte Substitution

Inv MixColumn Layer

Inv ShiftRows Layer

Key Addition Layer

Key Addition Layer

inverse of round 1

Inv Byte Substitution

Inv MixColumn Layer

Inv ShiftRows Layer

Key Addition Layer

Key Addition Layer

Inv ShiftRows Layer

Inv Byte Substitution

Ciphertext

y

AES ()

k0

k1

k
r −1n

knr

Transform

−1

kKey

x= y

r

Fig. 4.8 AES decryption block diagram

Since the last encryption round does not perform the MixColum operation, the

first decryption round also does not contain the corresponding inverse layer. All

other decryption rounds, however, contain all AES layers. In the following, we dis-

cuss the inverse layers of the general AES decryption round (Fig. 4.9). Since the

112 4 The Advanced Encryption Standard (AES)

XOR operation is its own inverse, the key addition layer in the decryption mode is

the same as in the encryption mode: it consists of a row of plain XOR gates.

InvSubBytes

1C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C 14C 15C0C

k i

10B 7B 14B1B4B 11B 8B 5B 15B 12B 9B 6B 3B2B0B 13B

0A 1A 3A 5A 6A 8A 9A 10A 11A 12A 13A 14A 15A2A 4A 7A

s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1 s−1

InvMixColumn

InvShiftRows

Key Addition

Fig. 4.9 AES decryption round function 1,2, . . . ,nr −1

Inverse MixColumn Sublayer

After the addition of the subkey, the inverse MixColumn step is applied to the state

(again, the exception is the first decryption round). In order to reverse the MixCol-

umn operation, the inverse of its matrix must be used. The input is a 4-byte column

of the State C which is multiplied by the inverse 4×4 matrix. The matrix contains

constant entries. Multiplication and addition of the coefficients is done in GF(28).

⎛

⎜
⎜
⎝

B0

B1

B2

B3

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

C0

C1

C2

C3

⎞

⎟
⎟
⎠

The second column of output bytes (B4,B5,B6,B7) is computed by multiplying the

four input bytes (C4,C5,C6,C7) by the same constant matrix, and so on. Each value

4.5 Decryption 113

Bi and Ci is an element from GF(28). Also, the constants are elements from GF(28).
The notation for the constants is hexadecimal and is the same as was used for the

MixColumn layer, for example:

0B = (0B)hex = (00001011)2 = x3 + x+1.

Additions in the vector–matrix multiplication are bitwise XORs.

Inverse ShiftRows Sublayer

In order to reverse the ShiftRows operation of the encryption algorithm, we must

shift the rows of the state matrix in the opposite direction. The first row is not

changed by the inverse ShiftRows transformation. If the input of the ShiftRows

sublayer is given as a state matrix B = (B0,B1, . . . ,B15):

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

the inverse ShiftRows sublayer yields the output:

B0 B4 B8 B12 no shift

B13 B1 B5 B9 ←− three positions left shift

B10 B14 B2 B6 ←− two positions left shift

B7 B11 B15 B3 ←− one position left shift

Inverse Byte Substitution Layer

The inverse S-Box is used when decrypting a ciphertext. Since the AES S-Box is

a bijective, i.e., a one-to-one mapping, it is possible to construct an inverse S-Box

such that:

Ai = S−1(Bi) = S−1(S(Ai)),

where Ai and Bi are elements of the state matrix. The entries of the inverse S-Box

are given in Table 4.4.

For readers who are interested in the details of how the entries of inverse S-Box

are constructed, we provide a derivation. However, for a functional understanding

of AES, the remainder of this section can be skipped. In order to reverse the S-

Box substitution, we first have to compute the inverse of the affine transformation.

For this, each input byte Bi is considered an element of GF(28). The inverse affine

transformation on each byte Bi is defined by:

114 4 The Advanced Encryption Standard (AES)

Table 4.4 Inverse AES S-Box: Substitution values in hexadecimal notation for input byte (xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

x 8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

b2

b3

b4

b5

b6

b7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

0

1

0

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

mod 2,

where (b7, . . . ,b0) is the bitwise vector representation of Bi(x), and (b′7, . . . ,b
′
0) the

result after the inverse affine transformation.

In the second step of the inverse S-Box operation, the Galois field inverse has to

be reversed. For this, note that Ai = (A−1
i)−1. This means that the inverse operation

is reversed by computing the inverse again. In our notation we thus have to compute

Ai = (B′
i)
−1 ∈ GF(28)

with the fixed reduction polynomial P(x) = x8 +x4 +x3 +x+1. Again, the zero ele-

ment is mapped to itself. The vector Ai = (a7, . . . ,a0) (representing the field element

a7x7 + · · ·+a1x+a0) is the result of the substitution:

Ai = S−1(Bi).

Decryption Key Schedule

Since decryption round one needs the last subkey, the second decryption round

needs the second-to-last subkey and so on, we need the subkey in reversed order

as shown in Fig. 4.8. In practice this is mainly achieved by computing the entire

key schedule first and storing all 11, 13 or 15 subkeys, depending on the number or

4.6 Implementation in Software and Hardware 115

rounds AES is using (which in turn depends on the three key lengths supported by

AES). This precomputation adds usually a small latency to the decryption operation

relative to encryption.

4.6 Implementation in Software and Hardware

We briefly comment on the efficiency of the AES cipher with respect to software

and hardware implementation.

Software

Unlike DES, AES was designed such that an efficient software implementation is

possible. A straightforward implementation of AES which directly follows the data

path description, such as the description given in this chapter, is well suited for 8-

bit processors such as those found on smart cards, but is not particularly efficient

on 32-bit or 64-bit machines, which are common in today’s PCs. In a naı̈ve imple-

mentation, all time-critical functions (Byte Substitution, ShiftRows, MixColumn)

operate on individual bytes. Processing 1 byte per instruction is inefficient on mod-

ern 32-bit or 64-bit processors.

However, the Rijndael designers proposed a method which results in fast soft-

ware implementations. The core idea is to merge all round functions (except the

rather trivial key addition) into one table look-up. This results in four tables, each

of which consists of 256 entries, where each entry is 32 bits wide. These tables

are named a T-Box. Four table accesses yield 32 output bits of one round. Hence,

one round can be computed with 16 table look-ups. On a 1.2-GHz Intel processor,

a throughput of 400 Mbit/s (or 50 MByte/s) is possible. The fastest known imple-

mentation on a 64-bit Athlon CPU achieves a theoretical throughput of more than

1.6 Gbit/s. However, conventional hard disc encryption tools with AES or an open-

source implementation of AES reach a perfomance of a few hundred Mbit/s on

similar platforms.

Hardware

Compared to DES, AES requires more hardware resources for an implementation.

However, due to the high integration density of modern integrated circuits, AES

can be implemented with very high throughputs in modern ASIC or FPGA (field

programmable gate array — these are programmable hardware devices) technol-

ogy. Commercial AES ASICs can exceed throughputs of 10Gbit/sec. Through par-

allelization of AES encryption units on one chip, the speed can be further increased.

It can be said that symmetric encryption with today’s ciphers is extremely fast, not

only compared to asymmetric cryptosystems but also compared to other algorithms

116 4 The Advanced Encryption Standard (AES)

needed in modern communication systems, such as data compression or signal pro-

cessing schemes.

4.7 Discussion and Further Reading

AES Algorithm and Security A detailed description of the design principles of

AES can be found in [52]. This book by the Rijndael inventors describes the design

of the block cipher. Recent research in context to AES can be found online in the

AES Lounge [68]. This website is a dissemination effort within ECRYPT, the Net-

work of Excellence in Cryptology, and is a rich resource of activities around AES.

It gives many links to further information and papers regarding implementation and

theoretical aspects of AES.

There is currently no analytical attack against AES known which has a com-

plexity less than a brute-force attack. An elegant algebraic description was found

[122], which in turn triggered speculations that this could lead to attacks. Subse-

quent research showed that an attack is, in fact, not feasible. By now, the common

assumption is that the approach will not threaten AES. A good summary on alge-

braic attacks can be found in [43]. In addition, there have been proposals for many

other attacks, including square attack, impossible differential attack or related key

attack. Again, a good source for further references is the AES Lounge.

The standard reference for the mathematics of finite fields is [110]. A very acces-

sible but brief introduction is also given in [19]. The International Workshop on the

Arithmetic of Finite Fields (WAIFI), a relatively new workshop series, is concerned

with both the applications and the theory of Galois fields [171].

Implementation As mentioned in Sect. 4.6, in most software implementations on

modern CPUs special lookup tables are being used (T-Boxes). An early detailed de-

scription of the construction of T-Boxes can be found in [51, Sect. 5]. A description

of a high-speed software implementation on modern 32-bit and 64-bit CPUs is given

in [116, 115]. The bit slicing technique which was developed in the context of DES

is also applicable to AES and can lead to very fast code as shown in [117].

A strong indication for the importance of AES was the recent introduction of

special AES instructions by Intel in CPUs starting in 2008. The instructions allow

these machines to compute the round operation particularly quickly.

There is wealth of literature dealing with hardware implementation of AES.

A good introduction to the area of AES hardware architectures is given in [104,

Chap. 10]. As an example of the variety of AES implementations, reference [86] de-

scribes a very small FPGA implementation with 2.2Mbit/s and a very fast pipelined

FPGA implementation with 25Gbit/s. It is also possible to use the DSP blocks (i.e.,

fast arithmetic units) available on modern FPGAs for AES, which can also yield

throughputs beyond 50Mbit/s [63]. The basic idea in all high-speed architectures is

to process several plaintext blocks in parallel by means of pipelining. On the other

end of the performance spectrum are lightweight architectures which are optimized

4.8 Lessons Learned 117

for applications such as RFID. The basic idea here is to serialize the data path, i.e.,

one round is processed in several time steps. Good references are [75, 42].

4.8 Lessons Learned

� AES is a modern block cipher which supports three key lengths of 128, 192 and

256 bit. It provides excellent long-term security against brute-force attacks.

� AES has been studied intensively since the late 1990s and no attacks have been

found that are better than brute-force.

� AES is not based on Feistel networks. Its basic operations use Galois field arith-

metic and provide strong diffusion and confusion.

� AES is part of numerous open standards such as IPsec or TLS, in addition to

being the mandatory encryption algorithm for US government applications. It

seems likely that the cipher will be the dominant encryption algorithm for many

years to come.

� AES is efficient in software and hardware.

118 4 The Advanced Encryption Standard (AES)

Problems

4.1. Since May 26, 2002, the AES (Advanced Encryption Standard) describes the

official standard of the US government.

1. The evolutionary history of AES differs from that of DES. Briefly describe the

differences of the AES history in comparison to DES.

2. Outline the fundamental events of the developing process.

3. What is the name of the algorithm that is known as AES?

4. Who developed this algorithm?

5. Which block sizes and key lengths are supported by this algorithm?

4.2. For the AES algorithm, some computations are done by Galois Fields (GF).

With the following problems, we practice some basic computations.

Compute the multiplication and addition table for the prime field GF(7). A mul-

tiplication table is a square (here: 7×7) table which has as its rows and columns all

field elements. Its entries are the products of the field element at the corresponding

row and column. Note that the table is symmetric along the diagonal. The addition

table is completely analogous but contains the sums of field elements as entries.

4.3. Generate the multiplication table for the extension field GF(23) for the case

that the irreducible polynomial is P(x) = x3 + x + 1. The multiplication table is in

this case a 8× 8 table. (Remark: You can do this manually or write a program for

it.)

4.4. Addition in GF(24): Compute A(x) + B(x) mod P(x) in GF(24) using the ir-

reducible polynomial P(x) = x4 + x + 1. What is the influence of the choice of the

reduction polynomial on the computation?

1. A(x) = x2 +1, B(x) = x3 + x2 +1

2. A(x) = x2 +1, B(x) = x+1

4.5. Multiplication in GF(24): Compute A(x) ·B(x) mod P(x) in GF(24) using the

irreducible polynomial P(x) = x4 + x+1. What is the influence of the choice of the

reduction polynomial on the computation?

1. A(x) = x2 +1, B(x) = x3 + x2 +1

2. A(x) = x2 +1, B(x) = x+1

4.6. Compute in GF(28):

(x4 + x+1)/(x7 + x6 + x3 + x2),

where the irreducible polynomial is the one used by AES, P(x) = x8 +x4 +x3 +x+1.

Note that Table 4.2 contains a list of all multiplicative inverses for this field.

4.7. We consider the field GF(24), with P(x) = x4 +x+1 being the irreducible poly-

nomial. Find the inverses of A(x) = x and B(x) = x2 + x. You can find the inverses

4.8 Problems 119

either by trial and error, i.e., brute-force search, or by applying the Euclidean algo-

rithm for polynomials. (However, the Euclidean algorithm is only sketched in this

chapter.) Verify your answer by multiplying the inverses you determined by A and

B, respectively.

4.8. Find all irreducible polynomials

1. of degree 3 over GF(2),
2. of degree 4 over GF(2).

The best approach for doing this is to consider all polynomials of lower degree and

check whether they are factors. Please note that we only consider monic irreducible

polynomials, i.e., polynomials with the highest coefficient equal to one.

4.9. We consider AES with 128-bit block length and 128-bit key length. What is the

output of the first round of AES if the plaintext consists of 128 ones, and the first

subkey (i.e., the first subkey) also consists of 128 ones? You can write your final

results in a rectangular array format if you wish.

4.10. In the following, we check the diffusion properties of AES after a sin-

gle round. Let W = (w0,w1,w2,w3) = (0x01000000, 0x00000000, 0x00000000,
0x00000000) be the input in 32-bit chunks to a 128-bit AES. The subkeys for the

computation of the result of the first round of AES are W0, . . . ,W7 with 32 bits each

are given by

W0 = (0x2B7E1516),

W1 = (0x28AED2A6),

W2 = (0xABF71588),

W3 = (0x09CF4F3C),

W4 = (0xA0FAFE17),

W5 = (0x88542CB1),

W6 = (0x23A33939),

W7 = (0x2A6C7605).

Use this book to figure out how the input is processed in the first round (e.g., S-

Boxes). For the solution, you might also want to write a short computer program or

use an existing one. In any case, indicate all intermediate steps for the computation

of ShiftRows, SubBytes and MixColumns!

1. Compute the output of the first round of AES to the input W and the subkeys

W0, . . . ,W7.

2. Compute the output of the first round of AES for the case that all input bits are

zero.

3. How many output bits have changed? Remark that we only consider a single

round — after every further round, more output bits will be affected (avalanche

effect).

120 4 The Advanced Encryption Standard (AES)

4.11. The MixColumn transformation of AES consists of a matrix–vector multipli-

cation in the field GF(28) with P(x) = x8 +x4 +x3 +x+1. Let b = (b7x7 + . . .+b0)
be one of the (four) input bytes to the vector–matrix multiplication. Each input byte

is multiplied with the constants 01, 02 and 03. Your task is to provide exact equa-

tions for computing those three constant multiplications. We denote the result by

d = (d7x7 + . . .+d0).

1. Equations for computing the 8 bits of d = 01 ·b.

2. Equations for computing the 8 bits of d = 02 ·b.

3. Equations for computing the 8 bits of d = 03 ·b.

Note: The AES specification uses “01” to represent the polynomial 1, “02” to rep-

resent the polynomial x, and “03” to represent x+1.

4.12. We now look at the gate (or bit) complexity of the MixColumn function, using

the results from problem 4.11. We recall from the discussion of stream ciphers that

a 2-input XOR gate performs a GF(2) addition.

1. How many 2-input XOR gates are required to perform one constant multiplica-

tion by 01, 02 and 03, respectively, in GF(28).
2. What is the overall gate complexity of a hardware implementation of one matrix–

vector multiplication?

3. What is the overall gate complexity of a hardware implementation of the entire

Diffusion layer? We assume permutations require no gates.

4.13. We consider the first part of the ByteSub operation, i.e, the Galois field inver-

sion.

1. Using Table 4.2, what is the inverse of the bytes 29, F3 and 01, where each byte

is given in hexadecimal notation?

2. Verify your answer by performing a GF(28) multiplication with your answer and

the input byte. Note that you have to represent each byte first as polynomials in

GF(28). The MSB of each byte represents the x7 coefficient.

4.14. Your task is to compute the S-Box, i.e., the ByteSub, values for the input bytes

29, F3 and 01, where each byte is given in hexadecimal notation.

1. First, look up the inverses using Table 4.2 to obtain values B′. Now, perform the

affine mapping by computing the matrix–vector multiplication and addition.

2. Verify your result using the S-Box Table 4.3.

3. What is the value of S(0)?

4.15. Derive the bit representation for the following round constants within the key

schedule:

� RC[8]
� RC[9]
� RC[10]

4.8 Problems 121

4.16. For the following, we assume AES with 192-bit key length. Furthermore, let

us assume an ASIC which can check 3 ·107 keys per second.

1. If we use 100,000 such ICs in parallel, how long does an average key search take?

Compare this period of time with the age of the universe (approx. 1010 years).

2. Assume Moore’s Law will still be valid for the next few years, how many years

do we have to wait until we can build a key search machine to perform an average

key search of AES-192 in 24 hours? Again, assume that we use 100,000 ICs in

parallel.

Chapter 5

More About Block Ciphers

A block cipher is much more than just an encryption algorithm. It can be used as

a versatile building block with which a diverse set of cryptographic mechanisms

can be realized. For instance, we can use them for building different types of block-

based encryption schemes, and we can even use block ciphers for realizing stream

ciphers. The different ways of encryption are called modes of operation and are

discussed in this chapter. Block ciphers can also be used for constructing hash func-

tions, message authentication codes which are also knowns as MACs, or key estab-

lishment protocols, all of which will be described in later chapters. There are also

other uses for block ciphers, e.g., as pseudo-random generators. In addition to modes

of operation, this chapter also discusses two very useful techniques for increasing

the security of block ciphers, namely key whitening and multiple encryption.

In this chapter you will learn

� the most important modes of operation for block ciphers in practice

� security pitfalls when using modes of operations

� the principles of key whitening

� why double encryption is not a good idea, and the meet-in-the-middle attack

� triple encryption

123

124 5 More About Block Ciphers

5.1 Encryption with Block Ciphers: Modes of Operation

In the previous chapters we introduced how DES, 3DES and AES encrypt a block

of data. Of course, in practice one wants typically to encrypt more than one single

8-byte or 16-byte block of plaintext, e.g., when encrypting an e-mail or a computer

file. There are several ways of encrypting long plaintexts with a block cipher. We

introduce several popular modes of operation in this chapter, including

� Electronic Code Book mode (ECB),

� Cipher Block Chaining mode (CBC),

� Cipher Feedback mode (CFB),

� Output Feedback mode (OFB),

� Counter mode (CTR).

The latter three modes use the block cipher as a building block for a stream cipher.

All of the five modes have one goal: They encrypt data and thus provide confi-

dentiality for a message sent from Alice to Bob. In practice, we often not only want

to keep data confidential, but Bob also wants to know whether the message is re-

ally coming from Alice. This is called authentication and the Galois Counter mode

(GCM), which we will also introduce, is a mode of operation that lets the receiver

(Bob) determine whether the message was really sent by the person he shares a key

with (Alice). Moreover, authentication also allows Bob to detect whether the cipher-

text was altered during transmission. More on authentication is found in Chap. 10.

The ECB and CFB modes require that the length of the plaintext be an exact

multiple of the block size of the cipher used, e.g., a multiple of 16 bytes in the

case of AES. If the plaintext does not have this length, it must be padded. There

are several ways of doing this padding in practice. One possible padding method

is to append a single “1” bit to the plaintext and then to append as many “0” bits

as necessary to reach a multiple of the block length. Should the plaintext be an

exact multiple of the block length, an extra block consisting only of padding bits is

appended.

5.1.1 Electronic Codebook Mode (ECB)

The Electronic Code Book (ECB) mode is the most straightforward way of encrypt-

ing a message. In the following, let ek(xi) denote the encryption of plaintext block

xi with key k using some arbitrary block cipher. Let e−1
k (yi) denote the decryption

of ciphertext block yi with key k. Let us assume that the block cipher encrypts (de-

crypts) blocks of size b bits. Messages which exceed b bits are partitioned into b-bit

blocks. If the length of the message is not a multiple of b bits, it must be padded to

a multiple of b bits prior to encryption. As shown in Fig. 5.1, in ECB mode each

block is encrypted separately. The block cipher can, for instance, be AES or 3DES.

Encryption and decryption in the ECB mode is formally described as follows:

5.1 Encryption with Block Ciphers: Modes of Operation 125

Fig. 5.1 Encryption and decryption in ECB mode

Definition 5.1.1 Electronic Codebook Mode (ECB)

Let e() be a block cipher of block size b, and let xi and yi be bit

strings of length b.

Encryption: yi = ek(xi), i ≥ 1

Decryption: xi = e−1
k (yi) = e−1

k (ek(xi)), i ≥ 1

It is straightforward to verify the correctness of the ECB mode:

e−1
k (yi) = e−1

k (ek(xi)) = xi.

The ECB mode has advantages. Block synchronization between the encryption

and decryption parties Alice and Bob is not necessary, i.e., if the receiver does not

receive all encrypted blocks due to transmission problems, it is still possible to de-

crypt the received blocks. Similarly, bit errors, e.g., caused by noisy transmission

lines, only affect the corresponding block but not succeeding blocks. Also, block ci-

phers operating in ECB mode can be parallelized, e.g., one encryption unit encrypts

(or decrypts) block 1, the next one block 2, and so on. This is an advantage for

high-speed implementations, but many other modes such as the CFB do not allow

parallelization.

However, as is often the case in cryptography, there are some unexpected weak-

nesses associated with the ECB mode which we will discuss in the following. The

main problem of the ECB mode is that it encrypts highly deterministically. This

means that identical plaintext blocks result in identical ciphertext blocks, as long as

the key does not change. The ECB mode can be viewed as a gigantic code book —

hence the mode’s name — which maps every input to a certain output. Of course, if

the key is changed the entire code book changes, but as long as the key is static the

book is fixed. This has several undesirable consequences. First, an attacker recog-

nizes if the same message has been sent twice simply by looking at the ciphertext.

Deducing information from the ciphertext in this way is called traffic analysis. For

instance, if there is a fixed header that always precedes a message, the header always

results in the same ciphertext. From this, an attacker can, for instance, learn when

a new message has been sent. Second, plaintext blocks are encrypted independently

of previous blocks. If an attacker reorders the ciphertext blocks, this might result in

valid plaintext and the reordering might not be detected. We demonstrate two simple

attacks which exploit these weaknesses of the ECB mode.

The ECB mode is susceptible to substitution attacks, because once a particular

plaintext to ciphertext block mapping xi → yi is known, a sequence of ciphertext

126 5 More About Block Ciphers

blocks can easily be manipulated. We demonstrate how a substitution attack could

work in the real world. Imagine the following example of an electronic wire transfer

betweens banks.

Example 5.1. Substitution attack against electronic bank transfer

Let’s assume a protocol for wire transfers between banks (Fig. 5.2). There are five

fields which specify a transfer: the sending bank’s ID and account number, the re-

ceiving bank’s ID and account number, and the amount. We assume now (and this

is a major simplification) that each of the fields has exactly the size of the block

cipher width, e.g., 16 bytes in the case of AES. Furthermore, the encryption key be-

tween the two banks does not change too frequently. Due to the nature of the ECB,

an attacker can exploit the deterministic nature of this mode of operation by simple

substitution of the blocks. The attack details are as follows:

4 51 2 3Block #

Amount

$

Receiving

Account #

Receiving

Bank B

Sending

Account #

Sending

Bank A

Fig. 5.2 Example for a substitution attack against ECB encryption

1. The attacker, Oscar, opens one account at bank A and one at bank B.

2. Oscar taps the encrypted line of the banking communication network.

3. He sends $1.00 transfers from his account at bank A to his account at bank B

repeatedly. He observes the ciphertexts going through the communication net-

work. Even though he cannot decipher the random-looking ciphertext blocks, he

can check for ciphertext blocks that repeat. After a while he can recognize the

five blocks of his own transfer. He now stores blocks 1, 3 and 4 of these transfers.

These are the encrypted versions of the ID numbers of both banks as well as the

encrypted version of his account at bank B.

4. Recall that the two banks do not change the key too frequently. This means that

the same key is used for several other transfers between bank A and B. By com-

paring blocks 1 and 3 of all subsequent messages with the ones he has stored,

Oscar recognizes all transfers that are made from some account at bank A to

some account at bank B. He now simply replaces block 4 — which contains the

receiving account number — with the block 4 that he stored before. This block

contains Oscar’s account number in encrypted form. As a consequence, all trans-

fers from some account of bank A to some account of bank B are redirected to

go into Oscar’s B account! Note that bank B now has means of detecting that the

block 4 has been replaced in some of the transfers it receives.

5. Withdraw money from bank B quickly and fly to a country that has a relaxed

attitude about the extradition of white-collar criminals.

⋄
What’s interesting about this attack is that it works completely without attack-

ing the block cipher itself. So even if we would use AES with a 256-bit key and if

5.1 Encryption with Block Ciphers: Modes of Operation 127

we would encrypt each block, say, 1000 times, this would not prevent the attack. It

should be stressed, however, that this is not an attack that breaks the block cipher

itself. Messages that are unknown to Oscar still remain confidential. He simply re-

placed parts of the ciphertext with some other (previous) ciphertexts. This is called

a violation of the integrity of the message. There are available techniques for pre-

serving the integrity of a message, namely message authentication codes (MACs)

and digital signatures. Both are widely used in practice to prevent such an attack,

and are introduced in Chaps. 10 and 12. Also, the Galois Counter mode, which is

described below, is an encryption mode with a built-in integrity check. Note that this

attack only works if the key between bank A and B is not changed too frequently.

This is another reason why frequent key freshness is a good idea.

We now look at another problem posed by the ECB mode.

Example 5.2. Encryption of bitmaps in ECB mode

Figure 5.3 clearly shows a major disadvantage of the ECB mode: Identical plaintexts

are mapped to identical ciphertexts. In case of a simple bitmap, the information (text

in the picture) can still be read out from the encrypted picture even though we used

AES with a 256-bit key for encryption. This is because the background consists of

only a few different plaintext blocks which yields a fairly uniformly looking back-

ground in the ciphertext. On the other hand, all plaintext blocks which contain part

of the letters result in random-looking ciphertexts. These random-looking cipher-

texts are clearly distinguishable from the uniform background by the human eye.

Fig. 5.3 Image and encrypted image using AES with 256-bit key in ECB mode

⋄

128 5 More About Block Ciphers

This weakness is similar to the attack of the substitution cipher that was intro-

duced in the first example. In both cases, statistical properties in the plaintext are

preserved in the ciphertext. Note that unlike an attack against the substitution cipher

or the above banking transfer attack, an attacker does not have to do anything in the

case here. The human eye automatically makes use of the statistical information.

Both attacks above were examples of the weakness of a deterministic encryption

scheme. Thus, it is usually preferable that different ciphertexts are produced every

time we encrypt the same plaintext. This behavior is called probabilistic encryp-

tion. This can be achieved by introducing some form of randomness, typically in

form of an initialization vector (IV). The following modes of operation all encrypt

probabilistically by means of an IV.

5.1.2 Cipher Block Chaining Mode (CBC)

There are two main ideas behind the Cipher Block Chaining (CBC) mode. First, the

encryption of all blocks are “chained together” such that ciphertext yi depends not

only on block xi but on all previous plaintext blocks as well. Second, the encryption

is randomized by using an initialization vector (IV). Here are the details of the CBC

mode.

The ciphertext yi, which is the result of the encryption of plaintext block xi, is

fed back to the cipher input and XORed with the succeeding plaintext block xi+1.

This XOR sum is then encrypted, yielding the next ciphertext yi+1, which can then

be used for encrypting xi+2, and so on. This process is shown on the left-hand side

of Fig. 5.4. For the first plaintext block x1 there is no previous ciphertext. For this an

IV is added to the first plaintext, which also allows us to make each CBC encryption

nondeterministic. Note that the first ciphertext y1 depends on plaintext x1 (and the

IV). The second ciphertext depends on the IV, x1 and x2. The third ciphertext y3

depends on the IV and x1,x2,x3, and so on. The last ciphertext is a function of all

plaintext blocks and the IV.

Fig. 5.4 Encryption and decryption in CBC mode

When decrypting a ciphertext block yi in CBC mode, we have to reverse the two

operations we have done on the encryption side. First, we have to reverse the block

cipher encryption by applying the decryption function e−1(). After this we have to

5.1 Encryption with Block Ciphers: Modes of Operation 129

undo the XOR operation by again XORing the correct ciphertext block. This can

be expressed for general blocks yi as e−1
k (yi) = xi ⊕ yi−1. The right-hand side of

Fig. 5.4 shows this process. Again, if the first ciphertext block y1 is decrypted, the

result must be XORed with the initialization vector IV to determine the plaintext

block x1, i.e., x1 = IV ⊕ e−1
k (y1). The entire process of encryption and decryption

can be described as:

Definition 5.1.2 Cipher block chaining mode (CBC)

Let e() be a block cipher of block size b; let xi and yi be bit strings

of length b; and IV be a nonce of length b.

Encryption (first block): y1 = ek(x1 ⊕ IV)
Encryption (general block): yi = ek(xi ⊕ yi−1), i ≥ 2

Decryption (first block): x1 = e−1
k (y1)⊕ IV

Decryption (general block): xi = e−1
k (yi)⊕ yi−1, i ≥ 2

We now verify the mode, i.e., we show that the decryption actually reverses the

encryption. For the decryption of the first block y1, we obtain:

d(y1) = e−1
k (y1)⊕ IV = e−1

k (ek(x1 ⊕ IV))⊕ IV = (x1 ⊕ IV)⊕ IV = x1

For the decryption of all subsequent blocks yi, i ≥ 2, we obtain:

d(yi) = e−1
k (yi)⊕ yi−1 = e−1

k (ek(xi ⊕ yi−1))⊕ yi−1 = (xi ⊕ yi−1)⊕ yi−1 = xi

If we choose a new IV every time we encrypt, the CBC mode becomes a prob-

abilistic encryption scheme. If we encrypt a string of blocks x1, . . . ,xt once with a

first IV and a second time with a different IV, the two resulting ciphertext sequences

look completely unrelated to each other for an attacker. Note that we do not have

to keep the IV secret. However, in most cases, we want the IV to be a nonce, i.e., a

number used only once. There are many different ways of generating and agreeing

on initialization values. In the simplest case, a randomly chosen number is trans-

mitted in the clear between the two communication parties prior to the encrypted

session. Alternatively it is a counter value that is known to Alice and Bob, and it is

incremented every time a new session starts (which requires that the counter value

must be stored between sessions). It could be derived from values such as Alice’s

and Bob’s ID number, e.g., their IP addresses, together with the current time. Also,

in order to strengthen any of these methods, we can take a value as described above

and ECB-encrypt it once using the block cipher with the key known to Alice and

Bob, and use the resulting ciphertext as the IV. There are some advanced attacks

which also require that the IV is nonpredictable.

It is instructive to discuss whether the substitution attack against the bank trans-

fer that worked for the ECB mode is applicable to the CBC mode. If the IV is

properly chosen for every wire transfer, the attack will not work at all since Os-

car will not recognize any patterns in the ciphertext. If the IV is kept the same for

several transfers, he would recognize the transfers from his account at bank A to

130 5 More About Block Ciphers

his account at bank B. However, if he substitutes ciphertext block 4, which is his

encrypted account number, in other wire transfers going from bank A to B, bank

B would decrypt block 4 and 5 to some random value. Even though money would

not be redirected into Oscar’s account, it might be redirected to some other random

account. The amount would be a random value too. This is obviously also highly

undesirable for banks. This example shows that even though Oscar cannot perform

specific manipulations, ciphertext alterations by him can cause random changes to

the plaintext, which can have major negative consequences. Hence in many, if not in

most, real-world systems, encryption itself is not sufficient: we also have to protect

the integrity of the message. This can be achieved by message authentication codes

(MACs) or digital signatures, which are introduced in Chap. 12. The Galois Counter

mode described below provides encryption and integrity check simultaneously.

5.1.3 Output Feedback Mode (OFB)

In the Output Feedback (OFB) mode a block cipher is used to build a stream cipher

encryption scheme. This scheme is shown in Fig. 5.5. Note that in OFB mode the

key stream is not generated bitwise but instead in a blockwise fashion. The output

of the cipher gives us b key stream bits, where b is the width of the block cipher

used, with which we can encrypt b plaintext bits using the XOR operation.

The idea behind the OFB mode is quite simple. We start with encrypting an IV

with a block cipher. The cipher output gives us the first set of b key stream bits.

The next block of key stream bits is computed by feeding the previous cipher output

back into the block cipher and encrypting it. This process is repeated as shown in

Fig. 5.5.

The OFB mode forms a synchronous stream cipher (cf. Fig. 2.3) as the key stream

does not depend on the plain or ciphertext. In fact, using the OFB mode is quite sim-

ilar to using a standard stream cipher such as RC4 or Trivium. Since the OFB mode

forms a stream cipher, encryption and decryption are exactly the same operation.

As can be seen in the right-hand part of Fig. 5.5, the receiver does not use the block

cipher in decryption mode e−1() to decrypt the ciphertext. This is because the actual

encryption is performed by the XOR function, and in order to reverse it, i.e., to de-

crypt it, we simply have to perform another XOR function on the receiver side. This

is in contrast to ECB and CBC mode, where the data is actually being encrypted and

decrypted by the block cipher.

Encryption and decryption using the OFB scheme is as follows:

5.1 Encryption with Block Ciphers: Modes of Operation 131

Fig. 5.5 Encryption and decryption in OFB mode

Definition 5.1.3 Output feedback mode (OFB)

Let e() be a block cipher of block size b; let xi, yi and si be bit

strings of length b; and IV be a nonce of length b.

Encryption (first block): s1 = ek(IV) and y1 = s1 ⊕ x1

Encryption (general block): si = ek(si−1) and yi = si ⊕ xi, i ≥ 2

Decryption (first block): s1 = ek(IV) and x1 = s1 ⊕ y1

Decryption (general block): si = ek(si−1) and xi = si ⊕ yi, i ≥ 2

As a result of the use of an IV, the OFB encryption is also nondeterministic,

hence, encrypting the same plaintext twice results in different ciphertexts. As in the

case for the CBC mode, the IV should be a nonce. One advantage of the OFB mode

is that the block cipher computations are independent of the plaintext. Hence, one

can precompute one or several blocks si of key stream material.

5.1.4 Cipher Feedback Mode (CFB)

The Cipher Feedback (CFB) mode also uses a block cipher as a building block for a

stream cipher. It is similar to the OFB mode but instead of feeding back the output

of the block cipher, the ciphertext is fed back. (Hence, a somewhat more accurate

term for this mode would have been “Ciphertext Feedback mode”.) As in the OFB

mode, the key stream is not generated bitwise but instead in a blockwise fashion.

The idea behind the CFB mode is as follows: To generate the first key stream block

s1, we encrypt an IV. For all subsequent key stream blocks s2,s3, . . ., we encrypt the

previous ciphertext. This scheme is shown in Fig. 5.6.

Since the CFB mode forms a stream cipher, encryption and decryption are exactly

the same operation. The CFB mode is an example of an asynchronous stream cipher

(cf. Fig. 2.3) since the stream cipher output is also a function of the ciphertext.

The formal description of the CFB mode follows:

132 5 More About Block Ciphers

Fig. 5.6 Encryption and decryption in CFB mode

Definition 5.1.4 Cipher feedback mode (CFB)

Let e() be a block cipher of block size b; let xi and yi be bit strings

of length b; and IV be a nonce of length b.

Encryption (first block): y1 = ek(IV)⊕ x1

Encryption (general block): yi = ek(yi−1)⊕ xi, i ≥ 2

Decryption (first block): x1 = ek(IV)⊕ y1

Decryption (general block): xi = ek(yi−1)⊕ yi, i ≥ 2

As a result of the use of an IV, the CFB encryption is also nondeterministic,

hence, encrypting the same plaintext twice results in different ciphertexts. As in the

case for the CBC and OFB modes, the IV should be a nonce.

A variant of the CFB mode can be used in situations where short plaintext blocks

are to be encrypted. Let’s use the encryption of the link between a (remote) key-

board and a computer as an example. The plaintexts generated by the keyboard are

typically only 1 byte long, e.g., an ASCII character. In this case, only 8 bits of the

key stream are used for encryption (it does not matter which ones we choose as they

are all secure), and the ciphertext also only consists of 1 byte. The feedback of the

ciphertext as input to the block cipher is a bit tricky. The previous block cipher input

is shifted by 8 bit positions to the left, and the 8 least significant positions of the in-

put register are filled with the ciphertext byte. This process repeats. Of course, this

approach works not only for plaintext blocks of length 8, but for any lengths shorter

than the cipher output.

5.1.5 Counter Mode (CTR)

Another mode which uses a block cipher as a stream cipher is the Counter (CTR)

mode. As in the OFB and CFB modes, the key stream is computed in a blockwise

fashion. The input to the block cipher is a counter which assumes a different value

every time the block cipher computes a new key stream block. Figure 5.7 shows the

principle.

We have to be careful how to initialize the input to the block cipher. We must

prevent using the same input value twice. Otherwise, if an attacker knows one of

5.1 Encryption with Block Ciphers: Modes of Operation 133

Fig. 5.7 Encryption and decryption in counter mode

the two plaintexts that were encrypted with the same input, he can compute the key

stream block and thus immediately decrypt the other ciphertext. In order to achieve

this uniqueness, often the following approach is taken in practice. Let’s assume a

block cipher with an input width of 128 bits, such as an AES. First we choose

an IV that is a nonce with a length smaller than the block length, e.g., 96 bits.

The remaining 32 bits are then used by a counter with the value CT R which is

initialized to zero. For every block that is encrypted during the session, the counter

is incremented but the IV stays the same. In this example, the number of blocks we

can encrypt without choosing a new IV is 232. Since every block consists of 8 bytes,

a maximum of 8×232 = 235 bytes, or about 32 Gigabytes, can be encrypted before

a new IV must be generated. Here is a formal description of the Counter mode with

a cipher input construction as just introduced:

Definition 5.1.5 Counter mode (CTR)

Let e() be a block cipher of block size b, and let xi and yi be bit

strings of length b. The concatenation of the initialization value IV

and the counter CT Ri is denoted by (IV ||CT Ri) and is a bit string

of length b.

Encryption: yi = ek(IV ||CT Ri)⊕ xi, i ≥ 1

Decryption: xi = ek(IV ||CT Ri)⊕ yi, i ≥ 1

Please note that the string (IV ||CT R1) does not have to be kept secret. It can, for

instance, be generated by Alice and sent to Bob together with the first ciphertext

block. The counter CT R can either be a regular integer counter or a slightly more

complex function such as a maximum-length LFSR.

One might wonder why so many modes are needed. One attractive feature of the

Counter mode is that it can be parallelized because, unlike the OFB or CFB mode, it

does not require any feedback. For instance, we can have two block cipher engines

running in parallel, where the first block cipher encrypts the counter value CT R1 and

the other CT R2 at the same time. When the two block cipher engines are finished,

the first engine encrypts the value CT R3 and the other one CT R4, and so on. This

scheme would allow us to encrypt at twice the data rate of a single implementation.

Of course, we can have more than two block ciphers running in parallel, increasing

the speed-up proportionally. For applications with high throughput demands, e.g.,

134 5 More About Block Ciphers

in networks with data rates in the range of Gigabits per second, encryption modes

that can be parallelized are very desirable.

5.1.6 Galois Counter Mode (GCM)

The Galois Counter Mode (GCM) is an encryption mode which also computes a

message authentication code (MAC) [160]. A MAC provides a cryptographic check-

sum that is computed by the sender, Alice, and appended to the message. Bob also

computes a MAC from the message and checks whether his MAC is the same as

the one computed by Alice. This way, Bob can make sure that (1) the message was

really created by Alice and (2) that nobody tampered with the ciphertext during

transmission. These two properties are called message authentication and integrity,

respectively. Much more about MACs is found in Chap. 12. We presented a slightly

simplified version of the GCM mode in the following.

GCM protects the confidentiality of the plaintext x by using an encryption in

counter mode. Additionally, GCM protects not only the authenticity of the plaintext

x but also the authenticity of a string AAD called additional authenticated data.

This authenticated data is, in contrast to the plaintext, left in clear in this mode of

operation. In practice, the string AAD might include addresses and parameters in a

network protocol.

The GCM consists of an underlying block cipher and a Galois field multiplier

with which the two GCM functions authenticated encryption and authenticated de-

cryption are realized. The cipher needs to have a block size of 128 bits such as AES.

On the sender side, GCM encrypts data using the Counter Mode (CTR) followed by

the computation of a MAC value. For encryption, first an initial counter is derived

from an IV and a serial number. Then the initial counter value is incremented, and

this value is encrypted and XORed with the first plaintext block. For subsequent

plaintexts, the counter is incremented and then encrypted. Note that the underlying

block cipher is only used in encryption mode. GCM allows for precomputation of

the block cipher function if the initialization vector is known ahead of time.

For authentication, GCM performs a chained Galois field multiplication. For ev-

ery plaintext xi an intermediate authentication parameter gi is derived. gi is com-

puted as the XOR sum of the current ciphertext yi and gi, and multiplied by the

constant H. The value H is a hash subkey which is generated by encryption of the

all-zero input with the block cipher. All multiplications are in the 128-bit Galois

field GF(2128) with the irreducible polynomial P(x) = x128 + x7 + x2 + x+1. Since

only one multiplication is required per block cipher encryption, the GCM mode adds

very little computational overhead to the encryption.

5.1 Encryption with Block Ciphers: Modes of Operation 135

Definition 5.1.6 Basic Galois Counter mode (GCM)

Let e() be a block cipher of block size 128 bit; let x be the plaintext

consisting of the blocks x1, . . . ,xn; and let AAD be the additional

authenticated data.

1. Encryption

a. Derive a counter value CT R0 from the IV and compute

CT R1 = CT R0 +1.

b. Compute ciphertext: yi = ek(CT Ri)⊕ xi, i ≥ 1

2. Authentication

a. Generate authentication subkey H = ek(0)
b. Compute g0 = AAD×H (Galois field multiplication)

c. Compute gi = (gi−1 ⊕ yi)×H, 1 ≤ i ≤ n (Galois field

multiplication)

d. Final authentication tag: T = (gn ×H)⊕ ek(CT R0)

Figure 5.8 shows a diagram of the GCM.

Fig. 5.8 Basic authenticated encryption in Galois Counter mode

The receiver of the packet [(y1, . . . ,yn),T,ADD] decrypts the ciphertext by also

applying the Counter mode. To check the authenticity of the data, the receiver also

computes an authentication tag T ′ using the received ciphertext and ADD as input.

He employs exactly the same steps as the sender. If T and T ′ match, the receiver is

136 5 More About Block Ciphers

assured that the cipertext (and ADD) were not manipulated in transit and that only

the sender could have generated the message.

5.2 Exhaustive Key Search Revisited

In Sect. 3.5.1 we saw that given a plaintext–ciphertext pair (x1,y1) a DES key can

be exhaustively searched using the simple algorithm:

DESki
(x1)

?
= y1, i = 0,1, . . . ,256 −1. (5.1)

For most other block ciphers, however, a key search is somewhat more complicated.

Somewhat surprisingly, a brute-force attack can produce false positive results, i.e.,

keys ki are found that are not the one used for the encryption, yet they perform a

correct encryption in Eq. (5.1). The likelihood of this occurring is related to the

relative size of the key space and the plaintext space.

A brute-force attack is still possible, but several pairs of plaintext–ciphertext are

needed. The length of the respective plaintext required to break the cipher with a

brute-force attack is referred to as unicity distance. After trying every possible key,

there should be just one plaintext that makes sense.

Let’s first look why one pair (x1,y1) might not be sufficient to identify the correct

key. For illustration purposes we assume a cipher with a block width of 64 bit and a

key size of 80 bit. If we encrypt x1 under all possible 280 keys, we obtain 280 cipher-

texts. However, there exist only 264 different ones, and thus some keys must map x1

to the same ciphertext. If we run through all keys for a given plaintext–ciphertext

pair, we find on average 280/264 = 216 keys that perform the mapping ek(x1) = y1.

This estimation is valid since the encryption of a plaintext for a given key can be

viewed as a random selection of a 64-bit ciphertext string. The phenomenon of mul-

tiple “paths” between a given plaintext and ciphertext is depicted in Fig. 5.9, in

which k(i) denote the keys that map x1 to y1. These keys can be considered key

candidates.

Fig. 5.9 Multiple keys map between one plaintext and one ciphertext

5.3 Increasing the Security of Block Ciphers 137

Among the approximately 216 key candidates k(i) is the correct one that was used

by to perform the encryption. Let’s call this one the target key. In order to identify

the target key we need a second plaintext–ciphertext pair (x2,y2). Again, there are

about 216 key candidates that map x2 to y2. One of them is the target key. The other

keys can be viewed as randomly drawn from the 280 possible ones. It is crucial to

note that the target key must be present in both sets of key candidates. To determine

the effectiveness of a brute-force attack, the crucial question is now: What is the

likelihood that another (false!) key is contained in both sets? The answer is given by

the following theorem:

Theorem 5.2.1 Given a block cipher with a key length of κ bits

and block size of n bits, as well as t plaintext–ciphertext pairs

(x1,y1), . . . ,(xt ,yt), the expected number of false keys which en-

crypt all plaintexts to the corresponding ciphertexts is:

2κ−tn

Returning to our example and assuming two plaintext–ciphertext pairs, the likeli-

hood of a false key k f that performs both encryptions ek f
(x1) = y1 and ek f

(x2) = y2

is:

280−2·64 = 2−48

This value is so small that for almost all practical purposes it is sufficient to test two

plaintext–ciphertext pairs. If the attacker chooses to test three pairs, the likelihood

of a false key decreases to 280−3·64 = 2−112. As we saw from this example, the like-

lihood of a false alarm decreases rapidly with the number t of plaintext–ciphertext

pairs. In practice, typically we only need a few pairs.

The theorem above is not only important if we consider an individual block ci-

pher but also if we perform multiple encryptions with a cipher. This issue is ad-

dressed in the following section.

5.3 Increasing the Security of Block Ciphers

In some situations we wish to increase the security of block ciphers, e.g., if a ci-

pher such as DES is available in hardware or software for legacy reasons in a given

application. We discuss two general approaches to strengthen a cipher, multiple en-

cryption and key whitening. Multiple encryption, i.e., encrypting a plaintext more

than once, is already a fundamental design principle of block ciphers, since the

round function is applied many times to the cipher. Our intuition tells us that the

security of a block cipher against both brute-force and analytical attacks increases

by performing multiple encryptions in a row. Even though this is true in principle,

there are a few surprising facts. For instance, doing double encryption does very

little to increase the brute-force resistance over a single encryption. We study this

138 5 More About Block Ciphers

counterintuitive fact in the next section. Another very simple yet effective approach

to increase the brute-force resistance of block ciphers is called key whitening; it is

also discussed below.

We note here that when using AES, we already have three different security levels

given by the key lengths of 128, 192 and 256 bits. Given that there are no realistic

attacks known against AES with any of those key lengths, there appears no reason

to perform multiple encryption with AES for practical systems. However, for some

selected older ciphers, especially for DES, multiple encryption can be a useful tool.

5.3.1 Double Encryption and Meet-in-the-Middle Attack

Let’s assume a block cipher with a key length of κ bits. For double encryption, a

plaintext x is first encrypted with a key kL, and the resulting ciphertext is encrypted

again using a second key kR. This scheme is shown in Fig. 5.10.

Fig. 5.10 Double encryption and meet-in-the-middle attack

A naı̈ve brute-force attack would require us to search through all possible com-

binations of both keys, i.e., the effective key lengths would be 2κ and an exhaustive

key search would require 2κ ·2κ = 22κ encryptions (or decryptions). However, using

the meet-in-the-middle attack, the key space is drastically reduced. This is a divide-

and-conquer attack in which Oscar first brute-force-attacks the encryption on the

left-hand side, which requires 2κ cipher operations, and then the right encryption,

which again requires 2κ operations. If he succeeds with this attack, the total com-

plexity is 2κ +2κ = 2 ·2κ = 2κ+1. This is barely more complex than a key search of

a single encryption and of course is much less complex than performing 22κ search

operations.

The attack has two phases. In the first one, the left encryption is brute-forced and

a lookup table is computed. In the second phase the attacker tries to find a match in

the table which reveals both encryption keys. Here are the details of this approach.

5.3 Increasing the Security of Block Ciphers 139

Phase I: Table Computation For a given plaintext x1, compute a lookup table for

all pairs (kL,i,zL,i), where ekL,i(x1) = zL,i and i = 1,2, . . . ,2κ . These computations

are symbolized by the left arrow in the figure. The zL,i are the intermediate values

that occur in between the two encryptions. This list should be ordered by the values

of the zL,i. The number of entries in the table is 2κ , with each entry being n+κ bits

wide. Note that one of the keys we used for encryption must be the correct target

key, but we still do not know which one it is.

Phase II: Key Matching In order to find the key, we now decrypt y1, i.e., we

perform the computations symbolized by the right arrow in the figure. We select the

first possible key kR,1, e.g., the all-zero key, and compute:

e−1
kR,1

(x1) = zR,1.

We now check whether zR,1 is equal to any of the zL,i values in the table which we

computed in the first phase. If it is not in the table, we increment the key to kR,1,

decrypt y1 again, and check whether this value is in the table. We continue until we

have a match.

We now have what is called a collision of two values, i.e., zL,i = zR, j. This gives

us two keys: The value zL,i is associated with the key kL,i from the left encryption,

and kR, j is the key we just tested from the right encryption. This means there exists

a key pair (kL,i,kR, j) which performs the double encryption:

ekR, j
(ekL,i(x1)) = y1 (5.2)

As discussed in Sect. 5.2, there is a chance that this is not the target key pair we

are looking for since there are most likely several possible key pairs that perform

the mapping x1 → y1. Hence, we have to verify additional key candidates by en-

crypting several plaintext–ciphertext pairs according to Eq. (5.2). If the verification

fails for any of the pairs (x1,y1),(x2,y2), . . ., we go back to beginning of Phase II

and increment the key kR again and continue with the search.

Let’s briefly discuss how many plaintext–ciphertext pairs we will need to rule

out faulty keys with a high likelihood. With respect to multiple mappings between a

plaintext and a ciphertext as depicted in Fig. 5.9, double encryption can be modeled

as a cipher with 2κ key bits and n block bits. In practice, one often has 2κ > n,

in which case we need several plaintext–ciphertext pairs. The theorem in Sect. 5.2

can easily be adopted to the case of multiple encryption, which gives us a useful

guideline about how many (x,y) pairs should be available:

Theorem 5.3.1 Given are l subsequent encryptions with a block

cipher with a key length of κ bits and block size of n bits, as well as

t plaintext–ciphertext pairs (x1,y1), . . . ,(xt ,yt). The expected num-

ber of false keys which encrypt all plaintexts to the corresponding

ciphertexts is given by:

2lκ−tn

140 5 More About Block Ciphers

Let’s look at an example.

Example 5.3. As an example, if we double-encrypt with DES and choose to test

three plaintext–ciphertext pairs, the likelihood of a faulty key pair surviving all three

key tests is:

22·56−3·64 = 2−80.

⋄
Let us examine the computational complexity of the meet-in-the-middle attack.

In the first phase of the attack, corresponding to the left arrow in the figure, we per-

form 2κ encryptions and store them in 2κ memory locations. In the second stage,

corresponding to the right arrow in the figure, we perform a maximum of 2κ decryp-

tions and table look-ups. We ignore multiple key tests at this stage. The total cost

for the meet-in-the-middle attack is:

number of encryptions and decryptions = 2κ +2κ = 2κ+1

number of storage locations = 2κ

This compares to 2κ encryptions or decryptions and essentially no storage cost in

the case of a brute-force attack against a single encryption. Even though the storage

requirements go up quite a bit, the costs in computation and memory are still only

proportional to 2κ . Thus, it is widely believed that double encryption is not worth

the effort. Instead, triple encryption should be used; this method is described in the

following section.

Note that for a more exact complexity analysis of the meet-in-the-middle attack,

we would also need take the cost of sorting the table entries in Phase I into account

as well as the table look-ups in Phase II. For our purposes, however, we can ignore

these additional costs.

5.3.2 Triple Encryption

Compared to double encryption, a much more secure approach is the encryption of

a block of data three times in a row:

y = ek3
(ek2

(ek1
(x))).

In practice, often a variant of the triple encryption from above is used:

y = ek1
(e−1

k2
(ek3

(x))).

This type of triple encryption is sometimes referred to as encryption–decryption–

encryption (EDE). The reason for this has nothing to do with security. If k1 = k2,

the operation effectively performed is

y = ek3
(x),

5.3 Increasing the Security of Block Ciphers 141

which is single encryption. Since it is sometimes desirable that one implementation

can perform both triple encryption and single encryption, i.e., in order to interoper-

ate with legacy systems, EDE is a popular choice for triple encryption. Moreover,

for a 112-bit security, it is sufficient to choose two different keys k1 and k2 and set

k3 = k1 in case of 3DES.

Of course, we can still perform a meet-in-the-middle attack as shown in Fig. 5.11.

Fig. 5.11 Triple encryption and sketch of a meet-in-the-middle attack

Again, we assume κ bits per key. The problem for an attacker is that she has to

compute a lookup table either after the first or after the second encryption. In both

cases, the attacker has to compute two encryptions or decryptions in a row in order

to reach the lookup table. Here lies the cryptographic strength of triple encryption:

There are 22k possibilities to run through all possible keys of two encryptions or

decryptions. In the case of 3DES, this forces an attacker to perform 2112 key tests,

which is entirely infeasible with current technology. In summary, the meet-in-the-

middle attack reduces the effective key length of triple encryption from 3κ to 2κ .

Because of this, it is often said that the effective key length of triple DES is 112 bits

as opposed to 3 ·56 = 168 bits which are actually used as input to the cipher.

5.3.3 Key Whitening

Using an extremely simple technique called key whitening, it is possible to make

block ciphers such as DES much more resistant against brute-force attacks. The

basic scheme is shown in Fig. 5.12.

In addition to the regular cipher key k, two whitening keys k1 and k2 are used to

XOR-mask the plaintext and ciphertext. This process can be expressed as:

142 5 More About Block Ciphers

Fig. 5.12 Key whitening of a block cipher

Definition 5.3.1 Key whitening for block ciphers

Encryption: y = ek,k1,k2
(x) = ek(x⊕ k1)⊕ k2

Decryption: x = e−1
k,k1,k2

(x) = e−1
k (y⊕ k2)⊕ k1

It is important to stress that key whitening does not strengthen block ciphers

against most analytical attacks such as linear and differential cryptanalysis. This

is in contrast to multiple encryption, which often also increases the resistance to

analytical attacks. Hence, key whitening is not a “cure” for inherently weak ciphers.

Its main application is ciphers that are relatively strong against analytical attacks

but possess too short a key space. The prime example of such a cipher is DES. A

variant of DES which uses key whitening is DESX. In the case of DESX, the key k2

is derived from k and k1. Please note that most modern block ciphers such as AES

already apply key whitening internally by adding a subkey prior to the first round

and after the last round.

Let’s now discuss the security of key whitening. A naı̈ve brute-force attack

against the scheme requires 2κ+2n search steps, where κ is the bit length of the key

and n the block size. Using the meet-in-the-middle attack introduced in Sect. 5.3,

the computational load can be reduced to approximately 2κ+n steps, plus storage

of 2n data sets. However, if the adversary Oscar can collect 2m plaintext–ciphertext

pairs, a more advanced attack exists with a computational complexity of

2κ+n−m

cipher operations. Even though we do not introduce the attack here, we’ll briefly

discuss its consequences if we apply key whitening to DES. We assume that the at-

tacker knows 2m plaintext–ciphertext pairs. Note that the designer of a security sys-

tem can often control how many plaintext–ciphertext are generated before a new key

is established. Thus, the parameter m cannot be arbitrarily increased by the attacker.

Also, since the number of known plaintexts grows exponentially with m, values be-

yond, say, m = 40, seem quite unrealistic. As a practical example, let’s assume key

whitening of DES, and that Oscar can collect a maximum of 232 plaintexts. He now

has to perform

256+64−32 = 288

5.4 Discussion and Further Reading 143

DES computations. Given that with today’s technology even 256 DES operations re-

quire several days with special hardware, performing 288 encryptions is completely

out of reach. Note that the number of plaintexts (which Oscar is not supposed to

know in most circumstances) corresponds to 32 GByte of data, the collection of

which is also a formidable task in most real-world situations.

A particular attractive feature of key whitening is that the additional computa-

tional load is negligible. A typical block cipher implementation in software requires

several hundred instructions for encrypting one input block. In contrast, a 64-bit

XOR operation only takes 2 instructions on a 32-bit machine, so that the perfor-

mance impact due to key whitening is in the range of 1% or less in most cases.

5.4 Discussion and Further Reading

Modes of Operation After the AES selection process, the US National Institute of

Standards and Technology (NIST) supported the process of evaluating new modes of

operations in a series of special publications and workshops [124]. Currently, there

are eight approved block cipher modes: five for confidentiality (ECB, CBC, CFB,

OFB, CTR), one for authentication (CMAC) and two combined modes for confi-

dentiality and authentication (CCM, GCM). The modes are widely used in practice

and are part of many standards, e.g., for computer networks or banking.

Other Applications for Block Ciphers The most important application of block

ciphers in practice, in addition to data encryption, is Message Authentication Codes

(MACs), which are discussed in Chap. 12. The schemes CBC-MAC, OMAC and

PMAC are constructed with a block cipher. Authenticated Encryption (AE) uses

block ciphers to both encrypt and generate a MAC in order to provide confidentiality

and authentication, respectively. In addition to the GCM introduced in this chapter,

other AE modes include the EAX mode, OCB mode, and GC mode.

Another application is the Cryptographically Secure Pseudo Random Number

Generators (CSPRNG) built from block ciphers. In fact, the stream cipher modes

introduced in this chapter, OFB, CFB and CTR mode, form CSPRNGs. There are

also standards such as [4, Appendix A.2.4] which explicitly specify random number

generators from block ciphers.

Block ciphers can also be used to build cryptographic hash functions, as dis-

cussed in Chap. 11.

Extending Brute-Force Attacks Even though there are no algorithmic shortcuts

to brute-force attacks, there are methods which are efficient if several exhaustive key

searches have to be performed. Those methods are called time–memory tradeoff at-

tacks (TMTO). The general idea is to encrypt a fixed plaintext under a large number

of keys and to store certain intermediate results. This is the precomputation phase,

which is typically at least as complex as a single brute-force attack and which results

in large lookup tables. In the online phase, a search through the tables takes place

which is considerably faster than a brute-force attack. Thus, after the precomputa-

144 5 More About Block Ciphers

tion phase, individual keys can be found much more quickly. TMTO attacks were

originally proposed by Hellman [91] and were improved with the introduction of

distinguished points by Rivest [145]. More recently rainbow tables were proposed

to further improve TMTO attacks [131]. A limiting factor of TMTO attacks in prac-

tice is that for each individual attack it is required that the same piece of known

plaintext was encrypted, e.g., a file header.

Block Ciphers and Quantum Computers With the potential rise of quantum

computers in the future, the security of currently used crypto algorithms has to be

reevaluated. (It should be noted that the possible existence of quantum computers in

a few decades from now is hotly debated.) Whereas all popular existing asymmetric

algorithms such as RSA are vulnerable to attacks using quantum computers [153],

symmetric algorithms are much more resilient. A potential quantum computer us-

ing Grover’s algorithm [87] would require only 2(n/2) steps in order to perform a

complete key search on a cipher with a keyspace of 2n elements. Hence, key lengths

of more than 128 bit are required if resistance against quantum computer attacks

is desired. This observation was also the motivation for requiring the 192-bit and

256-bit key lengths for AES. Interestingly, it can be shown that there can be no

quantum algorithm which performs such an attack more efficiently than Grover’s

algorithm [16].

5.5 Lessons Learned

� There are many different ways to encrypt with a block cipher. Each mode of

operation has some advantages and disadvantages.

� Several modes turn a block cipher into a stream cipher.

� There are modes that perform encryption together together with authentication,

i.e., a cryptographic checksum protects against message manipulation.

� The straightforward ECB mode has security weaknesses, independent of the un-

derlying block cipher.

� The counter mode allows parallelization of encryption and is thus suited for high-

speed implementations.

� Double encryption with a given block cipher only marginally improves the resis-

tance against brute-force attacks.

� Triple encryption with a given block cipher roughly doubles the key length.

Triple DES (3DES) has an effective key length of 112 bits.

� Key whitening enlarges the DES key length without much computational over-

head.

5.5 Problems 145

Problems

5.1. Consider the storage of data in encrypted form in a large database using AES.

One record has a size of 16 bytes. Assume that the records are not related to one

another. Which mode would be best suited and why?

5.2. We consider known-plaintext attacks on block ciphers by means of an exhaus-

tive key search where the key is k bits long. The block length counts n bits with

n > k.

1. How many plaintexts and ciphertexts are needed to successfully break a block

cipher running in ECB mode? How many steps are done in the worst case?

2. Assume that the initialization vector IV for running the considered block cipher

in CBC mode is known. How many plaintexts and ciphertexts are now needed to

break the cipher by performing an exhaustive key search? How many steps need

now maximally be done? Briefly describe the attack.

3. How many plaintexts and ciphertexts are necessary, if you do not know the IV?

4. Is breaking a block cipher in CBC mode by means of an exhaustive key search

considerably more difficult than breaking an ECB mode block cipher?

5.3. In a company, all files which are sent on the network are automatically en-

crypted by using AES-128 in CBC mode. A fixed key is used, and the IV is changed

once per day. The network encryption is file-based, so that the IV is used at the

beginning of every file.

You managed to spy out the fixed AES-128 key, but do not know the recent IV.

Today, you were able to eavesdrop two different files, one with unidentified content

and one which is known to be an automatically generated temporary file and only

contains the value 0xFF. Briefly describe how it is possible to obtain the unknown

initialization vector and how you are able to determine the content of the unknown

file.

5.4. Keeping the IV secret in OFB mode does not make an exhaustive key search

more complex. Describe how we can perform a brute-force attack with unknown IV.

What are the requirements regarding plaintext and ciphertext?

5.5. Describe how the OFB mode can be attacked if the IV is not different for each

execution of the encryption operation.

5.6. Propose an OFB mode scheme which encrypts one byte of plaintext at a time,

e.g., for encrypting key strokes from a remote keyboard. The block cipher used is

AES. Perform one block cipher operation for every new plaintext byte. Draw a block

diagram of your scheme and pay particular attention to the bit lengths used in your

diagram (cf. the descripton of a byte mode at the end of Sect. 5.1.4).

5.7. As is so often true in cryptography, it is easy to weaken a seemingly strong

scheme by small modifications. Assume a variant of the OFB mode by which we

only feed back the 8 most significant bits of the cipher output. We use AES and fill

the remaining 120 input bits to the cipher with 0s.

146 5 More About Block Ciphers

1. Draw a block diagram of the scheme.

2. Why is this scheme weak if we encrypt moderately large blocks of plaintext, say

100 kByte? What is the maximum number of known plaintexts an attacker needs

to completely break the scheme?

3. Let the feedback byte be denoted by FB. Does the scheme become cryptograph-

ically stronger if we feedback the 128-bit value FB,FB, . . . ,FB to the input (i.e.,

we copy the feedback byte 16 times and use it as AES input)?

5.8. In the text, a variant of the CFB mode is proposed which encrypts individual

bytes. Draw a block diagram for this mode when using AES as block cipher. Indicate

the width (in bit) of each line in your diagram.

5.9. We are using AES in counter mode for encrypting a hard disk with 1 TB of

capacity. What is the maximum length of the IV?

5.10. Sometimes error propagation is an issue when choosing a mode of operation

in practice. In order to analyze the propagation of errors, let us assume a bit error

(i.e., a substitution of a “0” bit by a “1” bit or vice versa) in a ciphertext block yi.

1. Assume an error occurs during the transmission in one block of ciphertext, let’s

say yi. Which cleartext blocks are affected on Bob’s side when using the ECB

mode?

2. Again, assume block yi contains an error introduced during transmission. Which

cleartext blocks are affected on Bob’s side when using the CBC mode?

3. Suppose there is an error in the cleartext xi on Alice’s side. Which cleartext

blocks are affected on Bob’s side when using the CBC mode?

4. Assume a single bit error occurs in the transmission of a ciphertext character in

8-bit CFB mode. How far does the error propagate? Describe exactly how each

block is affected.

5. Prepare an overview of the effect of bit errors in a ciphertext block for the modes

ECB, CBC, CFB, OFB and CTR. Differentiate between random bit errors and

specific bit errors when decrypting yi.

5.11. Besides simple bit errors, the deletion or insertion of a bit yields even more

severe effects since the synchronization of blocks is disrupted. In most cases, the

decryption of subsequent blocks will be incorrect. A special case is the CFB mode

with a feedback width of 1 bit. Show that the synchronization is automatically re-

stored after κ +1 steps, where κ is the block size of the block cipher.

5.12. We now analyze the security of DES double encryption (2DES) by doing a

cost-estimate:

2DES(x) = DESK2
(DESK1

(x))

1. First, let us assume a pure key search without any memory usage. For this pur-

pose, the whole key space spanned by K1 and K2 has to be searched. How much

does a key-search machine for breaking 2DES (worst case) in 1 week cost?

In this case, assume ASICs which can perform 107 keys per second at a cost of

$5 per IC. Furthermore, assume an overhead of 50% for building the key search

machine.

5.5 Problems 147

2. Let us now consider the meet-in-the-middle (or time-memory tradeoff) attack, in

which we can use memory. Answer the following questions:

� How many entries have to be stored?

� How many bytes (not bits!) have to be stored for each entry?

� How costly is a key search in one week? Please note that the key space has to

be searched before filling up the memory completely. Then we can begin to

search the key space of the second key. Assume the same hardware for both

key spaces.

For a rough cost estimate, assume the following costs for hard disk space:

$8/10 GByte, where 1 GByte = 109 Byte.

3. Assuming Moore’s Law, when do the costs move below $1 million?

5.13. Imagine that aliens — rather than abducting earthlings and performing strange

experiments on them — drop a computer on planet Earth that is particularly suited

for AES key searches. In fact, it is so powerful that we can search through 128, 192

and 256 key bits in a matter of days. Provide guidelines for the number of plaintext–

ciphertext pairs the aliens need so that they can rule out false keys with a reasonable

likelihood. (Remark: Since the existence of both aliens and human-built computers

for such key lengths seem extremely unlikely at the time of writing, this problem is

pure science fiction.)

5.14. Given multiple plaintext–ciphertext pairs, your objective is to attack an en-

cryption scheme based upon multiple encryptions.

1. You want to break an encryption system E, which makes use of triple AES-192

encryption (e.g. block length n = 128 bit, key size of k = 192 bit). How many

tuples (xi,yi) with yi = eK(xi) do you need to level down the probability of finding

a key K, which matches the condition yi = eK(xi) for one particular i, but fails

for most other values of i (a so called false positive), to Pr(K′ �= K) = 2−20?

2. What is the maximum key size of a block cipher that you could still effectively

attack with an error probability of at most Pr(K′ �= K) = 2−10 = 1/1024, if this

cipher always uses double encryption (l = 2) and has a block length of n = 80

bit?

3. Estimate the success probability, if you are provided with four plaintext–ciphertext

blocks which are double encrypted using AES-256 (n = 128 bits, k = 256 bits).

Please justify your results.

Note that this is a purely theoretical problem. Key spaces of size 2128 and beyond

can not be brute-forced.

5.15. 3DES with three different keys can be broken with about 22k encryptions

and 2k memory cells, k = 56. Design the corresponding attack. How many pairs

(x,y) should be available so that the probability to determine an incorrect key triple

(k1,k2,k3) is sufficiently low?

148 5 More About Block Ciphers

5.16. This is your chance to break a cryptosystem. As we know by now, cryptogra-

phy is a tricky business. The following problem illustrates how easy it is to turn a

strong scheme into a weak one with minor modifications.

We saw in this chapter that key whitening is a good technique for strengthening

block ciphers against brute-force attacks. We now look at the following variant of

key whitening against DES, which we’ll call DESA:

DESAk,k1
(x) = DESk(x)⊕ k1.

Even though the method looks similar to key whitening, it hardly adds to the se-

curity. Your task is to show that breaking the scheme is roughly as difficult as a

brute-force attack against single DES. Assume you have a few pairs of plaintext–

ciphertext.

Chapter 6

Introduction to Public-Key Cryptography

Before we learn about the basics of public-key cryptography, let us recall that the

term public-key cryptography is used interchangeably with asymmetric cryptogra-

phy; they both denote exactly the same thing and are used synonymously.

As stated in Chap. 1, symmetric cryptography has been used for at least 4000

years. Public-key cryptography, on the other hand, is quite new. It was publicly

introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle in 1976. Much

more recently, in 1997 British documents which were declassified revealed that the

researchers James Ellis, Clifford Cocks and Graham Williamson from the UK’s

Government Communications Headquarters (GCHQ) discovered and realized the

principle of public-key cryptography a few years earlier, in 1972. However, it is

still being debated whether the government office fully recognized the far-reaching

consequences of public-key cryptography for commercial security applications.

In this chapter you will learn:

� A brief history of public-key cryptography

� The pros and cons of public-key cryptography

� Some number theoretical topics that are needed for understanding public-key

algorithms, most importantly the extended Euclidean algorithm

149

150 6 Introduction to Public-Key Cryptography

6.1 Symmetric vs. Asymmetric Cryptography

In this chapter we will see that asymmetric, i.e., public-key, algorithms are very dif-

ferent from symmetric algorithms such as AES or DES. Most public-key algorithms

are based on number-theoretic functions. This is quite different from symmetric ci-

phers, where the goal is usually not to have a compact mathematical description

between input and output. Even though mathematical structures are often used for

small blocks within symmetric ciphers, for instance, in the AES S-Box, this does

not mean that the entire cipher forms a compact mathematical description.

Symmetric Cryptography Revisited

In order to understand the principle of asymmetric cryptography, let us first recall

the basic symmetric encryption scheme in Fig. 6.1.

Fig. 6.1 Principle of symmetric-key encryption

Such a system is symmetric with respect to two properties:

1. The same secret key is used for encryption and decryption.

2. The encryption and decryption function are very similar (in the case of DES they

are essentially identical).

There is a simple analogy for symmetric cryptography, as shown in Fig. 6.2.

Assume there is a safe with a strong lock. Only Alice and Bob have a copy of the

key for the lock. The action of encrypting of a message can be viewed as putting the

message in the safe. In order to read, i.e., decrypt, the message, Bob uses his key

and opens the safe.

Modern symmetric algorithms such as AES or 3DES are very secure, fast and

are in widespread use. However, there are several shortcomings associated with

symmetric-key schemes, as discussed below.

Key Distribution Problem The key must be established between Alice and Bob

using a secure channel. Remember that the communication link for the message is

not secure, so sending the key over the channel directly — which would be the most

convenient way of transporting it — can’t be done.

Number of Keys Even if we solve the key distribution problem, we must poten-

tially deal with a very large number of keys. If each pair of users needs a separate

pair of keys in a network with n users, there are

6.1 Symmetric vs. Asymmetric Cryptography 151

Fig. 6.2 Analogy for symmetric encryption: a safe with one lock

n · (n−1)

2

key pairs, and every user has to store n− 1 keys securely. Even for mid-size net-

works, say, a corporation with 2000 people, this requires more than 4 million key

pairs that must be generated and transported via secure channels. More about this

problem is found in Sect. 13.1.3. (There are smarter ways of dealing with keys

in symmetric cryptography networks as detailed in Sect. 13.2; however, those ap-

proaches have other problems such as a single point of failure.)

No Protection Against Cheating by Alice or Bob Alice and Bob have the same

capabilities, since they possess the same key. As a consequence, symmetric cryptog-

raphy cannot be used for applications where we would like to prevent cheating by

either Alice or Bob as opposed to cheating by an outsider like Oscar. For instance,

in e-commerce applications it is often important to prove that Alice actually sent a

certain message, say, an online order for a flat screen TV. If we only use symmet-

ric cryptography and Alice changes her mind later, she can always claim that Bob,

the vendor, has falsely generated the electronic purchase order. Preventing this is

called nonrepudiation and can be achieved with asymmetric cryptography, as dis-

cussed in Sect. 10.1.1. Digital signatures, which are introduced in Chap. 10, provide

nonrepudiation.

Fig. 6.3 Analogy for public-key encryption: a safe with public lock for depositing a message and
a secret lock for retrieving a message

BobAlice

BobAlice

public key private key

unlockdeposit

152 6 Introduction to Public-Key Cryptography

Principles of Asymmetric Cryptography

In order to overcome these drawbacks, Diffie, Hellman and Merkle had a revolution-

ary proposal based on the following idea: It is not necessary that the key possessed

by the person who encrypts the message (that’s Alice in our example) is secret. The

crucial part is that Bob, the receiver, can only decrypt using a secret key. In order

to realize such a system, Bob publishes a public encryption key which is known to

everyone. Bob also has a matching secret key, which is used for decryption. Thus,

Bob’s key k consists of two parts, a public part, kpub, and a private one, kpr.

A simple analogy of such a system is shown in Fig. 6.3. This systems works quite

similarly to the good old mailbox on the corner of a street: Everyone can put a letter

in the box, i.e., encrypt, but only a person with a private (secret) key can retrieve

letters, i.e., decrypt. If we assume we have cryptosystems with such a functionality,

a basic protocol for public-key encryption looks as shown in Fig. 6.4.

Alice Bob
kpub←−−−−−−−−−−−− (kpub,kpr) = k

y = ekpub
(x)

y−−−−−−−−−−−−→
x = dkpr

(y)

Fig. 6.4 Basic protocol for public-key encryption

By looking at that protocol you might argue that even though we can encrypt a

message without a secret channel for key establishment, we still cannot exchange a

key if we want to encrypt with, say, AES. However, the protocol can easily be mod-

ified for this use. What we have to do is to encrypt a symmetric key, e.g., an AES

key, using the public-key algorithm. Once the symmetric key has been decrypted

by Bob, both parties can use it to encrypt and decrypt messages using symmetric

ciphers. Figure 6.5 shows a basic key transport protocol where we use AES as the

symmetric cipher for illustration purposes (of course, one can use any other sym-

metric algorithm in such a protocol). The main advantage of the protocol in Fig. 6.5

over the protocol in Fig. 6.4 is that the payload is encrypted with a symmetric cipher,

which tends to be much faster than an asymmetric algorithm.

From the discussion so far, it looks as though asymmetric cryptography is a

desirable tool for security applications. The question remains how one can build

public-key algorithms. In Chaps. 7, 8 and 9 we introduce most asymmetric schemes

of practical relevance. They are all built from one common principle, the one-way

function. The informal definition of it is as follows:

6.2 Practical Aspects of Public-Key Cryptography 153

Alice Bob
kpub←−−−−−−−−−−−− kpub,kpr

choose random k

y = ekpub
(k)

y−−−−−−−−−−−−→
k = dkpr

(y)
encrypt message x:

z = AESk(x)
z−−−−−−−−−−−−→

x = AES−1
k (z)

Fig. 6.5 Basic key transport protocol with AES as an example of a symmetric cipher

Definition 6.1.1 One-way function

A function f () is a one-way function if:

1. y = f (x) is computationally easy, and

2. x = f−1(y) is computationally infeasible.

Obviously, the adjectives “easy” and “infeasible” are not particularly exact. In

mathematical terms, a function is easy to compute if it can be evaluated in polyno-

mial time, i.e., its running time is a polynomial expression. In order to be useful in

practical crypto schemes, the computation y = f (x) should be sufficiently fast that

it does not lead to unacceptably slow execution times in an application. The inverse

computation x = f−1(y) should be so computationally intensive that it is not feasi-

ble to evaluate it in any reasonable time period, say, 10,000 years, when using the

best known algorithm.

There are two popular one-way functions which are used in practical public-key

schemes. The first is the integer factorization problem, on which RSA is based.

Given two large primes, it is easy to compute the product. However, it is very dif-

ficult to factor the resulting product. In fact, if each of the primes has 150 or more

decimal digits, the resulting product cannot be factored, even with thousands of PCs

running for many years. The other one-way function that is used widely is the dis-

crete logarithm problem. This is not quite as intuitive and is introduced in Chap. 8.

6.2 Practical Aspects of Public-Key Cryptography

Actual public-key algorithms will be introduced in the next chapters, since there is

some mathematics we must study first. However, it is very interesting to look at the

principal security functions of public-key cryptography which we address in this

section.

154 6 Introduction to Public-Key Cryptography

6.2.1 Security Mechanisms

As shown in the previous section, public-key schemes can be used for encryption of

data. It turns out that we can do many other, previously unimaginable, things with

public-key cryptography. The main functions that they can provide are listed below:

Main Security Mechanisms of Public-Key Algorithms:

Key Establishment There are protocols for establishing secret keys over

an insecure channel. Examples for such protocols include the Diffie–

Hellman key exchange (DHKE) or RSA key transport protocols.

Nonrepudiation Providing nonrepudiation and message integrity can be

realized with digital signature algorithms, e.g., RSA, DSA or ECDSA.

Identification We can identify entities using challenge-and-response pro-

tocols together with digital signatures, e.g., in applications such as smart

cards for banking or for mobile phones.

Encryption We can encrypt messages using algorithms such as RSA or

Elgamal.

We note that identification and encryption can also be achieved with symmetric

ciphers, but they typically require much more effort with key management. It looks

as though public-key schemes can provide all functions required by modern security

protocols. Even though this is true, the major drawback in practice is that encryption

of data is very computationally intensive — or more colloquially: extremely slow —

with public-key algorithms. Many block and stream ciphers can encrypt about one

hundred to one thousand times faster than public-key algorithms. Thus, somewhat

ironically, public-key cryptography is rarely used for the actual encryption of data.

On the other hand, symmetric algorithms are poor at providing nonrepudiation and

key establishment functionality. In order to use the best of both worlds, most practi-

cal protocols are hybrid protocols which incorporate both symmetric and public-key

algorithms. Examples include the SSL/TLS potocol that is commonly used for se-

cure Web connections, or IPsec, the security part of the Internet communication

protocol.

6.2.2 The Remaining Problem: Authenticity of Public Keys

From the discussion so far we’ve seen that a major advantage of asymmetric

schemes is that we can freely distribute public keys, as shown in the protocols in

Figs. 6.4 and 6.5. However, in practice, things are a bit more tricky because we still

have to assure the authenticity of public keys. In other words: Do we really know

that a certain public key belongs to a certain person? In practice, this issue is often

6.2 Practical Aspects of Public-Key Cryptography 155

solved with what is called certificates. Roughly speaking, certificates bind a public

key to a certain identity. This is a major issue in many security application, e.g.,

when doing e-commerce transactions on the Internet. We discuss this topic in more

detail in Sect. 13.3.2.

Another problem, which is not as fundamental, is that public-key algorithms re-

quire very long keys, resulting in slow execution times. The issue of key lengths and

security is discussed below.

6.2.3 Important Public-Key Algorithms

In the previous chapters, we learned about some block ciphers, DES and AES. How-

ever, there exist many other symmetric algorithms. Several hundred algorithms have

been proposed over the years and even though a lot were found not to be secure,

there exist many cryptographically strong ones as discussed in Sect. 3.7. The situa-

tion is quite different for asymmetric algorithms. There are only three major fami-

lies of public-key algorithms which are of practical relevance. They can be classified

based on their underlying computational problem.

Public-Key Algorithm Families of Practical Relevance

Integer-Factorization Schemes Several public-key schemes are based on

the fact that it is difficult to factor large integers. The most prominent rep-

resentative of this algorithm family is RSA.

Discrete Logarithm Schemes There are several algorithms which are

based on what is known as the discrete logarithm problem in finite fields.

The most prominent examples include the Diffie–Hellman key exchange,

Elgamal encryption or the Digital Signature Algorithm (DSA).

Elliptic Curve (EC) Schemes A generalization of the discrete logarithm

algorithm are elliptic curve public-key schemes. The most popular exam-

ples include Elliptic Curve Diffie–Hellman key exchange (ECDH) and the

Elliptic Curve Digital Signature Algorithm (ECDSA).

The first two families were proposed in the mid-1970s, and elliptic curves were

proposed in the mid-1980s. There are no known attacks against any of the schemes

if the parameters, especially the operand and key lengths, are chosen carefully. Al-

gorithms belonging to each of the families will be introduced in Chaps. 7, 8 and

9. It is important to note that each of the three families can be used to provide the

main public-key mechanisms of key establishment, nonrepudiation through digital

signatures and encryption of data.

In addition to the three families above, there have been proposals for several

other public-key schemes. They often lack cryptographic maturity, i.e., it is not

known how robust they are against mathematical attacks. Multivariate quadratic

156 6 Introduction to Public-Key Cryptography

(MQ) or some lattice-based schemes are examples of this. Another common prob-

lem is that they have poor implementation characteristics, like key lengths in the

range of megabytes, e.g., the McEliece cryptosystems. However, there are also some

other schemes, for instance, hyperelliptic curve cryptosystems, which are both as ef-

ficient and secure as the three established families shown above, but which simply

have not gained widespread adoption. For most applications it is recommended to

use public-key schemes from the three established algorithm families.

6.2.4 Key Lengths and Security Levels

All three of the established public-key algorithm families are based on number-

theoretic functions. One distinguishing feature of them is that they require arith-

metic with very long operands and keys. Not surprisingly, the longer the operands

and keys, the more secure the algorithms become. In order to compare different

algorithms, one often considers the security level. An algorithm is said to have a

“security level of n bit” if the best known attack requires 2n steps. This is a quite

natural definition because symmetric algorithms with a security level of n have a key

of length n bit. The relationship between cryptographic strength and security is not

as straightforward in the asymmetric case, though. Table 6.1 shows recommended

bit lengths for public-key algorithms for the four security levels 80, 128, 192 and 256

bit. We see from the table that RSA-like schemes and discrete-logarithm schemes

require very long operands and keys. The key length of elliptic curve schemes is

significantly smaller, yet still twice as long as symmetric ciphers with the same

cryptographic strength.

Table 6.1 Bit lengths of public-key algorithms for different security levels

Algorithm Family Cryptosystems Security Level (bit)
80 128 192 256

Integer factorization RSA 1024 bit 3072 bit 7680 bit 15360 bit
Discrete logarithm DH, DSA, Elgamal 1024 bit 3072 bit 7680 bit 15360 bit
Elliptic curves ECDH, ECDSA 160 bit 256 bit 384 bit 512 bit

Symmetric-key AES, 3DES 80 bit 128 bit 192 bit 256 bit

You may want to compare this table with the one given in Sect. 1.3.2, which

provides information about the security estimations of symmetric-key algorithms. In

order to provide long-term security, i.e., security for a timespan of several decades,

a security level of 128 bit should be chosen, which requires fairly long keys for all

three algorithm families.

An undesired consequence of the long operands is that public-key schemes are

extremely arithmetically intensive. As mentioned earlier, it is not uncommon that

one public-operation, say a digital signature, is by 2–3 orders of magnitude slower

than the encryption of one block using AES or 3DES. Moreover, the computational

6.3 Essential Number Theory for Public-Key Algorithms 157

complexity of the three algorithm families grows roughly with the cube bit length.

As an example, increasing the bit length from 1024 to 3076 in a given RSA signature

generation software results in an execution that is 33 = 27 times slower! On modern

PCs, execution times in the range of several 10 msec to a few 100 msec are common,

which does not pose a problem for many applications. However, public-key perfor-

mance can be a more serious bottleneck in constrained devices where small CPUs

are prevalent, e.g., mobile phones or smart cards, or on network servers that have

to compute many public-key operations per second. Chaps. 7, 8 and 9 introduce

several techniques for implementing public-key algorithms reasonably efficiently.

6.3 Essential Number Theory for Public-Key Algorithms

We will now study a few techniques from number theory which are essential for

public-key cryptography. We introduce the Euclidean algorithm, Euler’s phi func-

tion as well as Fermat’s Little Theorem and Euler’s theorem. All are important for

asymmetric algorithms, especially for understanding the RSA crypto scheme.

6.3.1 Euclidean Algorithm

We start with the problem of computing the greatest common divisor (gcd). The gcd

of two positive integers r0 and r1 is denoted by

gcd(r0,r1)

and is the largest positive number that divides both r0 and r1. For instance gcd(21,9) =
3. For small numbers, the gcd is easy to calculate by factoring both numbers and

finding the highest common factor.

Example 6.1. Let r0 = 84 and r1 = 30. Factoring yields

r0 = 84 = 2 ·2 ·3 ·7
r1 = 30 = 2 ·3 ·5

The gcd is the product of all common prime factors:

2 ·3 = 6 = gcd(30,84)

⋄

For the large numbers which occur in public-key schemes, however, factoring

often is not possible, and a more efficient algorithm is used for gcd computations, the

Euclidean algorithm. The algorithm, which is also referred to as Euclid’s algorithm,

is based on the simple observation that

158 6 Introduction to Public-Key Cryptography

gcd(r0,r1) = gcd(r0 − r1,r1),

where we assume that r0 > r1, and that both numbers are positive integers. This

property can easily be proven: Let gcd(r0,r1) = g. Since g divides both r0 and r1,

we can write r0 = g · x and r1 = g · y, where x > y, and x and y are coprime integers,

i.e., they do not have common factors. Moreover, it is easy to show that (x− y) and

y are also coprime. It follows from here that:

gcd(r0 − r1,r1) = gcd(g · (x− y),g · y) = g.

Let’s verify this property with the numbers from the previous example:

Example 6.2. Again, let r0 = 84 and r1 = 30. We now look at the gcd of (r0 − r1)
and r1:

r0 − r1 = 54 = 2 ·3 ·3 ·3
r1 = 30 = 2 ·3 ·5

The largest common factor still is 2 ·3 = 6 = gcd(30,54) = gcd(30,84).
⋄

It also follows immediately that we can apply the process iteratively:

gcd(r0,r1) = gcd(r0 − r1,r1) = gcd(r0 −2r1,r1) = · · · = gcd(r0 −m r1,r1)

as long as (r0 −m r1) > 0. The algorithm uses the fewest number of steps if we

choose the maximum value for m. This is the case if we compute:

gcd(r0,r1) = gcd(r0 mod r1,r1).

Since the first term (r0 mod r1) is smaller than the second term r1, we usually swap

them:

gcd(r0,r1) = gcd(r1,r0 mod r1).

The core observation from this process is that we can reduce the problem of

finding the gcd of two given numbers to that of the gcd of two smaller numbers.

This process can be applied recursively until we obtain finally gcd(rl ,0) = rl . Since

each iteration preserves the gcd of the previous iteration step, it turns out that this

final gcd is the gcd of the original problem, i.e.,

gcd(r0,r1) = · · · = gcd(rl ,0) = rl .

We first show some examples for finding the gcd using the Euclidean algorithm and

then discuss the algorithm a bit more formally.

Example 6.3. Let r0 = 27 and r1 = 21. Fig. 6.6 gives us some feeling for the al-

gorithm by showing how the lengths of the parameters shrink in every iteration.

The shaded parts in the iteration are the new remainders r2 = 6 (first iteration), and

r3 = 3 (second iteration) which form the input terms for the next iterations. Note

6.3 Essential Number Theory for Public-Key Algorithms 159

that in the last iteration the remainder is r4 = 0, which indicates the termination of

the algorithm. ⋄

3

3666

21

gcd(6, 3) = gcd(2 3+0, 3) = gcd(3, 0) = 3

gcd(27, 21) = gcd(1 21+6, 21) = gcd(21, 6)

gcd(21, 6) = gcd(3 6+3, 6) = gcd(6, 3)

gcd(27, 21) = gcd(21, 6) = gcd(6, 3) = gcd(3, 0) = 3

6

3

Fig. 6.6 Example of the Euclidean algorithm for the input values r0 = 27 and r1 = 21

It is also helpful to look at the Euclidean algorithm with slightly larger numbers, as

happens in Example 6.4.

Example 6.4. Let r0 = 973 and r1 = 301. The gcd is then computed as

973 = 3 ·301+70 gcd(973,301) = gcd(301,70)

301 = 4 ·70+21 gcd(301,70) = gcd(70,21)

70 = 3 ·21+7 gcd(70,21) = gcd(21,7)
21 = 3 ·7+0 gcd(21,7) = gcd(7,0) = 7

⋄

By now we should have an idea of Euclid’s algorithm, and we can give a more

formal description of the algorithm.

Euclidean Algorithm

Input: positive integers r0 and r1 with r0 > r1

Output: gcd(r0,r1)
Initialization: i = 1

Algorithm:

1 DO

1.1 i = i+1

1.2 ri = ri−2 mod ri−1

WHILE ri �= 0

2 RETURN

gcd(r0,r1) = ri−1

Note that the algorithm terminates if a remainder with the value ri = 0 is com-

puted. The remainder computed in the previous iteration, denoted by rl−1, is the gcd

of the original problem.

160 6 Introduction to Public-Key Cryptography

The Euclidean algorithm is very efficient, even with the very long numbers typi-

cally used in public-key cryptography. The number of iterations is close to the num-

ber of digits of the input operands. That means, for instance, that the number of

iterations of a gcd involving 1024-bit numbers is 1024 times a constant. Of course,

algorithms with a few thousand iterations can easily be executed on today’s PCs,

making the algorithms very efficient in practice.

6.3.2 Extended Euclidean Algorithm

So far, we have seen that finding the gcd of two integers r0 and r1 can be done

by recursively reducing the operands. However, it turns out that finding the gcd is

not the main application of the Euclidean algorithm. An extension of the algorithm

allows us to compute modular inverses, which is of major importance in public-key

cryptography. In addition to computing the gcd, the extended Euclidean algorithm

(EEA) computes a linear combination of the form:

gcd(r0,r1) = s · r0 + t · r1

where s and t are integer coefficients. This equation is often referred to as Diophan-

tine equation.

The question now is: how do we compute the two coefficients s and t? The idea

behind the algorithm is that we execute the standard Euclidean algorithm, but we

express the current remainder ri in every iteration as a linear combination of the

form

ri = sir0 + tir1. (6.1)

If we succeed with this, we end up in the last iteration with the equation:

rl = gcd(r0,r1) = slr0 + tlr1 = sr0 + tr1.

This means that the last coefficient sl is the coefficient s in Eq. (6.1) we are looking

for, and also tl = t. Let’s look at an example.

Example 6.5. We consider the extended Euclidean algorithm with the same values as

in the previous example, r0 = 973 and r1 = 301. On the left-hand side, we compute

the standard Euclidean algorithm, i.e., we compute new remainders r2,r3, Also,

we have to compute the integer quotient qi−1 in every iteration. On the right-hand

side we compute the coefficients si and ti such that ri = sir0 + tir1. The coefficients

are always shown in brackets.

6.3 Essential Number Theory for Public-Key Algorithms 161

i ri−2 = qi−1 · ri−1 + ri ri = [si]r0 +[ti]r1

2 973 = 3 ·301+70 70 = [1]r0 +[−3]r1

3 301 = 4 ·70+21 21 = 301−4 ·70

= r1 −4(1r0 −3 r1)
= [−4]r0 +[13]r1

4 70 = 3 ·21+7 7 = 70−3 ·21

= (1r0 −3r1)−3(−4r0 +13r1)
= [13]r0 +[−42]r1

21 = 3 ·7+0

The algorithm computed the three parameters gcd(973,301) = 7, s = 13 and

t = −42. The correctness can be verified by:

gcd(973,301) = 7 = [13]973+[−42]301 = 12649−12642.

⋄

You should carefully watch the algebraic steps taking place in the right column

of the example above. In particular, observe that the linear combination on the right-

hand side is always constructed with the help of the previous linear combinations.

We will now derive recursive formulae for computing si and ri in every iteration.

Assume we are in iteration with index i. In the two previous iterations we computed

the values

ri−2 = [si−2]r0 +[ti−2]r1 (6.2)

ri−1 = [si−1]r0 +[ti−1]r1 (6.3)

In the current iteration i we first compute the quotient qi−1 and the new remainder

ri from ri−1 and ri−2:

ri−2 = qi−1 · ri−1 + ri.

This equation can be rewritten as:

ri = ri−2 −qi−1 · ri−1. (6.4)

Recall that our goal is to represent the new remainder ri as a linear combination of

r0 and r1 as shown in Eq. (6.1). The core step for achieving this happens now: in

Eq. (6.4) we simply substitute ri−2 by Eq. (6.2) and ri−1 by Eq. (6.3):

ri = (si−2r0 + ti−2r1)−qi−1(si−1r0 + ti−1r1)

If we rearrange the terms we obtain the desired result:

ri = [si−2 −qi−1si−1]r0 +[ti−2 −qi−1ti−1]r1 (6.5)

ri = [si]r0 +[ti]r1

Eq. (6.5) also gives us immediately the recursive formulae for computing si and

ti, namely si = si−2 − qi−1si−1 and ti = ti−2 − qi−1ti−1. These recursions are valid

162 6 Introduction to Public-Key Cryptography

for index values i ≥ 2. Like any recursion, we need starting values for s0,s1, t0, t1.

These initial values (which we derive in Problem 6.13) can be shown to be s0 =
1,s1 = 0, t0 = 0, t1 = 1.

Extended Euclidean Algorithm (EEA)

Input: positive integers r0 and r1 with r0 > r1

Output: gcd(r0,r1), as well as s and t such that gcd(r0,r1) = s · r0 + t · r1.

Initialization:

s0 = 1 t0 = 0

s1 = 0 t1 = 1

i = 1

Algorithm:

1 DO

1.1 i = i+1

1.2 ri = ri−2 mod ri−1

1.3 qi−1 = (ri−2 − ri)/ri−1

1.4 si = si−2 −qi−1 · si−1

1.5 ti = ti−2 −qi−1 · ti−1

WHILE ri �= 0

2 RETURN

gcd(r0,r1) = ri−1

s = si−1

t = ti−1

As mentioned above, the main application of the EEA in asymmetric cryptog-

raphy is to compute the inverse modulo of an integer. We already encountered this

problem in the context of the affine cipher in Chap. 1. For the affine cipher, we

were required to find the inverse of the key value a modulo 26. With the Euclidean

algorithm, this is straightforward. Let’s assume we want to compute the inverse

of r1 mod r0 where r1 < r0. Recall from Sect. 1.4.2 that the inverse only exists if

gcd(r0,r1) = 1. Hence, if we apply the EEA, we obtain s ·r0 +t ·r1 = 1 = gcd(r0,r1).
Taking this equation modulo r0 we obtain:

s · r0 + t · r1 = 1

s ·0+ t · r1 ≡ 1 mod r0

r1 · t ≡ 1 mod r0 (6.6)

Equation (6.6) is exactly the definition of the inverse of r1. That means, that t itself

is the inverse of r1:

t = r−1
1 mod r0.

6.3 Essential Number Theory for Public-Key Algorithms 163

Thus, if we need to compute an inverse a−1 mod m, we apply the EEA with the

input parameters m and a. The output value t that is computed is the inverse. Let’s

look at an example.

Example 6.6. Our goal is to compute 12−1 mod 67. The values 12 and 67 are rela-

tively prime, i.e., gcd(67,12) = 1. If we apply the EEA, we obtain the coefficients s

and t in gcd(67,12) = 1 = s ·67+t ·12. Starting with the values r0 = 67 and r1 = 12,

the algorithm proceeds as follows:

i qi−1 ri si ti
2 5 7 1 -5

3 1 5 -1 6

4 1 2 2 -11

5 2 1 -5 28

This gives us the linear combination

−5 ·67+28 ·12 = 1

As shown above, the inverse of 12 follows from here as

12−1 ≡ 28 mod 67.

This result can easily be verified

28 ·12 = 336 ≡ 1 mod 67.

⋄

Note that the s coefficient is not needed and is in practice often not computed.

Please note also that the result of the algorithm can be a negative value for t. The

result is still correct, however. We have to compute t = t + r0, which is a valid

operation since t ≡ t + r0 mod r0.

For completeness, we show how the EEA can also be used for computing mul-

tiplicative inverses in Galois fields. In modern cryptography this is mainly relevant

for the derivation of the AES S-Boxes and for elliptic curve public-key algorithms.

The EEA can be used completely analogously with polynomials instead of inte-

gers. If we want to compute an inverse in a finite field GF(2m), the inputs to the

algorithm are the field element A(x) and the irreducible polynomial P(x). The EEA

computes the auxiliary polynomials s(x) and t(x), as well as the greatest common

divisor gcd(P(x),A(x)) such that:

s(x)P(x)+ t(x)A(x) = gcd(P(x),A(x)) = 1

Note that since P(x) is irreducible, the gcd is always equal to 1. If we take the

equation above and reduce both sides modulo P(x), it is straightforward to see that

the auxiliary polynomial t(x) is equal to the inverse of A(x):

164 6 Introduction to Public-Key Cryptography

s(x)0+ t(x)A(x) ≡ 1 mod P(x)

t(x) ≡ A−1(x) mod P(x)

We give at this point an example of the algorithm for the small field GF(23).

Example 6.7. We are looking for the inverse of A(x) = x2 in the finite field GF(23)
with P(x) = x3 + x + 1. The initial values for the t(x) polynomial are: t0(x) = 0,

t1(x) = 1

Iteration ri−2(x) = [qi−1(x)]ri−1(x)+ [ri(x)] ti(x)

2 x3 + x+1 = [x]x2 +[x+1] t2 = t0 −q1t1 = 0− x1 ≡ x

3 x2 = [x] (x+1)+ [x] t3 = t1 −q2t2 = 1− x(x) ≡ 1+ x2

4 x+1 = [1]x+[1] t4 = t2 −q3t3 = x−1(1+ x2)
t4 ≡ 1+ x+ x2

5 x = [x]1+[0] Termination since r5 = 0

Note that polynomial coefficients are computed in GF(2), and since addition and

multiplication are the same operations, we can always replace a negative coefficient

(such as −x) by a positive one. The new quotient and the new remainder that are

computed in every iteration are shown in brackets above. The polynomials ti(x)
are computed according to the recursive formula that was used for computing the

integers ti earlier in this section. The EEA terminates if the remainder is 0, which is

the case in the iteration with index 5. The inverse is now given as the last ti(x) value

that was computed, i.e., t4(x):

A−1(x) = t(x) = t4(x) = x2 + x+1.

Here is the check that t(x) is in fact the inverse of x2, where we use the properties

that x3 ≡ x+1 mod P(x) and x4 ≡ x2 + x mod P(x):

t4(x) · x2 = x4 + x3 + x2

≡ (x2 + x)+(x+1)+ x2 mod P(x)

≡ 1 mod P(x)

⋄
Note that in every iteration of the EEA, one uses long division (not shown above)

to determine the new quotient qi−1(x) and the new remainder ri(x).
The inverse Table 4.2 in Chap. 4 was computed using the extended Euclidean

algorithm.

6.3.3 Euler’s Phi Function

We now look at another tool that is useful for public-key cryptosystems, especially

for RSA. We consider the ring Zm, i.e., the set of integers {0,1, . . . ,m−1}. We are

6.3 Essential Number Theory for Public-Key Algorithms 165

interested in the (at the moment seemingly odd) problem of knowing how many

numbers in this set are relatively prime to m. This quantity is given by Euler’s phi

function, which is defined as follows:

Definition 6.3.1 Euler’s Phi Function

The number of integers in Zm relatively prime to m is denoted by

Φ(m).

We first look at some examples and calculate Euler’s phi function by actually

counting all the integers in Zm which are relatively prime.

Example 6.8. Let m = 6. The associated set is Z6 = {0,1,2,3,4,5}.

gcd(0,6) = 6

gcd(1,6) = 1 �
gcd(2,6) = 2

gcd(3,6) = 3

gcd(4,6) = 2

gcd(5,6) = 1 �
Since there are two numbers in the set which are relatively prime to 6, namely 1 and

5, the phi function takes the value 2, i.e., Φ(6) = 2.

⋄

Here is another example:

Example 6.9. Let m = 5. The associated set is Z5 = {0,1,2,3,4}.

gcd(0,5) = 5

gcd(1,5) = 1 �
gcd(2,5) = 1 �
gcd(3,5) = 1 �
gcd(4,5) = 1 �
This time we have four numbers which are relatively prime to 5, hence, Φ(5) = 4.

⋄

From the examples above we can guess that calculating Euler’s phi function by

running through all elements and computing the gcd is extremely slow if the num-

bers are large. In fact, computing Euler’s phi function in this naı̈ve way is com-

pletely out of reach for the large numbers occurring in public-key cryptography.

Fortunately, there exists a relation to calculate it much more easily if we know the

factorization of m, which is given in following theorem.

166 6 Introduction to Public-Key Cryptography

Theorem 6.3.1 Let m have the following canonical factorization

m = p
e1
1 · p

e2
2 · . . . · pen

n ,

where the pi are distinct prime numbers and ei are positive integers,

then

Φ(m) =
n

∏
i=1

(p
ei
i − p

ei−1
i).

Since the value of n, i.e., the number of distinct prime factors, is always quite small

even for large numbers m, evaluating the product symbol ∏ is computationally easy.

Let’s look at an example where we calculate Euler’s phi function using the relation:

Example 6.10. Let m = 240. The factorization of 240 in the canonical factorization

form is

m = 240 = 16 ·15 = 24 ·3 ·5 = p
e1
1 · p

e2
2 · p

e3
3

There are three distinct prime factors, i.e., n = 3. The value for Euler’s phi functions

follows then as:

Φ(m) = (24 −23)(31 −30)(51 −50) = 8 ·2 ·4 = 64.

That means that 64 integers in the range {0,1, . . . ,239} are coprime to m = 240.

The alternative method, which would have required to evaluate the gcd 240 times,

would have been much slower even for this small number.

⋄

It is important to stress that we need to know the factorization of m in order to

calculate Euler’s phi function quickly in this manner. As we will see in the next

chapter, this property is at the heart of the RSA public-key scheme: Conversely, if

we know the factorization of a certain number, we can compute Euler’s phi function

and decrypt the ciphertext. If we do not know the factorization, we cannot compute

the phi function and, hence, cannot decrypt.

6.3.4 Fermat’s Little Theorem and Euler’s Theorem

We describe next two theorems which are quite useful in public-key crpytography.

We start with Fermat’s Little Theorem.1 The theorem is helpful for primality testing

and in many other aspects of public-key cryptography. The theorem gives a seem-

ingly surprising result if we do exponentiations modulo an integer.

1 You should not confuse this with Fermat’s Last Theorem, one of the most famous number-
theoretical problems, which was proved in the 1990s after 350 years.

6.3 Essential Number Theory for Public-Key Algorithms 167

Theorem 6.3.2 Fermat’s Little Theorem

Let a be an integer and p be a prime, then:

ap ≡ a (mod p).

We note that arithmetic in finite fields GF(p) is done modulo p, and hence, the

theorem holds for all integers a which are elements of a finite field GF(p). The

theorem can be stated in the form:

ap−1 ≡ 1 (mod p)

which is often useful in cryptography. One application is the computation of the

inverse in a finite field. We can rewrite the equation as a · ap−2 ≡ 1 (mod p). This

is exactly the definition of the multiplicative inverse. Thus, we immediately have a

way for inverting an integer a modulo a prime:

a−1 ≡ ap−2 (mod p) (6.7)

We note that this inversion method holds only if p is a prime. Let’s look at an

example:

Example 6.11. Let p = 7 and a = 2. We can compute the inverse of a as:

ap−2 = 25 = 32 ≡ 4 mod 7.

This is easy to verify: 2 ·4 ≡ 1 mod 7.

⋄

Performing the exponentiation in Eq. (6.7) is usually slower than using the extended

Euclidean algorithm. However, there are situations where it is advantageous to use

Fermat’s Little Theorem, e.g., on smart cards or other devices which have a hard-

ware accelerator for fast exponentiation anyway. This is not uncommon because

many public-key algorithms require exponentiation, as we will see in subsequent

chapters.

A generalization of Fermat’s Little Theorem to any integer moduli, i.e., moduli

that are not necessarily primes, is Euler’s theorem.

Theorem 6.3.3 Euler’s Theorem

Let a and m be integers with gcd(a,m) = 1, then:

aΦ(m) ≡ 1 (mod m).

Since it works modulo m, it is applicable to integer rings Zm. We show now an

example for Euler’s theorem with small values.

Example 6.12. Let m = 12 and a = 5. First, we compute Euler’s phi function of m:

168 6 Introduction to Public-Key Cryptography

Φ(12) = Φ(22 ·3) = (22 −21)(31 −30) = (4−2)(3−1) = 4.

Now we can verify Euler’s theorem:

5Φ(12) = 54 = 252 = 625 ≡ 1 mod 12.

⋄

It is easy to show that Fermat’s Little Theorem is a special case of Euler’s theorem.

If p is a prime, it holds that Φ(p) = (p1 − p0) = p− 1. If we use this value for

Euler’s theorem, we obtain: aΦ(p) = ap−1 ≡ 1 (mod p), which is exactly Fermat’s

Little Theorem.

6.4 Discussion and Further Reading

Public-Key Cryptography in General Asymmetric cryptography was introduced

in the landmark paper by Whitfield Diffie and Martin Hellman [58]. Ralph Merkle

independently invented the concept of asymmetric cryptography but proposed an

entirely different public-key algorithm [121]. There are a few good accounts of the

history of public-key cryptography. The treatment in [57] by Diffie is recommended.

Another good overview on public-key cryptography is [127]. A very instructive and

detailed history of elliptic curve cryptography, including the relatively intense com-

petition between RSA and ECC during the 1990s, is described in [100]. More recent

development in asymmetric cryptography is tracked by the Workshop on Public-Key

Cryptography (PKC) series.

Modular Arithmetic With respect to the mathematics introduced in this chapter,

the introductory books on number theory recommended in Sect. 1.5 make good

sources for further reading. In practical terms, the Extended Euclidean Algorithm

(EEA) is the most crucial, since virtually all implementations of public-key schemes

incorporate it, especially modular inversion. An important acceleration technique

for the scheme is the binary EEA. Its advantage over the standard EEA is that it

replaces divisions by bit shifts. This is in particular attractive for the very long num-

bers occurring in public-key schemes.

Alternative Public-Key Algorithms In addition to the three established families

of asymmetric schemes, there exist several others. First, there are algorithms which

have been broken or are believed to be insecure, e.g., knapsack schemes. Second,

there are generalizations of the established algorithms, e.g., hyperelliptic curves,

algebraic varieties or non-RSA factoring-based schemes. These schemes use the

same one-way function, that is, integer factorization or the discrete logarithm in

certain groups. Third, there are asymmetric algorithms which are based on differ-

ent one-way functions. Four families of one-way function are of particular interest:

hash-based, code-based, lattice-based and multivariate quadratic (MQ) public-key

algorithms. There are, of course, reasons why they are not as widely used today.

6.5 Lessons Learned 169

In most cases, they have either practical drawbacks, such as very long keys (some-

times in the range of several megabytes), or the cryptographic strength is not well

understood. Since about 2005, there has been growing interest in the cryptographic

community in such asymmetric schemes. This is in part motivated by the fact that

no quantum computing attacks are currently known against these four families of

alternative asymmetric schemes. This is in contrast to RSA, discrete logarithm, and

elliptic curve schemes and their variants, which are all vulnerable to attacks using

quantum computers [153]. Even though it is not clear whether quantum computers

will ever exist (the most optimistic estimates state that they are still several decades

away), the alternative public-key algorithms are at times collectively referred to as

post-quantum cryptography. A recent book [18] and a new workshop series [36, 35]

provide more information about this area of active research.

6.5 Lessons Learned

� Public-key algorithms have capabilities that symmetric ciphers don’t have, in

particular digital signature and key establishment functions.

� Public-key algorithms are computationally intensive (a nice way of saying that

they are slow), and hence are poorly suited for bulk data encryption.

� Only three families of public-key schemes are widely used. This is considerably

fewer than in the case of symmetric algorithms.

� The extended Euclidean algorithm allows us to compute modular inverses quickly,

which is important for almost all public-key schemes.

� Euler’s phi function gives us the number of elements smaller than an integer n

that are relatively prime to n. This is an important function for the RSA crypto

scheme.

170 6 Introduction to Public-Key Cryptography

Problems

6.1. As we have seen in this chapter, public-key cryptography can be used for en-

cryption and key exchange. Furthermore, it has some properties (such as nonrepu-

diation) which are not offered by secret key cryptography.

So why do we still use symmetric cryptography in current applications?

6.2. In this problem, we want to compare the computational performance of sym-

metric and asymmetric algorithms. Assume a fast public-key library such as

OpenSSL [132] that can decrypt data at a rate of 100 Kbit/sec using the RSA al-

gorithm on a modern PC. On the same machine, AES can decrypt at a rate of

17 Mbit/sec. Assume we want to decrypt a movie stored on a DVD. The movie

requires 1 GByte of storage. How long does decryption take with either algorithm?

6.3. Assume a (small) company with 120 employees. A new security policy de-

mands encrypted message exchange with a symmetric cipher. How many keys are

required, if you are to ensure a secret communication for every possible pair of

communicating parties?

6.4. The level of security in terms of the corresponding bit length directly influ-

ences the performance of the respective algorithm. We now analyze the influence of

increasing the security level on the runtime.

Assume that a commercial Web server for an online shop can use either RSA

or ECC for signature generation. Furthermore, assume that signature generation for

RSA-1024 and ECC-160 takes 15.7 ms and 1.3 ms, respectively.

1. Determine the increase in runtime for signature generation if the security level

from RSA is increased from 1024 bit to 3072 bit.

2. How does the runtime increase from 1024 bit to 15,360 bit?

3. Determine these numbers for the respective security levels of ECC.

4. Describe the difference between RSA and ECC when increasing the security

level.

Hint: Recall that the computational complexity of both RSA and ECC grows with

the cube of bit length. You may want to use Table 6.1 to determine the adequate bit

length for ECC, given the security level of RSA.

6.5. Using the basic form of Euclid’s algorithm, compute the greatest common di-

visor of

1. 7469 and 2464

2. 2689 and 4001

For this problem use only a pocket calculator. Show every iteration step of Euclid’s

algorithm, i.e., don’t write just the answer, which is only a number. Also, for every

gcd, provide the chain of gcd computations, i.e.,

gcd(r0,r1) = gcd(r1,r2) = · · · .

6.5 Problems 171

6.6. Using the extended Euclidean algorithm, compute the greatest common divisor

and the parameters s, t of

1. 198 and 243

2. 1819 and 3587

For every problem check if sr0 + t r1 = gcd(r0,r1) is actually fulfilled. The rules are

the same as above: use a pocket calculator and show what happens in every iteration

step.

6.7. With the Euclidean algorithm we finally have an efficient algorithm for finding

the multiplicative inverse in Zm that is much better than exhaustive search. Find the

inverses in Zm of the following elements a modulo m:

1. a = 7, m = 26 (affine cipher)

2. a = 19, m = 999

Note that the inverses must again be elements in Zm and that you can easily verify

your answers.

6.8. Determine φ(m), for m = 12,15,26, according to the definition: Check for each

positive integer n smaller m whether gcd(n,m) = 1. (You do not have to apply Eu-

clid’s algorithm.)

6.9. Develop formulae for φ(m) for the special cases when

1. m is a prime

2. m = p · q, where p and q are primes. This case is of great importance for the

RSA cryptosystem. Verify your formula for m = 15,26 with the results from the

previous problem.

6.10. Compute the inverse a−1 mod n with Fermat’s Theorem (if applicable) or Eu-

ler’s Theorem:

� a = 4, n = 7

� a = 5, n = 12

� a = 6, n = 13

6.11. Verify that Euler’s Theorem holds in Zm, m = 6,9, for all elements a for which

gcd(a,m) = 1. Also verify that the theorem does not hold for elements a for which

gcd(a,m) �= 1.

6.12. For the affine cipher in Chapter 1 the multiplicative inverse of an element

modulo 26 can be found as

a−1 ≡ a11 mod 26.

Derive this relationship by using Euler’s Theorem.

6.13. The extended Euclidean algorithm has the initial conditions s0 = 1,s1 = 0, t0 =
0, t1 = 1. Derive these conditions. It is helpful to look at how the general iteration

formula for the Euclidean algorithm was derived in this chapter.

Chapter 7

The RSA Cryptosystem

After Whitfield Diffie and Martin Hellman introduced public-key cryptography in

their landmark 1976 paper [58], a new branch of cryptography suddenly opened

up. As a consequence, cryptologists started looking for methods with which public-

key encryption could be realized. In 1977, Ronald Rivest, Adi Shamir and Leonard

Adleman (cf. Fig. 7.1) proposed a scheme which became the most widely used

asymmetric cryptographic scheme, RSA.

Fig. 7.1 An early picture of Adi Shamir, Ron Rivest, and Leonard Adleman (reproduced with
permission from Ron Rivest)

In this chapter you will learn:

� How RSA works

� Practical aspects of RSA, such as computation of the parameters, and fast en-

cryption and decryption

� Security estimations

� Implementational aspects

173

174 7 The RSA Cryptosystem

7.1 Introduction

The RSA crypto scheme, sometimes referred to as the Rivest–Shamir–Adleman al-

gorithm, is currently the most widely used asymmetric cryptographic scheme, even

though elliptic curves and discrete logarithm schemes are gaining ground. RSA was

patented in the USA (but not in the rest of the world) until 2000.

There are many applications for RSA, but in practice it is most often used for:

� encryption of small pieces of data, especially for key transport

� digital signatures, which is discussed in Chap. 10, e.g., for digital certificates on

the Internet

However, it should be noted that RSA encryption is not meant to replace sym-

metric ciphers because it is several times slower than ciphers such as AES. This

is because of the many computations involved in performing RSA (or any other

public-key algorithm) as we learn later in this chapter. Thus, the main use of the

encryption feature is to securely exchange a key for a symmetric cipher (key trans-

port). In practice, RSA is often used together with a symmetric cipher such as AES,

where the symmetric cipher does the actual bulk data encryption.

The underlying one-way function of RSA is the integer factorization problem:

Multiplying two large primes is computationally easy (in fact, you can do it with

paper and pencil), but factoring the resulting product is very hard. Euler’s theorem

(Theorem 6.3.3) and Euler’s phi function play important roles in RSA. In the fol-

lowing, we first describe how encryption, decryption and key generation work, then

we talk about practical aspects of RSA.

7.2 Encryption and Decryption

RSA encryption and decryption is done in the integer ring Zn and modular com-

putations play a central role. Recall that rings and modular arithmetic in rings were

introduced in Sect. 1.4.2. RSA encrypts plaintexts x, where we consider the bit string

representing x to be an element in Zn = {0,1, . . . ,n−1}. As a consequence the bi-

nary value of the plaintext x must be less than n. The same holds for the ciphertext.

Encryption with the public key and decryption with the private key are as shown

below:

RSA Encryption Given the public key (n,e) = kpub and the plaintext x, the

encryption function is:

y = ekpub
(x) ≡ xe mod n (7.1)

where x,y ∈ Zn.

7.3 Key Generation and Proof of Correctness 175

RSA Decryption Given the private key d = kpr and the ciphertext y, the

decryption function is:

x = dkpr
(y) ≡ yd mod n (7.2)

where x,y ∈ Zn.

In practice, x, y, n and d are very long numbers, usually 1024 bit long or more.

The value e is sometimes referred to as encryption exponent or public exponent, and

the private key d is sometimes called decryption exponent or private exponent. If

Alice wants to send an encrypted message to Bob, Alice needs to have his public

key (n,e), and Bob decrypts with his private key d. We discuss in Sect. 7.3 how

these three crucial parameters d, e, and n are generated.

Even without knowing more details, we can already state a few requirements for

the RSA cryptosystem:

1. Since an attacker has access to the public key, it must be computationally infea-

sible to determine the private-key d given the public-key values e and n.

2. Since x is only unique up to the size of the modulus n, we cannot encrypt more

than l bits with one RSA encryption, where l is the bit length of n.

3. It should be relatively easy to calculate xe mod n, i.e., to encrypt, and yd mod n,

i.e., to decrypt. This means we need a method for fast exponentiation with very

long numbers.

4. For a given n, there should be many private-key/public-key pairs, otherwise an

attacker might be able to perform a brute-force attack. (It turns out that this re-

quirement is easy to satisfy.)

7.3 Key Generation and Proof of Correctness

A distinctive feature of all asymmetric schemes is that there is a set-up phase dur-

ing which the public and private key are computed. Depending on the public-key

scheme, key generation can be quite complex. As a remark, we note that key gener-

ation is usually not an issue for block or stream ciphers.

Here are the steps involved in computing the public and private-key for an RSA

cryptosystem.

176 7 The RSA Cryptosystem

RSA Key Generation

Output: public key: kpub = (n,e) and private key: kpr = (d)
1. Choose two large primes p and q.

2. Compute n = p ·q.

3. Compute Φ(n) = (p−1)(q−1).
4. Select the public exponent e ∈ {1,2, . . . ,Φ(n)−1} such that

gcd(e,Φ(n)) = 1.

5. Compute the private key d such that

d · e ≡ 1 mod Φ(n)

The condition that gcd(e,Φ(n)) = 1 ensures that the inverse of e exists modulo

Φ(n), so that there is always a private key d.

Two parts of the key generation are nontrivial: Step 1, in which the two large

primes are chosen, as well as Steps 4 and 5 in which the public and private key

are computed. The prime generation of Step 1 is quite involved and is addressed

in Sect. 7.6. The computation of the keys d and e can be done at once using the

extended Euclidean algorithm (EEA). In practice, one often starts by first selecting a

public parameter e in the range 0 < e < Φ(n). The value e must satisfy the condition

gcd(e,Φ(n)) = 1. We apply the EEA with the input parameters n and e and obtain

the relationship:

gcd(Φ(n),e) = s ·Φ(n)+ t · e
If gcd(e,Φ(n)) = 1, we know that e is a valid public key. Moreover, we also know

that the parameter t computed by the extended Euclidean algorithm is the inverse of

e, and thus:

d = t mod Φ(n)

In case that e and Φ(n) are not relatively prime, we simply select a new value for

e and repeat the process. Note that the coefficient s of the EEA is not required for

RSA and does not need to be computed.

We now see how RSA works by presenting a simple example.

Example 7.1. Alice wants to send an encrypted message to Bob. Bob first computes

his RSA parameters in Steps 1–5. He then sends Alice his public key. Alice encrypts

the message (x = 4) and sends the ciphertext y to Bob. Bob decrypts y using his

private key.

7.3 Key Generation and Proof of Correctness 177

Alice Bob

message x = 4 1. choose p = 3 and q = 11
2. n = p ·q = 33
3. Φ(n) = (3−1)(11−1) = 20
4. choose e = 3

5. d ≡ e−1 ≡ 7 mod 20
kpub=(33,3)

←−−−−−−−−−−−−
y = xe ≡ 43 ≡ 31 mod 33

y=31−−−−−−−−−−−−→
yd = 317 ≡ 4 = x mod 33

Note that the private and public exponents fulfill the condition e · d = 3 · 7 ≡
1 mod Φ(n).

⋄

Practical RSA parameters are much, much larger. As can be seen from Table 6.1,

the RSA modulus n should be at least 1024 bit long, which results in a bit length for

p and q of 512. Here is an example of RSA parameters for this bit length:

p = E0DFD2C2A288ACEBC705EFAB30E4447541A8C5A47A37185C5A9

CB98389CE4DE19199AA3069B404FD98C801568CB9170EB712BF

10B4955CE9C9DC8CE6855C6123h

q = EBE0FCF21866FD9A9F0D72F7994875A8D92E67AEE4B515136B2

A778A8048B149828AEA30BD0BA34B977982A3D42168F594CA99

F3981DDABFAB2369F229640115h

n = CF33188211FDF6052BDBB1A37235E0ABB5978A45C71FD381A91

AD12FC76DA0544C47568AC83D855D47CA8D8A779579AB72E635

D0B0AAAC22D28341E998E90F82122A2C06090F43A37E0203C2B

72E401FD06890EC8EAD4F07E686E906F01B2468AE7B30CBD670

255C1FEDE1A2762CF4392C0759499CC0ABECFF008728D9A11ADFh

e = 40B028E1E4CCF07537643101FF72444A0BE1D7682F1EDB553E3

AB4F6DD8293CA1945DB12D796AE9244D60565C2EB692A89B888

1D58D278562ED60066DD8211E67315CF89857167206120405B0

8B54D10D4EC4ED4253C75FA74098FE3F7FB751FF5121353C554

391E114C85B56A9725E9BD5685D6C9C7EED8EE442366353DC39h

d = C21A93EE751A8D4FBFD77285D79D6768C58EBF283743D2889A3

95F266C78F4A28E86F545960C2CE01EB8AD5246905163B28D0B

8BAABB959CC03F4EC499186168AE9ED6D88058898907E61C7CC

CC584D65D801CFE32DFC983707F87F5AA6AE4B9E77B9CE630E2

C0DF05841B5E4984D059A35D7270D500514891F7B77B804BED81h

178 7 The RSA Cryptosystem

What is interesting is that the message x is first raised to the eth power during

encryption and the result y is raised to the dth power in the decryption, and the

result of this is again equal to the message x. Expressed as an equation, this process

is:

dkpr
(y) = dkpr

(ekpub
(x)) ≡ (xe)d ≡ xde ≡ x mod n. (7.3)

This is the essence of RSA. We will now prove why the RSA scheme works.

Proof. We need to show that decryption is the inverse function of encryption,

dkpr
(ekpub

(x)) = x. We start with the construction rule for the public and private

key: d ·e ≡ 1 mod Φ(n). By definition of the modulo operator, this is equivalent to:

d · e = 1+ t ·Φ(n),

where t is some integer. Inserting this expression in Eq. (7.3):

dkpr
(y) ≡ xde ≡ x1+t·Φ(n) ≡ xt·Φ(n) · x1 ≡ (xΦ(n))t · x mod n. (7.4)

This means we have to prove that x ≡ (xΦ(n))t · x mod n. We use now Euler’s The-

orem from Sect. 6.3.3, which states that if gcd(x,n) = 1 then 1 ≡ xΦ(n) mod n. A

minor generalization immediately follows:

1 ≡ 1t ≡ (xΦ(n))t mod n, (7.5)

where t is any integer. For the proof we distinguish two cases:

First case: gcd(x,n) = 1

Euler’s Theorem holds here and we can insert Eq. (7.5) into (7.4):

dkpr
(y) ≡ (xΦ(n))t · x ≡ 1 · x ≡ x mod n. q.e.d.

This part of the proof establishes that decryption is actually the inverse func-

tion of encryption for plaintext values x which are relatively prime to the RSA

modulus n. We provide now the proof for the other case.

Second case: gcd(x,n) = gcd(x, p ·q) �= 1

Since p and q are primes, x must have one of them as a factor:

x = r · p or x = s ·q,

where r,s are integers such that r < q and s < p. Without loss of generality we

assume x = r · p, from which follows that gcd(x,q) = 1. Euler’s Theorem holds

in the following form:

1 ≡ 1t ≡ (xΦ(q))t mod q,

where t is any positive integer. We now look at the term (xΦ(n))t again:

(xΦ(n))t ≡ (x(q−1)(p−1))t ≡ ((xΦ(q))t)p−1 ≡ 1(p−1) = 1 mod q.

Using the definition of the modulo operator, this is equivalent to:

7.4 Encryption and Decryption: Fast Exponentiation 179

(xΦ(n))t = 1+u ·q,

where u is some integer. We multiply this equation by x:

x · (xΦ(n))t = x+ x ·u ·q
= x+(r · p) ·u ·q
= x+ r ·u · (p ·q)

= x+ r ·u ·n
x · (xΦ(n))t ≡ x mod n. (7.6)

Inserting Eq. (7.6) into Eq. (7.4) yields the desired result:

dkpr
= (xΦ(n))t · x ≡ x mod n.

⊓⊔

If this proof seems somewhat lengthy, please remember that the correctness of

RSA is simply assured by Step 5 of the RSA key generation phase. The proof be-

comes simpler by using the Chinese Remainder Theorem which we have not intro-

duced.

7.4 Encryption and Decryption: Fast Exponentiation

Unlike symmetric algorithms such as AES, DES or stream ciphers, public-key al-

gorithms are based on arithmetic with very long numbers. Unless we pay close

attention to how to realize the necessary computations, we can easily end up with

schemes that are too slow for practical use. If we look at RSA encryption and de-

cryption in Eqs. (7.1) and (7.2), we see that both are based on modular exponentia-

tion. We restate both operations here for convenience:

y = ekpub
(x) ≡ xe mod n (encryption)

x = dkpr
(y) ≡ yd mod n (decryption)

A straightforward way of exponentiation looks like this:

x
SQ−→ x2 MUL−−−→ x3 MUL−−−→ x4 MUL−−−→ x5 · · ·

where SQ denotes squaring and MUL multiplication. Unfortunately, the exponents

e and d are in general very large numbers. The exponents are typically chosen in the

range of 1024–3072 bit or even larger. (The public exponent e is sometimes chosen

to be a small value, but d is always very long.) Straightforward exponentiation as

shown above would thus require around 21024 or more multiplications. Since the

number of atoms in the visible universe is estimated to be around 2300, comput-

ing 21024 multiplications to set up one secure session for our Web browser is not

180 7 The RSA Cryptosystem

too tempting. The central question is whether there are considerably faster meth-

ods for exponentiation available. The answer is, luckily, yes. Otherwise we could

forget about RSA and pretty much all other public-key cryptosystems in use today,

since they all rely on exponentiation. One such method is the square-and-multiply

algorithm. We first show a few illustrative examples with small numbers before pre-

senting the actual algorithm.

Example 7.2. Let’s look at how many multiplications are required to compute the

simple exponentiation x8. With the straightforward method:

x
SQ−→ x2 MUL−−−→ x3 MUL−−−→ x4 MUL−−−→ x5 MUL−−−→ x6 MUL−−−→ x7 MUL−−−→ x8

we need seven multiplications and squarings. Alternatively, we can do something

faster:

x
SQ−→ x2 SQ−→ x4 SQ−→ x8

which requires only three squarings that are roughly as complex as a multiplication.

⋄

This fast method works fine but is restricted to exponents that are powers of 2,

i.e., values e and d of the form 2i. Now the question is, whether we can extend the

method to arbitrary exponents? Let us look at another example:

Example 7.3. This time we have the more general exponent 26, i.e., we want to

compute x26. Again, the naı̈ve method would require 25 multiplications. A faster

way is as follows:

x
SQ−→ x2 MUL−−−→ x3 SQ−→ x6 SQ−→ x12 MUL−−−→ x13 SQ−→ x26.

This approach takes a total of six operations, two multiplications and four squarings.

⋄

Looking at the last example, we see that we can achieve the desired result by

performing two basic operations:

1. squaring the current result,

2. multiplying the current result by the base element x.

In the example above we computed the sequence SQ, MUL, SQ, SQ, MUL, SQ.

However, we do not know the sequence in which the squarings and multiplications

have to be performed for other exponents. One solution is the square-and-multiply

algorithm. It provides a systematic way for finding the sequence in which we have

to perform squarings and multiplications by x for computing xH . Roughly speaking,

the algorithm works as follows:

The algorithm is based on scanning the bit of the exponent from the left (the

most significant bit) to the right (the least significant bit). In every iteration, i.e.,

for every exponent bit, the current result is squared. If and only if the currently

7.4 Encryption and Decryption: Fast Exponentiation 181

scanned exponent bit has the value 1, a multiplication of the current result by

x is executed following the squaring.

This seems like a simple if somewhat odd rule. For better understanding, let’s

revisit the example from above. This time, let’s pay close attention to the exponent

bits.

Example 7.4. We again consider the exponentiation x26. For the square-and-multiply

algorithm, the binary representation of the exponent is crucial:

x26 = x110102 = x(h4h3h2h1h0)2 .

The algorithm scans the exponent bits, starting on the left with h4 and ending with

the rightmost bit h0.

Step

#0 x = x12 inital setting, bit processed: h4 = 1

#1a (x1)2 = x2 = x102 SQ, bit processed: h3

#1b x2 · x = x3 = x102x12 = x112 MUL, since h3 = 1

#2a (x3)2 = x6 = (x112)2 = x1102 SQ, bit processed: h2

#2b no MUL, since h2 = 0

#3a (x6)2 = x12 = (x1102)2 = x11002 SQ, bit processed: h1

#3b x12 · x = x13 = x11002x12 = x11012 MUL, since h1 = 1

#4a (x13)2 = x26 = (x11012)2 = x110102 SQ, bit processed: h0

#4b no MUL, since h0 = 0

To understand the algorithm it is helpful to closely observe how the binary rep-

resentation of the exponent evolves. We see that the first basic operation, squaring,

results in a left shift of the exponent, with a 0 put in the rightmost position. The other

basic operation, multiplication by x, results in filling a 1 into the rightmost position

of the exponent. Compare how the highlighted exponents change from iteration to

iteration.

⋄

Here is the pseudo code for the square-and-multiply algorithm:

182 7 The RSA Cryptosystem

Square-and-Multiply for Modular Exponentiation

Input:

base element x

exponent H = ∑t
i=0 hi2

i with hi ∈ 0,1 and ht = 1

and modulus n

Output: xH mod n

Initialization: r = x

Algorithm:

1 FOR i = t −1 DOWNTO 0

1.1 r = r2 mod n

IF hi = 1

1.2 r = r · x mod n

2 RETURN (r)

The modulo reduction is applied after each multiplication and squaring operation

in order to keep the intermediate results small. It is helpful to compare this pseudo

code with the verbal description of the algorithm above.

We determine now the complexity of the square-and-multiply algorithm for an

exponent H with a bit length of t +1, i.e., ⌈log2 H⌉= t +1. The number of squarings

is independent of the actual value of H, but the number of multiplications is equal

to the Hamming weight, i.e., the number of ones in its binary representation. Thus,

we provide here the average number of multiplication, denoted by MUL:

#SQ = t

#MUL = 0.5t

Because the exponents used in cryptography have often good random properties,

assuming that half of their bits have the value one is often a valid approximation.

Example 7.5. How many operations are required on average for an exponentiation

with a 1024-bit exponent?

Straightforward exponentiation takes 21024 ≈ 10300 multiplications. That is com-

pletely impossible, no matter what computer resources we might have at hand. How-

ever, the square-and-multiply algorithm requires only

1.5 ·1024 = 1536

squarings and multiplications on average. This is an impressive example for the

difference of an algorithm with linear complexity (straightforward exponentiation)

and logarithmic complexity (square-and-multiply algorithm). Remember, though,

that each of the 1536 individual squarings and multiplications involves 1024-bit

numbers. That means the number of integer operations on a CPU is much higher

than 1536, but certainly doable on modern computers.

⋄

7.5 Speed-up Techniques for RSA 183

7.5 Speed-up Techniques for RSA

As we learned in Sect. 7.4, RSA involves exponentiation with very long numbers.

Even if the low-level arithmetic involving modular multiplication and squaring as

well as the square-and-multiply algorithm are implemented carefully, performing a

full RSA exponentiation with operands of length 1024 bit or beyond is computa-

tionally intensive. Thus, people have studied speed-up techniques for RSA since its

invention. We introduce two of the most popular general acceleration techniques in

the following.

7.5.1 Fast Encryption with Short Public Exponents

A surprisingly simple and very powerful trick can be used when RSA operations

with the public key e are concerned. This is in practice encryption and, as we’ll

learn later, verification of an RSA digital signature. In this situation, the public key

e can be chosen to be a very small value. In practice, the three values e = 3, e = 17

and e = 216 +1 are of particular importance. The resulting complexities when using

these public keys are given in Table 7.1.

Table 7.1 Complexity of RSA exponentiation with short public exponents

Public key e e as binary string #MUL + #SQ

3 112 2
17 100012 5

216 +1 100000000000000012 17

These complexities should be compared to the 1.5t multiplications and squarings

that are required for exponents of full length. Here t + 1 is the bit length of the

RSA modulus n, i.e., ⌈log2 n⌉ = t +1. We note that all three exponents listed above

have a low Hamming weight, i.e., number of ones in the binary representation. This

results in a particularly low number of operations for performing an exponentiation.

Interestingly, RSA is still secure if such short exponents are being used. Note that

the private key d still has in general the full bit length t +1 even though e is short.

An important consequence of the use of short public exponents is that encryption

of a message and verification of an RSA signature is a very fast operation. In fact,

for these two operations, RSA is in almost all practical cases the fastest public-key

scheme available. Unfortunately, there is no such easy way to accelerate RSA when

the private key d is involved, i.e., for decryption and signature generation. Hence,

these two operations tend to be slow. Other public-key algorithms, in particular el-

liptic curves, are often much faster for these two operations. The following section

shows how we can achieve a more moderate speed-up when using the private expo-

nent d.

184 7 The RSA Cryptosystem

7.5.2 Fast Decryption with the Chinese Remainder Theorem

We cannot choose a short private key without compromising the security for RSA.

If we were to select keys d as short as we did in the case of encryption in the section

above, an attacker could simply brute-force all possible numbers up to a given bit

length, i.e., 50 bit. But even if the numbers are larger, say 128 bit, there are key

recovery attacks. In fact, it can be shown that the private key must have a length of

at least 0.3t bit, where t is the bit length of the modulus n. In practice, e is often

chosen short and d has full bit length. What one does instead is to apply a method

which is based on the Chinese Remainder Theorem (CRT). We do not introduce

the CRT itself here but merely how it applies to accelerate RSA decryption and

signature generation.

Our goal is to perform the exponentiation xd mod n efficiently. First we note that

the party who possesses the private key also knows the primes p and q. The basic

idea of the CRT is that rather than doing arithmetic with one “long” modulus n,

we do two individual exponentiations modulo the two “short” primes p and q. This

is a type of transformation arithmetic. Like any transform, there are three steps:

transforming into the CRT domain, computation in the CRT domain, and inverse

transformation of the result. Those three steps are explained below.

Transformation of the Input into the CRT Domain

We simply reduce the base element x modulo the two factors p and q of the modulus

n, and obtain what is called the modular representation of x.

xp ≡ x mod p

xq ≡ x mod q

Exponentiation in the CRT Domain

With the reduced versions of x we perform the following two exponentiations:

yp = x
dp
p mod p

yq = x
dq
q mod q

where the two new exponents are given by:

dp ≡ d mod (p−1)

dq ≡ d mod (q−1)

Note that both exponents in the transform domain, dp and dq, are bounded by p and

q, respectively. The same holds for the transformed results yp and yq. Since the two

7.5 Speed-up Techniques for RSA 185

primes are in practice chosen to have roughly the same bit length, the two exponents

as well as yp and yq have about half the bit length of n.

Inverse Transformation into the Problem Domain

The remaining step is now to assemble the final result y from its modular represen-

tation (yp,yq). This follows from the CRT and can be done as:

y ≡ [qcp]yp +[pcq]yq mod n (7.7)

where the coefficients cp and cq are computed as:

cp ≡ q−1 mod p, cq ≡ p−1 mod q

Since the primes change very infrequently for a given RSA implementation, the two

expressions in brackets in Eq. (7.7) can be precomputed. After the precomputations,

the entire reverse transformation is achieved with merely two modular multiplica-

tions and one modular addition.

Before we consider the complexity of RSA with CRT, let’s have a look at an

example.

Example 7.6. Let the RSA parameters be given by:

p = 11 e = 7

q = 13 d ≡ e−1 ≡ 103 mod 120

n = p ·q = 143

We now compute an RSA decryption for the ciphertext y = 15 using the CRT, i.e.,

the value yd = 15103 mod 143. In the first step, we compute the modular represen-

tation of y:
yp ≡ 15 ≡ 4 mod 11

yp ≡ 15 ≡ 2 mod 13

In the second step, we perform the exponentiation in the transform domain with the

short exponents. These are:

dp ≡ 103 ≡ 3 mod 10

dq ≡ 103 ≡ 7 mod 12

Here are the exponentiations:

xp ≡ y
dp
p = 43 = 64 ≡ 9 mod 11

xq ≡ y
dq
q = 27 = 128 ≡ 11 mod 13

In the last step, we have to compute x from its modular representation (xp,xq). For

this, we need the coefficients:

186 7 The RSA Cryptosystem

cp = 13−1 ≡ 2−1 ≡ 6 mod 11 cq = 11−1 ≡ 6 mod 13

The plaintext x follows now as:

x ≡ [qcp]xp +[pcq]xq mod n

x ≡ [13 ·6]9+[11 ·6]11 mod 143

x ≡ 702+726 = 1428 ≡ 141 mod 143

⋄
If you want to verify the result, you can compute yd mod 143 using the square-and-

multiply algorithm.

We will now establish the computational complexity of the CRT method. If we

look at the three steps involved in the CRT-based exponentiation, we conclude that

for a practical complexity analysis the transformation and inverse transformation

can be ignored since the operations involved are negligible compared to the actual

exponentiations in the transform domain. For convenience, we restate these CRT

exponentiations here:

yp = x
dp
p mod p

yq = x
dq
q mod q

If we assume that n has t + 1 bit, both p and q are about t/2 bit long. All numbers

involved in the CRT exponentiations, i.e., xp, xq, dp and dq, are bound in size by

p and q, respectively, and thus also have a length of about t/2 bit. If we use the

square-and-multiply algorithm for the two exponentiations, each requires on average

approximately 1.5 t/2 modular multiplications and squarings. Together, the number

of multiplications and squarings is thus:

#SQ+#MUL = 2 ·1.5 t/2 = 1.5 t

This appears to be exactly the same computational complexity as regular exponen-

tiation without the CRT. However, each multiplication and squaring involves num-

bers which have a length of only t/2 bit. This is in contrast to the operations without

CRT, where each multiplication was performed with t-bit variables. Since the com-

plexity of multiplication decreases quadratically with the bit length, each t/2-bit

multiplication is four times faster than a t-bit multiplication.1 Thus, the total speed-

up obtained through the CRT is a factor of 4. This speed-up by four can be very

valuable in practice. Since there are hardly any drawbacks involved, CRT-based

exponentiations are used in many cryptographic products, e.g., for Web browser

encryption. The method is also particularly valuable for implementations on smart

1 The reason for the quadratic complexity is easy to see with the following example. If we multiply
a 4-digit decimal number abcd by another number wxyz, we multiply each digit from the first
operand with each digit of the second operand, for a total of 42 = 16 digit multiplications. On the
other hand, if we multiply two numbers with two digits, i.e., ab times wx, only 22 = 4 elementary
multiplications are needed.

7.6 Finding Large Primes 187

cards, e.g., for banking applications, which are only equipped with a small micro-

processor. Here, digital signing is often needed, which involves the secret key d. By

applying the CRT for signature computation, the smart card is four times as fast.

For example, if a regular 1024-bit RSA exponentiation takes 3 sec, using the CRT

reduces that time to 0.75 sec. This acceleration might make the difference between a

product with high customer acceptance (0.75 sec) and a product with a delay that is

not acceptable for many applications (3 sec). This example is a good demonstration

how basic number theory can have direct impact in the real world.

7.6 Finding Large Primes

There is one important practical aspect of RSA which we have not discussed yet:

generating the primes p and q in Step 1 of the key generation. Since their product

is the RSA modulus n = p ·q, the two primes should have about half the bit length

of n. For instance, if we want to set up RSA with a modulus of length ⌈log2 n⌉ =
1024, p and q should have a bit length of about 512 bit. The general approach is

to generate integers at random which are then checked for primality, as depicted in

Fig. 7.2, where RNG stands for random number generator. The RNG should be non

predictable because if an attacker can compute or guess one of the two primes, RSA

can be broken easily as we will see later in this chapter.

Fig. 7.2 Principal approach to generating primes for RSA

In order to make this approach work, we have to answer two questions:

1. How many random integers do we have to test before we have a prime? (If the

likelihood of a prime is too small, it might take too long.)

2. How fast can we check whether a random integer is prime? (Again, if the test is

too slow, the approach is impractical.)

It turns out that both steps are reasonably fast, as is discussed in the following.

7.6.1 How Common Are Primes?

Now we’ll answer the question whether the likelihood that a randomly picked inte-

ger p is a prime is sufficiently high. We know from looking at the first few positive

188 7 The RSA Cryptosystem

integers that primes become less dense as the value increases:

2,3,5,7,11,13,17,19,23,29,31,37, . . .

The question is whether there is still a reasonable chance that a random number

with, say, 512 bit, is a prime. Luckily, this is the case. The chance that a randomly

picked integer p̃ is a prime follows from the famous prime number theorem and is

approximately 1/ ln(p̃). In practice, we only test odd numbers so that the likelihood

doubles. Thus, the probability for a random odd number p̃ to be prime is

P(p̃ is prime) ≈ 2

ln(p̃)
.

In order to get a better feeling for what this probability means for RSA primes, let’s

look at an example:

Example 7.7. For RSA with a 1024-bit modulus n, the primes p and q each should

have a length of about 512 bits, i.e., p,q ≈ 2512. The probability that a random odd

number p̃ is a prime is

P(p̃ is prime) ≈ 2

ln(2512)
=

2

512 ln(2)
≈ 1

177
.

This means that we expect to test 177 random numbers before we find one that is a

prime.

⋄

The likelihood of integers being primes decreases slowly, proportional to the bit

length of the integer. This means that even for very long RSA parameters, say with

4096 bit, the density of primes is still sufficiently high.

7.6.2 Primality Tests

The other step we have to do is to decide whether the randomly generated integers p̃

are primes. A first idea could be to factor the number in question. However, for the

numbers used in RSA, factorization is not possible since p and q are too large. (In

fact, we especially choose numbers that cannot be factored because factoring n is the

best known attack against RSA.) The situation is not hopeless, though. Remember

that we are not interested in the factorization of p̃. Instead we merely need the

statement whether the number being tested is a prime or not. It turns out that such

primality tests are computationally much easier than factorization. Examples for

primality tests are the Fermat test, the Miller–Rabin test or variants of them. We

introduce primality test algorithms in this section.

Practical primality tests behave somewhat unusually: if the integer p̃ in question

is being fed into a primality test algorithm, the answer is either

7.6 Finding Large Primes 189

1. “p̃ is composite” (i.e., not a prime), which is always a true statement, or

2. “p̃ is prime”, which is only true with a high probability.

If the algorithm output is “composite”, the situation is clear: The integer in question

is not a prime and can be discarded. If the output statement is “prime”, p̃ is probably

a prime. In rare cases, however, an integers prompts a “prime” statement but it lies,

i.e., it yields an incorrect positive answer. There is way to deal with this behavior.

Practical primality tests are probabilistic algorithms. That means they have a second

parameter a as input which can be chosen at random. If a composite number p̃

together with a parameter a yields the incorrect statement “p̃ is prime”, we repeat

the test a second time with a different value for a. The general strategy is to test a

prime candidate p̃ so often with several different random values a that the likelihood

that the pair (p̃,a) lies every single time is sufficiently small, say, less than 2−80.

Remember that as soon as the statement “ p̃ is composite” occurs, we know for

certain that p̃ is not a prime and we can discard it.

Fermat Primality Test

One primality test is based on Fermat’s Little Theorem, Theorem (6.3.2).

Fermat Primality Test

Input: prime candidate p̃ and security parameter s

Output: statement “p̃ is composite” or “p̃ is likely prime”

Algorithm:

1 FOR i = 1 TO s

1.1 choose random a ∈ {2,3, . . . , p̃−2}
1.2 IF ap̃−1 �≡ 1

1.3 RETURN (“p̃ is composite”)

2 RETURN (“p̃ is likely prime”)

The idea behind the test is that Fermat’s theorem holds for all primes. Hence,

if a number is found for which ap̃−1 �≡ 1 in Step 1.2, it is certainly not a prime.

However, the reverse is not true. There could be composite numbers which in fact

fulfill the condition a p̃−1 ≡ 1. In order to detect them, the algorithm is run s times

with different values of a.

Unfortunately, there are certain composite integers which behave like primes in

the Fermat test for many values of a. These are the Carmichael numbers. Given a

Carmichael number C, the following expression holds for all integers a for which

gcd(a,C) = 1:

aC−1 ≡ 1 mod C

Such special composites are very rare. For instance, there exist approximately only

100,000 Carmichael numbers below 1015.

190 7 The RSA Cryptosystem

Example 7.8. Carmichael Number

n = 561 = 3 ·11 ·17 is a Carmichael number since

a560 ≡ 1 mod 561

for all gcd(a,561) = 1.

⋄

If the prime factors of a Carmichael numbers are all large, there are only few bases

a for which Fermat’s test detects that the number is actually composite. For this

reason, in practice the more powerful Miller–Rabin test is often used to generate

RSA primes.

Miller–Rabin Primality Test

In contrast to Fermat’s test, the Miller–Rabin test does not have any composite num-

bers for which a large number of base elements a yield the statement “prime”. The

test is based on the following theorem:

Theorem 7.6.1 Given the decomposition of an odd prime candi-

date p̃

p̃−1 = 2ur

where r is odd. If we can find an integer a such that

ar �≡ 1 mod p̃ and ar 2 j �≡ p̃−1 mod p̃

for all j = {0,1, . . . ,u− 1}, then p̃ is composite. Otherwise, it is

probably a prime.

We can turn this into an efficient primality test.

7.6 Finding Large Primes 191

Miller–Rabin Primality Test

Input: prime candidate p̃ with p̃−1 = 2ur and security parameter s

Output: statement “p̃ is composite” or “p̃ is likely prime”

Algorithm:

1 FOR i = 1 TO s

choose random a ∈ {2,3, . . . , p̃−2}
1.2 z ≡ ar mod p̃

1.3 IF z �≡ 1 and z �≡ p̃−1

1.4 FOR j = 1 TO u−1

z ≡ z2 mod p̃

IF z = 1

RETURN (“p̃ is composite”)

1.5 IF z �= p̃−1

RETURN (“p̃ is composite”)

2 RETURN (“p̃ is likely prime”)

Step 1.2 is computed by using the square-and-multiply algorithm. The IF statement

in Step 1.3 tests the theorem for the case j = 0. The FOR loop 1.4 and the IF state-

ment 1.5 test the right-hand side of the theorem for the values j = 1, . . . ,u−1.

It can still happen that a composite number p̃ gives the incorrect statement

“prime”. However, the likelihood of this rapidly decreases as we run the test with

several different random base elements a. The number of runs is given by the secu-

rity parameter s in the Miller–Rabin test. Table 7.2 shows how many different values

a must be chosen in order to have a probability of less than 2−80 that a composite is

incorrectly detected as a prime.

Table 7.2 Number of runs within the Miller–Rabin primality test for an error probability of less
than 2−80

Bit lengths of p̃ Security parameter s

250 11
300 9
400 6
500 5
600 3

Example 7.9. Miller–Rabin Test

Let p̃ = 91. Write p̃ as p̃−1 = 21 ·45. We select a security parameter of s = 4. Now,

choose s times a random value a:

1. Let a = 12: z = 1245 ≡ 90 mod 91, hence, p̃ is likely prime.

2. Let a = 17: z = 1745 ≡ 90 mod 91, hence, p̃ is likely prime.

3. Let a = 38: z = 3845 ≡ 90 mod 91, hence, p̃ is likely prime.

192 7 The RSA Cryptosystem

4. Let a = 39: z = 3945 ≡ 78 mod 91, hence, p̃ is composite.

Since the numbers 12, 17 and 38 give incorrect statements for the prime candidate

p̃ = 91, they are called “liars for 91”.

⋄

7.7 RSA in Practice: Padding

What we described so far is the so-called “schoolbook RSA” system which has sev-

eral weaknesses. In practice RSA has to be used with a padding scheme. Padding

schemes are extremely important, and if not implemented properly, an RSA imple-

mentation may be insecure. The following properties of schoolbook RSA encryption

are problematic:

� RSA encryption is deterministic, i.e., for a specific key, a particular plaintext

is always mapped to a particular ciphertext. An attacker can derive statistical

properties of the plaintext from the ciphertext. Furthermore, given some pairs

of plaintext–ciphertext, partial information can be derived from new ciphertexts

which are encrypted with the same key.

� Plaintext values x = 0, x = 1, or x = −1 produce ciphertexts equal to 0, 1, or −1.

� Small public exponents e and small plaintexts x might be subject to attacks if

no padding or weak padding is used. However, there is no known attack against

small public exponents such as e = 3.

RSA has another undesirable property, namely that it is malleable. A crypto

scheme is said to be malleable if the attacker Oscar is capable of transforming the ci-

phertext into another ciphertext which leads to a known transformation of the plain-

text. Note that the attacker does not decrypt the ciphertext but is merely capable of

manipulating the plaintext in a predictable manner. This is easily achieved in the

case of RSA if the attacker replaces the ciphertext y by se y, where s is some integer.

If the receiver decrypts the manipulated ciphertext, he computes:

(se y)d ≡ sed xed ≡ sx mod n.

Even though Oscar is not able to decrypt the ciphertext, such targeted manipulations

can still do harm. For instance, if x were an amount of money which is to be trans-

ferred or the value of a contract, by choosing s = 2 Oscar could exactly double the

amount in a way that goes undetected by the receiver.

A possible solution to all these problems is the use of padding, which em-

beds a random structure into the plaintext before encryption and avoids the above

mentioned problems. Modern techniques such as Optimal Asymmetric Encryption

Padding (OAEP) for padding RSA messages are specified and standardized in Pub-

lic Key Cryptography Standard #1 (PKCS #1).

Let M be the message to be padded, let k be the length of the modulus n in

bytes, let |H| be the length of the hash function output in bytes and let |M| be the

7.7 RSA in Practice: Padding 193

length of the message in bytes. A hash function computes a message digest of fixed

length (e.g., 160 or 256 bit) for every input. More about hash functions is found

in Chap. 11. Furthermore, let L be an optional label associated with the message

(otherwise, L is an empty string as default). According to the most recent version

PKCS#1 (v2.1), padding a message within the RSA encryption scheme is done in

the following way:

1. Generate a string PS of length k−|M|−2|H|−2 of zeroed bytes. The length of

PS may be zero.

2. Concatenate Hash(L), PS, a single byte with hexadecimal value 0x01, and the

message M to form a data block DB of length k−|H|−1 bytes as

DB = Hash(L)||PS||0x01||M.

3. Generate a random byte string seed of length |H|.
4. Let dbMask = MGF(seed,k−|H|−1), where MGF is the mask generation func-

tion. In practice, a hash function such as SHA-1 is often used as MFG.

5. Let maskedDB = DB⊕dbMask.

6. Let seedMask = MGF(maskedDB, |H|).
7. Let maskedSeed = seed ⊕ seedMask.

8. Concatenate a single byte with hexadecimal value 0x00, maskedSeed and

maskedDB to form an encoded message EM of length k bytes as

EM = 0x00||maskedSeed||maskedDB.

Figure 7.3 shows the structure of a padded message M.

0x00

Hash(L)seed |||

k

k−|H|−1|H|1

seedMask dbMask

MPS 0x01

Fig. 7.3 RSA encryption of a message M with Optimal Asymmetric Encryption Padding (OAEP)

On the decryption side, the structure of the decrypted message has to be verified.

For instance, if there is no byte with hexadecimal value 0x01 to separate PS from

M, a decryption error occurred. In any case, returning a decryption error to the user

(or a potential attacker!) should not reveal any information about the plaintext.

194 7 The RSA Cryptosystem

7.8 Attacks

There have been numerous attacks proposed against RSA since it was invented in

1977. None of the attacks are serious, and moreover, they typically exploit weak-

nesses in the way RSA is implemented or used rather than the RSA algorithm itself.

There are three general attack families against RSA:

1. Protocol attacks

2. Mathematical attacks

3. Side-channel attacks

We comment on each of them in the following.

Protocol Attacks

Protocol attacks exploit weaknesses in the way RSA is being used. There have been

several protocol attacks over the years. Among the better known ones are the attacks

that exploit the malleability of RSA, which was introduced in the previous section.

Many of them can be avoided by using padding. Modern security standards describe

exactly how RSA should be used, and if one follows those guidelines, protocol

attacks should not be possible.

Mathematical Attacks

The best mathematical cryptanalytical method we know is factoring the modulus.

An attacker, Oscar, knows the modulus n, the public key e and the ciphertext y. His

goal is to compute the private key d which has the property that e ·d ≡ mod Φ(n).
It seems that he could simply apply the extended Euclidean algorithm and compute

d. However, he does not know the value of Φ(n). At this point factoring comes in:

the best way to obtain this value is to decompose n into its primes p and q. If Oscar

can do this, the attack succeeds in three steps:

Φ(n) = (p−1)(q−1)

d−1 ≡ e mod Φ(n)

x ≡ yd mod n.

In order to prevent this attack, the modulus must be sufficiently large. This is the

sole reason why moduli of 1024 or more bit are needed for a RSA. The proposal of

the RSA scheme in 1977 sparked much interest in the old problem of integer fac-

torization. In fact, the major progress that has been made in factorization in the last

three decades would most likely not have happened if it weren’t for RSA. Table 7.3

shows a summary of the RSA factoring records that have occurred since the begin-

ning of the 1990s. These advances have been possible mainly due to improvements

in factoring algorithms, and to a lesser extent due to improved computer technology.

7.8 Attacks 195

Even though factoring has become easier than the RSA designers had assumed 30

years ago, factoring RSA moduli beyond a certain size still is out of reach.

Table 7.3 Summary of RSA factoring records since 1991

Decimal digits Bit length Date

100 330 April 1991
110 364 April 1992
120 397 June 1993
129 426 April 1994
140 463 February 1999
155 512 August 1999
200 664 May 2005

Of historical interest is the 129-digit modulus which was published in a column

by Martin Gardner in Scientific American in 1997. It was estimated that the best

factoring algorithms of that time would take 40 trillion (4 · 1013) years. However,

factoring methods improved considerably, particularly during the 1980s and 1990s,

and it took in fact less than 30 years.

Which exact length the RSA modulus should have is the topic of much discus-

sion. Until recently, many RSA applications used a bit length of 1024 bits as default.

Today it is believed that it might be possible to factor 1024-bit numbers within a pe-

riod of about 10–15 years, and intelligence organizations might be capable of doing

it possibly even earlier. Hence, it is recommended to choose RSA parameters in the

range of 2048–4096 bits for long-term security.

Side-Channel Attacks

A third and entirely different family of attacks are side-channel attacks. They exploit

information about the private key which is leaked through physical channels such as

the power consumption or the timing behavior. In order to observe such channels, an

attacker must typically have direct access to the RSA implementation, e.g., in a cell

phone or a smart card. Even though side-channel attacks are a large and active field

of research in modern cryptography and beyond the scope of this book, we show

one particularly impressive such attack against RSA in the following.

Figure 7.4 shows the power trace of an RSA implementation on a microproces-

sor. More precisely, it shows the electric current drawn by the processor over time.

Our goal is to extract the private key d which is used during the RSA decryption.

We clearly see intervals of high activity between short periods of less activity. Since

the main computational load of RSA is the squarings and multiplication during the

exponentiation, we conclude that the high-activity intervals correspond to those two

operations. If we look more closely at the power trace, we see that there are high

activity intervals which are short and others which are longer. In fact, the longer

ones appear to be about twice as long. This behavior is explained by the square-

and-multiply algorithm. If an exponent bit has the value 0, only a squaring is per-

196 7 The RSA Cryptosystem

formed. If an exponent bit has the value 1, a squaring together with a multiplication

is computed. But this timing behavior reveals immediately the key: A long period

of activity corresponds to the bit value 1 of the secret key, and a short period to a

key bit with value 0. As shown in the figure, by simply looking at the power trace

we can identify the secret exponent. Thus we can learn the following 12 bits of the

private key by looking at the trace:

operations: S SM SM S SM S S SM SM SM S SM

private key: 0 1 1 0 1 0 0 1 1 1 0 1

Obviously, in real-life we can also find all 1024 or 2048 bits of a full private key.

During the short periods with low activity, the square-and-multiply algorithm scans

and processes the exponent bits before it triggers the next squaring or squaring-and-

multiplication sequence.

Fig. 7.4 The power trace of an RSA implementation

This specific attack is classified as simple power analysis or SPA. There are sev-

eral countermeasures available to prevent the attack. A simple one is to execute a

multiplication with dummy variables after a squaring that corresponds to an expo-

nent bit 0. This results in a power profile (and a run time) which is independent

of the exponent. However, countermeasures against more advanced side-channel at-

tacks are not as straightforward.

7.9 Implementation in Software and Hardware 197

7.9 Implementation in Software and Hardware

RSA is the prime example (almost literally) for a public-key algorithm that is very

computationally intensive. Hence, the implementation of public-key algorithms is

much more crucial than that of symmetric ciphers like 3DES and AES, which are

significantly faster. In order to get an appreciation for the computational load, we

develop a rough estimate for the number of integer multiplications needed for an

RSA operation.

We assume a 2048-bit RSA modulus. For decryption we need on average 3072

squaring and multiplications, each of which involves 2048-bit operands. Let’s as-

sume a 32-bit CPU so that each operand is represented by 2048/32 = 64 registers.

A single long-number multiplication requires now 642 = 4096 integer multiplica-

tions since we have to multiply every register of the first operand with every register

of the second operand. In addition, we have to modulo reduce each of these multipli-

cations. The best algorithms for doing this also require roughly 642 = 4096 integer

multiplications. Thus, in total, the CPU has to perform about 4096 + 4096 = 8192

integer multiplications for a single long-number multiplication. Since we have 3072

of these, the number of integer multiplications for one decryption is:

#(32-bit mult) = 3072×8192 = 25,165,824

Of course, using a smaller modulus results in fewer operations, but given that integer

multiplications are among the most costly operations on current CPUs, it is probably

clear that the computational demand is quite impressive. Note that most other public

key schemes have a similar complexity.

The extremely high computational demand of RSA was, in fact, a serious hin-

drance to its adoption in practice after it had been invented. Doing hundreds of

thousands of integer multiplications was out of question with 1970s-style comput-

ers. The only option for RSA implementations with an acceptable run time was

to realize RSA on special hardware chips until the mid- to late 1980s. Even the

RSA inventors investigated hardware architecture in the early days of the algorithm.

Since then much research has focused on ways to quickly perform modular integer

arithmetic. Given the enormous capabilities of state-of-the-art VLSI chips, an RSA

operation can today be done in the range of 100 μs on high-speed hardware.

Similarly, due to Moore’s Law, RSA implementations in software have become

possible since the late 1980s. Today, a typical decryption operation on a 2 GHz CPU

takes around 10 ms for 2048-bit RSA. Even though this is sufficient for many PC

applications, the throughput is about 100× 2048 = 204,800 bit/s if one uses RSA

for encryption of large amounts of data. This is quite slow compared to the speed of

many of today’s networks. For this reason RSA and other public-key algorithms are

not used for bulk data encryption. Rather, symmetric algorithms are used that are

often faster by a factor of 1000 or so.

198 7 The RSA Cryptosystem

7.10 Discussion and Further Reading

RSA and Variants The RSA cryptosystem is widely used in practice and is well

standardized in bodies such as PKCS#1 [149]. Over the years several variants have

been proposed. One generalization is to use a modulus which is composed of more

than two primes. Also proposed have been multipower moduli of the form n = p2 q

[162] as well as multifactor ones where n = pq r [45]. In both cases speed-ups by a

factor of approximately 2–3 are possible.

There are also several other crypto schemes which are based on the integer fac-

torization problem. A prominent one is the Rabin scheme [140]. In contrast to RSA,

it can be shown that the Rabin scheme is equivalent to factoring. Thus, it is said

that the cryptosystem is provable secure. Other schemes which rely on the hard-

ness of integer factorization include the probabilistic encryption scheme by Blum–

Goldwasser [28] and the Blum Blum Shub pseudo-random number generator [27].

The Handbook of Applied Cryptography [120] describes all the schemes mentioned

in a coherent form.

Implementation The actual performance of an RSA implementation heavily de-

pends on the efficiency of the arithmetic used. Generally speaking, speed-ups are

possible at two levels. On the higher level, improvements of the square-and-multiply

algorithm are an option. One of the fastest methods is the sliding window exponen-

tiation which gives an improvement of about 25% over the square-and-multiply al-

gorithm. A good compilation of exponentiation methods is given in [120, Chap. 14].

On the lower layer, modular multiplication and squaring with long numbers can be

improved. One set of techniques deals with efficient algorithms for modular reduc-

tion. In practice, Montgomery reduction is the most popular choice; see [41] for a

good treatment of software techniques and [72] for hardware. Several alternatives

to the Montgomery method have also been proposed over the years [123]; [120,

Chap. 14]. Another angle to accelerate long number arithmetic is to apply fast mul-

tiplication methods. Spectral techniques such as the fast Fourier transform (FFT) are

usually not applicable because the operands are still too short, but methods such as

the Karatsuba algorithm [99] are very useful. Reference [17] gives a comprehensive

but fairly mathematical treatment of the area of multiplication algorithms, and [172]

describes the Karatsuba method from a practical viewpoint.

Attacks Breaking RSA analytically has been a subject of intense investigation for

the last 30 years. Especially during the 1980s, major progress in factorization algo-

rithms was made, which was not in small part motivated by RSA. There have been

numerous other attempts to mathematically break RSA, including attacks against

short private exponents. A good survey is given in [32]. More recently, proposals

have been made to build special computers whose sole purpose is to break RSA.

Proposals include an optoelectronic factoring machine [151] and several other ar-

chitectures based on conventional semiconductor technology [152, 79].

Side channel attacks have been systematically studied in academia and industry

since the mid- to late 1990s. RSA, as well as most other symmetric and asymmetric

schemes, are vulnerable against differential power analysis (DPA), which is more

7.11 Lessons Learned 199

powerful than the simple power analysis (SPA) shown in this section. On the other

hand, numerous countermeasures against DPA are known. Good references are The

Side Channel Cryptanalysis Lounge [70] and the excellent book on DPA [113].

Related implementation-based attacks are fault injection attacks and timing attacks.

It is important to stress that a cryptosystem can be mathematically very strong but

still be vulnerable to side-channel attacks.

7.11 Lessons Learned

� RSA is the most widely used public-key cryptosystem. In the future, elliptic

curve cryptosystems will probably catch up in popularity.

� RSA is mainly used for key transport (i.e., encryption of keys) and digital signa-

tures.

� The public key e can be a short integer. The private key d needs to have the

full length of the modulus. Hence, encryption can be significantly faster than

decryption.

� RSA relies on the integer factorization problem. Currently, 1024-bit (about 310

decimal digits) numbers cannot be factored. Progress in factorization algorithms

and factorization hardware is hard to predict. It is advisable to use RSA with

a 2048-bit modulus if one needs reasonable long-term security, especially with

respect to extremely well funded attackers.

� “Schoolbook RSA” allows several attacks, and in practice RSA should be used

together with padding.

200 7 The RSA Cryptosystem

Problems

7.1. Let the two primes p = 41 and q = 17 be given as set-up parameters for RSA.

1. Which of the parameters e1 = 32,e2 = 49 is a valid RSA exponent? Justify your

choice.

2. Compute the corresponding private key Kpr = (p,q,d). Use the extended Eu-

clidean algorithm for the inversion and point out every calculation step.

7.2. Computing modular exponentiation efficiently is inevitable for the practicabil-

ity of RSA. Compute the following exponentiations xe mod m applying the square-

and-multiply algorithm:

1. x = 2, e = 79, m = 101

2. x = 3, e = 197, m = 101

After every iteration step, show the exponent of the intermediate result in binary

notation.

7.3. Encrypt and decrypt by means of the RSA algorithm with the following system

parameters:

1. p = 3, q = 11, d = 7, x = 5

2. p = 5, q = 11, e = 3, x = 9

Only use a pocket calculator at this stage.

7.4. One major drawback of public-key algorithms is that they are relatively slow.

In Sect. 7.5.1 we learned that an acceleration technique is to use short exponents e.

Now we study short exponents in this problem in more detail.

1. Assume that in an implementation of the RSA cryptosystem one modular squar-

ing takes 75% of the time of a modular multiplication. How much quicker is

one encryption on average if instead of a 2048-bit public key the short exponent

e = 216 +1 is used? Assume that the square-and-multiply algorithm is being used

in both cases.

2. Most short exponents are of the form e = 2n + 1. Would it be advantageous to

use exponents of the form 2n −1? Justify your answer.

3. Compute the exponentiation xe mod 29 of x = 5 with both variants of e from

above for n = 4. Use the square-and-multiply algorithm and show each step of

your computation.

7.5. In practice the short exponents e = 3, 17 and 216 +1 are widely used.

1. Why can’t we use these three short exponents as values for the exponent d in

applications where we want to accelerate decryption?

2. Suggest a minimum bit length for the exponent d and explain your answer.

7.6. Verify the RSA with CRT example in the chapter by computing yd = 15103 mod

143 using the square-and-multiply algorithm.

7.11 Problems 201

7.7. An RSA encryption scheme has the set-up parameters p = 31 and q = 37. The

public key is e = 17.

1. Decrypt the ciphertext y = 2 using the CRT.

2. Verify your result by encrypting the plaintext without using the CRT.

7.8. Popular RSA modulus sizes are 1024, 2048, 3072 and 4092 bit.

1. How many random odd integers do we have to test on average until we expect to

find one that is a prime?

2. Derive a simple formula for any arbitrary RSA modulus size.

7.9. One of the most attractive applications of public-key algorithms is the estab-

lishment of a secure session key for a private-key algorithm such as AES over an

insecure channel.

Assume Bob has a pair of public/private keys for the RSA cryptosystem. Develop

a simple protocol using RSA which allows the two parties Alice and Bob to agree

on a shared secret key. Who determines the key in this protocol, Alice, Bob, or both?

7.10. In practice, it is sometimes desirable that both communication parties influ-

ence the selection of the session key. For instance, this prevents the other party from

choosing a key which is a weak key for a symmetric algorithm. Many block ciphers

such as DES and IDEA have weak keys. Messages encrypted with weak keys can

be recovered relatively easily from the ciphertext.

Develop a protocol similar to the one above in which both parties influence the

key. Assume that both Alice and Bob have a pair of public/private keys for the RSA

cryptosystem. Please note that there are several valid approaches to this problem.

Show just one.

7.11. In this exercise, you are asked to attack an RSA encrypted message. Imagine

being the attacker: You obtain the ciphertext y = 1141 by eavesdropping on a certain

connection. The public key is kpub = (n,e) = (2623,2111).

1. Consider the encryption formula. All variables except the plaintext x are known.

Why can’t you simply solve the equation for x?

2. In order to determine the private key d, you have to calculate d ≡ e−1 mod Φ(n).
There is an efficient expression for calculating Φ(n). Can we use this formula

here?

3. Calculate the plaintext x by computing the private key d through factoring n =
p · q. Does this approach remain suitable for numbers with a length of 1024 bit

or more?

7.12. We now show how an attack with chosen ciphertext can be used to break an

RSA encryption.

1. Show that the multiplicative property holds for RSA, i.e., show that the product

of two ciphertexts is equal to the encryption of the product of the two respective

plaintexts.

202 7 The RSA Cryptosystem

2. This property can under certain circumstances lead to an attack. Assume that

Bob first receives an encrypted message y1 from Alice which Oscar obtains by

eavesdropping. At a later point in time, we assume that Oscar can send an inno-

cent looking ciphertext y2 to Bob, and that Oscar can obtain the decryption of y2.

In practice this could, for instance, happen if Oscar manages to hack into Bob’s

system such that he can get access to decrypted plaintext for a limited period of

time.

7.13. In this exercise, we illustrate the problem of using nonprobabilistic cryptosys-

tems, such as schoolbook RSA, imprudently. Nonprobabilistic means that the same

sequence of plaintext letters maps to the same ciphertext. This allows traffic analysis

(i.e., to draw some conclusion about the cleartext by merely observing the cipher-

text) and in some cases even to the total break of the cryptoystem. The latter holds

especially if the number of possible plaintexts is small. Suppose the following situ-

ation:

Alice wants to send a message to Bob encrypted with his public key pair (n,e).
Therefore, she decides to use the ASCII table to assign a number to each character

(Space → 32, ! → 33, . . . , A → 65, B → 66, . . . , ∼→ 126) and to encrypt them

separately.

1. Oscar eavesdrops on the transferred ciphertext. Describe how he can successfully

decrypt the message by exploiting the nonprobabilistic property of RSA.

2. Bob’s RSA public key is (n,e) = (3763,11). Decrypt the ciphertext

y = 2514,1125,333,3696,2514,2929,3368,2514

with the attack proposed in 1. For simplification, assume that Alice only chose

capital letters A–Z during the encryption.

3. Is the attack still possible if we use the OAEP padding? Exactly explain your

answer.

7.14. The modulus of RSA has been enlarged over the years in order to thwart im-

proved attacks. As one would assume, public-key algorithms become slower as the

modulus length increases. We study the relation between modulus length and perfor-

mance in this problem. The performance of RSA, and of almost any other public-key

algorithm, is dependent on how fast modulo exponentiation with large numbers can

be performed.

1. Assume that one modulo multiplication or squaring with k-bit numbers takes

c · k2 clock cycles, where c is a constant. How much slower is RSA encryp-

tion/decryption with 1024 bits compared to RSA with 512 bits on average? Only

consider the encryption/decryption itself with an exponent of full length and the

square-and-multiply algorithm.

2. In practice, the Karatsuba algorithm, which has an asymptotical complexity that

is proportional to klog2 3, is often used for long number multiplication in cryptog-

raphy. Assume that this more advanced technique requires c′ · klog2 3 = c′ · k1.585

clock cycles for multiplication or squaring where c′ is a constant. What is the

7.11 Problems 203

ratio between RSA encryption with 1024 bit and RSA with 512 bit if the Karat-

suba algorithm is used in both cases? Again, assume that full-length exponents

are being used.

7.15. (Advanced problem!) There are ways to improve the square-and-multiply al-

gorithm, that is, to reduce the number of operations required. Although the number

of squarings is fixed, the number of multiplications can be reduced. Your task is to

come up with a modified version of the square-and-multiply algorithm which re-

quires fewer multiplications. Give a detailed description of how the new algorithm

works and what the complexity is (number of operations).

Hint: Try to develop a generalization of the square-and-multiply algorithm which

processes more than one bit at a time. The basic idea is to handle k (e.g., k = 3)

exponent bit per iteration rather than one bit in the original square-and-multiply

algorithm.

7.16. Let us now investigate side-channel attacks against RSA. In a simple imple-

mentation of RSA without any countermeasures against side-channel leakage, the

analysis of the current consumption of the microcontroller in the decryption part

directly yields the private exponent. Figure 7.5 shows the power consumption of an

implementation of the square-and-multiply algorithm. If the microcontroller com-

putes a squaring or a multiplication, the power consumption increases. Due to the

small intervals in between the loops, every iteration can be identified. Furthermore,

for each round we can identify whether a single squaring (short duration) or a squar-

ing followed by a multiplication (long duration) is being computed.

1. Identify the respective rounds in the figure and mark these with S for squaring or

SM for squaring and multiplication.

2. Assume the square-and-multiply algorithm has been implemented such that the

exponent is being scanned from left to right. Furthermore, assume that the start-

ing values have been initialized. What is the private exponent d?

3. This key belongs to the RSA setup with the primes p = 67 and q = 103 and

e = 257. Verify your result. (Note that in practice an attacker wouldn’t know the

values of p and q.)

204 7 The RSA Cryptosystem

Fig. 7.5 Power consumption of an RSA decryption

Chapter 8

Public-Key Cryptosystems Based on the Discrete
Logarithm Problem

In the previous chapter we learned about the RSA public-key scheme. As we have

seen, RSA is based on the hardness of factoring large integers. The integer factoriza-

tion problem is said to be the one-way function of RSA. As we saw earlier, roughly

speaking a function is one-way if it is computationally easy to compute the func-

tion f (x) = y, but computationally infeasible to invert the function: f−1(y) = x. The

question is whether we can find other one-way functions for building asymmetric

crypto schemes. It turns out that most non-RSA public-key algorithms with practical

relevance are based on another one-way function, the discrete logarithm problem.

In this chapter you will learn:

� The Diffie–Hellman key exchange

� Cyclic groups which are important for a deeper understanding of Diffie–Hellman

key exchange

� The discrete logarithm problem, which is of fundamental importance for many

practical public-key algorithms

� Encryption using the Elgamal scheme

The security of many cryptographic schemes relies on the computational in-

tractability of finding solutions to the Discrete Logarithm Problem (DLP). Well-

known examples of such schemes are the Diffie–Hellman key exchange and the

Elgamal encryption scheme, both of which will be introduced in this chapter. Also,

the Elgamal digital signature scheme (cf. Section 8.5.1) and the digital signature

algorithm (cf. Section 10.2) are based on the DLP, as are cryptosystems based on

elliptic curves (Section 9.3).

We start with the basic Diffie–Hellman protocol, which is surprisingly simple

and powerful. The discrete logarithm problem is defined in what are called cyclic

groups. The concept of this algebraic structure is introduced in Section 8.2. A formal

definition of the DLP as well as some illustrating examples are provided, followed

by a brief description of attack algorithms for the DLP. With this knowledge we will

revisit the Diffie–Hellman protocol and more formally talk about its security. We

will then develop a method for encrypting data using the DLP that is known as the

Elgamal cryptosystem.

205

206 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

8.1 Diffie–Hellman Key Exchange

The Diffie–Hellman key exchange (DHKE), proposed by Whitfield Diffie and Mar-

tin Hellman in 1976 [58], was the first asymmetric scheme published in the open

literature. The two inventors were also influenced by the work of Ralph Merkle.

It provides a practical solution to the key distribution problem, i.e., it enables two

parties to derive a common secret key by communicating over an insecure chan-

nel1. The DHKE is a very impressive application of the discrete logarithm problem

that we’ll study in the subsequent sections. This fundamental key agreement tech-

nique is implemented in many open and commercial cryptographic protocols like

Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security

(IPSec).The basic idea behind the DHKE is that exponentiation in Z
∗
p, p prime, is a

one-way function and that exponentiation is commutative, i.e.,

k = (αx)y ≡ (αy)x mod p

The value k ≡ (αx)y ≡ (αy)x mod p is the joint secret which can be used as the

session key between the two parties.

Let us now consider how the Diffie–Hellman key exchange protocol over Z
∗
p

works. In this protocol we have two parties, Alice and Bob, who would like to

establish a shared secret key. There is possibly a trusted third party that properly

chooses the public parameters which are needed for the key exchange. However, it is

also possible that Alice or Bob generate the public parameters. Strictly speaking, the

DHKE consists of two protocols, the set-up protocol and the main protocol, which

performs the actual key exchange. The set-up protocol consists of the following

steps:

Diffie–Hellman Set-up

1. Choose a large prime p.

2. Choose an integer α ∈ {2,3, . . . , p−2}.

3. Publish p and α .

These two values are sometimes referred to as domain parameters. If Alice and

Bob both know the public parameters p and α computed in the set-up phase, they

can generate a joint secret key k with the following key-exchange protocol:

1 The channel needs to be authenticated, but that will be discussed later in this book.

8.1 Diffie–Hellman Key Exchange 207

Diffie–Hellman Key Exchange

Alice Bob

choose a = kpr,A ∈ {2, . . . , p−2} choose b = kpr,B ∈ {2, . . . , p−2}
compute A = kpub,A ≡ αa mod p compute B = kpub,B ≡ αb mod p

kpub,A=A

−−−−−−−−−−−−−−→
kpub,B=B

←−−−−−−−−−−−−−−

kAB = k
kpr,A
pub,B ≡ Ba mod p kAB = k

kpr,B
pub,A ≡ Ab mod p

Here is the proof that this surprisingly simple protocol is correct, i.e., that Alice

and Bob in fact compute the same session key kAB.

Proof. Alice computes

Ba ≡ (αb)a ≡ αab mod p

while Bob computes

Ab ≡ (αa)b ≡ αab mod p

and thus Alice and Bob both share the session key kAB ≡ αab mod p. The key can

now be used to establish a secure communication between Alice and Bob, e.g., by

using kAB as key for a symmetric algorithm like AES or 3DES. ⊓⊔

We’ll look now at a simple example with small numbers.

Example 8.1. The Diffie–Hellman domain parameters are p = 29 and α = 2. The
protocol proceeds as follows:

Alice Bob

choose a = kpr,A = 5 choose b = kpr,B = 12

A = kpub,A = 25 ≡ 3 mod 29 B = kpub,B = 212 ≡ 7 mod 29
A=3−−−−−−−−−−−−→
B=7←−−−−−−−−−−−−

kAB = Ba ≡ 75 = 16 mod 29 kAB = Ab = 312 ≡ 16 mod 29

As one can see, both parties compute the value kAB = 16, which can be used as a

joint secret, e.g., as a session key for symmetric encryption.

⋄

The computational aspects of the DHKE are quite similar to those of RSA. Dur-

ing the set-up phase, we generate p using the probabilistic prime-finding algorithms

discussed in Section 7.6. As shown in Table 6.1, p should have a similar length as

the RSA modulus n, i.e., 1024 or beyond, in order to provide strong security. The

integer α needs to have a special property: It should be a primitive element, a topic

which we discuss in the following sections. The session key kAB that is being com-

puted in the protocol has the same bit length as p. If we want to use it as a symmetric

key for algorithms such as AES, we can simply take the 128 most significant bits.

Alternatively, a hash function is sometimes applied to kAB and the output is then

used as a symmetric key.

208 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

During the actual protocol, we first have to choose the private keys a and b.

They should stem from a true random generator in order to prevent an attacker from

guessing them. For computing the public keys A and B as well as for computing the

session key, both parties can make use of the square-and-multiply algorithm. The

public keys are typically precomputed. The main computation that needs to be done

for a key exchange is thus the exponentiation for the session key. In general, since

the bit lengths and the computations of RSA and the DHKE are very similar, they

require a similar effort. However, the trick of using short public exponents that was

shown in Section 7.5 is not applicable to the DHKE.

What we showed so far is the classic Diffie–Hellman key exchange protocol in

the group Z
∗
p, where p is a prime. The protocol can be generalized, in particular to

groups of elliptic curves. This gives rise to elliptic curve cryptography, which has

become a very popular asymmetric scheme in practice. In order to better understand

elliptic curves and schemes such as Elgamal encryption, which are also closely re-

lated to the DHKE, we introduce the discrete logarithm problem in the following

sections. This problem is the mathematical basis for the DHKE. After we have in-

troduced the discrete logarithm problem, we will revisit the DHKE and discuss its

security.

8.2 Some Algebra

This section introduces some fundamentals of abstract algebra, in particular the no-

tion of groups, subgroups, finite groups and cyclic groups, which are essential for

understanding discrete logarithm public-key algorithms.

8.2.1 Groups

For convenience, we restate here the definition of groups which was introduced in

the Chapter 4:

8.2 Some Algebra 209

Definition 8.2.1 Group

A group is a set of elements G together with an operation ◦ which

combines two elements of G. A group has the following properties.

1. The group operation ◦ is closed. That is, for all a,b,∈G, it holds

that a◦b = c ∈ G.

2. The group operation is associative. That is, a◦(b◦c) = (a◦b)◦c

for all a,b,c ∈ G.

3. There is an element 1∈G, called the neutral element (or identity

element), such that a◦1 = 1◦a = a for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G, called the in-

verse of a, such that a◦a−1 = a−1 ◦a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b =
b◦a for all a,b ∈ G.

Note that in cryptography we use both multiplicative groups, i.e., the operation

“◦” denotes multiplication, and additive groups where “◦” denotes addition. The

latter notation is used for elliptic curves as we’ll see later.

Example 8.2. To illustrate the definition of groups we consider the following exam-

ples.

� (Z,+) is a group, i.e., the set of integers Z = {. . . ,−2,−1,0,1,2, . . .} together

with the usual addition forms an abelian group, where e = 0 is the identity ele-

ment and −a is the inverse of an element a ∈ Z.

� (Z without 0, ·) is not a group, i.e., the set of integers Z (without the element

0) and the usual multiplication does not form a group since there exists no inverse

a−1 for an element a ∈ Z with the exception of the elements −1 and 1.

� (C, ·) is a group, i.e., the set of complex numbers u+ iv with u,v ∈R and i2 =−1

together with the complex multiplication defined by

(u1 + iv1) · (u2 + iv2) = (u1u2 − v1v2)+ i(u1v2 + v1u2)

forms an abelian group. The identity element of this group is e = 1, and the

inverse a−1 of an element a = u+ iv ∈ C is given by a−1 = (u− i)/(u2 + v2).

⋄

However, all of these groups do not play a significant role in cryptography be-

cause we need groups with a finite number of elements. Let us now consider the

group Z
∗
n which is very important for many cryptographic schemes such as DHKE,

Elgamal encryption, digital signature algorithm and many others.

210 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Theorem 8.2.1

The set Z
∗
n which consists of all integers i = 0,1, . . . ,n−1 for which

gcd(i,n) = 1 forms an abelian group under multiplication modulo

n. The identity element is e = 1.

Let us verify the validity of the theorem by considering the following example:

Example 8.3. If we choose n = 9, Z
∗
n consists of the elements {1,2,4,5,7,8}.

Table 8.1 Multiplication table for Z
∗
9

× mod 9 1 2 4 5 7 8

1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

By computing the multiplication table for Z
∗
9, depicted in Table 8.1, we can eas-

ily check most conditions from Definition 8.2.1. Condition 1 (closure) is satisfied

since the table only consists of integers which are elements of Z
∗
9. For this group

Conditions 3 (identity) and 4 (inverse) also hold since each row and each column

of the table is a permutation of the elements of Z
∗
9. From the symmetry along the

main diagonal, i.e., the element at row i and column j equals the element at row j

and column i, we can see that Condition 5 (commutativity) is satisfied. Condition

2 (associativity) cannot be directly derived from the shape of the table but follows

immediately from the associativity of the usual multiplication in Zn.

⋄

Finally, the reader should remember from Section 6.3.1 that the inverse a−1 of

each element a ∈ Z
∗
n can be computed by using the extended Euclidean algorithm.

8.2.2 Cyclic Groups

In cryptography we are almost always concerned with finite structures. For instance,

for AES we needed a finite field. We provide now the straightforward definition of

a finite group:

8.2 Some Algebra 211

Definition 8.2.2 Finite Group

A group (G, ◦) is finite if it has a finite number of elements. We

denote the cardinality or order of the group G by |G|.

Example 8.4. Examples of finite groups are:

� (Zn,+): the cardinality of Zn is |Zn| = n since Zn = {0,1,2, . . . ,n−1}.

� (Z∗
n, ·): remember that Z

∗
n is defined as the set of positive integers smaller than

n which are relatively prime to n. Thus, the cardinality of Z
∗
n equals Euler’s phi

function evaluated for n, i.e., |Z∗
n| = Φ(n). For instance, the group Z

∗
9 has a car-

dinality of Φ(9) = 32−31 = 6. This can be verified by the earlier example where

we saw that the group consist of the six elements {1,2,4,5,7,8}.

⋄

The remainder of this section deals with a special type of groups, namely cyclic

groups, which are the basis for discrete logarithm-based cryptosystems. We start

with the following definition:

Definition 8.2.3 Order of an element

The order ord(a) of an element a of a group (G,◦) is the smallest

positive integer k such that

ak = a◦a◦ . . .◦a
︸ ︷︷ ︸

k times

= 1,

where 1 is the identity element of G.

We’ll examine this definition by looking at an example.

Example 8.5. We try to determine the order of a = 3 in the group Z
∗
11. For this, we

keep computing powers of a until we obtain the identity element 1.

a1 = 3

a2 = a ·a = 3 ·3 = 9

a3 = a2 ·a = 9 ·3 = 27 ≡ 5 mod 11

a4 = a3 ·a = 5 ·3 = 15 ≡ 4 mod 11

a5 = a4 ·a = 4 ·3 = 12 ≡ 1 mod 11

From the last line it follows that ord(3) = 5.

⋄

It is very interesting to look at what happens if we keep multiplying the result by

a:

212 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

a6 = a5 ·a ≡ 1 ·a ≡ 3 mod 11

a7 = a5 ·a2 ≡ 1 ·a2 ≡ 9 mod 11

a8 = a5 ·a3 ≡ 1 ·a3 ≡ 5 mod 11

a9 = a5 ·a4 ≡ 1 ·a4 ≡ 4 mod 11

a10 = a5 ·a5 ≡ 1 ·1 ≡ 1 mod 11

a11 = a10 ·a ≡ 1 ·a ≡ 3 mod 11
...

We see that from this point on, the powers of a run through the sequence {3,9,5,4,1}
indefinitely. This cyclic behavior gives rise to following definition:

Definition 8.2.4 Cyclic Group

A group G which contains an element α with maximum order

ord(α) = |G| is said to be cyclic. Elements with maximum order

are called primitive elements or generators.

An element α of a group G with maximum order is called a generator since

every element a of G can be written as a power α i = a of this element for some i,

i.e., α generates the entire group. Let us verify these properties by considering the

following example.

Example 8.6. We want to check whether a = 2 happens to be a primitive element of

Z
∗
11 = {1,2,3,4,5,6,7,8,9,10}. Note that the cardinality of the group is |Z∗

11|= 10.

Let’s look at all the elements that are generated by powers of the element a = 2:

a = 2 a6 ≡ 9 mod 11

a2 = 4 a7 ≡ 7 mod 11

a3 = 8 a8 ≡ 3 mod 11

a4 ≡ 5 mod 11 a9 ≡ 6 mod 11

a5 ≡ 10 mod 11 a10 ≡ 1 mod 11

From the last result it follows that

ord(a) = 10 = |Z∗
11|.

This implies that (i) a = 2 is a primitive element and (ii) |Z∗
11| is cyclic.

We now want to verify whether the powers of a = 2 actually generate all elements

of the group Z
∗
11. Let’s look again at all the elements that are generated by powers

of two.

i 1 2 3 4 5 6 7 8 9 10

ai 2 4 8 5 10 9 7 3 6 1

By looking at the bottom row, we see that that the powers 2i in fact generate all

elements of the group Z
∗
11. We note that the order in which they are generated looks

quite arbitrary. This seemingly random relationship between the exponent i and the

8.2 Some Algebra 213

group elements is the basis for cryptosystems such as the Diffie–Hellman key ex-

change.

⋄

From this example we see that the group Z
∗
11 has the element 2 as a generator. It

is important to stress that the number 2 is not necessarily a generator in other cyclic

groups Z
∗
n. For instance, in Z

∗
7, ord(2) = 3, and the element 2 is thus not a generator

in that group.

Cyclic groups have interesting properties. The most important ones for crypto-

graphic applications are given in the following theorems.

Theorem 8.2.2 For every prime p, (Z∗
p, ·) is an abelian finite cyclic

group.

This theorem states that the multiplicative group of every prime field is cyclic.

This has far reaching consequences in cryptography, where these groups are the

most popular ones for building discrete logarithm cryptosystems. In order to under-

line the practical relevance of these somewhat esoteric looking theorem, consider

that almost every Web browser has a cryptosystem over Z
∗
p built in.

Theorem 8.2.3

Let G be a finite group. Then for every a ∈ G it holds that:

1. a|G| = 1

2. ord(a) divides |G|

The first property is a generalization of Fermat’s Little Theorem for all cyclic

groups. The second property is very useful in practice. It says that in a cyclic group

only element orders which divide the group cardinality exist.

Example 8.7. We consider again the group Z
∗
11 which has a cardinality of |Z∗

11|= 10.

The only element orders in this group are 1, 2, 5, and 10, since these are the only

integers that divide 10. We verify this property by looking at the order of all elements

in the group:
ord(1) = 1 ord(6) = 10

ord(2) = 10 ord(7) = 10

ord(3) = 5 ord(8) = 10

ord(4) = 5 ord(9) = 5

ord(5) = 5 ord(10) = 2

Indeed, only orders that divide 10 occur.

⋄

214 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Theorem 8.2.4 Let G be a finite cyclic group. Then it holds that

1. The number of primitive elements of G is Φ(|G|).
2. If |G| is prime, then all elements a �= 1 ∈ G are primitive.

The first property can be verified by the example above. Since Φ(10) = (5−
1)(2− 1) = 4, the number of primitive elements is four, which are the elements 2,

6, 7 and 8. The second property follows from the previous theorem. If the group

cardinality is prime, the only possible element orders are 1 and the cardinality itself.

Since only the element 1 can have an order of one, all other elements have order p.

8.2.3 Subgroups

In this section we consider subsets of (cyclic) groups which are groups themselves.

Such sets are referred to as subgroups. In order to check whether a subset H of a

group G is a subgroup, one can verify if all the properties of our group definition in

Section 8.2.1 also hold for H. In the case of cyclic groups, there is an easy way to

generate subgroups which follows from this theorem:

Theorem 8.2.5 Cyclic Subgroup Theorem

Let (G,◦) be a cyclic group. Then every element a ∈ G with

ord(a) = s is the primitive element of a cyclic subgroup with s ele-

ments.

This theorem tells us that any element of a cyclic group is the generator of a sub-

group which in turn is also cyclic.

Example 8.8. Let us verify the above theorem by considering a subgroup of G =
Z
∗
11. In an earlier example we saw that ord(3) = 5, and the powers of 3 generate the

subset H = {1,3,4,5,9} according to Theorem 8.2.5. We verify now whether this

set is actually a group by having a look at its multiplication table:

Table 8.2 Multiplication table for the subgroup H = {1,3,4,5,9}
× mod 11 1 3 4 5 9

1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

H is closed under multiplication modulo 11 (Condition 1) since the table only

consists of integers which are elements of H. The group operation is obviously as-

8.2 Some Algebra 215

sociative and commutative since it follows regular multiplication rules (Conditions

2 and 5, respectively). The neutral element is 1 (Condition 3), and for every element

a ∈ H there exists an inverse a−1 ∈ H which is also an element of H (Condition 4).

This can be seen from the fact that every row and every column of the table contains

the identity element. Thus, H is a subgroup of Z
∗
11 (depicted in Figure 8.1).

Fig. 8.1 Subgroup H of the cyclic group G = Z
∗
11

More precisely, it is a subgroup of prime order 5. It should also be noted that 3 is

not the only generator of H but also 4, 5 and 9, which follows from Theorem 8.2.4.

⋄

An important special case are subgroups of prime order. If this group cardinality

is denoted by q, all non-one elements have order q according to Theorem 8.2.4.

From the Cyclic Subgroup Theorem we know that each element a ∈ G of a group

G generates some subgroup H. By using Theorem 8.2.3, the following theorem

follows.

Theorem 8.2.6 Lagrange’s theorem

Let H be a subgroup of G. Then |H| divides |G|.

Let us now consider an application of Lagrange’s theorem:

Example 8.9. The cyclic group Z
∗
11 has cardinality |Z∗

11| = 10 = 1 · 2 · 5. Thus, it

follows that the subgroups of Z
∗
11 have cardinalities 1, 2, 5 and 10 since these are

all possible divisors of 10. All subgroups H of Z
∗
11 and their generators α are given

below:
subgroup elements primitive elements

H1 {1} α = 1

H2 {1,10} α = 10

H3 {1,3,4,5,9} α = 3,4,5,9

⋄

The following final theorem of this section fully characterizes the subgroups of

a finite cyclic group:

216 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Theorem 8.2.7

Let G be a finite cyclic group of order n and let α be a generator

of G. Then for every integer k that divides n there exists exactly one

cyclic subgroup H of G of order k. This subgroup is generated by

αn/k. H consists exactly of the elements a ∈ G which satisfy the

condition ak = 1. There are no other subgroups.

This theorem gives us immediately a construction method for a subgroup from a

given cyclic group. The only thing we need is a primitive element and the group

cardinality n. One can now simple compute αn/k and obtains a generator of the

subgroup with k elements.

Example 8.10. We again consider the cyclic group Z
∗
11. We saw earlier that α = 8 is

a primitive element in the group. If we want to have a generator β for the subgroup

of order 2, we compute:

β = αn/k = 810/2 = 85 = 32768 ≡ 10 mod 11.

We can now verify that the element 10 in fact generates the subgroup with two

elements: β 1 = 10, β 2 = 100 ≡ 1 mod 11, β 3 ≡ 10 mod 11, etc.

Remark: Of course, there are smarter ways of computing 85 mod 11, e.g., through

85 = 82 82 8 ≡ (−2)(−2)8 ≡ 32 ≡ 10 mod 11.

⋄

8.3 The Discrete Logarithm Problem

After the somewhat lengthy introduction to cyclic groups one might wonder how

they are related to the rather straightforward DHKE protocol. It turns out that the

underlying one-way function of the DHKE, the discrete logarithm problem (DLP),

can directly be explained using cyclic groups.

8.3.1 The Discrete Logarithm Problem in Prime Fields

We start with the DLP over Z
∗
p, where p is a prime.

8.3 The Discrete Logarithm Problem 217

Definition 8.3.1 Discrete Logarithm Problem (DLP) in Z
∗
p

Given is the finite cyclic group Z
∗
p of order p−1 and a primitive el-

ement α ∈Z
∗
p and another element β ∈Z

∗
p. The DLP is the problem

of determining the integer 1 ≤ x ≤ p−1 such that:

αx ≡ β mod p

Remember from Section 8.2.2 that such an integer x must exist since α is a primi-

tive element and each group element can be expressed as a power of any primitive

element. This integer x is called the discrete logarithm of β to the base α , and we

can formally write:

x = logα β mod p.

Computing discrete logarithms modulo a prime is a very hard problem if the param-

eters are sufficiently large. Since exponentiation αx ≡ β mod p is computationally

easy, this forms a one-way function.

Example 8.11. We consider a discrete logarithm in the group Z
∗
47, in which α = 5 is

a primitive element. For β = 41 the discrete logarithm problem is: Find the positive

integer x such that

5x ≡ 41 mod 47

Even for such small numbers, determining x is not entirely straightforward. By using

a brute-force attack, i.e., systematically trying all possible values for x, we obtain

the solution x = 15.

⋄

In practice, it is often desirable to have a DLP in groups with prime cardinality in

order to prevent the Pohlig–Hellman attack (cf. Section 8.3.3). Since groups Z
∗
p have

cardinality p−1, which is obviously not prime, one often uses DLPs in subgroups

of Z
∗
p with prime order, rather than using the group Z

∗
p itself. We illustrate this with

an example.

Example 8.12. We consider the group Z
∗
47 which has order 46. The subgroups in

Z
∗
47 have thus a cardinality of 23, 2 and 1. α = 2 is an element in the subgroup

with 23 elements, and since 23 is a prime, α is a primitive element in the subgroup.

A possible discrete logarithm problem is given for β = 36 (which is also in the

subgroup): Find the positive integer x, 1 ≤ x ≤ 23, such that

2x ≡ 36 mod 47

By using a brute-force attack, we obtain a solution for x = 17.

⋄

218 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

8.3.2 The Generalized Discrete Logarithm Problem

The feature that makes the DLP particularly useful in cryptography is that it is not

restricted to the multiplicative group Z
∗
p, p prime, but can be defined over any cyclic

groups. This is called the generalized discrete logarithm problem (GDLP) and can

be stated as follows.

Definition 8.3.2 Generalized Discrete Logarithm Problem

Given is a finite cyclic group G with the group operation ◦ and

cardinality n. We consider a primitive element α ∈ G and another

element β ∈ G. The discrete logarithm problem is finding the inte-

ger x, where 1 ≤ x ≤ n, such that:

β = α ◦α ◦ . . .◦α
︸ ︷︷ ︸

x times

= αx

As in the case of the DLP in Z
∗
p, such an integer x must exist since α is a primi-

tive element, and thus each element of the group G can be generated by repeated

application of the group operation on α .

It is important to realize that there are cyclic groups in which the DLP is not

difficult. Such groups cannot be used for a public-key cryptosystem since the DLP

is not a one-way function. Consider the following example.

Example 8.13. This time we consider the additive group of integers modulo a prime.

For instance, if we choose the prime p = 11, G = (Z11,+) is a finite cyclic group

with the primitive element α = 2. Here is how α generates the group:

i 1 2 3 4 5 6 7 8 9 10 11

iα 2 4 6 8 10 1 3 5 7 9 0

We try now to solve the DLP for the element β = 3, i.e., we have to compute the

integer 1 ≤ x ≤ 11 such that

x ·2 = 2+2+ . . .+2
︸ ︷︷ ︸

x times

≡ 3 mod 11

Here is how an “attack” against this DLP works. Even though the group operation

is addition, we can express the relationship between α , β and the discrete logarithm

x in terms of multiplication:

x ·2 ≡ 3 mod 11.

In order to solve for x, we simply have to invert the primitive element α:

x ≡ 2−1 3 mod 11

8.3 The Discrete Logarithm Problem 219

Using, e.g., the extended Euclidean algorithm, we can compute 2−1 ≡ 6 mod 11

from which the discrete logarithm follows as:

x ≡ 2−1 3 ≡ 7 mod 11

The discrete logarithm can be verified by looking at the small table provided above.

We can generalize the above trick to any group (Zn,+) for arbitrary n and ele-

ments α,β ∈ Zn. Hence, we conclude that the generalized DLP is computationally

easy over Zn. The reason why the DLP can be solved here easily is that we have

mathematical operations which are not in the additive group, namely multiplication

and inversion.

⋄

After this counterexample we now list discrete logarithm problems that have been

proposed for use in cryptography:

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance,

the classical DHKE uses this group, but also Elgamal encryption or the Digital

Signature Algorithm (DSA). These are the oldest and most widely used types of

discrete logarithm systems.

2. The cyclic group formed by an elliptic curve. Elliptic curve cryptosystems are

introduced in Chapter 9. They have become popular in practice over the last

decade.

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. These

groups can be used completely analogous to multiplicative groups of prime fields,

and schemes such as the DHKE can be realized with them. They are not as pop-

ular in practice because the attacks against them are somewhat more powerful

than those against the DLP in Zp. Hence DLPs over GF(2m) require somewhat

higher bit lengths for providing the same level of security than those over Zp.

4. Hyperelliptic curves or algebraic varieties, which can be viewed as generalization

as elliptic curves. They are currently rarely used in practice, but in particular

hyperelliptic curves have some advantages such as short operand lengths.

There have been proposals for other DLP-based cryptosystems over the years,

but none of them have really been of interest in practice. Often it was found that the

underlying DL problem was not difficult enough.

8.3.3 Attacks Against the Discrete Logarithm Problem

This section introduce methods for solving discrete logarithm problems. Readers

only interested in the constructive use of DL schemes can skip this section.

As we have seen, the security of many asymmetric primitives is based on the

difficulty of computing the DLP in cyclic groups, i.e., to compute x for a given α
and β in G such that

220 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

β = α ◦α ◦ . . .◦α
︸ ︷︷ ︸

x times

= αx

holds. We still do not know the exact difficulty of computing the discrete logarithm

x in any given actual group. What we mean by this is that even though some at-

tacks are known, one does not know whether there are any better, more powerful

algorithms for solving the DLP. This situation is similar to the hardness of integer

factorization, which is the one-way function underlying RSA. Nobody really knows

what the best possible factorization method is. For the DLP some interesting gen-

eral results exist regarding its computational hardness. This section gives a brief

overview of algorithms for computing discrete logarithms which can be classified

into generic algorithms and nongeneric algorithms and which will be discussed in

a little more detail.

Generic Algorithms

Generic DL algorithms are methods which only use the group operation and no

other algebraic structure of the group under consideration. Since they do not exploit

special properties of the group, they work in any cyclic group. Generic algorithms

for the discrete logarithm problem can be subdivided into two classes. The first

class encompasses algorithms whose running time depends on the size of the cyclic

group, like the brute-force search, the baby-step giant-step algorithm and Pollard’s

rho method. The second class are algorithms whose running time depends on the

size of the prime factors of the group order, like the Pohlig–Hellman algorithm.

Brute-Force Search

A brute-force search is the most naı̈ve and computationally costly way for comput-

ing the discrete logarithm logα β . We simply compute powers of the generator α
successively until the result equals β :

α1 ?
= β

α2 ?
= β

...

αx ?
= β

8.3 The Discrete Logarithm Problem 221

For a random logarithm x, we do expect to find the correct solution after checking

half of all possible x. This gives us a complexity of O(|G|) steps2, where |G| is the

cardinality of the group.

To avoid brute-force attacks on DL-based cryptosystems in practice, the cardi-

nality |G| of the underlying group must thus be sufficiently large. For instance, in

the case of the group Z
∗
p, p prime, which is the basis for the DHKE, (p−1)/2 tests

are required on average to compute a discrete logarithm. Thus, |G| = p− 1 should

be at least in the order of 280 to make a brute-force search infeasible using today’s

computer technology. Of course, this consideration only holds if a brute-force attack

is the only feasible attack which is never the case. There exist much more powerful

algorithms to solve discrete logarithms as we will see below.

Shanks’ Baby-Step Giant-Step Method

Shanks’ algorithm is a time-memory tradeoff method, which reduces the time of

a brute-force search at the cost of extra storage. The idea is based on rewriting the

discrete logarithm x = logα β in a two-digit representation:

x = xg m+ xb for 0 ≤ xg,xb < m. (8.1)

The value m is chosen to be of the size of the square root of the group order, i.e.,

m = ⌈
√

|G|⌉. We can now write the discrete logarithm as β = αx = αxg m+xb which

leads to

β · (α−m)xg = αxb . (8.2)

The idea of the algorithm is to find a solution (xg,xb) for Eq. (8.2), from which the

discrete logarithm then follows directly according to Eq. (8.1). The core idea for the

algorithm is that Eq. (8.2) can be solved by searching for xg and xb separatedly, i.e.,

using a divide-and-conquer approach. In the first phase of the algorithm we compute

and store all values αxb , where 0 ≤ xb < m. This is the baby-step phase that requires

m ≈
√

|G| steps (group operations) and needs to store m ≈
√

|G| group elements.

In the giant-step phase, the algorithm checks for all xg in the range 0 ≤ xg < m

whether the following condition is fulfilled:

β · (α−m)xg ?
= αxb

for some stored entry αxb that was computed during the baby-step phase. In case of

a match, i.e., β · (α−m)xg,0 = αxb,0 for some pair (xg,0,xb,0), the discrete logarithm is

given by

x = xg,0 m+ xb,0.

The baby-step giant-step method requires O(
√

|G|) computational steps and an

equal amount of memory. In a group of order 280, an attacker would only need

2 We use the popular “big-Oh” notation here. A complexity function f (x) has big-Oh notation
O(g(x)) if f (x) ≤ c ·g(x) for some constant c and for input values x greater than some value x0.

222 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

approximately 240 =
√

280 computations and memory locations, which is easily

achievable with today‘s PCs and hard disks. Thus, in order to obtain an attack com-

plexity of 280, a group must have a cardinality of at least |G| ≥ 2160. In the case of

groups G = Z
∗
p, the prime p should thus have at least a length of 160 bit. However,

as we see below, there are more powerful attacks against DLPs in Z
∗
p which forces

even larger bit lengths of p.

Pollard’s Rho Method

Pollard’s rho method has the same expected run time O(
√

|G|) as the baby-step

giant-step algorithm but only negligible space requirements. The method is a prob-

abilistic algorithm which is based on the birthday paradox (cf. Section 11.2.3). We

will only sketch the algorithm here. The basic idea is to pseudorandomly generate

group elements of the form α i ·β j. For every element we keep track of the values i

and j. We continue until we obtain a collision of two elements, i.e., until we have:

α i1 ·β j1 = α i2 ·β j2 . (8.3)

If we substitute β = αx and compare the exponents on both sides of the equation,

the collision leads to the relation i1 + x j1 ≡ i2 + x j2 mod |G|. (Note that we are in

a cyclic group with |G| elements and have to take the exponent modulo |G|.) From

here the discrete logarithm can easily computed as:

x ≡ i2 − i1

j1 − j2
mod |G|

An important detail, which we omit here, is the exact way to find the collision (8.3).

In any case, the pseudorandom generation of the elements is a random walk through

the group. This can be illustrated by the shape of the Greek letter rho, hence the

name of this attack.

Pollard’s rho method is of great practical importance because it is currently the

best known algorithm for computing discrete logarithms in elliptic curve groups.

Since the method has an attack complexity of O(
√

|G|) computations, elliptic curve

groups should have a size of at least 2160. In fact, elliptic curve cryptosystems with

160-bit operands are very popular in practice.

There are still much more powerful attacks known for the DLP in Z
∗
p, as we will

see below.

Pohlig–Hellman Algorithm

The Pohlig–Hellman method is an algorithm which is based on the Chinese Re-

mainder Theorem (not introduced in this book); it exploits a possible factorization

of the order of a group. It is typically not used by itself but in conjunction with any

of the other DLP attack algorithms in this section. Let

8.3 The Discrete Logarithm Problem 223

|G| = p
e1
1 · p

e2
2 · . . . · p

el

l

be the prime factorization of the group order |G|. Again, we attempt to compute

a discrete logarithm x = logα β in G. This is also a divide-and-conquer algorithm.

The basic idea is that rather than dealing with the large group G, one computes

smaller discrete logarithms xi ≡ x mod p
ei
i in the subgroups of order p

ei
i . The desired

discrete logarithm x can then be computed from all xi, i = 1, . . . , l, by using the

Chinese Remainder Theorem. Each individual small DLP xi can be computed using

Pollard’s rho method or the baby-step giant-step algorithm.

The run time of the algorithm clearly depends on the prime factors of the group

order. To prevent the attack, the group order must have its largest prime factor in the

range of 2160. An important practical consequence of the Pohlig–Hellman algorithm

is that one needs to know the prime factorization of the group order. Especially in

the case of elliptic curve cryptosystems, computing the order of the cyclic group is

not always easy.

Nongeneric Algorithms: The Index-Calculus Method

All algorithms introduced so far are completely independent of the group being

attacked, i.e., they work for discrete logarithms defined over any cyclic group. Non-

generic algorithms efficiently exploit special properties, i.e., the inherent structure,

of certain groups. This can lead to much more powerful DL algorithms. The most

important nongeneric algorithm is the index-calculus method.

Both the baby-step giant-step algorithm and Pollard’s rho method have a run time

which is exponential in the bit length of the group order, namely of about 2n/2 steps,

where n is the bit length of |G|. This greatly favors the crypto designer over the

cryptanalyst. For instance, increasing the group order by a mere 20 bit increases the

attack effort by a factor of 1024 = 210. This is a major reason why elliptic curves

have better long-term security behavior than RSA or cryptosystems based on the

DLP in Z
∗
p. The question is whether there are more powerful algorithms for DLPs

in certain specific groups. The answer is yes.

The index-calculus method is a very efficient algorithm for computing discrete

logarithms in the cyclic groups Z
∗
p and GF(2m)∗. It has a subexponential running

time. We will not introduce the method here but just provide a very brief description.

The index-calculus method depends on the property that a significant fraction of

elements of G can be efficiently expressed as products of elements of a small subset

of G. For the group Z
∗
p this means that many elements should be expressable as a

product of small primes. This property is satisfied by the groups Z
∗
p and GF(2m)∗.

However, one has not found a way to do the same for elliptic curve groups. The

index calculus is so powerful that in order to provide a security of 80 bit, i.e., an

attacker has to perform 280 steps, the prime p of a DLP in Z
∗
p should be at least

1024 bit long. Table 8.3 gives an overview on the DLP records achieved since the

early 1990s. The index-calculus method is somewhat more powerful for solving

the DLP in GF(2m)∗. Hence the bit lengths have to be chosen somewhat longer to

224 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

achieve the same level of security. For that reason, DLP schems in GF(2m)∗ are not

as widely used in practice.

Table 8.3 Summary of records for computing discrete logarithms in Z
∗
p

Decimal digits Bit length Date

58 193 1991
65 216 1996
85 282 1998
100 332 1999
120 399 2001
135 448 2006
160 532 2007

8.4 Security of the Diffie–Hellman Key Exchange 225

8.4 Security of the Diffie–Hellman Key Exchange

After the introduction of the discrete logarithm problem, we are now well prepared

to discuss the security of the DHKE from Section 8.1. First, it should be noted that a

protocol that uses the basic version of the DHKE is not secure against active attacks.

This means if an attacker Oscar can either modify messages or generate false mes-

sages, Oscar can defeat the protocol. This is called man-in-the-middle attack and is

described in Section 13.3.

Let’s now consider the possibilities of a passive adversary, i.e., Oscar can only

listen but not alter messages. His goal is to compute the session key kAB shared

by Alice and Bob. Which information does Oscar get from observing the proto-

col? Certainly, Oscar knows α and p because these are public parameters chosen

during the set-up protocol. In addition, Oscar can obtain the values A = kpub,A and

B = kpub,B by eavesdropping on the channel during an execution of the key-exchange

protocol. Thus, the question is whether he is capable of computing k = αab from

α, p,A ≡ αa mod p and B ≡ αb mod p. This problem is called the Diffie–Hellman

problem (DHP). Like the discrete logarithm problem it can be generalized to arbi-

trary finite cyclic groups. Here is a more formal statement of the DHP:

Definition 8.4.1 Generalized Diffie–Hellman Problem (DHP)

Given is a finite cyclic group G of order n, a primitive element

α ∈ G and two elements A = αa and B = αb in G. The Diffie–

Hellman problem is to find the group element αab.

One general approach to solving the Diffie–Hellman problem is as follows. For il-

lustration purposes we consider the DHP in the multiplicative group Z
∗
p. Suppose—

and that’s a big “suppose”—Oscar knows an efficient method for computing discrete

logarithms in Z
∗
p. Then he could also solve the Diffie–Hellman problem and obtain

the key kAB via the following two steps:

1. Compute Alice’s private key a = kpr,A by solving the discrete logarithm problem:

a ≡ logα A mod p.

2. Compute the session key kAB ≡ Ba mod p.

But as we know from Section 8.3.3, even though this looks easy, computing the

discrete logarithm problem is infeasible if p is sufficiently large.

At this point it is important to note that it is not known whether solving the DLP

is the only way to solve the DHP. In theory, it is possible that there exists another

method for solving the DHP without computing the discrete logarithm. We note that

the situation is analogous to RSA, where it is also not known whether factoring is the

best way of breaking RSA. However, even though it is not proven in a mathematical

sense, it is often assumed that solving the DLP efficiently is the only way for solving

the DHP efficiently.

Hence, in order to assure the security of the DHKE in practice, we have to ascer-

tain that the corresponding DLP cannot be solved. This is achieved by choosing p

226 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

large enough so that the index-calculus method cannot compute the DLP. By con-

sulting Table 6.1 we see that a security level of 80 bit is achieved by primes of

lengths 1024 bit, and for 128 bit security we need about 3072 bit. An additional

requirement is that in order to prevent the Pohlig–Hellman attack, the order p−1 of

the cyclic group must not factor in only small prime factors. Each of the subgroups

formed by the factors of p−1 can be attacked using the baby-step giant-step method

or Pollards’s rho method, but not by the index-calculus method. Hence, the smallest

prime factor of p− 1 must be at least 160 bit long for an 80-bit security level, and

at least 256 bit long for a security level of 128 bit.

8.5 The Elgamal Encryption Scheme

The Elgamal encryption scheme was proposed by Taher Elgamal in 1985 [73]. It is

also often referred to as Elgamal encryption. It can be viewed as an extension of the

DHKE protocol. Not surprisingly, its security is also based on the intractability of

the discrete logarithm problem and the Diffie–Hellman problem. We consider the

Elgamal encryption scheme over the group Z
∗
p, where p is a prime. However, it can

be applied to other cyclic groups too in which the DL and DH problem is intractable,

for instance, in the multiplicative group of a Galois field GF(2m).

8.5.1 From Diffie–Hellman Key Exchange to Elgamal Encryption

In order to understand the Elgamal scheme, it is very helpful to see how it follows

almost immediately from the DHKE. We consider two parties, Alice and Bob. If

Alice wants to send an encrypted message x to Bob, both parties first perform a

Diffie–Hellman key exchange to derive a shared key kM . For this we assume that a

large prime p and a primitive element α have been generated. Now, the new idea is

that Alice uses this key as a multiplicative mask to encrypt x as y ≡ x · kM mod p.

This process is depicted below.

8.5 The Elgamal Encryption Scheme 227

Principle of Elgamal Encryption

Alice Bob

(a) choose d = kpr,B ∈ {2, . . . , p−2}
(b) compute β = kpub,B ≡ αd mod p

β←−−−−−−−−−−−−−−
(c) choose i = kpr,A ∈ {2, . . . , p−2}
(d) compute kE = kpub,A ≡ α i mod p

kE−−−−−−−−−−−−−−→
(e) compute kM ≡ β i mod p (f) compute kM ≡ kd

E mod p

(g) encrypt message x ∈ Z
∗
p

y ≡ x · kM mod p
y−−−−−−−−−−−−−−→

(h) decrypt x ≡ y · k−1
M mod p

The protocol consists of two phases, the classical DHKE (Steps a–f) which is

followed by the message encryption and decryption (Steps g and h, respectively).

Bob computes his private key d and public key β . This key pair does not change,

i.e., it can be used for encrypting many messages. Alice, however, has to generate

a new public–private key pair for the encryption of every message. Her private key

is denoted by i and her public key by kE . The latter is an ephemeral (existing only

temporarily) key, hence the index “E”. The joint key is denoted by kM because it is

used for masking the plaintext.

For the actual encryption, Alice simply multiplies the plaintext message x by

the masking key kM in Z
∗
p. On the receiving side, Bob reverses the encryption by

multipliying with the inverse mask. Note that one property of cyclic groups is that,

given any key kM ∈ Z
∗
p, every messages x maps to another ciphertext if the two

values are multiplied. Moreover, if the key kM is randomly drawn from Z
∗
p, every

ciphertext y ∈ {1,2, . . . , p−1} is equally likely.

8.5.2 The Elgamal Protocol

We provide now a somewhat more formal description of the scheme. We distinguish

three phases. The set-up phase is executed once by the party who issues the public

key and who will receive the message. The encryption phase and the decryption

phase are executed every time a message is being sent. In contrast to the DHKE, no

trusted third party is needed to choose a prime and primitive element. Bob generates

them and makes them public, by placing them in a database or on his website.

228 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Elgamal Encryption Protocol

Alice Bob

choose large prime p

choose primitive element α ∈ Z
∗
p

or in a subgroup of Z
∗
p

choose kpr = d ∈ {2, . . . , p−2}
compute kpub = β = αd mod p

kpub=(p,α,β)
←−−−−−−−−−−−−−−

choose i ∈ {2, . . . , p−2}
compute ephemeral key

kE ≡ α i mod p

compute masking key
kM ≡ β i mod p

encrypt message x ∈ Z
∗
p

y ≡ x · kM mod p
(kE ,y)−−−−−−−−−−−−−−→

compute masking key

kM ≡ kd
E mod p

decrypt x ≡ y · k−1
M mod p

The actual Elgamal encryption protocol rearranges the sequence of operations

from the naı̈ve Diffie–Hellman inspired approach we saw before. The reason for

this is that Alice has to send only one message to Bob, as opposed to two messages

in the earlier protocol.

The ciphertext consists of two parts, the ephemeral key, kE , and the masked plain-

text, y. Since in general all parameters have a bit length of ⌈log2 p⌉, the ciphertext

(kE ,y) is twice as long as the message. Thus, the message expansion factor of Elga-

mal encryption is two.

We prove now the correctness of the Elgamal protocol.

Proof. We have to show that dkpr
(kE ,y) actually yields the original message x.

dkpr
(kE ,y) ≡ y · (kM)−1 mod p

≡ [x · kM] · (kd
E)−1 mod p

≡ [x · (αd)i][(α i)d]−1 mod p

≡ x ·αd·i−d·i ≡ x mod p

⊓⊔

Let’s look at an example with small numbers.

Example 8.14. In this example, Bob generates the Elgamal keys and Alice encrypts

the message x = 26.

8.5 The Elgamal Encryption Scheme 229

Alice Bob

message x = 26 generate p = 29 and α = 2
choose kpr,B = d = 12

compute β = αd ≡ 7 mod 29
kpub,B=(p,α,β)

←−−−−−−−−−−−−
choose i = 5

compute kE = α i ≡ 3 mod 29

compute kM = β i ≡ 16 mod 29
encrypt y = x · kM ≡ 10 mod 29

y,kE−−−−−−−−−−−−→
compute kM = kd

E ≡ 16 mod 29
decrypt

x = y · k−1
M ≡ 10 ·20 ≡ 26 mod 29

⋄

It is important to note that, unlike the schoolbook version of the RSA scheme,

Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical mes-

sages x1 and x2, where x1,x2 ∈Z
∗
p using the same public key results (with extremely

high likelihood) in two different ciphertexts y1 �= y2. This is because i is chosen at

random from {2,3, · · · , p− 2} for each encryption, and thus also the session key

kM = β i used for encryption is chosen at random for each encryption. In this way a

brute-force search for x is avoided a priori.

8.5.3 Computational Aspects

Key Generation During the key generation by the receiver (Bob in our example), a

prime p must be generated, and the public and private have to be computed. Since

the security of Elgamal also depends on the discrete logarithm problem, p needs

to have the properties discussed in Section 8.3.3. In particular, it should have a

length of at least 1024 bits. To generate such a prime, the prime-finding algorithms

discussed in Section 7.6 can be used. The private key should be generated by a true

random number generater. The public key requires one exponentiation for which the

square-and-multiply algorithm is used.

Encryption Within the encryption procedure, two modular exponentiations and one

modular multiplication are required for computing the ephemeral and the masking

key, as well as for the message encryption. All operands involved have a bit length

of ⌈log2 p⌉. For efficient exponentiation, one should apply the square-and-multiply

algorithm that was introduced in Section 7.4. It is important to note that the two ex-

ponentiations, which constitute almost all computations necessary, are independent

of the plaintext. Hence, in some applications they can be precomputed at times of

low computational load, stored and used when the actual encryption is needed. This

can be a major advantage in practice.

Decryption The main steps of the decryption are first an exponentiation kM =
kd mod p, using the square-and-multiply algorithm, followed by an inversion of kM

230 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

that is performed with the extended Euclidean algorithm. However, there is a short-

cut based on Fermat’s Little Theorem that combines these two steps in a single one.

From the theorem, which was introduced in Section 6.3.4, follows that

k
p−1
E ≡ 1 mod p

for all kE ∈ Z
∗
p. We can now merge Step 1 and 2 of the decryption as follows:

k−1
M ≡ (kd

E)−1 mod p

≡ (kd
E)−1k

p−1
E mod p

≡ k
p−d−1
E mod p (8.4)

The equivalence relation (8.4) allows us to compute the inverse of the masking key

using a single exponentiation with the exponent (p− d − 1). After that, one mod-

ular multiplication is required to recover x ≡ y · k−1
M mod p. As a consequence, de-

cryption essentially requires one execution of the square-and-multiply algorithm

followed by a single modular multiplication for recovering the plaintext.

8.5.4 Security

If we want to assess the security of the Elgamal encryption scheme it is important to

distinguish between passive, i.e., listen-only, and active attacks, which allow Oscar

to generate and alter messages.

Passive Attacks

The security of the Elgamal encryption scheme against passive attacks, i.e., recover-

ing x from the information p, α , β = αd , kE = α i and y = x ·β i obtained by eaves-

dropping, relies on the hardness of the Diffie–Hellman problem (cf. Section 8.4).

Currently there is no other method known for solving the DHP than computing

discrete logarithms. If we assume Oscar has supernatural powers and can in fact

compute DLPs, he would have two ways of attacking the Elgamal scheme.

� Recover x by finding Bob’s secret key d:

d = logα β mod p.

This step solves the DLP, which is computationally infeasible if the parame-

ters are chosen correctly. However, if Oscar succeeds with it, he can decrypt the

plaintext by performing the same steps as the receiver, Bob:

x ≡ y · (kd
E)−1 mod p.

8.5 The Elgamal Encryption Scheme 231

� Alternatively, instead of computing Bob’s secret exponent d, Oscar could attempt

to recover Alice’s random exponent i:

i = logα k mod p.

Again, this step is solving the discrete logarithm problem. Should Oscar succeed

with it, he can compute the plaintext as:

x ≡ y · (β i)−1 mod p.

In both cases Oscar has to solve the DL problem in the finite cyclic group Z
∗
p. In

contrast to elliptic curves, the more powerful index-calculus method (Section 8.3.3)

can be applied here. Thus, in order to guarantee the security of the Elgamal scheme

over Z
∗
p today, p should at least have a length of 1024 bits.

Just as in the DHKE protocol, we have to be careful that we do not fall vicitim to

what is a called a small subgroup attack. In order to counter this attack, in practice

primitive elements α are used which generate a subgroup of prime order. In such

groups, all elements are primitive and small subgroups do not exist. One of the

problems illustrates the pitfalls of a small subgroup attack with an example.

Active Attacks

Like in every other asymmetric scheme, it must be assured that the public keys are

authentic. This means that the encrypting party, Alice in our example, in fact has

the public key that belongs to Bob. If Oscar manages to convince Alice that his key

is Bob’s, he can easily attack the scheme. In order to prevent the attack, certificates

can be used, a topic that is discussed in Chapter 13.

Another weakness, if not necessarily an attack that requires any direct action by

Oscar, of the Elgamal encryption is that the secret exponent i should not be reused.

Assume Alice used the value i for encrypting two subsequent messages, x1 and x2.

In this case, the two masking keys would be the same, namely kM = β i. Also, the

two ephemeral keys would be identical. She would send the two ciphertexts (y1,kE)
and (y1,kE) over the channel. If Oscar knows or can guess the first message, he can

compute the masking key as kM ≡ y1x−1
1 mod p. With this, he can decrypt x2 :

x2 ≡ y2k−1
M mod p

Any other message encrypted with the same i value can also be recovered this way.

As a consequence of this attack, one has to take care that the secret exponent i

does not repeat. For instance, if one would use a cryptographically secure PRNG,

as introduced in Section 2.2.1, but with the same seed value every time a session

is initiated, the same sequence of i values would be used for every encryption, a

fact that could be exploited by Oscar. Note that Oscar can detect the re-use of secret

exponents because they lead to identical ephemeral keys.

232 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Another active attack against Elgamal exploits its malleability. If Oscar observes

the ciphertext (kE ,y), he can replace it by

(kE ,sy),

where s is some integer. The receiver would compute

dkpr
(kE ,sy) ≡ sy · k−1

M mod p

≡ s(x · kM) · k−1
M mod p

≡ sx mod p

Thus, the decrypted text is also a multiple of s. The situation is exactly the same

as for the attack that exploited the malleability of RSA, which was introduced in

Section 7.7. Oscar is not able to decrypt the ciphertext, but he can manipulated it

in a specific way. For instance, he could double or triple the integer value of the

decryption result by choosing s equal to 2 or 3, respectively. As it was the case

for RSA, schoolbook Elgamal encryption is often not used in practice, but some

padding is introduced to prevent these types of attacks.

8.6 Discussion and Further Reading

Diffie–Hellman Key Exchange and Elgamal Encryption The DHKE was intro-

duced in the landmark paper [58], which also described the concept of public-key

cryptography. Due to the independent discovery of asymmetric cryptography by

Ralph Merkle, Hellman suggested in 2003 that the algorithm should be named

“Diffie–Hellman–Merkle key exchange”. In Chapter 13 of this book, a more de-

tailed treatment of key exchanges based on the DHKE is provided. The scheme is

standardized in ANSI X9.42 [5] and is used in numerous security protocols such

as TLS. One of the attractive features of DHKE is that it can be generalized to any

cyclic group, not only to the multiplicative group of a prime field that was shown in

this chapter. In practice, the most popular group in addition to Z
�
p is the DHKE over

an elliptic curve that is presented in Section 9.3.

The DHKE is a two-party protocol. It can be extended to a group key agreement

in which more than two parties establish a joint Diffie–Hellman key, see, e.g., [38].

The Elgamal encryption as proposed in 1985 by Tahar Elgamal [73] is widely

used. For example, Elgamal is part of the free GNU Privacy Guard (GnuPG),

OpenSSL, Pretty Good Privacy (PGP) and other crypto software. Active attacks

against the Elgamal encryption scheme such as those discussed in Section 8.5.4

have quite strong requirements that have to be fulfilled, which is quite difficult in

reality. There exist schemes which are related to Elgamal but have stronger security

properties. These include, e.g., the Cramer–Shoup System [49] and the DHAES [1]

scheme proposed by Abdalla, Bellare and Rogaway; these are secure against chosen

ciphertext attacks under certain assumptions.

8.7 Lessons Learned 233

Discrete Logarithm Problem This chapter sketched the most important attack al-

gorithms for solving discrete logarithm problems. A good overview on these, in-

cluding further references, are given in [168, p. 164 ff.]. We also discussed the re-

lationship between the Diffie–Hellman problem (DHP) and the discrete logarithm

problem (DLP). This relationship is a matter of great importance for the foundations

of cryptography. Key contributions which study this are [31, 118].

The idea of using the DLP in groups other than Z
�
p is exploited in elliptic curve

cryptography, a topic that is treated in Chapter 9. Other cryptoystems based on the

generalized DLP include hyperelliptic curves, a comprehensive treatment of which

can be found in [44]. Rather than using the prime field Z
�
p it is also possible to use

certain extension fields which offer computational advantages. Two of the better-

studied DL systems over extension fields are Lucas-Based Cryptosystems [26] and

Efficient and Compact Subgroup Trace Representation (XTR) [109].

8.7 Lessons Learned

� The Diffie–Hellman protocol is a widely used method for key exchange. It is

based on cyclic groups.

� The discrete logarithm problem is one of the most important one-way functions

in modern asymmetric cryptography. Many public-key algorithms are based on

it.

� In practice, the multiplicative group of the prime field Zp or the group of an

elliptic curve are used most often.

� For the Diffie–Hellman protocol in Z
∗
p, the prime p should be at least 1024 bits

long. This provides a security roughly equivalent to an 80-bit symmetric cipher.

For a better long-term security, a prime of length 2048 bits should be chosen.

� The Elgamal scheme is an extension of the DHKE where the derived session key

is used as a multiplicative masked to encrypt a message.

� Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical mes-

sages does not yield two identical ciphertexts.

� For the Elgamal encryption scheme over Z
∗
p, the prime p should be at least 1024

bits long, i.e., p > 21000.

234 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

Problems

8.1. Understanding the functionality of groups, cyclic groups and subgroups is im-

portant for the use of public-key cryptosystems based on the discrete logarithm

problem. That’s why we are going to practice some arithmetic in such structures

in this set of problems.

Let’s start with an easy one. Determine the order of all elements of the multi-

plicative groups of:

1. Z
∗
5

2. Z
∗
7

3. Z
∗
13

Create a list with two columns for every group, where each row contains an element

a and the order ord(a).
(Hint: In order to get familiar with cyclic groups and their properties, it is a good

idea to compute all orders “by hand”, i.e., use only a pocket calculator. If you want to

refresh your mental arithmetic skills, try not to use a calculator whenever possible,

in particular for the first two groups.)

8.2. We consider the group Z
∗
53. What are the possible element orders? How many

elements exist for each order?

8.3. We now study the groups from Problem 8.2.

1. How many elements does each of the multiplicative groups have?

2. Do all orders from above divide the number of elements in the corresponding

multiplicative group?

3. Which of the elements from Problem 8.1 are primitive elements?

4. Verify for the groups that the number of primitive elements is given by φ(|Z∗
p|).

8.4. In this exercise we want to identify primitive elements (generators) of a multi-

plicative group since they play a big role in the DHKE and and many other public-

key schemes based on the DL problem. You are given a prime p = 4969 and the

corresponding multiplicative group Z
∗
4969.

1. Determine how many generators exist in Z
∗
4969.

2. What is the probability of a randomly chosen element a ∈ Z
∗
4969 being a genera-

tor?

3. Determine the smallest generator a ∈ Z
∗
4969 with a > 1000.

Hint: The identification can be done naı̈vely through testing all possible factors

of the group cardinality p− 1, or more efficiently by checking the premise that

a(p−1)/qi �= 1 mod p for all prime factors qi with p− 1 = ∏q
ei
i . You can simply

start with a = 1001 and repeat these steps until you find a respective generator of

Z
∗
4969.

4. What measures can be taken in order to simplify the search for generators for

arbitrary groups Z
∗
p?

8.7 Problems 235

8.5. Compute the two public keys and the common key for the DHKE scheme with

the parameters p = 467, α = 2, and

1. a = 3, b = 5

2. a = 400, b = 134

3. a = 228, b = 57

In all cases, perform the computation of the common key for Alice and Bob. This is

also a perfect check of your results.

8.6. We now design another DHKE scheme with the same prime p = 467 as in

Problem 8.5. This time, however, we use the element α = 4. The element 4 has

order 233 and generates thus a subgroup with 233 elements. Compute kAB for

1. a = 400, b = 134

2. a = 167, b = 134

Why are the session keys identical?

8.7. In the DHKE protocol, the private keys are chosen from the set

{2, . . . , p−2}.

Why are the values 1 and p − 1 excluded? Describe the weakness of these two

values.

8.8. Given is a DHKE algorithm. The modulus p has 1024 bit and α is a generator

of a subgroup where ord(α) ≈ 2160.

1. What is the maximum value that the private keys should have?

2. How long does the computation of the session key take on average if one modular

multiplication takes 700 μs, and one modular squaring 400 μs? Assume that the

public keys have already been computed.

3. One well-known acceleration technique for discrete logarithm systems uses short

primitive elements. We assume now that α is such a short element (e.g., a 16-bit

integer). Assume that modular multiplication with α takes now only 30 μs. How

long does the computation of the public key take now? Why is the time for one

modular squaring still the same as above if we apply the square-and-multiply

algorithm?

8.9. We now want to consider the importance of the proper choice of generators in

multiplicative groups.

1. Show that the order of an element a ∈ Zp with a = p−1 is always 2.

2. What subgroup is generated by a?

3. Briefly describe a simple attack on the DHKE which exploits this property.

8.10. We consider a DHKE protocol over a Galois fields GF(2m). All arithmetic

is done in GF(25) with P(x) = x5 + x2 + 1 as an irreducible field polynomial. The

primitive element for the Diffie–Hellman scheme is α = x2. The private keys are

a = 3 and b = 12. What is the session key kAB?

236 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

8.11. In this chapter, we saw that the Diffie–Hellman protocol is as secure as the

Diffie–Hellman problem which is probably as hard as the DL problem in the group

Z
∗
p. However, this only holds for passive attacks, i.e., if Oscar is only capable

of eavesdropping. If Oscar can manipulate messages between Alice and Bob, the

key agreement protocol can easily be broken! Develop an active attack against the

Diffie–Hellman key agreement protocol with Oscar being the man in the middle.

8.12. Write a program which computes the discrete logarithm in Z
∗
p by exhaustive

search. The input parameters for your program are p,α,β . The program computes

x where β = αx mod p.

Compute the solution to log106 12375 in Z24691.

8.13. Encrypt the following messages with the Elgamal scheme (p = 467 and α =
2):

1. kpr = d = 105, i = 213, x = 33

2. kpr = d = 105, i = 123, x = 33

3. kpr = d = 300, i = 45, x = 248

4. kpr = d = 300, i = 47, x = 248

Now decrypt every ciphertext and show all steps.

8.14. Assume Bob sends an Elgamal encrypted message to Alice. Wrongly, Bob

uses the same parameter i for all messages. Moreover, we know that each of Bob’s

cleartexts start with the number x1 = 21 (Bob’s ID). We now obtain the following

ciphertexts

(kE,1 = 6,y1 = 17),

(kE,2 = 6,y2 = 25).

The Elgamal parameters are p = 31,α = 3,β = 18. Determine the second plaintext

x2.

8.15. Given is an Elgamal crypto system. Bob tries to be especially smart and

chooses the following pseudorandom generator to compute new i values:

i j = i j−1 + f (j) , 1 ≤ j (8.5)

where f (j) is a “complicated” but known pseudorandom function (for instance, f (j)
could be a cryptographic hash function such as SHA or RIPE-MD160). i0 is a true

random number that is not known to Oscar.

Bob encrypts n messages x j as follows:

kE j
= α i j mod p,

y j = x j ·β i j mod p,

8.7 Problems 237

where 1 ≤ j ≤ n. Assume that the last cleartext xn is known to Oscar and all cipher-

text.

Provide a formula with which Oscar can compute any of the messages x j, 1 ≤
j ≤ n−1. Of course, following Kerckhoffs’ principle, Oscar knows the construction

method shown above, including the function f ().

8.16. Given an Elgamal encryption scheme with public parameters kpub = (p,α,β)
and an unknown private key kpr = d. Due to an erroneous implementation of the

random number generator of the encrypting party, the following relation holds for

two temporary keys:

kM, j+1 = k2
M, j mod p.

Given n consecutive ciphertexts

(kE1
,y1),(kE2

,y2), ...,(kEn ,yn)

to the plaintexts

x1,x2, ...,xn.

Furthermore, the first plaintext x1 is known (e.g., header information).

1. Describe how an attacker can compute the plaintexts x1,x2, ...,xn from the given

quantities.

2. Can an attacker compute the private key d from the given information? Give

reasons for your answer.

8.17. Considering the four examples from Problem 8.13, we see that the Elgamal

scheme is nondeterministic: A given plaintext x has many valid ciphertexts, e.g.,

both x = 33 and x = 248 have the same ciphertext in the problem above.

1. Why is the Elgamal signature scheme nondeterministic?

2. How many valid ciphertexts exist for each message x (general expression)?

How many are there for the system in Problem 8.13 (numerical answer)?

3. Is the RSA crypto system nondeterministic once the public key has been chosen?

8.18. We investigate the weaknesses that arise in Elgamal encryption if a public key

of small order is used. We look at the following example. Assume Bob uses the

group Z
∗
29 with the primitive element α = 2. His public key is β = 28.

1. What is the order of the public key?

2. Which masking keys kM are possible?

3. Alice encrypts a text message. Every character is encoded according to the simple

rule a→ 0,. . ., z→ 25. There are three additional ciphertext symbols: ä→ 26,

ö→ 27, ü→ 28. She transmits the following 11 ciphertexts (kE ,y):

238 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem

(3,15),(19,14),(6,15),(1,24),(22,13),(4,7),

(13,24),(3,21),(18,12),(26,5),(7,12)

Decrypt the message without computing Bob’s private key. Just look at the ci-

phertext and use the fact that there are only very few masking keys and a bit of

guesswork.

Chapter 9

Elliptic Curve Cryptosystems

Elliptic Curve Cryptography (ECC) is the newest member of the three families of

established public-key algorithms of practical relevance introduced in Sect. 6.2.3.

However, ECC has been around since the mid-1980s.

ECC provides the same level of security as RSA or discrete logarithm systems

with considerably shorter operands (approximately 160–256 bit vs. 1024–3072 bit).

ECC is based on the generalized discrete logarithm problem, and thus DL-protocols

such as the Diffie–Hellman key exchange can also be realized using elliptic curves.

In many cases, ECC has performance advantages (fewer computations) and band-

width advantages (shorter signatures and keys) over RSA and Discrete Logarithm

(DL) schemes. However, RSA operations which involve short public keys as intro-

duced in Sect. 7.5.1 are still much faster than ECC operations.

The mathematics of elliptic curves are considerably more involved than those

of RSA and DL schemes. Some topics, e.g., counting points on elliptic curves, go

far beyond the scope of this book. Thus, the focus of this chapter is to explain the

basics of ECC in a clear fashion without too much mathematical overhead, so that

the reader gains an understanding of the most important functions of cryptosystems

based on elliptic curves.

In this chapter, you will learn:

� The basic pros and cons of ECC vs. RSA and DL schemes.

� What an elliptic curve is and how to compute with it.

� How to build a DL problem with an elliptic curve.

� Protocols that can be realized with elliptic curves.

� Current security estimations of cryptosystems based on elliptic curves.

239

240 9 Elliptic Curve Cryptosystems

9.1 How to Compute with Elliptic Curves

We start by giving a short introduction to the mathematical concept of elliptic

curves, independent of their cryptographic applications. ECC is based on the gener-

alized discrete logarithm problem. Hence, what we try to do first is to find a cyclic

group on which we can build our cryptosystem. Of course, the mere existence of a

cyclic group is not sufficient. The DL problem in this group must also be computa-

tionally hard, which means that it must have good one-way properties.

We start by considering certain polynomials (e.g., functions with sums of expo-

nents of x and y), and we plot them over the real numbers.

Example 9.1. Let’s look at the polynomial equation x2 + y2 = r2 over the real num-

bers R. If we plot all the pairs (x,y) which fulfill this equation in a coordinate sys-

x

y

Fig. 9.1 Plot of all points (x,y) which fulfill the equation x2 + y2 = r2 over R

tem, we obtain a circle as shown in Fig. 9.1.

⋄

We now look at other polynomial equations over the real numbers.

Example 9.2. A slight generalization of the circle equation is to introduce coeffi-

cients to the two terms x2 and y2, i.e., we look at the set of solutions to the equation

a · x2 + b · y2 = c over the real numbers. It turns out that we obtain an ellipse, as

x

y

Fig. 9.2 Plot of all points (x,y) which fulfill the equation a · x2 +b · y2 = c over R

shown in Figure 9.2.

⋄

9.1 How to Compute with Elliptic Curves 241

9.1.1 Definition of Elliptic Curves

From the two examples above, we conclude that we can form certain types of curves

from polynomial equations. By “curves”, we mean the set of points (x,y) which are

solutions of the equations. For example, the point (x = r,y = 0) fulfills the equation

of a circle and is, thus, in the set. The point (x = r/2,y = r/2) is not a solution to the

polynomial x2 +y2 = r2 and is, thus, not a set member. An elliptic curve is a special

type of polynomial equation. For cryptographic use, we need to consider the curve

not over the real numbers but over a finite field. The most popular choice is prime

fields GF(p) (cf. Sect. 4.2), where all arithmetic is performed modulo a prime p.

Definition 9.1.1 Elliptic Curve

The elliptic curve over Zp, p > 3, is the set of all pairs (x,y) ∈ Zp

which fulfill

y2 ≡ x3 +a · x+b mod p (9.1)

together with an imaginary point of infinity O , where

a,b ∈ Zp

and the condition 4 ·a3 +27 ·b2 �= 0 mod p.

The definition of elliptic curve requires that the curve is nonsingular. Geometri-

cally speaking, this means that the plot has no self-intersections or vertices, which

is achieved if the discriminant of the curve −16(4a3 +27b2) is nonzero.

For cryptographic use we are interested in studying the curve over a prime field

as in the definition. However, if we plot such an elliptic curve over Zp, we do not get

anything remotely resembling a curve. However, nothing prevents us from taking an

elliptic curve equation and plotting it over the set of real numbers.

Example 9.3. In Figure 9.3 the elliptic curve y2 = x3 −3x+3 is shown over the real

numbers.

⋄

We notice several things from this elliptic curve plot.1 First, the elliptic curve

is symmetric with respect to the x-axis. This follows directly from the fact that for

all values xi which are on the elliptic curve, both yi =
√

x3
i +a · xi +b and y′i =

−
√

x3
i +a · xi +b are solutions. Second, there is one intersection with the x-axis.

This follows from the fact that it is a cubic equation if we solve for y = 0 which has

one real solution (the intersection with the x-axis) and two complex solutions (which

do not show up in the plot). There are also elliptic curves with three intersections

with the x-axis.

1 Note that elliptic curves are not ellipses. They play a role in determining the circumference of
ellipses, hence the name.

242 9 Elliptic Curve Cryptosystems

x

y

Fig. 9.3 y2 = x3 −3x+3 over R

We now return to our original goal of finding a curve with a large cyclic group,

which is needed for constructing a discrete logarithm problem. The first task for

finding a group is done, namely identifying a set of elements. In the elliptic curve

case, the group elements are the points that fulfill Eq. (9.1). The next question at

hand is: How do we define a group operation with those points? Of course, we have

to make sure that the group laws from Definition 4.3.1 in Sect. 4.2 hold for the

operation.

9.1.2 Group Operations on Elliptic Curves

Let’s denote the group operation with the addition symbol2 “+”. “Addition” means

that given two points and their coordinates, say P = (x1,y1) and Q = (x2,y2), we

have to compute the coordinates of a third point R such that:

P+Q = R

(x1,y1)+(x2,y2) = (x3,y3)

As we will see below, it turns out that this addition operation looks quite arbi-

trary. Luckily, there is a nice geometric interpretation of the addition operation if we

consider a curve defined over the real numbers. For this geometric interpretation,

we have to distinguish two cases: the addition of two distinct points (named point

addition) and the addition of one point to itself (named point doubling).

Point Addition P+Q This is the case where we compute R = P + Q and P �=
Q. The construction works as follows: Draw a line through P and Q and obtain a

third point of intersection between the elliptic curve and the line. Mirror this third

2 Note that the choice of naming the operation “addition” is completely arbitrary; we could have
also called it multiplication.

9.1 How to Compute with Elliptic Curves 243

intersection point along the x-axis. This mirrored point is, by definition, the point R.

Figure 9.4 shows the point addition on an elliptic curve over the real numbers.

x

y

•P

•
Q

• P+Q

Fig. 9.4 Point addition on an elliptic curve over the real numbers

Point Doubling P+P This is the case where we compute P+Q but P = Q. Hence,

we can write R = P + P = 2P. We need a slightly different construction here. We

draw the tangent line through P and obtain a second point of intersection between

this line and the elliptic curve. We mirror the point of the second intersection along

the x-axis. This mirrored point is the result R of the doubling. Figure 9.5 shows the

x

y

•P

• 2P

Fig. 9.5 Point doubling on an elliptic curve over the real numbers

doubling of a point on an elliptic curve over the real numbers.

You might wonder why the group operations have such an arbitrary looking form.

Historically, this tangent-and-chord method was used to construct a third point if

two points were already known, while only using the four standard algebraic op-

erations add, subtract, multiply and divide. It turns out that if points on the elliptic

244 9 Elliptic Curve Cryptosystems

curve are added in this very way, the set of points also fulfill most conditions neces-

sary for a group, that is, closure, associativity, existence of an identity element and

existence of an inverse.

Of course, in a cryptosystem we cannot perform geometric constructions. How-

ever, by applying simple coordinate geometry, we can express both of the geomet-

ric constructions from above through analytic expressions, i.e., formulae. As stated

above, these formulae only involve the four basic algebraic operations. These op-

erations can be performed in any field, not only over the field of the real numbers

(cf. Sect. 4.2). In particular, we can take the curve equation from above, but we now

consider it over prime fields GF(p) rather than over the real numbers. This yields

the following analytical expressions for the group operation.

Elliptic Curve Point Addition and Point Doubling

x3 = s2 − x1 − x2 mod p

y3 = s(x1 − x3)− y1 mod p

where

s =

{
y2−y1
x2−x1

mod p ; if P �= Q (point addition)
3x2

1+a

2y1
mod p ; if P = Q (point doubling)

Note that the parameter s is the slope of the line through P and Q in the case of

point addition, or the slope of the tangent through P in the case of point doubling.

Even though we made major headway towards the establishment of a finite group,

we are not there yet. One thing that is still missing is an identity (or neutral) element

O such that:

P+O = P

for all points P on the elliptic curve. It turns out that there isn’t any point (x,y) that

fulfills the condition. Instead we define an abstract point at infinity as the neutral

element O . This point at infinity can be visualized as a point that is located towards

“plus” infinity along the y-axis or towards “minus” infinity along the y-axis.

According the group definition, we can now also define the inverse −P of any

group element P as:

P+(−P) = O.

The question is how do we find −P? If we apply the tangent-and-chord method

from above, it turns out that the inverse of the point P = (xp,yp) is the point −P =
(xp,−yp), i.e., the point that is reflected along the x-axis. Figure 9.6 shows the point

P together with its inverse. Note that finding the inverse of a point P = (xp,yp) is

now trivial. We simply take the negative of its y coordinate. In the case of elliptic

curves over a prime field GF(p) (the most interesting case in cryptography), this is

easily achieved since −yp ≡ p− yp mod p, hence

9.1 How to Compute with Elliptic Curves 245

x

y

•P

•−P

Fig. 9.6 The inverse of a point P on an elliptic curve

−P = (xp, p− yp).

Now that we have defined all group properties for elliptic curves, we now look at

an example for the group operation.

Example 9.4. We consider a curve over the small field Z17:

E : y2 ≡ x3 +2x+2 mod 17.

We want to double the point P = (5,1).

2P = P+P = (5,1)+(5,1) = (x3,y3)

s =
3x2

1 +a

2y1
= (2 ·1)−1(3 ·52 +2) = 2−1 ·9 ≡ 9 ·9 ≡ 13 mod 17

x3 = s2 − x1 − x2 = 132 −5−5 = 159 ≡ 6 mod 17

y3 = s(x1 − x3)− y1 = 13(5−6)−1 = −14 ≡ 3 mod 17

2P = (5,1)+(5,1) = (6,3)

For illustrative purposes we check whether the result 2P = (6,3) is actually a point

on the curve by inserting the coordinates into the curve equation:

y2 ≡ x3 +2 · x+2 mod 17

32 ≡ 63 +2 ·6+2 mod 17

9 = 230 ≡ 9 mod 17

⋄

246 9 Elliptic Curve Cryptosystems

9.2 Building a Discrete Logarithm Problem with Elliptic Curves

What we have done so far is to establish the group operations (point addition and

doubling), we have provided an identity element, and we have shown a way of

finding the inverse for any point on the curve. Thus, we now have all necessary

requirements in place to motivate the following theorem:

Theorem 9.2.1 The points on an elliptic curve together with O

have cyclic subgroups. Under certain conditions all points on an

elliptic curve form a cyclic group.

Please note that we have not proved the theorem. This theorem is extremely use-

ful because we have a good understanding of the properties of cyclic groups. In

particular, we know that by definition a primitive element must exist such that its

powers generate the entire group. Moreover, we know quite well how to build cryp-

tosystems from cyclic groups. Here is an example for the cyclic group of an elliptic

curve.

Example 9.5. We want to find all points on the curve:

E : y2 ≡ x3 +2 · x+2 mod 17.

It happens that all points on the curve form a cyclic group and that the order is

#E = 19. For this specific curve the group order is a prime and, according to Theo-

rem 8.2.4, every element is primitive.

As in the previous example we start with the primitive element P = (5,1). We

compute now all “powers” of P. More precisely, since the group operation is addi-

tion, we compute P,2P, . . . ,(#E)P. Here is a list of the elements that we obtain:

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)
3P = 2P+P = (10,6) 12P = (0,11)
4P = (3,1) 13P = (16,4)
5P = (9,16) 14P = (9,1)
6P = (16,13) 15P = (3,16)
7P = (0,6) 16P = (10,11)
8P = (13,7) 17P = (6,14)
9P = (7,6) 18P = (5,16)
10P = (7,11) 19P = O

From now on, the cyclic structure becomes visible since:

20P = 19P+P = O +P = P

21P = 2P
...

9.2 Building a Discrete Logarithm Problem with Elliptic Curves 247

It is also instructive to look at the last computation above, which yielded:

18P+P = O.

This means that P = (5,1) is the inverse of 18P = (5,16), and vice versa. This is

easy to verify. We have to check whether the two x coordinates are identical and

that the two y coordinates are each other’s additive inverse modulo 17. The first

condition obviously hold and the second one too, since

−1 ≡ 16 mod 17.

⋄

To set up DL cryptosystems it is important to know the order of the group. Even

though knowing the exact number of points on a curve is an elaborate task, we know

the approximate number due to Hasse’s theorem.

Theorem 9.2.2 Hasse’s theorem

Given an elliptic curve E modulo p, the number of points on the

curve is denoted by #E and is bounded by:

p+1−2
√

p ≤ #E ≤ p+1+2
√

p.

Hasse’s theorem, which is also known as Hasse’s bound, states that the number of

points is roughly in the range of the prime p. This has major practical implications.

For instance, if we need an elliptic curve with 2160 elements, we have to use a prime

of length of about 160 bit.

Let’s now turn our attention to the details of setting up the discrete logarithm

problem. For this, we can strictly proceed as described in Chapter 8.

Definition 9.2.1 Elliptic Curved Discrete Logarithm Problem

(ECDLP)

Given is an elliptic curve E. We consider a primitive element P

and another element T . The DL problem is finding the integer d,

where 1 ≤ d ≤ #E, such that:

P+P+ · · ·+P
︸ ︷︷ ︸

d times

= d P = T. (9.2)

In cryptosystems, d is the private key which is an integer, while the public key

T is a point on the curve with coordinates T = (xT ,yT). In contrast, in the case of

the DL problem in Z
∗
p, both keys were integers. The operation in Eq. (9.2) is called

point multiplication, since we can formally write T = d P. This terminology can be

misleading, however, since we cannot directly multiply the integer d with a curve

248 9 Elliptic Curve Cryptosystems

point P. Instead, d P is merely a convenient notation for the repeated application of

the group operation in Equation (9.2).3 Let’s now look at an example for an ECDLP.

Example 9.6. We perform a point multiplication on the curve y2 ≡ x3 +2x+2 mod

17 that was also used in the previous example. We want to compute

13P = P+P+ . . .+P

where P = (5,1). In this case, we can simply use the table that was compiled earlier:

13P = (16,4).

⋄

Point multiplication is analog to exponentiation in multiplicative groups. In or-

der to do it efficiently, we can directly adopt the square-and-multiply algorithm.

The only difference is that squaring becomes doubling and multiplication becomes

addition of P. Here is the algorithm:

Double-and-Add Algorithm for Point Multiplication

Input: elliptic curve E together with an elliptic curve point P

a scalar d = ∑t
i=0 di2

i with di ∈ 0,1 and dt = 1

Output: T = d P

Initialization:

T = P

Algorithm:

1 FOR i = t −1 DOWNTO 0

1.1 T = T +T mod n

IF di = 1

1.2 T = T +P mod n

2 RETURN (T)

For a random scalar of length of t + 1 bit, the algorithm requires on average

1.5 t point doubles and additions. Verbally expressed, the algorithm scans the bit

representation of the scalar d from left to right. It performs a doubling in every

iteration, and only if the current bit has the value 1 does it perform an addition of P.

Let’s look at an example.

Example 9.7. We consider the scalar multiplication 26P, which has the following

binary representation:

26P = (110102)P = (d4d3d2d1d0)2 P.

3 Note that the symbol “+” was chosen arbitrarily to denote the group operation. If we had chosen
a multiplicative notation instead, the ECDLP would have had the form Pd = T , which would have
been more consistent with the conventional DL problem in Z

∗
p.

9.3 Diffie–Hellman Key Exchange with Elliptic Curves 249

The algorithm scans the scalar bits starting on the left with d4 and ending with the
rightmost bit d0.

Step
#0 P = 12 P inital setting, bit processed: d4 = 1

#1a P+P = 2P = 102 P DOUBLE, bit processed: d3

#1b 2P+P = 3P = 102 P+12 P = 112 P ADD, since d3 = 1

#2a 3P+3P = 6P = 2(112 P) = 1102 P DOUBLE, bit processed: d2

#2b no ADD, since d2 = 0

#3a 6P+6P = 12P = 2(1102 P) = 11002 P DOUBLE, bit processed: d1

#3b 12P+P = 13P = 11002 P+12 P = 11012 P ADD, since d1 = 1

#4a 13P+13P = 26P = 2(11012 P) = 110102 P DOUBLE, bit processed: d0

#4b no ADD, since d0 = 0

It is instructive to observe how the binary representation of the exponent evolves.

We see that doubling results in a left shift of the scalar, with a 0 put in the rightmost

position. By performing addition with P, a 1 is inserted into the rightmost posi-

tion of the scalar. Compare how the highlighted exponents change from iteration to

iteration.

⋄

If we go back to elliptic curves over the real numbers, there is a nice geometric

interpretation for the ECDLP: given a starting point P, we compute 2P, 3P, . . .,
d P = T , effectively hopping back and forth on the elliptic curve. We then publish

the starting point P (a public parameter) and the final point T (the public key). In

order to break the cryptosystem, an attacker has to figure out how often we “jumped”

on the elliptic curve. The number of hops is the secret d, the private key.

9.3 Diffie–Hellman Key Exchange with Elliptic Curves

In complete analogy to the conventional Diffie–Hellman key exchange (DHKE) in-

troduced in Sect. 8.1, we can now realize a key exchange using elliptic curves. This

is referred to as elliptic curve Diffie–Hellman key exchange, or ECDH. First we

have to agree on domain parameters, that is, a suitable elliptic curve over which we

can work and a primitive element on this curve.

250 9 Elliptic Curve Cryptosystems

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve

E : y2 ≡ x3 +a · x+b mod p

2. Choose a primitive element P = (xP,yP)
The prime p, the curve given by its coefficients a,b, and the primitive ele-

ment P are the domain parameters.

Note that in practice finding a suitable elliptic curve is a relatively difficult task.

The curves have to show certain properties in order to be secure. More about this

is said below. The actual key exchange is done the same way it was done for the

conventional Diffie–Hellman protocol.

Elliptic Curve Diffie–Hellman Key Exchange (ECDH)

Alice Bob

choose kprA = a ∈ {2,3, . . . ,#E −1} choose kprB = b ∈ {2,3, . . . ,#E −1}
compute kpubA = aP = A = (xA,yA) compute kpubB = bP = B = (xB,yB)

A−−−−−−−−−−−−−−→
B←−−−−−−−−−−−−−−

compute aB = TAB compute bA = TAB

Joint secret between Alice and Bob: TAB = (xAB,yAB).

The correctness of the protocol is easy to prove.

Proof. Alice computes

aB = a(bP)

while Bob computes

bA = b(aP).

Since point addition is associative (remember that associativity is one of the group

properties), both parties compute the same result, namely the point TAB = abP. ⊓⊔
As can be seen in the protocol, Alice and Bob choose the private keys a and

b, respectively, which are two large integers. With the private keys both generate

their respective public keys A and B, which are points on the curve. The public

keys are computed by point multiplication. The two parties exchange these public

parameters with each other. The joint secret TAB is then computed by both Alice

and Bob by performing a second point multiplication involving the public key they

received and their own secret parameter. The joint secret TAB can be used to derive

a session key, e.g., as input for the AES algorithm. Note that the two coordinates

(xAB,yAB) are not independent of each other: Given xAB, the other coordinate can be

computed by simply inserting the x value in the elliptic curve equation. Thus, only

one of the two coordinates should be used for the derivation of a session key. Let’s

look at an example with small numbers:

9.4 Security 251

Example 9.8. We consider the ECDH with the following domain parameters. The

elliptic curve is y2 ≡ x3 +2x+2 mod 17, which forms a cyclic group of order #E =
19. The base point is P = (5,1). The protocol proceeds as follows:

Alice Bob

choose a = kpr,A = 3 choose b = kpr,B = 10
A = kpub,A = 3P = (10,6) B = kpub,B = 10P = (7,11)

A−−−−−−−−−−−−−−→
B←−−−−−−−−−−−−−−

TAB = aB = 3(7,11) = (13,10) TAB = bA = 10(10,6) = (13,10)

The two scalar multiplications that each Alice and Bob perform require the Double-

and-Add algorithm.

⋄

One of the coordinates of the joint secret TAB can now be used as session key. In

practice, often the x-coordinate is hashed and then used as a symmetric key. Typ-

ically, not all bits are needed. For instance, in a 160-bit ECC scheme, hashing the

x-coordinate with SHA-1 results in a 160-bit output of which only 128 would be

used as an AES key.

Please note that elliptic curves are not restricted to the DHKE. In fact, almost all

other discrete logarithm protocols, in particular digital signatures and encryption,

e.g., variants of Elgamal, can also be realized. The widely used elliptic curve digital

signature algorithms (ECDSA) will be introduced in Sect. 10.5.1.

9.4 Security

The reason we use elliptic curves is that the ECDLP has very good one-way char-

acteristics. If an attacker Oscar wants to break the ECDH, he has the following

information: E, p, P, A, and B. He wants to compute the joint secret between Alice

and Bob TAB = a · b ·P. This is called the elliptic curve Diffie–Hellman problem

(ECDHP). There appears to be only one way to compute the ECDHP, namely to

solve either of the discrete logarithm problems:

a = logP A

or

b = logP B

If the elliptic curve is chosen with care, the best known attacks against the

ECDLP are considerably weaker than the best algorithms for solving the DL prob-

lem modulo p, and the best factoring algorithms which are used for RSA attacks.

In particular, the index-calculus algorithms, which are powerful attacks against the

DLP modulo p, are not applicable against elliptic curves. For carefully selected el-

liptic curves, the only remaining attacks are generic DL algorithms, that is Shanks’

baby-step giant-step method and Pollard’s rho method, which were described in

Sect. 8.3.3. Since the number of steps required for such an attack is roughly equal

252 9 Elliptic Curve Cryptosystems

to the square root of the group cardinality, a group order of at least 2160 should be

used. According to Hasse’s theorem, this requires that the prime p used for the el-

liptic curve must be roughly 160-bit long. If we attack such a group with generic

algorithms, we need around
√

2160 = 280 steps. A security level of 80 bit provides

medium-term security. In practice, elliptic curve bit lengths up to 256 bit are com-

monly used, which provide security levels of up to 128 bit.

It should be stressed that this security is only achieved if cryptographically strong

elliptic curves are used. There are several families of curves that possess crypto-

graphic weaknesses, e.g., supersingular curves. They are relatively easy to spot,

however. In practice, often standardized curves such as ones proposed by the Na-

tional Institute of Standards and Technology (NIST) are being used.

9.5 Implementation in Software and Hardware

Before using ECC, a curve with good cryptographic properties needs to be identi-

fied. In practice, a core requirement is that the cyclic group (or subgroup) formed

by the curve points has prime order. Moreover, certain mathematical properties that

lead to cryptographic weaknesses must be ruled out. Since assuring all these prop-

erties is a nontrivial and computationally demanding task, often standardized curves

are used in practice.

When implementing elliptic curves it is useful to view an ECC scheme as a struc-

ture with four layers. On the bottom layer modular arithmetic, i.e., arithmetic in the

prime field GF(p), is performed. We need all four field operations: addition, sub-

traction, multiplication and inversion. On the next layer, the two group operations,

point doubling and point addition, are realized. They make use of the arithmetic pro-

vided in the bottom layer. On the third layer, scalar multiplication is realized, which

uses the group operations of the previous layer. The top layer implements the actual

protocol, e.g., ECDH or ECDSA. It is important to note that two entirely different

finite algebraic structures are involved in an elliptic curve cryptosystem. There is

a finite field GF(p) over which the curve is defined, and there is the cyclic group

which is formed by the points on the curve.

In software, a highly optimized 256-bit ECC implementation on a 3-GHz, 64-bit

CPU can take approximately 2 ms for one point multiplication. Slower through-

puts due to smaller microprocessors or less optimized algorithms are common with

performances in the range of 10 ms. For high-performance applications, e.g., for

Internet servers that have to perform a large number of elliptic curve signatures per

second, hardware implementations are desirable. The fastest implementations can

compute a point multiplication in the range of 40 μs, while speeds of several 100

μs are more common.

On the other side of the performance spectrum, ECC is the most attractive public-

key algorithm for lightweight applications such as RFID tags. Highly compact ECC

engines are possible which need as little as 10,000 gate equivalences and run at a

speed of several tens of milliseconds. Even though ECC engines are much larger

9.6 Discussion and Further Reading 253

than implementations of symmetric ciphers such as 3DES, they are considerably

smaller than RSA implementations.

The computational complexity of ECC is cubic in the bit length of the prime

used. This is due to the fact that modular multiplication, which is the main operation

on the bottom layer, is quadratic in the bit length, and scalar multiplication (i.e.,

with the Double-and-Add algorithm) contributes another linear dimension, so that

we have, in total, a cubic complexity. This implies that doubling the bit length of

an ECC implementation results in performance degradation by a factor of roughly

23 = 8. RSA and DL systems show the same cubic runtime behavior. The advantage

of ECC over the other two popular public-key families is that the parameters have to

be increased much more slowly to enhance the security level. For instance, doubling

the effort of an attacker for a given ECC system requires an increase in the length

of the parameter by 2 bits, whereas RSA or DL schemes require an increase of 20–

30 bits. This behavior is due to the fact that only generic attacks (cf. Sect. 8.3.3)

are known ECC cryptosystems, whereas more powerful algorithms are available for

attacking RSA and DL schemes.

9.6 Discussion and Further Reading

History and General Remarks ECC was independently invented in 1987 by Neal

Koblitz and in 1986 by Victor Miller. During the 1990s there was much speculation

about the security and practicality of ECC, especially if compared to RSA. After a

period of intensive research, they appear nowadays very secure, just like RSA and

DL schemes. An important step for building confidence in ECC was the issuing of

two ANSI banking standards for elliptic curve digital signature and key establish-

ment in 1999 and 2001, respectively [6, 7]. Interestingly, in Suite B—a collection

of crypto algorithms selected by the NSA for use in US government systems—only

ECC schemes are allowed as asymmetric algorithms [130]. Elliptic curves are also

widely used in commercial standards such as IPsec or Transport Layer Security

(TLS).

At the time of writing, there still exist far more fielded RSA and DL applications

than elliptic curve ones. This is mainly due to historical reasons and due to the quite

complex patent situation of some ECC variants. Nevertheless, in many new applica-

tions with security needs, especially in embedded systems such as mobile devices,

ECC is often the preferred public-key scheme. For instance, ECC is used in the most

popular business handheld devices. Most likely, ECC will become more widespread

in the years to come. Reference [100] describes the historical development of ECC

with respect to scientific and commercial aspects, and makes excellent reading.

For readers interested in a deeper understanding of ECC, the books [25, 24, 90,

44] are recommended. The overview article [103], even though a bit dated now,

provides a good state-of-the-art summary as of the year 2000. For more recent de-

velopments, the annual Workshop on Elliptic Curve Cryptography (ECC) is recom-

mended as an excellent resource [166]. The workshop includes both theoretical and

254 9 Elliptic Curve Cryptosystems

applied topics related to ECC and related crypto schemes. There is also a rich liter-

ature that deals with the mathematics of elliptic curves [154, 101, 155], regardless

of their use in cryptography.

Implementation and Variants In the first few years after the invention of ECC,

these algorithms were believed to be computationally more complex than existing

public-key schemes, especially RSA. This assumption is somewhat ironic in hind-

sight, given that ECC tends to be often faster than most other public-key schemes.

During the 1990s, fast implementation techniques for ECC was intensively re-

searched, which resulted in considerable performance improvements.

In this chapter, elliptic curves over prime fields GF(p) were introduced. These

are currently in practice somewhat more widely used than over other finite fields, but

curves over binary Galois fields GF(2m) are also popular. For efficient implemen-

tations, improvements are possible at the finite field arithmetic layer, at the group

operation layer and at the point multiplication layer. There is a wealth of techniques

and in the following is a summary of the most common acceleration techniques in

practice. For curves over GF(p), generalized Mersenne primes are often used at the

arithmetic level. These are primes such as p = 2192−264−1. Their major advantage

is that modulo reduction is extremely simple. If general primes are used, methods

similar to those described in Sect. 7.10 are applicable. With respect to ECC over

fields GF(2m), efficient arithmetic algorithms are described in [90]. On the group

operation layer, several optimizations are possible. A popular one is to switch from

the affine coordinates that were introduced here to projective coordinates, in which

each point is represented as a triple (x,y,z). Their advantage is that no inversion

is required within the group operation. The number of multiplications increases,

however. On the next layer, fast scalar multiplication techniques are applicable. Im-

proved versions of the Double-and-Add algorithm which make use of the fact that

adding or subtracting a point come at almost identical costs are commonly being

applied. An excellent compilation of efficient computation techniques for ECC is

the book [90].

A special type of elliptic curve that allows for particularly fast point multiplica-

tion is the Koblitz curve [158]. These are curves over GF(2m) where the coefficients

have the values 0 or 1. There have also been numerous other suggestions for ellip-

tic curves with good implementation properties. One such proposal involves elliptic

curves over optimum extension fields, i.e., fields of the form GF(pm), p > 2 [10].

As mentioned in Sect. 9.5, standardized curves are often being used in practice.

A widely used set of curves is provided in the FIPS Standard [126, Appendix D].

Alternatives are curves specified by the ECC Brainpool consortium or the Standards

for Efficient Cryptography Group (SECG) [34, 9] .

Elliptic curves also allow for many variants and generalization. They are a special

case of hyperelliptic curves, which can also be used to build discrete logarithm cryp-

tosystems [44]. A summary of implementation techniques for hyperelliptic curves is

given in [175]. A completely different type of public-key scheme which also makes

use of elliptic curves is identity-based cryptosystems [30], which have drawn much

attention over the last few years.

9.7 Lessons Learned 255

9.7 Lessons Learned

� Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem.

It requires arithmetic modulo a prime or in a Galois field GF(2m).
� ECC can be used for key exchange, for digital signatures and for encryption.

� ECC provides the same level of security as RSA or discrete logarithm sys-

tems over Z
∗
p with considerably shorter operands (approximately 160–256 bit

vs. 1024–3072 bit), which results in shorter ciphertexts and signatures.

� In many cases ECC has performance advantages over other public-key algo-

rithms. However, signature verification with short RSA keys is still considerably

faster than ECC.

� ECC is slowly gaining popularity in applications, compared to other public-key

schemes, i.e., many new applications, especially on embedded platforms, make

use of elliptic curve cryptography.

256 9 Elliptic Curve Cryptosystems

Problems

9.1. Show that the condition 4a3 +27b2 �= 0 mod p is fulfilled for the curve

y2 ≡ x3 +2x+2 mod 17 (9.3)

9.2. Perform the additions

1. (2,7)+(5,2)
2. (3,6)+(3,6)

in the group of the curve y2 ≡ x3 +2x+2 mod 17. Use only a pocket calculator.

9.3. In this chapter the elliptic curve y2 ≡ x3 +2x+2 mod 17 is given with #E = 19.

Verify Hasse’s theorem for this curve.

9.4. Let us again consider the elliptic curve y2 ≡ x3 + 2x + 2 mod 17. Why are all

points primitive elements?

Note: In general it is not true that all elements of an elliptic curve are primitive.

9.5. Let E be an elliptic curve defined over Z7:

E : y2 = x3 +3x+2.

1. Compute all points on E over Z7.

2. What is the order of the group? (Hint: Do not miss the neutral element O .)

3. Given the element α = (0,3), determine the order of α . Is α a primitive element?

9.6. In practice, a and k are both in the range p≈ 2150 · · ·2250, and computing T = a ·
P and y0 = k ·P is done using the Double-and-Add algorithm as shown in Sect. 9.2.

1. Illustrate how the algorithm works for a = 19 and for a = 160. Do not perform

elliptic curve operations, but keep P a variable.

2. How many (i) point additions and (ii) point doublings are required on average for

one “multiplication”? Assume that all integers have n = ⌈log2 p⌉ bit.

3. Assume that all integers have n = 160 bit, i.e., p is a 160-bit prime. Assume one

group operation (addition or doubling) requires 20 μsec. What is the time for one

double-and-add operation?

9.7. Given an elliptic curve E over Z29 and the base point P = (8,10):

E : y2 = x3 +4x+20 mod 29.

Calculate the following point multiplication k ·P using the Double-and-Add algo-

rithm. Provide the intermediate results after each step.

1. k = 9

2. k = 20

9.7 Problems 257

9.8. Given is the same curve as in 9.7. The order of this curve is known to be #E =
37. Furthermore, an additional point Q = 15 ·P = (14,23) on this curve is given.

Determine the result of the following point multiplications by using as few group

operations as possible, i.e., make smart use of the known point Q. Specify how you

simplified the calculation each time.

Hint: In addition to using Q, use the fact that it is easy to compute −P.

1. 16 ·P
2. 38 ·P
3. 53 ·P
4. 14 ·P+4 ·Q
5. 23 ·P+11 ·Q
You should be able to perform the scalar multiplications with considerably fewer

steps than a straightforward application of the double-and-add algorithm would al-

low.

9.9. Your task is to compute a session key in a DHKE protocol based on elliptic

curves. Your private key is a = 6. You receive Bob’s public key B = (5,9). The

elliptic curve being used is defined by

y2 ≡ x3 + x+6 mod 11.

9.10. An example for an elliptic curve DHKE is given in Sect. 9.3. Verify the two

scalar multiplications that Alice performs. Show the intermediate results within the

group operation.

9.11. After the DHKE, Alice and Bob possess a mutual secret point R = (x,y). The

modulus of the used elliptic curve is a 64-bit prime. Now, we want to derive a session

key for a 128-bit block cipher. The session key is calculated as follows:

KAB = h(x||y)

Describe an efficient brute-force attack against the symmetric cipher. How many

of the key bits are truly random in this case? (Hint: You do not need to describe

the mathematical details. Provide a list of the necessary steps. Assume you have a

function that computes square roots modulo p.)

9.12. Derive the formula for addition on elliptic curves. That is, given the coordi-

nates for P and Q, find the coordinates for R = (x3,y3).
Hint: First, find the equation of a line through the two points. Insert this equation

in the elliptic curve equation. At some point you have to find the roots of a cubic

polynomial x3 +a2x2 +a1x+a0. If the three roots are denoted by x0,x1,x2, you can

use the fact that x0 + x1 + x2 = −a2.

Chapter 10

Digital Signatures

Digital signatures are one of the most important cryptographic tools they and are

widely used today. Applications for digital signatures range from digital certificates

for secure e-commerce to legal signing of contracts to secure software updates. To-

gether with key establishment over insecure channels, they form the most important

instance for public-key cryptography.

Digital signatures share some functionality with handwritten signatures. In par-

ticular, they provide a method to assure that a message is authentic to one user, i.e., it

in fact originates from the person who claims to have generated the message. How-

ever, they actually provide much more functionality, as we’ll learn in this chapter.

In this chapter you will learn:

� The principle of digital signatures

� Security services, that is, the specific objectives that can be achieved by a security

system

� The RSA digital signature scheme

� The Elgamal digital signature scheme and two extensions of it, the digital signa-

ture algorithm (DSA) and the elliptic curve digital signature algorithm (ECDSA)

259

260 10 Digital Signatures

10.1 Introduction

In this section, we first provide a motivating example why digital signatures are

needed and why they must be based on asymmetric cryptography. We then develop

the principles of digital signatures. Actual signature algorithms are introduced in

subsequent sections.

10.1.1 Odd Colors for Cars, or: Why Symmetric Cryptography Is

Not Sufficient

The crypto schemes that we have encountered so far had two main goals: either to

encrypt data (e.g., with AES, 3DES or RSA encryption) or to establish a shared

key (e.g., with the Diffie–Hellman or elliptic curve key exchange). One might be

tempted to think that we are now in a position to satisfy any security needs that

arise in practice. However, there are many other security needs besides encryption

and key exchange, which are in fact termed security services; these are discussed in

detail in Sect. 10.1.3. We now discuss a setting in which symmetric cryptography

fails to provide a desirable security function.

Assume we have two communicating parties, Alice and Bob, who share a secret

key. Furthermore, the secret key is used for encryption with a block cipher. When

Alice receives and decrypts a message which makes semantic sense, e.g., the de-

crypted message is an actual (English) text, she can in many cases conclude that the

message was in fact generated by a person with whom he shares the secret key1. If

only Alice and Bob know the key, they can be reasonably sure that an attacking third

party has not changed the message in transit. So far we’ve always assumed that the

bad guy is an external party that we often named Oscar. However, in practice it is

often the case that Alice and Bob do want to communicate securely with each other,

but at the same time they might be interested in cheating each other. It turns out that

symmetric-key schemes do not protect the two parties against each other. Consider

the following scenario:

Suppose that Alice owns a dealership for new cars where you can select and

order cars online. We assume that Bob, the customer, and Alice, the dealer, have

established a shared secret kAB, e.g., by using the Diffie–Hellman key exchange.

Bob now specifies the car that he likes, which includes a color choice of pink for the

interior and an external color of orange — choices most people would not make. He

sends the order form AES-encrypted to Alice. She decrypts the order and is happy

to have sold another model for $25,000. Upon delivery of the car three weeks later,

Bob has second thoughts about his choice, in part because his spouse is threatening

1 One has to be a bit careful with such a conclusion, though. For instance, if Alice and Bob use
a stream cipher an attacker can flip individual bits of the ciphertext, which results in bit flips in
the received plaintext. Depending on the application, the attacker might be able to manipulate the
message in a way that is semantically still correct. However, using block ciphers, especially in a
chaining mode, makes it quite likely that ciphertext manipulations can be detected after decryption.

10.1 Introduction 261

him with divorce after seeing the car. Unfortunately for Bob (and his family), Alice

has a “no return” policy. Given that she is an experienced car dealer, she knows

too well that it will not be easy to sell a pink and orange car, and she is thus set

on not making any exceptions. Since Bob now claims that he never ordered the

car, she has no other choice but to sue him. In front of the judge, Alice’s lawyer

presents Bob’s digital car order together with the encrypted version of it. Obviously,

the lawyer argues, Bob must have generated the order since he is in possession of

kAB with which the ciphertext was generated. However, if Bob’s lawyer is worth his

money, he will patiently explain to the judge that the car dealer, Alice, also knows

kAB and that Alice has, in fact, a high incentive to generate faked car orders. The

judge, it turns out, has no way of knowing whether the plaintext–ciphertext pair was

generated by Bob or Alice! Given the laws in most countries, Bob probably gets

away with his dishonesty.

This might sound like a rather specific and somewhat artificially constructed sce-

nario, but in fact it is not. There are many, many situations where it is important

to prove to a neutral third party, i.e., a person acting as a judge, that one of two (or

more) parties generated a message. By proving we mean that the judge can conclude

without doubt who has generated the message, even if all parties are potentially dis-

honest. Why can’t we use some (complicated) symmetric-key scheme to achieve

this goal? The high-level explanation is simple: Exactly because we have a sym-

metric set-up, Alice and Bob have the same knowledge (namely of keys) and thus

the same capabilities. Everything that Alice can do can be done by Bob, too. Thus,

a neutral third party cannot distinguish whether a certain cryptographic operation

was performed by Alice or by Bob or by both. Generally speaking, the solution to

this problem lies in public-key cryptography. The asymmetric set-up that is inherent

in public-key algorithms might potentially enable a judge to distinguish between

actions that only one person can perform (namely the person in possession of the

private key), and those that can be done by both (namely computations involving

the public key). It turns out that digital signatures are public-key algorithms which

have the properties that are needed to resolve a situation of cheating participants. In

the e-commerce car scenario above, Bob would have been required to digitally sign

his order using his private key.

10.1.2 Principles of Digital Signatures

The property of proving that a certain person generated a message is obviously

also very important outside the digital domain. In the real, “analog” world, this is

achieved by handwritten signatures on paper. For instance, if we sign a contract or

sign a check, the receiver can prove to a judge that we actually signed the message.

(Of course, one can try to forge signatures, but there are legal and social barriers that

prevent most people from even attempting to do so.) As with conventional hand-

written signatures, only the person who creates a digital message must be capable

of generating a valid signature. In order to achieve this with cryptographic primi-

262 10 Digital Signatures

tives, we have to apply public-key cryptography. The basic idea is that the person

who signs the message uses a private key, and the receiving party uses the matching

public key. The principle of a digital signature scheme is shown in Fig. 10.1.

x

s

ver

(,)

sig

,

Alice

pub

k
pr

k
pub

x s

true / false

Bob

k

x s

Fig. 10.1 Principle of digital signatures which involves signing and verifying a message

The process starts with Bob signing the message x. The signature algorithm is a

function of Bob’s private key, kpr. Hence, assuming he in fact keeps his private key

private, only Bob can sign a message x on his behalf. In order to relate a signature to

the message, x is also an input to the signature algorithm. After signing the message,

the signature s is appended to the message x and the pair (x,s) is sent to Alice. It

is important to note that a digital signature by itself is of no use unless it is accom-

panied by the message. A digital signature without the message is the equivalent of

a handwritten signature on a strip of paper without the contract or a check that is

supposed to be signed.

The digital signature itself is merely a (large) integer value, for instance, a string

of 2048 bits. The signature is only useful to Alice if she has means to verify whether

the signature is valid or not. For this, a verification function is needed which takes

both x and the signature s as inputs. In order to link the signature to Bob, the function

also requires his public key. Even though the verification function has long inputs,

its only output is the binary statement “true” or “false”. If x was actually signed

with the private key that belongs to the public verification key, the output is true,

otherwise it is false.

From these general observations we can easily develop a generic digital signature

protocol:

10.1 Introduction 263

Basic Digital Signature Protocol
Alice Bob

generate kpr,B, kpub,B
kpub,B←−−−−−−−−−−−− publish public key

sign message:
s = sigkpr

(x)
(x,s)←−−−−−−−−−−−− send message + signature

verify signature:
verkpub,B

(x,s) = true/false

From this set-up, the core property of digital signatures follows: A signed mes-

sage can unambiguously be traced back to its originator since a valid signature can

only be computed with the unique signer’s private key. Only the signer has the abil-

ity to generate a signature on his behalf. Hence, we can prove that the signing party

has actually generated the message. Such a proof can even have legal meaning, for

instance, as in the Electronic Signatures in Global and National Commerce Act (ES-

IGN) in the USA or in the Signaturgesetz, or Signature Law, in Germany. We note

that the basic protocol above does not provide any confidentiality of the message

since the message x is being sent in the clear. Of course, the message can be kept

confidential by also encrypting it, e.g., with AES or 3DES.

Each of the three popular public-key algorithm families, namely integer factor-

ization, discrete logarithms and elliptic curves, allows us to construct digital signa-

tures. In the remainder of this chapter we learn about most signature schemes that

are of practical relevance.

10.1.3 Security Services

It is very instructive to discuss in more detail the security functions we can achieve

with digital signatures. In fact, at this point we will step for a moment away from

digital signature and ask ourselves in general: What are possible security objectives

that a security system might possess? More accurately the objectives of a security

systems are called security services. There exist many security services, but the most

important ones which are desirable in many applications are as follows:

1. Confidentiality: Information is kept secret from all but authorized parties.

2. Integrity: Messages have not been modified in transit.

3. Message Authentication: The sender of a message is authentic. An alternative

term is data origin authentication.

4. Nonrepudiation: The sender of a message can not deny the creation of the mes-

sage.

Different applications call for different sets of security services. For instance, for

private e-mail the first three functions are desirable, whereas a corporate e-mail sys-

264 10 Digital Signatures

tem might also require nonrepudiation. As another example, if we want to secure

software updates for a cell phone, the chief objectives might be integrity and mes-

sage authentication because the manufacturer primarily wants to assure that only

original updates are loaded into the handheld device. We note that message authen-

tication always implies data integrity; the opposite is not true.

The four security services can be achieved in a more or less straightforward man-

ner with the schemes introduced in this book: For confidentiality one uses primarily

symmetric ciphers and less frequently asymmetric encryption. Integrity and mes-

sage authentication are provided by digital signatures and message authentication

codes which, are introduced in Chap. 12. Nonrepudiation can be achieved with dig-

ital signatures as discussed above.

In addition to the four core security services there are several other ones:

5. Identification/entity authentication: Establish and verify the identity of an en-

tity, e.g., a person, a computer or a credit card.

6. Access control: Restrict access to the resources to privileged entities.

7. Availability: Assures that the electronic system is reliably available.

8. Auditing: Provide evidence about security-relevant activities, e.g., by keeping

logs about certain events.

9. Physical security: Provide protection against physical tampering and/or re-

sponses to physical tampering attempts.

10. Anonymity: Provide protection against discovery and misuse of identity.

Which security services are desired in a given system is heavily application-

specific. For instance, anonymity might make no sense for an e-mail system since

e-mails are supposed to have a clearly identifiable sender. On the other hand, car-

to-car communication systems for collision avoidance (one of the many exciting

new applications for cryptography we will see in the next ten years or so) have a

strong need to keep cars and drivers anonymous in order to avoid tracking. As a fur-

ther example, in order to secure an operating system, access control to certain parts

of a computer system is often of paramount importance. Most but not all of these

advanced services can be achieved with the crypto algorithms from this book. How-

ever, in some cases noncryptographic approaches need to be taken. For instance,

availability is often achieved by using redundancy, e.g., running redundant comput-

ing or storage systems in parallel. Such solutions are only indirectly, if at all, related

to cryptography.

10.2 The RSA Signature Scheme

The RSA signature scheme is based on RSA encryption introduced in Chap. 7. Its

security relies on the difficulty of factoring a product of two large primes (the integer

factorization problem). Since its first description in 1978 in [143], the RSA signature

scheme has emerged as the most widely used digital signatures scheme in practice.

10.2 The RSA Signature Scheme 265

10.2.1 Schoolbook RSA Digital Signature

Suppose Bob wants to send a signed message x to Alice. He generates the same

RSA keys that were used for RSA encryption as shown in Chap. 7. At the end of the

set-up he has the following parameters:

RSA Keys

� Bob’s private key: kpr = (d)
� Bob’s public key: kpub = (n,e)

The actual signature protocol is shown in the following. The message x that is

being signed is in the range (1,2, . . . ,n−1).

Basic RSA Digital Signature Protocol

Alice Bob

kpr = d, kpub = (n,e)
(n,e)←−−−−−−−−−−−−

compute signature:

s = sigkpr
(x) ≡ xd mod n

(x,s)←−−−−−−−−−−−−
verify: verkpub

(x,s)

x′ ≡ se mod n

x′
{
≡ x mod n =⇒ valid signature
�≡ x mod n =⇒ invalid signature

As can be seen from the protocol, Bob computes the signature s for a message

x by RSA-encrypting x with his private key kpr. Bob is the only party who can

apply kpr, and hence the ownership of kpr authenticates him as the author of the

signed message. Bob appends the signature s to the message x and sends both to

Alice. Alice receives the signed message and RSA-decrypts s using Bob’s public

key kpub, yielding x. If x and x′ match, Alice knows two important things: First, the

author of the message was in possession of Bob’s secret key, and if only Bob has

had access to the key, it was in fact Bob who signed the message. This is called

message authentication. Second, the message has not been changed in transit, so

that message integrity is given. We recall from the previous section that these are

two of the fundamental security services which are often needed in practice.

Proof. We now prove that the scheme is correct, i.e., that the verification process

yields a “true” statement if the message and signature have not been altered during

transmission. We start from the verification operation se mod n:

se = (xd)e = xde ≡ x mod n

266 10 Digital Signatures

Due to the mathematical relationship between the private and the public key, namely

that

d e ≡ 1 mod φ(n),

raising any integer x ∈ Zn to the (d e)th power yields the integer itself again. The

proof for this was given in Sect. 7.3. ⊓⊔

The role of the public and the private keys are swapped compared to the RSA

encryption scheme. Whereas RSA encryption applies the public key to the message

x, the signature scheme applies the private key kpr. On the other side of the commu-

nication channel, RSA encryption requires the use of the private key by the receiver,

while the digital signature scheme applies the public key for verification.

Let’s look at an example with small numbers.

Example 10.1. Suppose Bob wants to send a signed message (x = 4) to Alice. The

first steps are exactly the same as it is done for an RSA encryption: Bob computes

his RSA parameters and sends the public key to Alice. In contrast to the encryption

scheme, now the private key is used for signing while the public key is needed to

verify the signature.

Alice Bob

1. choose p = 3 and q = 11
2. n = p ·q = 33
3. Φ(n) = (3−1)(11−1) = 20
4. choose e = 3

5. d ≡ e−1 ≡ 7 mod 20
(n,e)=(33,3)←−−−−−−−−−−−−

compute signature for message
x = 4:

s = xd ≡ 47 ≡ 16 mod 33
(x,s)=(4,16)←−−−−−−−−−−−−

verify:

x′ = se ≡ 163 ≡ 4 mod 33
x′ ≡ x mod 33 =⇒ valid signature

Alice can conclude from the valid signature that Bob generated the message and

that it was not altered in transit, i.e., message authentication and message integrity

are given.

⋄

It should be noted that we introduced a digital signature scheme only. In par-

ticular, the message itself is not encrypted and, thus, there is not confidentiality. If

this security service is required, the message together with the signature should be

encrypted, e.g., using a symmetric algorithm like AES.

10.2 The RSA Signature Scheme 267

10.2.2 Computational Aspects

First, we note that the signature is as long as the modulus n, i.e., roughly ⌈log2 n⌉
bit. As discussed earlier, n is typically in the range from 1024 to 3072 bit. Even

though such a signature length is not a problem in most Internet applications, it can

be undesirable in systems that are bandwidth and/or energy constrained, e.g., mobile

phones.

The key generation process is identical to the one we used for RSA encryption,

which was discussed in detail in Chap. 7. To compute and verify the signature,

the square-and-multiply algorithm introduced in Sect. 7.4 is used. The acceleration

techniques for RSA introduced in Sect. 7.5 are also applicable to the digital signa-

ture scheme. Particularly interesting are short public keys e, for instance, the choice

e = 216 + 1. This makes verification a very fast operation. Since in many practical

scenarios a message is signed only once but verified many times, the fact that ver-

ification is very fast is helpful. This is, e.g., the case in public-key infrastructures

which use certificates. Certificates are signed only once but are verified over and

over again every time a user uses his asymmetric keys (cf. Sect. 13.3.3).

10.2.3 Security

Like in every other asymmetric scheme, it must be assured that the public keys

are authentic. This means that the verifying party in fact has the public key that

is associated with the private signature key. If an attacker succeeds in providing

the verifier with an incorrect public key that supposedly belongs to the signer, the

attacker can obviously sign messages. In order to prevent the attack, certificates can

be used, a topic which is discussed in Chap. 13.

Algorithmic Attacks

The first group of attacks attempts to break the underlying RSA scheme by comput-

ing the private key d. The most general of these attacks tries to factor the modulus n

into the primes p and q. If an attacker succeeds with this, she can compute the private

key d from e. In order to prevent factoring attacks the modulus must be sufficiently

large, as discussed in Sect. 7.8. In practice, 1024 bit or more are recommended.

Existential Forgery

Another attack against the schoolbook RSA signature scheme allows an attacker to

generate a valid signature for a random message x. The attack works as follows:

268 10 Digital Signatures

Existential Forgery Attack Against RSA Digital Signature

Alice Oscar Bob

kpr = d

kpub = (n,e)
(n,e)←−−−−−−−− (n,e)←−−−−−−−−

1. choose signature:
s ∈ Zn

2. compute message:
x ≡ se mod n

(x,s)←−−−−−−−−
verification:

se ≡ x′ mod n

since x′ = x

=⇒ valid signature!

The attacker impersonates Bob, i.e., Oscar claims to Alice that he is in fact Bob.

Because Alice performs exactly the same computations as Oscar, she will verify

the signature as correct. However, by closely looking at Steps 1 and 2 that Oscar

performs, one sees that the attack is somewhat odd. The attacker chooses the signa-

ture first and then computes the message. As a consequence, he cannot control the

semantics of the message x. For instance, Oscar cannot generate a message such as

“Transfer $1000 into Oscar’s account”. Nevertheless, the fact that

an automated verification process does not recognize the forgery is certainly not a

desirable feature. For this reason, schoolbook RSA signature is rarely used in prac-

tice, and padding schemes are applied in order to prevent this and other attacks.

RSA Padding: The Probabilistic Signature Standard (PSS)

The attack above can be prevented by allowing only certain message formats.

Roughly speaking, formatting imposes a rule which allows the verifier, Alice in our

examples, to distinguish between valid and invalid messages; this is called padding.

For example, a simple formatting rule could specify that all messages x have 100

trailing bits with the value zero (or any other specific bit pattern). If Oscar chooses

signature values s and computes the “message” x ≡ se mod n, it is extremely un-

likely that x has this specific format. If we require a certain value for the 100 trailing

bits, the chance that x has this format is 2−100, which is considerably lower than

winning any lottery.

We now look at a padding scheme which is widely used in practice. Note that a

padding scheme for RSA encryption was already discussed in Sect. 7.7. The prob-

abilistic signature scheme (RSA-PSS) is a signature scheme based on the RSA

cryptosystem. It combines signature and verification with an encoding of the mes-

sage.

10.2 The RSA Signature Scheme 269

Let’s have a closer look at RSA-PSS. Almost always in practice, the message it-

self is not signed directly but rather the hashed version of it. Hash functions compute

a digital fingerprint of messages. The fingerprint has a fixed length, say 160 or 256

bit, but accepts messages as inputs of arbitrary lengths. More about hash functions

and the role the play in digital signatures is found in Chap. 11.

In order to be consistent with the terminology used in standards, we denote the

message with M rather than with x. Figure 10.2 depicts the encoding procedure

which is known as Encoding Method for Signature with Appendix (EMSA) Proba-

bilistic Signature Scheme (PSS).

Encoding for the EMSA Probabilistic Signature Scheme

Let |n| be the size of the RSA modulus in bits. The encoded message EM

has a length ⌈(|n| − 1)/8⌉ bytes such that the bit length of EM is at most

|n|−1 bit.

1. Generate a random value salt.

2. Form a string M′ by concatenating a fixed padding padding1, the hash

value mHash = h(M) and salt.

3. Compute a hash value H of the string M′.
4. Concatenate a fixed padding padding2 and the value salt to form a data

block DB.

5. Apply a mask generation function MGF to the string M′ to compute the

mask value dbMask. In practice, a hash function such as SHA-1 is often

used as MGF .

6. XOR the mask value dbMask and the data block DB to compute

maskedDB.

7. The encoded message EM is obtained by concatenating maskedDB, the

hash value H and the fixed padding bc.

After the encoding, the actual signing operation is applied to the encoded mes-

sage EM, e.g.,

s = sigkpr
(x) ≡ EMd mod n

The verification operation then proceeds in a similar way: recovery of the salt value

and checking whether the EMSA-PSS encoding of the message is correct. Note that

the receiver knows the values of padding1 and padding2 from the standard.

The value H in EM is in essence the hashed version of the message. By adding

a random value salt prior to the second hashing, the encoded value becomes proba-

bilistic. As a consequence, if we encode and sign the same message twice, we obtain

different signatures, which is a desirable feature.

270 10 Digital Signatures

Fig. 10.2 Principle of EMSA-PSS encoding

10.3 The Elgamal Digital Signature Scheme

The Elgamal signature scheme, which was published in 1985, is based on the diffi-

culty of computing discrete logarithms (cf. Chap. 8). Unlike RSA, where encryption

and digital signature are almost identical operations, the Elgamal digital signature

is quite different from the encryption scheme with the same name.

10.3.1 Schoolbook Elgamal Digital Signature

Key Generation

As with every public-key scheme, there is a set-up phase during which the keys are

computed. We start by finding a large prime p and constructing a discrete logarithm

problem as follows:

10.3 The Elgamal Digital Signature Scheme 271

Key Generation for Elgamal Digital Signature

1. Choose a large prime p.

2. Choose a primitive element α of Z
∗
p or a subgroup of Z

∗
p.

3. Choose a random integer d ∈ {2,3, . . . , p−2}.

4. Compute β = αd mod p .

The public key is now formed by kpub = (p,α,β), and the private key by kpr = d.

Signature and Verification

Using the private key and the parameters of the public key, the signature

sigkpr
(x,kE) = (r,s)

for a message x is computed during the signing process. Note that the signature

consists of two integers r and s. The signing consists of two main steps: choosing a

random value kE , which forms an ephemeral private key, and computing the actual

signature of x.

Elgamal Signature Generation

1. Choose a random ephemeral key kE ∈ {0,1,2, . . . , p − 2} such that

gcd(kE , p−1) = 1.

2. Compute the signature parameters:

r ≡ αkE mod p,

s ≡ (x−d · r)k−1
E mod p−1.

On the receiving side, the signature is verified as verkpub
(x,(r,s)) using the public

key, the signature and the message.

Elgamal Signature Verification

1. Compute the value

t ≡ β r · rs mod p

2. The verification follows from:

t

{
≡ αx mod p =⇒ valid signature

�≡ αx mod p =⇒ invalid signature

272 10 Digital Signatures

In short, the verifier accepts a signature (r,s) only if the relation β r · rs ≡ αx mod

p is satisfied. Otherwise, the verification fails. In order to make sense of the rather

arbitrary looking rules for computing the signature parameters r and s as well as the

verification, it is helpful to study the following proof.

Proof. We’ll prove the correctness of the Elgamal signature scheme. More specif-

ically, we show that the verification process yields a “true” statement if the verifier

uses the correct public key and the correct message, and if the signature parameters

(r,s) were chosen as specified. We start with the verification equation:

β r · rs ≡ (αd)r(αkE)s mod p

≡ αd r+kE s mod p.

We require that the signature is considered valid if this expression is identical to αx:

αx ≡ αd r+kE s mod p. (10.1)

According to Fermat’s Little Theorem, the relationship (10.1) holds if the exponents

on both sides of the expression are identical modulo p−1:

x ≡ d r + kE s mod p−1

from which the construction rule of the signature parameters s follows:

s ≡ (x−d · r)k−1
E mod p−1.

⊓⊔

The condition that gcd(kE , p− 1) = 1 is required since we have to invert the

ephemeral key modulo p−1 when computing s.

Let’s look at an example with small numbers.

Example 10.2. Again, Bob wants to send a message to Alice. This time, it should

be signed with the Elgamal digital signature scheme. The signature and verification

process is as follows:

10.3 The Elgamal Digital Signature Scheme 273

Alice Bob

1. choose p = 29
2. choose α = 2
3. choose d = 12

4. β = αd ≡ 7 mod 29
(p,α,β)=(29,2,7)←−−−−−−−−−−−−

compute signature for message
x = 26:
choose kE = 5, note that
gcd(5,28) = 1

r = αkE ≡ 25 ≡ 3 mod 29

s = (x − d r)k−1
E ≡ (−10) · 17 ≡

26 mod 28
(x,(r,s))=(26,(3,26))←−−−−−−−−−−−−

verify:

t = β r · rs ≡ 73 ·326 ≡ 22 mod 29

αx ≡ 226 ≡ 22 mod 29
t ≡αx mod 29 =⇒ valid signature

⋄

10.3.2 Computational Aspects

The key generation phase is identical to the set-up phase of Elgamal encryption,

which we introduced in Sect. 8.5.2. Because the security of the signature scheme

relies on the discrete logarithm problem, p needs to have the properties discussed

in Sect. 8.3.3. In particular, it should have a length of at least 1024 bits. The prime

can be generated using the prime-finding algorithms introduced in Sect 7.6. The

private key should be generated by a true random number generator. The public key

requires one exponentiation using the square-and-multiply algorithm.

The signature consists of the pair (r,s). Both have roughly the same bit length

as p, so that the total length of the package (x,(r,s)) is about three times as long

as only the message x. Computing r requires an exponentiation modulo p, which

can be achieved with the square-and-multiply algorithm. The main operation when

computing s is the inversion of kE . This can be done using the extended Euclidean

algorithm. A speed-up is possible through precomputing. The signer can generate

the ephemeral key kE and r in advance and store both values. When a message is to

be signed, they can be retrieved and used to compute s. The verifier performs two

exponentiations that are again computed with the square-and-multiply algorithm,

and one multiplication.

274 10 Digital Signatures

10.3.3 Security

First, we must make sure that the verifier has the correct public key. Otherwise,

the attack sketched in Sect. 10.2.3 is applicable. Other attacks are described in the

following.

Computing Discrete Logarithms

The security of the signature scheme relies on the discrete logarithm problem (DLP).

If Oscar is capable of computing discrete logarithms, he can compute the private key

d from β as well as the ephemeral key kE from r. With this knowledge, he can sign

arbitrary messages on behalf of the signer. Hence the Elgamal parameters must be

chosen such that the DLP is intractable. We refer to Sect. 8.3.3 for a discussion of

possible discrete logarithm attacks. One of the key requirements is that the prime p

should be at least 1024-bit long. We have also make sure that small subgroup attacks

are not possible. In order to counter this attack, in practice primitive elements α
are used to generate a subgroup of prime order. In such groups, all elements are

primitive and small subgroups do not exist.

Reuse of the Ephemeral Key

If the signer reuses the ephemeral key kE , an attacker can easily compute the private

key a. This constitutes a complete break of the system. Here is how the attack works.

Oscar observes two digital signatures and messages of the form (x,(r,s)). If the

two messages x1 and x2 have the same ephemeral key kE , Oscar can detect this since

the two r values are the same because they were constructed as r1 = r2 = αkE . The

two s values are different, and Oscar obtains the following two expressions:

s1 ≡ (x1 −d r)k−1
E mod p−1 (10.2)

s2 ≡ (x2 −d r)k−1
E mod p−1 (10.3)

This is an equation system with the two unknowns d, which is Bob’s private key (!)

and the ephemeral key kE . By multiplying both equations by kE it becomes a linear

system of equations which can be solved easily. Oscar simply subtracts the second

equation from the first one, yielding:

s1 − s2 ≡ (x1 − x2)k
−1
E mod p−1

from which the ephemeral key follows as

kE ≡ x1 − x2

s1 − s2
mod p−1.

10.3 The Elgamal Digital Signature Scheme 275

If gcd(s1 − s2, p−1) �= 1, the equation has multiple solutions for kE , and Oscar has

to verify which is the correct one. In any case, using kE , Oscar can now also compute

the private key through either Eq. (10.2) or Eq. (10.3):

d ≡ x1 − s1kE

r
mod p−1.

With the knowledge of the private key d and the public key parameters, Oscar can

now freely sign any documents on Bob’s behalf. In order to avoid the attack, fresh

ephemeral keys stemming from a random number generator should be used for every

digital signature.

An attack with small numbers is given in the next example.

Example 10.3. Let’s assume the situation where Oscar eavesdrops on the following

two messages that were previously signed with Bob’s private key and that use the

same ephemeral key kE :

1. (x1,(r,s1)) = (26,(3,26)),
2. (x2,(r,s2)) = (13,(3,1)).

Additionally, Oscar knows Bob’s public key, which is given as

(p,α,β) = (29,2,7).

With this information, Oscar is now able to compute the ephemeral key

kE ≡ x1 − x2

s1 − s2
mod p−1

≡ 26−13

26−1
≡ 13 ·9

≡ 5 mod 28

and finally reveal Bob’s private key d:

d ≡ x1 − s1 · kE

r
mod p−1

≡ 26−26 ·5
3

≡ 8 ·19

≡ 12 mod 28.

⋄

Existential Forgery Attack

Similar to the case of RSA digital signatures, it is also possible that an attacker gen-

erates a valid signature for a random message x. The attacker, Oscar, impersonates

Bob, i.e., Oscar claims to Alice that he is in fact Bob. The attack works as follows:

276 10 Digital Signatures

Existential Forgery Attack Against Elgamal Digital Signature

Alice Oscar Bob

kpr = d

kpub = (p,α,β)
(p,α,β)←−−−−−− (p,α,β)←−−−−−−

1. select integers i, j

where gcd(j, p−1) = 1
2. compute signature:

r ≡ α iβ j mod p

s ≡ −r j−1 mod p −
1
3. compute message:

x ≡ s i mod p−1
(x,(r,s))←−−−−−−

verification:
t ≡ β r · rs mod p

since t ≡ αx mod p:
valid signature!

The verification yields a “true” statement because the following holds:

t ≡ β r · rs mod p

≡ αd r · rs mod p

≡ αd r ·α(i+d j)s mod p

≡ αd r ·α(i+d j)(−r j−1) mod p

≡ αd r−d r ·α−r i j−1
mod p

≡ αs i mod p

Since the message was constructed as x ≡ s i mod p−1, the last expression is equal

to

αs i ≡ αx mod p

which is exactly Alice’s condition for accepting the signature as valid.

The attacker computes in Step 3 the message x, the semantics of which he cannot

control. Thus, Oscar can only compute valid signatures for pseudorandom messages.

The attack is not possible if the message is hashed, which is, in practice, very

often the case. Rather than using the message directly for computing the signature,

one applies a hash function to the message prior to signing, i.e., the signing equation

becomes:

s ≡ (h(x)−d · r)k−1
E mod p−1.

10.4 The Digital Signature Algorithm (DSA) 277

10.4 The Digital Signature Algorithm (DSA)

The native Elgamal signature algorithm described in this section is rarely used in

practice. Instead, a much more popular variant is used, known as the Digital Signa-

ture Algorithm (DSA). It is a federal US government standard for digital signatures

(DSS) and was proposed by the National Institute of Standards and Technology

(NIST). Its main advantages over the Elgamal signature scheme are that the signa-

ture is only 320-bit long and that some of the attacks that can threaten the Elgamal

scheme are not applicable.

10.4.1 The DSA Algorithm

We introduce here the DSA standard with a bit length of 1024 bit. Note that longer

bit lengths are also possible in the standard.

Key Generation

The keys for DSA are computed as follows:

Key Generation for DSA

1. Generate a prime p with 21023 < p < 21024.

2. Find a prime divisor q of p−1 with 2159 < q < 2160.

3. Find an element α with ord(α) = q, i.e., α generates the subgroup with

q elements.

4. Choose a random integer d with 0 < d < q.

5. Compute β ≡ αd mod p.

The keys are now:

kpub = (p,q,α,β)
kpr = (d)

The central idea of DSA is that there are two cyclic groups involved. One is the

large cyclic group Z
∗
p, the order of which has bit length of 1024 bit. The second one

is in the 160-bit subgroup of Z
∗
p. This set-up yields shorter signatures, as we see in

the following.

In addition to the 1024-bit prime p and a 160-bit prime q, there are two other bit

length combinations possible for the primes p and q. According to the latest version

of the standard, the combinations shown in Table 10.1 are allowed.

If one of the other bit lengths is required, only Steps 1 and 2 of the key generation

phase have to be adjusted accordingly. More about the issue of bit length will be said

in Sect. 10.4.3 below.

278 10 Digital Signatures

Table 10.1 Bit lengths of important parameters of DSA

p q Signature

1024 160 320
2048 224 448
3072 256 512

Signature and Verification

As in the Elgamal signature scheme, the DSA signature consists of a pair of integers

(r,s). Since each of the two parameters is only 160-bit long, the total signature

length is 320 bit. Using the public and private key, the signature for a message x is

computed as follows:

DSA Signature Generation

1. Choose an integer as random ephemeral key kE with 0 < kE < q.

2. Compute r ≡ (αkE mod p) mod q.

3. Compute s ≡ (SHA(x)+d · r)kE
−1 mod q.

According to the standard, the message x has to be hashed using the hash function

SHA-1 in order to compute s. Hash functions, including SHA-1, are described in

Chap. 11. For now it is sufficient to know that SHA-1 compresses x and computes a

160-bit fingerprint. This fingerprint can be thought of as a representative of x.

The signature verification process is as follows:

DSA Signature Verification

1. Compute auxiliary value w ≡ s−1 mod q.

2. Compute auxiliary value u1 ≡ w ·SHA(x) mod q.

3. Compute auxiliary value u2 ≡ w · r mod q.

4. Compute v ≡ (αu1 ·β u2 mod p) mod q.

5. The verification verkpub
(x,(r,s)) follows from:

v

{
≡ r mod q =⇒ valid signature

�≡ r mod q =⇒ invalid signature

The verifier accepts a signature (r,s) only if v ≡ r mod q is satisfied. Otherwise,

the verification fails. In this case, the message or the signature may have been mod-

ified or the verifier is not in possession of the correct public key. In any case, the

signature should be considered invalid.

Proof. We show that a signature (r,s) satisfies the verification condition v ≡ r mod

q. We’ll start with the signature parameter s:

10.4 The Digital Signature Algorithm (DSA) 279

s ≡ (SHA(x)+d r)kE
−1 mod q

which is equivalent to:

kE ≡ s−1 SHA(x)+d s−1 r mod q.

The right-hand side can be expressed in terms of the auxiliary values u1 and u2:

kE ≡ u1 +d u2 mod q.

We can raise α to either side of the equation if we reduce modulo p:

αkE mod p ≡ αu1+d u2 mod p.

Since the public key value β was computed as β ≡ αd mod p, we can write:

αkE mod p ≡ αu1 β u2 mod p.

We now reduce both sides of the equation modulo q:

(αkE mod p) mod q ≡ (αu1β u2 mod p) mod q.

Since r was constructed as r ≡ (αkE mod p) mod q and v≡ (αu1 β u2 mod p) mod q,

this expression is identical to the condition for verifying a signature as valid:

r ≡ v mod q.

⊓⊔

Let’s look at an example with small numbers.

Example 10.4. Bob wants to send a message x to Alice which is to be signed with

the DSA algorithm. Suppose the hash value of x is h(x) = 26. Then the signature

and verification process is as follows:

Alice Bob

1. choose p = 59
2. choose q = 29
3. choose α = 3
4. choose private key d = 7

5. β = αd ≡ 4 mod 59
(p,q,α,β)=(59,29,3,4)←−−−−−−−−−−−−−−−−

sign:
compute hash of message h(x) = 26
1. choose ephemeral key kE = 10

2. r = (310 mod 59) ≡ 20 mod 29
3. s = (26+7 ·20) ·3 ≡ 5 mod 29

(x,(r,s))=(x,(20,5))←−−−−−−−−−−−−−−−−
verify:

1. w = 5−1 ≡ 6 mod 29
2. u1 = 6 ·26 ≡ 11 mod 29
3. u2 = 6 ·20 ≡ 4 mod 29

4. v = (311 ·44 mod 59) mod 29 = 20
5. v ≡ r mod 29 =⇒ valid signature

280 10 Digital Signatures

In this example, the subgroup has a prime order of q = 29, whereas the “large”

cyclic group modulo p has 58 elements. We note that 58 = 2 · 29. We replaced the

function SHA(x) by h(x) since the SHA hash function has an output of length 160

bit.

⋄

10.4.2 Computational Aspects

We discuss now the computations involved in the DSA scheme. The most demand-

ing part is the key-generation phase. However, this phase only has to be executed

once at set-up time.

Key Generation

The challenge in the key-generation phase is to find a cyclic group Z
∗
p with a bit

length of 1024, and which has a prime subgroup in the range of 2160. This condi-

tion is fulfilled if p− 1 has a prime factor q of 160 bit. The general approach to

generating such parameters is to first find the 160-bit prime q and then to construct

the larger prime p from it. Below is the prime-generating algorithm. Note that the

NIST-specified scheme is slightly different.

Prime Generation for DSA

Output: two primes (p,q), where 21023 < p < 21024 and 2159 < q < 2160,

such that p−1 is a multiple of q.

Initialization: i = 1

Algorithm:

1 find prime q with 2159 < q < 2160 using the Miller–Rabin algorithm

2 FOR i = 1 TO 4096

2.1 generate random integer M with 21023 < M < 21024

2.2 Mr ≡ M mod 2q

2.3 p−1 ≡ M−Mr (note that p−1 is a multiple of 2q.)

IF p is prime (use Miller–Rabin primality test)

2.4 RETURN (p, q)

2.5 i = i + 1

3 GOTO Step 1

The choice of 2q as modulus in step 2.3 assures that the prime candidates gener-

ated in step 2.3 are odd numbers. Since p− 1 is divisible by 2q, it is also divisible

by q. If p is a prime, Z
∗
p thus has a subgroup of order q.

10.4 The Digital Signature Algorithm (DSA) 281

Signing

During signing we compute the parameters r and s. Computing r involves first eval-

uation gkE mod p using the square-and-multiply algorithm. Since kE has only 160

bit, about 1.5× 160 = 240 squarings and multiplications are required on average,

even though the arithmetic is done with 1024-bit numbers. The result, which has

also a length of 1024 bit, is then reduced to 160 bit by the operation “ mod q”. Com-

puting s involves only 160-bit numbers. The most costly step is the inversion of

kE .

Of these operations, the exponentiation is the most costly one in terms of com-

putational complexity. Since the parameter r does not depend on the message, it can

be precomputed so that the actual signing can be a relatively fast operation.

Verification

Computing the auxiliary parameters w, u1 and u2 only involves 160-bit operands,

which makes them relatively fast.

10.4.3 Security

An interesting aspect of DSA is that we have to protect against two different discrete

logarithm attacks. If an attacker wants to break DSA, he could attempt to compute

the private key d by solving the discrete logarithm in the large cyclic group modulo

p:

d = logα β mod p.

The most powerful method for this is the index calculus attack, which was sketched

in Sect. 8.3.3. In order to thwart this attack, p must be at least 1024-bit long. It is

estimated that this provides a security level of 80 bit, i.e., an attack would need on

the order of 280 operations (cf. Table 6.1 in Chap. 6). For higher security levels,

NIST allows primes with lengths of 2048 and 3072 bit.

The second discrete logarithm attack on DSA is to exploit the fact that α gen-

erates only a small subgroup of order q. Hence, it seems promising to attack only

the subgroup, which has a size of about 2160, rather than the large cyclic group with

about 21024 elements formed by p. However, it turns out that the powerful index-

calculus attack is not applicable if Oscar wants to exploit the subgroup property. The

best he can do is to perform one of the generic DLP attacks, i.e., either the baby-

step giant-step method or Pollard’s rho method (cf. Sect. 8.3.3). These are so-called

square root attacks, and given that the subgroup has an order of approximately 2160,

these attacks provide a security level of
√

2160 = 280. It is not a coincidence that the

index calculus attack and the square root attack have a comparable complexity, in

fact the parameter sizes were deliberately chosen that way. One has to be careful,

282 10 Digital Signatures

though, if the size of p is increased to 2048 or 3072 bit. This only increases the dif-

ficulty of the index-calculus attack, but the small subgroup attack would still have a

complexity of 280 if the subgroup stays the same size. For this reason q also must be

increased if larger p values are chosen. Table 10.2 shows the NIST-specified lengths

of the primes p and q together with the resulting security levels. The security level of

the hash function must also match the one of the discrete logarithm problem. Since

the cryptographic strength of a hash function is mainly determined by the bit length

of the hash output, the minimum hash output is also given in the table. More about

security of hash functions will be said in Chap. 11.

Table 10.2 Standardized parameter bit lengths and security levels for DSA

p q Hash output (min) Security levels

1024 160 160 80
2048 224 224 112
3072 256 256 128

It should be stressed that the record for discrete logarithm calculations is 532 bit,

so that the 1024-bit DSA variant is currently secure, and the 2048-bit and 3072-bit

variants seem to provide good long-term security.

In addition to discrete logarithm attacks, DSA becomes vulnerable if the ephe-

meral key is reused. This attack is completely analogues to the case of Elgamal

digital signature. Hence, it must be assured that a fresh randomly-genererated key

kE is used in every signing operation.

10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA)

As discussed in Chap. 9, elliptic curves have several advantages over RSA and

over DL schemes like Elgamal or DSA. In particular, in absence of strong attacks

against elliptic curve cryptosystems (ECC), bit lengths in the range of 160–256 bit

can be chosen which provide security equivalent to 1024–3072-bit RSA and DL

schemes. The shorter bit length of ECC often results in shorter processing time and

in shorter signatures. For these reasons, the Elliptic Curve Digital Signature Algo-

rithm (ECDSA) was standardized in the US by the American National Standards

Institute (ANSI) in 1998.

10.5.1 The ECDSA Algorithm

The steps in the ECDSA standard are conceptionally closely related to the DSA

scheme. However, its discrete logarithm problem is constructed in the group of

10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA) 283

an elliptic curve. Thus, the arithmetic to be performed for actually computing an

ECDSA signature is entirely different from that used for DSA.

The ECDSA standard is defined for elliptic curves over prime fields Zp and Ga-

lois fields GF(2m). The former is often preferred in practice, and we will only in-

troduce this one in what follows.

Key Generation

The keys for the ECDSA are computed as follows:

Key Generation for ECDSA

1. Use an elliptic curve E with

� modulus p

� coefficients a and b

� a point A which generates a cyclic group of prime order q

2. Choose a random integer d with 0 < d < q.

3. Compute B = d A.

The keys are now:

kpub = (p,a,b,q,A,B)
kpr = (d)

Note that we have set up a discrete logarithm problem where the integer d is the

private key and the result of the scalar multiplication, point B, is the public key.

Similar to DSA, the cyclic group has an order q which should have a size of at least

160 bit or more for higher security levels.

Signature and Verification

Like DSA, an ECDSA signature consists of a pair of integers (r,s). Each value has

the same bit length as q, which makes for fairly compact signatures. Using the public

and private key, the signature for a message x is computed as follows:

ECDSA Signature Generation

1. Choose an integer as random ephemeral key kE with 0 < kE < q.

2. Compute R = kE A.

3. Let r = xR.

4. Compute s ≡ (h(x)+d · r)kE
−1 mod q.

284 10 Digital Signatures

In step 3 the x-coordinate of the point R is assigned to the variable r. The mes-

sage x has to be hashed using the function h in order to compute s. The hash function

output length must be at least as long as q. More about the choice of the hash func-

tion will be said in Chap. 11. However, for now it is sufficient to know that the

hash function compresses x and computes a fingerprint which can be viewed as a

representative of x.

The signature verification process is as follows:

ECDSA Signature Verification

1. Compute auxiliary value w ≡ s−1 mod q.

2. Compute auxiliary value u1 ≡ w ·h(x) mod q.

3. Compute auxiliary value u2 ≡ w · r mod q.

4. Compute P = u1 A+u2 B.

5. The verification verkpub
(x,(r,s)) follows from:

xP

{
≡ r mod q =⇒ valid signature

�≡ r mod q =⇒ invalid signature

In the last step, the notation xP indicates the x-coordinate of the point P. The verifier

accepts a signature (r,s) only if the xP has the same value as the signature parameter

r modulo q. Otherwise, the signature should be considered invalid.

Proof. We show that a signature (r,s) satisfies the verification condition r ≡ xP mod

q. We’ll start with the signature parameter s:

s ≡ (h(x)+d r)kE
−1 mod q

which is equivalent to:

kE ≡ s−1 h(x)+d s−1 r mod q.

The right-hand side can be expressed in terms of the auxiliary values u1 and u2:

kE ≡ u1 +d u2 mod q.

Since the point A generates a cyclic group of order q, we can multiply both sides of

the equation with A:

kE A = (u1 +d u2)A.

Since the group operation is associative, we can write

kE A = u1 A+d u2 A

and

kE A = u1 A+ u2 B.

10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA) 285

What we showed so far is that the expression u1 A + u2 B is equal to kE A if the

correct signature and key (and message) have been used. But this is exactly the

condition that we check in the verification process by comparing the x-coordinates

of P = u1 A+ u2 B and R = kE A.

⊓⊔

Using the small elliptic curve from Chap. 9, we look at a simple ECDSA exam-

ple.

Example 10.5. Bob wants to send a message to Alice that is to be signed with the

ECDSA algorithm. The signature and verification process is as follows:

Alice Bob

choose E with p = 17, a = 2, b = 2,
and A = (5,1) with q = 19
choose d = 7
compute B = d A = 7 ·(5,1) = (0,6)

(p,a,b,q,A,B)=←−−−−−−−−−−−−
(17,2,2,19,(5,1),(0,6))

sign:
compute hash of message h(x) = 26
choose ephemeral key kE = 10
R = 10 · (5,1) = (7,11)
r = xR = 7
s = (26+7 ·7) ·2 ≡ 17 mod 19

(x,(r,s))=(x,(7,17))←−−−−−−−−−−−−
verify:

w = 17−1 ≡ 9 mod 19
u1 = 9 ·26 ≡ 6 mod 19
u2 = 9 ·7 ≡ 6 mod 19
P = 6 · (5,1)+6 · (0,6) = (7,11)
xP ≡ r mod 19 =⇒ valid signature

Note that we chose the elliptic curve

E : y2 ≡ x3 +2x+2 mod 17

which is discussed in Sect. 9.2. Because all points of the curve form a cyclic group

of order 19, i.e., a prime, there are no subgroups and hence in this case q = #E = 19.

⋄

10.5.2 Computational Aspects

We discuss now the computations involved in the three stages of the ECDSA

scheme.

286 10 Digital Signatures

Key Generation As discussed earlier, finding an elliptic curve with good crypto-

graphic properties is a nontrivial task. In practice, standardized curves such as the

ones proposed by NIST or the Brainpool consortium are often used. The remaining

computation in the key generation phase is one point multiplication, which can be

done using the double-and-add algorithm.

Signing During signing we first compute the point R, which requires one point

multiplication, and from which r immediately follows. For the parameter s we have

to invert the ephemeral key, which is done with the extended Euclidean algorithm.

The other main operations are hashing of the message and one reduction modulo q.

The point multiplication, which is in most cases by the far the most arithmetic-

intensive operation, can be precomputed by choosing the ephemeral key ahead of

time, e.g., during the idle time of a CPU. Thus, in situations where precomputation

is an option, signing becomes a very fast operation.

Verification Computing the auxiliary parameters w, u1 and u2 involves straightfor-

ward modular arithmetic. The main computational load occurs during the evaluation

of Pu1 A + u2 B. This can be accomplished by two separate point multiplications.

However, there are specialized methods for simultaneous exponentiations (remem-

ber from Chap. 9 that point multiplication is closely related to exponentiation) which

are faster than two individual point multiplications.

10.5.3 Security

Given that the elliptic curve parameters are chosen correctly, the main analytical at-

tack against ECDSA attempts to solve the elliptic curve discrete logarithm problem.

If an attacker were capable of doing this, he could compute the private key d and/or

the ephemeral key. However, the best known ECC attacks have a complexity propor-

tional to the square root of the size of the group in which the DL problem is defined,

i.e., proportional to
√

q. The parameter length of ECDSA and the corresponding

security levels are given in Table 10.3. We recall that the prime p is typically only

slightly larger than q, so that all arithmetic for ECDSA is done with operands which

have roughly the bit length of q.

The security level of the hash function must also match that of the discrete loga-

rithm problem. The cryptographic strength of a hash function is mainly determined

by the length of its output. More about security of hash functions will be said in

Chap. 11.

The security levels of 128, 192 and 256 were chosen so that they match the

security offered by AES with its three respective key sizes.

More subtle attacks against ECDSA are also possible. For instance, at the begin-

ning of verification it must be checked whether r,s ∈ {1,2, . . . ,q} in order to prevent

a certain attack. Also, protocol-based weaknesses, e.g., reusing the ephemeral key,

must be prevented.

10.6 Discussion and Further Reading 287

Table 10.3 Bit lengths and security levels of ECDSA

q Hash output (min) Security levels

192 192 96
224 224 112
256 256 128
384 384 192
512 512 256

10.6 Discussion and Further Reading

Digital Signature Algorithms The first practical realization of digital signatures

was introduced in the original paper by Rivest, Shamir and Adleman [143]. RSA

digital signatures have been standardized by several bodies for a long time, see,

e.g., [95]. RSA signatures were, and in many cases still are, the de facto standard

for many applications, especially for certificates on the Internet.

The Elgamal digital signature was published in 1985 in [73]. Many variants of

this scheme are possible and have been proposed over the years. For a compact

summary, see [120, Note 11.70].

The DSA algorithm was proposed in 1991 and became a US standard in 1994.

There were two possible motivations for the government to create this standard as an

alternative to RSA. First, RSA was patented at that time and having a free alternative

was attractive for US industry. Second, an RSA digital signature implementation

can also be used for encryption. This was not desirable (from the US government

viewpoint) since there were still rather strict export restrictions for cryptography

in the US at that time. In contrast, a DSA implementation can only be used for

signing and not for encryption, and it was easier to export systems that only included

signature functionality. Note that DSA refers to the digital signature algorithm, and

the corresponding standard is referred to as DSS, the digital signature standard.

Today, DSS includes not only the DSA algorithm but also ECDSA and RSA digital

signatures [126].

In addition to the algorithms discussed in this chapter, there exist several other

schemes for digital signatures. These include, e.g., the Rabin signature [140], the

Fiat–Shamir signature [76], the Pointcheval–Stern signature [134] and the Schnorr

signature [150].

Using Digital Signatures With digital signatures, the problem of authentic public

keys is acute: How can Alice (or Bob) assure that they possess the correct public

keys for each other? Or, phrased differently, how can Oscar be prevented from in-

jecting faked public keys in order to perform an attack? We discuss this question in

detail in Chap. 13, where certificates are introduced. Certificates are based on digital

signatures and are one of the main applications of digital signatures. They bind an

identity (e.g., Alice’s e-mail address) to a public key.

One of the more interesting interactions between society and cryptography is

digital signature laws. They basically assure that a cryptographic digital signature

has a legally binding meaning. For instance, an electronic contract that was digitally

288 10 Digital Signatures

signed can be enforced in the same way as a conventionally signed contract. Around

the turn of the millennium, many nations introduced corresponding laws. This was at

a time that the “brave new world” of the Internet had opened up seemingly endless

opportunities for doing business online, and digital signature laws seemed to be

crucial to allow trusted business transactions via the Internet. Examples of digital

signature laws are the Electronic Signatures in Global and National Commerce Act

(ESIGN) in the US [138], or the corresponding directive of the European Union

[133]. A good online source for more information is the Digital Law Survey [167].

Even though much electronic commerce is today conducted without making use of

signature laws, there will be without doubt more and more situations where those

laws are actually needed.

One crucial issue when using digital signatures in the real world is that the private

keys, especially if used in a setting with legal significance, have to be kept strictly

confidential. This requires a secure way to store this delicate key material. One

way to satisfy this requirement is to employ smart cards that can be used as secure

containers for secret keys. A secret key never leaves the smart card, and signatures

are performed within the CPU inside the smart card. For applications with high

security requirements, so called tamper-resistant smart cards are protected against

several types of hardware attacks. Reference [141] provides excellent insight into

the various facets of the highly sophisticated smart card technology.

10.7 Lessons Learned

� Digital signatures provide message integrity, message authentication and nonre-

pudiation.

� One of the main application areas of digital signatures is certificates.

� RSA is currently the most widely used digital signature algorithm. Competitors

are the Digital Signature Standard (DSA) and the Elliptic Curve Digital Signature

Standard (ECDSA).

� The Elgamal signature scheme is the basis for DSA. In turn, ECDSA is a gener-

alization of DSA to elliptic curves.

� RSA verification can be done with short public keys e. Hence, in practice, RSA

verification is usually faster than signing.

� DSA and ECDSA have the advantage over RSA in that the signatures are much

shorter.

� In order to prevent certain attacks, RSA should be used with padding.

� The modulus of DSA and the RSA signature schemes should be at least 1024-

bits long. For true long-term security, a modulus of length 3072 bits should be

chosen. In contrast, ECDSA achieves the same security levels with bit lengths in

the range 160–256 bits.

10.7 Problems 289

Problems

10.1. In Sect. 10.1.3 we state that sender (or message) authentication always implies

data integrity. Why? Is the opposite true too, i.e., does data integrity imply sender

authentication? Justify both answers.

10.2. In this exercise, we want to consider some basic aspects of security services.

1. Does privacy always guarantee integrity? Justify your answer.

2. In which order should confidentiality and integrity be assured (should the entire

message be encrypted first or last)? Give the rationale for your answer.

10.3. Design a security service that provides data integrity, data confidentiality and

nonrepudiation using public-key cryptography in a two-party communication sys-

tem over an insecure channel. Give a rationale that data integrity, confidentiality

and nonrepudiation are achieved by your solution. (Recommendation: Consider the

corresponding threats in your argumentation.)

10.4. A painter comes up with a new business idea: He wants to offer custom paint-

ings from photos. Both the photos and paintings will be transmitted in digital form

via the Internet. One concern that he has is discretion towards his customers, since

potentially embarrassing photos, e.g., nude photos, might be sent to him. Hence,

the photo data should not be accessible for third parties during transmission. The

painter needs multiple weeks for the creation of a painting, and hence he wants to

assure that he cannot be fooled by someone who sends in a photo assuming a false

name. He also wants to be assured that the painting will definitely be accepted by

the customer and that she cannot deny the order.

1. Choose the necessary security services for the transmission of the digitalized

photos from the customers to the painter.

2. Which cryptographic elements (e.g., symmetric encryption) can be utilized to

achieve the security services? Assume that several megabytes of data have to be

transmitted for every photo.

10.5. Given an RSA signature scheme with the public key (n = 9797,e = 131),
which of the following signatures are valid?

1. (x = 123,sig(x) = 6292)
2. (x = 4333,sig(x) = 4768)
3. (x = 4333,sig(x) = 1424)

10.6. Given an RSA signature scheme with the public key (n = 9797,e = 131),
show how Oscar can perform an existential forgery attack by providing an example

of such for the parameters of the RSA digital signature scheme.

10.7. In an RSA digital signature scheme, Bob signs messages xi and sends them

together with the signatures si and her public key to Alice. Bob’s public key is the

pair (n,e); her private key is d.

290 10 Digital Signatures

Oscar can perform man-in-the-middle attacks, i.e., he can replace Bob’s public

key by his own on the channel. His goal is to alter messages and provide these with

a digital signature which will check out correctly on Alice’s side. Show everything

that Oscar must do for a successful attack.

10.8. Given is an RSA signature scheme with EMSA-PSS padding as shown in

Sect. 10.2.3. Describe the verification process step-by-step that has to be performed

by the receiver of a signature that was EMSA-PSS encoded.

10.9. One important aspect of digital signatures is the computational effort required

to (i) sign a message, and (ii) to verify a signature. We study the computational

complexity of the RSA algorithm used as a digital signature in this problem.

1. How many multiplications do we need, on average, to perform (i) signing of a

message with a general exponent, and (ii) verification of a signature with the

short exponent e = 216 + 1? Assume that n has l = ⌈log2 n⌉ bits. Assume the

square-and-multiply algorithm is used for both signing and verification. Derive

general expressions with l as a variable.

2. Which takes longer, signing or verification?

3. We now derive estimates for the speed of actual software implementation. Use

the following timing model for multiplication: The computer operates with 32-bit

data structures. Hence, each full-length variable, in particular n and x, is repre-

sented by an array with m = ⌈l/32⌉ elements (with x being the basis of the ex-

ponentiation operation). We assume that one multiplication or squaring of two of

these variables modulo n takes m2 time units (a time unit is the clock period times

some constant larger than one which depends on the implementation). Note that

you never multiply with the exponents d and e. That means, the bit length of the

exponent does not influence the time it takes to perform an individual modular

squaring or multiplication.

How long does it take to compute a signature/verify a signature if the time unit

on a certain computer is 100 nsec, and n has 512 bits? How long does it take if n

has 1024 bit?

4. Smart cards are one very important platform for the use of digital signatures.

Smart cards with an 8051 microprocessor kernel are popular in practice. The

8051 is an 8-bit processor. What time unit is required in order to perform one

signature generation in 0.5 sec if n has (i) 512 bits and (ii) 1024 bits? Since these

processors cannot be clocked at more than, say, 10 MHz, is the required time unit

realistic?

10.10. We now consider the Elgamal signature scheme. You are given Bob’s pri-

vate key Kpr = (d) = (67) and the corresponding public key Kpub = (p,α,β) =
(97,23,15).

1. Calculate the Elgamal signature (r,s) and the corresponding verification for a

message from Bob to Alice with the following messages x and ephemeral keys

kE :

a. x = 17 and kE = 31

10.7 Problems 291

b. x = 17 and kE = 49

c. x = 85 and kE = 77

2. You receive two alleged messages x1,x2 with their corresponding signatures

(ri,si) from Bob. Verify whether the messages (x1,r1,s1) = (22,37,33) and

(x2,r2,s2) = (82,13,65) both originate from Bob.

3. Compare the RSA signature scheme with the Elgamal signature scheme. Where

are their relative advantages and drawbacks?

10.11. Given is an Elgamal signature scheme with p = 31, α = 3 and β = 6. You

receive the message x = 10 twice with the signatures (r,s):

(i) (17,5)

(ii) (13,15)

1. Are both signatures valid?

2. How many valid signatures are there for each message x and the specific param-

eters chosen above?

10.12. Given is an Elgamal signature scheme with the public parameters (p =
97,α = 23,β = 15). Show how Oscar can perform an existential forgery attack

by providing an example for a valid signature.

10.13. Given is an Elgamal signature scheme with the public parameters p,α ∈
Z
∗
p and an unknown private key d. Due to faulty implementation, the following

dependency between two consecutive ephemeral keys is fulfilled:

kEi+1
= kEi

+1.

Furthermore, two consecutive signatures to the plaintexts x1 and x2

(r1,s1)

and (r2,s2)

are given. Explain how an attacker is able to calculate the private key with the given

values.

10.14. The parameters of DSA are given by p = 59,q = 29,α = 3, and Bob’s pri-

vate key is d = 23. Show the process of signing (Bob) and verification (Alice) for

following hash values h(x) and ephemeral keys kE :

1. h(x) = 17,kE = 25

2. h(x) = 2,kE = 13

3. h(x) = 21,kE = 8

10.15. Show how DSA can be attacked if the same ephemeral key is used to sign

two different messages.

292 10 Digital Signatures

10.16. The parameters of ECDSA are given by the curve E : y2 = x3 + 2x +
2 mod 17, the point A = (5,1) of order q = 19 and Bob’s private d = 10. Show

the process of signing (Bob) and verification (Alice) for following hash values h(x)
and ephemeral keys kE :

1. h(x) = 12,kE = 11

2. h(x) = 4,kE = 13

3. h(x) = 9,kE = 8

Chapter 11

Hash Functions

Hash functions are an important cryptographic primitive and are widely used in

protocols. They compute a digest of a message which is a short, fixed-length bit-

string. For a particular message, the message digest, or hash value, can be seen as

the fingerprint of a message, i.e., a unique representation of a message. Unlike all

other crypto algorithms introduced so far in this book, hash functions do not have

a key. The use of hash functions in cryptography is manifold: Hash functions are

an essential part of digital signature schemes and message authentication codes, as

discussed in Chapter 12. Hash functions are also widely used for other cryptographic

applications, e.g., for storing of password hashes or key derivation.

In this chapter you will learn:

� Why hash functions are required in digital signature schemes

� Important properties of hash functions

� A security analysis of hash functions, including an introduction to the birthday

paradox

� An overview of different families of hash functions

� How the popular hash function SHA-1 works

293

294 11 Hash Functions

11.1 Motivation: Signing Long Messages

Even though hash functions have many applications in modern cryptography, they

are perhaps best known for the important role they play in the practical use of

digital signatures. In the previous chapter, we have introduced signature schemes

based on the asymmetric algorithms RSA and the discrete logarithm problem. For

all schemes, the length of the plaintext is limited. For instance, in the case of RSA,

the message cannot be larger than the modulus, which is in practice often between

1024 and 3072-bits long. Remember this translates into only 128–384 bytes; most

emails are longer than that. Thus far, we have ignored the fact that in practice the

plaintext x will often be (much) larger than those sizes. The question that arises at

this point is simple: How are we going to efficiently compute signatures of large

messages? An intuitive approach would be similar to the ECB mode for block ci-

phers: Divide the message x into blocks xi of size less than the allowed input size of

the signature algorithm, and sign each block separately, as depicted in Figure 11.1.

x2 xn

kprkpr kpr

. . .

. . .

prk

1s

1x

2s 3s sn

sigsig sig sig

3x

Fig. 11.1 Insecure approach to signing of long messages

However, this approach yields three serious problems:

Problem 1: High Computational Load Digital signatures are based on computa-

tionally intensive asymmetric operations such as modular exponentiations of large

integers. Even if a single operation consumes a small amount of time (and energy,

which is relevant in mobile applications), the signatures of large messages, e.g.,

email attachments or multimedia files, would take too long on current computers.

Furthermore, not only does the signer have to compute the signature, but the verifier

also has to spend a similar amount of time and energy to verify the signature.

Problem 2: Message Overhead Obviously, this naı̈ve approach doubles the mes-

sage overhead because not only must the message be sent but also the signature,

which is of the same length in this case. For instance, a 1-MB file must yield an

RSA signature of length 1 MB, so that a total of 2 MB must be transmitted.

Problem 3: Security Limitations This is the most serious problem if we attempt

to sign a long message by signing a sequence of message blocks individually. The

approach shown in Fig. 11.1 leads immediately to new attacks: For instance, Oscar

could remove individual messages and the corresponding signatures, or he could re-

order messages and signatures, or he could reassemble new messages and signatures

out of fragments of previous messages and signatures, etc. Even though an attacker

11.1 Motivation: Signing Long Messages 295

cannot perform manipulations within an individual block, we do not have protection

for the whole message.

Hence, for performance as well as for security reasons we would like to have one

short signature for a message of arbitrary length. The solution to this problem is

hash functions. If we had a hash function that somehow computes a fingerprint of

the message x, we could perform the signature operation as shown in Figure 11.2

. . .3x2 xn

h

kpr
sig

s

x1 x

Fig. 11.2 Signing of long messages with a hash function

Assuming we possess such a hash function, we now describe a basic protocol for

a digital signature scheme with a hash function. Bob wants to send a digitally signed

message to Alice.

Basic Protocol for Digital Signatures with a Hash Function:

Alice Bob
kpub,B←−−−−−−−−−−−−

z = h(x)
s = sigkpr,B

(z)
(x,s)←−−−−−−−−−−−−

z′ = h(x)
verkpub,B

(s,z′) = true/false

Bob computes the hash of the message x and signs the hash value z with his

private key kpr,B. On the receiving side, Alice computes the hash value z′ of the

received message x. She verifies the signature s with Bob’s public key kpub,B. We

note that both the signature generation and the verification operate on the hash value

z rather than on the message itself. Hence, the hash value represents the message.

The hash is sometimes referred to as the message digest or the fingerprint of the

message.

Before we discuss the security properties of hash functions in the next section,

we can now get a rough feeling for a desirable input–output behavior of hash func-

tions: We want to be able to apply a hash function to messages x of any size, and

it is thus desirable that the function h is computationally efficient. Even if we hash

large messages in the range of, say, hundreds of megabytes, it should be relatively

296 11 Hash Functions

fast to compute. Another desirable property is that the output of a hash function is

of fixed length and independent of the input length. Practical hash functions have

output lengths between 128–512 bits. Finally, the computed fingerprint should be

highly sensitive to all input bits. That means even if we make minor modifications

to the input x, the fingerprint should look very different. This behavior is similar

to that of block ciphers. The properties which we just described are symbolized in

Figure 11.3.

Fig. 11.3 Principal input–output behavior of hash functions

11.2 Security Requirements of Hash Functions

As mentioned in the introduction, unlike all other crypto algorithms we have dealt

with so far, hash functions do not have keys. The question is now whether there are

any special properties needed for a hash function to be “secure”. In fact, we have

to ask ourselves whether hash functions have any impact on the security of an ap-

plication at all since they do not encrypt and they don’t have keys. As is often the

case in cryptography, things can be tricky and there are attacks which use weak-

nesses of hash functions. It turns out that there are three central properties which

hash functions need to possess in order to be secure:

1. preimage resistance (or one-wayness)

2. second preimage resistance (or weak collision resistance)

3. collision resistance (or strong collision resistance)

These three properties are visualized in Figure 11.4. They are derived in the fol-

lowing.

11.2 Security Requirements of Hash Functions 297

Fig. 11.4 The three security properties of hash functions

11.2.1 Preimage Resistance or One-Wayness

Hash functions need to be one-way: Given a hash output z it must be computation-

ally infeasible to find an input message x such that z = h(x). In other words, given a

fingerprint, we cannot derive a matching message. We demonstrate now why preim-

age resistance is important by means of a fictive protocol in which Bob is encrypting

the message but not the signature, i.e., he transmits the pair:

(ek(x),sigkpr,B
(z)).

Here, ek() is a symmetric cipher, e.g., AES, with some symmetric key shared by

Alice and Bob. Let’s assume Bob uses an RSA digital signature, where the signature

is computed as:

s = sigkpr,B
(z) ≡ zd mod n

The attacker Oscar can use Bob’s public key to compute

se ≡ z mod n.

If the hash function is not one-way, Oscar can now compute the message x from

h−1(z) = x. Thus, the symmetric encryption of x is circumvented by the signature,

which leaks the plaintext. For this reason, h(x) should be a one-way function.

In many other applications which make use of hash functions, for instance in key

derivation, it is even more crucial that they are preimage resistant.

11.2.2 Second Preimage Resistance or Weak Collision Resistance

For digital signatures with hash it is essential that two different messages do not

hash to the same value. This means it should be computationally infeasible to create

two different messages x1 �= x2 with equal hash values z1 = h(x1) = h(x2) = z2.

We differentiate between two different types of such collisions. In the first case, x1

298 11 Hash Functions

is given and we try to find x2. This is called second preimage resistance or weak

collision resistance. The second case is given if an attacker is free to choose both

x1 and x2. This is referred to as strong collision resistance and is dealt with in the

subsequent section.

It is easy to see why second preimage resistance is important for the basic

signature with hash scheme that we introduced above. Assume Bob hashes and

signs a message x1. If Oscar is capable of finding a second message x2 such that

h(x1) = h(x2), he can run the following substitution attack:

Alice Oscar Bob
kpub,B←−−−−−

z = h(x1)
s = sigkpr,B

(z)
(x2,s)←−−−−− � substitute

(x1,s)←−−−−−
z = h(x2)
verkpub,B

(s,z) = true

As we can see, Alice would accept x2 as a correct message since the verification

gives her the statement “true”. How can this happen? From a more abstract view-

point, this attack is possible because both signing (by Bob) and verifying (by Alice)

do not happen with the actual message itself, but rather with the hashed version of

it. Hence, if an attacker manages to find a second message with the same fingerprint

(i.e., hash output), signing and verifying are the same for this second message.

The question now is how we can prevent Oscar from finding x2. Ideally, we would

like to have a hash function for which weak collisions do not exist. This is, unfor-

tunately, impossible due to the pigeonhole principle, a more impressive term for

which is Dirichlet’s drawer principle. The pigeonhole principle uses a counting ar-

gument in situations like the following: If you are the owner of 100 pigeons but in

your pigeon loop are only 99 holes, at least one pigeonhole will be occupied by 2

birds. Since the output of every hash function has a fixed bit length, say n bit, there

are “only” 2n possible output values. At the same time, the number of inputs to the

hash functions is infinite so that multiple inputs must hash to the same output value.

In practice, each output value is equally likely for a random input, so that weak

collisions exist for all output values.

Since weak collisions exist in theory, the next best thing we can do is to assure

that they cannot be found in practice. A strong hash function should be designed

such that given x1 and h(x1) it is impossible to construct x2 such that h(x1) = h(x2).
This means there is no analytical attack. However, Oscar can always randomly pick

x2 values, compute their hash values and check whether they are equal to h(x1). This

is similar to an exhaustive key search for a symmetric cipher. In order to prevent this

attack given today’s computers, an output length of n = 80 bit is sufficient. However,

we see in the next section that more powerful attacks exist which force us to use even

longer output bit lengths.

11.2 Security Requirements of Hash Functions 299

11.2.3 Collision Resistance and the Birthday Attack

We call a hash function collision resistant or strong collision resistant if it is com-

putationally infeasible to find two different inputs x1 �= x2 with h(x1) = h(x2). This

property is harder to achieve than weak collision resistance since an attacker has two

degrees of freedom: Both messages can be altered to achieve similar hash values.

We show now how Oscar could turn his ability to find collisions into an attack. He

starts with two messages, for instance:

x1 = Transfer $10 into Oscar’s account

x2 = Transfer $10,000 into Oscar’s account

He now alters x1 and x2 at “nonvisible” locations, e.g., he replaces spaces by tabs,

adds spaces or return signs at the end of the message, etc. This way, the semantics

of the message is unchanged (e.g., for a bank), but the hash value changes for every

version of the message. Oscar continues until the condition h(x1) = h(x2) is fulfilled.

Note that if an attacker has, e.g., 64 locations that he can alter or not, this yields 264

versions of the same message with 264 different hash values. With the two messages,

he can launch the following attack:

Alice Oscar Bob
kpub,B←−−−−−
x1−−−−−→

z = h(x1)
s = sigkpr,B

(z)
(x2,s)←−−−−− � substitute

(x1,s)←−−−−−
z = h(x2)
verkpub,B

(s,z) = true

This attack assumes that Oscar can trick Bob into signing the message x1. This

is, of course, not possible in every situation, but one can imagine scenarios where

Oscar can pose as an innocent party, e.g., an e-commerce vendor on the Internet,

and x1 is the purchase order that is generated by Oscar.

As we saw earlier, due to the pigeonhole principle, collisions always exist. The

question is how difficult it is to find them. Our first guess is probably that this is as

difficult as finding second preimages, i.e., if the hash function has an output length of

80 bits, we have to check about 280 messages. However, it turns out that an attacker

needs only about 240 messages! This is a quite surprising result which is due to the

birthday attack. This attack is based on the birthday paradox, which is a powerful

tool that is often used in cryptanalysis.

It turns out that the following real-world question is closely related to finding

collisions for hash functions: How many people are needed at a party such that

there is a reasonable chance that at least two people have the same birthday? By

300 11 Hash Functions

birthday we mean any of the 365 days of the year. Our intuition might lead us to

assume that we need around 183 people (i.e., about half the number of days in a

year) for a collision to occur. However, it turns out that we need far fewer people.

The piecewise approach to solve this problem is to first compute the probability of

two people not having the same birthday, i.e., having no collision of their birthdays.

For one person, the probability of no collision is 1, which is trivial since a single

birthday cannot collide with anyone else’s. For the second person, the probability

of no collision is 364 over 365, since there is only one day, the birthday of the first

person, to collide with:

P(no collision among 2 people) =

(

1− 1

365

)

If a third person joins the party, he or she can collide with both of the people already

there, hence:

P(no collision among 3 people) =

(

1− 1

365

)

·
(

1− 2

365

)

Consequently, the probability for t people having no birthday collision is given by:

P(no collision among t people) =

(

1− 1

365

)

·
(

1− 2

365

)

· · ·
(

1− t −1

365

)

For t = 366 people we will have a collision with probability 1 since a year has only

365 days. We return now to our initial question: how many people are needed to

have a 50% chance of two colliding birthdays? Surprisingly—following from the

equations above—it only requires 23 people to obtain a probability of about 0.5 for

a birthday collision since:

P(at least one collision) = 1−P(no collision)

= 1−
(

1− 1

365

)

· · ·
(

1− 23−1

365

)

= 0.507 ≈ 50%.

Note that for 40 people the probability is about 90%. Due to the surprising outcome

of this gedankenexperiment, it is often referred to as the birthday paradox.

Collision search for a hash function h() is exactly the same problem as finding

birthday collisions among party attendees. For a hash function there are not 365

values each element can take but 2n, where n is the output width of h(). In fact, it

turns out that n is the crucial security parameter for hash functions. The question is

how many messages (x1,x2, . . . ,xt) does Oscar need to hash until he has a reasonable

chance that h(xi) = h(x j) for some xi and x j that he picked. The probability for no

collisions among t hash values is:

11.2 Security Requirements of Hash Functions 301

P(no collision) =

(

1− 1

2n

)(

1− 2

2n

)

· · ·
(

1− t −1

2n

)

=
t−1

∏
i=1

(

1− i

2n

)

We recall from our calculus courses that the approximation

e−x ≈ 1− x,

holds1 since i/2n << 1. We can approximate the probability as:

P(no collision) ≈
t−1

∏
i=1

e−
i

2n

≈ e−
1+2+3+···+t−1

2n

The arithmetic series

1+2+ · · ·+ t −1 = t(t −1)/2,

is in the exponent, which allows us to write the probability approximation as

P(no collision) ≈ e−
t(t−1)
2·2n .

Recall that our goal is to find out how many messages (x1,x2, . . . ,xt) are needed to

find a collision. Hence, we solve the equation now for t. If we denote the probability

of at least one collision by λ = 1−P(no collision), then

λ ≈ 1− e
− t(t−1)

2n+1

ln(1−λ) ≈ − t(t −1)

2n+1

t(t −1) ≈ 2n+1 ln

(
1

1−λ

)

.

Since in practice t >> 1, it holds that t2 ≈ t(t −1) and thus:

t ≈
√

2n+1 ln

(
1

1−λ

)

t ≈ 2(n+1)/2

√

ln

(
1

1−λ

)

. (11.1)

1 This follows from the Taylor series representation of the exponential function: e−x = 1− x +
x2/2!− x3/3!+ · · · for x << 1.

302 11 Hash Functions

Equation (11.1) is extremely important: it describes the relationship between the

number of hashed messages t needed for a collision as a function of the hash output

length n and the collision probability λ . The most important consequence of the

birthday attack is that the number of messages we need to hash to find a colli-

sion is roughly equal to the square root of the number of possible output values,

i.e., about
√

2n = 2n/2. Hence, for a security level (cf. Section 6.2.4) of x bit, the

hash function needs to have an output length of 2x bit. As an example, assume we

want to find a collision for a hypothetical hash function with 80-bit output. For a

success probability of 50%, we expect to hash about:

t = 281/2
√

ln(1/(1−0.5)) ≈ 240.2

input values. Computing around 240 hashes and checking for collisions can be done

with current laptops! In order to thwart collision attacks based on the birthday para-

dox, the output length of a hash function must be about twice as long as an output

length which protects merely against a second preimage attack. For this reason,

all hash functions have an output length of at least 128 bit, where most modern

ones are much longer. Table 11.1 shows the number of hash computations needed

for a birthday-paradox collision for output lengths found in current hash functions.

Interestingly, the desired likelihood of a collision does not influence the attack com-

plexity very much, as is evidenced by the small difference between the success

probabilities λ = 0.5 and λ = 0.9. It should be stressed that the birthday attack is a

Table 11.1 Number of hash values needed for a collision for different hash function output lengths
and for two different collision likelihoods

Hash output length
λ 128 bit 160 bit 256 bit 384 bit 512 bit

0.5 265 281 2129 2193 2257

0.9 267 282 2130 2194 2258

generic attack. This means it is applicable against any hash function. On the other

hand, it is not guaranteed that it is the most powerful attack available for a given

hash function. As we will see in the next section, for some of the most popular hash

functions, in particular MD5 and SHA-1, mathematical collision attacks exist which

are faster than the birthday attack.

It should be stressed that there are many applications for hash functions, e.g.,

storage of passwords, which only require preimage resistance. Thus, a hash function

with a relatively short output, say 80 bit, might be sufficient since collision attacks

do not pose a threat.

At the end of this section we summarize all important properties of hash functions

h(x). Note that the first three are practical requirements, whereas the last three relate

to the security of hash functions.

11.3 Overview of Hash Algorithms 303

Properties of Hash Functions

1. Arbitrary message size h(x) can be applied to messages x of any size.

2. Fixed output length h(x) produces a hash value z of fixed length.

3. Efficiency h(x) is relatively easy to compute.

4. Preimage resistance For a given output z, it is impossible to find any

input x such that h(x) = z, i.e, h(x) is one-way.

5. Second preimage resistance Given x1, and thus h(x1), it is computa-

tionally infeasible to find any x2 such that h(x1) = h(x2).
6. Collision resistance It is computationally infeasible to find any pairs

x1 �= x2 such that h(x1) = h(x2).

11.3 Overview of Hash Algorithms

So far we only discussed the requirements for hash functions. We now introduce

how to actually built them. There are two general types of hash functions:

1. Dedicated hash functions These are algorithms that are specifically designed to

serve as hash functions.

2. Block cipher-based hash functions It is also possible to use block ciphers such

as AES to construct hash functions.

As we saw in the previous section, hash functions can process an arbitrary-length

message and produce a fixed-length output. In practice, this is achieved by segment-

ing the input into a series of blocks of equal size. These blocks are processed se-

quentially by the hash function, which has a compression function at its heart. This

iterated design is known as Merkle–Damgård construction. The hash value of the

input message is then defined as the output of the last iteration of the compression

function (Fig. 11.5).

Fig. 11.5 Merkle–Damgård hash function construction

304 11 Hash Functions

11.3.1 Dedicated Hash Functions: The MD4 Family

Dedicated hash functions are algorithms that have been custom designed. A large

number of such constructions have been proposed over the last two decades. In prac-

tice, by far the most popular ones have been the hash functions of what is called the

MD4 family. MD5, the SHA family and RIPEMD are all based on the principles of

MD4. MD4 is a message digest algorithm developed by Ronald Rivest. MD4 was

an innovative idea because it was especially designed to allow very efficient soft-

ware implementation. It uses 32-bit variables, and all operations are bitwise Boolean

functions such as logical AND, OR, XOR and negation. All subsequent hash func-

tions in the MD4 family are based on the same software-friendly principles.

A strengthened version of MD4, named MD5, was proposed by Rivest in 1991.

Both hash functions compute a 128-bit output, i.e., they possess a collision resis-

tance of about 264. MD5 became extremely widely used, e.g., in Internet security

protocols, for computing checksums of files or for storing of password hashes. There

were, however, early signs of potential weaknesses. Thus, the US NIST published a

new message digest standard, which was coined the Secure Hash Algorithm (SHA),

in 1993. This is the first member of the SHA family and is officially called SHA,

even though it is nowadays commonly referred to as SHA-0. In 1995, SHA-0 was

modified to SHA-1. The difference between the SHA-0 and SHA-1 algorithms lies

in the schedule of the compression function to improve its cryptographic security.

Both algorithms have an output length of 160 bit. In 1996, a partial attack against

MD5 by Hans Dobbertin led to more and more experts recommending SHA-1 as a

replacement for the widely used MD5. Since then, SHA-1 has gained wide adoption

in numerous products and standards.

In the absence of analytical attacks, the maximum collision resistance of SHA-

0 and SHA-1 is about 280, which is not a good fit if they are used in protocols

together with algorithms such as AES, which has a security level of 128–256 bits.

Similarly, most public-key schemes can offer higher security levels, for instance,

elliptic curves can have security levels of 128 bits if 256 bits curves are used. Thus,

in 2001 NIST introduced three more variants of SHA-1: SHA-256, SHA-384 and

SHA-512, with message digest lengths of 256, 384 and 512 bits, respectively. A

further modification, SHA-224, was introduced in 2004 in order to fit the security

level of 3DES. These four hash functions are often referred to as SHA-2.

In 2004, collision-finding attacks against MD5 and SHA-0 where announced by

Xiaoyun Wang. One year later it was claimed that the attack could be extended to

SHA-1 and it was claimed that a collision search would take 263 steps, which is

considerably less than the 280 achieved by the birthday attack. Table 11.2 gives an

overview of the main parameters of the MD4 family.

In Section 11.4 we will learn about the internal functioning of SHA-1, which is

to date—despite its potential weakness—the most widely deployed hash function.

At this point we would like to note that finding a collision does not necessarily

mean that the hash function is insecure in every situation. There are many applica-

tions for hash functions, e.g., key derivation or storage of passwords, where only

11.3 Overview of Hash Algorithms 305

Table 11.2 The MD4 family of hash functions

Algorithm Output Input No. of Collisions
[bit] [bit] rounds found

MD5 128 512 64 yes
SHA-1 160 512 80 not yet

SHA-2

SHA-224 224 512 64 no
SHA-256 256 512 64 no
SHA-384 384 1024 80 no
SHA-512 512 1024 80 no

preimage and second preimage resistance are required. For such applications, MD5

is still sufficient.

11.3.2 Hash Functions from Block Ciphers

Hash functions can also be constructed using block cipher chaining techniques. As

in the case of dedicated hash functions like SHA-1, we divide the message x into

blocks xi of a fixed size. Figure 11.6 shows a construction of such a hash function:

The message chunks xi are encrypted with a block cipher e of block size b. As m-bit

key input to the cipher, we use a mapping g from the previous output Hi−1, which

is a b-to-m-bit mapping. In the case of b = m, which is, for instance, given if AES

with a 128-bit key is being used, the function g can be the identity mapping. After

the encryption of the message block xi, we XOR the result to the original message

block. The last output value computed is the hash of the whole message x1,x2,. . .,xn,

i.e., Hn = h(x).

Fig. 11.6 The Matyas–Meyer–Oseas hash function construction from block ciphers

The function can be expressed as:

Hi = eg(Hi−1)(xi)⊕ xi

This construction, which is named after its inventors, is called the Matyas–Meyer–

Oseas hash function.

306 11 Hash Functions

There exist several other variants of block cipher based realizations of hash func-

tions. Two popular ones are shown in Figure 11.7.

Fig. 11.7 Davies–Meyer (left) and Miyaguchi–Preneel hash function constructions from block
ciphers

The expressions for the two hash functions are:

Hi = Hi−1 ⊕ exi
(Hi−1) (Davies–Meyer)

Hi = Hi−1 ⊕ xi ⊕ eg(Hi−1)(xi) (Miyaguchi–Preneel)

All three hash functions need to have initial values assigned to H0. These can

be public values, e.g., the all-zero vector. All schemes have in common that the bit

size of the hash output is equal to the block width of the cipher used. In situations

where only preimage and second preimage resistance is required, block ciphers like

AES with 128-bit block width can be used, because they provide a security level of

128 bit against those attacks. For application which require collision resistance, the

128-bit length provided by most modern block ciphers is not sufficient. The birthday

attack reduces the security level to mere 64 bit, which is a computational complexity

that is within reach of PC clusters and certainly is doable for attackers with large

budgets.

One solution to this problem is to use Rijndael with a block width of 192 or

256 bit. These bit lengths provide a security level of 96 and 128 bit, respectively,

against birthday attacks, which is sufficient for most applications. We recall from

Section 4.1 that Rijndael is the cipher that became AES but allows block sizes of

128, 192 and 256 bit.

Another way of obtaining larger message digests is to use constructions which

are composed of several instances of a block cipher and which yield twice the width

of the block length b. Figure 11.8 shows such a construction for the case that a

cipher e is being employed whose key length is twice the block length. This is in

particular the case for AES with a 256-bit key. The message digest output are the

2b bit (Hn,L||Hn,R). If AES is being used, this output is 2b = 256 bit long, which

provides a high level of security against collision attacks. As can be seen from the

figure, the previous output of the left cipher Hi−1,L is fed back as input to both block

11.4 The Secure Hash Algorithm SHA-1 307

ciphers. The concatenation of the previous output of the right cipher, Hi−1,R, with

the next message block xi, forms the key for both ciphers. For security reasons a

constant c has to be XORed to the input of the right block cipher. c can have any

value other than the all-zero vector. As in the other three constructions described

above, initial values have to be assigned to the first hash values (H0,L and H0,R).

Fig. 11.8 Hirose construction for a hash function with twice the block width

We introduce here the Hirose construction for the case that the key length be

twice the block width. There are many other ciphers that satisfy this condition in

addition to AES, e.g., the block ciphers Blowfish, Mars, RC6 and Serpent. If a hash

function for resource-constrained applications is needed, the lightweight block ci-

pher PRESENT (cf. Section 3.7) allows an extremely compact hardware implemen-

tation. With a key size of 128-bit and a block size of 64 bit, the construction com-

putes a 128-bit hash output. This message digest size resists preimage and second

preimage attacks, but offers only marginal security against birthday attacks.

11.4 The Secure Hash Algorithm SHA-1

The Secure Hash Algorithm (SHA-1) is the most widely used message digest func-

tion of the MD4 family. Even though new attacks have been proposed against the

algorithm, it is very instructive to look at its details because the stronger versions

in the SHA-2 family show a very similar internal structure. SHA-1 is based on a

Merkle–Damgård construction, as can be seen in Figure 11.9.

An interesting interpretation of the SHA-1 algorithm is that the compression

function works like a block cipher, where the input is the previous hash value Hi−1

and the key is formed by the message block xi. As we will see below, the actual

rounds of SHA-1 are in fact quite similar to a Feistel block cipher.

SHA-1 produces a 160-bit output of a message with a maximum length of 264 bit.

Before the hash computation, the algorithm has to preprocess the message. During

the actual computation, the compression function processes the message in 512-bit

308 11 Hash Functions

Fig. 11.9 High-level diagram of SHA-1

chunks. The compression function consists of 80 rounds which are divided into four

stages of 20 rounds each.

11.4.1 Preprocessing

Before the actual hash computation, the message x has to be padded to fit a size of

a multiple of 512 bit. For the internal processing, the padded message must then be

divided into blocks. Also, the initial value H0 is set to a predefined constant.

Padding Assume that we have a message x with a length of l bit. To obtain an

overall message size of a multiple of 512 bits, we append a single “1” followed

by k zero bits and the binary 64-bit representation of l. Consequently, the number

of required zeros k is given by

k ≡ 512−64−1− l

= 448− (l +1) mod 512.

Figure 11.10 illustrates the padding of a message x.

+1 bits

N 512 bits

100....0

Padding

l

64 bitsbitsl

xMessage

k

Fig. 11.10 Padding of a message in SHA-1

Example 11.1. Given is the message “abc” consisting of three 8-bit ASCII char-

acters with a total length of l = 24 bits:

11.4 The Secure Hash Algorithm SHA-1 309

01100001
︸ ︷︷ ︸

a

01100010
︸ ︷︷ ︸

b

01100011
︸ ︷︷ ︸

c

.

We append a “1” followed by k = 423 zero bits, where k is determined by

k ≡ 448− (l +1) = 448−25 = 423 mod 512.

Finally, we append the 64-bit value which contains the binary representation of

the length l = 2410 = 110002. The padded message is then given by

01100001
︸ ︷︷ ︸

a

01100010
︸ ︷︷ ︸

b

01100011
︸ ︷︷ ︸

c

1 00...0
︸ ︷︷ ︸

423 zeros

00...011000
︸ ︷︷ ︸

l=24

.

⋄
Dividing the padded message Prior to applying the compression function, we

need to divide the message into 512-bit blocks x1,x2, ... ,xn. Each 512-bit block

can be subdivided into 16 words of size of 32 bits. For instance, the ith block of

the message x is split into:

xi = (x
(0)
i x

(1)
i ... x

(15)
i)

where x
(k)
i are words of size of 32 bits.

Initial value H0 A 160-bit buffer is used to hold the initial hash value for the first

iteration. The five 32-bit words are fixed and given in hexadecimal notation as:

A = H
(0)
0 = 67452301

B = H
(1)
0 = EFCDAB89

C = H
(2)
0 = 98BADCFE

D = H
(3)
0 = 10325476

E = H
(4)
0 = C3D2E1F0.

11.4.2 Hash Computation

Each message block xi is processed in four stages with 20 rounds each as shown in

Figure 11.11. The algorithm uses

� a message schedule which computes a 32-bit word W0,W1, ...,W79 for each of the

80 rounds. The words Wj are derived from the 512-bit message block as follows:

Wj =

{

x
(j)
i 0≤ j≤15

(W j−16⊕W j−14⊕W j−8⊕W j−3)≪1 16≤ j≤79,

where X≪n indicates a circular left shift of the word X by n bit positions.

310 11 Hash Functions

� five working registers of size of 32 bits A,B,C,D,E

� a hash value Hi consisting of five 32-bit words H
(0)
i ,H

(1)
i ,H

(2)
i ,H

(3)
i ,H

(4)
i . In the

beginning, the hash value holds the initial value H0, which is replaced by a new

hash value after the processing of each single message block. The final hash value

Hn is equal to the output h(x) of SHA-1.

stage 2 (20 rounds)

H

i
x

i
H

32addition mod 2

EDCBA

EDCBA

EDCBA

60...79

40...59

f , K , W4 4

f , K , W3 3

20...39

0...19

f , K , W2 2

f , K , W1 1

60 79
W ... W

40 59
W ... W

20 39
W ... W

0 19
W ... W stage 1 (20 rounds)

schedule
message

2560

160

160

EDCBA

stage 4 (20 rounds)

stage 3 (20 rounds)

i−1

Fig. 11.11 Eighty-round compression function of SHA-1

The four SHA-1 stages have a similar structure but use different internal func-

tions ft and constants Kt , where 1 ≤ t ≤ 4. Each stage is composed of 20 rounds,

where parts of the message block are processed by the function ft together with

some stage-dependent constant Kt . The output after 80 rounds is added to the input

value Hi−1 modulo 232 in word-wise fashion.

11.4 The Secure Hash Algorithm SHA-1 311

The operation within round j in stage t is given by

A,B,C,D,E = (E + ft(B,C,D)+(A)≪5 +Wj +Kt),A,(B)≪30,C,D

and is depicted in Figure 11.12. The internal functions ft and constants Kt change

A B C D E

ft

A B C D E

Kt

Wj<<< 30

<<< 5

Fig. 11.12 Round j in stage t of SHA-1

depending on the stage according to Table 11.3, i.e., every 20 rounds a new function

and a new constant are being used. The function only uses bitwise Boolean opera-

tions, namely logical AND (∧), OR (∨), NOT (top bar) and XOR. These operation

are applied to 32-bit variables and are very fast to implement on modern PCs.

A SHA-1 round as shown in Figure 11.12 has some resemblance to the round of

a Feistel network. Such structures are sometimes referred to as generalized Feistel

networks. Feistel networks are generally characterized by the fact the first part of

the input is copied directly to the output. The second part of the input is encrypted

using the first part, where the first part is sent through some function, e.g., the f -

function in the case of DES. In the SHA-1 round, the inputs A, B, C and D are

passed to the output with no change (A, C, D), or only minimal change (rotation of

B). However, the input word E is “encrypted” by adding values derived from the

other four input words. The message-derived value Wi and the round constant play

the role of subkeys.

Table 11.3 Round functions and round constants for the SHA rounds

Stage t Round j Constant Kt Function ft
1 0 . . .19 K1 = 5A827999 f1(B,C,D) = (B∧C)∨ (B̄∧D)
2 20 . . .39 K2 = 6ED9EBA1 f2(B,C,D) = B⊕C⊕D

3 40 . . .59 K3 = 8F1BBCDC f3(B,C,D) = (B∧C)∨ (B∧D)∨ (C∧D)
4 60 . . .79 K4 = CA62C1D6 f4(B,C,D) = B⊕C⊕D

312 11 Hash Functions

11.4.3 Implementation

SHA-1 was designed to be especially amenable to software implementations. Each

round requires only bitwise Boolean operation with 32-bit registers. Somewhat

countering this effect is the large number of rounds. Nevertheless, optimized imple-

mentations on modern 64-bit microprocessors can achieve throughputs of 1 Gbit/sec

or beyond. These are highly optimized assembly code software and typical imple-

mentations are most likely considerably slower. Generally speaking, one drawback

of SHA-1 and other MD4 family algorithms is that they are difficult to parallelize. It

is hard to execute many of the Boolean operations that constitute a round in parallel.

With respect to hardware, SHA-1 is certainly not a truly large algorithm but there

are several factors which cause it to be larger than one might expect. Recent hard-

ware implementations on conventional FPGAs can reach a few Gbit/sec which is

not that groundbreaking compared to PC-based implementations. One reason is that

the function ft depends on the stage number t. Another reason is the many registers

that are required to store the 512 bit intermediate results. Hence, block ciphers like

AES are typically smaller and faster in hardware. Also in some applications, hash

functions built from block ciphers as described in Section 11.3.2 are sometimes

desirable for hardware implementations.

11.5 Discussion and Further Reading

MD4 family and General Remarks It is instructive to have a look at the attack

history of the MD4 family. A predecessor of MD4 was Rivest’s MD2 hash func-

tion, which did not appear to become widely used. It is doubtful that the algorithm

would withstand today’s attacks. The first attacks against reduced versions of MD4

(the first or the last rounds were missing) were developed by Boer and Bosselaers in

1992 [53]. In 1995, Dobbertin showed how collisions for the full MD4 can be con-

structed in less than a minute on conventional PCs [61]. Later Dobbertin showed that

a variant of MD4 (a round was not executed) does not have the one-wayness prop-

erty. In 1994, Boer and Bosselaer found collisions in MD5 [54]. In 1995, Dobbertin

was able to find collisions for the compression function of MD5 [62]. In order to

construct a collision for the popular SHA-1 algorithm, about 263 computations have

to be executed. This is still a formidable task. In 2007, a distributed hash collision

search over the Internet was organized by Rechberger at the Technical University of

Graz in Austria. At the time of writing, about two years into the search, no collisions

have been found.

RIPEMD-160 plays a somewhat special role in the MD4 family of hash func-

tions. Unlike all SHA-1 and SHA-2 algorithms, it is the only one that was not

designed by NIST and NSA, but rather by a team of European researchers. Even

though there is no indication that any of the SHA algorithms are artificially weak-

ened or contain backdoors (introduced by the US government, that is), RIPEMD-

160 might appeal to some people who heavily distrust governments. Currently, no

11.6 Lessons Learned 313

successful attacks against the hash functions are known. On the other hand, due to

its more limited deployment, there has been less scrutiny by the research community

with respect to RIPEMD-160.

It is important to point out that in addition to the MD4 family, numerous other al-

gorithms have been proposed over the years including, for instance, Whirlpool [12],

which is related to AES. Most of them did not gain widespread adoption, however.

Entirely different from the MD4 family are hash functions which are based on al-

gebraic structures such as MASH-1 and MASH-2 [96]. Many of these algorithms

were found to be insecure.

SHA-3 Due to the serious attacks against SHA-1, NIST held two public workshops

to assess the status of SHA and to solicit public input on its cryptographic hash

function policy and standard. As a consequence, NIST decided to develop additional

hash functions, to be named SHA-3, through a public competition. This approach

is quite similar to the selection process of AES. In the fall of 2008, 64 algorithms

had been submitted to NIST. At the time of writing, 33 of those hash functions are

still in the competition. The final decision is expected in 2012. In the meantime the

SHA-2 algorithm, against which no attacks are known to date, appears to be the

safest choice when selecting a hash function.

Hash Functions from Block Ciphers The four block cipher based hash functions

introduced in the chapter are all provable secure. This means, the best possible

preimage and second preimage attacks have a complexity of 2b, where b is the mes-

sage digest length, and the best possible collision attack requires 2b/2 steps. The

security proof only holds if the block cipher is being treated as a black box, i.e,

no (possible) specific weaknesses of the cipher are being exploited. In addition to

the four methods of building hash functions from block ciphers introduced in this

chapter, there are several other constructions [136]. In Problem 11.3, 12 variants are

treated in more detail.

The Hirose construction is relatively new [92]. It can also be realized with AES

with a 192-bit key and message blocks xi of length 64 bit. However, the efficiency is

roughly half of that of the construction presented in this chapter (AES256 with 128-

bit message blocks). There are also various other methods to build hash functions

with twice the output size of the block ciphers used. A prominent one is MDC-

2, which was originally designed for DES but works with any block cipher [137].

MDC-2 is standardized in ISO/IEC 10118-2.

11.6 Lessons Learned

� Hash functions are keyless. The two most important applications of hash func-

tions are their use in digital signatures and in message authentication codes such

as HMAC.

� The three security requirements for hash functions are one-wayness, second

preimage resistance and collision resistance.

314 11 Hash Functions

� Hash functions should have at least 160-bit output length in order to withstand

collision attacks; 256 bit or more is desirable for long-term security.

� MD5, which was widely used, is insecure. Serious security weaknesses have

been found in SHA-1, and the hash function should be phased out. The SHA-

2 algorithms all appear to be secure.

� The ongoing SHA-3 competition will result in new standardized hash functions

in a few years.

11.6 Problems 315

Problems

11.1. Compute the output of the first round of stage 1 of SHA-1 for a 512-bit input

block of

1. x = {0...00}
2. x = {0...01} (i.e., bit 512 is one).

Ignore the initial hash value H0 for this problem (i.e., A0 = B0 = ... = 00000000hex).

11.2. One of the earlier applications of cryptographic hash functions was the stor-

age of passwords for user authentication in computer systems. With this method, a

password is hashed after its input and is compared to the stored (hashed) reference

password. People realized early that it is sufficient to only store the hashed versions

of the passwords.

1. Assume you are a hacker and you got access to the hashed password list. Of

course, you would like to recover the passwords from the list in order to imper-

sonate some of the users. Discuss which of the three attacks below allow this.

Exactly describe the consequences of each of the attacks:

� Attack A: You can break the one-way property of h.

� Attack B: You can find second preimages for h.

� Attack C: You can find collisions for h.

2. Why is this technique of storing hashed passwords often extended by the use

of a so-called salt? (A salt is a random value appended to the password before

hashing. Together with the hash, the value of the salt is stored in the list of hashed

passwords.) Are the attacks above affected by this technique?

3. Is a hash function with an output length of 80 bit sufficient for this application?

11.3. Draw a block digram for the following hash functions built from a block cipher

e():

1. e(Hi−1,xi)⊕ xi

2. e(Hi−1,xi ⊕Hi−1)⊕ xi ⊕Hi−1

3. e(Hi−1,xi)⊕ xi ⊕Hi−1

4. e(Hi−1,xi ⊕Hi−1)⊕ xi

5. e(xi,Hi−1)⊕Hi−1

6. e(xi,xi ⊕Hi−1)⊕ xi ⊕Hi−1

7. e(xi,Hi−1)⊕ xi ⊕Hi−1

8. e(xi,xi ⊕Hi−1)⊕Hi−1

9. e(xi ⊕Hi−1,xi)⊕ xi

10. e(xi ⊕Hi−1,Hi−1)⊕Hi−1

11. e(xi ⊕Hi−1,xi)⊕Hi−1

12. e(xi ⊕Hi−1,Hi−1)⊕ xi

316 11 Hash Functions

11.4. We define the rate of a block cipher-based hash function as follows: A block

cipher-based hash function that processes u input bits at a time, produces v output

bits and performs w block cipher encryptions per input block has a rate of

v/(u ·w).

What is the rate of the four block cipher constructions introduced in Section 11.3.2?

11.5. We consider three different hash functions which produce outputs of lengths

64, 128 and 160 bit. After how many random inputs do we have a probability of

ε = 0.5 for a collision? After how many random inputs do we have a probability of

ε = 0.1 for a collision?

11.6. Describe how exactly you would perform a collision search to find a pair x1,

x2, such that h(x1) = h(x2) for a given hash function h. What are the memory re-

quirements for this type of search if the hash function has an output length of n

bits?

11.7. Assume the block cipher PRESENT (block length 64 bits, 128-bit key) is used

in a Hirose hash function construction. The algorithm is used to store the hashes of

passwords in a computer system. For each user i with password PWi, the system

stores:

h(PWi) = yi

where the passwords (or passphrases) have an arbitrary length. Within the computer

system only the values yi are actually used for identifying users and giving them

access.

Unfortunately, the password file that contains all hash values falls into your hands

and you are widely known as a very dangerous hacker. This in itself should not pose

a serious problem as it should be impossible to recover the passwords from the

hashes due to the one-wayness of the hash function. However, you discovered a

small but momentous implementation flaw in the software: The constant c in the

hash scheme is assigned the value c = 0. Assume you also know the initial values

(H0,L and H0,R).

1. What is the size of each entry yi?

2. Assume you want to log in as user U (you might be the CEO of the organization).

Provide a detailed description that shows that finding a value PWhack for which

PWhack = yU

takes only about 264 steps.

3. Which of the three general attacks against hash functions do you perform?

4. Why is the attack not possible if c �= 0?

11.8. In this problem, we will examine why techniques that work nicely for error

correction codes are not suited as cryptographic hash functions. We look at a hash

function that computes an 8-bit hash value by applying the following equation:

11.6 Problems 317

Ci = bi1 ⊕bi2 ⊕bi3 ⊕bi4 ⊕bi5 ⊕bi6 ⊕bi7 ⊕bi8 (11.2)

Every block of 8 bits constitutes an ASCII-encoded character.

1. Encode the string CRYPTO to its binary or hexadecimal representation.

2. Calculate the (6-bit long) hash value of the character string using the previously

defined equation.

3. “Break” the hash function by pointing out how it is possible to find (meaningful)

character strings which result in the same hash value. Provide an appropriate

example.

4. Which cruical property of hash functions is missing in this case?

Chapter 12

Message Authentication Codes (MACs)

A Message Authentication Code (MAC), also known as a cryptographic checksum

or a keyed hash function, is widely used in practice. In terms of security function-

ality, MACs share some properties with digital signatures, since they also provide

message integrity and message authentication. However, unlike digital signatures,

MACs are symmetric-key schemes and they do not provide nonrepudiation. One

advantage of MACs is that they are much faster than digital signatures since they

are based on either block ciphers or hash functions.

In this chapter you will learn:

� The principle behind MACs

� The security properties that can be achieved with MACs

� How MACs can be realized with hash functions and with block ciphers

319

320 12 Message Authentication Codes (MACs)

12.1 Principles of Message Authentication Codes

Similar to digital signatures, MACs append an authentication tag to a message. The

crucial difference between MACs and digital signatures is that MACs use a sym-

metric key k for both generating the authentication tag and verifying it. A MAC is a

function of the symmetric key k and the message x. We will use the notation

m = MACk(x)

for this in the following. The principle of the MAC calculation and verification is

shown in Figure 12.1.

MAC

x

m

verification:

m = m’
?

(,)

MAC

 m’

x

BobAlice

k

x m

k

Fig. 12.1 Principle of message authentication codes (MACs)

The motivation for using MACs is typically that Alice and Bob want to be assured

that any manipulations of a message x in transit are detected. For this, Bob computes

the MAC as a function of the message and the shared secret key k. He sends both

the message and the authentication tag m to Alice. Upon receiving the message

and m, Alice verifies both. Since this is a symmetric set-up, she simply repeats the

steps that Bob conducted when sending the message: She merely recomputes the

authentication tag with the received message and the symmetric key.

The underlying assumption of this system is that the MAC computation will yield

an incorrect result if the message x was altered in transit. Hence, message integrity is

provided as a security service. Furthermore, Alice is now assured that Bob was the

originator of the message since only the two parties with the same secret key k have

the possibility to compute the MAC. If an adversary, Oscar, changes the message

during transmission, he cannot simply compute a valid MAC since he lacks the

secret key. Any malicious or accidental (e.g., due to transmission errors) forgery of

the message will be detected by the receiver due to a failed verification of the MAC.

12.2 MACs from Hash Functions: HMAC 321

That means, from Alice’s perspective, Bob must have generated the MAC. In terms

of security services, message authentication is provided.

In practice, a messages x is often much larger than the corresponding MAC.

Hence, similar to hash functions, the output of a MAC computation is a fixed-length

authentication tag which is independent of the length of the input.

Together with earlier discussed characteristics of MACs, we can summarize all

their important properties:

Properties of Message Authentication Codes

1. Cryptographic checksum A MAC generates a cryptographically secure

authentication tag for a given message.

2. Symmetric MACs are based on secret symmetric keys. The signing and

verifying parties must share a secret key.

3. Arbitrary message size MACs accept messages of arbitrary length.

4. Fixed output length MACs generate fixed-size authentication tags.

5. Message integrity MACs provide message integrity: Any manipulations

of a message during transit will be detected by the receiver.

6. Message authentication The receiving party is assured of the origin of

the message.

7. No nonrepudiation Since MACs are based on symmetric principles,

they do not provide nonrepudiation.

The last point is important to keep in mind: MACs do not provide nonrepudia-

tion. Since the two communicating parties share the same key, there is no possibility

to prove towards a neutral third party, e.g., a judge, whether a message and its MAC

originated from Alice or Bob. Thus, MACs offer no protection in scenarios where

either Alice or Bob is dishonest, like the car-buying example we described in Sec-

tion 10.1.1. A symmetric secret key is not tied to a certain person but rather to two

parties, and hence a judge cannot distinguish between Alice and Bob in case of a

dispute.

In practice, message authentication codes are constructed in essentially two dif-

ferent ways from block ciphers or from hash functions. In the subsequent sections

of this chapter we will introduce both options for realizing MACs.

12.2 MACs from Hash Functions: HMAC

An option for realizing MACs is to use cryptographic hash functions such as SHA-

1 as a building block. One possible construction, named HMAC, has become very

popular in practice over the last decade. For instance, it is used in both the Transport

Layer Security (TLS) protocol (indicated by the little lock symbol in your Web

browser) as well as in the IPsec protocol suite. One reason for the widespread use of

322 12 Message Authentication Codes (MACs)

the HMAC construction is that it can be proven to be secure if certain assumptions

are made.

The basic idea behind all hash-based message authentication codes is that the key

is hashed together with the message. Two obvious constructions are possible. The

first one:

m = MACk(x) = h(k||x)
is called secret prefix MAC, and the second one:

m = MACk(x) = h(x||k)

is known as secret suffix MAC. The symbol “||” denotes concatenation. Intuitively,

due to the one-wayness and the good “scrambling properties” of modern hash func-

tions, both approaches should result in strong cryptographic checksums. However,

as is often the case in cryptography, assessing the security of a scheme can be trickier

than it seems at first glance. We now demonstrate weaknesses in both constructions.

Attacks Against Secret Prefix MACs

We consider MACs realized as m = h(k||x). For the attack we assume that the

cryptographic checksum m is computed using a hash construction as shown in Fig-

ure 11.5. This iterated approach is used in the majority of today’s hash functions.

The message x that Bob wants to sign is a sequence of blocks x = (x1,x2, . . . ,xn),
where the block length matches the input width of the hash function. Bob computes

an authentication tag as:

m = MACK(x) = h(k||x1,x2, . . . ,xn)

The problem is that the MAC for the message x = (x1,x2, . . . ,xn,xn+1), where xn+1

is an arbitrary additional block, can be constructed from m without knowing the

secret key. The attack is shown in the protocol below.

Attack Against Secret Prefix MACs

Alice Oscar Bob

x = (x1, . . . ,xn)
m = h(k||x1, . . . ,xn)

� intercept
(x,m)←−−−−−−

xO = (x1, . . . ,xn,xn+1)
mO = h(m||xn+1)

(xO,mO)←−−−−−−
m‘ =
h(k||x1, . . . ,xn,xn+1)
since m‘ = mO

⇒ valid signature!

12.2 MACs from Hash Functions: HMAC 323

Note that Alice will accept the message (x1, . . . ,xn,xn+1) as valid, even though

Bob only authenticated (x1, . . . ,xn). The last block xn+1 could, for instance, be an

appendix to an electronic contract, a situation that could have serious consequences.

The attack is possible since the MAC of the additional message block only needs

the previous hash output, which is equal to Bob’s m, and xn+1 as input but not the

key k.

Attacks Against Secret Suffix MACs

After studying the attack above, it seems to be safe to use the other basic con-

struction method, namely m = h(x||k). However, a different weakness occurs here.

Assume Oscar is capable of constructing a collision in the hash function, i.e., he can

find x and xO such that:

h(x) = h(xO).

The two messages x and xO can be, for instance, two versions of a contract which

are different in some crucial aspect, e.g., the agreed upon payment. If Bob signs x

with a message authentication code

m = h(x||k)

m is also a valid checksum for xO, i.e.,

m = h(x||k) = h(xO||k)

The reason for this is again given by the iterative nature of the MAC computation.

Whether this attack presents Oscar with an advantage depends on the parameters

used in the construction. As a practical example, let’s consider a secret suffix MAC

which uses SHA-1 as hash function, which has an output length of 160 bits, and

a 128-bit key. One would expect that this hash offers a security level of 128 bits,

i.e., an attacker cannot do better than brute-forcing the entire key space to forge a

message. However, if an attacker exploits the birthday paradox (cf. Section 11.2.3),

he can forge a signature with about
√

2160 = 280 computations. There are indications

that SHA-1 collisions can be constructed with even fewer steps, so that an actual

attack might be even easier. In summary, we conclude that the secret suffix method

also does not provide the security one would like to have from a MAC construction.

HMAC

A hash-based message authentication code which does not show the security weak-

ness described above is the HMAC construction proposed by Mihir Bellare, Ran

Canetti and Hugo Krawczyk in 1996. The scheme consists of an inner and outer

hash and is visualized in Figure 12.2.

324 12 Message Authentication Codes (MACs)

Fig. 12.2 HMAC construction

The MAC computation starts with expanding the symmetric key k with zeros on

the left such that the result k+ is b bits in length, where b is the input block width of

the hash function. The expanded key is XORed with the inner pad, which consists

of the repetition of the bit pattern:

ipad = 00110110,00110110, . . . ,00110110

so that a length of b bit is achieved. The output of the XOR forms the first input

block to the hash function. The subsequent input blocks are the message blocks

(x1,x2, . . . ,xn).
The second, outer hash is computed with the padded key together with the output

of the first hash. Here, the key is again expanded with zeros and then XORed with

the outer pad:

opad = 01011100,01011100, . . . ,01011100.

The result of the XOR operation forms the first input block for the outer hash. The

other input is the output of the inner hash. After the outer hash has been computed,

its output is the message authentication code of x. The HMAC construction can be

expressed as:

HMACk(x) = h
[
(k+ ⊕opad)||h

[
(k+ ⊕ ipad)||x

]]
.

12.3 MACs from Block Ciphers: CBC-MAC 325

The hash output length l is in practice longer than the width b of an input block.

For instance, SHA-1 has an l = 160 bit output but accepts b = 512 bit inputs. It

does not pose a problem that the inner hash function output does not match the

input size of outer hash because hash functions have preprocessing steps to match

the input string to the block width. As an example, Section 11.4.1 described the

preprocessing for SHA-1.

In terms of computational efficiency, it should be noted that the message x, which

can be very long, is only hashed once in the inner hash function. The outer hash

consists of merely two blocks, namely the padded key and the inner hash output.

Thus, the computational overhead introduced through the HMAC construction is

very low.

In addition to its computational efficiency, a major advantage of the HMAC con-

struction is that there exists a proof of security. As for all schemes which are prov-

able secure, HMAC is not secure per se, but its security is related to the security of

some other building block. In the case of the HMAC construction it can be shown

that if an attacker, Oscar, can break the HMAC, he can also break the hash function

used in the scheme. Breaking HMAC means that even though Oscar does not know

the key, he can construct valid authentication tags for messages. Breaking the hash

function means that he can either find collisions or that he can compute a hash func-

tion output even though he does not know the initial value IV (which was the value

H0 in the case of SHA-1).

12.3 MACs from Block Ciphers: CBC-MAC

In the preceding section we saw that hash functions can be used to realize MACs.

An alternative method is to construct MACs from block ciphers. The most popular

approach in practice is to use a block cipher such as AES in cipher block chaining

(CBC) mode, as discussed in Section 5.1.2.

Figure 12.3 depicts the complete setting for the application of a MAC on basis

of a block cipher in CBC mode. The left side shows the sender, the right side the

receiver. This scheme is also referred to as CBC-MAC.

Fig. 12.3 MAC built from a block cipher in CBC mode

326 12 Message Authentication Codes (MACs)

MAC Generation

For the generation of a MAC, we have to divide the message x into blocks xi, i =
1, ...,n. With the secret key k and an initial value IV, we can compute the first itera-

tion of the MAC algorithm as

y1 = ek(x1 ⊕ IV),

where the IV can be a public but random value. For subsequent message blocks we

use the XOR of the block xi and the previous output yi−1 as input to the encryption

algorithm:

yi = ek(xi ⊕ yi−1).

Finally, the MAC of the message x = x1x2x3...xn is the output yn of the last round:

m = MACk(x) = yn

In contrast to CBC encryption, the values y1,y2,y3, . . . ,yn−1 are not transmitted.

They are merely internal values which are used for computing the final MAC value

m = yn.

MAC Verification

As with every MAC, verification involves simply repeating the operation that were

used for the MAC generation. For the actual verification decision we have to com-

pare the computed MAC m′ with the received MAC value m. In case m′ = m, the

message is verified as correct. In case m′ �= m, the message and/or the MAC value

m have been altered during transmission. We note that the MAC verification is dif-

ferent from CBC decryption, which actually reverses the encryption operation.

The output length of the MAC is determined by the block size of the cipher used.

Historically, DES was widely used, e.g., for banking applications. More recently,

AES is often used; it yields a MAC of length 128 bit.

12.4 Galois Counter Message Authentication Code (GMAC)

GMAC is a variant of the Galois Counter Mode (GCM) introduced in Section 5.1.6.

GMAC is specified in [160] and is a mode of operation for an underlying symmet-

ric key block cipher. In contrast to the GCM mode, GMAC does not encrypt data

but only computes a message authentication code. GMAC is easily parallelizable,

which is attractive for high-speed applications. The use of GMAC in IPsec Encap-

sulating Security Payload (ESP) and Authentication Header (AH) is described in

the RFC 4543 [119]. The RFC describes how to use AES in GMAC to provide data

12.5 Discussion and Further Reading 327

origin authentication without confidentiality within the IPsec ESP and AH. GMAC

can be efficiently implemented in hardware and can reach a speed of 10 Gbit/sec

and above.

12.5 Discussion and Further Reading

Block Cipher-Based MACs Historically, block cipher-based MACs have been the

dominant method for constructing message authentication codes. As early as in

1977, i.e., only a couple of years after the announcement of the Data Encryption

Standard (DES), it was suggested that DES could be used to compute cryptographic

checksums [39]. In the following years, block cipher-based MACs were standard-

ized in the US and became popular for assuring the integrity of financial transac-

tions, see, e.g., the ANSI X9.17 standard [3]. Much more recently, the NIST recom-

mendation [65] specifies a message authentication code algorithm based on a sym-

metric key block cipher (CMAC), which is similar to CBC-MAC. The AES-CMAC

algorithm is specified in RFC 4493 [159].

In this chapter the CBC-MAC was introduced. In addition to the CBC-MAC,

there are the OMAC and PMAC, which are both constructed with block ciphers.

Counter with CBC-MAC (CCM) is a mode for authenticated encryption and is de-

fined for use with a 128-bit block cipher [173]. It is described in the NIST recom-

mendation [64]. The GMAC construction is standardized in IPSec [119] and in the

NIST recommendation for Block Cipher Modes of Operation [66].

Hash Function-Based MACs The HMAC construction was originally proposed at

the Crypto 1996 conference [14]. A very accessible treatment of the scheme can be

found in [15]. HMAC was turned into an Internet RFC, and was quickly adopted in

many Internet security protocols, including TLS and IPsec. In both cases it protects

the integrity of a message during transmission. It is widely used with the hash func-

tions SHA-1 and MD5, and its use with RIPEMD-160 has also been often discussed.

It seems likely that the switch to more modern hash functions such as SHA-2 and

SHA-3 will result in more and more HMAC constructions with these hash functions.

Other MAC Constructions Another type of message authentication code is based

on universal hashing and is called UMAC. UMAC is backed by a formal security

analysis, and the only internal cryptographic component is a block cipher used to

generate the pseudorandom pads and internal key material. The universal hash func-

tion is used to produce a short hash value of fixed length. This hash is then XORed

with a key-derived pseudorandom pad. The universal hash function is designed to be

very fast in software (e.g., as low as one cycle per byte on contemporary processors)

and is mainly based on additions of 32-bit and 64-bit numbers and multiplication

of 32-bit numbers. Based on the original idea by Wegman and Carter [40], numer-

ous schemes have been proposed, e.g., the schemes Multilinear-Modular-Hashing

(MMH) and UMAC [89, 23].

328 12 Message Authentication Codes (MACs)

12.6 Lessons Learned

� MACs provide two security services, message integrity and message authentica-

tion, using symmetric techniques. MACs are widely used in protocols.

� Both of these services are also provided by digital signatures, but MACs are

much faster.

� MACs do not provide nonrepudiation.

� In practice, MACs are either based on block ciphers or on hash functions.

� HMAC is a popular MAC used in many practical protocols such as TLS.

12.6 Problems 329

Problems

12.1. As we have seen, MACs can be used to authenticate messages. With this prob-

lem, we want to show the difference between two protocols—one with a MAC, one

with a digital signature. In the two protocols, the sending party performs the follow-

ing operation:

1. Protocol A:

y = ek1
[x||h(k2||x)]

where x is the message, h() is a hash function such as SHA-1, e is a private-key

encryption algorithm, “||” denotes simple concatenation, and k1, k2 are secret

keys which are only known to the sender and the receiver.

2. Protocol B:

y = ek[x||sigkpr
(h(x))]

Provide a step-by-step description (e.g., with an itemized list) of what the receiver

does upon receipt of y. You may want to draw a block diagram for the process on

the receiver’s side, but that’s optional.

12.2. For hash functions it is crucial to have a sufficiently large number of output

bits, with, e.g., 160 bits, in order to thwart attacks based on the birthday paradox.

Why are much shorter output lengths of, e.g., 80 bits, sufficient for MACs?

For your answer, assume a message x that is sent in clear together with its MAC

over the channel: (x,MACk(x)). Exactly clarify what Oscar has to do to attack this

system.

12.3. We study two methods for integrity protection with encryption.

1. Assume we apply a technique for combined encryption and integrity protection

in which a ciphertext c is computed as

c = ek(x||h(x))

where h() is a hash function. This technique is not suited for encryption with

stream ciphers if the attacker knows the whole plaintext x. Explain exactly how

an active attacker can now replace x by an arbitrary x′ of his/her choosing and

compute c′ such that the receiver will verify the message correctly. Assume that

x and x′ are of equal length. Will this attack work too if the encryption is done

with a one-time pad?

2. Is the attack still applicable if the checksum is computed using a keyed hash

function such as a MAC:

c = ek1
(x||MACk2

(x))

Assume that e() is a stream cipher as above.

12.4. We will now discuss some issues when constructing an efficient MAC.

330 12 Message Authentication Codes (MACs)

1. The messages X to be authenticated consists of z independent blocks, so that

X = x1||x2|| . . . ||xz, where every xi consists of |xi| = 8 bits. The input blocks are

consecutively put into the compression function

ci = h(ci−1,xi) = ci−1 ⊕ xi

At the end, the MAC value

MACk(X) = cz + k mod 28

is calculated, where k is a 64-bit long shared key. Describe how exactly the (ef-

fective part of the) key k can be calculated with only one known message X .

2. Perform this attack for the following parameters and determine the key k:

X = HELLO ALICE!

c0 = 111111112

MACk(X) = 100111012

3. What is the effective key length of k?

4. Although two different operations ([⊕,28] and [+,28]) are utilized in this MAC,

this MAC-based signature possesses significant weaknesses. To which property

of the design can these be ascribed, and where should one take care when con-

structing a cryptographic system? This essential property also applies for block

ciphers and hash functions!

12.5. MACs are, in principle, also vulnerable against collision attacks. We discuss

the issue in the following.

1. Assume Oscar found a collision between two messages, i.e.,

MACk(x1) = MACk(x2)

Show a simple protocol with an attack that is based on a collision.

2. Even though the birthday paradox can still be used for constructing collisions,

why is it in a practical setting much harder to construct them for MACs than for

hash functions? Since this is the case: what security is provided by a MAC with

80-bit output compared to a hash function with 80-bit output?

Chapter 13

Key Establishment

With the cryptographic mechanisms that we have learned so far, in particular sym-

metric and asymmetric encryption, digital signatures and message authentication

codes (MACs), one can relatively easily achieve the basic security services (cf.

Sect. 10.1.3):

� Confidentiality (with encryption algorithms)

� Integrity (with MACs or digital signatures)

� Message authentication (with MACs or digital signatures)

� Non-repudiation (with digital signatures)

Similarly, identification can be accomplished through protocols which make use of

standard cryptographic primitives.

However, all cryptographic mechanisms that we have introduced so far assume

that keys are properly distributed between the parties involved, e.g., between Alice

and Bob. The task of key establishment is in practice one of the most important and

often also most difficult parts of a security system. We already learned some ways

of distributing keys, in particular Diffie–Hellman key exchange. In this chapter we

will learn many more methods for establishing keys between remote parties. You

will learn about the following important issues:

� How keys can be established using symmetric cryptosystems

� How keys can be established using public-key cryptosystems

� Why public-key techniques still have shortcomings for key distribution

� What certificates are and how they are used

� The role that public-key infrastructures play

331

332 13 Key Establishment

13.1 Introduction

In this section we introduce some terminology, some thoughts on key freshness and

a very basic key distribution scheme. The latter is helpful for motivating the more

advanced methods which will follow in this chapter.

13.1.1 Some Terminology

Roughly speaking, key establishment deals with establishing a shared secret be-

tween two or more parties. Methods for this can be classified into key transport and

key agreement methods, as shown in Fig. 13.1. A key transport protocol is a tech-

nique where one party securely transfers a secret value to others. In a key agreement

protocol two (or more) parties derive the shared secret where all parties contribute

to the secret. Ideally, none of the parties can control what the final joint value will

be.

Fig. 13.1 Classification of key establishment schemes

Key establishment itself is strongly related to identification. For instance, you

may think of attacks by unauthorized users who join the key establishment protocol

with the aim of masquerading as either Alice or Bob with the goal of establishing a

secret key with the other party. To prevent such attacks, each party must be assured

of the identity of the other entity. All of these issues are addressed in this chapter.

13.1.2 Key Freshness and Key Derivation

In many (but not all) security systems it is desirable to use cryptographic keys which

are only valid for a limited time, e.g., for one Internet connection. Such keys are

called session keys or ephemeral keys. Limiting the period in which a cryptographic

key is used has several advantages. A major one is that there is less damage if the

13.1 Introduction 333

key is exposed. Also, an attacker has less ciphertext available that was generated un-

der one key, which can make cryptographic attacks much more difficult. Moreover,

an attacker is forced to recover several keys if he is interested in decrypting larger

parts of plaintext. Real-world examples where session keys are frequently gener-

ated include voice encryption in GSM cell phones and video encryption in pay-TV

satellite systems; in both cases new keys are generated within a matter of minutes

or sometimes even seconds.

The security advantages of key freshness are fairly obvious. However, the ques-

tion now is, how can key updates be realized? The first approach is to simply execute

the key establishment protocols shown in this chapter over and over again. However,

as we see later, there are always certain costs associated with key establishment, typ-

ically with respect to additional communication connections and computations. The

latter holds especially in the case of public-key algorithms which are very compu-

tationally intensive.

The second approach to key update uses an already established joint secret key

to derive fresh session keys. The principal idea is to use a key derivation function

(KDF) as shown in Fig. 13.2. Typically, a non-secret parameter r is processed to-

gether with the joint secret kAB between the users Alice and Bob.

Fig. 13.2 Principle of key derivation

An important characteristic of the key derivation function is that it should be a

one-way function. The one-way property prevents an attacker from deducing kAB

should any of the session keys become compromised, which in turn would allow the

attacker to compute all other session keys.

One possible way of realizing the key derivation function is that one party sends

a nonce, i.e., a numerical value that is used only once, to the other party. Both users

encrypt the nonce using the shared secret key kAB by means of a symmetric cipher

such as AES. The corresponding protocol is shown below.

334 13 Key Establishment

Key Derivation with Nonces

Alice Bob

generate nonce r
r←−−−−−−−−−−−−

derive key derive key
kses = ekAB

(r) kses = ekAB
(r)

An alternative to encrypting the nonce is hashing it together with kAB. One way

of achieving this is that both parties perform a HMAC computation with the nonce

serving as the “message”:

kses = HMACkAB
(r)

Rather than sending a nonce, Alice and Bob can also simply encrypt a counter

cnt periodically, where the ciphertext again forms the session key:

kses = ekAB
(cnt)

or compute the HMAC of the counter:

kses = HMACkAB
(cnt)

Using a counter can save Alice and Bob one communication session because, unlike

the case of the nonce-based key derivation, no value needs to be transmitted. How-

ever, this holds only if both parties know exactly when the next key derivation needs

to take place. Otherwise, a counter synchronization message might be required.

13.1.3 The n2 Key Distribution Problem

Until now we mainly assumed that the necessary keys for symmetric algorithms

are distributed via a “secure channel”, as depicted in the beginning of this book in

Fig. 1.5. Distributing keys this way is sometimes referred to as key predistribution

or out-of-band transmission since it typically involves a different mode (or band)

of communication, e.g., the key is transmitted via a phone line or in a letter. Even

though this seems somewhat clumsy, it can be a useful approach in certain practical

situations, especially if the number of communicating parties is not too large. How-

ever, key predistribution quickly reaches its limits even if the number of entities in a

network is only moderately large. This leads to the well-known n2 key distribution

problem.

We assume a network with n users, where every party is capable of communi-

cating with every other one in a secure fashion, i.e., if Alice wants to communicate

with Bob, these two share a secret key kAB which is only known to them but not to

any of the other n−2 parties. This situation is shown for the case of a network with

n = 4 participants in Fig. 13.3.

13.1 Introduction 335

Fig. 13.3 Keys in a network with n = 4 users

We can extrapolate several features of this simple scheme for the case of n users:

� Each user must store n−1 keys.

� There is a total of n(n−1) ≈ n2 keys in the network.

� A total of n(n−1)/2 =
(

n
2

)
symmetric key pairs are in the network.

� If a new user joins the network, a secure channel must be established with every

other user in order to upload new keys.

The consequences of these observations are not very favorable if the number

of users increases. The first drawback is that the number of keys in the system is

roughly n2. Even for moderately sized networks, this number becomes quite large.

All these keys must be generated securely at one location, which is typically some

type of trusted authority. The other drawback, which is often more serious in prac-

tice, is that adding one new user to the system requires updating the keys at all

existing users. Since each update requires a secure channel, this is very burdensome.

Example 13.1. A mid-size company with 750 employees wants to set up secure e-

mail communication with symmetric keys. For this purpose, 750×749/2 = 280,875

symmetric key pairs must be generated, and 750×749 = 561,750 keys must be dis-

tributed via secure channels. Moreover, if employee number 751 joins the company,

all 750 other users must receive a key update. This means that 751 secure channels

(to the 750 existing employees and to the new one) must be established.

⋄

Obviously, this approach does not work for large networks. However, there are

many cases in practice where the number of users is (i) small and (ii) does not

change frequently. An example could be a company with a small number of branches

which all need to communicate with each other securely. Adding a new branch does

not happen too often, and if this happens it can be tolerated that one new key is

uploaded to any of the existing branches.

336 13 Key Establishment

13.2 Key Establishment Using Symmetric-Key Techniques

Symmetric ciphers can be used to establish secret (session) keys. This is somewhat

surprising because we assumed for most of the book that symmetric ciphers them-

selves need a secure channel for establishing their keys. However, it turns out that it

is in many cases sufficient to have a secure channel only when a new user joins the

network. This is in practice often achievable for computer networks because at set-

up time a (trusted) system administrator might be needed in person anyway who can

install a secret key manually. In the case of embedded devices, such as cell phones,

a secure channel is often given during manufacture, i.e., a secret key can be loaded

into the device “in the factory”.

The protocols introduced in the following all perform key transport and not key

agreement.

13.2.1 Key Establishment with a Key Distribution Center

The protocols developed in the following rely on a Key Distribution Center (KDC).

This is a server that is fully trusted by all users and that shares a secret key with each

user. This key, which is named the Key Encryption Key (KEK), is used to securely

transmit session keys to users.

Basic Protocol

A necessary prerequisite is that each user U shares a unique secret key KEK kU

with the key distribution center which predistributed through a secure channel. Let’s

look what happens if one party requests a secure session from the KDC, e.g., Alice

wants to communicate with Bob. The interesting part of this approach is that the

KDC encrypts the session key that will eventually be used by Alice and Bob. In

a basic protocol, the KDC generates two messages, yA and yB, for Alice and Bob,

respectively:

yA = ekA
(kses)

yB = ekB
(kses)

Each message contains the session key encrypted with one of the two KEKs. The

protocol looks like this:

13.2 Key Establishment Using Symmetric-Key Techniques 337

Basic Key Establishment Using a Key Distribution Center

Alice KDC Bob

KEK: kA KEK: kA, kB KEK: kB

RQST(IDA,IDB)−−−−−−−−−→
generate random kses

yA = ekA
(kses)

yB = ekB
(kses)

yA←−−−−−−−−− yB−−−−−−−−−→
kses = e−1

kA
(yA) kses = e−1

kB
(yB)

y = ekses
(x)

y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x = e−1
kses

(y)

The protocol begins with a request message RQST(IDA, IDB), where IDA and

IDB simply indicate the users involved in the session. The actual key establishment

protocol is executed subsequently in the upper part of the drawing. Below the solid

line is, as an example, shown how Alice and Bob can now communicate with each

other securely using the session key.

It is important to note that two types of keys are involved in the protocol. The

KEKs kA and kB are long-term keys that do not change. The session key kses is an

ephemeral key that changes frequently, ideally for every communication session.

In order to understand this protocol more intuitively, one can view the predis-

tributed KEKs as forming a secret channel between the KDC and each user.

With this interpretation, the protocol is straightforward: The KDC simply sends a

session key to Alice and Bob via the two respective secret channels.

Since the KEKs are long-term keys, whereas the session keys have typically a

much shorter lifetime, in practice sometimes different encryption algorithms are

used with both. Let’s consider the following example. In a pay-TV system AES

might be used with the long-term KEKs kU for distributing session keys kses. The

session keys might only have a lifetime of, say, one minute. The session keys are

used to encrypt the actual plaintext (the digital TV signal in this example) with a fast

stream cipher. A stream cipher might be required to assure real-time decryption. The

advantage of this arrangement is that even if a session key becomes compromised,

only one minute’s worth of multimedia data can be decrypted by an adversary. Thus,

the cipher that is used with the session key does not necessarily need to have the

same cryptographic strength as the algorithm which is used for distributing the ses-

sion keys. On the other hand, if one of the KEKs becomes compromised, all prior

and future traffic can be decrypted by an eavesdropper.

It is easy to modify the above protocol such that we save one communication

session. This is shown in the following:

338 13 Key Establishment

Key Establishment Using a Key Distribution Center

Alice KDC Bob

KEK: kA KEK: kA, kB KEK: kB

RQST(IDA,IDB)−−−−−−−−−→
generate random kses

yA = ekA
(kses)

yB = ekB
(kses)

yA,yB←−−−−−−−−−
kses = e−1

kA
(yA)

y = ekses
(x)

y,yB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
kses = e−1

kB
(yB)

x = e−1
kses

(y)

Alice receives the session key encrypted with both KEKs, kA and kB. She is able

to compute the session key kses from yA and can use it subsequently to encrypt the

actual message she wants to send to Bob. The interesting part of the protocol is that

Bob receives both the encrypted message y as well as yB. He needs to decrypt the

latter one in order to recover the session key which is needed for computing x.

Both of the KDC-based protocols have the advantage that there are only n long-

term symmetric key pairs in the system, unlike the first naı̈ve scheme that we en-

countered, where about n2/2 key pairs were required. The n long-term KEKS only

need to be stored by the KDC, while each user only stores his or her own KEK. Most

importantly, if a new user Noah joins the network, a secure channel only needs to

be established once between the KDC and Noah to distribute the KEK kN .

Security

Even though the two protocols protect against a passive attacker, i.e, an adversary

that can only eavesdrop, there are attacks if an adversary can actively manipulate

messages and create faked ones.

Replay Attack One weakness is that a replay attack is possible. This attack makes

use of the fact that neither Alice nor Bob know whether the encrypted session key

they receive is actually a new one. If an old one is reused, key freshness is violated.

This can be a particularly serious issue if an old session key has become compro-

mised. This could happen if an old key is leaked, e.g., through a hacker, or if the

encryption algorithm used with an old key has become insecure due to cryptanalyt-

ical advances.

If Oscar gets hold of a previous session key, he can impersonate the KDC and

resend old messages yA and yB to Alice and Bob. Since Oscar knows the session

key, he can decipher the plaintext that will be encrypted by Alice or Bob.

13.2 Key Establishment Using Symmetric-Key Techniques 339

Key Confirmation Attack Another weakness of the above protocol is that Alice

is not assured that the key material she receives from the KDC is actually for a

session between her and Bob. This attack assumes that Oscar is also a legitimate

(but malicious) user. By changing the session-request message Oscar can trick the

KDC and Alice to set up session between him and Alice as opposed to between

Alice and Bob. Here is the attack:

Key Confirmation Attack

Alice Oscar KDC Bob

KEK: kA KEK: kO KEK: kA, kB, kO KEK: kB

RQST(IDA ,IDB)−−−−−−−−−−−→
� substitute

RQST(IDA ,IDO)−−−−−−−−−−−→
random kses

yA = ekA
(kses)

yO = ekO
(kses)

yA ,yO←−−−−−−−−−−−
kses = e−1

kA
(yA)

y = ekses (x)
y,yO−−−−−−−−−−−→

� intercept

kses = e−1
kO

(yO)

x = e−1
kses

(y)

The gist of the attack is that the KDC believes Alice requests a key for a session

between Alice and Oscar, whereas she really wants to communicate with Bob. Alice

assumes that the encrypted key “yO” is “yB”, i.e., the session key encrypted under

Bob’s KEK kB. (Note that if the KDC puts a header IDO in front of yO which asso-

ciates it with Oscar, Oscar might simply change the header to IDB.) In other words,

Alice has no way of knowing that the KDC prepared a session with her and Oscar;

instead she still thinks she is setting up a session with Bob. Alice continues with the

protocol and encrypts her actual message as y. If Oscar intercepts y, he can decrypt

it.

The underlying problem for this attack is that there is no key confirmation. If key

confirmation were given, Alice would be assured that Bob and no other user knows

the session key.

13.2.2 Kerberos

A more advanced protocol that protects against both replay and key confirmation

attacks is Kerberos. It is, in fact, more than a mere key distribution protocol; its

main purpose is to provide user authentication in computer networks. Kerberos was

standardized as an RFC 1510 in 1993 and is in widespread use. It is also based on

340 13 Key Establishment

a KDC, which is named the “authentication sever” in Kerberos terminology. Let’s

first look at a simplified version of the protocol.

Key Establishment Using a Simplified Version of Kerberos

Alice KDC Bob

KEK: kA KEK: kA, kB KEK: kB

generate nonce rA

RQST(IDA ,IDB ,rA)−−−−−−−−−−−→
generate random kses

generate lifetime T

yA = ekA
(kses,rA,T, IDB)

yB = ekB
(kses, IDA,T)

yA ,yB←−−−−−−−−−−−
kses,r

′
A,T, IDB = e−1

kA
(yA)

verify r′A = rA

verify IDB

verify lifetime T

generate time stamp TS

yAB = ekses (IDA,TS)
yAB ,yB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

kses, IDA,T = e−1
kB

(yB)

ID′
A,TS = e−1

kses
(yAB)

verify ID′
A = IDA

verify lifetime T

verify time stamp TS

y = ekses (x)
y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x = e−1

kses
(y)

Kerberos assures the timeliness of the protocol through two measures. First, the

KDC specifies a lifetime T for the session key. The lifetime is encrypted with both

session keys, i.e., it is included in yA and yB. Hence, both Alice and Bob are aware

of the period during which they can use the session key. Second, Alice uses a time

stamp TS, through which Bob can be assured that Alice’s messages are recent and

are not the result of a replay attack. For this, Alice’s and Bob’s system clocks must

be synchronized, but not with a very high accuracy. Typical values are in the range

of a few minutes. The usage of the lifetime parameter T and the time stamp TS

prevent replay attacks by Oscar.

Equally important is that Kerberos provides key confirmation and user authenti-

cation. In the beginning, Alice sends a random nonce rA to the KDC. This can be

considered as a challenge because she challenges the KDC to encrypt it with their

joint KEK kA. If the returned challenge r′A matches the sent one, Alice is assured that

the message yA was actually sent by the KDC. This method to authenticate users is

known as challenge-response protocol and is widely used, e.g., for authentication of

smart cards.

Through the inclusion of Bob’s identity IDB in yA Alice is assured that the session

key is actually meant for a session between herself and Bob. With the inclusion of

Alice’s identity IDA in both yB and yAB, Bob can verify that (i) the KDC included

a session key for a connection between him and Alice and (ii) that he is currently

actually talking to Alice.

13.2 Key Establishment Using Symmetric-Key Techniques 341

13.2.3 Remaining Problems with Symmetric-Key Distribution

Even though Kerberos provides strong assurance that the correct keys are being

used and that users are authenticated, there are still drawbacks to the protocols dis-

cussed so far. We now describe remaining general problems that exist for KDC-

based schemes.

Communication requirements One problem in practice is that the KDC needs to

be contacted if a new secure session is to be initiated between any two parties in the

network. Even though this is a performance rather than a security problem, it can be

a serious hindrance in a system with very many users. In Kerberos, one can alleviate

this potential problem by increasing the lifetime T of the key. In practice, Kerberos

can run with tens of thousands of users. However, it would be a problem to scale

such an approach to “all” Internet users.

Secure channel during initialization As discussed earlier, all KDC-based proto-

cols require a secure channel at the time a new user joins the network for transmit-

ting that user’s key encryption key.

Single point of failure All KDC-based protocols, including Kerberos, have the

security drawback that they have a single point of failure, namely the database that

contains the key encryption keys, the KEKs. If the KDC becomes compromised,

all KEKs in the entire system become invalid and have to be re-established using

secure channels between the KDC and each user.

No perfect forward secrecy If any of the KEKs becomes compromised, e.g.,

through a hacker or Trojan software running on a user’s computer, the consequences

are serious. First, all future communication can be decrypted by the attacker who

eavesdrops. For instance, if Oscar got a hold of Alice’s KEK kA, he can recover the

session key from all messages yA that the KDC sends out. Even more dramatic

is the fact that Oscar can also decrypt past communications if he stored old

messages yA and y. Even if Alice immediately realizes that her KEK has been com-

promised and she stops using it right away, there is nothing she can do to prevent

Oscar from decrypting her past communication. Whether a system is vulnerable if

long-term keys are compromised is an important feature of a security system and

there is a special terminology used:

Definition 13.1. A cryptographic protocol has perfect forward secrecy (PFS) if the

compromise of long-term keys does not allow an attacker to obtain past session

keys.

Neither Kerberos nor the simpler protocols shown earlier offer PFS. The main

mechanism to assure PFS is to employ public-key techniques, which we study in

the following sections.

342 13 Key Establishment

13.3 Key Establishment Using Asymmetric Techniques

Public-key algorithms are especially suited for key establishment protocols since

they don’t share most of the drawbacks that symmetric key approaches have. In fact,

next to digital signatures, key establishment is the other major application domain

of public-key schemes. They can be used for both key transport and key agreement.

For the former, Diffie–Hellman key exchange, elliptic curve Diffie–Hellman or re-

lated protocols are often used. For key transport, any of the public-key encryption

schemes, e.g., RSA or Elgamal, is often used. We recall at this point that public-key

primitives are quite slow, and that for this reason actual data encryption is usually

done with symmetric primitives like AES or 3DES, after a key has been established

using asymmetric techniques.

At this moment it looks as though public-key schemes solve all key establishment

problems. It turns out, however, that they all require what is termed an authenticated

channel to distribute the public keys. The remainder of this chapter is chiefly devoted

to solving the problem of authenticated public key distribution.

13.3.1 Man-in-the-Middle Attack

The man-in-the-middle attack1 is a serious attack against public-key algorithms.

The basic idea of the attack is that the adversary, Oscar, replaces the public keys

sent out by the participants with his own keys. This is possible whenever public

keys are not authenticated. The man-in-the-middle (MIM) attack has far-reaching

consequences for asymmetric cryptography. For didactical reasons we will study

the MIM attack against the Diffie–Hellman key exchange (DHKE). However, it is

extremely important to bear in mind that the attack is applicable against any asym-

metric scheme unless the public-keys are protected, e.g., through certificates, a topic

that is discussed in Sect. 13.3.2.

We recall that the DHKE allows two parties who never met before to agree on a

shared secret by exchanging messages over an insecure channel. For convenience,

we restate the DHKE protocol here:

1 The “man-in-the-middle attack” should not be confused with the similarly sounding but in
fact entirely different “meet-in-the-middle attack” against block ciphers which was introduced in
Sect. 5.3.1.

13.3 Key Establishment Using Asymmetric Techniques 343

Diffie–Hellman Key Exchange

Alice Bob

choose random a = kpr,A choose random b = kpr,B

compute A = kpub,A ≡ αa mod p compute B = kpub,B ≡ αb mod p
A−−−−−−−−−−−−→
B←−−−−−−−−−−−−

kAB ≡ Ba mod p kAB ≡ Ab mod p

As we discussed in Sect. 8.4, if the parameters are chosen carefully, which in-

cludes especially a prime p with a length of 1024 or more bit, the DHKE is secure

against eavesdropping, i.e., passive attacks. We consider now the case that an adver-

sary is not restricted to only listening to the channel. Rather, Oscar can also actively

take part in the message exchange by intercepting, changing and generating mes-

sages. The underlying idea of the MIM attack is that Oscar replaces both Alice’s

and Bob’s public key by his own. The attack is shown here:

Man-in-the-Middle Attack Against the DHKE

Alice Oscar Bob

choose a = kpr,A choose b = kpr,B

A = kpub,A ≡ αa mod p B = kpub,B ≡ αb mod p
A−−−−−−→ � substitute Ã≡αo Ã−−−−−−→
B̃←−−−−−− � substitute B̃≡αo B←−−−−−−

kAO ≡ (B̃)a mod p kAO ≡ Ao mod p kBO ≡ (Ã)b mod p

kBO ≡ Bo mod p

Let’s look at the keys that are being computed by the three players, Alice, Bob

and Oscar. The key Alice computes is:

kAO = (B̃)a ≡ (αo)a ≡ αoa mod p

which is identical to the key that Oscar computes as kAO = Ao ≡ (αa)o ≡αao mod p.

At the same time Bob computes:

kBO = (Ã)b ≡ (αo)b ≡ αob mod p

which is identical to Oscar’s key kBO = Bo ≡ (αb)o ≡ αbo mod p. Note that the two

malicious keys that Oscar sends out, Ã and B̃, are in fact the same values. With use

different names here merely to stress the fact that Alice and Bob assume that they

have received each other‘s public keys.

What happens in this attack is that two DHKEs are being performed simultane-

ously, one between Alice and Oscar and another one between Bob and Oscar. As

a result, Oscar has established a joined key with Alice, which we termed kAO, and

344 13 Key Establishment

another one with Bob, which we named kBO. However, neither Alice nor Bob is

aware of the fact that they share a key with Oscar and not with each other!

Both assume that they have computed a joint key kAB.

From here on, Oscar has much control over encrypted traffic between Alice and

Bob. As an example, here is how he can read encrypted messages in a way that goes

unnoticed by Alice and Bob:

Message Manipulation After a Man-in-the-Middle Attack

Alice Oscar Bob

message x

y = AESkAO
(x)

y−−−−−−−→ � intercept

decrypt x = AES−1
kAO

(x)

re-encrypt y′ = AESkBO
(x)

y′−−−−−−−→
decrypt x = AES−1

kBO
(y′)

For illustrative purposes, we assumed that AES is used for the encryption. Of course,

any other symmetric cipher can be used as well. Please note that Oscar can not only

read the plaintext x but can also alter it prior to re-encrypting it with kBO. This can

have serious consequences, e.g., if the message x describes a financial transaction.

13.3.2 Certificates

The underlying problem of the man-in-the-middle attack is that public keys are not

authenticated. We recall from Sect. 10.1.3 that message authentication ensures that

the sender of a message is authentic. However, in the scenario at hand Bob receives

a public key which is supposedly Alice’s, but he has no way of knowing whether

that is in fact the case. To make this point clear, let’s examine how a key of a user

Alice would look in practice:

kA = (kpub,A, IDA),

where IDA is identifying information, e.g., Alice’s IP address or her name together

with date of birth. The actual public key kpub,A, however, is a mere binary string,

e.g., 2048 bit. If Oscar performs a MIM attack, he would change the key to:

kA = (kpub,O, IDA).

Since everything is unchanged except the anonymous actual bit string, the receiver

will not be able to detect that it is in fact Oscar’s. This observation has far-reaching

consequences which can be summarized in the following statement:

Even though public-key schemes do not require a secure channel, they require authen-

ticated channels for the distribution of the public keys.

13.3 Key Establishment Using Asymmetric Techniques 345

We would like to stress here again that the MIM attack is not restricted to the DHKE,

but is in fact applicable to any asymmetric crypto scheme. The attack always pro-

ceeds the same way: Oscar intercepts the public key that is being sent and replaces

it with his own.

The problem of trusted distribution of private keys is central in modern public-

key cryptography. There are several ways to address the problem of key authentica-

tion. The main mechanism is the use of certificates. The idea behind certificates is

quite easy: Since the authenticity of the message (kpub,A, IDA) is violated by an ac-

tive attack, we apply a cryptographic mechanism that provides authentication. More

specifically, we use digital signatures.2 Thus, a certificate for a user Alice in its most

basic form is the following structure:

CertA = [(kpub,A, IDA),sigkpr
(kpub,A, IDA)]

The idea is that the receiver of a certificate verifies the signature prior to using the

public key. We recall from Chap. 10 that the signature protects the signed message

— which is the structure (kpub,A, IDA) in this case — against manipulation. If Oscar

attempts to replace kpub,A by kpub,O it will be detected. Thus, it is said that certifi-

cates bind the identity of a user to their public key.

Certificates require that the receiver has the correct verification key, which is a

public key. If we were to use Alice’s public key for this, we would have the same

problem that we are actually trying to solve. Instead, the signatures for certificates

are provided by a mutually trusted third party. This party is called the Certification

Authority commonly abbreviated as CA. It is the task of the CA to generate and issue

certificates for all users in the system. For certificate generation, we can distinguish

between two main cases. In the first case, the user computes her own asymmetric

key pair and merely requests the CA to sign the public key, as shown in the following

simple protocol for a user named Alice:

Certificate Generation with User-Provided Keys

Alice CA

generate kpr,A,kpub,A
RQST(kpub,A, IDA)

−−−−−−−−−−−−→
verify IDA

sA = sigkpr ,CA(kpub,A, IDA)

CertA = [(kpub,A, IDA),sA]
CertA←−−−−−−−−−−−−

2 MACs also provide authentication and could, in principle, also be used for authenticating pub-
lic keys. However, because MACs themselves are symmetric algorithms, we would again need a
secure channel for distributing the MAC keys with all the associated drawbacks.

346 13 Key Establishment

From a security point of view, the first transaction is crucial. It must be assured

that Alice’s message (kpub,A, IDA) is sent via an authenticated channel. Otherwise,

Oscar could request a certificate in Alice’s name.

In practice it is often advantageous that the CA not only signs the public keys

but also generates the public–private key pairs for each user. In this case, a basic

protocol looks like this:

Certificate Generation with CA-Generated Keys

Alice CA

request certificate
RQST(IDA)−−−−−−−−−−−−→

verify IDA

generate kpr,A,kpub,A

sA = sigkpr ,CA(kpub,A, IDA)

CertA = [(kpub,A, IDA),sA]
CertA,kpr,A←−−−−−−−−−−−−

For the first transmission, an authenticated channel is needed. In other words:

The CA must be assured that it is really Alice who is requesting a certificate, and

not Oscar who is requesting a certificate in Alice’s name. Even more sensitive is the

second transmission consisting of (CertA, kpr,A). Because the private key is being

sent here, not only an authenticated but a secure channel is required. In practice,

this could be a certificate delivered by mail on a CD-ROM.

Before we discuss CAs in more detail, let’s have a look at the DHKE which is

protected with certificates:

Diffie–Hellman Key Exchange with Certificates

Alice Bob

a = kpr,A b = kpr,B

A = kpub,A ≡ αa mod p B = kpub,B ≡ αB mod p

CertA = [(A, IDA),sA] CertB = [(B, IDB),sB]
CertA−−−−−−−−−−−−→
CertB←−−−−−−−−−−−−

verify certificate: verify certificate:
verkpub,CA

(CertB) verkpub,CA
(CertA)

compute session key: compute session key:

kAB ≡ Ba mod p kAB ≡ Ab mod p

One very crucial point here is the verification of the certificates. Obviously, with-

out verification, the signatures within the certificates would be of no use. As can be

seen in the protocol, verification requires the public key of the CA. This key must

be transmitted via an authenticated channel, otherwise Oscar could perform MIM

13.3 Key Establishment Using Asymmetric Techniques 347

attacks again. It looks like we haven’t gained much from the introduction of cer-

tificates since we again require an authenticated channel! However, the difference

from the former situation is that we need the authenticated channel only once,

at set-up time. For instance, public verification keys are nowadays often included

in PC software such as Web browsers or Microsoft software products. The authen-

ticated channel is here assumed to be given through the installation of original soft-

ware which has not been manipulated. What’s happening here from a more abstract

point of view is extremely interesting, namely a transfer of trust. We saw in the

earlier example of DHKE without certificates, that Alice and Bob have to trust each

other’s public keys directly. With the introduction of certificates, they only have to

trust the CA’s public key kpub,CA. If the CA signs other public keys, Alice and Bob

know that they can also trust those. This is called a chain of trust.

13.3.3 Public-Key Infrastructures (PKI) and CAs

The entire system that is formed by CAs together with the necessary support mecha-

nisms is called a public-key infrastructure, usually referred to as PKI. As the reader

can perhaps start to imagine, setting up and running a PKI in the real world is a

complex task. Issues such as identifying users for certificate issuing and trusted dis-

tribution of CA keys have to be solved. There are also many other real-world issues;

among the most complex are the existence of many different CAs and revocation of

certificates. We discuss some aspects of using certificate systems in practice in the

following.

X.509 Certificates

In practice, certificates not only include the ID and the public key of a user, they

tend to be quite complex structures with many additional fields. As an example,

we look at the a X.509 certificate in Fig. 13.4. X.509 is an important standard for

network authentication services, and the corresponding certificates are widely used

for Internet communication, i.e., in S/MIME, IPsec and SSL/TLS.

Discussing the fields defined in a X.509 certificate gives us some insight into

many aspects of PKIs in the real world. We discuss the most relevant ones in the

following:

1. Certificate Algorithm: Here it is specified which signature algorithm is being

used, e.g., RSA with SHA-1 or ECDSA with SHA-2, and with which parameters,

e.g., the bit lengths.

2. Issuer: There are many companies and organizations that issue certificates. This

field specifies who generated the one at hand.

3. Period of Validity: In most cases, a public key is not certified indefinitely but

rather for a limited time, e.g., for one or two years. One reason for doing this

is that private keys which belong to the certificate may become compromised.

348 13 Key Establishment

Fig. 13.4 Detailed structure of an X.509 certificate

By limiting the validity period, there is only a certain time span during which

an attacker can maliciously use the private key. Another reason for a restricted

lifetime is that, especially for certificates for companies, it can happen that the

user ceases to exist. If the certificates, and thus the public keys, are only valid for

limited time, the damage can be controlled.

4. Subject: This field contains what was called IDA or IDB in our earlier examples. It

contains identifying information such as names of people or organizations. Note

that not only actual people but also entities like companies can obtain certificates.

5. Subject’s Public Key: The public key that is to be protected by the certificate

is here. In addition to the binary string which is the public key, the algorithm

(e.g., Diffie–Hellman) and the algorithm parameters, e.g., the modulus p and the

primitive element α , are stored.

6. Signature: The signature over all other fields of the certificate.

We note that for every signature two public key algorithms are involved: the one

whose public key is protected by the certificate and the algorithm with which the

certificate is signed. These can be entirely different algorithms and parameter sets.

For instance, the certificate might be signed with an RSA 2048-bit algorithm, while

the public key within the certificate could belong to a 160-bit elliptic curve scheme.

13.3 Key Establishment Using Asymmetric Techniques 349

Chain of Certificate Authorities (CAs)

In an ideal world, there would be one CA which issues certificates for, say, all In-

ternet users on planet Earth. Unfortunately, that is not the case. There are many dif-

ferent entities that act as CAs. First of all, many countries have their own “official”

CA, often for certificates that are used for applications that involve government busi-

ness. Second, certificates for websites are currently issued by more than 50 mostly

commercial entities. (Most Web browsers have the public key of those CAs pre-

installed.) Third, many corporations issue certificate for their own employees and

external entities who do business with them. It would be virtually impossible for a

user to have the private keys of all these different CAs at hand. What is done instead

is that CAs certify each other.

Let’s look at an example where Alice’s certificate is issued by CA1 and Bob’s by

CA2. At the moment, Alice is only in possession of the public key of “her” CA1,

and Bob has only kpub,CA2. If Bob sends his certificate to Alice, she cannot verify

Bob’s public key. This situation looks like this:

Two Users with Different Certificate Authorities

Alice Bob

kpub,CA1 kpub,CA2

CertB = [(kpub,B, IDB),sigkpr,CA2
(kpub,B, IDB)]

CertB←−−−−−−−−−−−−

Alice can now request CA2’s public key, which is itself contained in a certificate

that was signed by Alice’s CA1:

Verification of a CA Public Key

Alice CA2

RQST(CertCA2)−−−−−−−−−−−−→
CertCA2←−−−−−−−−−−−−

verkpub,CA1
(CertCA2)

⇒ kpub,CA2 is valid
verkpub,CA2

(CertB)

⇒ kpub,B is valid

The structure CertCA2 contains the public key of CA2 signed by CA1, which

looks like this:

CertCA2 = [(kpub,CA2, IDCA2),sigkpr,CA1
(kpub,CA2, IDCA2)]

The important outcome of the process is that Alice can now verify Bob’s key.

350 13 Key Establishment

What’s happening here is that a certificate chain is being established. CA1 trusts

CA2 which is expressed by CA1 signing the public key kpub,CA2. Now Alice can

trust Bob’s public key since it was signed by CA1. This situation is called a chain

of trust, and it is said that trust is delegated.

In practice, CAs can be arranged hierarchically, where each CA signes the public

key of the certificate authorities one level below. Alternatively, CAs can cross-certify

each other without a strict hierarchical relationship.

Certificate Revocation Lists

One major issue in practice is that it must be possible to revoke certificates. A com-

mon reason is that a certificate is stored on a smart card which is lost. Another

reason could be that a person left an organization and one wants to make sure that

she is not using the public key that was given to her. The solution in these situations

seems easy: Just publish a list with all certificates that are currently invalid. Such

a list is called a certificate revocation list, or CRL. Typically, the serial numbers of

certificates are used to identify the revoked certificates. Of course, a CRL must be

signed by the CA since otherwise attacks are possible.

The problem with CLRs is how to transmit them to the users. The most straight-

forward way is that every user contacts the issuing CA every time a certificate of

another user is received. The major drawback is that now the CA is involved in

every session set-up. This was one major drawback of KDC-based, i.e., symmetric-

key, approaches. The promise of certificate-based communication was that no online

contact to a central authority was needed.

An alternative is that CRLs are sent out periodically. The problem with this ap-

proach is that there is always a period during which a certificate is invalid but users

have not yet been informed. For instance, if the CRL is sent out at 3:00 am every

morning (a time with relatively little network traffic otherwise), a dishonest person

could have almost a whole day where a revoked certificate is still valid. To counter

this, the CRL update period can be shortened, say to one hour. However, this would

be a tremendous burden on the bandwidth of the network. This is an instructive ex-

ample for the tradeoff between costs in the form of network traffic on one hand, and

security on the other hand. In practice, a reasonable compromise must be found.

In order to keep the size of CRLs moderate, often only the changes from the last

CRL broadcast are sent out. These update-only CRLs are referred to as delta CRLs.

13.4 Discussion and Further Reading

Key Establishment Protocols In most modern network security protocols, public-

key approaches are used for establishing keys. In this book, we introduced the

Diffie–Hellman key exchange and described a basic key transport protocol in

Chap. 6 (cf. Fig. 6.5). In practice, often considerably more advanced asymmetric

13.4 Discussion and Further Reading 351

protocols are used. However, most of them are based on either the Diffie–Hellman

or a key transport protocol. A comprehensive overview on this area is given in [33].

We now give a few examples of generic cryptographic protocols that are of-

ten preferred over the basic Diffie–Hellman key exchange. The MTI (Matsumoto–

Takashima–Imai) protocols are an ensemble of authenticated Diffie–Hellman key

exchanges which were already published in 1986. Good descriptions can be found

in [33] and [120]. Another popular Diffie–Hellman extension is the station-to-station

(STS) protocol. It uses certificates and provides both user and key authentication.

A discussion about STS variants can be found in [60]. A more recent protocol for

authenticated Diffie–Hellman is the MQV protocol which is discussed in [108]. It is

typically used with elliptic curves.

A prominent practical example for a key establishment protocol is the Internet

Key Exchange (IKE) protocol. IKE provides key material for IPsec, which is the

“official” security mechanism for Internet traffic. IKE is quite complex and offers

many options. At its core, however, is a Diffie–Hellman key agreement followed

by an authentication. The latter can either be achieved with certificates or with pre-

shared keys. A good starting point for more information on IPsec and IKE is the

RFC [128] and, more accessibly, reference [161, Chapter 16].

Certificates and Alternatives During the second half of the 1990s there was a

belief that essentially every Internet user would need a certificate in order to com-

municate securely, e.g., for doing ebusiness transactions. “PKI” was a buzzword for

some time, and many companies were formed that provided certificates and PKI ser-

vices. However, it turned out that there are major technical and practical hurdles to a

PKI that truly encompasses all or most Internet users. What has happened instead is

that nowadays many servers are authenticated with certificates, for instance Internet

retailers, whereas most individual users are not. The needed CA verification keys

are often preinstalled in users’ Web browsers. This asymmetric set-up — the server

is authenticated but the user is not — is acceptable since the user is typically the one

who provides crucial information such as her credit card number. A comprehensive

introduction to the large field of PKI and certificates is given in the book [2]. An in-

teresting and entertaining discussion about the alleged shortcomings of PKI is given

in [74], and an equally instructive rebuttal is online at [107].

We introduced certificates and a public-key infrastructure as the main method

for authenticating public keys. Such hierarchical organized certificates are only one

possible approach, though this is the most widely used one. Another concept is the

web of trust that relies entirely on trust relationships between parties. The idea is

as follows: If Alice trusts Bob, it is assumed that she also wants to trust all other

users whom Bob trusts. This means that every party in such a web of trust implicitly

trusts parties whom it does not know (or has never met before). The most popular

example for such a system are Pretty Good Privacy (PGP) and Gnu Privacy Guard

(GPG), which are widely used for signing and encrypting emails.

352 13 Key Establishment

13.5 Lessons Learned

� A key transport protocol securely transfers a secret key to other parties.

� In a key agreement protocol, two or more parties negotiate a common secret key.

� In most common symmetric protocols, the key exchange is coordinated by a

trusted third party. A secure channel between the third party and each user is

only required at set-up time.

� Symmetric key establishment protocols do not scale well to networks with large

numbers of users and they provide typically no perfect forward secrecy.

� The most widely used asymmetric key establishment protocol is the Diffie–

Hellman key exchange.

� All asymmetric protocols require that the public keys are authenticated, e.g., with

certificates. Otherwise man-in-the-middle attacks are possible.

13.5 Problems 353

Problems

13.1. In this exercise, we want to analyze some variants of key derivation. In prac-

tice, one masterkey kMK is exchanged in a secure way (e.g. certificate-based DHKE)

between the involved parties. Afterwards, the session keys are regularly updated by

use of key derivation. For this purpose, three different methods are at our disposal:

(1) k0 = kMK ; ki+1 = ki +1

(2) k0 = h(kMK); ki+1 = h(ki)
(3) k0 = h(kMK); ki+1 = h(kMK ||i||ki)

where h() marks a (secure) hash function, and ki is the ith session key.

1. What are the main differences between these three methods?

2. Which method provides Perfect Forward Secrecy?

3. Assume Oscar obtains the nth session key (e.g., via brute-force). Which sessions

can he now decrypt (depending on the chosen method)?

4. Which method remains secure if the masterkey kMK is compromised? Give a

rationale!

13.2. Imagine a peer-to-peer network where 1000 users want to communicate in an

authenticated and confidential way without a central Trusted Third Party (TTP).

1. How many keys are collectively needed, if symmetric algorithms are deployed?

2. How are these numbers changed, if we bring in a central instance (Key Distribu-

tion Center, KDC)?

3. What is the main advantage of a KDC against the scenario without a KDC?

4. How many keys are necessary if we make use of asymmetric algorithms?

Also differentiate between keys which every user has to store and keys which are

collectively necessary.

13.3. You have to choose the cryptographic algorithms for a KDC where two differ-

ent classes of encryption occur:

� ekU,KDC
(), where U denotes an arbitrary network node (user),

� ekses
() for the communication between two users.

You have the choice between two different algorithms, DES and 3DES (Triple-

DES), and you are advised to use distinct algorithms for both encryption classes.

Which algorithm do you use for which class? Justify your answer including aspects

of security as well as celerity.

13.4. This exercise considers the security of key establishment with the aid of a

KDC. Assume that a hacker performs a successful attack against the KDC at the

point of time tx, where all keys are compromised. The attack is detected.

1. Which (practical) measures have to be taken in order to prevent decryption of

future communication between the network nodes?

354 13 Key Establishment

2. Which steps did the attacker have to take in order to decipher data transmissions

which occurred at an earlier time (t < tx)? Does such a KDC system provide

Perfect Forward Secrecy (PFS) or not?

13.5. We will now analyze an improved KDC system. In contrast to the previous

problem, all keys ekU,KDC
() are now refreshed in relatively short intervals:

� The KDC generates a new (random) key: k
(i+1)
U,KDC

� The KDC transmits the new key to user U , encrypted with the old one:

e
k
(i)
U,KDC

(k
(i+1)
U,KDC)

Which decryptions are possible, if a staff member of the KDC is corruptible and

“sells” all recent keys e
k
(i)
U,KDC

of the KDC at the point of time tx? We assume that

this circumstance is not detected until the point of time ty which could be much later,

e.g., one year.

13.6. Show a key confirmation attack against the basic KDC protocol introduced in

Sect. 13.2.1. Describe each step of the attack. Your drawing should look similar to

the one showing a key confirmation attack against the second (modified) KDC-based

protocol.

13.7. Show that PFS is in fact not given in the simplified Kerberos protocol. Show

how Oscar can decrypt past and future communications if:

1. Alice’s KEK kA becomes compromised

2. Bob’s KEK kB becomes compromised

13.8. Extend the Kerberos protocol such that a mutual authentication between Alice

and Bob is performed. Give a rationale that your solution is secure.

13.9. People at your new job are deeply impressed that you worked through this

book. As the first job assignment you are asked to design a digital pay-TV system

which uses encryption to prevent service theft through wire tapping. As key ex-

change protocol, a strong Diffie–Hellman with, e.g., 2048-bit modulus is being used.

However, since your company wants to use cheap legacy hardware, only DES is

available for data encryption algorithm. You decide to use the following key deriva-

tion approach:

K(i) = f (KAB ‖ i). (13.1)

where f is an irreversible function.

1. First we have to determine whether the attacker can store an entire movie with

reasonable effort (in particular, cost). Assume the data rate for the TV link is

1 Mbit/s, and that the longest movies we want to protect are 2 hours long. How

many Gbytes (where 1M = 106 and 1G = 109) of data must be stored for a 2-hour

film (don’t mix up bit and byte here)? Is this realistic?

13.5 Problems 355

2. We assume that an attacker will be able to find a DES key in 10 minutes using

a brute-force attack. Note that this is a somewhat optimistic assumption from an

attacker’s point of view, but we want to provide some medium-term security by

assuming increasingly faster key searches in the future.

How frequently must a key be derived if the goal is to prevent an offline decryp-

tion of a 2-hour movie in less than 30 days?

13.10. We consider a system in which a key kAB is established using the Diffie–

Hellman key exchange protocol, and the encryption keys k(i) are then derived by

computing:

k(i) = h(kAB ‖ i) (13.2)

where i is just an integer counter, represented as a 32-bit variable. The values of i

are public (e.g., the encrypting party always indicates which value for i was used

in a header that precedes each ciphertext block). The derived keys are used for the

actual data encryption with a symmetric algorithm. New keys are derived every

60 sec during the communication session.

1. Assume the Diffie–Hellman key exchange is done with a 512-bit prime, and the

encryption algorithm is AES. Why doesn’t it make cryptographic sense to use the

key derivation protocol described above? Describe the attack that would require

the least computational effort from Oscar.

2. Assume now that the Diffie–Hellman key exchange is done with a 2048-bit

prime, and the encryption algorithm is DES. Describe in detail what the advan-

tages are that the key derivation scheme offers compared to a system that just

uses the Diffie–Hellman key for DES.

13.11. We reconsider the Diffie–Hellman key exchange protocol. Assume now that

Oscar runs an active man-in-the-middle attack against the key exchange as explained

in Sect. 13.3.1. For the Diffie–Hellman key exchange, use the parameters p = 467,

α = 2, and a = 228, b = 57 for Alice and Bob, respectively. Oscar uses the value

o = 16. Compute the key pairs kAO and kBO (i) the way Oscar computes them, and

(ii) the way Alice and Bob compute them.

13.12. We consider the Diffie–Hellman key exchange scheme with certificates. We

have a system with the three users Alice, Bob and Charley. The Diffie–Hellman

algorithm uses p = 61 and α = 18. The three secret keys are a = 11, b = 22 and

c = 33. The three IDs are ID(A)=1, ID(B)=2 and ID(C)=3.

For signature generation, the Elgamal signature scheme is used. We apply the

system parameters p′ = 467, d′ = 127, α ′ = 2 and β . The CA uses the ephemeral

keys kE = 213, 215 and 217 for Alice’s, Bob’s and Charley’s signatures, respec-

tively. (In practice, the CA should use a better pseudorandom generator to obtain

the kE values.)

To obtain the certificates, the CA computes xi = 4×bi + ID(i) and uses this value

as input for the signature algorithm. (Given xi, ID(i) follows then from ID(i) ≡
xi mod 4.)

1. Compute three certificates CertA, CertB and CertC.

356 13 Key Establishment

2. Verify all three certificates.

3. Compute the three session keys kAB, kAC and kBC.

13.13. Assume Oscar attempts to use an active (substitution) attack against the

Diffie–Hellman key exchange with certificates in the following ways:

1. Alice wants to communicate with Bob. When Alice obtains C(B) from Bob, Os-

car replaces it with (a valid!) C(O). How will this forgery be detected?

2. Same scenario: Oscar tries now to replace only Bob’s public key bB with his own

public key bO. How will this forgery be detected?

13.14. We consider certificate generation with CA-generated keys. Assume the sec-

ond transmission of (CertA, kpr,A) takes place over an authenticated but insecure

channel, i.e., Oscar can read this message.

1. Show how he can decrypt traffic which is encrypted by means of a Diffie–

Hellman key that Alice and Bob generated.

2. Can he also impersonate Alice such that he computes a DH key with Bob without

Bob noticing?

13.15. Given is a user domain in which users share the Diffie–Hellman parame-

ters α and p. Each user’s public Diffie–Hellman key is certified by a CA. Users

communicate securely by performing a Diffie–Hellman key exchange and then en-

crypting/decrypting messages with a symmetric algorithm such as AES.

Assume Oscar gets hold of the CA’s signature algorithm (and especially its pri-

vate key), which was used to generate certificates. Can he now decrypt old cipher-

texts which were exchanged between two users before the CA signature algorithm

was compromised, and which Oscar had stored? Explain your answer.

13.16. Another problem in certificate systems is the authenticated distribution of the

CA’s public key which is needed for certificate verification. Assume Oscar has full

control over all of Bob’s communications, that is, he can alter all messages to and

from Bob. Oscar now replaces the CA’s public key with his own (note that Bob has

no means to authenticate the key that he receives, so he thinks that he received the

CA public key.)

1. (Certificate issuing) Bob requests a certificate by sending a request containing

(1) Bob’s ID ID(B) and (2) Bob’s public key B from the CA. Describe exactly

what Oscar has to do so that Bob doesn’t find out that he has the wrong public

CA key.

2. (Protocol execution) Describe what Oscar has to do to establish a session key

with Bob using the authenticated Diffie–Hellman key exchange, such that Bob

thinks he is executing the protocol with Alice.

13.17. Draw a diagram that shows a key transport protocol shown in Fig. 6.5 from

Sect. 6.1, in which RSA encryption is used.

13.5 Problems 357

13.18. We consider RSA encryption with certificates in which Bob has the RSA

keys. Oscar manages to send Alice a verification key kpr,CA which is, in fact, Oscar’s

key. Show an active attack in which he can decipher encrypted messages that Alice

sends to Bob. Should Oscar run a MIM attack or should he set up a session only

between himself and Alice?

13.19. Pretty Good Privacy (PGP) is a widespread scheme for electronic mail se-

curity to provide authentication and confidentiality. PGP does not necessarily re-

quire the use of certificate authorities. Describe the trust model of PGP and how the

public-key management works in practice.

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: An encryption scheme
based on the Diffie–Hellman problem. Available at citeseer.ist.psu.edu/

abdalla99dhaes.html, 1999.
2. Carlisle Adams and Steve Lloyd. Understanding PKI: Concepts, Standards, and Deployment

Considerations. Addison-Wesley Longman Publishing, Boston, MA, USA, 2002.
3. ANSI X9.17-1985. American National Standard X9.17: Financial Institution Key Manage-

ment, 1985.
4. ANSI X9.31-1998. American National Standard X9.31, Appendix A.2.4: Public Key Cryp-

tography Using Reversible Algorithms for the Financial Services Industry (rDSA). Technical
report, Accredited Standards Committee X9, Available at http://www.x9.org, 2001.

5. ANSI X9.42-2003. Public Key Cryptography for the Financial Services Industry: Agreement
of Symmetric Keys Using Discrete Logarithm Cryptography. Technical report, American
Bankers Association, 2003.

6. ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm (ECDSA). Technical
report, American Bankers Association, 1999.

7. ANSI X9.62-2001. Elliptic Curve Key Agreement and Key Transport Protocols. Technical
report, American Bankers Association, 2001.

8. Frederik Armknecht. Algebraic attacks on certain stream ciphers. PhD thesis, Department
of Mathematics, University of Mannheim, Germany, December 2006. http://madoc.

bib.uni-mannheim.de/madoc/volltexte/2006/1352/.
9. Standards for Efficient Cryptography — SEC 1: Elliptic Curve Cryptography, September

2000. Version 1.0.
10. Daniel V. Bailey and Christof Paar. Efficient arithmetic in finite field extensions with appli-

cation in elliptic curve cryptography. Journal of Cryptology, 14, 2001.
11. Elad Barkan, Eli Biham, and Nathan Keller. Instant Ciphertext-Only Cryptanalysis of GSM

Encrypted Communication. Journal of Cryptology, 21(3):392–429, 2008.
12. P. S. L. M. Barreto and V. Rijmen. The whirlpool hashing function, September 2999. (revised

May 2003), http://paginas.terra.com.br/informatica/paulobarreto/
WhirlpoolPage.html.

13. F. L. Bauer. Decrypted Secrets: Methods and Maxims of Cryptology. Springer, 4th edition,
2007.

14. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message Au-
thentication. In CRYPTO ’96: Proceedings of the 16th Annual International Cryptology

Conference, Advances in Cryptology, pages 1–15. Springer, 1996.
15. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Message Authentication using Hash

Functions—The HMAC Construction. CRYPTOBYTES, 2, 1996.
16. C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. The strengths and weaknesses of

quantum computation. SIAM Journal on Computing, 26:1510–1523, 1997.

359

360 References

17. Daniel J. Bernstein. Multidigit multiplication for mathematicians. URL:
http://cr.yp.to/papers.html.

18. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post-Quantum Cryptography.
Springer, 2009.

19. N. Biggs. Discrete Mathematics. Oxford University Press, New York, 2nd edition, 2002.
20. E. Biham. A fast new DES implementation in software. In Fourth International Workshop

on Fast Software Encryption, volume 1267 of LNCS, pages 260–272. Springer, 1997.
21. Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption Standard.

Springer, 1993.
22. Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC. In

FSE: Fast Software Encryption, pages 1–18. Springer, 2000.
23. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure

message authentication. In CRYPTO ’99: Proceedings of the 19th Annual International

Cryptology Conference, Advances in Cryptology, volume 99, pages 216–233. Springer, 1999.
24. I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic Curve Cryptogra-

phy (London Mathematical Society Lecture Note Series). Cambridge University Press, New
York, NY, USA, 2005.

25. Ian F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, New York, NY, USA, 1999.

26. Daniel Bleichenbacher, Wieb Bosma, and Arjen K. Lenstra. Some remarks on Lucas-based
cryptosystems. In CRYPTO ’95: Proceedings of the 15th Annual International Cryptology

Conference, Advances in Cryptology, pages 386–396. Springer, 1995.
27. L Blum, M Blum, and M Shub. A simple unpredictable pseudorandom number generator.

SIAM J. Comput., 15(2):364–383, 1986.
28. Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryption scheme

which hides all partial information. In CRYPTO ’84: Proceedings of the 4th Annual Interna-

tional Cryptology Conference, Advances in Cryptology, pages 289–302, 1984.
29. Andrey Bogdanov, Gregor Leander, Lars R. Knudsen, Christof Paar, Axel Poschmann,

Matthew J.B. Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT—An Ultra-
Lightweight Block Cipher. In CHES ’07: Proceedings of the 9th International Workshop on

Cryptographic Hardware and Embedded Systems, number 4727 in LNCS, pages 450–466.
Springer, 2007.

30. Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. SIAM

J. Comput., 32(3):586–615, 2003.
31. Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to

cryptography (extended abstract). In CRYPTO ’96: Proceedings of the 16th Annual Interna-

tional Cryptology Conference, Advances in Cryptology, pages 283–297. Springer, 1996.
32. Dan Boneh, Ron Rivest, Adi Shamir, and Len Adleman. Twenty Years of Attacks on the

RSA Cryptosystem. Notices of the AMS, 46:203–213, 1999.
33. Colin A. Boyd and Anish Mathuria. Protocols for Key Establishment and Authentication.

Springer, 2003.
34. ECC Brainpool. ECC Brainpool Standard Curves and Curve Generation, 2005. http:

//www.ecc-brainpool.org/ecc-standard.htm.
35. Johannes Buchmann and Jintai Ding, editors. Post-Quantum Cryptography, Second Interna-

tional Workshop, PQCrypto 2008, Proceedings, volume 5299 of LNCS. Springer, 2008.
36. Johannes Buchmann and Jintai Ding, editors. PQCrypto 2006: International Workshop on

Post-Quantum Cryptography, LNCS. Springer, 2008.
37. German Federal Office for Information Security (BSI). http://www.bsi.de/

english/publications/bsi_standards/index.htm.
38. Mike Burmester and Yvo Desmedt. A secure and efficient conference key distribution system

(extended abstract). In Advances in Cryptology — EUROCRYPT’94, pages 275–286, 1994.
39. C. M. Campbell. Design and specification of cryptographic capabilities. NBS Special Pub-

lication 500-27: Computer Security and the Data Encryption Standard, U.S. Department of

Commerce, National Bureau of Standards, pages 54–66, 1977.

References 361

40. J.L. Carter and M.N. Wegman. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22(3):265–277, 1981.

41. Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, 1996.

42. P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES algorithm. In
C. D. Walter, Ç. K. Koç, and C. Paar, editors, CHES ’03: Proceedings of the 5th International

Workshop on Cryptographic Hardware and Embedded Systems, volume 2779 of LNCS, pages
319–333. Springer, 2003.

43. C. Cid, S. Murphy, and M. Robshaw. Algebraic Aspects of the Advanced Encryption Stan-

dard. Springer, 2006.
44. H. Cohen, G. Frey, and R. Avanzi. Handbook of Elliptic and Hyperelliptic Curve Cryp-

tography. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, September
2005.

45. T. Collins, D. Hopkins, S. Langford, and M. Sabin. Public key cryptographic apparatus and
method, 1997. United States Patent US 5,848,159. Jan. 1997.

46. Common Criteria for Information Technology Security Evaluation. http://www.

commoncriteriaportal.org/.
47. COPACOBANA—A Cost-Optimized Parallel Code Breaker. http://www.

copacobana.org/.
48. Sony Corporation. Clefia – new block cipher algorithm based on state-of-the-art design

technologies, 2007. http://www.sony.net/SonyInfo/News/Press/200703/

07-028E/index.html.
49. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack. CRYPTO ’98: Proceedings of the 18th Annual

International Cryptology Conference, Advances in Cryptology, 1462:13–25, 1998.
50. Cryptool — Educational Tool for Cryptography and Cryptanalysis. https://www.

cryptool.org/.
51. J. Daemen and V. Rijmen. AES Proposal: Rijndael. In First Advanced Encryption Standard

(AES) Conference, Ventura, California, USA, 1998.
52. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer, 2002.
53. B. den Boer and A. Bosselaers. An attack on the last two rounds of MD4. In CRYPTO ’91:

Proceedings of the 11th Annual International Cryptology Conference, Advances in Cryptol-

ogy, LNCS, pages 194–203. Springer, 1992.
54. B. den Boer and A. Bosselaers. Collisions for the compression function of MD5. In Advances

in Cryptology - EUROCRYPT’93, LNCS, pages 293–304. Springer, 1994.
55. Alexander W. Dent. A brief history of provably-secure public-key encryption. Cryptology

ePrint Archive, Report 2009/090, 2009. http://eprint.iacr.org/.
56. Diehard Battery of Tests of Randomness CD, 1995. http://i.cs.hku.hk/

˜diehard/.
57. W. Diffie. The first ten years of public-key cryptography. Innovations in Internetworking,

pages 510–527, 1988.
58. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-

mation Theory, IT-22:644–654, 1976.
59. W. Diffie and M. E. Hellman. Exhaustive cryptanalysis of the NBS Data Encryption Stan-

dard. COMPUTER, 10(6):74–84, June 1977.
60. Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication and authenti-

cated key exchanges. Des. Codes Cryptography, 2(2):107–125, 1992.
61. Hans Dobbertin. Alf swindles Ann. CRYPTOBYTES, 3(1), 1995.
62. Hans Dobbertin. The status of MD5 after a recent attack. CRYPTOBYTES, 2(2), 1996.
63. Saar Drimer, Tim Güneysu, and Christof Paar. DSPs, BRAMs and a Pinch of Logic: New

Recipes for AES on FPGAs. IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), 0:99–108, 2008.
64. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CCM

Mode for Authentication and Confidentiality, May 2004. http://csrc.nist.gov/

publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.

pdf.

362 References

65. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC Mode
for Authentication, NIST Special Publication 800-38D, May 2005. http://csrc.nist.
gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

66. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois Counter
Mode (GCM) and GMAC, NIST Special Publication 800-38D, November 2007. http:

//csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.
67. H. Eberle and C.P. Thacker. A 1 GBIT/second GaAs DES chip. In Custom Integrated Circuits

Conference, pages 19.7/1–4. IEEE, 1992.
68. AES Lounge, 2007. http://www.iaik.tu-graz.ac.at/research/krypto/

AES/.
69. eSTREAM—The ECRYPT Stream Cipher Project, 2007. http://www.ecrypt.eu.

org/stream/.
70. The Side Channel Cryptanalysis Lounge, 2007. http://www.crypto.

ruhr-uni-bochum.de/en_sclounge.html.
71. Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann, and Leif Uhsadel. A

Survey of Lightweight Cryptography Implementations. IEEE Design & Test of Computers

– Special Issue on Secure ICs for Secure Embedded Computing, 24(6):522 – 533, Novem-
ber/December 2007.

72. S. E. Eldridge and C. D. Walter. Hardware implementation of Montgomery’s modular mul-
tiplication algorithm. IEEE Transactions on Computers, 42(6):693–699, July 1993.

73. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

74. C. Ellison and B. Schneier. Ten risks of PKI: What you’re not being told about public
key infrastructure. Computer Security Journal, 16(1):1–7, 2000. See also http://www.
counterpane.com/pki-risks.html.

75. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES implementation on a grain of sand.
Information Security, IEE Proceedings, 152(1):13–20, 2005.

76. Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and
signature problems. In CRYPTO ’86: Proceedings of the 6th Annual International Cryptol-

ogy Conference, Advances in Cryptology, pages 186–194. Springer, 1987.
77. Federal Information Processing Standards Publications — FIPS PUBS. http://www.

itl.nist.gov/fipspubs/index.htm.
78. Electronic Frontier Foundation. Frequently Asked Questions (FAQ) About the Electronic

Frontier Foundation’s DES Cracker Machine, 1998. http://w2.eff.org/Privacy/
Crypto/Crypto_misc/DESCracker/HTML/19980716_eff_des_faq.html.

79. J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, and C. Stahlke. SHARK — A Realizable
Special Hardware Sieving Device for Factoring 1024-bit Integers. In Josyula R. Rao and Berk
Sunar, editors, CHES ’05: Proceedings of the 7th International Workshop on Cryptographic

Hardware and Embedded Systems, volume 3659 of LNCS, pages 119–130. Springer, August
2005.

80. Bundesamt für Sicherheit in der Informationstechnik. Anwendungshinweise und Inter-
pretationen zum Schema (AIS). Funktionalitätsklassen und Evaluationsmethodologie für
physikalische Zufallszahlengeneratoren. AIS 31, Version 1, 2001. http://www.bsi.

bund.de/zertifiz/zert/interpr/ais31.pdf.
81. Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,

New York, NY, USA, 2000.
82. Oded Goldreich. Zero-Knowledge: A tutorial by Oded Goldreich, 2001. http://www.

wisdom.weizmann.ac.il/˜oded/zk-tut02.html.
83. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge

University Press, New York, NY, USA, 2004.
84. Oded Goldreich. On post-modern cryptography. Cryptology ePrint Archive, Report

2006/461, 2006. http://eprint.iacr.org/.
85. Jovan Dj. Golic. On the security of shift register based keystream generators. In Fast Software

Encryption, Cambridge Security Workshop, pages 90–100. Springer, 1994.

References 363

86. Tim Good and Mohammed Benaissa. AES on FPGA from the fastest to the smallest. CHES

’05: Proceedings of the 7th International Workshop on Cryptographic Hardware and Em-

bedded Systems, pages 427–440, 2005.
87. L. Grover. A fast quantum-mechanical algorithm for database search. In Proceedings of

the Twenty-eighth Annual ACM Symposium on Theory of Computing, pages 212–219. ACM,
1996.

88. Tim Güneysu, Timo Kasper, Martin Novotny, Christof Paar, and Andy Rupp. Cryptanalysis
with COPACOBANA. IEEE Transactions on Computers, 57(11):1498–1513, 2008.

89. S. Halevi and H. Krawczyk. MMH: message authentication in software in the Gbit/second
rates. In Proceedings of the 4th Workshop on Fast Software Encryption, volume 1267, pages
172–189. Springer, 1997.

90. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve Cryptography.
Springer, 2004.

91. M. Hellman. A cryptanalytic time-memory tradeoff. IEEE Transactions on Information

Theory, 26(4):401–406, 1980.
92. Shoichi Hirose. Some plausible constructions of double-block-length hash functions. In

FSE: Fast Software Encryption, volume 4047 of LNCS, pages 210–225. Springer, 2006.
93. Deukjo Hong, Jaechul Sung, and Seokhie Hong et al. Hight: A new block cipher suitable

for low-resource device. In CHES ’06: Proceedings of the 8th International Workshop on

Cryptographic Hardware and Embedded Systems, pages 46–59. Springer, 2006.
94. International Organization for Standardization (ISO). ISO/IEC 15408, 15443-1, 15446,

19790, 19791, 19792, 21827.
95. International Organization for Standardization (ISO). ISO/IEC 9796-1:1991, 9796-2:2000,

9796-3:2002, 1991–2002.
96. International Organization for Standardization (ISO). ISO/IEC 10118-4, Information

technology—Security techniques—Hash-functions—Part 4: Hash-functions using modular
arithmetic, 1998. http://www.iso.org/iso/.

97. D. Kahn. The Codebreakers. The Story of Secret Writing. Macmillan, 1967.
98. Jens-Peter Kaps, Gunnar Gaubatz, and Berk Sunar. Cryptography on a speck of dust. Com-

puter, 40(2):38–44, 2007.
99. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet

Physics Doklady (English translation), 7(7):595–596, 1963.
100. Ann Hibner Koblitz, Neal Koblitz, and Alfred Menezes. Elliptic curve cryptography: The

serpentine course of a paradigm shift. Cryptology ePrint Archive, Report 2008/390, 2008.
http://eprint.iacr.org/cgi-bin/cite.pl?entry=2008/390.

101. Neal Koblitz. Introduction to Elliptic Curves and Modular Forms. Springer, 1993.
102. Neal Koblitz. The uneasy relationship between mathematics and cryptography. Notices of

the AMS, pages 973–979, September 2007.
103. Neal Koblitz, Alfred Menezes, and Scott Vanstone. The state of elliptic curve cryptography.

Des. Codes Cryptography, 19(2-3):173–193, 2000.
104. Çetin Kaya Koç. Cryptographic Engineering. Springer, 2008.
105. S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with

COPACOBANA—A cost-optimized parallel code breaker. In CHES ’06: Proceedings of

the 8th International Workshop on Cryptographic Hardware and Embedded Systems, LNCS.
Springer, October 2006.

106. Matthew Kwan. Reducing the Gate Count of Bitslice DES, 1999. http://www.

darkside.com.au/bitslice/bitslice.ps.
107. Ben Laurie. Seven and a Half Non-risks of PKI: What You Shouldn’t Be Told about Public

Key Infrastructure. http://www.apache-ssl.org/7.5things.txt.
108. Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone. An efficient

protocol for authenticated key agreement. Des. Codes Cryptography, 28(2):119–134, 2003.
109. Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In CRYPTO ’00: Pro-

ceedings of the 20th Annual International Cryptology Conference, Advances in Cryptology,
pages 1–19. Springer, 2000.

364 References

110. Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and Their Applications.
Cambridge University Press, 2nd edition, 1994.

111. Chae Hoon Lim and Tymur Korkishko. mCrypton–A lightweight block cipher for security of
low-cost RFID tags and Sensors. In Information Security Applications, volume 3786, pages
243–258. Springer, 2006.

112. Yehuda Lindell. Composition of Secure Multi-Party Protocols: A Comprehensive Study.
Springer, 2003.

113. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing

the Secrets of Smart Cards (Advances in Information Security). Springer, 2007.
114. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology -

EUROCRYPT ’93, 1993.
115. Mitsuru Matsui. How far can we go on the x64 processors? In FSE: Fast Software Encryp-

tion, volume 4047 of LNCS, pages 341–358. Springer, 2006.
116. Mitsuru Matsui and S. Fukuda. How to maximize software performance of symmetric prim-

itives on Pentium III and 4 processors. In FSE: Fast Software Encryption, volume 3557 of
LNCS, pages 398–412. Springer, 2005.

117. Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on Intel Core2
processor. In CHES ’07: Proceedings of the 9th International Workshop on Cryptographic

Hardware and Embedded Systems, pages 121–134. Springer, 2007.
118. Ueli M. Maurer and Stefan Wolf. The relationship between breaking the Diffie–Hellman

protocol and computing discrete logarithms. SIAM Journal on Computing, 28(5):1689–1721,
1999.

119. D. McGrew and J. Viega. RFC 4543: The Use of Galois Message Authentication Code
(GMAC) in IPsec ESP and AH. Technical report, Corporation for National Research Initia-
tives, Internet Engineering Task Force, Network Working Group, May 2006. Available at
http://rfc.net/rfc4543.html.

120. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, Boca Raton, Florida, USA, 1997.

121. Ralph C. Merkle. Secure communications over insecure channels. Commun. ACM,
21(4):294–299, 1978.

122. Sean Murphy and Matthew J. B. Robshaw. Essential algebraic structure within the AES.
In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology Conference, Ad-

vances in Cryptology, pages 1–16. Springer, 2002.
123. David Naccache and David M’Rahi. Cryptographic smart cards. IEEE Micro, 16(3):14–24,

1996.
124. Block Cipher Modes Workshops. http://csrc.nist.gov/groups/ST/toolkit/

BCM/workshops.html.
125. NIST test suite for random numbers. http://csrc.nist.gov/rng/.
126. National Institute of Standards and Technology (NIST). Digital Signature Standards

(DSS), FIPS186-3. Technical report, Federal Information Processing Standards Publication
(FIPS), June 2009. Available at http://csrc.nist.gov/publications/fips/
fips186-3/fips_186-3.pdf.

127. J. Nechvatal. Public key cryptography. In Gustavus J. Simmons, editor, Contemporary

Cryptology: The Science of Information Integrity, pages 177–288. IEEE Press, Piscataway,
NJ, USA, 1994.

128. Security Architecture for the Internet Protocol. http://www.rfc-editor.org/rfc/
rfc4301.txt.

129. I. Niven, H.S. Zuckerman, and H.L. Montgomery. An Introduction to the Theory of Numbers

(5th Edition). Wiley, 1991.
130. NSA Suite B Cryptography. http://www.nsa.gov/ia/programs/suiteb_

cryptography/index.shtml.
131. Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In CRYPTO

’03: Proceedings of the 23rd Annual International Cryptology Conference, Advances in

Cryptology, volume 2729 of LNCS, pages 617–630, 2003.

References 365

132. The OpenSSL Project, 2009. http://www.openssl.org/.
133. European Parliament. Directive 1999/93/EC of the European Parliament and of the

Council of 13 December 1999 on a Community framework for electronic signa-
tures, 1999. http://europa.eu/eur-lex/pri/en/oj/dat/2000/l_013/l_

01320000119en00120020.pdf.
134. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer, editor, Ad-

vances in Cryptology — EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer,
1996.

135. Axel Poschmann. Lightweight Cryptography — Cryptographic Engineering for a

Pervasive World. PhD thesis, Department of Electrical Engineering and Computer
Sciences, Ruhr-University Bochum, Germany, April 2009. http://www.crypto.

ruhr-uni-bochum.de/en_theses.html.
136. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: A syn-

thetic approach. LNCS, 773:368–378, 1994.
137. Bart Preneel. MDC-2 and MDC-4. In Henk C. A. van Tilborg, editor, Encyclopedia of

Cryptography and Security. Springer, 2005.
138. Electronic Signatures in Global and National Commerce Act, United States of America,

2000.
139. Jean-Jacques Quisquater, Louis Guillou, Marie Annick, and Tom Berson. How to explain

zero-knowledge protocols to your children. In CRYPTO ’89: Proceedings of the 9th Annual

International Cryptology Conference, Advances in Cryptology, pages 628–631. Springer,
1989.

140. M. O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factoriza-
tion. Technical report, Massachusetts Institute of Technology, 1979.

141. W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, Inc., 2003.
142. RC4 Page. http://www.wisdom.weizmann.ac.il/˜itsik/RC4/rc4.html.
143. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.
144. Ron Rivest. The RC4 Encryption Algorithm, March 1992. http://www.

rsasecurity.com.
145. Dorothy Elizabeth Robling Denning. Cryptography and Data Security. Addison-Wesley

Longman Publishing Co., Inc., 1982.
146. Matthew Robshaw and Olivier Billet, editors. New Stream Cipher Designs: The eSTREAM

Finalists, volume 4986 of LNCS. Springer, 2008.
147. Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar. Ultra-lightweight im-

plementations for smart devices–security for 1000 gate equivalents. In Proceedings of the 8th

Smart Card Research and Advanced Application IFIP Conference – CARDIS 2008, volume
5189 of LNCS, pages 89–103. Springer, 2008.

148. K. H. Rosen. Elementary Number Theory, 5th Edition. Addison-Wesley, 2005.
149. Public Key Cryptography Standard (PKCS), 1991. http://www.rsasecurity.com/

rsalabs/node.asp?id=2124.
150. Claus-Peter Schnorr. Efficient signature generation by smartcards. Journal of Cryptology,

4:161–174, 1991.
151. A. Shamir. Factoring large numbers with the TWINKLE device. In CHES ’99: Proceed-

ings of the 1st International Workshop on Cryptographic Hardware and Embedded Systems,
volume 1717 of LNCS, pages 2–12. Springer, August 1999.

152. A. Shamir and E. Tromer. Factoring Large Numbers with the TWIRL Device. In CRYPTO

’03: Proceedings of the 23rd Annual International Cryptology Conference, Advances in

Cryptology, volume 2729 of LNCS, pages 1–26. Springer, 2003.
153. P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms. SIAM

Journal on Computing, Communication Theory of Secrecy Systems, 26:1484–1509, 1997.
154. J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.
155. J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Springer, 1994.
156. J. H. Silverman. A Friendly Introduction to Number Theory. Prentice Hall, 3rd edition, 2006.

366 References

157. Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

Cryptography. Anchor, August 2000.
158. Jerome A. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography,

19(2-3):195–249, 2000.
159. J.H. Song, R. Poovendran, J. Lee, and T. Iwata. RFC 4493: The AES-CMAC Algorithm.

Technical report, Corporation for National Research Initiatives, Internet Engineering Task
Force, Network Working Group, June 2006. Available at http://rfc.net/rfc4493.
html.

160. NIST Special Publication SP800-38D: Recommendation for Block Cipher Modes of Op-
eration: Galois Counter Mode (GCM) and GMAC, November 2007. Available at http:
//csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

161. W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice Hall,
4th edition, 2005.

162. Tsuyoshi Takagi. Fast RSA-type cryptosystem modulo pkq. In CRYPTO ’98: Proceedings of

the 18th Annual International Cryptology Conference, Advances in Cryptology, pages 318–
326. Springer, 1998.

163. S. Trimberger, R. Pang, and A. Singh. A 12 Gbps DES Encryptor/Decryptor Core in an
FPGA. In Ç. K. Koç and C. Paar, editors, CHES ’00: Proceedings of the 2nd International

Workshop on Cryptographic Hardware and Embedded Systems, volume 1965 of LNCS, pages
157–163. Springer, August 17-18, 2000.

164. Trivium Specifications. http://www.ecrypt.eu.org/stream/p3ciphers/

trivium/trivium_p3.pdf.
165. Walter Tuchman. A brief history of the data encryption standard. In Internet Besieged:

Countering Cyberspace Scofflaws, pages 275–280. ACM Press/Addison-Wesley, 1998.
166. Annual Workshop on Elliptic Curve Cryptography, ECC. http://cacr.math.

uwaterloo.ca/conferences/.
167. Digital Signature Law Survey. https://dsls.rechten.uvt.nl/.
168. Henk C. A. van Tilborg, editor. Encyclopedia of Cryptography and Security. Springer, 2005.
169. Ingrid Verbauwhede, Frank Hoornaert, Joos Vandewalle, and Hugo De Man. ASIC cryp-

tographical processor based on DES, 1991. http://www.ivgroup.ee.ucla.edu/

pdf/1991euroasic.pdf.
170. SHARCS —- Special-purpose Hardware for Attacking Cryptographic Systems. http://

www.sharcs.org/.
171. WAIFI — International Workshop on the Arithmetic of Finite Fields. http://www.

waifi.org/.
172. Andre Weimerskirch and Christof Paar. Generalizations of the Karatsuba algorithm for effi-

cient implementations. Cryptology ePrint Archive, Report 2006/224. http://eprint.
iacr.org/2006/224.

173. D. Whiting, R. Housley, and N. Ferguson. RFC 3610: Counter with CBC-MAC (CCM).
Technical report, Corporation for National Research Initiatives, Internet Engineering Task
Force, Network Working Group, September 2003.

174. M.J. Wiener. Efficient DES Key Search: An Update. CRYPTOBYTES, 3(2):6–8, Autumn
1997.

175. Thomas Wollinger, Jan Pelzl, and Christof Paar. Cantor versus Harley: Optimization and
analysis of explicit formulae for hyperelliptic curve cryptosystems. IEEE Transactions on

Computers, 54(7):861–872, 2005.

Index

3DES, see triple DES

A5/1 cipher, 31

access control, 264

active attack, 225

Adleman, Leonard, 173

Advanced Encryption Standard, 57, 87, 88

affine mapping, 103

byte substitution layer, 90, 101

diffusion layer, 90, 103

hardware implementation, 115

key addition layer, 90, 106

key schedule, 106

key whitening, 106

layers of, 90

MixColumn, 90, 103, 104

overview, 89

S-Box, 90, 101

selection process, 88

ShiftRows, 90, 103

software implementation, 115

state of, 90

T-Box, 115

AES, see Advanced Encryption Standard

affine cipher, 19

affine mapping, 103

Alice and Bob, 4

anonymity, 264

asymmetric cryptography, see public-key
cryptography

attack

brute-force, see brute-force attack

buffer overflow, 11

auditing, 264

authenticated channel, 342, see channel

authenticated encryption, 143

authentication tag, 320

availability, 264

avalanche effect, 66

baby-step giant-step method, 221

Biham, Eli, 75, 76

binary extended Euclidean algorithm, 168

birthday attack, 299

birthday paradox, 299

bit-slicing, 82

block cipher, 30

confusion, 57

diffusion, 57

block ciphers

and hash functions, 305

Blowfish, 81, 307

brute-force attack, 7, 136

for discrete logarithms, 220

BSI, 22

CA, see certification authority

Caesar cipher, see shift cipher

cardinality, see group

Carmichael number, 189

CAST, 81

CBC, see cipher block chaining mode

CBC-MAC, 143, 325

CC, see Common Criteria

CCM, 327

certificate, 155

chain of, 350

certificate revocation list, 350

delta CRL, 350

certificates, 345

certification authority, 345

CFB, see cipher feedback mode

chain of trust, 347, 350

challenge-response protocol, 340

367

368 Index

channel, 4

Chinese Remainder Theorem, 184

chosen plaintext attack, 27

cipher block chaining mode, 128

cipher feedback mode, 131

ciphertext, 5

classified encryption, 89

cleartext, see plaintext

CMAC, 327

Cocks, Clifford, 149

collision resistance, 299

strong, 299

weak, 298

Common Criteria, 22

confidentiality, 263

with block ciphers, 124

confusion, 90

coprime, 17

counter mode, 132

Cramer–Shoup, 232

CRL, see certificate revocation list

CRT, see Chinese Remainder Theorem

cryptanalysis, 3, 9

classical, 10

implementation attacks, 10

social engineering, 10

cryptographic checksum, see message
authentication code

cryptography, 2, 3

asymmetric, 3

protocol, 3

symmetric, 3, 4

cryptology, 3

CSPRNG, see random number generator,
cryptographically secure

CTR, see counter mode

cyclic group, see group

Data Encryption Standard, 55

E permutation, 63

PC−1 permutation, 67

PC−2 permutation, 68

P permutation, 66

f -function, 62

analytical attacks, 75

bit-slicing, 76

Challenge, 75

COPACOBANA code-breaking machine, 74

cracker, 73

decryption, 69

Deep Crack code-breaking machine, 73

differential cryptanalysis, 75

exhaustive key search, 73

final permutation, 61

hardware implementation, 77

initial permutation, 61

key schedule, 67

linear cryptanalysis, 75

overview, 58

S-box, 63

data origin authentication, 263

decryption exponent, 175

DES, see Data Encryption Standard

DESX, 142

deterministic encryption

RSA, 192

deterministic encryption, stream ciphers, 48

DHAES, 232

DHKE, see Diffie–Hellman key exchange

DHP, see Diffie–Hellman problem

differential cryptanalysis, 66

Diffie, Whitfield, 149

Diffie–Hellman key exchange, 154, 206

Diffie–Hellman problem, 225

digital signature, 154, 259

Elgamal, 270

principle, 261

properties, 260

RSA, 264

verification, 262

Digital Signature Algorithm, 277

key generation, 277, 283

security of, 281

signature, 278, 283

verification, 278

Digital Signature Standard, 277

Diophantine equation, 160

Dirichlet’s drawer principle, 298

discrete logarithm problem, 153, 155, 205, 216

elliptic curves (ECDLP), 247

generalized, 218

in DSA, 281

divide-and-conquer attack, 138

DLP, see discrete logarithm problem

Dobbertin, Hans, 304

domain parameters

for Diffie–Hellman key exchange, 206

double encryption, 138

double-and-add, 248

DSA, see Digital Signature Algorithm

DSS, see Digital Signature Standard

eavesdropping, 4

EAX, 143

ECB, see electronic code book mode

ECDH, see elliptic curve Diffie–Hellman key
exchange

Index 369

ECDHP, see elliptic curve Diffie–Hellman
problem

ECDLP, 247

ECDSA, 282

security of, 286

verification, 284

ECRYPT, 49

eSTREAM, 49

EDE, see encryption–decryption–encryption

EEA, see extended Euclidean algorithm

electronic code book mode, 124

Elgamal

cryptosystem, 226

security, 230, 274

set-up, 227

Elgamal digital signature, 270

acceleration through precomputation, 273

key generation, 270

Elgamal encryption scheme, 226

elliptic curve

domain parameters, 250

elliptic curve Diffie–Hellman key exchange,
249

elliptic curve Diffie–Hellman problem, 251

elliptic curve Digital Signature Algorithm, see

ECDSA

elliptic curves

Koblitz curves, 254

Ellis, James, 149

EMSA, 269

Encoding Method for Signature with
Appendix, see EMSAS

encryption exponent, 175

encryption–decryption–encryption, 140

Enigma, 2, 57

ephemeral key, 332

equivalence class, 15

eSTREAM, 49

Euclid’s algorithm, see Euclidean algorithm

Euclidean algorithm, 157

binary, 168

Euler’s phi function, 165

Euler’s theorem, 167

exhaustive key search, see brute-force attack

existential forgery

Elgamal digital signature, 275

RSA digital signature, 267

exponentiation

square-and-multiply algorithm, 180

sliding window algorithm, 198

extended Euclidean algorithm, 160

extension field

GF(2m), 95

addition, 95

irreducible polynomial, 97
multiplication, 97
polynomial, 95
polynomial arithmetic, 95
subtraction, 95

fault injection attack, 199
Feistel network, 58

generalized, 311
SHA-1, 311

Feistel, Horst, 56
Fermat test, 189
Fermat’s Last Theorem, 166
Fermat’s Little Theorem, 166, 213, 272
field

cardinality, 93
characteristic, 93
extension, see extension field
order, 93
prime, 93

fingerprint of a message, 295
finite field, 90
FIPS, 56, 88
flip-flop, see linear feedback shift register

Galois Counter Mode, 134, 326
Galois fields, see finite fields
Gardner, Martin, 195
GC, 143
gcd, see greatest common divisor
GCHQ, see Government Communications

Headquarters
GCM, see Galois Counter Mode
generalized discrete logarithm problem, 218
generator, see group
GMAC, 326
Government Communications Headquarters,

149
greatest common divisor, 17, 157
group, 91, 208

abelian, 92
cardinality, 211
cyclic, 212
finite, 210
generator, 212
order, 211
primitive element, 212

group order, see group
Grover’s algorithm, 144
GSM, 333

Hamming weight, 182
hash function, 293

compression function, 303

370 Index

cryptographic, 143
hash functions

from block ciphers, 305
hash value, 293

Hasse’s bound, see Hasse’s theorem
Hasse’s theorem, 247

Hellman, Martin, 149
HMAC, see message authentication code

hybrid protocols, 154

hybrid scheme, 4
hyperelliptic curve cryptosystems, 254

hyperelliptic curves, 156

IACR, 21

IDEA, 82

identity based cryptosystems, 254
IEEE 802.11i, 87

IKE, 351
implementation attacks, see cryptanalysis-

implementation attacks

index-calculus algorithm, 223, 251
initialization vector, 48

in CBC mode, 128
integer factorization problem, 153, 155

integrity, 134, 263, 320
inverse

multiplicative, 17
IPsec, 87, 321, 327, 347

IV, see initialization vector

KASUMI, 49, 81
KDC, see key distribution center

kdf, see key derivation function
KEK, see key encryption key

Kerberos, 339
Kerckhoffs’ principle, 11

key, 5

ephemeral, 227
key agreement, 332

key confirmation, 339
key derivation function, 333

key distribution center, 336
key distribution problem, 150

key encryption, 152
key encryption key, 336

key establishment, 331
MTI protocol, 351

key freshness, 333
key generation, 175

key predistribution, 334

key space, 5
key stream, 31

key transport, 332
key update, 333

key whitening, 78, 141
keyed hash function, see message authentica-

tion code

Lagrange’s theorem, 215

lattice-based public-key schemes, 156
letter frequency analysis, see substitution

cipher

LFSR, see linear feedback shift register

lightweight ciphers, 78
linear congruential generator, 35

linear feedback shift register, 41

degree of, 41
feedback coefficients, 43

feedback path, 41

flip-flop, 41
known plaintext attack, 45

maximum length, 44

linear recurrence, see LFSR
Lucifer, 56

MAC, 134, 143, see message authentication
code

CBC-MAC, 143, 325
OMAC, 143, 327

PMAC, 143, 327

MAC, secret prefix, 322
MAC, secret suffix, 322

malleable, 192

Elgamal encryption, 232
RSA, 192

malware, 11
man-in-the-middle attack, 225, 342

Mars, 81, 88, 307

Matsui, Mitsuru, 75
McEliece cryptosystems, 156

MD4 family, 304

MD5, 304
MDC-2 hash function, 313

meet-in-the-middle attack, 138

Merkle, Ralph, 149
Merkle–Damgård construction, 303

and SHA-1, 307

message authentication, 134, 263, 321
message authentication code, 319

HMAC, 321

principle, 320
message digest, see hash function, 295

message expansion factor, 228

Miller–Rabin, see primality test
MIM, see man-in-the-middle attack

MISTY1, 82

MMH, see multilinear-modular-hashing
modulo operation, 14

Index 371

Moore’s Law, 12, 197
MQ public-key schemes, 156
multilinear-modular-hashing, 327
multiparty computation, 21
multiplication table, 210
multivariate quadratic public-key schemes, 156

National Institute of Standards and Technology,
88

National Security Agency, 56, 89
NIST, see National Institute of Standards and

Technology
nonce, 48, 333
nonrepudiation, 151, 263
NSA, see National Security Agency

OAEP, 192
OCB, 143
OFB, see Output Feedback Mode
OMAC, 143, 327
One-Time Pad, 37
one-way function, 153, 205, 333

hash functions and one-wayness, 297
order, see group
Oscar, 4
OTP, see One-Time Pad
out-of-band transmission, 334
Output Feedback Mode, 130

padding
RSA digital signature, 268

padding, for block cipher encryption, 124
parallelization of encryption, 133
perfect forward secrecy, 341
PFS, see perfect forward secrecy
physical security, 264
pigeonhole principle, 298
PKI, 347
plaintext, 5
PMAC, 143, 327
Pohlig–Hellman algorithm for discrete

logarithms, 222
Pollard’s rho method, 222, 251
post-quantum cryptography, 169
preimage resistance, 297
PRESENT, 31, 78, 307
primality test, 188

Fermat, 189
Fermat test, 188, 189
Miller–Rabin, 188, 190, 191
probabilistic test, 189

prime
likelihood, 187

prime number theorem, 188

primes
generalized Mersenne, 254

primitive element, 212
private exponent, 175

PRNG, see random number generator,
pseudorandom

probabilistic encryption, 128, 229
Probabilistic Signature Scheme (PSS), see

RSA digital signature

product ciphers, 57
provable security

HMAC, 325

public exponent, 175
public-key cryptography, 149

public-key infrastructure, see PKI

quantum computer, 88, 144

rainbow tables, 144

random number generator

cryptographically secure, 36
for prime generation, 187

pseudorandom, 35
true, 35

RC4 cipher, 31

RC6, 82, 88, 307
relative security, 38

relatively prime, 17
replay attack, 338

RFID, 79
Rijndael, see Advanced Encryption Standard

and hash functions, 306

ring, 16
RIPEMD, 304

Rivest, Ronald, 173, 304
Rivest–Shamir–Adleman, see RSA

round key, 67

RSA, 174
exponentiation, 179

attacks, 194
Chinese Remainder Theorem, 184

decryption, 175

encryption, 174
factoring attack, 194

factoring records, 194
implementation, 197

key generation, 175

padding, 192
schoolbook, 192

short public exponent, 183
side-channel attacks, 195

speed-ups, 183

RSA digital signature, 264
attacks, 267

372 Index

padding, 268
Probabilistic Signature Scheme (PSS), 268

S/MIME, 347
SECG, 254
second preimage resistance, 298
secret-key, see cryptography-symmetric
secure channel, 150
Secure Hash Algorithm, see SHA
security

bit level, 11
long-term, 12
short-term, 12

security by obscurity, 11
security level, 156
security objectives, 263
security service, 263
Serpent, 88, 307
session keys, 332
SHA, 304
SHA-0, 304
SHA-1, 307

implementation, 312
padding, 308

SHA-2, 304
SHA-3, 313
Shamir, Adi, 75, 173
Shanks’ Algorithm, 221, 251
Shannon, Claude, 57
shift cipher, 18
Shor’s algorithm, 144, 169
side-channel attacks

RSA, 195
Signaturgesetz, 263
simple power analysis, 196
single point of failure, 341
single-key, see cryptography-symmetric
Skype, 87
small subgroup attack, 231, 274
smart card, 187, 288
social engineering, see cryptanalysis-social

engineering
SPA, see simple power analysis
square-and-multiply, 229, 267, 273
square-and-multiply algorithm, see exponenti-

ation

SSH, 87
SSL/TLS, 347
station-to-station protocol, 351
stream cipher, 30, 31

key stream, 34
STS, see station-to-station protocol
subgroup, 214
subkey, 67
substitution attack, 125
substitution cipher, 6

brute-force attack, 7
letter frequency analysis, 8

symmetric-key, see cryptography-symmetric

T-Boxes, 116
time-memory tradeoff

discrete logarithms, 221
time-memory tradeoff attacks, 143
timelinesss, 340
timing attack, 199
TLS, 4, 87, 321, 327
traffic analysis, 125
triple DES, 55, 78

effective key length, 141
triple encryption, 140
Trivium, 46
TRNG, see random number generator, true
trusted authority, 335
Twofish, 82, 88

UMAC, 327
unconditional security, 36
unicity distance, 136
universal hashing, 327

Vernam, Gilbert, 34

warm-up phase, 48
web of trust, 351
Wi-Fi, 87
Williamson, Graham, 149
WPA, 5

XOR gate, 32

zero-knowledge proofs, 21

	Cover
	Half Title page
	Title page
	Copyright page
	Dedication
	Foreword
	Preface
	Acknowledgements
	Table of Contents
	Chapter 1 Introduction to Cryptography and Data Security
	1.1 Overview of Cryptology (and This Book)
	1.2 Symmetric Cryptography
	1.2.1 Basics
	1.2.2 Simple Symmetric Encryption: The Substitution Cipher

	1.3 Cryptanalysis
	1.3.1 General Thoughts on Breaking Cryptosystems
	1.3.2 How Many Key Bits Are Enough?

	1.4 Modular Arithmetic and More Historical Ciphers
	1.4.1 Modular Arithmetic
	1.4.2 Integer Rings
	1.4.3 Shift Cipher (or Caesar Cipher)
	1.4.4 Affine Cipher

	1.5 Discussion and Further Reading
	1.6 Lessons Learned
	Problems

	Chapter 2 Stream Ciphers
	2.1 Introduction
	2.1.1 Stream Ciphers vs. Block Ciphers
	2.1.2 Encryption and Decryption with Stream Ciphers

	2.2 Random Numbers and an Unbreakable Stream Cipher
	2.2.1 Random Number Generators
	2.2.2 The One-Time Pad
	2.2.3 Towards Practical Stream Ciphers

	2.3 Shift Register-Based Stream Ciphers
	2.3.1 Linear Feedback Shift Registers (LFSR)
	2.3.2 Known-Plaintext Attack Against Single LFSRs
	2.3.3 Trivium

	2.4 Discussion and Further Reading
	2.5 Lessons Learned
	Problems

	Chapter 3 The Data Encryption Standard (DES) and Alternatives
	3.1 Introduction to DES
	3.1.1 Confusion and Diffusion

	3.2 Overview of the DES Algorithm
	3.3 Internal Structure of DES
	3.3.1 Initial and Final Permutation
	3.3.2 The f -Function
	3.3.3 Key Schedule

	3.4 Decryption
	3.5 Security of DES
	3.5.1 Exhaustive Key Search
	3.5.2 Analytical Attacks

	3.6 Implementation in Software and Hardware
	3.7 DES Alternatives
	3.7.1 The Advanced Encryption Standard (AES) and the AESFinalist Ciphers
	3.7.2 Triple DES (3DES) and DESX
	3.7.3 Lightweight Cipher PRESENT

	3.8 Discussion and Further Reading
	3.9 Lessons Learned
	Problems

	Chapter 4 The Advanced Encryption Standard (AES)
	4.1 Introduction
	4.2 Overview of the AES Algorithm
	4.3 Some Mathematics: A Brief Introduction to Galois Fields
	4.3.1 Existence of Finite Fields
	4.3.2 Prime Fields
	4.3.3 Extension Fields GF(2m)
	4.3.4 Addition and Subtraction in GF(2m)
	4.3.5 Multiplication in GF(2m)
	4.3.6 Inversion in GF(2m)

	4.4 Internal Structure of AES
	4.4.1 Byte Substitution Layer
	4.4.2 Diffusion Layer
	4.4.3 Key Addition Layer
	4.4.4 Key Schedule

	4.5 Decryption
	4.6 Implementation in Software and Hardware
	4.7 Discussion and Further Reading
	4.8 Lessons Learned
	Problems

	Chapter 5 More About Block Ciphers
	5.1 Encryption with Block Ciphers: Modes of Operation
	5.1.1 Electronic Codebook Mode (ECB)
	5.1.2 Cipher Block Chaining Mode (CBC)
	5.1.3 Output Feedback Mode (OFB)
	5.1.4 Cipher Feedback Mode (CFB)
	5.1.5 Counter Mode (CTR)
	5.1.6 Galois Counter Mode (GCM)

	5.2 Exhaustive Key Search Revisited
	5.3 Increasing the Security of Block Ciphers
	5.3.1 Double Encryption and Meet-in-the-Middle Attack
	5.3.2 Triple Encryption
	5.3.3 Key Whitening

	5.4 Discussion and Further Reading
	5.5 Lessons Learned
	Problems

	Chapter 6 Introduction to Public-Key Cryptography
	6.1 Symmetric vs. Asymmetric Cryptography
	6.2 Practical Aspects of Public-Key Cryptography
	6.2.2 The Remaining Problem: Authenticity of Public Keys
	6.2.3 Important Public-Key Algorithms
	6.2.4 Key Lengths and Security Levels

	6.3 Essential Number Theory for Public-Key Algorithms
	6.3.1 Euclidean Algorithm
	6.3.2 Extended Euclidean Algorithm
	6.3.3 Euler’s Phi Function
	6.3.4 Fermat’s Little Theorem and Euler’s Theorem

	6.4 Discussion and Further Reading
	6.5 Lessons Learned
	Problems

	Chapter 7 The RSA Cryptosystem
	7.1 Introduction
	7.2 Encryption and Decryption
	7.3 Key Generation and Proof of Correctness
	7.4 Encryption and Decryption: Fast Exponentiation
	7.5 Speed-up Techniques for RSA
	7.5.1 Fast Encryption with Short Public Exponents
	7.5.2 Fast Decryption with the Chinese Remainder Theorem

	7.6 Finding Large Primes
	7.6.1 How Common Are Primes?
	7.6.2 Primality Tests

	7.7 RSA in Practice: Padding
	7.8 Attacks
	7.9 Implementation in Software and Hardware
	7.10 Discussion and Further Reading
	7.11 Lessons Learned
	Problems

	Chapter 8 Public-Key Cryptosystems Based on the Discrete Logarithm Problem
	8.1 Diffie–Hellman Key Exchange
	8.2 Some Algebra
	8.2.1 Groups
	8.2.2 Cyclic Groups
	8.2.3 Subgroups

	8.3 The Discrete Logarithm Problem
	8.3.1 The Discrete Logarithm Problem in Prime Fields
	8.3.2 The Generalized Discrete Logarithm Problem
	8.3.3 Attacks Against the Discrete Logarithm Problem

	8.4 Security of the Diffie–Hellman Key Exchange
	8.5 The Elgamal Encryption Scheme
	8.5.1 From Diffie–Hellman Key Exchange to Elgamal Encryption
	8.5.2 The Elgamal Protocol
	8.5.3 Computational Aspects
	8.5.4 Security

	8.6 Discussion and Further Reading
	8.7 Lessons Learned
	Problems

	Chapter 9 Elliptic Curve Cryptosystems
	9.1 How to Compute with Elliptic Curves
	9.1.1 Definition of Elliptic Curves
	9.1.2 Group Operations on Elliptic Curves

	9.2 Building a Discrete Logarithm Problem with Elliptic Curves
	9.3 Diffie–Hellman Key Exchange with Elliptic Curves
	9.4 Security
	9.5 Implementation in Software and Hardware
	9.6 Discussion and Further Reading
	9.7 Lessons Learned
	Problems

	Chapter 10 Digital Signatures
	10.1 Introduction
	10.1.1 Odd Colors for Cars, or: Why Symmetric Cryptography Is Not Sufficient
	10.1.2 Principles of Digital Signatures
	10.1.3 Security Services

	10.2 The RSA Signature Scheme
	10.2.1 Schoolbook RSA Digital Signature
	10.2.2 Computational Aspects
	10.2.3 Security

	10.3 The Elgamal Digital Signature Scheme
	10.3.1 Schoolbook Elgamal Digital Signature
	10.3.2 Computational Aspects
	10.3.3 Security

	10.4 The Digital Signature Algorithm (DSA)
	10.4.1 The DSA Algorithm
	10.4.2 Computational Aspects
	10.4.3 Security

	10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA)
	10.5.1 The ECDSA Algorithm
	10.5.2 Computational Aspects
	10.5.3 Security

	10.6 Discussion and Further Reading
	10.7 Lessons Learned
	Problems

	Chapter 11 Hash Functions
	11.1 Motivation: Signing Long Messages
	11.2 Security Requirements of Hash Functions
	11.2.1 Preimage Resistance or One-Wayness
	11.2.2 Second Preimage Resistance or Weak Collision Resistance
	11.2.3 Collision Resistance and the Birthday Attack

	11.3 Overview of Hash Algorithms
	11.3.1 Dedicated Hash Functions: The MD4 Family
	11.3.2 Hash Functions from Block Ciphers

	11.4 The Secure Hash Algorithm SHA-1
	11.4.1 Preprocessing
	11.4.2 Hash Computation
	11.4.3 Implementation

	11.5 Discussion and Further Reading
	11.6 Lessons Learned
	Problems

	Chapter 12 Message Authentication Codes (MACs)
	12.1 Principles of Message Authentication Codes
	12.2 MACs from Hash Functions: HMAC
	12.3 MACs from Block Ciphers: CBC-MAC
	12.4 Galois Counter Message Authentication Code (GMAC)
	12.5 Discussion and Further Reading
	12.6 Lessons Learned
	Problems

	Chapter 13 Key Establishment
	13.1 Introduction
	13.1.1 Some Terminology
	13.1.2 Key Freshness and Key Derivation
	13.1.3 The n2 Key Distribution Problem

	13.2 Key Establishment Using Symmetric-Key Techniques
	13.2.1 Key Establishment with a Key Distribution Center
	13.2.2 Kerberos
	13.2.3 Remaining Problems with Symmetric-Key Distribution

	13.3 Key Establishment Using Asymmetric Techniques
	13.3.1 Man-in-the-Middle Attack
	13.3.2 Certificates
	13.3.3 Public-Key Infrastructures (PKI) and CAs

	13.4 Discussion and Further Reading
	13.5 Lessons Learned
	Problems

	References
	Index

