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PREFACE

This book is intended to cover the theoretical work in the
Syllabus for Naval Architecture in Part B of the Department of
Trade Examinations for Second and First Class Engineers.

In each section the work progresses from an elementary stage to
the standard required for First Class Examinations. Parts of the
subject matter and the attendant Test Examples are marked with
the prefix “f” to indicate that they are normally beyond the
syllabus for the Second Class Examination and so can be
temporarily disregarded by such candidates. Throughout the
book emphasis is placed on basic principles, and the profusely
illustrated text, together with the worked examples, assists the
student to assimilate these principles more easily.

All students attempting Part B of their certificate will have
covered the work required for Part A, and several of the principles
of Mathematics and Mechanics are used in this volume. Where a
particularly important principle is required, however, it is revised
in this book. Fully worked solutions are given for all Test
Examples and Examination Questions. In several cases shorter
methods are available and acceptable in the examination, but the
author has attempted to use a similar method for similar
problems, and to avoid methods which may only be used in
isolated cases. It should be noted that a large proportion of the
worked solutions include diagrams and it is suggested that the
students follow this practice. The typical Examination Questions
are intended as a revision of the whole of the work, and should be
treated as such by attempting them in the order in which they are
given. The student should avoid attempting a number of similar
types of questions at the same time. A number of Examination
Questions have been selected from Department of Trade papers
and are reproduced by kind permission of the Controller of Her
Majesty’s Stationery Office.

Anengineer who works systematically through this volume will
find that his time is amply repaid when attending a course of study
at a college and his chance of success in the Examination will be
greatly increased.
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INTRODUCTION TO SI UNITS

SI is the abbreviation for Systéme International d’Unités, the
metric system of measurement now coming into international use
and being adopted by British Industry.

BASIC UNITS
There are six basic units in the system:

QUANTITY UNIT SYMBOL
length metre m
mass kilogramme kg
time second s
temperature kelvin K
electric current ampere A
luminous intensity candela cd

DERIVED UNITS

It is possible to obtain derived units from these basic units.
The system has been designed in such a way that the basic units
are used without numerical multipliers to obtain the fundamental
derived units. The system is therefore said to be coherent.

unit area = m?
unit volume = m?
unit velocity = m/s

unit acceleration = m/s?
The unit of force is the newton N

Now force = mass X acceleration
Hence 1 newton = 1 kg X lm/s®
N = kg m/s?
The unit of work is the joule J
Now . work done = force x distance.
1 joule =1NXxIm
J = Nm
The unit of pawer is the watt W
Now power — work done per unit time
1 watt =1J+1s
w = J/s
The unit of pressure is the pascal Pa
Now ' pressure = force per unit area
1 Pa = IN - 1 m?
Pa = N/m?

MULTIPLES AND SUB-MULTIPLES

In order to keep the number of names of units to a minimum,
multiples and sub-multiples of the fundamental units are used. In
each case powers of ten are found to be most convenient and are
represented by prefixes which are combined with the symbol of
the unit.




MULTIPLICATION STANDARD PREFIX SYMBOL
FACTOR FORM

1 000 000 000 000 - TP 1012 tera T
1 000 000 000 102 giga G
1 000 000 : 10¢ mega M

1 000 103 kilo k

100 102 hecto h
10 10t deca da

0-1 10-1 deci d

0-01 10-2 centi S

0-001 10-2 milli m

0-000 001 1078 micro ®

0-000 000 001 10-° nano n

0-000 000 000 001 10-12  pico p

Only one prefix may be used with each symbol. Thus a thousand
kilogrammes would be expressed as a Mg and not kkg. When a
prefix is attached to a unit, it becomes a new unit symbol on its
own account and this can be raised to positive or negative powers
of ten.

Multiples of 10® are recommended but others are recognised
because of convenient sizes and established usage and custom.
A good example of this convenient usage lies in the calculation
of volumes. If only metres or millimetres are used for the basic
dimensions, the volume is expressed in m® or mm?.

now 1m?3 = 10° mm?

i.e. the gap is too large to be convenient. If, on the other hand,
the basic dimensions may be expressed in decimetres or centi-
metres in addition to metres and millimetres, the units of volume
change in 10® intervals.

ie. 1 m3 = 1000 dm?
1 dm3 = 1000 cm?
1 cm?® = 1000 mm?3

Several special units are introduced, again because of their
convenience. A megagramme, for instance, is termed a fonne
which is approximately equal to an imperial ton mass. Pressure
may be expressed in bars (b) of value 105N/m?. A bar is approxi-
mately equal to one atmosphere. Stresses may be expressed in
hectobars (10'N/m?) of about §tonf/in%

It is unwise, however, to consider comparisons between imperial
and SI units and it is probable that the pressure and stress units
will revert to the basic unit and its multiples.

PROPERTY OF
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DENSITYp of a substance is the mass of a unit volume of the
substance and may be expressed in grammes per millilitre (g/ml),
kilogrammes per cubic metre (kg/m?) or tonnes per cubic metre
(t/m3). The numerical values of g/ml are the same as t/m® The
density of fresh water may be taken as 1-:000 t/m® or 1000 kg/m3
and the density of sea water 1-:025 t/m? or 1025 kg/m?3.

RELATIVE DENSITY or specific gravity of a substance is the density
of the substance divided by the density of fresh water, i.e. the
ratio of the mass of any volume of the substance to the mass of the
same volume of fresh water. Thus the relative density (rd) of
fresh water is 1:000 while the relative density of sea water is 1025+
1000 or 1-025. It is useful to know that the density of a substance
expressed in t/m?® is numerically the same as the relative density.
If a substance has a relative density of x, then one cubic metre of
the substance will have a mass of x tonnes. V' cubic metres will
have a mass of Vx tonnes or 1000V x kilogrammes.

Thus:

mass of substance = volume X density of substance

Example. If the relative density of lead is 11-2, find
(a) its density
(b) the mass of 0-25 m® of lead.

relative density of lead X density of fresh water
1-2 t/m3

25 5¢ull:2

8t

Density of lead

Mass of lead

1 T

1
0
2

Example. A plank 6 m long, 0-3 m wide and 50 mm thick has a
mass of 60 kg. Calculate the density of the wood.

N —
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Volume of wood = 60 X 0-3 X 0-050
=90 x 103 m?
Density of wood = e
volume
60 kg

=90 x 10° m®
= 667 kg/m?

PRESSURE EXERTED BY A LIQUID

Liquid pressure is the load per unit area exerted by the liquid
and may be expressed in multiples of N/m2
e.g. 10* N/m? = 1 kN/m?
105 N/m2? = 1 bar

This pressure acts equally in all directions and perpendicular to
the surface of any immersed plane.

Consider a trough containing liquid of density e kg/m®

Let A = cross-sectional area of a cylinder of this liquid in m?

and h = height of cylinder in m (Fig. 1).

SURFACE OF LIQUID

Fig. 1

The cylinder is in equilibrium under the action of two vertical
forces:—

(a) the gravitational force W acting vertically down

(b) the upthrust P exerted by the liquid on the cylinder.

HYDROSTATICS 3
Thus P =W
but P = pA
where p = liquid pressure at a depth 2 m
and W = pgAh
. pA = pgAh

p egh

Thus it may be seen that the liquid pressure depends upon the
density p and the vertical distance h from the point considered to
the surface of the liquid. Distance h is known as the head.

BT il
g

Ty

i

Fig. 2

The pressure at the base of each of the containers shown in
Fig. 2 is egh although it may be seen that the total mass of the
liquid is different in each case. Container (ii) could represent a
supply tank and header tank used in most domestic hot water
systems. The pressure at the supply tank depends upon the height
of the header tank.

Container (iii) could represent a double bottom tank having a
vertical overflow pipe. The pressure inside the tank depends upon
the height to which the liquid rises in the pipe.

The total load exerted by a liquid on a horizontal plane is the
product of the pressure and the area of the plane.

P=pA

Example. A rectangular double bottom tank is 20 m long, 12m
wide and 1-5 m deep, and is full of sea water having a density of
1:025 tonne/m?®.

Calculate the pressure in kN/m? and the load in MN on the top
and bottom of the tank if the water is:

(a) at the top of the tank

(b) 10 m up the sounding pipe above the tank top.

i
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(a)Pressure on top = pgh
= 1025 x 9:81 x 0
=0
Load on top =0
Mg m
Pressure on bottom = 1-025 x 9-81 x 1-5 m X g Xm
= 15-09 kN/m?
Load on bottom = 1509 x 20 x 12
= 3622 kN
= 3:622 MN
{b)Pressure on top = 1025 x 9-81 x 10
= 100:6 kN/m?
. Load on top = 1006 x 20 x 12
= 24 144'kN
= 24144 MN
Pressure on bottom = 1-025 x 9-81 x 115
= 115:6 kN/m?
Load on bottom = 1156 x 20 x 12
= 27 744 kN
= 27-744 MN

This example shows clearly the effect of a _hea@ pf liquid: It
should be noted that a very small volume of liquid in a vertical
pipe may cause a considerable increase in load.

LOAD ON AN IMMERSED PLANE

The pressure on any horizontal plane is cor'xstgnt,_but if the
plane is inclined to the horizontal. there is a variation in pressure
over the plane due to the difference in head. The total load on
such a plane may be determined as follqws. ) .

Consider an irregular plane of area 4, totally immersed in a
liquid of density ¢ and lying at an angle 0 to the surface of the
liquid as shown in Fig. 3.

SURFACE OF LIQUID ,O o QO
! ‘.9 Lok >\ .
I ’\" S
H ./
| L
i

+G

|

Fig. 3

HYDROSTATICS

5

Divide the plane into thin strips parallel to the surface of the
liquid. Let one such strip, distance 4 below the surface of the
liquid, have an area a. Since the strip is thin, any variation in

pressure may be ignored.

Load on strip = pgah
Load on plane = pg(q, hy +ayhy +ag hy +....)
= og X ah

But Zah is the first moment of area of the plane about the

surface of the liquid. =

If H is the distance of the centroid of the plane from the liquid

surface, then:

Zah = AH
.. Load on plane = eg AH

Example. A rectangular bulkhead is 10 m wide and § m deep.

It is loaded on one side only with oil of relative density 0-8.
Calculate the load on the bulkhead if the oil is:
(a) just at the top of the bulkhead.
(b) 3 m up the surrounding pipe.

(a) Load on bulkhead =— pg AH
=08 XI10 x 981 x 10 x 8 xg
= 2511 kN

(b) Load on bulkhead =0-8x1-0%9-81 x 10x 8 x (;—H)
= 4395 kN

CENTRE OF PRESSURE

The centre of pressure on an immersed plane is the point
which the whole liquid load may be regarded as acting.

Consider again Fig. 3.
Let the strip be distance x from the axis 0-0.
Then h = xsin9
Load on strip = pgah
= pgax sin 0
Load on plane = pg sin 0 (%) + apx, + agx, )
= pg sin 0 Zax
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Taking moments about axis 0-0:

Moment of load on strip = x X pgax sin 6
: = pgax? sin 0
Moment of load on plane = pg sin 0 (@;x;2 + apx,% +........ )
= pg sin 0 Zax?

__ moment
" load

__ pg sin 0 Zax?
" pgsin 0 X ax

g | Yax?
T Zax

Centre of pressure from 0-0

But Zax is the first moment of area of the plane about 0-0
and Jax?is the second moment of area of the plane about 0-0.
If the plane is vertical, then 0-0 represents the surface of the liquid,
and thus:

Centre of pressure from surface

second moment of area about surface
~ first moment of area about surface

The second moment of area may be calculated using the theroem
of parallel axes.

If I, is the second moment about an axis through the centroid
(the neutral axis), then the second moment about an axis 0-0
parallel to the neutral axis and distance H from it is given by

Ioo = Ina + AH?

where A is the area of the plane
Thus Centre of pressure from 0-0

_ Too
AH

_ Ina + AH?
T A4H

e

HYDROSTATICS 7]

Ina for a rectangle is 5 BD?
Ina for a triangle is 5's BD?
Iny for acircle is D?

The following examples show how these principles may be
applied.

—t . 2 | SURFACE OF LIQUID__._ o

Sl

Fig. 4

o}

(2) RECTANGULAR PLANE WITH EDGE IN SURFACE

_Ina
Centre of pressure from 0-0 = 10 + H

_f-zBDs +2
“BDX 3D 2
D D
T o

(b) TRIANGULAR PLANE WITH EDGE IN SURFACE
: Ina
antre of pressure from 0-0= 10 + H
& BD? o D
" }BD X 3D 3

D D
F Al

= ib
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(©) CIRCULAR PLANE WITH EDGE IN SURFACE

INA
Centre of 0 =—+ +
entre of pressure from 0-0 7] H

_ _&D* D
T rDEx 1D 2

If the top edge of the plane is below the surface of the liquid,
these figures change considerably.

Example. A peak bulkhead is in the form of a triangle, apex
down, 6 m wide at the top and 9 m deep. The tank is filled with sea
water. Calculate the load on the bulkhead and the position of the

centre of pressure relative to the top of the bulkhead if the water 3

is; b ’
(a) at the top of the bulkhead V
f(b) 4 m up the sounding pipe.
(a) Load on bulkhead = pgAH
6x9 9
= 1 : ST e
025 x 9-81 x 7 X3
= 814-5 kN

Centre of pressure from top

gy

i)

\n9

2

=45m

6x9 9
(b) Load on bulkhead = 1-025%9-81 X 5 X ( -§+4)

= 1901 kN

HYDROSTATICS 9

Centre of pressure from surface
INA
5
A 316‘ X 6 X 93
TEiX6Xx9XT
= 0624 + 7

= 7-642 m

+7

Centre of pressure from top
= 7-642—4
= 3642 m

LOAD DIAGRAM

If the pressure at any point in an immersed plane is multiplied
by the width of the plane at this point, the load per unit depth of
plane is obtained. If this is repeated at a number of points, the
resultant values may be plotted to form the load diagram for the
plane.

The area of this load diagram represents the load on the plane,
while its centroid represents the position of the centre of pressure.

For a rectangular plane with its edge in the surface, the load
diagram is in the form of a triangle.

For a rectangular plane with its edge below the surface, the
load diagram is in the form of a trapezoid.

The load diagrams for triangular planes are parabolic.

SURFACE OF WATER

1

4m- 2413 kN/m——--”i
Fig. 5
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Consider a rectangular bulkhead 4 m wide and 6 m deep loaded
to its top edge with sea water.

Load/m at top of bulkhead = pgh X width
= 1025 X 981 x 0 x 4
=0
Load/m at bottom of bulkhead
= 1025 x 981 x 6 X 4
241-3 kN
area of load diagram
1 x 6 x 2413
7239 kN
centroid of load diagram
2 X6
4 m from top
cgAH
1:025%9-81 x4 X 6X 3 X6
724-0 kN
2D
4 m from top

I

Load on bulkhead

o

Centre of pressure

It

Check: Load on bulkhead

I

1

and  Centre of pressure

I

: i
po—— 4m-———--——~‘ o ——361:98 KN Jm —————]
Fig. 6

If, in the above example, there is 2 3 m head of water above the
bulkhead, then:

HYDROSTATICS 11

Load/m at top of bulkhead =~ =1025 X 9:81 x 3 x 4
=120-66 kN

Load/m at bottom of bulkhead
= 1025 x 981 x 9 x 4
= 361-98 kN

The load diagram may be divided into two triangles @ and b

Area a =} x 6 x 120:66
= 361-98 kN

Area b =} X 6 x 361-98
= 1085-94 kN

Total load = 361-98 + 1085-94
= 1447-92 kN

Taking moments about the top of a bulkhea-d

36198 x 4 x 6 + 108594 x § X 6
361-98 + 1085-94

Centre of pressure =

72396 + 434376
1447-92

= 3-5 m from top of bulkhead
These results may again be checked by calculation.

Load on bulkhead = 1-025x9-81 x4 x6X (}x6+3)
= 1448 kKN

Centre of pressure from surface

_Ina
—an

P X4X 6%
= Tt b <Y
05+ 6
6:5 m
65—3
= 3-5 m from top of bulkhead.

o

Centre of pressure
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SHEARING FORCE ON BULKHEAD STIFFENERS

A bulkhead stiffener supports a rectangle of plati ¢
length of the st_iﬂ”ener times the spacing‘g of tlll)ea;?ﬂ"geizlrl: : ;g :l};:::
bulkhead has liquid on one side to the top edge, the s.tiﬂ‘ener
supports a load which increases uniformly from zerc’) at the top t
a maximum at the bottom (Fig. 7). = i

TOP_OF BULKHEAD

BULKHEAD
Let I = length of stiffener in m
§ = spacing of stiffeners in m
p = density of liquid in kg/m?3
P = ]oad on stiffener
W = load/m at bottom of stiffener
/A
Then P = pgls x 5
= dogl’s
W = ogls
fi
P = =
W x 5

B T

HYDROSTATICS 13

The load P acts at the centre of pressure which is 3/ from the
top. Reactions are set up by the end connections at the top (Rt)

and at the bottom (Rg).

Taking moments about the top,

Ry < 1 =P x &
Ry = §P
and Rt = &P

The shearing force at a distance x from the top will be the
reaction at the top, less the area of the load diagram from this

point to the top.

. W x
ie. SF, = Rr——l— X

ST

_1p Wx?
— = o
Wil Wx?
6 21
Letx =0
Wil
SF at top =&
— %P
Letx =1 \\\\\
\\\ S =
g WE——_
SF[éz bottom :\$K
iy ’ “
o’ ~—
C <
6 O wi Wl
~ S A Tea) I
NI o 6 2 (s
OLA S
,VA\ S\' W O Wi \\\\
SN \
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(a)
Since the shearing force is positive at the top and negative at
the bottom, there must be some intermediate point at which
the shearing force is zero. This is also the position of the maximum
bending moment.
(b)
Let SF =0
wl  Wx?
0 =— — —
6 21 J
Wxt Wi .
T TR X
12
2
¥ T3
. !
Position of zero shear x ::/__3; from the top

p

=
1

win
-—

<
- ‘_I__
-

LOAD DIAGRAM SHEARING FORCE BENDING MOMENT
DIAGRAM DIAGRAM

Fig. 8.

Example. A bulkhead 9 m deep is supported by vertical stiffeners
750 mm apart. The bulkhead is flooded to the top edge with sea
water on one side only. Calculate: l

(a) shearing force at top
(b) shearing force at bottom |
(c) position of zero shear.

Load on stiffener P = pgdH

= 1-025%9-81 ><9><0-75><(:2’-

= 305-4 kN

Shearing force at top = 4P’
3054

\

Shearing force at bottom

Position of zero shear = \/3

9
V3
— 5-197 m from the top
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E of water displaced
mass of wood Z 1025 x 4 x 03 X 0115
= 1845 kg

) 0-3 x 0-25
mass of equal volume of fresh water = 1000X 4 X

= 300 kg
184-5
Relative density of wood = 300

ide floats in sea
e 40 m long and 9 m Wi
Examtpeltec.iraﬁgﬁf )(()fb;ggm. Calculate the mass of the barge.
water a

— mass of water displaced
o lrgzas X 40 X 9 X 35
1292 x 10% kg
1292 tonne

o

DISPLACEMENT

t

p p- lf
3¢

o di together
; f the ship is known,
derwater portion O
volume of the un )

ip. ; : of density
melnt' i g:lsgpassume that a ship floats in sea water
tisu

g

DRAUGHT
m

cla ettt

DISPLACEMENT TONNE

Fig. 9

cross-sectional areas (see Chapter 3).

DISPLACEMENT, TPC, COEFFICIENTS OF FORM 21

vessel floats in water of any other density. Since the volume of
water displaced depends upon the draught, it is useful to calculate
values of displacement for a range of draughts. These values may
then be plotted to form a displacement curve, from which the
displacement may be obtained at any intermediate draught.

The following symbols will be used throughout the text:
/\ = displacement in tonne

V' = volume of displacement in m?
Thus tor sea water /\ — YV x 1025

Some confusion exists between the mass of the ship and the
weight of the ship. This confusion may be reduced if the displace-
ment is always regarded as a mass. The gravitational force acting
on this mass—the weight of the ship—will then be the product
of the displacement /\ and the acceleration due to gravity g.

Hence mass of ship (displacement) -- /\ tonne
weight of ship = A\ gkN
Example.

A ship displaces 12 240 m? of sea water at a parti-

cular draught

(a) Calculate the displacement of the ship.

(b) How many tonnes of cargo would have to be discharged for
the vessel to float at the same draught in fresh water?

(a) Displacement in sea water — 12 240 x 1-025

= 12 546 tonne
(b) Displacement at same draught in fresh water

= 12240 x 1-000

= 12 240 tonne
.. Cargo to be discharged = 12 546 — 2 240

= 306 tonne
BUOYANCY

Buavancy is the term
on the sihip. If a ship
weight of the ship.

The force of buo J/ancy acts at the centre of buoyancy, which is
the centre of gravity o.f the underwater volume of the ship.

The longitudinal position of the centre of buoyancy (LCB) is
usuaily given as a distance forward or aft of midships and is
represented by the longitudiinal centroid of the curve of immersed

given to the upthrust exerted by the water
floats freely, the buoyancy is equal to the

;ﬂ‘;“

.
J
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The vertical position of the centre of buoyancy (VCB) is usually
given as a distance above the keel. This distance is denoted by KB
and is represented by the vertical centroid of the waterplane area
curve (see Chapter 3). The distance from the waterline to the VCB
may be found by two other methods:

(a) from the displacement curve (Fig. 10)

DRAUGHT

DISPLACEMENT
Fig. 10
VCB below waterline

__ area between displacement curve and draught axis
displacement

(b) by Morrishes approximate formula

. 1(d_ ¥V
VCB below the waterline = §( 3 I " )

where d = draught in m
¥ = volume of displacement in m*

A, — waterplane area in m?

TONNE PER CENTIMETRE IMIMERSION

The tonne per centimetre jmmersior: (TPC) of a ship at any
given draught is the mass required to increase the mean draught

by 1 cm.

DISPLACEMENT, TPC, COEFFICIENTS OF FORM 23

: Consider a ship floating in water of density p t/m®
If the mean draught is increased by 1 cm, then:

Increase in volume of displacement = %6 X waterplane area

Aw

_ — 3
w0 ™

Increase in displacement = 1%% X p 't

wap
100

For sea water p = 1-025 t/m®

Thus TPC =

TPC sw = 0-:01025 Aw

At ‘diﬁ"e.rent draughts, variations in waterplane area cause
variations in TPC. Values of TPC may be calculated for a range of
draughts and plotted to form a TPC curve, from which values of
TPC may be obtained at intermediate draughts.

DRAUGHT

TPC
Fig. 11

.The area between the TPC curve and the draught axis to any
given draugpt represents the displacement of the ship at that
draught, while its centroid represents the vertical position of the
centre of buoyancy.

B




24 REED’S NAVAL ARCHITECTURE FOR ENGINEERS

It may be assumed for small alterations in draught, that the
ship is wall-sided and therefore TPC remains constant. If the
change in draught exceeds about 0-5 m, then a mean TPC value
should be used. If the change in draught is excessive, however,
it is more accurate to use the area of the relevant part of the TPC
curve.

Example. The waterplane area of a ship is 1730 m2. Calculate
the TPC and the increase in draught if a mass of 270 tonne is
added to the ship.

TPC = 0-01025 x 1730
= 173

mass added
TPC

270
17-73

= 1523 cm

Increase in draught =

COEFFICIENTS OF FORM

Coefficients of form have been devised to show the relation
between the form of the ship and the dimensions of the ship.
WATERPLANE AREA COEFFICIENT Cy 18 the ratio of the area of the
waterplane to the product of the length and breadth of the ship.
(Fig. 12).

waterplane area
¥~ length X breadth

_ o
L% B
il B e A A AL
s B ke . Mot o
| %//////
il o et Y
|
e = | |

Fig. 12

MIDSHIP SECTION AREA COEFFICIENT Cp, is the ratio of the area of
the immersed portion of the midship section to the product of the

breadth and the draught (Fig. 13).
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i area of immersed midship section
breadth x draught

Fig. 13
BLOCK COEFFICIENT OR COEFFICIEN
the volume of displacement to th

T OF FINENESS Cy, is the ratio of

and draught (Fig, 14). e product of the length, breadth

. Lo

- volume of displacement
length X breadth x draught

a*—vﬁ
LxBxd
/'/}\
G
/_/
| _/\'
T
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ko ,
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26 REED’S NAVAL ARCHITECTURE FOR ENGINEERS
. . ) Example. A ship 135mlong, 18 m beam and 7-6 m draught has !
PRISMATIC COEFFICIENT C, is the ratio of the volume of dis- a displacement of 14 000 tonne. The area of the load waterplane
placement to the produc? of _the lel.]gth apd the area of the im- is 1925 m? and the area of the immersed midship section 130 m?
mersed portion of the midship section (Fig. 15). Calculate (a) C,; (b) Ci; (©) Cb; (@) C,
1925
= volume of displacement (@ v = 135 < 18
P = length X area of immersed midship section
= 0-792
V4
= 130
L X Am 1 B (b C"':18X7-6
But vV=CxLxBxd = 0950
and Am=CmXBXd 14 000
Substituting these in the expression for Cp; © Y = T35
C_CbexBxd = 13 658 m®
P T L xC,XxBxd P
G = 135 % 18 x 76
Cp
G =7, | = 0740
13 658
@ Cr =135 x 130
= 0-778
0-740
Alternatively C,= 0950
= 0-778

WETTED SURFACE AREA

The wetted surface area of a ship is the area of the ship’s hull
which is in contact with the water. This area may be found by
putting the transverse girths of the ship, from waterline to water-

Fig. 15
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line, through Simpson’s Rule and addin

son’ g about } per cent to
allow for the longitudinal curvature of the shell. Trc)) this area
shopld be added the wetted surface area of appendages such as
cruiser stern, rudder and bilge keels.

Fig. 16

Several approximate formula
( e for wetted surface area
avgulable, two of which are: e

Denny S = 17Ld + %

Taylor: 8 =% /AL

* where S = wetted surface area in m?
L = length of ship in m
= draught in m
5/ = volume of displacernent in m?
/\ = displacement in tonne
¢ = a coefficient of about 2-6 which depe e
b e epends upon the
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e

Example. A ship of 5000 tonne displacement, 95 m long,
floats at a draught of 5-5m. Calculate the wetted surface area of the
ship:

(a) Using Denny’s formula

(b) Using Taylor’s formula with ¢ = 2:6

(a) S = 17Ld + %

5000
=17 x 95 X 5'5+m

I

— 888-2 + 8869
= 17751 m*?

(b) S =c+vAL
— 2:6 4/5000 X 95
= 1793 m?

SIMILAR FIGURES

Two planes or bodies are said to be similar when their linear
dimensions are in the same ratio. This principle may be seen ina
projector where a small image is projected from 2 slide onto a
screen. The height of the image depends upon the distance of the
screen from the light source, but the proportions and shape of
the image remain the same as the image on the slide. Thus the
image on the screen is a scaled-up version of the image on the
slide.

The areas of similar figures vary as the square of their cor-
responding dimensions. This may be shown by comparing two
circles having diameters D and d respectively.

Fig. 17

.
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Area of large circle = —} D2

ALA VAN

Area of small circle = ; dz

. T,
Since 7 is constant:

2
ratio of areas = T

. Thus if .the diameter D is twice diameter d, the area of the former
is four times the area of the latter.

4 (- ()
Az— L, B Ez)

The vplume_s of sjmilar bodies vary as the cube of their cor-
responding ghmenswns. This may be shown by comparing two
spheres of diameters D and d respectively.

Volume of large sphere = %D'“‘
Volume of small sphere = g d>

a T,
Since 3 is constant:

. D3
ratio of volumes = T

: T-hus it: diameter D is twice diameter d, the volume of the former
is eight times the volume of the latter.

- - () - ()
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These rules may be applied to any similar bodies no matter
what their shape, and in practice are applied to ships.

Thus if L = length of ship
S = wetted surface area
/\ = displacement,

then S oc L?

or St c L

and A\ oc L?

or AY c L

St oc A¥

and S oc N}

or A oc St

Example. A ship 110 m long displaces 9000 tonne and has a

wetted surface area of 2205 m?. Calculate the displacement and
wetted surface area of 2 6 m model of the ship.

L _ (l_«)“
Do \Le
6 3

1:46 tonne

()

Displacement of model
Sy

Wetted surface area of model
= 656 m?

f SHEARING FORCE AND BENDING MOMENT

Consider a loaded ship lying in still water. The upthrust over
any unit length of the ship depends upon the immersed Cross-
sectional area of the ship at that point. If the values of upthrust at
different positions along the length of the ship are plotted on 2
base representing the ship’s length, a bouyancy curve is formed
(Fig. 18). This curve increases from zero at each end to a maxi-
mum value in way of the parallel midship portion. The area of
this curve represents the total upthrust exerted by the water
on the ship.
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The total weight of a ship consists of a number of independent
weights concentrated over short lengths of the ship, such as cargo,
machinery, accommodation, cargo handling gear, poop and fore-
castle, and a number of items which form continuous material
over the length of the ship, such as decks, shell and tank top. A
curve of weights is shown in the diagram.

BUOYANCY

WEIGHT

IDJ-\I\P\ LOAD,
I L

BENDING
MOMENT

SHEARING
FORCE

LOAD DISTRIBUTION
Fig. 18

The difference between the weight and buoyancy at any point
is the Joad at that point. In some cases the load is an excess of
weight over buoyancy and in other cases an excess of buoyancy
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over weight. A load diagram is formed by plotting these dif-
ferences. Because of this unequal loading, however, shearing
forces and bending moments are set up in the ship.

The shearing force at any point is represented by the area of the
load diagram on one side of that point. A shearing force diagram
may be formed by plotting these areas on a base of the ship’s
length.

The bending moment at any point is represented by the area of
the shearing force diagram on one side of that point. A bending
moment diagram may be formed by plotting such areas on a base
of the ship’s length.

The maximum bending moment occurs where the shearing
force is zero and this is usually near amidships.

Example. A box barge 200 m long is divided into five equal
compartments. The weight is uniformly distributed along the
vessel’s length.

500 tonne of cargo are added to each of the end compartments.
Sketch the shearing force and bending moment diagrams and
state their maximum values. :

Lﬁ--——-ﬁ—-———--—ZOOm =
Foiaed | Sz
7 4 3 2 ///1'//

' oA A

— 40m—+——40m el 40m‘+— 40m —+l=— 40m ——l

Fig. 19

Before adding the cargo, the buoyancy and weight were equally
distributed and produced no shearing force or bending moment.
It is therefore only necessary to consider the added cargo and the
additional buoyancy required.

1000 g

Additional buoyancy/m = g

=5g kN
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Compartments 1 and 5

5
Riditodal ey
40
= 12-5g kN
Load/m = 12:5g —5¢g
= 7-5 g kN excess weight

Compartments 2, 3 and 4

Load/m = 5 g kN excess buoyancy

These values may be plotted to form a load diagram.

>

r
(\)
=
aal
<\

| LOAD

| DIAGRAM

!
|

FORCE
DIAGRAM

i .
! |
LA

DIAGRAM

Fig. 20
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Shearing force at A = 0

Shearing force at B = — 7-5g X 40

— 300 g = 2943 kN max.
—300g +5g x 40

l

Shearing force at C

[ T

— 100 g = 981 kN
Shearing force at D = —300¢g 4 5g x 60
0
Shearing force at E = 4 100 g
Shearing force at F = + 300 g

Shearing force at G = 0

Bending moment at A and G =0

40
Bending moment at Band F = —300 g X 5

= — 6000 g = 58-:86 MN m

Bending moment at C and E = —15000g + 100 g X -2-2(—)

= —14000g = 137-34 MN m

100
Bending moment at D = —300g X >

=—15000¢g
= 147-15 MN m max.
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TEST EXAMPLES 2

1. A piece of metal 250 cm?® in volume is attached to the
bottom of a block of wood 3-5 dm?® in volume and having a
relative density of 0-6. The system floats in fresh water with
100 cm® projecting above the water. Calculate the relative density
of the metal.

2. Araft 3mlongand 2 m wide is constructed of tim ber 0-25m
thick having a relative density of 0-7. It floats in water of density
1018 kg/m®. Calculate the minimum mass which must be placed
on top of the raft to sink it.

3. A box barge 65 m long and 12 m wide floats at a draught of
5-5 m in sea water. Calculate:

(a) the displacement of the barge,

(b) its draught in fresh water.

4. A ship has a constant cross-section in the form of a triangle
which floats apex down in sea water. The ship is 85 m long, 12 m
wide at the deck and has a depth from keel to deck of 9 m. Draw
the displacement curve using 1-25 m intervals of draught from the
keel to the 7-5 m waterline. From this curve obtain the displace-
ment in fresh.water at a draught of 6-50 m.

5. A cylinder 15 m long and 4 m outside diameter floats in sea
water with its axis in the waterline. Calculate the mass of the
cylinder.

6. Bilge keels of mass 36 tonne and having a volume of 22 m?
are added to a ship. If the TPC is 20, find the change in mean
draught,

7. A vessel 40 m long has a constant cross-section in the form
of a trapezoid 10 m wide at the top, 6 m wide at the bottom and 5 m
deep. It floats in sea water at a draught of 4 m. Calculate its
displacement. '

8. Thewaterplane areasof a ship at 1-25 m intervals of draught,

‘commencing at the 7-5m waterline, are 1845, 1690, 1535, 1355 and

1120 m? Draw the curve of tonne per cm immersion and
determine the mass which must be added to increase the mean
draught from 6:10 m to 6-30 m.
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i , draught of 8 m
9. Aship150mlongand20-5m begm floatsata Iraug :
and displaces 19 500 tonne. The TPC is 26-5 a‘nd m}dshlp section
area coefficient 0-94. Calculate the block, prismatic and water-
plane area coefficients.

10. A ship displaces 9450 tonne and has a block coefficient of

. of immersed midship section is 106 m?.
" The]? erlegeam = 0-13 X length = 2-1 x draught, calculate the

length of the ship and the prismatic coefficient.

. The length of a ship is 18 times the draught, while the
br;;dthTis 21 %imes the draught. At the !oad waterplane, the
waterplane area coefficient is 0-83 and the dli_ference betwe.en the
TPC in sea water and the TPC in fresh water is 0-7. Determine the
length of the ship and the TPC in fresh water.

12. The } girths of a ship 90 m long are as follows.: 2-1, 66,
9-3, 10-5, 11-0, 11-0, 11-0, 99, 7-5, 3-9 an_d 0m respectwily.‘The
wetted surface area of the appendages is 30 m? and 19 is to
be added for longitudinal curvature. Calculate the wetted surface

area of the ship.

13. A ship of 14 000 tonne displacement, 130 m long, floats at a
draught of 8 m. Calculate the wetted surface area of the ship using:

(a) Denny’s formula

(b) Taylor’s formula with ¢ = 2-58

14. A box barge is 75 m long, 9 m beam and 6 m deep. A similar
barge having a volume of 3200 m? is to be constructed. Calculate
the length, breadth and depth of the new barge.

15. The wetted surface area of a ship is twice that of a similar
ship. The displacement of the latter is 2000 tonne less than the
former. Determine the displacement of the latter.

16. A ship 120 m long displaces 11 000 tonne and has a wetted
surface area of 2500 m? Calculate .the displacement and wetted
surface area of a 6 m model of the ship.
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CHAPTER 3

CALCULATION OE AREA, VOLUME,
FIRST AND SECOND MOMENTS

_ . SIMPSON’S FIRST RULE
Slmpson’s First Rule is based on the assumption that the curved
portion of a figure forms part of a parabola O =ax? + bx + ¢),

and gives the area contained between three consecutive, equally-
spaced ordinates.

B e P

b 4

A

Y

l.__.._.h . o h ;
1 T
Fig 21.

h
Area ABCD = 3 Iy, + 4y, + 1y;)

This rule may be applied repeatedly to determine the area of a

larger plane such as EFGH (Fig. 22).
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h

Area 1 =§(1y1 + 4y, + lys)
h

Area 2 =3 (lys + 4y, + lys)

h
Area 3 =z (1ys + 4ys + 1y2)

Area EFGH
= Area 1 + Area 2 + Area 3

h
=3 [(1y1 44y, +1ya) +(1ys+4y+1y5) +(1ys+4ys+1y5)]

h _
=3 [n+4, +2y3+4y,+2y;+4y,+1y,]

It should be noted at this stage that it is necessary to apply the
whole rule and thus an odd number of equally-spaced ordinates is_
necessary. Greater speed and accuracy is obtained if this rule is
applied in the form of a table. The distance # is termed the common
interval and the numbers 1, 4, 2, 4, etc. are termed Simpson’s
multipliers.

When calculating the area of a waterplane it is usual to divide
the length of the ship into about 10 equal parts, giving 11 sections.
These sections are numbered from 0 at the after end to 10 at the
fore end. Thus amidships will be section number 5. It is convenient
to measure distances from the centreline to the ship side, giving
half ordinates. These half ordinates are used in conjunction with
Simpson’s Rule and the answer multiplied by 2.

Example. The equally-spaced half ordinates of a watertight
flat 27 m long are 1-1, 2-7, 40, 5-1, 6-1, 69 and 7-7 m respectively.
Calculate the area of the flat.

Simpson’s Product

1 Ordinate - Multipliers for Area
11 1 1-1
2:7 4 10-8
4-0 2 8-0
51 4 20-4
61 2 12-2
69 4 27-6
77 1 77

878 =%,
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Since there are 7 ordinates there will be 6 spaces

7
.. Common interval = % =45m

h 4
Area=—3-ZAx 2=—3§ x 878 X 2

= 263-4 m*?

APPLICATION TO VOLUMES

Simpson’s Rule is a mathematical rule which will give the area
under any continuous curve, no matter what the ordinates
represent. If the immersed cross-sectional areas of a ship at a
number of positions along the length of the ship are plotted on
a base representing the ship’s length (Fig. 23), the area under the
resulting curve will represent the volume of water displaced by the
ship and may be found by putting the cross-sectional areas
through Simpson’s Rule. Hence the displacement of the ship
at any given draught may be calculated. The longitudinal centroid
of this figure represents the longitudinal centre of buoyancy of the
ship.

‘e ./,/VOLGME///-///~

/// OF/‘///'
ISP
[T Sy
/./ // SRS S S

LENGTH

CSA

Fig. 23

It. is also possible to calculate the displacement by using
ordinates of waterplane area or tonne per cm immersion, with a

R N
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common interval of draught (Fig. 24). The vertical centroids of
these two curves represent the vertical centre of buoyancy of the

ship.
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Fig. 24

Similar methods are used to determine hold and tank capacities.

| Example. The imm

ersed cross-sectional areas through a ship

180 m long, at equal intervals, are 5, 118, 233, 291, 303, 304, 304,

302, 283, 171, and 0 m?® respectively. Calculate the displacement of

the ship in sea water of 1:025 tonne/m®.

Product
4 CSA SM for Volume
5 1. 5
118 4 472
233 2 466
291 - 4 1164
303 2 606
304 4 1216
304 2 608
302 4 1208
L 283 2 566
| 171 4 684
0 1 0 -
6995 = Zv
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Common interval = 11%0 =18 m

Volume of displacement = gzv

18
=g X 6995

= 4] 970 m?

Displacement = vol of displacement x density
=41 970 x 1-025
= 43 019 tonne

Example. The TPC values for a ship at 1-:2 m intervals of
draught commencing at the keel, are 8:2, 16:5, 18-7, 194, 20-0, 20-5
and 21-1 respectively. Calculate the displacement at 7-2 m draught.

Product for
Waterplane TPC SM Displacement
0 82 1 82
1-2 16-5 4 66-0
2:4 187 2 374
36 19-4 4 77-6
4-8 20-0 2 40-0
60 20-5 4 82:0
72 211 1 21-1
332:3 =32,

Common interval = 1:2 m or 120 cm

Displacement = g— DI

120 '
=y & 3323

= 13 292 tonne

Y Note: The_common interval must be expressed in centimetres
since the ordinates are tonne per centimetre immersion.
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USE OF INTERMEDIATE ORDINATES

At the ends of the ship, where the curvature of a waterplane is
considerable, it is necessary to reduce the spacing of the ordinates
to ensure an accurate result. Intermediate ordinates are introduced
to reduce the spacing to half or quarter of the normal spacing.
While it is possible to calculate the area of such a waterplane by
dividing it into separate sections, this method is not considered
advisable. The following method may be used.- -

e . o

7
WE} Ja
iy &

Yi

=, e Iy B /
b |2 — \/ \
v z 7z =z | 15 2 3 4
BEAE | x ! !
Sttt R gt -

If the length of the ship is divided initially into 10 equal parts,
then:

Common interval = h = —1%

It is proposed to introduce intermediate ordinates at a spacing
h : ; . h '
of 7 from section O to section 1 and at a spacing of 5 from section 1

to section 2. The } ordinates at sections AP, %, %, £, etc. will be
denoted by yo, yi, y3, y3, etc. respectively.
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AreafromOtol = 2

W N
SN

(Iyo +4y: +2y% + 43 + 1y)

$h(yo + Iyi + 3k + i+ in)

Areafrom1to2 = (Iy; +4y1% + 1yy)

wi N
N>

§h G +291% + 39

Areafrom2to4 = % h (Ly, + 4y, + 130

Thus Area from 0 to 4

=%h|(yo + vk + 33+ 1yi + 3y + Gy + 215 + 4y +
(1y: + 4ys + 1yl

= §hldy+ i+ 3+ L+ in + 213 + 1y, + 4y + 1y
When building up a system of multipliers it is wise to ignore the
ordinates and concentrate only on the spacing and the multipliers.

The following example shows how these multipliers may be
determined

Example. The half ordinates of a cross-section through a ship
are as follows:

wL  keel 0-25 0-50 0-75 1-0 1-5 2:0 2-5 3-0 4-0 5:0 6:0 70 m
‘ord29 50 57 62666972747678818487m

Calculate the area of the cross-section to the 7 m waterline.

Let the common interval = 2 = 1 m

Then interval from keel to 1m waterline :%
’ . h
interval from 1 m to 3 m waterline = 3

interval from 3 m to 7 m waterline = A
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X h
Mu ltipliers from keel to 1 m with common interval i
IR T O W e

or with common interval of h
-~ 3 : 1 : 3 1}

! h
Multipliers from 1 m to 3m with common interval 5
=l 1 & 4 3 2 24 E 1

or with common interval of h
= 3§ 2 2 =1 : 24 3

Multipliers from 3 mto 7 m with common interval 2
= 1 0~ &4 § 2941
Adding the respective multipliers we have:
1

?;:1:.1:1:4

}:2:802% 3
1

9

sdhle 2 o4 )

11 %:1:%:2:1:2:1—;—:4:2:4:1
Product

Waterline 4 ordinate SM for Area
Keel 29 1 0-73 -
0-25 50 i 5-:00
0:50 57 1 2-85
0-75 62 1 6-20
1-0 66 3 4-95
1-5 69 2 13-80
2:0 7-2 1 7-20
2:5 74 2 14-80
3-0 7-6 13 11-40
4-0 7-8 4 31-20
50 81 2 16:20
60 84 4 33-60
7-0 87 1 8-70
156-63

Area of cross-section = § X 10 X 156'63
= 104-42 m®
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J APPLICATION OF SIMPSON’S RULE
TO FIRST AND SECOND MOMENTS OF AREA

It is often found necessary to determine the centroid of a curved

Consider a plane aBcp (Fig. 26).

i

S

‘!
’;
|

Fig. 26

Divide the plane into thin strips of length 8x
Let one such strip, distance x from AB, have an ordinate y

Area of strip
.".Total area of plane

Yy X &
(yl +J’2 +y3+...)3x
2y dx

i

But the area of the plane may b i i
_ y be found b
y through Simpson’s Rule. ERP g groinates

First moment of area of strip about AB = x X y 8x
. =xydx
.". First moment of area of plane about AB — %
(e + XYy + Xgps .. .)3x
=X xy dx

Now it was mentioned earlier that Simpson’s Rule may be used
to ﬁnd the area under any continuous curve, no matter what the
ordmate_s represent. Such a curve may be drawn on a base equal
to BC, with or(.imates of xy, and the area under this curve may be
found by putting the values of xy through Simpson’s Rule !
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Second moment of area of strip about AB
= Inp + 4X?
= 7%y (3x)* + x% 3x

This may be reduced to (x2y 8x) since 8x is very small

. Second moment of area of plane about AB

= (2 + X%y + X5 +. . )dx
= X x% dx

This may be found by putting the values of x%y through
Simpson’s Rule.

First moment of area of strip about BC

=3}y X ydx
= $y% dx

First moment of area of plane about BC

=(n® + » + 5 +...)3 8

This may be found by putting } y? through Simpson’s Rule.

Second moment of area of strip about BC

= 1%)% ox + (3yHy dx
= })°x

Second moment of area of plane about BC

=(.V13+)’23+)’33+---)% dx
=X}y x

This may be found by putting % y® through Simpson’s Rule.

It is usually necessary to calculate area and centroid when deter-
mining the second moment of area of a waterplane about a
transverse axis. Since the centroid is near amidships it is preferable
to take moments about amidships. The following calculation
shows the method used to determine area, centroid and second
moment of area about the centroid for a waterplane having half
ordinates of yo, ¥1, ¥s, - - - Y10 SPaced i m apart commencing from
aft.

The positive sign indicates an ordinate aft of midships.
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The negative sign indicates an ordinate forward of midships.

Product Product for Product for
Section %} ord sM forarea Lever 1st moment Lever 2nd moment
AP Yo 1 1y, +5h +5yoh +5h +25y,h?
1 N 4 4y, +4h  +16y.h +4h +64y,h?
2 V2 2 2y, +3h +6y,h +3h -+ 18y,ht
3 V3 4 4y, +2h +8ysh +2h +16y;h*
4 Vi 2 2y, +1Aa +2y.h +1h + 2y.h?
5 3 4 4y 04 IMA X h  Oh —
6 Ve 2 2y —1h —2y¢h —1k + 2y:h?
7 Vs 4 4y, —2h  —8y.h 2k +16y:h*
8 Vs 2 2y, —3h —6ygh —3h +18ygh?
9 Yo 4 4y, —4h  —16y.h  —4h +64yh*
FP Mo 1 1 Y10 —5h —Sy10h —5h +25y,4h2
ZA ZMEXh ZiX h?

Area of waterplane 4 — $hX,

First moment of area of waterplane about amidships

=§hEma + Zme) b
(added algebraically)

2 p2 (3
Centroid from midships x = 3 % (212"2 ;— Zmr)
3 A

(Ema + Zmp)

= h aft of midships
EA

(NoTE: If Zymp is greater than Zya, the centroid will be
forward of midships).

Second moment of area of waterplane about amidships
I, =2h3 x h?
=¢m3
Second moment of area of waterplane about the centroid
Ir =1, — Ax?

It should be noted that 4 remains in the table as a constant and

left to the end of the calculation. It may be omitted from the table
as will be seen from the worked examples.
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Example. The half ordinates of a waterplane 180 m long are as
follows:

9% FP
i $'f 2 3745 67 8.9 9%
s;%t;gn JAE)P 5.0 8:0 10-5 12-5 13-5 13:5 12:511:0 7-5 3-0 -0 O m

Calculate:
(a) area of waterplane i
(b) distance of centroid from midships b
(c) second moment of area of waterplane about a transver
axis through the centroid.

Product for
Product Product for
Section 3 ordinate SM for Area Lever st moment Lever 2nd moment
¢ t — +5 —
— +5 '
G g
1 - 13 120 +4 +48- _
é 13(5) 4% 420 +3 +126:0 +3 +%§g
3 125 2 250 +2 +50:0 +% 4’— e
4 13-5 4 540 +1 +54-0 + +
5 13-5 2 270 0 +323-0 0 S
6 12:5 4 500 —1 —500 —; I e
7/ 11-0 2 220 —2 —44-0 — _;_"70‘0
8 75 4 300 —3 —90-0 —3 ,_72.0
9 30 13+ 45 —4 —18-0 ——4% + s
9% 1-0 2 2:0 —4% —9:0 —4;._ + =
X 0 e —5 e = '
e 2785 —211-0 114470
180

Common interval = 10

= 18 m

Alea ()f Waterp]alle == X 18 X 2;8 5

2 18 (323 — 211)
(b) Centroid from midships = — s

= 7-238 m aft

terplane about midships
(c) Second moment of area ci \ga>< ?83 o
= 5626 x 10 m*

¢
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: Common interval = 18 m
el Second moment of grey of Waterplane about centrojd S o R

= 4. 6 ___ ent of area
The r 5626 x 10 3342 « 7-2382 Second mom Bl ' 2 e
. = 5626 x 106 __ 0175 x 10s =3 .
= 5451 x 106 ma = 146 086 m
Sectj
To determine the second Mmome f area about a
Nt of areq of the wat, cond moment of are
;‘P about the centreline of the ship, the hajf ordinates myg¢ b:rglllé::; Lt G glw sieater than the second moment
2 and then put through Simpson’s Rule. transverse axis is considerably g
4 about the centreline.
4 . . Prodyct for
5 3 0;:-""3“’ G }?I;dmate)s SM nd momen¢
6 N J’:a i ly,: ! TRANSVERSE
: Y2 »® 2 gy 1 L AXIS
8 Vs , ¥ 3 o Pl
9 Vs 3¢ Vs |
s 2 29,3 ! (4
Fl b7 3 4 I A
yl }’sa 4 4y " TS F
¢ e 2 3 )
¥ P 4 fyy‘, Fig. 27
Ys Ve® 2 2}/7"’
g Yy y.i 4 4y:’
! Y10 Y10 1 1y, 3 . to
1o . ical it is never necessary
e o g i g ;Sai)};n;;n flfgf:aéntreline. There are many
te the first moment ea of a tank
g " aetf figs of " blane about the centreline, Calci]ie(l)r?s however, on which the first momf? nﬁ Ofiir example.
., 25 Xz;h x E[CL X3 ;fféce m’ust be calculated as shown by the follow g 1
it D))/ ;
° cL
the centreline to
ttom tank extends from L 1
. Examp] . i xample. A double bo regular intervals
gy follow::]p €. The hajf ordinates of 4 Waterplane 180 m long are as th eEshipI; ide. The widths of the tank surface, at reg
Section Ap ] 3 4 3 6 7 g g 94 Fp of h, are y,, yﬁ’ Yo y‘ll]?inr(rixgx;ent of area of the tank surface about
tord 059 g 105 125135 13.515.5 Calculate the seco : .
i D 11:0 7.5 3.9 4. S : s centroid. ;
Calculate the second moment of 5re, of th I 01:0 0 m a longitudinal axis through its to determine the area, centroid
the centrelipe : about It is necessary in this calculatlond 4 A eI
i : con f
i the centreline and the se
f Section i : from
o) . 3 orgmate (€3 odenate)a %SM 2nd momen Product for Product fo;
- . = duct 2 3 SM 2nd momen
S¢ 1* g (()) 5112; (()) 12§ 2500 eaall f,:‘;’ Area (Width)* SM 1st moment (Wldll:) e
o 3 ) 1
2 105 1157-6 4 Foa0 1 4 Figor: 11 14l ol b2 e
3 12'5 1953'1 2 46304 M1 l 4y1 yz2 4 4}’2 'v23 2 zyaa
4 135 2460-4 b gggﬁ ¥ g 2;’2 w2 2 5 e
S g i 24604 2 49208 Shshi g b oF Wt ¢ O w1 np
! 5 Ly
7 ife gﬁ:é 5 78124 % 1 b Bows ! = b
8 7S 421.9 4 Pyl = =
9 3-0 27-0 13 405 5
93 1-0 10 2 20 - e
It Fp 0 =3 i Area a = 3
left ¢ 365215

as wi o
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First moment of area about centreline

X Zm x }

Il

W] >

Zm

Il
NS

h
Centroid from centreline — 3 Zm

h
EEa

s 3
L

3

|

™
Q

~ Second moment of area about centreline

iCL e 521'

Second moment of area about centroid
= ic.—ay?

Example. A double bottom tank 21 m long has a watertight
centre girder. The widths of the tank top measured from the
centreline to the ship’s side are 10-0, 9-5, 9-0, 8-0, 6-5, 4-0 and 1-0 m
respectively. Calculate the second moment of area of the tank
surface about a longitudinal axis through its centroid, for one side
of the ship only.

Product Product for Product for

Width SM for Area (Width)? SM 1st moment (Width)® SM 2nd moment
100 1 100 100:00 1  100-00 10000 1 1000-0
95 4 380 9025 4 361-00 8574 4 34296
90 2 180 81:00 2 162:00 7290 2 14580
80 4 320 6400 4 25600 5120 4 20480
65 2 130 4225 2 84-50 2746 2 549-2
40 4 160 1600 4 64-00 640 4 2560
10 1 1-0 100 1 1-00 10 1 1-0
128-0 1028-50 8741-8
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. 2
Common interval = b 35m

Area of tank surface = 3 X 128

= 149-33 m?

. 1028:5
Centroid from centreline = > 138

= 4-018 m

Second moment of area about centreline

35
= - 87418
9

== 3400-0 m*
Second moment of area about centroid .
== 3400-0 — 149-33 x 4-0182
== 3400-0 — 2410-8
= 989-2 m*
icati f area is
A further application of first and secpnq moments o
the calculation of the load exerted by a liquid on a bulkhead and

the position of the centre of pressure. 1 '
Let the widths of a bulkhead at intervals of 4, commencing from

the top, be y,, y1, s, ... ye (Fig. 28)

SURFACE OF LIQUID

h
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Assume the bulkhead to be flooded to the top edge with liquid
of density ¢ on one side only

Product Product for Product for

Width SM for Area Lever 1st moment Lever 2nd moment
Yo 1 1yo 0 == 0 i
»n 4 4y, 1 4n 1 4y,
Y2 2 2y, 2 4y, 2 8y,
Vs 4 4y, 3 12y, 3 36y,
Vs 2 2y, 4 8y, 4 32y,
Vs 4 4y, 5 20y5 5 100y
¥ o1 176 6  _on 6 3656

Ta m Ti

h
Area of bulkhead = 3 2a

First moment of area of bulkhead about surface of liquid

It was shown previously that:
Load on bulkhead = pg X first moment of area

h2
= pg X ?Em

Second moment of area of bulkhead about surface of liquid

n_.
=—3'21

Centre of pressure from surface of liquid

second moment of area
~ first moment of area

ki
" Zm

(Note: It is not necessary to calculate the area unless requested
to do so).

CALCULATION OF AREA, VOLUME, FIRST AND SECOND MOMENTS 35

Example. A fore peak bulkhead is 4-8 m deep and 5-5 m wide
at the deck. At regular intervals of 1-2 m below the deck, the
horizontal widths are 5-0, 4-0, 2-5 and 0-5 m respectively. The
bulkhead is flooded to the top edge with sea water on one side
only. Calculate:

(a) area of bulkhead

(b) load on bulkhead

(c) position of centre of pressure

Product Product for Product for

Depth Width SM for Area Lever 1st moment Lever 2nd moment
48 55 1 55 0 — 0 —
36 50 4 20-0 1 20-0 1 20-0
24 40 2 80 2 16:0 2 320
1525125 4 100 3 30-0 3 90-0
0 05 1 0-5 4 20 4 8:0
0 & 1509

Common interval = 1:2 m

(@ Area of bulkhead =1—;-2 X 44
= 176 m?

(b) Load on bulkhead = 1-025 x 9-81 X 1—32E X 68:0
= 328-2 kN

(c) Centre of pressure from surface

150
68

= 2:647 m

=12 X

SIMPSON’S SECOND RULE

Simpson’s Second Rule is based on the assumption that the
curved portion of a plane forms part of a cubic expression
(y = ax® + bx? + cx + d), and gives the area contained between
Jour consecutive, equally spaced-ordinates.

Area ABCD = £ h (1y, + 3y, + 3y; + 1y,)
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//

Yo s 1s

Bl - S
b b ——]

Fig. 29

This rule may be applied to successive areas in the same w:iy
as the first rule.

| TR

.r' 1 TR
'., E
i e ® @
i 9 Ye Ya AYe NlYs Yo _‘},
r Fi s e / e G
4 l j i i

! ==t ~»f-——h ey sy — sty iy g

’ Fig. 30

Area 1 = $h(1y;+3y,+3ys+1yd
Area 2 = §h(ly,+3ys+3ys+1ys)
| Area EFGH = $h[(1y;+3y.+3ys+1y)+(1ys+3ys+3ys+1y7)]
= %h[l}ﬁ+3.Vz+3.)’3+2}"4+3)’5+3.Vc+l}’7]

) It may be shown that Simpson’s Second Rule may be used to
| determine the area of a plane having a number of equal intervals
l 1 divisible by three, i.c. 4, 7, 10, 13, 16 ordinates.

Example A waterplane 135 m long has equally-spaced half
ordinates of 1-2, 4-4, 6:7, 7-8, 8-0, 80, 7-7, 61, 3-8 and 0 m res-
pectively. Calculate the area of the waterplane.

-

-
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4 ordinate
12
44
67
7-8
8:0
80
77
6-1
3-8
0

Common interval

Area of waterplane

Product

SM for Area
1-2
13:2
201
15-6
24-0
24-0
15-4
183
11-4

0 WA W LN W W

=3 %X 15 x 1432 x 2

= 1611-0 m?
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TEST EXAMPLES 3

1. A ship 180 m long has } widths of waterplane of 1, 75, 12,
13-5, 14, 14, 14, 13-5, 12, 7 and O m respectively. Calculate:

(a) waterplane area
(b) TPC
(c) waterplane area coefficient.

2. The waterplane areas of a ship at 1-5m intervals of draught,
commencing at the keel, are 865, 1735, 1965, 2040, 210¢, 2145 and
2215 m? respectively. Calculate the displacement at 9 m draught.

3. A ship 140 m long and 18 m beam floats at a draught of 9 m.
The immersed cross-sectional areas at equal intervals are 5, 60,
116, 145, 152, 153, 153, 151, 142, 85 and 0 m? respectively.
Calculate:

(a) displacement

(b) block coefficient

(c) midship section area coefficient
(d) prismatic coefficient.

4. The } ordinates of a waterplane 120 m long are as follows:
SectionAP 3 1 13 2 3 4 5 6 7 8 8% 9 9% FP
3ord 123:553688083858585 8482796235 0 m
Calculate:

(a) waterplane area

(b) distance of centroid from midships.

f5. The TPC values of a ship at 1:5 m intervals of draught,
commencing at the keel, are 4-0, 6-1, 7-8, 9-1, 10-3, 11-4 and 12:0
respectively. Calculate at a draught of 9 m:

(a) displacement
(b) KB

f6. The } breadths of the load waterplane of a ship 150 m long,
commencing from aft, are 0-3, 3-8, 6:0, 7-7, 83, 9:0, 8:4, 7:8, 69,
4-7 and 0 m respectively. Calculate:
(a) area of waterplane
(b) distance of centroid from midships
(c) second moment of area about a transverse axis through the
centroid
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f7. The displacement of a ship at draughts of 0, 1,2,3and 4 m
are 0, 189, 430, 692 and 977 tonne. Calculate the distance of the
centre of buoyancy above the keel when floating at a draught of
4 m, given:

VCB below waterline
area between displacement curve and draught axis

s displacement

f8. The widths of a deep tank bulkhead at equal intervals of
1-2 m commencing at the top, are 8:0, 7-5, 65, 57, 47, 3-8 and
3.0 m. Calculate the load on the bulkhead and the position of the
centre of pressure, if the bulkhead is flooded to the top edge with
sea water on one side only.

f9. A forward deep tank 12 m long extends from a longitudinal
bulkhead to the ship’s side. The widths of the tank surface
measured from the longitudinal bulkhead at regular intervals are
10, 9, 7, 4 and 1 m. Calculate the second moment of area of the
tank surface about a longitudinal axis passing through its centroid.

£10. A ship 160 m long has } ordinates of waterplane of 1-6, 57,
8-8, 10-2, 10-5, 10-5, 10-5, 10-0, 80, 5-0 and 0 m respectively.
Calculate the second moment of area of the waterplane about the
centreline.

f11. The immersed cross-sectional areas of a ship 120 m long,
commencing from aft, are 2, 40, 79, 100, 103, 104, 104, 103, 97,
58 and 0 m2. Calculate:
(a) displacement
(b) longitudinal position of the centre of buoyancy.

12. The } ordinates of the waterplane of a ship 180 m long are
1-6, 6:0, 9-2, 10-5, 11, 11, 10-2, 83, 51 and 0 m respectively.
Calculate the area of the waterplane.




CHAPTER 4

CENTRE OF GRAVITY

The centre of gravity of an object is the point at which the
whole weight of the object may be regarded as acting. If the object
is suspended from this peint, then it will remain balanced and
will not tilt.

The distance of the centre of gravity from any axis is the total
moment of force about that axis divided by the total force. If a
body is composed of a number of different types of material, the
force may be represented by the weights of the individual parts.

moment of weight about axis

Centre of gravity from axis = -
8 i total weight

At any point on the earth’s surface, the .value of g remains
constant. Hence the weight may be represented by mass, and:

moment of mass about axis
total mass

Centre of gravity from axis =

If the body is of the same material throughout, then the weight
depends upon the volume and moments of volume may therefore
be used.

moment of volume about axis
total volume

Centre of gravity from axis =

The centre of gravity of a uniform lamina is midway through
the thickness. Since both the thickness and the density are constant,
moments of area may be used. This system may also be applied to
determine the centre of gravity, or, more correctly, centroid of an
area.

moment of area about axis

Centroid from axis ==
total area
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PSR m——

The position of the centre of gravity of a ship may be found by
taking moments of the individual masses. The actual calculation
of the centre of gravity of a ship is a very lengthy process, and
since many of the masses must be estimated, is not considered to be
sufficiently accurate for stability calculations. Such a calculation
is usually carried out for a passenger ship in the initial design
stages, but the results are confirmed by an alternative method
when the ship is completed. Once the position of the centre of
gravity of an empty ship is known, however, the centre of gravity
of the ship in any loaded condition may be found.

It is usual to measure the vertical position of the centre of
gravity (VCG) of the ship above the keel and this distance is
denoted by KG. The height of the centre of gravity of an item on
the ship above the keel is denoted by Kg. The longitudinal position
of the centre of gravity (LCG) is usually given as a distance forward
or aft of midships. If the ship is upright, the transverse centre of
gravity lies on the centreline of the ship and no calculation is
necessary.

Example. A ship of 8500 tonne displacement is composed of
masses of 2000, 3000, 1000, 2000, and 500 tonne at positions 2, 5,
8, 10 and 14 m above the keel. Determine the height of the centre
of gravity of the ship above the keel.

e =

|
e T an
132@9.'_4_
i 1Om
‘@m.__i._
8500 t;
__"'l 8m
FQQQ._.J'_
i S5m

i

Fig. 31
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This example is preferably answered in table form.

mass Kg Vertical moment
(tonne) (m) (t m)
2000 2 4000
3000 5 15 000
1000 8 8 000
2000 10 20 000
500 14 7 000

8500 54 000

_ total moment
total displacement

54000
~ 8500

= 6353 m

Example. A ship of 6000 tonne displacement is composed of
masses of 300, 1200 and 2000 tonne at distances 60, 35 and 11 m
aft of midships, and masses of 1000, 1000 and 500 tonne at
distances 15, 30 and 50 m forward of midships. Calculate the
distance of the centre of gravity of the ship from midships.

|
WSm Ilm! I15m

[00]
300t 1200t 2000t 1000t 1000t 500t
Fig. 32
A table is again preferred.
Mass Lcg from midships moment forward moment aft
(tonne) (m) (t m) (t m)
300 60 aft — 18 000
1200 35 aft — 42 000
2000 11 aft — - 22 000
1000 15 forward 15 000 —
1000 30 forward 30 000 —
500 50 forward 25 000 —

6000 70 000 82 000
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The moment aft is greater than the moment forward and
therefore the centre of gravity must lie aft of midships.

Excess moment aft = 82 000 — 70 000
= 12 000 tonne m

Centre of gravity aft of midships

___excess moment
" total displacement

12000
~ 76000

= 2:00 m

SHIFT IN CENTRE OF GRAVITY
DUE TO ADDITION OF MASS

When a mass is added to a ship, the centre of gravity of the
ship moves towards the added mass. The distance moved by the

ship’s centre of gravity depends upon the magnitude of the added

mass, the distance of the mass from the ship’s centre of gravity and
the displacement of the ship. If a mass is placed on the port side
of the ship in the forecastle, the centre of gravity moves forward,
upwards and to port. The actual distance and direction of this
movement is seldom required but the separate components are
most important, i.e. the longitudinal, vertical and transverse
distances moved. When an item on a ship is removed, the centre
of gravity moves away from the original position of that item.

Example. A ship of 4000 tonne displacement has its centre of
gravity 1-5 m aft of midships and 4 m above the keel. 200 tonne of
cargo are now added 45 m forward of midships and 12 m above the
keel. Calculate the new position of the centre of gravity.
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If the actual distance moved by the centre of gravity is required,

Taking moments about midships: it may be found from the longitudinal and vertical movements.

Moment aft of midships = 4000 x 15

= 6000t m .
Moment forward of midships = 200 x 45 ' i
= 9000 t m 0-38Im
Excess moment forward = 9000 — 6000 G 2 I-T—L
= 3000t m F -2.21 i
— 3000 t m - ! ak P
: Fig. 34
| Centre of gravity from midships = oo R o
E s total displacement Longitudinal shift in the centre of
1 gravity GT = 15 + 0714
_ 3000 = 2214 m
4000 + 200 GG, = +/GT? + TG,*
= 4/2:2142 4 (0-381°2
= 0-714 m forward ‘ 33 3_/247 i T
f Taking moments about the keel: The angle 6 which the centre of gravity moves relative to the
‘ . horizontal may be found from Fig. 34.
“ Centre of gravity from keel = i Lt Bl 0-381
et SRR ~ 74000 + 200 tan B = ~—=—
. 2-214
| 16000 + 2400 = 0712
| iy 4200 from which 6 = 9° 45
!
KG = 4381m ‘ SHIFT IN CENTRE OF GRAVITY

DUE TO MOVEMENT OF MASS

When a mass which is already on board a ship is moved in

3 The same answer may be obtained by taking moments about the any @uecuon, thgre 15 4.L08 responc.:hng.movement in the centre of
gravity of the ship in the same direction.

original centre of gravity, thus:

Thus the centre of gravity rises 0-381 m.

My

Moment of ship about centre of gravity = 4000 < 0 s *-—-T—
Moment of added mass about centre of me d
gravity = 200(12 — 4) gt my | me o
— 1600 tm T el Tt et
- Rise in centre of gravity Wil ety "z 1
c V1 = > A 4o s m,
lf} I total displacement | ™y T |
_ 1600 e ! b 1
~ 4200 ~' . i % y 5 3
3, Fig. 35
! = 0-381 m
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Consider a system composed of masses of m,, m, and m; as
shown in Fig. 35 (i), the centre of gravity of each being 4;, h; and
h; respectively from the base O—O. The distance of the centre of
gravity of the system from the base may be determined by dividing
the total moment of mass about O—O by the total mass.

total moment of mass
total mass

Centre of gravity from O—O =

_ myhy + myhy + mahs
my + my + my

=Y

. If my is now raised through a distance d to the position shown
in Fig. 35 (ii), the centre of gravity of the system is also raised.
New centre of gravity from O—O

mhy + mohy 4 my(hy + d)

my + my + mg

:m1h1 + mshy + mghy myd
my + my + my my + my + my,
myd
:y+ 3

my + my + my

Thus it may be seen that:

Shift in centre of gravity = b
my + my + my
or,

mass moved X distance moved
TOTAL mass

Shift in centre of gravity =

This expression is most useful in ship calculations and is applied
throughout stability and trim work. It should be noted that it is
not necessary to know either the position of the centre of gravity
of the ship, or the position of the mass relative to the centre of
gravity of the ship. The rise in the centre of gravity is the same
whether the mass is moved from the tank top to the deck or from
the deck to the mast head as long as the distance moved is the
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same. The centre of gravity of the ship moves in the same direction
as the centre of gravity of the mass. Thus if a mass is moved
forward and down, the centre of gravity of the ship also moves
forward and down.

Example. A ship of 5000 tonne displacement has a mass of
200 tonne on the fore deck 55 m forward of midships. Calculate the
shift in the centre of gravity of the ship if the mass is moved to a
position 8 m forward of midships.

mass moved X distance moved

Shift in centre of gravity =

displacement
200 X (55—8)
e 5000
= 1-88 m

EFFECT OF A SUSPENDED MASS

When a mass hangs freely from a point on a ship, its centre of
gravity lies directly below that point. If the vessel now heels,
the mass moves in the direction of the heel until it again lies
vertically below the point of suspension, and no matter z'n which
direction the vessel heels, the centre of gravity of the mass is always
below this point. Thus it may be seen that the position of the
centre of gravity of a hanging mass, relative to the ship, is at the
point of suspension.

This principle proves to be very important when loading a ship
by means of the ship’s derricks. If, for example, a mass lying on
the tank top is being discharged, then as soon as the mass is clear
of the tank top its centre of gravity is virtually raised to the derrick
head, causing a corresponding rise in the centre of gravity of the
ship. If the mass is now raised to the derrick head there is no
further change in the centre of gravity of the ship.

Ships which are equipped to load heavy cargoes by means of
heavy lift derricks must have a standard of stability which will
prevent excessive heel when the cargo is suspended from the
derrick. A similar principle is involved in the design of ships which
carry hanging cargo such as chilled meat. The meat is suspended
by hangers from the underside of the deck and therefore the
centre of gravity of the meat must be taken as the deck from which
it hangs.
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Example. A ship of 10 000 tonne displacement has a mass of
60 tonne lying on the deck. A derrick, whose head is 7-5 m above
the centre of gravity of the mass, is used to place the mass on the
tank top 10-5 m below the deck. Calculate the shift in the vessel’s
centre of gravity when the mass is:

(a) just clear of the deck

(b) at the derrick head

(c) in its final position.

(a) When the mass is just clear of the deck its centre of gravity
is raised to the derrick head.

mass moved X distance moved

Shift in centre of gravity = Tsplacement

60 X 75
~ 710000

= 0:045 m up

(b) When the mass is at the derrick head there is no further
movement of the centre of gravity of the ship.

Shift in centre of gravity = 0-045 m up

53 ) - 60 x 10-5
(c) Shift in centre of gravity = 10000

= 0:063 m down

1
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TEST EXAMPLES 4

1. A ship of 4000 tonne displacement has its centre of gravity
6 m above the keel. Find the new displacement and position of the
centre of gravity when masses of 1000, 200, 5000 and 3000 tonne
are added at positions 0-8, 1-0, 5-0 and 9-5 m above the keel.

/2. The centre of gravity of a ship of 5000 tonne displacement is
6 m above the keel and 1-5 m forward of midships. Calculate the
new position of the centre of gravity if 500 tonne of cargo are
placed in the "tween decks 10 m above the keel and 36 m aft of
midships.

}/ A ship has 300 tonne of cargo in the hold, 24 m forward of
midships. The displacement of the vessel is 6000 tonne and its
centre of gravity is 1-2 m forward of midships.

Find the new position of the centre of gravity if this cargo is
moved {o an after hold, 40 m from midships.

_4. An oil tanker of 17 000 tonne displacement has its centre of
gravity 1 m aft of midships and has 250 tonne of oil fuel in its
forward deep tank 75 m from midships.

This fuel is transferred to the after oil fuel bunker whose centre
is 50 m_from midships.

200 tonne of fuel from the after bunker is now burned.

Calculate the new position of the centre of gravity:

(a) after the oil has been transferred

(b) after the oil has been used.

/5. A ship of 3000 tonne displacement has 500 tonne of cargo

 on board. This cargo is lowered 3 m and an additional 500 tonne

of cargo is taken on board 3 m vertically above the original position
of the centre of gravity. Determine the alteration in position of the
centre of gravity.

. /6. Aship of 10 000 tonne displacement has its centre of gravity
Y'm above the keel. Masses of 2000, 300 and 50 tonne are removed

from positions 1-5, 45 and 6m above the keel. Find the new
displacement and position of the centre of gravity.

~ f7. A vessel of 8000 tonne displacement has 75 tonne of cargo

“on the deck. It is lifted by a derrick whose head is 10-5 m above
the centre of gravity of the cargo, and placed in the lower hold
9 m below the deck and 14 m forward of its original position.
Calculate the shift in the vessel's centre of gravity from its
original position when the cargo is:

(a) just clear of the deck
(b) at the derrick head
(c) in its final position.
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CHAPTER 5

STABILITY OF SHIPS

Statical stability is a measure of the tendency of a ship to return
to the upright if inclined by an external force.

In theory it is possible to balance a pencil on its point on a flat
surface. The pencil will be balanced if its centre of gravity is
vertically above its point. In practice this is found to be impos-
sible to achieve. It is, however, possible to balance the pencil on its
flat end, since, if the pencil is very slightly inclined, the centre of
gravity may still lie within the limits of the base and the pencil will
tend to return to the upright. Fig. 36 is exaggerated to show this.

— - —
\.\ ; =
-

: ok
UNSTABLE STABLE

Fig. 36

The only times a ship may be assumed to be stationary and
upright are before launching and when in dry dock. Thus it is
essential to consider practical conditions and to assume that a
ship is always moving. If the vessel is stated to be upright it should
be regarded as rolling slightly about the upright position.

In the upright position (Fig. 37), the weight of the ship acts
vertically down through the centre of gravity G, while the upthrust
acts through the centre of buoyancy B. Since the weight is equal to
the upthrust, and the centre of gravity and the centre of buoyancy
are in the same vertical line, the ship is in equilibrium.
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\Ag

- i 4

EQUILIBRIUM
Fig. 37

When the ship is inclined by an external force to an angle 0, the
centre of gravity remains in the same position but the centre of
buoyancy moves from B to B, (Fig. 38).

STABLE
Fig. 38

The buoyancy, therefore, acts up through B; while the weight
still acts down through G, creating a moment of Ag X GZ which
tends to return the ship to the upright. /A\g X GZ is known as the
righting moment and GZ the righting lever. Since this moment tends
to right the ship the vessel is said to be stable.
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For small angles of heel, up to about 10°, the vertical through
the new centre of buoyancy B, intersects the centreline at M the
transverse metacentre. It may be seen from Fig. 38 that:

GZ = GM sin 0

Thus for small angles of heel GZ is a function of GM, and since
GM is independent of 6 while GZ depends upon 0, it is useful to
express the initial stability of a ship in terms of GM, the metacentric
height. GM is said to be positive when G lies below M and the
vessel is stable. A ship with a small metacentric height will have a
small righting lever at any angle and will roll easily. The ship is
then said to be tender. A ship with a large metacentric height will
have a large righting lever at any angle and will have a considerable
resistance to rolling. The ship is then said to be stiff. A stiff ship
will be very uncomfortable, having a very small rolling period and
in extreme cases may result in structural damage.

If the centre of gravity lies above the transverse metacentre
(Fig. 39), the moment acts in the opposite direction, increasing the
angle of heel. The vessel is then unstable and will not return to the
upright, the metacentric height being regarded as negative.

UNSTABLE
Fig. 39

When the centre of gravity and transverse metacentric coincide
(Fig. 40), there is no moment acting on the ship which will there-
fore remain inclined to angle 0. The.vessel is then said to be in
neutral equilibrium. :
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NEUTRAL
EQUILIBRIUM
Fig. 40

Since any reduction in the height of G will make the ship stable,
and any rise in G will make the ship unstable, this condition is
regarded as the point at which a ship becomes either stable or
unstable.

TO FIND THE POSITION OF M

The distance of the transverse metacentre above the keel (KM)
is given by KM =KB + BM.

KB is the distance of the centre of buoyancy above the keel and
may be found by one of the methods shown previously.

Fig. 41
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BM may be found as follows:

Consider a ship whose volume of displacement is v/, lying
upright at waterline WL, the centre of buoyancy being on the
centreline of the ship. If the ship is now inclined to a small angle
8, it will lie at waterline W, L, which intersects the original water-
line at S (Fig. 41). Since 0 is small it may be assumed that S is on

Example. A box barge of length L and breadth B floats at a
level keel draught d. Calculate the height of the transverse meta-
centre above the keel.

the centreline.
: A wedge of buoyancy WSW, has been moved across the ship to
L,SL causing the centre of buoyancy to move from B to B,. >\
‘ _ ) ot
* ' Let v = volume of wedge ) i , &
gg, = transverse shift in centre of gravity of wedge w i L
| : . v X g8 | | /\‘/
I Then BB, = ——— g I e

But BB, = BM tan 0 |

+
|
.
|
|

: v X g8
.. BMtan § = ——
nf in v Fig. 42
l‘ v X
ok 881 o
BM_Vtane KM~K/B—{—BM
To determine the value of v X gg, divide the ship into thin KB = 4
‘ transverse strips of length 3x, and let the half width of waterplane 2/
N\_ in way of one such strip be y. i v
‘ ; BM = —
\ Volume of strip of wedge = 4y X y tan 6 3x Y4
‘ Moment of shift of strip of wedge = 4y x }y* tan 8 dx
= 2)%tan 0 3x I =5 LB
Total moment of shift of wedge = v X g8 !
=X 2y% tan 0 dx J /. = L.Bd
— 2 3
= tan 0 % Zy® 8x 2l S
But % Zy® 3x = second moment of area of waterplane about the ~ 12.L.B4d
centreline of the ship
=1 il
. .y X ggy=1tan B 124
i Itan 8 d g
f _—— KM= — e
BM == | 7T 124
BM = _1: It should be noted that while the above expression is applicable
N only to a box barge, similar expressions may be derived for vessels
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of constant triangular or circular cross sections. The waterplane in
each case is in the form of a rectangle, the second moment of which
is I¥ x length X breadth®. As long as the length of a vessel having
constant cross-section exceeds the breadth, the length does not
affect the transverse stability of the ship.

Example. A vessel of constant triangular cross-section has a
depth of 12 m and a breadth at the deck of 15 m.

Calculate the draught at which the vessel will become unstable
if the centre of gravity is 6:675 m above the keel.

i
i I2.m
$u |
1
Let d = draught
b = breadth at waterline
5l ; b B
By similar triangles 355
15
b= D d
5
— 4—d
KB = %d
vV =4%Lbd

I—_—‘TIQ'Lbs

STABILITY OF SHIPS q7

(Note that b is the breadth at the waterline).

1
BM\= = |

<

=5 Lb*+3Lbd
b

i

I

QIR =8|
N U
5

The vessel becomes unstable when G and M coincide.

Thus KM = KG
— 6675 m
6675 — 3d + 2id
89
= 5¢ d
96
d = 6675 X ==

89
Draught d = 7-2m

METACENTRIC DIAGRAM

Since both KB and BM depend upon draught, their values for
any ship may be calculated for a number of different draughts, and

KB BM
L T METACENTRIC DIAGRAM
o e KM
DRAUGHT
KB : KM
Fig. 44
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plotted to form the metacentric diagram for the ship. The height of It is useful 1:n an example of this L derive an expr essior} for
the transverse metacentre above the keel may then be found at any KB a_nd KM in terms of the ‘only variable-draught-and substitute
intermediate draught. the different draught values in tabular form.

The metacentric diagram for a box barge is similar to that for a
ship (Fig. 44), while the diagram for a vessel of constant triangular ] KB — ;

i cross-section is formed by two straight lines starting from the
) origin (Fig. 45). :
t

124
‘ 12k
\ 12d
' : KM
' - L 12
DRAUGHT =
| KM = KB + BM
F‘ d KB BM KM
\ 0 0 © 00
' 1-2 0-6 10-00 10-60
I ‘ 24 1-2 5-00 6:20
KB © KM
36 1-8 3-33 5-13
h METACENTRIC DIAGRAM FOR VESSEL OF 4-8 2.4 2:50 490
| CONSTANT TRIANGULAR CROSS-SECTION 60 3.0 2.00 5.00
‘!l“ Fig. 45 7-2 36 1-67 5-27
{ ; /
b Example. A vessel of constant rectangular cross-section is 12.m L ]
wide. Draw the metacentric diagram using 1-2 m intervals of 6 K KM
draught up to the 7-2 m waterline. DRAUGHT
m o5
i 4
i :
w—-f— ! L <
! ! e <
4 d TB e
il | , ! —
‘ —t ! l
e e e ‘ o 12 3 4 5 6 7 8 9 |0 11 12
KB & KM m
Fig. 46 Fig. 47
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INCLINING EXPERIMENT

Ths is a simple experiment which is carried out on the completed
ship to determine the metacentric height, and hence the height of
the centre of gravity of the ship. If the height of the centre of
gravity of the empty ship is known, it is possible to calculate its
position for any given condition of loading. It is therefore
necessary to carry out the inclining experiment on the empty ship
(or as near to empty as possible).

The experiment is commenced with the ship upright.

1_\ small mass m is moved across the ship through a distance d
This causes the centre of gravity to move from its originalpositior;
G on the centreline to G,. (Fig. 48).

If A = displacement of ship

mxd

Then GG, = A

Fig. 48

The ship then hee}s to angle 0, when the cegtre of buoyancy
moves from B to B, in the same vertical line as G,. But the vertical

thrc;ugh B, intersects the centreline at M, the transverse meta-
centre.
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CONDUCT OF EXPERIMENT

The experiment must be carried out very carefully to ensure
accurate results. At least two pendulums are used, one forward and
one aft. They are made as long as possible and are suspended from
some convenient point, e.g. the underside of the hatch. A stool is
arranged in way of each pendulum on which the deflections are
recorded. The pendulum bobs are immersed in water or light oil
to dampen the swing.

Four masses A, B, C and D are placed on the deck, two on
cach side of the ship near midships, their centres being as far as
possible from the centreline.

The mooring ropes are slackened and the ship-to-shore gangway
removed. The draughts and density of water are read as accurately
as possible.

The inclining masses are then moved, one at a time, across the
ship until all four are on one side, then all four on the other side and
finally two on each side. The deflections of the pendulums are
recorded for each movement of mass. An average of these deflec-
tions is used to determine the metacentric height. Thus if there are
eight movements of mass, and the recorded deflections of
pendulum are @, dg, @gy Gaoweoeeeee ag, then

. al+az+aa+a4+a5+a6+a7+as
average deflection = -

The ship should beina sheltered position, e.g. graving dock, and
the experiment should be carried out in calm weather. Only those
men required for the experiment should be allowed on board. Any

TIME KNIFE EDGE
ROTATING PENDULUM
DRUM "
-
v
z
=< |, BALANCE
WEIGHT
1 ‘

3 ADJUSTABLE FEET T

STABILOGRAPH
Fig. 49
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GG, = GM tan 6

d
GMtan()zm><
mXxd
GM:AtanG

To determine the angle of heel it is necessary to suspend a
pendulum from, say, the underside of a hatch. The deflection a of

the pendulum may be measured when the mass is moved across
the deck.

Thus if 7 = length of pendulum
tan 6 = ;l

mxdx|

and GM = TG

The height of the transverse metacentre above the keel may be
found from the metacentric diagram and hence the height of the
centre of gravity of the ship may be determined.

KG = KM — GM

Example. A mass of 6 tonne is moved transversely through a
distance of 14 m on a ship of 4300 tonne displacement, when the
deflection of an 11 m pendulum is found to be 120 mm. The trans-
verse metacentre is 7-25 m above the keel.

Determine the height of the centre of gravity above the keel.

m X d

GM:Atane

6 x14x11 _
" 4300 x 120 x 103

= 1:79m

KG = KM—GM
=1725—1-79
= 546 m
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movement of liquid affects the results and therefore all t:cl{lks
should be empty or pressed up tight. The magnitufie and position
of any mass which is not included in the lightweight of the ship
should be noted and it is therefore necessary to sound all tanks and
inspect the whole ship. Corrections are made to the centre of
gravity for any such masses. .

An instrument for recording inclination is in use by many
shipyards. It consists of a heavy metal pendulum balanced on
knife edges, geared to a pen arm which records the angle of heel on
a rotating drum. The advantages of using this instrument, known
as a Stabilograph, are that a permanent record is obtaiped and the
movement of the ship may be seen as the experiment is in progress.
If, for instance, the mooring ropes are restricting the heel, the
irregular movement will be seen on the drum.

SFREE SURFACE EFFECT

When a tank on board a ship is not completely full of liquid,
and the vessel heels, the liquid moves across the tank in the same
direction as the heel. The centre of gravity of the ship moves away
from the centreline, reducing the righting lever and increasing the
angle of heel (Fig. 50).

The movement of the centre of gravity from G to G, has been
caused by the transfer of a wedge of liquid across the tank. Thus if
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m is the mass of the wedge and gg; the distance moved by its
centre, then

m X g8
GG, = —
b A
Butm =v X ¢
where v = volume of wedge
o = density of liquid
and A =YV X ¢
where <7 = volume of displacement
o, = density of water
X g X
GG1 - ¥ e ggl

¥V X ¢

Divide the tank into thin, transverse strips of length 3x and let
one such strip have a half width of free surface of y

Volume of strip of wedge = 1 y X y tan 6 3x
= 4y? tan 0 dx
Mass of strip of wedge = p x %y? tan 6 3x
Moment of transfer of strip of wedge
=4y X p X $y*tan 6 dx
= p X 2y%tan 0 dx
Total moment of transfer of wedge
=Vp8&
= ptan 0 Z %)33x
But £ $)*5x = 2nd moment of area of free
surface about the centreline of
the tank
=i

pi tan 9
TV

.'.GGI —

The righting lever has therefore been reduced from GZ to G, Z.
But the righting lever is the perpendicular distance between the
verticals through the centre of buoyancy and the centre of gravity,
and this distance may be measured at any point. The vertical
through G, intersects the centreline at G,, and

GeZ = GZ
also G,Z = G,M sin 6
but G,Z does not equal G, M sin 6
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Since th; initial stability of a ship is usually measured in terms of
metacentnc_ height, it is useful to assume that the effect of a free
surfaqe of liquid is to raise the centre of gravity from G to G,, thu
reducmg the metacentric height of the vessel. -

GG, is termed the virtual reduction in metacentric height due to
free surface or, more commonly, the free surface effect.

Now GG,= GG, tan 6

. GG, — pitan 6
pr Vtan 0
Free surface effect GG, = £ or = RL
PV - A

Example. A ship of 5000 tonne dis

‘ placement has a rectangular
tank 6m lpng gmd }0 m wide. Calculate the virtual reductic%n in
metacentric height if this tank is partly full of oil (rd 0-8).

p = 1000 x 08 kg/m®
i= &6 x 105 mt
pp = 1025 kg/m?
5000
“Tozs ™
L 1000 x 0-8 x 6x 10%® x 1-025
1025 x 5000 x 12
= 0:08 m
THE EFFECT OF TANK DIVISIONS ON FREE SURFACE

Consider a rectangular tank of length /
o e gth /and breadth b partly full

(a) WITH NO DIVISIONS

*. GG,

.
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(C) WITH A LONGITUDINAL, CENTRELINE DIVISION

_ei | b
GG, = - /-X,*T“"‘*?—*l
B e f ‘ N
=5 since p = p; ool S
/ \ \\ S N
i=s1b? Wi g 3
1 b3 | Ly ;
: = ! 0
. .GGz 12 v \‘Y Vi 7 NS NN
| A S N \\\ s
| 74 P4 . / N -8 N L X
| o Ak Vo Ny sy
(b) WITH A MID-LENGTH, TRANSVERSE DIVISION [ Fig. 53
N\ : For one tank i = & /=
= 2
/)< T o 3
/%/ ’ =3 Fortwotanksizrlglé X2
—~ N>
\<./ // / ) == i X Tlé' 1b3
7y
71 1 1B
//I / / 'j e . GG2 = Z X 12 v
¢
7 7 A TS /
//// ///////// 7 // / r Thus the free surface effect is reduced to one quarter of the
g P original by introducing a longitudinal division.
Fig. 52 (d) WITH TWO LONGITUDINAL DIVISIONS FORMING THREE EQUAL
TANKS
l I
For one tank i = ¢ 3 b? , _ /—\,}’3_'}’%“}'?"',
For two tanks i = &% lbs X402 J it
1z 5 ) b o 7/
= 1 /b3 e /////
iz \( L y
- 1B 7 ,/ Y
.66y = 5— "
12 v , - " /// vy
ol Tl A R ’
Thus as long as there is a free surface of liquid in both tanks ’dgere o i ,// \ \\\ i 7" 4
is no reduction in free surface effect. It would, however, be ppss1ble ' Ao £ £z
to fill one tank completely and have a free surface effect in only » Fig. 54
one tank.
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b 3
For one tank i = %/ 3

b 3
For three tanks i = % / (5) x 3

It may be seen that the free surface effgct is still further reduced
by the introduction of. longitudinal divisions. ~ )
If a tank is sub-divided by n longitudinal divisions forming

equal tanks, then
1 1 b®
2T+ 12 12Y

GG

PRACTICAL CONSIDERATIONS

The effect of a free surface of liquid may be most dangerous in
a vessel with a small metacentric height and may even cause.the
vessel to become unstable. In such a ship, tanks which are rfeq‘u.lred
to carry liquid should be pressed up tight. If the.shlp is initially
unstable and heeling to port, then any attempt to introduce water
ballast will reduce the stability. Before ballastmg,'therefore, an
attempt should be made to lower the centre of gravity of the ship
by pressing up existing tanks and lowering masses in the ship. If
water is introduced into a double bottoni tank on_ the starpoard
side the vessel will flop to starboard and may possibly capsize. A
small tank on the port side should therefore be filled c_:or_npletely
before filling on the starboard side. The angle of heel will increase
due to free surface and the effect of the added mass but there will
be no sudden movement of the ship.

A particularly dangerous condition may occur when a ﬁrq breaks
outintheupper’tweendecksof a ship or in the accommodatxgr_l ofa
passenger ship. If water is pumped into the space, the stability of
the ship will be reduced both by the added mass of water and by
the free surface effect. Any accumulation of water should be
avoided. Circumstances will dictate the method used to remove the
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water, and will vary with the ship, cargo and position of fire. It may
be possible to discharge the water using a portable pump. In calm
weather or in port a hole may be drilled in the side of the ship. A
hole in the deck would allow the water to work its way into the
bilges from where it may be pumped overboard, but it is doubtful
if such a method would be possible except in rare circumstances.
It may, however, be possible to remove the ’tween deck hatch
covers thus restricting the height of water to about 150 mm.
The cargo in the lower hold would be damaged by such a method
but this would be preferable to losing the ship.

It is important to note that the free surface effect depends upon
the displacement of the ship and the shape and dimensions of the
free surface. It is independent of the total mass of liquid in the
tank and of the position of the tank in the ship.

The ship with the greatest free surface effect is, of course, the oil
tanker, since space must be left in the tanks for expansion of oil.
Originally tankers were built with centreline bulkhead and
expansion trunks. Twin longitudinal bulkheads were then intro-
duced without expansion trunks and were found to be successful,
since the loss in metacentric height due to free surface was designed
for. It is not possible to design dry cargo vessels in the same way,
since the position of the centre of gravity of the ship varies
considerably with the nature and disposition of the cargo. Thus
while the free surface effect in a tanker is greater thanin a dry cargo
ship, it is of more importance in the latter.

The effect of a suspended mass on the stability of a ship may
be treated in the same way as a free surface. It may be shown, as
stated in Chapter 4, that the centre of gravity of the mass may be
taken as acting at the point of suspension.

fSTABILITY AT LARGE ANGLES OF HEEL

When a ship heels to an angle greater than about 10°, the
principles on which the initial stability were based are no longer
true. The proof of the formula for BM was based on the as-
sumption that the two waterplanes intersect at the centreline and
that the wedges are right angled triangles. Neither of these as-
sumptions may be made for large angles of heel, and the stability
of the ship must be determined from first principles.

The righting lever is the perpendicular distance from a vertical
axis through the centre of gravity G to the centre of buoyancy
B,. This distance may be found by dividing the moment of
buoyancy about this axis by the buoyancy. In practice recourse is
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made to an instrument known as an integrator which may be used
to determine the area of any plane and the moment of the plane
about a given axis. The method used is as follows.

Fig. 55

The position of the centre of gravity G must be assumed at some
convenient position above the keel, since the actual position is not
known. Sections through the ship are drawn at intervals along the
ship’s length. These sections are inclined to an angle of, say 15°.
The integrator is set with its axis in the vertical through G. The

N
\* -
)‘f‘_\ <
>< 60° '\\\\
Bf 5o T
PRy B s
745'
ek ifabed ) 90°
5000 10 000 15 000

DISPLACEMENT
CROSS CURVES OF STABILITY
Fig. 56
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outline of each section is traced by the integrator up to a given
waterline and the displacement and righting lever obtained. This
is repeated for different waterlines and for angles of 30°, 45°, 60°,
75° and 90°. The GZ values at each angle are plotted on a base of
displacement to form the cross curves of stability for the ship.

The displacement, height of centre of gravity and metacentric
height of a vessel may be calculated for any loaded condition. At
this displacement the righting levers may be obtained at the respec-
tive angles for the assumed position of the centre of gravity.
These values must be amended to suit the actual height of the
centre of gravity.

Let G = assumed position of centre of gravity
G, = actual position of centre of gravity

B,

Fig. 57 Fig. 58

If G, lies below G (Fig. 57), then the ship is niore stable and
GZ = GZ + GG, sin 6

If G, lies above G (Fig. 58), then the ship is Jess stable and
GZ = GZ — GG, sin 0

The amended righting levers are plotted on a base of angle of
heel to form the Curve of Statical Stability for the ship in this
condition of loading. The initial slope of the curve lies along a line
drawn from the origin to GM plotted vertically at one radian
(57-3°).
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The area under this curve to any given angle, multiplied by the
gravitational weight of the ship, is the work done in heeling the
ship to that angle and is known as the Dynamical Stability.

£
e o R RN RANGE eFsTagiiimyl [4d L 3 ]
= -]
-~ /
. M
o MA X ©
- . GZ
/-/ VAlIUE l
| ANGLE OF
- i ' JVANISHING
b 573 TABILITY ]
1 1 L 1 LY L 1 L |
o 10° 20°  30°  40° 50° 6Q° 70° 83 of

ANGLE OF HEEL

CURVE OF STATICAL STABILITY
Fig. 59

Example. A vessel has the following righting levers at a parti-
cular draught, based on an assumed KG of 7-2 m

0 0° 159 30° 45° 60° 75 90°
Gz 0 0-43 0-93 1-21 1-15 085 042 m

The vessel is loaded to this draught but the actual XG is found
to be 7-8 m and the GM 1-0 m.

Draw the amended statical stability curve.

GG, =06 m
GZ = GZ — GG, sin 6

(i.e. the vessel is less stable than suggested by the original values).

Angle 6 sin 0 GG, sin 6 GZ GZ
0 0 — 0 0

152 . 0-259 0-15 0-43 0-28
30° 0-500 0-30 0-93 0-63
45° 0707 0-42 1-21 0-79
60° 0-866 0-52 1-15 0-63
75° 0:966 0-58 0-85 0-27
90° 1-000 0-60 0-42 -0-18
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Fig. 60

The shape of the stability curve of a ship depends largely on the
metacentric height and the freeboard. A tremendous change takes
place in this curve when the weather deck edge becomes immersed.
Thus a ship with a large freeboard will normally have large range
of stability while a vessel with a small freeboard will have a much
smaller range. Fig. 61 shows the effect of freeboard on two ships
with the same metacentric height.

Gz A : ,

Fig. 61




