SELECTION OF EXAMINATION QUESTIONS

REED'S NAVAL ARCHITECTURE FOR ENGINEERS

FIRST CLASS

* Questions marked with an asterisk have been selected from Department of Trade papers and are reproduced by kind permission of The Controller of Her Majesty's Stationary Office.

1. A ship 120 m long has draughts of 6.6 m forward and 6.9 m aft. The TPC is 20, MCTI cm 101 tonne m and the centre of flotation 3.5 m aft of midships. Calculate the maximum position aft at which 240 tonne may be added so that the after draught does not exceed 7.2 m.

2. A vessel, when floating at a draught of 3.6 m has a displacement of 8172 tonne, KB 1.91 m and LCB 0.15 m aft of midships. From the following information, calculate the displacement, KB and position of the LCB for the vessel when floating at a draught of 1.2 m.

Draught (m)	TPC	LCF from midships
1.2	23.0	1.37 F
2.4	24.2	0.76 A
3.6	25.0	0.92 A

3. An oil tanker has LBP 142 m, beam 18.8 m and draught 8 m. It displaces 17 000 tonne in sea water of 1.025 t/m³. The face pitch ratio of the propeller is 0.673 and the diameter 4.8 m. The results of the speed trial show that the true slip may be regarded as constant over a range of speeds of 9 to 12 knots and is 35%. The wake fraction may be calculated from the equation:

$$w = 0.5C_h - 0.05$$

If the vessel uses 20 tonne of fuel per day at 12 knots, and the consumption varies as (speed)3, find the consumption per day at 100 rev/min.

/4. A ship of 5000 tonne displacement has a KM of 6.4 m. When 5 tonne are moved 15 m across the ship a pendulum 6 m long has a deflection of 12 cm. A double bottom tank 7.5 m long, 9 m wide and 1.2 m deep is half-full of sea water.

Calculate the KG of the light ship.

- 8. A propeller has a pitch ratio of 0.95. When turning at 120 rev/min the real slip is 30%, the wake fraction 0.28 and the ship speed 16 knots. The thrust is found to be 400 kN, the torque 270 kN m and the OPC 0.67. Calculate:
 - (a) the propeller diameter
 - (b) the shaft power
 - (c) the propeller efficiency
 - (d) the thrust deduction factor.
- 6. A pontoon has a constant cross-section as shown in Fig. 120. The metacentric height is 2.5 m. Find the height of the centre of gravity above the keel.

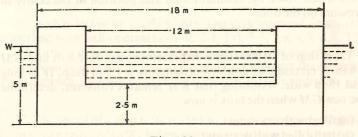


Fig. 120

- 7. (a) Derive the Admiralty Coefficient formula and show how this may be modified to suit a fast ship.
- (b) A ship of 14 000 tonne displacement requires 23 000 kW shaft power to drive it at 24 knots. Using the modified Admiralty Coefficient formula, calculate the shaft power required for a similar ship of 12 000 tonne displacement at 21 knots.
- 8. A ship 80 m long has equally-spaced immersed crosssectional areas of 0, 11.5, 27, 38.5, 44, 45, 44.5, 39, 26.5, 14.5 and 0 m² respectively. Calculate:
 - (a) displacement
 - (b) distance of centre of buoyancy from midships
 - (c) prismatic coefficient.
 - 9. The following data refer to two similar ships

	L	S	V	ep_n	fsw
Ship A	160	4000	18	6400	0.420
ShipB	140				0.425
Calculate ej	on for ship I	B at the corr	espondin	g speed.	

FIRST CLASS EXAMINATION QUESTIONS

- 10. A ship of 11 200 tonne displacement has a double bottom tank containing oil, whose centre of gravity is 16.5 m forward and 6.6 m below the centre of gravity of the ship. When the oil is used the ship's centre of gravity moves 380 mm. Calculate:
 - (a) the mass of oil used
 - (b) the angle which the centre of gravity moves relative to the horizontal.
- 11. A watertight door is 1.2 m high and 0.75 m wide, with a 0.6 m sill. The bulkhead is flooded with sea water to a depth of 3 m on one side and 1.5 m on the other side. Draw the load diagram and from it determine the resultant load and position of the centre of pressure on the door.
- 12. A ship of 10 000 tonne displacement has KM 8 m and GM 0.6 m. A rectangular double bottom tank is 1.5 m deep, 18 m long and 15 m wide. Assuming that KM remains constant, determine the new GM when the tank is now:
 - (a) filled with sea water
 - (b) half-filled with sea water.
- 13. A propeller 6 m diameter has a pitch ratio of 0.9, BAR 0.48 and, when turning at 110 rev/min, has a real slip of 25% and wake fraction 0.30. If the propeller delivers a thrust of 300 kN and the propeller efficiency is 0.65, calculate:
 - (a) blade area
 - (b) ship speed
 - (c) thrust power
 - (d) shaft power
 - (e) torque.
- 14. When a ship is 800 nautical miles from port its speed is reduced by 20%, thereby reducing the daily fuel consumption by 42 tonne and arriving in port with 50 tonne on board. If the fuel consumption in t/h is given by the expression $(0.136 + 0.001 \ V^3)$ where V is the speed in knots, estimate:
- (a) the reduced consumption per day
- (b) the amount of fuel on board when the speed was reduced

- (c) the percentage decrease in consumption for the latter part of the voyage
- (d) the percentage increase in time for this latter period.
- 15. An oil tanker 160 m long and 22 m beam floats at a draught of 9 m in sea water. C_w is 0.865.

The midship section is in the form of a rectangle with 1.2 m radius at the bilges. A midship tank 10.5 m long has twin longitudinal bulkheads and contains oil of 1.4 m^3/t to a depth of 11.5 m. The tank is holed to the sea for the whole of its transverse section. Find the new draught.

- 16. A ship 160 m long and 8700 tonne displacement floats at a waterline with half-ordinates of: 0, 2.4, 5.0, 7.3, 7.9, 8.0, 8.0, 7.7, 5.5, 2.8 and 0 m respectively. While floating at this waterline, the ship develops a list of 10° due to instability. Calculate the negative metacentric height when the vessel is upright in this condition.
- 17. The speed of a ship is increased to 18% above normal for 7.5 hours, then reduced to 9% below normal for 10 hours. The speed is then reduced for the remainder of the day so that the consumption for the day is the normal amount. Find the percentage difference between the distance travelled in that day and the normal distance travelled per day.
- 18. A double bottom tank containing sea water is 6 m long, 12 m wide and 1 m deep. The inlet pipe from the pump has its centre 75 mm above the outer bottom. The pump has a pressure of 70 kN/ m^2 and is left running indefinitely. Calculate the load on the tank top:
 - (a) if there is no outlet
- (b) if the overflow pipe extends 5 m above the tank top.
- 19. A ship 120 m long displaces 12 000 tonne. The following data are available from trial results:

V(knots 10 11 12 13 14 15 sp(kW) 880 1155 1520 2010 2670 3600

- (a) Draw the curve of Admiralty Coefficients on a base of speed
- (b) Estimate the shaft power required for a similar ship 140 m long at 14 knots.

- 20. A box barge 60 m long and 10 m wide floats at a level keel draught of 3 m. Its centre of gravity is 2.5 m above the keel. Determine the end draughts if an empty, fore end compartment 9 m long is laid open to the sea.
- 21. A vessel of constant triangular cross-section floats apex down at a draught of 4 m, the width of the waterplane being 8 m, when its keel just touches a layer of mud having relative density twice that of the water. The tide now falls 2 m. Calculate the depth to which the vessel sinks in the mud.
- 22. The following information relates to a model propeller of 400 mm pitch:

Rev/min		400	450	500	550	600
Thrust	N	175	260	365	480	610
Torque	Nm	16.8	22.4	28.2	34.3	40.5

- (a) Plot curves of thrust and torque against rev/min
- (b) When the speed of advance of the model is 150 m/min and slip 0.20, calculate the efficiency.
- 23. A ship of 8100 tonne displacement floats upright in sea water. KG = 7.5 m and GM = 0.45 m. A tank, whose centre of gravity is 0.5 m above the keel and 4 m from the centreline, contains 100 tonne of water ballast. Neglecting free surface effect, calculate the angle of heel when the ballast is pumped out.
- 24. The $\frac{1}{2}$ ordinates of a waterplane 120 m long are 0.7, 3.3, 5.5, 7.2, 7.5, 7.5, 7.5, 6.8, 4.6, 2.2 and 0 m respectively. The ship displaces 11 000 tonne. Calculate the transverse *BM*.
- 25. A box barge 85 m long, 18 m beam and 6 m draught floats in sea water of $1.025\,t/m^3$. A midship compartment 18 m long contains cargo stowing at $1.8\,m^3/t$ and having a density of $1.600\,t/m^3$. There is a watertight flat 6 m above the keel. Calculate the new draught if this compartment is bilged below the flat.
- 26. The ½ ordinates of a waterplane 90 m long are as follows:

 Station AP ½ 1 2 3 4 5 6 7 7½ FP
 ½ ordinate 0.6 2.7 4.6 6.0 6.3 6.3 6.3 5.7 4.8 2.0 0 m

Calculate the area of the waterplane and the distance of the centre of flotation from midships.

- 27. A ship of 6600 tonne displacement has KG 3.6 m and KM 4.3 m. A mass of 50 tonne is now lifted from the quay by one of the ship's derricks whose head is 18 m above the keel. The ship heels to a maximum of 9.5° while the mass is being transferred. Calculate the outreach of the derrick from the ship's centreline.
- 28. A ship 120 m long displaces 10 500 tonne and has a wetted surface area of 3000 m². At 15 knots the shaft power is 4100 kW, propulsive coefficient 0.6 and 55% of the thrust is available to overcome frictional resistance.

Calculate the shaft power required for a similar ship 140 m long at the corresponding speed. f = 0.42 and n = 1.825.

- 29. A box-shaped vessel 30 m long and 9 m wide floats in water of $1.025\,t/m^3$ at a draught of $0.75\,m$ when empty. The vessel moves from water of $1.000\,t/m^3$ to water of $1.025\,t/m^3$ in a partially laden state and, on reaching the sea water, it is found that the mean draught is reduced by $3.2\,cm$. Calculate the mass of cargo on board.
- 30. A ship of 5000 tonne displacement has a double bottom tank 12 m long. The ½ breadths of the top of the tank are 5, 4 and 2 m respectively. The tank has a watertight centreline division. Calculate the free surface effect if the tank is partially full of fresh water on one side only.
- * 31. The following data apply to a ship operating at a speed of 15 knots:

Shaft power = 3050 kW
Propeller speed = 1.58 rev/s
Propeller thrust = 360 kN
Apparent slip = 0

Calculate the propeller pitch, real slip and the propulsive coefficient if the Taylor wake fraction and thrust deduction factor are 0.31 and 0.20 respectively.

32. The force acting normal to the plane of a rudder at angle α is given by:

 $F_n = 577 A v^2 \sin \alpha$ N

where

 $A = \text{area of rudder} = 22 \text{ m}^2$

and

v = water speed in m/s.

When the rudder is turned to 35° , the centre of effort is 1.1 m from the centreline of stock. Allowing 20% for race effect, calculate the diameter of the stock if the maximum ship speed is 15 knots and the maximum allowable stress is $70 \, MN/m^2$.

If the effective diameter is reduced by corrosion and wear to 330 mm, calculate the speed at which the vessel must travel so that the above stress is not exceeded.

33. A ship 100 m long and 15 m beam floats at a mean draught of 3.5 m. The semi-ordinates of the waterplane at equal intervals are: 0, 3.0, 5.5, 7.3, 7.5, 7.5, 7.5, 7.05, 6.10, 3.25 and 0 m respectively. The section amidships is constant and parallel for 20 m and the submerged cross-sectional area is 50 m² at this section.

Calculate the new mean draught when a midship compartment 15 m long is opened to the sea. Assume the vessel to be wall-sided in the region of the waterplane.

- 34. A ship 85 m long displaces 8100 tonne when floating in sea water at draughts of 5.25 m forward and 5.55 m aft. TPC 9.0, GM_L 96 m, LCF 2 m aft of midships. It is decided to introduce water ballast to completely submerge the propeller and a draught aft of 5.85 m is required. A ballast tank 33 m aft of midships is available. Find the least amount of water required and the final draught forward.
- 35. A solid block of wood has a square cross-section of side S and length L greater than S. Calculate the relative density of the wood if it floats with its sides vertical in fresh water.
- 36. A ship travelling at 15.5 knots has a propeller of 5.5 m pitch turning at 95 rev/min. The thrust of the propeller is 380 kN and the delivered power 3540 kW. If the real slip is 20% and the thrust deduction factor 0.198, calculate the QPC and the wake fraction.

- 37. (a) Describe briefly the inclining experiment and explain how the results are used.
- (b) A ship of 8500 tonne displacement has a double bottom tank 11 m wide extending for the full breadth of the ship, having a free surface of sea water. If the apparent loss in metacentric height due to slack water is 14 cm, find the length of the tank.
- 38. (a) Derive an expression for the change in draught of a vessel moving from sea water into river water.
- (b) A ship of 8000 tonne displacement has TPC 17 when at a level keel draught of 7 m in sea water of $1.024 \, t/m^3$. The vessel then moves into water of $1.008 \, t/m^3$. The maximum draught at which the vessel may enter dock is 6.85 m. Calculate how much ballast must be discharged.
- 39 (a). What is meant by the Admiralty Coefficient and the Fuel Coefficient?
- (b) A ship of 14 900 tonne displacement has a shaft power of 4460 kW at 14.55 knots. The shaft power is reduced to 4120 kW and the fuel consumption at the same displacement is 541 kg/h. Calculate the fuel coefficient for the ship.
- 40. A ship of 12 000 tonne displacement has a rudder 15 m² in area, whose centre is 5 m below the waterline. The metacentric height of the ship is 0.3 m and the centre of buoyancy is 3.3 m below the waterline. When travelling at 20 knots the rudder is turned through 30°. Find the initial angle of heel if the force F_n perpendicular to the plane of the rudder is given by:

$$F_n = 577 A v^2 \sin \alpha$$
 N

Allow 20% for the race effect.

41. A ship 120 m long has a light displacement of 4000 tonne and LCG in this condition 2.5 m aft of midships.

The following items are then added:

Cargo	10 000 tonne Lcg	3.0 m	forward	of midships
Fuel	1500 tonne Lcg	2.0 m	aft	of midships
Water	400 tonne Lcg	8.0 m	aft	of midships
Stores	100 tonne Lcg	10.0 m	forward	of midships

303

Using the following hydrostatic data, calculate the final draughts:

Draught (m)	Displacement (t)	MCT1 cm (t m)	LCB from midships	LCF from midships
			(m)	(m)
8.50	16 650	183	1.94F	1.20 A
8.00	15 350	175	2.10F	0.06F

- 42. A box barge 30 m long and 9 m beam floats at a draught of 3 m. The centre of gravity lies on the centreline and KG is 3.50 m. A mass of 10 tonne, which is already on board, is now moved 6 m across the ship.
 - (a) Estimate the angle to which the vessel will heel, using the formula:

$$GZ = \sin\theta \left(GM + \frac{1}{2}BM \tan^2\theta \right)$$

- (b) Compare the above result with the angle of heel obtained by the metacentric formula.
- 43. The fuel consumption of a ship at 17 knots is 47 tonne/day. The speed is reduced and the consumption is reduced to 22 tonne/day. At the lower speed, however, the consumption per unit power is 13.2% greater than at 17 knots. Find the reduced speed and the percentage saving on a voyage of 3000 nautical miles.
- 44. A ship of 14 000 tonne displacement is 135 m long and floats at draughts of 7.30 m forward and 8.05 m aft. GM_L is 127 m, TPC 18 and LCF 3.0 m aft of midships. Calculate the new draughts when 180 tonne of cargo are added 40 m forward of midships.
- 45. A propeller has a pitch of 5.5 m. When turning at 93 rev/min the apparent slip is found to be -S% and the real slip +S%, the wake speed being 10% of the ship's speed. Calculate the speed of the ship, the apparent slip and the real slip.
- 46. The $\frac{1}{2}$ ordinates of a waterplane at 15 m intervals, commencing from aft, are 1, 7, 10.5, 11, 11, 10.5, 8, 4 and 0 m. Calculate:
 - (a) TPC
 - (b) distance of the centre of flotation from midships

(c) second moment of area of the waterplane about a transverse axis through the centre of flotation.

Note:—Second moment of area about any axis y - y which is parallel to an axis N - A through the centroid and distance x from it, is given by:

$$I_{yy} = I_{NA} + Ax^2$$

47. A ship travelling at 12 knots has a metacentric height of 0.25 m. The distance between the centre of gravity and the centre of lateral resistance is 2.7 m. If the vessel turns in a circle of 600 m radius, calculate the angle to which it will heel.

48. The following data are available for a twin screw vessel:

V	(knots)	15	16	17	18
ep_n	(kW)	3000	3750	4700	5650
QPC	fuerous odd bi	0.73	0.73	0.72	0.71

Calculate the service speed if the brake power for each engine is 3500 kW. The transmission losses are 3% and the allowances for weather and appendages 30%.

49. A ship 120 m long displaces 8000 tonne, GM_L is 102 m, TPC 17.5 and LCF 2 m aft of midships. It arrives in port with draughts of 6.3 m forward and 6.6 m aft.

During the voyage the following changes in loading have taken place:

Fuel used	200 tonne	18 m forward of midships
Water used	100 tonne	3 m aft of midships
Stores used	10 tonne	9 m aft of midships
Ballast added	300 tonne	24 m forward of midships

Calculate the original draughts.

- 50. A propeller has a pitch of 5.5 m. When turning at 80 rev/min the ship speed is 13.2 knots, speed of advance 11 knots, propeller efficiency 70% and delivered power 3000 kW. Calculate:
 - (a) real slip
 - (b) wake fraction
 - (c) propeller thrust.

* 51. A watertight bulkhead 6.0 m deep is supported by vertical inverted angle stiffeners 255 mm x 100 mm x 12.5 mm, spaced 0.6 m apart. The ends of the stiffeners in contact with the tank top are welded all round, and the thickness of weld at its throat is 5 mm.

Calculate the shear stress in the weld metal at the tank top when the bulkhead is covered on one side, by water of density 1025 kg/m^3 , to a depth of 4.85 m.

52. A ship of 5000 tonne displacement has three rectangular double bottom tanks; A 12 m long and 16 m wide; B 14 m long and 15 m wide; C 14 m long and 16 m wide.

Calculate the free surface effect for any one tank and state in which order the tanks should be filled when making use of them for stability correction.

53. A box barge 75 m long and 8.5 m beam floats at draughts of 2.13 m forward and 3.05 m aft.

An empty compartment is now flooded and the vessel finally lies at a draught of 3.00 m level keel. Calculate the length and Lcg of the flooded compartment.

- 54. A vessel has a maximum allowable draught of 8.5 m in fresh water and 8.25 m in sea water of 1.026 t/m³, the TPC in the sea water being 27.5. The vessel is loaded in river water of 1.012 t/m³ to a draught of 8.44 m. If it now moves into sea water, is it necessary to pump out any ballast, and if so, how much?
- 55. A bulkead is in the form of a trapezoid 13 m wide at the deck, 10 m wide at the tank top and 7.5 m deep.

Calculate the load on the bulkead and the position of the centre of pressure if it is flooded to a depth of 5 m with sea water on one side only.

- 56. A double bottom tank is 23 m long. The half breadths of the top of the tank are 5.5, 4.6, 4.3, 3.7 and 3.0 m respectively. When the ship displaces 5350 tonne, the loss in metacentric height due to free surface is 0.2 m. Calculate the density of the liquid in the tank.
- 57. A vessel of constant rectangular cross-section is 100 m long and floats at a draught of 5 m. It has a mid-length compartment 10 m long extending right across the vessel, but sub-divided by a horizontal watertight flat 3 m above the keel. GM is 0.8 m.

Calculate the new draught and metacentric height if the compartment is bilged below the flat.

- 58 (a). If resistance α S V² and S $\alpha \triangle^{\frac{2}{3}}$, derive the Admiralty Coefficient formula.
- (b). A ship 160 m long, 22 m beam and 9.2 m draught has a block coefficient of 0.765. The pitch of the propeller is 4 m and when it turns at 96 rev/min the true slip is 33%, the wake fraction 0.335 and shaft power 2900 kW. Calculate the Admiralty Coefficient and the shaft power at 15 knots.
- 59. A ship model 6 m long has a total resistance of 40 N when towed at 3.6 knots in fresh water.

The ship itself is 180 m long and displaces 20 400 tonne. The wetted surface area may be calculated from the formula

$$S = 2.57 \sqrt{\Delta L}$$

Calculate ep_n for the ship at its corresponding speed in sea water. $f(\text{model})_{FW} = 0.492$; $f(\text{ship})_{SW} = 0.421$; n = 1.825.

- 60 (a). Why is an inclining experiment carried out? Write a short account of the method adopted.
- (b) An inclining experiment was carried out on a ship of 8000 tonne displacement. The inclining ballast was moved transversely through 12 m and the deflections of a pendulum 5.5 m long, measured from the centreline, were as follows:

3 tonne port to starboard	64 mm S
3 tonne port to starboard	116 mm S
Ballast restored	3 mm S
3 tonne starboard to port	54 mm P
3 tonne starboard to port	113 mm P
Calculate the metacentric height of the vessel.	

- 61. A ship of 8000 tonne displacement, 110 m long, floats in sea water of 1.024 t/m^3 at draughts of 6 m forward and 6.3 m aft. The TPC is 16, LCB 0.6 m aft of midships, LCF 3 m aft of midships and MCT1 cm 65 tonne m. The vessel now moves into fresh water of 1.000 t/m^3 . Calculate the distance a mass of 50 tonne must be moved to bring the vessel to an even keel and determine the final draught.
- 62. A rectangular watertight bulkhead 9 m high and 14.5 m wide has sea water on both sides, the height of water on one side being four times that on the other side. The resultant centre of pressure is 7 m from the top of the bulkead. Calculate:

- (a) the depths of water
- (b) the resultant load on the bulkhead.
- * 63. The following values refer to a vessel 143 m in length which is to have a service speed of 14 knots:

Service speed (knots)	13.0	14.1	15.2	16.3
Effective power naked ep _n (kW)	1690	2060	2670	3400

If allowances for the above ep_n for trial and service conditions are 13 per cent and 33 per cent respectively, and the ratio of service indicated power to maximum available indicated power is 0.9, calculate using the data below:

- (a) the indicated power (ip) of the engine to be fitted.
- (b) the service and trial speed of the vessel if the total available ep were used.

The vessel has the following data:

Quasi-propulsive coefficient (QPC) = 0.72 Shaft losses

= 3.5 per cent Mechanical efficiency of the engine

= 87 per cent. to be fitted

64. A ship of 15 000 tonne displacement has righting levers of 0, 0.38, 1.0, 1.41 and 1.2 m at angles of heel of 0°, 15°, 30°, 45° and 60° respectively and an assumed KG of 7.0 m. The vessel is loaded to this displacement but the KG is found to be 6.80 m and GM 1.50

- (a) Draw the amended stability curve
- (b) Estimate the dynamical stability at 60°.
- 65. On increasing the speed of a vessel by 1.5 knots it is found that the daily consumption of fuel is increased by 25 tonne and the percentage increase in fuel consumption for a voyage of 2250 nautical miles is 20. Estimate:
 - (a) the original daily fuel consumption
 - (b) the original speed of the ship.

66. The end bulkhead of the wing tank of an oil tanker has the following widths at 3 m intervals, commencing at the deck: 6.0, 6.0, 5.3, 3.6 and 0.6 m. Calculate the load on the bulkhead and the position of the centre of pressure if the tank is full of oil rd 0.8.

* 67. The following data for a ship has been produced from propulsion experiments on a model:

Ship speed (knot)	12.50	13.25	14.00
Effective power (kW)	1440	1800	2230
QPC	0.705	0.713	0.708
Propeller efficiency	0.565	0.584	0.585
Taylor wake fraction	0.391	0.362	0.356

Determine the speed of the ship and propeller thrust when the delivered power is 2385 kW.

- 68. A box barge 45 m long and 15 m wide floats at a level keel draught of 2 m in sea water, the load being uniformly distributed over the full length. Two masses, each of 30 tonne, are added at 10 m from each end and 50 tonne is evenly distributed between them. Sketch the shear force diagram and give the maximum shear force.
- * 69. The power delivered to a propeller is 3540 kW at a ship speed of 15.5 knots. The propeller rotates at 1.58 rev/s, develops a thrust of 378 kN and has a pitch of 4.87 m.

If the thrust deduction fraction is 0.24, real slip 30 per cent and transmission losses are 3 per cent, calculate:

- (a) the effective power,
- (a) the effective power,
 (b) the Taylor wake fraction,
- (d) the quasi-propulsive coefficient, assuming the appendage and weather allowance is 15 per cent.
- 70. A ship of 14 000 tonne displacement is 125 m long and floats at draughts of 7.9 m forward and 8.5 m aft. The TPC is 19, GM, 120 m and LCF 3 m forward of midships. It is required to bring the vessel to an even keel draught of 8.5 m. Calculate the mass which should be added and the distance of the centre of the mass from midships.
- 71. A ship of 4000 tonne displacement has a mass of 50 tonne on board, on the centreline of the tank top. A derrick, whose head is 18 m above the cg of the mass, is used to lift it. Find the shift in the ship's centre of gravity from its original position when the mass is:
 - (a) lifted just clear of the tank top
 - (b) raised to the derrick head
 - (c) placed on the deck 12 m above the tank top
 - (d) swung outboard 14 m.

- * 72. A rectangular bulkhead 8 m wide has water of density 1000 kg/m³ to a depth of 7 m on one side and on the other side oil of density 850 kg/m³ to a depth of 4 m. Calculate:
 - (a) the resultant pressure on the bulkhead
 - (b) the position of the resultant centre of pressure.
- * 73. A ship of 91.5 m length between perpendiculars contains ballast water in a forward compartment and has the following equidistant half areas of immersed sections commencing at the after perpendicular (AP).

Section	0(AP)	1	2	3	4	5	6	7	8	9	10(FP)
Half-area of immersed sections (m ²)	0.4	7.6	21.4	33.5	40.8	45.5	48.4	52.0	51.1	34.4	0

If, prior to ballasting, the ship's displacement was 5750 tonne and the position of the longitudinal centre of buoyancy (LCB) was 4.6 m forward of midships, calculate:

- (a) the mass of water of density 1025 kg/m³ added as ballast,
- (b) the distance of the centre of gravity of the ballast water contained in the forward compartment from midships.
- 1. 74. A ship of 7500 tonne displacement has a double bottom tank 14 m long, 12 m wide and 1.2 m deep full of sea water. The centre of gravity is 6.7 m above the keel and the metacentric height 0.45 m.

Calculate the new GM if half of the water is pumped out of the tank. Assume that KM remains constant.

- 75. A ship 120 m long displaces 9100 tonne. It loads in fresh water of $1.000\,t/m^3$ to a level keel draught of 6.70 m. It then moves into sea water of $1.024\,t/m^3$. TPC in sea water 16.8, MCT1 cm 122 tonne m, LCF 0.6 aft of midships, LCB 2.25 m forward of midships. Calculate the end draughts in the sea water.
- 76. A box-shaped vessel is 20 m long and 10 m wide. The weight of the vessel is uniformly distributed throughout the length and the draught is 2.5 m. The vessel contains ten evenly-spaced double bottom tanks, each having a depth of 1 m.

Draw the shear force diagrams:

- (a) with No. 1 and No. 10 tanks filled
- (b) with No. 3 and No. 8 tanks filled
- (c) with No. 5 and No. 6 tanks filled.

Which ballast condition is to be preferred from the strength point of view?

* 77. For a box-shaped barge of 216 tonne displacement, 32 m in length, 5.5 m breadth and floating in water of density 1025 kg/m^3 , the KG is 1.8 m. An item of machinery of mass 81 tonne is loaded amidships and to maintain a positive metacentric height, 54 tonne of solid ballast is taken aboard and evenly distributed over the bottom of the barge so that the average Kg of the ballast is 0.15 m. If in the final condition the GM is 0.13 m, calculate the Kg of the machinery.

78. The maximum allowable draught of a ship in fresh water of 1.000 t/m^3 is 9.50 m and in sea water of 1.025 t/m^3 is 9.27 m.

The vessel is loaded to a draught of 9.50 m in a river, but when it proceeds to sea it is found that 202 tonne of water ballast must be pumped out to prevent the maximum draught being exceeded. If the TPC in the sea water is 23, calculate the density of the river water.

* 79. The following data are recorded from tests carried out on a model propeller 0.3 m diameter rotating at 8 rev/s in water of density 1000 kg/m³.

Speed of advance va (m/s)	1.22	1.46	1.70	1.94
Thrust (N)	93.7	72.3	49.7	24.3
Torque (Nm)	3.90	3.23	2.50	1.61

Draw graphs of thrust and delivered power against speed of advance va.

A geometrically similar propeller 4.8 m diameter operates in water of 1025 kg/m^3 . If the propeller absorbs 3000 kW delivered power and satisfies the law of comparison, determine for the propeller:

- (a) the thrust power,
- (b) the efficiency.

Note: For geometrically similar propellers the thrust power and delivered power vary directly as (diameter)^{3.5}.

* 80. A ship 128 m in length, 16.75 m in breadth, has the following hydrostatic data:

Draught (m)	1.22	2.44	3.66	4.88	6.10
Waterplane area coefficient	0.78	0.82	0.85	0.88	0.90
Position of longitudinal centre of flotation (LCF) from midships (m)	1.30 for'd	1.21 for'd	0.93 for'd	0.50 for <mark>`d</mark>	0.06 aft

Calculate:

- (a) the displacement in water of density 1025 kg/m³ of a layer of shipbody between the waterplanes at 1.22 m and 6.10 m draught,
- (b) for the layer
 - (i) the position of the longitudinal centre of buoyancy,
 - (ii) the position of the vertical centre of buoyancy.

SOLUTIONS TO FIRST CLASS EXAMINATION QUESTIONS

1. Bodily sinkage =
$$\frac{240}{20}$$

= 12 cm

New draught aft =
$$6.9 + 0.12$$

= $7.02 \,\mathrm{m}$

i.e. the after draught may be increased by a further 0.18 m and this becomes the change in trim aft.

Change in trim aft = total change in trim
$$\times \frac{56.5}{120}$$

$$18 = t \times \frac{56.5}{120}$$

$$t = 18 \times \frac{120}{56.5}$$

 $= 38.23 \, \text{cm}$

But
$$t = \frac{m \times d}{\text{MCT1 cm}}$$

$$d = \frac{38.23 \times 101}{240}$$

= 16.09 m aft of the centre of flotation

= 19.59 m aft of midships

2					
2.			product for		product for
draught	TPC	SM	displacement	lever*	vertical moment
1.2	23.0	1	23.0	1	23.0
2.4	24.2	4	96.8	2	193.6
3.6	25.0	014 p	25.0	3	75.0
	3		m d. C. 01-1		m prurphusuori
Heper, e			144.8		291.6

^{*}Using a lever of 1 at 1.2 m draught produces a vertical moment about the *keel*.

Displacement 1.2 m to 3.6 m =
$$\frac{1.2}{3} \times 144.8 \times 100$$

= 5792 tonne

Displacement 0 m to 3.6 m = 8172 tonne

... Displacement 0 m to 1.2 m = 2380 tonne

Vertical moment 1.2 m to 3.6 m

$$= \frac{1.2}{3} \times 1.2 \times 291.6 \times 100$$

= 14 000 tonne m

Vertical moment $0 \text{ m to } 3.6 \text{ m} = 8172 \times 1.91$ = 15 610 tonne m

... Vertical moment 0 m to 1.2 m

= 1610 tonne m

$$KB$$
 at 1.2 m draught = $\frac{1610}{2380}$

 $= 0.676 \, \mathrm{m}$

draught	TPC	LCF*	TPC×LCF	SM	product for longitudinal
1.2 2.4 3.6	23.0 24.2 25.0	- 1.37 + 0.76 + 0.92	- 31.5 + 18.39 + 23.0	1 4 1	moment - 31.5 + 73.56 + 23.0
					+ 65.06

* Taking forward as negative and aft as positive. Longitudinal moment 1.2 m to 3.6 m

$$= \frac{1.2}{3} \times 65.06 \times 100$$

= +2602.4 tonne m

Longitudinal moment 0 m to 3.6 m

 $= 8172 \times 0.15$ = +1225.8tonne m

... Longitudinal moment 0 m to 1.2 m

= -1376.6 tonne m

LCB at 1.2 m draught =
$$-\frac{1376.6}{2380}$$

= 0.578 m forward of midships

i.e. at 1.2 m draught, the displacement is 2380 t, KB 0.676 m and the LCB 0.578 m forward of midships.

3. Block coefficient
$$C_b = \frac{17\,000}{1.025 \times 142 \times 18.8 \times 8}$$

$$= 0.776$$

$$w = 0.5 \times 0.776 - 0.05$$

$$= 0.338$$
Pitch = 4.8×0.673

$$= 3.23 \text{ m}$$
Theoretical speed = $\frac{3.23 \times 100 \times 60}{1852}$

$$= 10.46 \text{ knots}$$
Speed of advance = 10.46×0.65

$$= 6.80 \text{ knots}$$

Ship speed =
$$\frac{6.80}{1 - 0.338}$$

 $= 10.27 \,\mathrm{knots}$

New fuel consumption =
$$20 \times \left(\frac{10.27}{12}\right)^3$$

= 12.54 tonne per day

4. Effective
$$GM = \frac{5 \times 15 \times 6}{5000 \times 0.12}$$
$$= 0.75 \text{ m}$$

Free surface effect =
$$\frac{1.025}{1.025} \times \frac{7.5 \times 9^3 \times 1.025}{12 \times 5000}$$

= 0.093 m

Hence, actual
$$GM = 0.7 \stackrel{?}{\downarrow} 0.093$$

= 0.843 m
 $KM = 6.40 \text{ m}$
 $KG = 5.557 \text{ m}$

Mass of water in tank =
$$1.025 \times 7.5 \times 9 \times 0.6$$

= 41.51 tonne

Taking moments about the keel:

Light ship
$$KG_1 = \frac{5000 \times 5.557 - 41.51 \times 0.3}{500 - 41.51}$$

$$= 5.601 \, \mathrm{m}$$

5

$$w = \frac{V - Va}{V}$$

Speed of advance

$$Va = 16(1-0.28)$$

= 11.52 knots

Real slip
$$s = \frac{V_t - Va}{V_t}$$

Theoretical speed
$$V_t = \frac{11.52}{1 - 0.30}$$

$$= 16.46 \,\mathrm{knots}$$

But

$$V_t = \frac{P \times N \times 60}{1852}$$

Pitch
$$P = \frac{16.46 \times 1852}{120 \times 60}$$

= 4.23 m

Pitch ratio
$$p = \frac{P}{D}$$

(a) :. Diameter
$$D = \frac{4.23}{0.95}$$

(b) Shaft power sp =
$$2\pi \times \frac{120}{60} \times 270$$

= 3393 kW

(Note. This is the power at the after end of the shaft and hence is strictly the delivered power.)

(c) Thrust power tp =
$$400 \times 11.52 \times \frac{1852}{3600}$$

= 2370 kW

Propeller efficiency =
$$\frac{2370}{3393} \times 100$$

= 69.84%
(d) ep = 3393 × 0.67
= 2273.3
But ep = $R_t \times v$
 $R_t = \frac{2273.3 \times 3600}{16 \times 1852}$
= 276.2 kN
 $R_t = T(1-t)$
 $1-t = \frac{276.2}{400}$

Thrust deduction factor t = 0.31

= 0.69

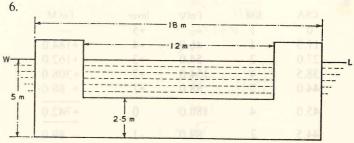


Fig. 121 $KB = \frac{12 \times 2.5 \times 1.25 + 2 \times 3 \times 5 \times 2.5}{12 \times 2.5 + 2 \times 3 \times 5}$ = 1.875 m $I = \frac{1}{12} L (18^{3} - 12^{3})$ $= \frac{1}{12} \times 4104L$ $\nabla = L (12 \times 2.5 + 2 \times 3 \times 5)$ = 60L

317

(b) LCB from midships =
$$\frac{8 (742 - 792)}{878}$$

= -0.455 m
= 0.455 m forward

(c) Prismatic coefficient =
$$\frac{8 \times 878}{3 \times 80 \times 45}$$

= 0.650

9. Ship A
$$ep_{n} = R_{t} \times v$$

$$R_{t} = \frac{6400 \times 3600}{18 \times 1852}$$

$$= 691.1 \text{ kN}$$

$$R_{f} = fS V^{n}$$

$$= 0.42 \times 4000 \times 18^{1.825}$$

$$= 328.2 \text{ kN}$$

$$R_{r} = 691.1 - 328.2$$

$$= 362.9 \text{ kN}$$
Ship B
$$R_{r} \propto L^{3}$$

$$\therefore R_{r} = 362.9 \times \left(\frac{140}{160}\right)^{3}$$

$$= 243.1 \text{ kN}$$

$$S \propto L^{2}$$

$$\therefore S = 4000 \times \left(\frac{140}{160}\right)^{2}$$

$$= 3062$$

$$V \propto \sqrt{L}$$

$$\therefore V = 18\sqrt{\frac{140}{160}}$$

$$= 16.84$$

$$R_{f} = 0.425 \times 3062 \times 16.84^{1.825}$$

$$= 225.1 \text{ kN}$$

$$R_{t} = 225.1 + 243.1$$

$$= 468.2 \text{ kN}$$

 $ep_n = \frac{468.2 \times 16.84 \times 1852}{3600}$

= 4055 kN

$$BM = \frac{4104 L}{12 \times 60 L}$$

$$= 5.70 \text{ m}$$

$$KM = 1.875 + 5.70$$

= 7.575 m

$$GM = 2.50 \, \text{m}$$

$$KG = 5.075 \,\mathrm{m}$$

7(a). Derive
$$sp = \frac{\Delta^2}{C} V^3$$

and hence
$$\frac{\mathrm{sp}_1}{\mathrm{sp}_2} = \left(\frac{\Delta_1}{\Delta_2}\right)^{\frac{2}{3}} \left(\frac{V_1}{V_2}\right)^4$$

(b)
$$\operatorname{sp}_2 = 23\,000 \times \left(\frac{12\,000}{14\,000}\right)^{\frac{2}{3}} \times \left(\frac{21}{24}\right)^4$$

$$= 12166 \, kW$$

8.
CSA SM fof
$$\nabla$$
 lever fof M

0 1 — +5 —

11.5 4 46.0 +4 +184.0

27.0 2 54.0 +3 +162.0

38.5 4 154.0 +2 +308.0

44.0 2 88.0 +1 +88.0

45.0 4 180.0 0 $+742.0$

44.5 2 89.0 -1 -89.0

39.0 4 156.0 -2 -312.0

26.5 2 53.0 -3 -159.0

14.5 4 58.0 -4 -232.0

$$h = 8 \,\mathrm{m}$$

878.0

-792.0

(a) Displacement =
$$\frac{8}{3} \times 878 \times 1.025$$
 = 2400 tonne

319

10.

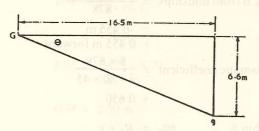


Fig. 122

$$Gg = \sqrt{16.5^2 + 6.6^2}$$

$$= \sqrt{315.81}$$

= 17.77 m

This is the distance from the centre of gravity of the tank to the original centre of gravity of the ship.

$$m = \text{mass of oil used}$$

Then shift in centre of gravity =
$$\frac{m \times Gg}{\text{final displacement}}$$

$$0.380 = \frac{m \times 17.77}{11\ 200 - m}$$

$$m = \frac{11\,200 \times 0.38}{17.77 + 0.38}$$

= 234.5 tonne

(b)
$$\tan \theta = \frac{6.}{16}$$

Angle of shift

$$\theta = 21^{\circ} 48'$$

11.

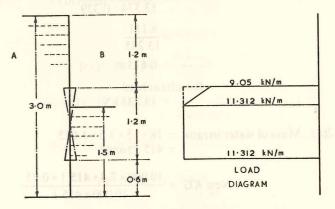


Fig. 123

Load/m at top of door from side A = $1.025 \times 9.81 \times 1.2 \times 0.75$ = 9.050 kN

Load/m 0.3 m from top of door side A = $1.025 \times 9.81 \times 1.5 \times 0.75$ = 11.312 kN

Load/m at bottom of door from side A = $1.025 \times 9.81 \times 2.4 \times 0.75$ = 18.099 kN

Load/m at bottom of door from side B = $1.025 \times 9.81 \times 0.9 \times 0.75$ = 6.787 kN

... nett load/m at bottom of door = 18.099 - 6.787 = 11.312 kN

Thus the load diagram is in the form shown by Fig. 123.

The area of this diagram represents the load, while the centroid represents the position of the centre of pressure.

Taking moments about the top of the door: Centre of pressure from top

$$= \frac{11.312 \times 1.2 \times 0.6 - (11.312 - 9.05) \times 0.3 \times \frac{1}{2} \times 0.10}{11.312 \times 1.2 - (11.312 - 9.05) \times 0.3 \times \frac{1}{2}}$$

$$= \frac{8.145 - 0.0339}{13.574 - 0.339}$$
$$= \frac{8.111}{13.235}$$
$$= 0.613 \,\mathrm{m}$$

Resultant load = 13.235 kN

12(a). Mass of water in tank =
$$18 \times 15 \times 1.5 \times 1.025$$

= 415.1 tonne

New
$$KG = \frac{10\ 000 \times 7.4 + 415.1 \times 0.75}{10\ 000 + 415.1}$$
$$= \frac{74\ 000 + 311}{10\ 415.1}$$
$$= 7.135\ m$$

New
$$GM = 8.00 - 7.135 \text{ m}$$

= 0.865 m

(b) Mass of water in tank =
$$\frac{415.1}{2}$$

= 207.55 tonne

New
$$KG = \frac{74\,000 + 207.55 \times 0.375}{10\,000 + 207.55}$$

= 7.257 m

Free surface effect =
$$\frac{1.025 \times 18 \times 15^{3} \times 1.025}{1.025 \times 12 \times 10 \ 207.55}$$

 $= 0.508 \, \text{m}$

New
$$GM = 8.00 - 7.257 - 0.508$$

= 0.235 m

13(a). Blade area =
$$0.48 \times \frac{\pi}{4} \times 6^2$$

= 13.57 m²

(b) Theoretical speed
$$v_t = \frac{6 \times 0.9 \times 110}{60}$$

$$= 9.9 \text{ m/s}$$

$$\text{Real slip } 0.25 = \frac{9.9 - v_a}{9.9}$$

Speed of advance
$$v_a = 9.9(1 - 0.25)$$

= 7.425 m/s

Wake fraction 0.30 =
$$\frac{v - 7.425}{v}$$

Ship speed
$$v = 7.425$$

 $1 - 0.30$
 $= 10.61 \text{ m/s}$
 $= 10.61 \times \frac{3600}{1852}$

 $= 20.62 \,\mathrm{knots}$

(c) Thrust power tp =
$$300 \times 7.425$$

= 2227.5 kW

(d) Shaft power sp =
$$\frac{2227.5}{0.65}$$

= 3427 kW

(e)
$$\operatorname{sp} = 2\pi n Q$$

$$\operatorname{Torque} Q = \frac{3427 \times 60}{2\pi \times 110}$$

$$= 297 \text{ kN m}$$

14. Let
$$C = \text{normal cons/h at V knots}$$

$$C_1 = \text{cons/h at reduced speed of}$$

$$0.8 V \text{knots}$$

Then
$$C_1 = C - \frac{42}{24} \text{ tonne/h}$$

Now $C = 0.136 + 0.001 V^3$
 $C - \frac{42}{24} = 0.136 + 0.001 (0.8 V)^3$

Subtracting:
$$\frac{42}{24} = 0.001 V^3 - 0.001 (0.512 V^3)$$
$$= 0.001 V^3 (1 - 0.512)$$
$$V^3 = \frac{42}{24 \times 0.001 \times 0.488}$$

$$V = 15.31 \,\mathrm{knots}$$

Reduced speed =
$$0.8 \times 15.31$$

= 12.25 knots

$$C = 0.136 + 0.001 \times 15.31^3$$

= 3.722 tonne/h

(a) Reduced cons/day =
$$89.33-42$$

= 47.33 tonne

(b) Time taken to travel 800 nautical miles at normal speed

$$= \frac{800}{15.31}$$
$$= 52.26 \, h$$

Time taken at reduced speed =
$$\frac{800}{12.25}$$
 = 65.30 h

Fuel consumption for 800 nautical miles at reduced speed

$$= 47.33 \times \frac{65.30}{24}$$

$$= 128.8 \text{ tonne}$$

Fuel on board when speed reduced

(c) Normal cons for 800 nm =
$$89.33 \times \frac{52.26}{24}$$

= 194.5 tonne

% reduction in consumption =
$$\frac{194.5 - 128.8}{194.5} \times 100$$

= $\frac{65.7}{194.5} \times 100$
= 33.78%

(d) % increase in time =
$$\frac{65.30 - 52.26}{52.26} \times 100$$

= $\frac{13.04}{52.26} \times 100$
= 24.95%

15. Complete waterplane area

$$= 160 \times 22 \times 0.865$$
$$= 3045.8 \,\mathrm{m}^2$$

Intact waterplane area =
$$3045.8 - 10.5 \times 22$$

= 2814.8 m^2

Fig. 124

It may be assumed that the whole of the mass of the oil is taken from the ship and that all the buoyancy of the compartment is lost. Cross-sectional area of oil

$$= \frac{1}{2}\pi \times 1.2^{2} + (22 - 2.4) \times 1.2 + 22(11.5 - 1.2)$$

= 2.26 + 23.52 + 226.6

 $= 252.38 \,\mathrm{m}^2$

Immersed cross-sectional area

$$= 252.38 - 22 \times 2.5$$

 $= 197.38 \,\mathrm{m}^2$

Mass of oil in compartment

$$=\frac{252.38\times10.5}{1.4}$$

= 1892.85 tonne

Mass of buoyancy lost

$$= 197.38 \times 10.5 \times 1.025$$

= 2124.30 tonne

Nett loss in buoyancy

= 231.55 tonne

Equivalent volume

$$=\frac{231.55}{1.025}$$

 $= 225.9 \,\mathrm{m}^3$

Increase in draught

 $= \frac{\text{nett volume of lost buoyancy}}{\text{area of intact waterplane}}$

$$=\frac{225.9}{2814.8}$$

 $= 0.0802 \,\mathrm{m}$

New draught

= 9.08 m

1/2 ord	1/2 ord3	SM	product
0	0	1	<u></u>
2.4	13.82	4	55.28
5.0	125.00	2	250.00
7.3	389.02	4	1556.08
7.9	493.04	2	986.08
8.0	512.00	4	2048.00
8.0	512.00	2	1024.00
7.7	456.53	4	1826.12
5.5	166.38	2	332.76
2.8	21.95	4	87.80
0	0 1441	= 1	
			8166.12
	0 2.4 5.0 7.3 7.9 8.0 8.0 7.7 5.5 2.8	0 0 2.4 13.82 5.0 125.00 7.3 389.02 7.9 493.04 8.0 512.00 8.0 512.00 7.7 456.53 5.5 166.38 2.8 21.95	0 0 1 2.4 13.82 4 5.0 125.00 2 7.3 389.02 4 7.9 493.04 2 8.0 512.00 4 8.0 512.00 2 7.7 456.53 4 5.5 166.38 2 2.8 21.95 4

$$h = 16 \text{ m}$$

$$I = \frac{2}{9} \times 16 \times 8166.12$$

$$= 29 035 \text{ m}^4$$

$$BM = \frac{29 035}{8700} \times 1.025$$

$$= 3.421 \text{ m}$$

$$\sqrt{-2GM}$$

At angle of loll $\tan \theta = \sqrt{\frac{-2GM}{BM}}$

$$GM = -\frac{1}{2}BM \tan^2 \theta$$

= $-\frac{1}{2} \times 3.421 \times 0.1763^2$
= -0.053 m

17. Let

V = normal speed

C = normal consumption per hour

24C = normal consumption per day.

For first 7.5 hours:

Then

Cons/h =
$$C \times \left(\frac{V_1}{V}\right)^3$$

= $C \times \left(\frac{1.18V}{V}\right)^3$
= 1.643 C

Cons for 7.5 hours =
$$7.5 \times 1.643C$$

= $12.32C$

For next 10 hours:

$$Cons/h = C \times \left(\frac{0.91 V}{V}\right)^3$$
$$= 0.7536C$$

Cons for 10 hours = 7.536C

cons for 17.5 hours = 12.32C + 7.536Ci.e. = 19.856C

Cons for remaining 6.5 hours = 24C - 19.856C= 4.144C

Cons/h =
$$\frac{4.144C}{6.5}$$

= 0.637C

Reduced speed
$$V_3 = V \sqrt[3]{\frac{0.637C}{C}}$$

= 0.86V

Normal distance travelled/day = 24V

New distance travelled/day =
$$1.18V \times 7.5 + 0.91V \times 10 + 0.86V \times 6.5$$

= $23.54V$
% reduction in distance/day = $\frac{24V - 23.54V}{24V} \times 100$

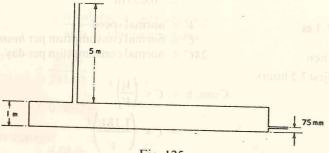


Fig. 125

(a) Pressure at tank top = pressure exerted by pump — pressure due to head of water =
$$70-1.025 \times 9.81 \times (1-0.075)$$
 = $60.70 \,\mathrm{kN/m^2}$ Load on tank top = $60.70 \times 6 \times 12$ = $4370 \,\mathrm{kN}$ = $4.37 \,\mathrm{MN}$

(b) With 70 kN/m² pressure:

maximum head above inlet =
$$\frac{70}{1.025 \times 9.81}$$
 = 6.968 m

Maximum head above tank top = 6.968 - 0.925 $= 6.043 \, \text{m}$

Hence the water will overflow and the maximum head above the tank top is therefore 5 m.

Load on tank top =
$$1.025 \times 9.81 \times 6 \times 12 \times 5$$

= 3616 kN
= 3.616 MN

19(a).

V	V_3	$\triangle^{\frac{2}{3}}$	sp	Ad. Coeff.	
10	1000	524.1	880	595.5	
_11	1331	524.1	1155	604.0	
12	1728	524.1	1520	595.8	
13	2197	524.1	2010	572.9	
14	2744	524.1	2670	538.6	
15	3375	524.1	3600	491.3	

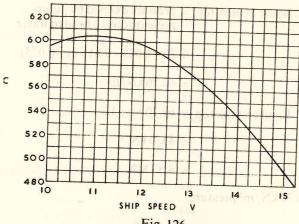


Fig. 126

(b) Corresponding speed of 120 m ship to 14 knots for 140 m

ship. =
$$14\sqrt{\frac{120}{140}}$$

= 12.96 knots

From graph at 12.96 knots, the Admiralty Coefficient is 574.6

$$\Delta \propto L^3$$

$$\triangle = 12\,000 \times \left(\frac{140}{120}\right)^3$$

= 19 056 tonne

Hence shaft power =
$$\frac{19056^{\frac{2}{3}} \times 1296^{3}}{574.6}$$

 $= 2703 \, kW$

Increase in mean draught =
$$\frac{9 \times 10 \times 3}{51 \times 10}$$

= 0.529
New mean draught $d_1 = 3 + 0.529$
= 3.529
 $KB_1 = \frac{3.529}{2}$
= 1.765
 $I_F = \frac{1}{12} \times 51^3 \times 10$
 $\nabla = 60 \times 10 \times 3$
 $BM_L = \frac{51^3 \times 10}{12 \times 60 \times 10 \times 3}$
= 61.41 m
 $GM_L = 1.765 + 61.41 - 2.50$
= 60.675 m
 $BB_1 = \frac{9}{2}$
= 4.5 m
Change in trim = $\frac{\Delta \times 4.5}{\Delta \times 60.675} \times 60$
= 4.45 m by the head
Change forward = $\frac{4.45}{60} \times \left(\frac{60}{2} + 4.5\right)$
= +2.559 m
Change aft = $-\frac{4.45}{60} \left(\frac{60}{2} - 4.5\right)$
= -1.891 m
New draught forward = 3.259 + 2.559
= 5.818 m
New draught aft = 3.259 - 1.891

 $= 1.368 \,\mathrm{m}$

21.

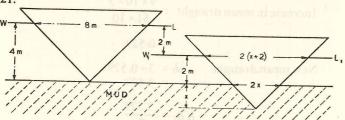


Fig. 128

Let L = length of vessel in m

p = density of water in tonne/m³

 2ρ = density of mud in tonne/m³

x = depth to which vessel sinks in mud

Original displacement =
$$\rho \times L \times \frac{8 \times 4}{2}$$

= $16 \rho L$ tonne

This displacement remains constant.

Displacement of part in mud =
$$2\rho \times L \times \frac{2x \times x}{2}$$

= $2\rho L x^2$

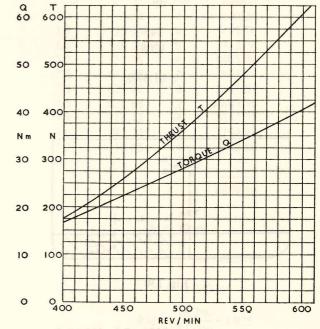
Displacement of part in water =
$$\rho \times L \times 2$$
 $\left(\frac{2x + 2x + 4}{2}\right)$

$$= \rho L(4x+4)$$

Hence

$$16\rho L = 2\rho L x^2 + 4\rho L x + 4\rho L$$

$$16 = 2x^2 + 4x + 4$$


$$2x^2 + 4x - 12 = 0$$

from which

$$x = 1.646 \,\mathrm{m}$$

i.e. vessel sinks 1.646 m into the mud.

(b) Fig. 129
$$v_t = P \times N$$

$$v_a = 0.8 v_t$$

$$Rev/min N = 469$$

At 469 rev/min, T = 298 N and Q = 24.6 N m

 $150 = 0.8 \times 0.4 \times N$

Thrust power tp =
$$298 \times \frac{150}{60}$$

$$= 745 \,\mathrm{W}$$

Delivered power dp =
$$24.6 \times 2\pi \times \frac{469}{60}$$

Propeller efficiency =
$$\frac{tp}{dp}$$

= $\frac{745}{1208}$
= 61.67%

23.

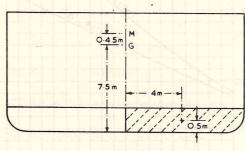


Fig. 130

New
$$KG = \frac{8100 \times 7.5 - 100 \times 0.5}{8100 - 100}$$
$$= \frac{60750 - 50}{8000}$$
$$= 7.588 \text{ m}$$

New
$$GM = 7.5 + 0.45 - 7.588$$

= 0.362 m

Heeling moment = 100 × 4

$$\tan \theta = \frac{100 \times 4}{8000 \times 0.362}$$

$$= 0.1381$$

Angle of heel $\theta = 7^{\circ} 52'$

24.

½ ord	1/2 ord3	SM	product
0.7	0.34	/1 1 N	0.34
3.3	35.94	4	143.76
5.5	166.38	2	332.76
7.2	373.25	4	1493.00
7.5	421.88	2	843.76
7.5	421.88	4	1687.52
7.5	421.88	2	843.76
6.8	314.43	4	1257.72
4.6	97.34	2	194.68
2.2	10.65	4	42.60
0	_	1 1	4-1-
			<u> </u>
			6839.90

$$h = 12 \text{ m}$$

$$I = \frac{2}{9} \times 12 \times 6839.9$$

$$= 18 240 \text{ m}^4$$

$$BM = \frac{18 240}{11 000} \times 1.025$$

$$= 1.70 \text{ m}$$

25. 1 tonne of stowed cargo occupies 1.8 m³

1 tonne of solid cargo occupies $\frac{1}{1.6}$ or 0.625 m³

Hence in every 1.8 m³ of space 0.625 m³ is occupied by cargo and the remaining 1.175 m³ is available for water.

Permeability =
$$\frac{1.175}{1.8}$$

= 0.653
Volume of lost buoyancy = $18 \times 18 \times 6 \times 0.653$
Area of intact waterplane = 85×18
Increase in draught = $\frac{18 \times 18 \times 6 \times 0.653}{85 \times 18}$
= 0.830 m
New draught = $6 + 0.830$

 $= 6.830 \, \text{m}$

1	1
Z	o

0.					
Station	½ ord	SM	product	lever	product
AP	0.6	1/2	0.3	+ 4	+ 1.2
1/2	2.7	2	5.4	+ 31/2	+ 18.9
1	4.6	11/2	6.9	+ 3	+ 20.7
2	6.0	4	24.0	+ 2	+ 48.0
3	6.3	2	12.6	+ 1	+ 12.6
					2 [
4	6.3	4	25.2	0	+ 101.4
					2.8
5	6.3	2	12.6	1 97	-12.6
6	5.7	4	22.8	- 2	-45.6
7	4.8	11/2	7.2	- 3	-21.6
$7\frac{1}{2}$	2.0	2	4.0	$-3\frac{1}{2}$	- 14.0
FP	0	1/2		-4	
			121.0		-93.8

Common interval = $\frac{90}{9}$

Area =
$$\frac{2}{3} \times \frac{90}{8} \times 121.0$$

= 907.5 m²

LCF from midships =
$$\frac{90}{8} \times \left(\frac{101.4 - 93.8}{121.0} \right)$$

= 0.707 m aft

27.

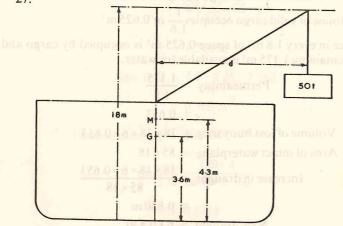


Fig. 131

New
$$KG = \frac{6600 \times 3.6 + 50 \times 18}{6600 + 50}$$

$$= \frac{23760 + 900}{6650}$$

$$= 3.708 \text{ m}$$
New $GM = 4.30 - 3.708$

$$= 0.592 \text{ m}$$

$$\tan \theta = \frac{m \times d}{\Delta \times GM}$$

$$d = \frac{6650 \times 0.592 \times \tan 9.5^{\circ}}{50}$$

Outreach of derrick = 13.18 m

28. 120 m ship:

Effective power =
$$4100 \times 0.6$$

$$= 2460 \, kW$$

$$= R_t \times v$$

$$R_t = \frac{2460 \times 3600}{15 \times 1852}$$

$$= 318.8 \, kN$$

$$Rf = 0.55 R_t$$

$$R_r = 0.45 R_t$$

$$= 143.46 \, kN$$

140 m ship:
$$R_r \propto L^3$$

$$R_r \propto L^3$$

$$R_r = 143.46 \times \left(\frac{140}{120}\right)^3$$

$$= 227.81 \, kN$$

$$= 227.81$$

$$S \propto L^2$$

$$S = 3000 \times \left(\frac{140}{120}\right)^2$$

$$= 4083 \,\mathrm{m}^2$$

$$V \propto \sqrt{L}$$

$$V = 15 \times \sqrt{\frac{140}{120}}$$

= 16.20 knots

$$R_f = 0.42 \times 4083 \times 16.20^{1.825}$$

 $= 276.44 \, \text{kN}$

$$R_t = 276.44 + 227.81$$

 $= 504.25 \, kN$

$$ep = \frac{504.25 \times 16.2 \times 1852}{3600}$$

= 4202 kW

$$sp = \frac{ep}{pc}$$

$$=\frac{4202}{0.6}$$

 $= 7003 \, kW$

29. Original displacement =
$$30 \times 9 \times 0.75 \times 1.025$$

= 207.5 tonne

Change in mean draught =
$$\frac{\Delta \times 100}{A_w} \left(\frac{\rho_S - \rho_R}{\rho_S \times \rho_R} \right) \text{ cm}$$

$$3.2 = \frac{\Delta \times 100}{30 \times 9} \left(\frac{1.025 - 1.000}{1.025 \times 1.000} \right)$$

$$\Delta = \frac{3.2 \times 30 \times 9 \times 1.025}{100 \times 0.025}$$

= 354.2 tonne

Cargo added =
$$354.2 - 207.5$$

= 146.7 tonne

Area of tank surface
$$a = \frac{6}{3} \times 23$$

$$= 46 \, \text{m}^2$$

Centroid from centreline =
$$\frac{93}{2 \times 23}$$

$$= 2.022 \,\mathrm{m}$$

Second moment of area about centreline

$$= \frac{6}{9} \times 389$$

$$= 259.33 \,\mathrm{m}^4$$

Second moment of area about centroid

$$i = 259.33 - 46 \times 2.022^2$$

$$= 71.26 \,\mathrm{m}^4$$

Free surface effect =
$$\frac{\rho_1 i}{\rho \nabla}$$

$$= \frac{1.000 \times 71.26}{1.025 \times 5000} \times 1.025$$

$$= 0.0142 \,\mathrm{m}$$

31. Ship speed =
$$15 \times \frac{1852}{3600}$$

$$= 7.717 \, \text{m/s}$$

Apparent slip =
$$\frac{v_t - v}{v_t}$$

$$O = v_t - v$$

Propeller pitch
$$P = \frac{7.717}{1.58}$$
 $= 4.884 \text{ m}$
 $w_t = \frac{v - v_a}{v}$
 $v_a = 7.717(1 - 0.31)$
 $= 5.325 \text{ m/s}$

Real slip $= \frac{7.717 - 5.325}{7.717}$
 $= 0.31$
 $R_t = T(1 - t)$
 $= 360(1 - 0.20)$
 $= 288 \text{ kN}$

ep $= 288 \times 7.717$
 $= 2222.5 \text{ kW}$

Propulsive coefficient $= \frac{2222.5}{3050}$

32. Torque = force × lever
=
$$F_n \times b$$

= $577 \times 22 \times \left(1.2 \times 15 \times \frac{1852}{3600}\right)^2 \times \sin 35^\circ \times 1.1$
= 686780 N m

= 0.729

But
$$\frac{T}{J} = \frac{q}{r}$$

And
$$J = \frac{\pi}{2}r^4$$

$$\therefore \frac{686780}{\frac{\pi}{2}r^4} = \frac{70 \times 10^6}{r}$$

$$r^{3} = \frac{686780 \times 2}{70 \times 10^{6} \pi}$$
$$r = 0.184 \,\mathrm{m}$$

Diameter of stock

 $= 368 \,\mathrm{mm}$

If the diameter is reduced to 330 mm:

$$\frac{T}{\frac{\pi}{2} \times 0.165^4} = \frac{70 \times 10^6}{0.165}$$

$$T = \frac{70 \times 10^6 \times \pi \times 0.165^3}{2}$$

$$= 493\,920\,\text{N m}$$

$$493\,920 = 577 \times 22 \times \left(1.2 \times V \times \frac{1852}{3600}\right) \times 0.5736 \times 1.1$$

$$V^2 = \frac{493\,920 \times 3600^2}{577 \times 22 \times 1.2^2 \times 1852^2 \times 0.5736 \times 1.1}$$

Ship speed $V = 12.72 \,\mathrm{knots}$

$$h = 10 \, \text{m}$$

Waterplane area =
$$\frac{2}{3} \times 10 \times 165.6$$

= 1104 m^2

Intact waterplane area =
$$1104 - 15 \times 15$$

= 879 m^2

341

Volume of lost buoyancy =
$$15 \times 50$$

$$= 750 \text{ m}^2$$

Increase in draught =
$$\frac{750}{879}$$

$$= 0.853 \,\mathrm{m}$$

New draught =
$$4.353 \,\mathrm{m}$$

REED'S NAVAL ARCHITECTURE FOR ENGINEERS

34. Let
$$m = \text{mass of ballast required}$$

$$MCT1 cm = \frac{\Delta \times GM_L}{100 L}$$

$$=\frac{8100 \times 96}{100 \times 85}$$

Trimming moment =
$$m(33-2)$$

- 31 m

Change of trim
$$t = \frac{31 m}{91.48}$$
 cm by the stern

Change aft =
$$+\frac{t}{85} \left(\frac{85}{2} - 2 \right)$$

$$= 0.476t \text{ cm}$$

Bodily sinkage =
$$\frac{m}{9.0}$$
 cm

New draught aft = old draught aft +
$$\frac{m}{900}$$
 + $\frac{0.476t}{100}$

$$5.85 = 5.55 + 0.00111m + \frac{0.476}{100} \times \frac{31m}{91.48}$$

$$0.30 = 0.002726 \, m$$

Ballast required m = 110 tonne

Bodily sinkage =
$$\frac{110}{9}$$
= 12.22 cm

Change in trim =
$$\frac{31 \times 110}{91.48}$$

Change forward =
$$-\frac{37.28}{85} \left(\frac{85}{2} + 2 \right)$$

$$= -19.51 \, \text{cm}$$

New draught forward =
$$5.25 + 0.122 - 0.195$$

= 5.177 m

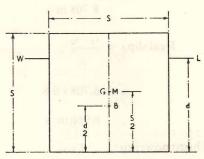


Fig. 132

Let

 $x \doteq \text{relative density of wood}$

Then draught d = Sx

The limit of stability occurs when G and M coincide.

$$KG = \frac{S}{2}$$

$$KB = \frac{d}{2}$$

$$BM = \frac{S^2}{12d}$$

Since

$$KG = KM$$

$$\frac{S}{2} = \frac{d}{2} + \frac{S^2}{12d}$$

$$\frac{S}{2} = \frac{Sx}{2} + \frac{S^2}{12Sx}$$

$$\frac{1}{2} = \frac{x}{2} + \frac{1}{12x}$$

Multiplying by 12:

$$6x = 6x^2 + 1$$

$$6x^2 - 6x + 1 = 0$$

343

$$x = \frac{6 \pm \sqrt{36 - 24}}{12}$$

Relative density x = 0.212 or 0.788

It may be seen on referring to the metacentric diagram that the block will be unstable between these limits. Thus the relative density must be below 0.212 or between 0.788 and 1.0.

36. Theoretical speed
$$v_t = 5.5 \times \frac{95}{60}$$

$$= 8.708 \,\text{m/s}$$

$$Real slip $s = \frac{v_t - v_a}{v_t}$

$$v_a = 8.708 \times 0.8$$

$$= 6.966 \,\text{m/s}$$
Thrust power tp = $T \times v_a$

$$= 380 \times 6.966$$

$$= 2647 \,\text{kW}$$

$$R_t = T(1-t)$$

$$= 380 (1-0.198)$$

$$= 304.8 \,\text{kN}$$

$$ep = R_t \times v$$

$$= 304.8 \times 15.5 \times \frac{1852}{3600}$$

$$= 2430 \,\text{kW}$$

$$QPC = \frac{ep}{dp}$$$$

= 0.686
Wake fraction =
$$\frac{V - V_a}{V}$$

= $\frac{15.5 - \left(6.966 \times \frac{3600}{1852}\right)}{15.5}$
= 0.126

37.(a) Description

(b) Free surface effect
$$=\frac{\rho_1 i}{\rho \nabla}$$

 $=\frac{lb^3}{12\nabla}$
 $0.14 = \frac{l \times 11^3}{12 \times 8500} \times 1.025$
 $l = \frac{0.14 \times 12 \times 8500}{1331 \times 1.025}$
 $= 10.47 \text{ m}$

- 38.(a) Derivation of formula.
 - (b) Change in draught due to density

$$= \frac{8000 \times 100}{\text{TPC} \times 100} \times 1.024 \left(\frac{1.024 - 1.008}{1.008 \times 1.024} \right)$$
$$= 7.47 \text{ cm increase}$$

New mean draught = $7.075 \,\mathrm{m}$

Max. allowable draught

 $= 6.85 \,\mathrm{m}$

Required reduction in draught

 $= 0.225 \,\mathrm{m}$

Mass of ballast discharged $= 22.5 \times 17 \times \frac{1.008}{1.024}$

= 376.5 tonne

39.(a) Admiralty Coefficient =
$$\frac{\Delta^{\frac{2}{3}} V^{3}}{\text{sp}}$$
Fuel Coefficient =
$$\frac{\Delta^{\frac{2}{3}} V^{3}}{\text{fuel cons/day}}$$

(b) With constant displacement and Admiralty Coefficient:

$$sp \alpha V^{3}$$

$$\frac{4460}{4120} = \left(\frac{14.55}{V_{I}}\right)^{3}$$

$$V_{I} = 14.55 \sqrt[3]{\frac{4120}{4460}}$$

= 14.17 knots

At 14.17 knots fuel cons =
$$541 \text{ kg/h}$$

= $541 \times 24 \times 10^{-3}$
= 12.98 tonne/day
Fuel coefficient = $\frac{14900\frac{3}{3} \times 14.17^{3}}{12.98}$
= 132700

40. Normal rudder force F_n

$$= 577 A v^2 \sin \alpha \qquad N$$

Transverse force F_t

=
$$577 A v^2 \sin \alpha \cos \alpha$$
 N
= $577 \times 15 \left(1.2 \times 20 \times \frac{1852}{3600} \right)^2 \times 0.5 \times 0.866$
= 571.29 kN

Heeling moment = $571.29 \times (5-3.3) \cos \theta$ = $971.2 \cos \theta$ kN m

Righting moment

$$= \Delta g GZ$$

= \Delta g GM \sin \theta

Steady heel will be produced when the heeling moment is equal to the righting moment.

$$12\,000 \times 9.81 \times 0.3 \sin \theta = 971.2 \cos \theta$$

$$\tan \theta = \frac{971.2}{12\,000 \times 9.81 \times 0.3}$$
= 0.0275
Angle of heel $\theta = 1^{\circ} 36'$

41. Item Lcg moment forward mass moment aft Cargo 30 000 10 000 3 000 Fuel 1 500 3 200 Water 400 8.0 Stores 100 10.0 1 000 10 000 Lightship 4 000

Displacement 16 000 31 000 16 200

Excess moment forward = 31 000 - 16 200 = 14 800 tonne m

LCG from midships =
$$\frac{14800}{16000}$$
.

$$= 0.925 \,\mathrm{m}\,\mathrm{forward}$$

From hydrostatic data at 16 000 tonne displacement: d = 8.25 m; MCT1 cm = 179 t m; LCB = 2.02 m F; LCF = 0.57 m A.

Trimming lever =
$$2.02-0.925$$

= $1.095 \,\text{m}$ aft
Trim = $\frac{16\,000 \times 1.095}{179}$
= $97.88 \,\text{cm}$ by the stern

Change forward =
$$-\frac{97.88}{120} \left(\frac{120}{2} + 0.57 \right)$$

= -49.40 cm

Change aft =
$$+\frac{97.88}{120} \left(\frac{120}{2} - 0.57 \right)$$

= 48.48 cm

Draught forward =
$$8.250 - 0.494$$
 = 7.756 m

Draught aft =
$$8.250 + 0.485$$

= 8.735 m

42.
$$KB = \frac{3.0}{2}$$

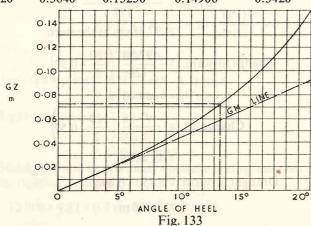
$$= 1.5 \text{ m}$$

$$BM = \frac{9^2}{12 \times 3}$$

$$= 2.25 \text{ m}$$

$$GM = 1.5 + 2.25 - 3.5$$

$$= 0.25 \text{ m}$$


Displacement
$$\triangle = 30 \times 9 \times 3 \times 1.025$$

= 830.25 tonne

Righting moment =
$$\triangle \times GZ$$

Heeling moment = 10×6

$$0.07227 = \sin\theta (0.25 + 1.125 \tan^2\theta)$$

This expression may be solved graphically.

		DOMEST AND DESCRIPTIONS ADDRESS ASSESSED.			
θ	tan 0	tan2 0	1.125 tan ² θ	sinθ	GZ
5°	0.0875	0.00766	0.00861	0.0872	0.0226
10°	0.1763	0.03108	0.03497	0.1736	0.0495
15°	0.2680	0.07182	0.08080	0.2588	0.0856
20°	0.3640	0.13250	0.14906	0.3420	0.1365

From graph when
$$GZ = 0.07227$$

Angle of heel $\theta = 13^{\circ} 30'$
 $GZ = GM \sin \theta$
 $0.07227 = 0.25 \sin \theta$

$$\sin \theta = \frac{0.07227}{0.25}$$

$$= 0.28908$$
Angle of heel $\theta = 16^{\circ} 48'$

43. Let V = reduced speed in knots

Normally at V knots the consumption per day would be:

Actual cons/day:
$$22 = 1.132 \times 47 \times \left(\frac{V}{17}\right)^{3} \text{ tonne}$$

$$V^{3} = \frac{22 \times 17^{3}}{1.132 \times 47}$$

Reduced speed $V = 12.66 \,\mathrm{knots}$

At 17 knots, time taken
$$= \frac{3000}{17 \times 24}$$

$$= 7.353 \text{ days}$$
and voyage consumption
$$= 7.353 \times 47$$

$$= 345.6 \text{ tonne}$$
At 12.66 knots, time taken
$$= \frac{3000}{12.66 \times 24}$$

and voyage consumption =
$$9.872 \times 22$$

Difference in consumption =
$$\frac{345.6 - 217.2}{345.6} \times 100$$

= 37.15%

48 REED'S NAVAL ARCHITECTURE FOR ENGINEERS

44. Bodily sinkage =
$$\frac{180}{18}$$
= 10 cm

Trimming moment = $180 \times (40 + 3)$

MCT1 cm = $\frac{14\,000 \times 127}{100 \times 135}$

Change in trim = $\frac{180 \times 43 \times 100 \times 135}{14\,000 \times 127}$
= 58.76 cm by the head

Change forward = $+\frac{58.76}{135} \left(\frac{135}{2} + 3\right)$
= $+30.68$ cm

Change aft = $-\frac{58.76}{135} \left(\frac{135}{2} - 3\right)$
= -28.08

New draught aft =
$$8.05 + 0.10 - 0.281$$

= 7.869 m

45. Theoretical speed
$$V_t = \frac{5.5 \times 93 \times 60}{1852}$$

Let
$$ship speed = V$$

Then
$$-S = \frac{V_t - V}{V_t}$$

$$SV_t = V_t - V \qquad \dots (1)$$

...(2)

and
$$+S = \frac{V_t - 0.9V}{V_t}$$
$$+S V_t = V_t - 0.9V$$

Adding(1) and (2)
$$0 = 2V_t - 1.9V$$

$$V = \frac{2 \times 16.57}{1.9}$$

Ship speed V = 17.44 knots

Substituting for *V*:

$$-S = \frac{16.57 - 17.44}{16.57}$$
$$= -0.0525$$

i.e. apparent slip =
$$-5.25\%$$

and real slip = $+5.25\%$

46.						
½ ord	SM	product	lever	product	lever	product
1	1	Biolas	+4	+ 4	+4	+ 16
7	4	28	+3	+ 84	+3	+252
10.5	2	21	+2	+ 42	+2	+ 84
11	4	44	+1	+ 44	+1	+ 44
11	2	22	0	+174	0	0
10.5	4	42	- C25 -	- 42	-1	+ 42
8	2	16	-2	- 32	-2	+ 64
4	4	16	-3	- 48	-3	+144
0	1	-	-4	100	-4	
		190	0.25	<u>-122</u>		+646

$$h = 15 \, \text{m}$$

(a) Waterplane area
$$A = \frac{2}{3} \times 15 \times 190$$

= 1900 m²
TPC = 1900 × 0.01025
= 19.475

(b) LCF from midships
$$\bar{x} = \frac{15(174 - 122)}{190}$$

= 4.11 m aft

$$= \frac{2}{3} \times 15^{3} \times 646$$

$$= 1453500 \text{ m}^{4}$$

$$A\bar{x}^{2} = 1900 \times 4.11^{2}$$

$$= 32095 \text{ m}^{4}$$

Second moment about centroid

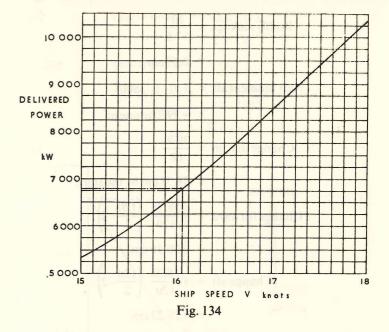
47. Centrifugal force
$$= \frac{\Delta v^2}{r}$$
$$= \frac{\Delta}{600} \left(\frac{12 \times 1852}{3600} \right)^2$$
$$= 0.06352 \Delta$$

Heeling moment =
$$CF \times GL \cos \theta$$

$$= 0.06352 \Delta \times 2.7 \cos \theta$$

Righting moment =
$$\triangle g GM \sin \theta$$

=
$$0.25 \times 9.81 \triangle \sin \theta$$


$$0.25 \times 9.81 \triangle \sin \theta = 0.06352 \times 2.7 \triangle \cos \theta$$

$$\tan\theta = \frac{0.06352 \times 2.7}{0.25 \times 9.81}$$

Angle of heel
$$\theta = 4^{\circ}$$

48.

v 15	ep _n 3000	$ep = ep_n \times 1.3$ 3900	QPC 0.73	dp 5342
16	3750	4875	0.73	6678
17	4700	6110	0.72	8486
18	5650	7345	0.71	10 345

Total brake power = 2×3500 = 7000 kW

Total delivered power = 7000 (1-0.03) = 6790 kW

From graph: service speed = 16.06 knots

49. MCT1 cm =
$$\frac{8000 \times 102}{100 \times 120}$$

= 68 tonne m

Note: The distances must be measured from the LCF.

	distance from F 20 F	moment forward +4000	moment aft
+100	1 A		+100
+ 10	7 A		+ 70
-300	26 F	-7800	
-13.2			
+ 10		-3800	+170
	-300	mass from F +200 20 F +100 1 A + 10 7 A -300 26 F	mass from F forward +200 20 F +4000 +100 1 A + 10 7 A -300 26 F -7800

Bodily sinkage =
$$\frac{10}{17.5}$$

= 0.57 cm

Nett moment aft =
$$170 - (-3800)$$

= $+3970$ tonne m

Change in trim =
$$\frac{3970}{68}$$

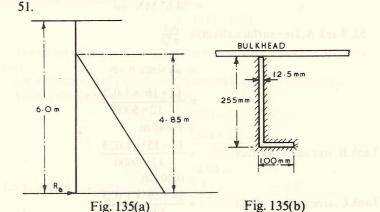
= 58.38 cm by the stern

Change forward =
$$-\frac{58.38}{120} \left(\frac{120}{2} + 2 \right)$$

= -30.16 cm
Change aft = $+\frac{58.38}{120} \left(\frac{120}{2} - 2 \right)$

 $= +28.22 \, \text{cm}$

Original draught forward = 6.30 + 0.006 - 0.302= 6.004 m


Original draught aft =
$$6.60 + 0.006 + 0.282$$

= $6.888 \,\mathrm{m}$

50.
$$V_t = \frac{5.5 \times 80 \times 60}{1852}$$
$$= 14.25 \,\text{knots}$$

(a) Real slip =
$$\frac{14.25 - 11}{14.25}$$

= 0.2281
or 22.81%

(b) Wake fraction =
$$\frac{13.2 - 11}{13.2}$$
 = 0.167

Thrust power =
$$3000 \times 0.7$$

= 2100 kW
But thrust power = $T \times v_a$
Thrust $T = \frac{2100 \times 3600}{11 \times 1852}$
= 371.1 kN

Load on stiffener = $\rho g AH$ = $1.025 \times 9.81 \times 4.85 \times 0.6 \times \frac{4.85}{2}$

= 70.96 kN

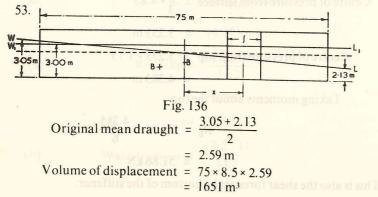
Centre of pressure from surface =
$$\frac{2}{3} \times 4.85$$

$$= 3.233 \,\mathrm{m}$$

Taking moments about the top

$$R_{\rm B} = 70.96 \times \frac{4.385}{6}$$

= 51.86 kN


This is also the shear force at the bottom of the stiffener.

Length of weld metal =
$$255 + 255 + 100 + 100 - 12.5$$

= 697.5 mm
Area of weld metal = 697.5×5
= 3487.5 mm^2
Shear stress in weld = $\frac{51.86 \times 10^3}{3487.5 \times 10^{-6}}$
= $14.87 \times 10^6 \text{ N/m}^2$
= 14.87 MN/m^2

52. Tank A, free surface effect =
$$\frac{\rho_1 i}{\rho \nabla}$$

= $\frac{i}{\nabla}$ since $\rho_1 = \rho_2$
= $\frac{12 \times 16^3 \times 1.025}{12 \times 5000}$
= 0.840 m
Tank B, free surface effect = $\frac{14 \times 15^3 \times 1.025}{12 \times 5000}$
= 0.807 m
Tank C, free surface effect = $\frac{14 \times 16^3 \times 1.025}{12 \times 5000}$
= 0.980 m

The tank with the lowest free surface effect is filled first and thus they should be filled in the order B, A, C.

Note: Since the difference in free surface effect depends upon the product $(l \times b^3)$, this value could have been calculated for each tank instead of the complete free surface effect.

LCB from midships =
$$\frac{37.5 \times \frac{0.46}{2} \times \frac{4}{3} \times 37.5}{75 \times 2.59}$$
$$= 2.22 \text{ m aft}$$

Final volume of displacement = $75 \times 8.5 \times 3.0$ = 1912 m^3

LCB at midships

Increase in volume of displacement

$$= 1912 - 1651$$
$$= 261 \text{ m}^3$$

The effect of this added volume is to bring the vessel to an even keel.

Let x = distance of Lcg of compartment forward of midships Taking moments about midships:

$$1912 \times 0 = 1651 \times 2.22 - 261 \times x$$

$$x = \frac{1651 \times 2.22}{261}$$

$$= 14.04 \text{ m}$$
Immersed cross-sectional area = 8.5×3

$$= 25.5 \text{ m}^2$$

$$\therefore \text{ Length of compartment} = \frac{261}{25.5}$$

$$= 10.24 \text{ m}$$

54. TPC =
$$A_W \times 0.01026$$

$$A_W = \frac{27.5}{0.01026} \text{m}^2$$
Change in draught = $\frac{\Delta \times 100}{A_W} \left(\frac{\rho_S - \rho_R}{\rho_R \times \rho_S} \right) \text{ cm}$

$$25 = \frac{\Delta \times 100 \times 0.01026}{27.5} \left(\frac{1.026 - 1.000}{1.000 \times 1.026} \right)$$

$$= \frac{\Delta \times 0.026}{27.5}$$

$$\Delta = \frac{25 \times 27.5}{0.026}$$

$$= 26442 \text{ tonne}$$

If, with this displacement, the vessel moves into the river water, then:

Change in draught =
$$\frac{26442 \times 1.026}{27.5} \left(\frac{1.026 - 1.012}{1.012 \times 1.026} \right)$$

= 13.30 cm

Thus the maximum allowable draught in the river water

Actual draught = 8.44 m

Excess draught =
$$0.057 \,\mathrm{m}$$

TPC in river water =
$$27.5 \times \frac{1.012}{1.026}$$

= 27.12
Excess mass = 5.7×27.12
= 154.6 tonne

55.

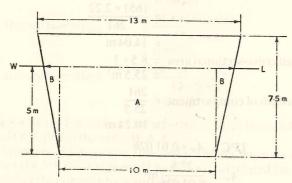


Fig. 137

Breadth at water level =
$$10 + \frac{3}{7.5} \times 5$$

= 12 m

Divide into a rectangle A and two triangles B.

Load on A =
$$pg A H$$

= $1.025 \times 9.81 \times 10 \times 5 \times 2.5$
= 1256.91 kN

Centre of pressure from WL =
$$\frac{3}{4} \times 5$$

= 3.33 m

Load on B =
$$1.025 \times 9.81 \times \frac{1}{2} \times 5 \times \frac{5}{3} \times 2$$

= 83.79 kN

Centre of pressure from WL =
$$\frac{1}{2} \times 5$$

= 2.5 m
Total load = 1256.91 + 83.79
= 1340.7 kN

Taking moments about the waterline:

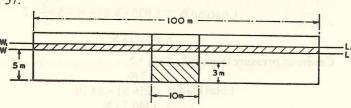
Centre of pressure from WL =
$$\frac{1256.91 \times 3.33 + 83.79 \times 2.5}{1256.91 + 83.79}$$
$$= \frac{4189.7 + 209.5}{1340.7}$$
$$= 3.281 \text{ m}$$

... Centre of pressure is 5.781 m from the top of the bulkhead.

$$h = \frac{23}{4}$$
$$= 5.75 \,\mathrm{m}$$

Second moment of area about centreline

$$= \frac{2}{9} \times 5.75 \times 944.36$$
$$= 1206.7 \,\mathrm{m}^4$$


Free surface effect =
$$\frac{\rho_1 i}{\rho \nabla}$$

$$0.2 = \frac{\rho_1 \times 1206.7 \times 1.025}{1.025 \times 5350}$$

$$0.2 \times 5350$$

Density of liquid
$$\rho_1 = \frac{0.2 \times 5350}{1206.7}$$

$$= 0.887 \, t/m^3$$

$$KB = \frac{5}{2}$$

$$= 2.5 \, \text{m}$$

$$BM = \frac{B^2}{12 \times 5}$$

$$KG = 2.5 + \frac{B^2}{60} - 0.8$$
$$= 1.7 + \frac{B^2}{60}$$

$$= 1.7 + \frac{B^2}{60}$$

After bilging:

Increase in draught =
$$\frac{10 \times B \times 3}{100 \times B}$$

$$= 0.3 \, \text{m}$$

New draught = $5.3 \, \text{m}$

$$KB_1 = \frac{100 \times 5.3 \times \frac{5.3}{2} - 10 \times 3 \times \frac{3}{2}}{100 \times 5.3 - 10 \times 3}$$
$$= \frac{1404.5 - 45}{100 \times 50}$$
$$= 2.719 \text{ m}$$

$$B_1 M_1 = \frac{100 + B^3}{12 \times 100 \times B \times 5}$$
$$= \frac{B^2}{60}$$

New metacentric height $GM_1 = KB_1 + B_1M_1 - KG$

$$= 2.719 + \frac{B^2}{60} - \left(1.7 + \frac{B^2}{60}\right)$$
$$= 1.019 \text{ m}$$

58. (a) Show that
$$C = \frac{\Delta^{\frac{2}{3}} V^3}{\text{sp}}$$

(b) Displacement =
$$160 \times 22 \times 9.2 \times 0.765 \times 1.025$$

= 25 393 tonne

Theoretical speed
$$V_t = \frac{4.0 \times 96 \times 60}{1852}$$

Real slip
$$0.33 = \frac{12.44 - V_a}{12.44}$$

$$V_a = 12.44(1-0.33)$$

= 8.335 knots

Wake fraction 0.335 =
$$\frac{V - V_a}{V}$$

$$0.665V = V_a$$

$$V = \frac{8.335}{0.665}$$

Admiralty Coefficient =
$$\frac{25 \ 393^{\frac{2}{3}} \times 12.53^{3}}{2900}$$

At 15 knots: shaft power =
$$2900 \times \left(\frac{15}{12.53}\right)^3$$

$$= 4976 \, kW$$

59. Wetted surface area of ship

$$= 2.57 \sqrt{24000 \times 180}$$
$$= 5341 \text{ m}^2$$

Wetted surface area of model

$$= 5241 \times \left(\frac{6}{180}\right)^2$$

$$= 5.934 \,\mathrm{m}^2$$

Model:

$$R_t = 40 \,\mathrm{Nin}\,\mathrm{FW}$$

$$R_f = 0.492 \times 5.934 \times 3.6^{1.825}$$

= 30.24 N in FW

$$R_r = 40 - 30.24$$

= 9.76 N in FW
= 9.76 × 1.025
= 10.004 N in SW

Ship:

$$R_r \propto L^3$$

$$R_r = 10.004 \times \left(\frac{180}{6}\right)^3$$
= 270 110 N

$$V \propto \sqrt{L}$$

$$V = 3.6\sqrt{\frac{180}{6}}$$

= 19.72 knots

$$R_f = 0.421 \times 5341 \times 19.72^{1.825}$$

= 518 930 N

$$R_t = 518\,930 + 270\,110$$
$$= 789\,040\,\text{N}$$

$$ep_n = 789\,040 \times 19.72 \times \frac{1852}{3600} \times 10^{-3}$$

= 8005 kW

60. (a) Description

(b)

Mean

mass	deflection	deviation
3 tonne	64 mm S	64 mm
3 tonne	116 mm S	52 mm
6 tonne	3 mm S	113 mm
3 tonne	54 mm P	57 mm
3 tonne	113 mm P	59 mm
)18 tonne		6)345 mm
2.		
3 tonne		57.5 mm

$$\tan \theta = \frac{57.5}{5.5 \times 1000}$$

$$GM = \frac{m \times d}{\Delta \times \tan \theta}$$

$$= \frac{3 \times 12 \times 5500}{8000 \times 57.5}$$

$$= 0.430 \text{ m}$$

61. Change in mean draught

$$= \frac{\Delta \times 100}{A_{\text{H}}} \left(\frac{\rho_{\text{S}} - \rho_{\text{R}}}{\rho_{\text{R}} \times \rho_{\text{S}}} \right) \text{ cm}$$

$$= \frac{8000 \times 100 \times 1.024}{16 \times 100} \left(\frac{1.024 - 1.000}{1.000 \times 1.024} \right)$$

$$= 12 \text{ cm increase}$$

Shift in centre of buoyancy

$$= \frac{\rho_{S} - \rho_{R}}{\rho_{S}} \times FB$$

$$= \frac{1.024 - 1.000}{1.024} \times (3.0 - 0.6)$$

$$BB_1 = 0.05625 \,\mathrm{m}\,\mathrm{aft}$$

Change in trim =
$$\frac{8000 \times 0.05625}{65}$$

= 6.92 cm by the head

Moment required =
$$23.08 \times 65$$

$$\therefore \text{ Distance moved by mass } = \frac{23.08 \times 65}{50}$$
$$= 30.00 \text{ m}$$

Total change in trim = 30 cm by the head

Change forward =
$$+\frac{30}{110} \left(\frac{110}{2} + 3 \right)$$

= $+15.8 \text{ cm}$

62.

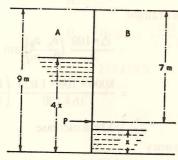


Fig. 139

Let

$$x =$$
height of water on side B

$$4x$$
 = height of water on side A

Load on side A =
$$\rho g A H$$

= $1.025 \times 9.81 \times 4x \times 14.5 \times 2x$
= $145.8 \times 8x^2$

Centre of pressure on side A

=
$$\frac{2}{3} \times 4x$$
 from surface
= $\frac{1}{3} \times 4x$ from bottom

Load on side B =
$$1.025 \times 9.81 \times x \times 14.5 \times 0.5x$$

= $145.8 \times 0.5x^2$

Centre of pressure on side B

=
$$\frac{1}{3} \times x$$
 from bottom

Taking moments about the *bottom* of the bulkhead: $2(145.8 \times 8x^2 - 145.8 \times 0.5x^2) =$

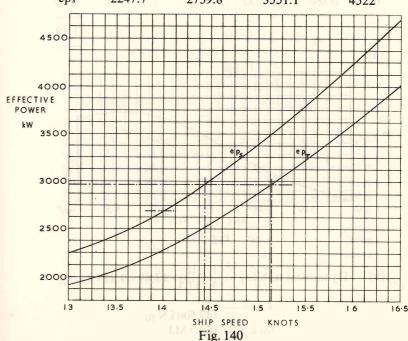
$$145.8 \times 8x^2 \times \frac{4x}{3} - 145.8 \times 0.5x^2 \times \frac{x}{3}$$

Dividing by $148.5x^2$:

$$2(8-0.5) = \frac{32x}{3} - \frac{0.5x}{3}$$

$$x = \frac{2 \times 7.5 \times 3}{31.5}$$

$$= 1.429 \text{ m}$$
Height on side A = 1.429 m

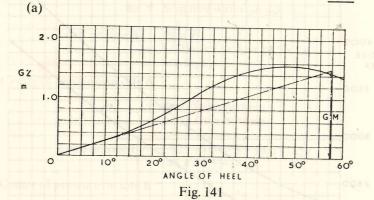

Height on side A = 5.716 m

Resultant load = 145.8x²(8-0.5)
$$= 2233 \text{ kN}$$

$$= 2.233 \text{ MN}$$

63. There are several methods of approach with this question. Probably the most straightforward is to plot curves of ep (trial) and ep (service).

V	13.0	14.1	15.2	16.3
ep_n	1690	2060	2670	3400
ep,	1909.7	2327.8	3017.1	3842
eps	2247.7	2739.8	3551.1	4522



 $= 4920 \, kW$

At 14 knots, ep (service) = 2675 kW
ep (max) =
$$\frac{2675}{0.9}$$

= 2970 kW
(a) Required ip = $\frac{2970}{0.72 \times 0.965 \times 0.965 \times 0.965}$

(b) At ep 2970 kW, from graph:

Service speed = 14.46 knot Trial speed = 15.14 knot

(b) Dynamical stability =
$$\frac{1}{3} \times \frac{15}{57.3} \times 11.49 \times 9.81 \times 15000$$

= 147500 kN m
= 147.5 MJ

65. Let V = original speed

C = original cons/day

K = original cons for the voyage

Cons/day a speed3

$$\frac{C}{C+25} = \left(\frac{V}{V+1.5}\right)^3$$

Voyage cons a speed2

$$\frac{K}{1.2K} = \left(\frac{V}{V+1.5}\right)^{2}$$

$$\sqrt{\frac{1}{1.2}} = \frac{V}{V+1.5}$$

$$V+1.5 = \sqrt{1.2V}$$

$$= 1.095 V$$

$$V = \frac{1.5}{0.095}$$

Original speed = 15.79 knots

$$\frac{C}{C+25} = \left(\frac{15.79}{15.79+1.5}\right)^3$$
= 0.7617
$$C = 0.7617(C+25)$$

$$-0.7617 \times 25$$

$$C(1-0.7617) = 0.7617 \times 25$$

$$C = \frac{0.7617 \times 25}{0.2383}$$

... Original consumption = 79.91 tonne/day

66.

00.						
Width	SM	product	lever	product	lever	product
6.0	. 1	6.0	0	hila inclu	0	yatı n s
6.0	4	24.0	1	24.0	1	24.0
5.3	2	10.6	2	21.2	2	42.4
3.6	4	14.4	3	43.2	3	129.6
0.6	1	0.6	4	2.4	4	9.6
				90.8		205.6

1st moment =
$$\frac{h^2}{3}\Sigma_m$$

= $\frac{3^2}{3} \times 90.8$
= 272.4 m³

Load on bulkhead =
$$\rho g \times 1st$$
 moment
= $0.80 \times 9.81 \times 272.4$
= 2138 kN
= 2.138 MN
Centre of pressure = $\frac{2nd \text{ moment}}{1st \text{ moment}}$
= $\frac{h\Sigma_1}{\Sigma_m}$
= $\frac{3 \times 205.6}{90.8}$
= 6.79 m from top of bulkhead

67.

V(knot)	12.50	13.25	14.00
ep(kW)	1440	1800	2230
QPC	0.705	0.713	0.708
dp(kW)	2042	2525	3150

$$dp = \frac{ep}{QPC}$$

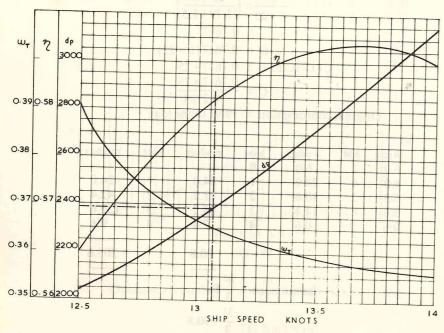


Fig. 142

From graph, when dp is 2385 kW,

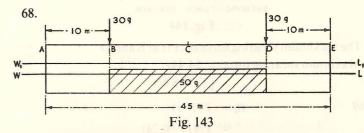
Ship speed = 13.06 knot

At this speed, $w_t = 0.365$ and propeller efficiency = 0.581

Thrust power $tp = 2385 \times 0.581$

$$= 1385 \text{ kW}$$
Ship speed = $13.06 \times \frac{1852}{3600}$

$$= 6.72 \text{ m/s}$$


$$0.365 = \frac{6.72 - v_a}{6.72}$$

$$v_a = 6.72 (1 - 0.365)$$

$$= 4.266 \text{ m/s}$$

$$tp = T \times v_a$$

Propeller thrust $T = \frac{1385}{4.266}$ = 325 kN

Since initially the load is uniformly distributed along the vessel's length there will be no shearing force.

After the addition of the masses there will be shearing forces due to the difference in loading along the length of the vessel. Uniformly distributed load, B to D.

$$= \frac{50g}{25}$$
$$= 2g kN/m$$

Additional buoyancy required

$$= \left(\frac{30+30+50}{45}\right)^g$$
$$= 2.444g$$

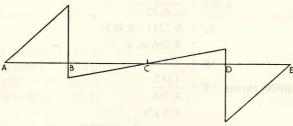
Shearing force at A = 0Shearing force at left hand of B

$$= 2.444g \times 10$$

= 24.44g

369

Shearing force at right hand of B


$$= 24.44g - 30g$$

$$= -5.56g$$

Shearing force at C

$$= 2.444g \times 22.5 - 30g - 2.0g \times 12.5$$
$$= 55g - 30g - 25g$$
$$= 0$$

Since the vessel is symmetrically loaded, these values will be repeated, but of opposite sign.

SHEARING FORCE DIAGRAM
Fig. 144

The maximum shearing force occurs at B and D.

69.
$$R_{t} = T(1-t)$$

$$= 378(1-0.24)$$

$$= 287.3 \text{ kN}$$

Ship speed =
$$15.5 \times \frac{1852}{3600}$$

= 7.974 m/s

Effective power ep =
$$287.3 \times 7.974$$

= 2291 kW
 $v_t = 4.87 \times 1.58$

$$= 7.695 \,\mathrm{m/s}$$

$$0.30 = \frac{7.695 - v_a}{7.695}$$

$$v_a = 7.695 (1 - 0.30)$$

= 5.386 m/s

Taylor wake fraction
$$w_T = \frac{7.974 - 5.386}{7.974}$$

$$= 0.324 \times 8 = \frac{3540}{0.97}$$

$$= 3649.5 \text{ kW}$$

Propulsive coefficient =
$$\frac{ep}{sp}$$

= $\frac{2291}{3649.5}$
= 0.628

ep =
$$ep_n + appendage allowance$$

$$ep_n = \frac{2291}{a}$$

$$=\frac{1.15}{1.992 \text{ kW}}$$

Quasi-Propulsive Coefficient QPC =
$$\frac{ep_n}{dp}$$

= $\frac{1992}{3540}$
= 0.563

70.
$$MCT1 cm = \frac{14000 \times 120}{100 \times 125}$$
$$= 134.4 tonne m$$

Let
$$m = \text{mass added}$$

$$d = distance of mass from F$$

Change in trim required =
$$(8.5-7.9)100$$

= 60 cm

Since the after draught remains constant, the change in trim aft must be equal to the bodily sinkage.

Change in trim aft =
$$\frac{60}{125} \left(\frac{125}{2} + 3 \right)$$

= 31.44 cm

Bodily sinkage =
$$\frac{m}{19}$$

$$\frac{m}{19} = 31.44$$

$$m = 31.44 \times 19$$

= 597.36 tonne

But change in trim

$$60 = \frac{m \times d}{\text{MCT1 cm}}$$

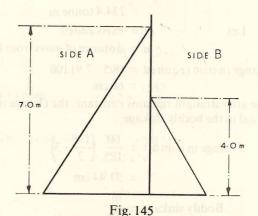
$$d = \frac{60 \times 134.4}{597.36}$$

= 13.50 m forward

Thus 597.36 tonne must be added 16.50 m forward of midships.

71. When a mass is suspended from a derrick head, its centre of gravity may be taken at the derrick head.

(a)
$$GG_1 = \frac{50 \times 18}{4000}$$
$$= 0.225 \text{ m up}$$


(b) The mass has been moved the same distance:

i.e.
$$GG_1 = 0.225 \,\mathrm{m}\,\mathrm{up}$$

(c)
$$GG_1 = \frac{50 \times 12}{4000}$$
$$= 0.15 \text{ m up}$$

(d)
$$GG_1 = \frac{50 \times 14}{4000}$$
$$= 0.175 \text{ m outboard}$$

72.

Load on side A =
$$\rho g A H$$

= $1.00 \times 9.81 \times 7 \times 8 \times \frac{7}{2}$
= 1922.76 kN

Centre of pressure from bottom =
$$\frac{7}{3}$$
 m

Load on side B =
$$0.850 \times 9.81 \times 4 \times 8 \times \frac{4}{2}$$

= 533.66 kN

Centre of pressure from bottom = $\frac{4}{3}$ m

(a) Resultant load =
$$1922.76 - 533.66$$
 = 1389.1 kN

(b) Take moments about the bottom of the bulkhead:

Resultant centre of pressure =
$$\frac{1922.76 \times \frac{7}{3} - 533.66 \times \frac{4}{3}}{1389.1}$$
$$= \frac{4486.44 - 711.54}{1389.1}$$
$$= 2.718 \text{ m from bottom}$$

73.

			Product fo	divising.	Pro	duct for
Section	½ area	SM	volume	lever	mo	ment
AP	0.4	17500	0.4	+ 5	+	2.0
1.50	7.6	4	30.4	+4	+	121.6
2	21.4	2	42.8	+ 3	+	128.4
3	33.5	4	134.0	+ 2	+	268.0
4	40.8	2	81.6	+ 1	+	81.6
5	45.5	4	182.0	0	+	601.6
6	48.4	2	96.8	- 1	_	96.8
7	52.0	4	208.0	-2	9_	416.0
8	51.1	2	102.2	- 3	I .	306.6
9	34.4	4	137.6	- 4	_	550.4
· FP	0	1		- 5		_
			1015.8		-]	1369.8

(a) New Displacement =
$$\frac{2}{3} \times 9.15 \times 1015.8 \times 1.025$$

= 6351.3 tonne

Original Displacement = 5750.0 tonne

.:. Mass of water added = 601.3 tonne

(b) Moment of buoyancy about midships

$$= \frac{2}{3} \times 9.15^2 \times (1369.8 - 601.6) \times 1.025$$

= 43 949 tonne m forward

Original moment of buoyancy = 5750.0×4.6

= 26 450 tonne m forward

.:. Moment of ballast about midships

= 17 499 tonne m forward

Centre of gravity of ballast from midships

$$=\frac{17\,499}{601.6}$$

= 29.09 m forward

74. Mass of water pumped out = 14 × 12 × 0.6 × 1.025 = 103.3 tonne

The centre of gravity of this water is 0.9 m above the keel. Taking moments about the keel:

New
$$KG = \frac{7500 \times 6.7 - 103.3 \times 0.9}{7500 - 103.3}$$
$$= \frac{50250 - 93.0}{7396.7}$$
$$= 6.781 \text{ m}$$

Free surface effect =
$$\frac{i}{\nabla}$$

= $\frac{14 \times 12^3 \times 1.025}{12 \times 7396.7}$
= 0.279 m

Original
$$KM = 6.70 + 0.45$$

= 7.15 m

New
$$GM = 7.15 - 6.781 - 0.279$$

= 0.090 m

75. Change in mean draught

$$= \frac{\Delta \times 100}{A_{\infty}} \left(\frac{\rho_{S} - \rho_{R}}{\rho_{R} \times \rho_{S}} \right) \text{cm}$$

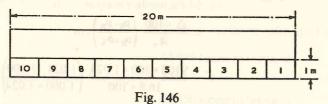
$$= \frac{9100 \times 100 \times 1.024}{16.8 \times 100} \left(\frac{1.024 - 1.000}{1.000 \times 1.024} \right)$$

$$= \frac{9100 \times 0.024}{16.8}$$

= 13.0 cm reduction

Shift in centre of buoyancy

$$= \frac{\rho_{S} - \rho_{R}}{\rho_{R}} \cdot FB$$


$$= \frac{1.024 - 1.000}{1.000} \times (0.6 + 2.25)$$

$$= 0.0684 \text{ m}$$
Change in trim = $\frac{9100 \times 0.0684}{122}$

= 5.10 cm by the stern

Change forward =
$$-\frac{5.10}{120} \left(\frac{120}{2} + 0.6 \right)$$

= -2.6 cm
Change aft = $+\frac{5.10}{120} \left(\frac{120}{2} - 0.6 \right)$
= $+2.5 \text{ cm}$

76.

Mass added/tank =
$$2 \times 10 \times 1 \times 1.025$$

= 20.50 tonne

$$mass/m = \frac{20.5}{2}$$

= 10.25 tonne

Weight/m =
$$10.25g$$
 kN

Buoyancy required/m =
$$\frac{41.0g}{20}$$

= 2.05g

Hence, in way of ballast,

Excess load/m =
$$10.25g - 2.05g$$

= $8.20g$ kN

(a) With No. 1 and No. 10 tanks filled:

S.F. at aft end of vessel = 0

S.F. at fore end of No.
$$10 = -8.20g \times 2$$

= $-16.40g$ kN

S.F. at midships =
$$-16.40g + 2.05g \times 8$$

= 0

S.F. at aft end of No. 1 =
$$+2.05g \times 8$$

= $+16.40g$

S.F. at fore end of vessel =
$$+16.40g - 8.20g \times 2$$

= 0

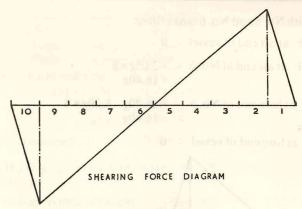


Fig. 147

(b) With No. 3 and No. 8 tanks filled:

S.F. at aft end of No. 8 =
$$+2.05g \times 4$$

= $+8.20g$

S.F. at fore end of No. 8 =
$$+8.20g - 8.20g \times 2$$

= $-8.20g$

S.F. at midships =
$$-8.20g + 2.05g \times 4$$

= 0

S.F. at aft end of No. 3 =
$$+2.05g \times 4$$

= $+8.20g$

S.F. at fore end of No. 3 =
$$+8.20g - 8.20g \times 2$$

= $-8.20g$

S.F. at fore end of vessel
$$= 0$$

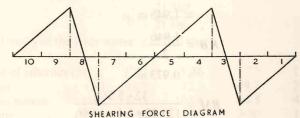
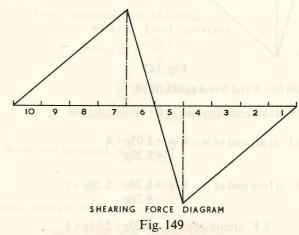


Fig. 148

377


(c) With No. 5 and No. 6 tanks filled:

S.F. at aft end of vessel
$$= 0$$

S.F. at aft end of No. 6 =
$$+2.05g \times 8$$

= $+16.40g$

S.F. at fore end of No. 5 =
$$+16.40g - 8.20g \times 4$$

= $-16.40g$

S.F. at fore end of vessel = 0

The maximum shearing force in case (b) is half of the maximum values in cases (a) and (c). Thus (b) is the best loaded condition.

77. Final displacement =
$$216 + 81 + 54$$

= 351 tonne
= $L \times B \times d \times \rho$
New draught = $\frac{351}{32 \times 5.5 \times 1.025}$
= 1.946 m
 $KB = \frac{1.946}{2}$
= 0.973 m
 $BM = \frac{32 \times 5.5^3}{12 \times 32 \times 5.5 \times 1.946}$
= 1.295 m

$$KM = 0.973 + 1.295$$

= 2.268 m
Final $GM = 0.130$ m
.: Final $KG = 2.138$ m

Let x = Kg of machinery

$$351 \times 2.138 = 216 \times 1.8 + 81x + 54 \times 0.15$$

 $750.44 = 388.8 + 81x + 8.1$
 $81x = 353.54$

Kg of machinery x = 4.365 m

78. If a ship moves from sea water of 1.025 t/m^3 into fresh water of 1.000 t/m^3 ,

change in mean draught =
$$\frac{\Delta}{40 \text{ TPC}}$$
 cm

$$\therefore 23 = \frac{\Delta}{40 \times 23}$$

$$\Delta = 23 \times 40 \times 23$$

21 160 tonne

The draught in the river water is the same as the allowable draught in the fresh water, but the displacement is 202 tonne greater, i.e. 21 362 tonne.

Let ρ_R = density of river water

Volume of displacement in fresh water

$$1000 \text{ m}^3$$

Volume of displacement in river water

$$=\frac{21\,362}{\rho_R}$$
m³

But volume in fresh water = volume in river water

$$\frac{21\ 160}{1.000} = \frac{21\ 362}{\rho_R}$$

$$\rho_R = \frac{21\ 362}{21\ 160}$$

Density of the river water = 1.010 t/m^3

79.					
Speed of advance	e(m/s)	1.22	1.46	1.70	1.94
Thrust	(N)	93.7	72.3	49.7	24.3
Thrust power	(W)	114.3	105.6	84.5	47.1
Torque	(Nm)	3.90	3.23	2.50	1.61
Delivered power	(W)	196.1	162.4	125.7	80.9

Thrust power = thrust × speed of advance Delivered power = torque × 2π × rev/s

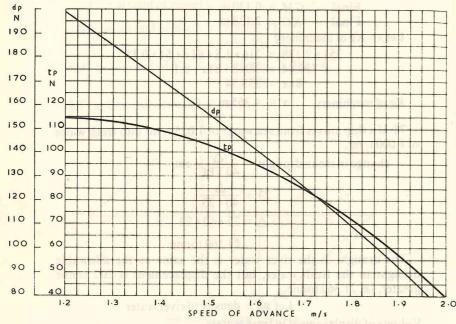


Fig. 150

For ship dp = 3000 kW in sea water

Equivalent for model
$$dp = 3000 \times \left(\frac{0.3}{4.8}\right)^{3.5} \times \frac{1.00}{1.025}$$

= 178.6 W

From graph at this dp: $v_a = 1.348 \text{ m/s}$ and at this speed: tp = 111.1 W

(a) For ship
$$tp = 111.1 \times \left(\frac{4.8}{0.3}\right)^{3.5} \times \frac{1.025}{1.00}$$
$$= 1866 \text{ kW}$$

(b) Propeller efficiency =
$$\frac{1866}{3000} \times 100$$

= 62.2%

Product for (1) Product for Product for (2) lever vert. moment LCF Draught C_w SM 1.22 0.78 1 longl. moment volume 0.78 + 1.014 0.78 3.28 2 1.70 3 3.52 4 0.90 5 + 1.21 + 0.93 2.44 + 3.969 0.82 +1.581 3.66 0.85 +1.7604.88 0.88 - 0.054 6.10

- (1) Levers taken from the keel
- (2) Product of volume column and LCF

(a) Displacement of layer =
$$\frac{1.22}{3}$$
 × 10.18 × 128 × 16.75 × 1.025

= 9097.8 tonne

(b) (i) Longitudinal moment =
$$\frac{1.22}{3} \times 8.27 \times 128 \times 16.75$$

LCB of layer from midships =
$$\frac{\frac{1.22}{3} \times 8.27 \times 128 \times 16.75}{\frac{1.22}{3} \times 10.18 \times 128 \times 16.75}$$

$$= \frac{8.27}{10.18}$$

= 0.812 m forward

(ii) Vertical moment =
$$\frac{1.22^2}{3} \times 31.02 \times 128 \times 16.75$$

VCB of layer from keel =
$$\frac{\frac{1.22^2}{3} \times 31.02 \times 128 \times 16.75}{\frac{1.22}{3} \times 10.18 \times 128 \times 16.75}$$

$$= \frac{1.22 \times 31.02}{10.18}$$

INDEX

A			The state of the s		
Admiralty Coefficient			DISPLACEMENT		20
Angle of lell	••••		. curve		20
Angle of loll		94, 96	Draught, mean		100
Apparent slip		138	I lynamical atabilit		92
Area — blade		140	and the state of t	••••	92
" developed		140	I so I made and a second control of		
" disc		140			
" projected		140	Effective power		127
		29			143
rates of shinker figures	****	29	- mechanical		143
В					143
DM		200	- transmission	••••	
DM-		74			143
		101	Equilibrium	••••	71
Bending moment curve		- 32			
" " on bulkhe	ead		F		
stiffeners		14	FIRST CLASS EXAMINATION		
Rilging		113	OHECTIONIC		20.4
Rlade area ratio		140	First moment of	•••	294
TO1 1			Floating hadian	•••	46
Proka marrian		25	Floating bodies		19
Duilt manuallana	•••	143	Flotation, centre of		100
Built propellers		149	Free surface effect		83
Buoyancy	21	1,113	Frictional resistance		123
" centre of		21	Froude, Wm		123
0119710		31	law of comparison		126
			Fuel coefficient		131
C					
Cavitation		100	ruel consumption	••	131
Centre of his		108			
flotation		21	G		
" " flotation		100	GM		72
" " GRAVITY		60	Carrie	55	60
, lateral resistance		156		- 25	00
", ", pressure		5	H		
Centrifugal force	2.2	24			
Centroid Change in trim		60	Hull efficiency		143
Change in trim	. (11)		HYDROSTATICS		1
", ", due to bilgin		100			1
	g	115	THE THEFT I WAS		
" " " due to densit	У	111			
" " " large masses		105	Inclining experiment		80
small masses		100	Indicated power		143
Coefficients of form		24	Intermediate ordinates		43
Corresponding speeds		126	E 1.367 m av 2		
Cross curves of stability		90	K		
I limbe of ctotical at-1:1:		92	KR		22
em ve of statical stability	•	92	KG		22
D The same of the		1 22	VM		61
Delivered names			KM		73
Denny's formula		143			
Denny's formula		28	L		
Density		1	Large angle stability		00
" change in draught		108	Large angle stability Law of comparison Liquid pressure Load curve		89
,, change in trim		111	Liquid pressure	1	26
., relative		1	Liquid pressure		2
Developed area					33
		140	" diagram		9
Disc area ratio	11 19	140	,, on immersed plane		4

Longitudinal bending		31	SECOND CLASS EXAMINATION	
,, centre of b	uoyancy		OUESTIONS	249
	21	,40		46
centre of fl	otation	100	Second moment of area	143
" centre of g	ravity	61	Shaft power Shearing force	31
" metacentric	height	101	Shearing force	31
", metacontra	o mengane		in buikheau	10
B.#			etiffeners	12
M	E35	100	Chin correlation factor	127
		145	Similar figures	29
Mean pressure Metacentre, transverse , longitudinal Metacentric diagram , height height, long	••••	72	Similar figures simpson's rules	38
Metacentre, transverse			Simpson's first rule	38
longitudina		101	Simpson's first rule	55
Metacentric diagram		78	Simpson's second rule Slip — apparent — real	138
height	F 71.11.18	72	Slip — apparent	
", height, long	gitudinal	101	— real	139
Midship section area co	efficient	24	Solid Propellers	
Midship section area of		127	SOLUTIONS TO TEST EXAMPLES	162
Model tests	arro men	46	Specific fuel consumption	131
Moment of area — first	d	46	Speed — corresponding	101
- sect	mu		Speed — corresponding ,— length ratio	
" of force	••••	00	" — length ratio	
of mass	****	00	" — of advance	139
to change trim	1 cm	103	,, — ship	130
Morishe's formula	elocation of	22	,, — of advance ,, — ship ,, — theoretical	138
Molishe's formate			Ct-blo vioccel	1 1
Million as alles described				
N		72	Gt-hility of small angles	72
Neutral equilibrium	••••	12	Stability at silian angles	89
			", ", large arigies	92
Port sends stable tunt		114	Stability at small angles ,, large angles , curve	67
Permeability		7 -	Suspended mass	. 07
Pitch		138	mil thought has the tolygonomed	
measurement of		140	ter of the best Filter Class of Engineering Con-	
-natio		130	T	20
Ditchemeter		147	Taylor's formula	. 28
Pitchometer Power — delivered		143	Theoretical speed	. 130
Power — delivered	12	7 143	Themset	. 141
			,, deduction	143
"— enective "— indicated "— shaft	••••	143	power	141
— shaft		143	,, power ,, pressure	142
thriisi		1191	" pressure	22
Pressure centre of			Tonne per cm illillicision	
" liquid		1	Torque on rudder stock	155
" mean		145	Transverse metacentric	/-
" mean " thrust		142	TRIM Turning — angle of heel	100
- " " " " " " " " " " " " " " " " " " "		26	Turning - angle of heel	158
Prismatic coefficient		140	Turing angu	
Projected area	••••			
PROPELLERS		130	tendit-postulanceur ambiguite « :	
Propeller efficiency Propulsive coefficient		143		72, 95
Propulsive coefficient		144	Unstable silip	
Tropulation			Mark Carl fixed Thistens of the	
On anothers' united the		11 11000	A THE DESIGNATION OF THE STATE	
Quasi-Propulsive coef	ficient	143	V of hygyancs	21
Quasi-1 ropulation			Vertical centre of buoyancy	61
R and			,, ,, of gravity	21
Real slip		139	Volume of displacement	21
Real Silp			Volumes by Simpson's Rule of similar bodies	40
Relative density	and the management	113	of similar bodies	30
Reserve buoyancy RESISTANCE		12	,, 0. 0	
RESISTANCE		10		
iriction	al		S W	
" —residua	ry		Wake	139
Dighting lever		. 7		139
,, moment		. 7	" ITACHOII	95
PUIDER THEORY		15	2 Wall-sided ship	24
RUDDER THEORY	1199.	15	2 Waterplane area coefficient	
,, area		15	2 Weight curve	
,, forces torque		15		21
,, torque		13		

REED'S PRACTICAL MATHEMATICS SERIES all volumes are in SI Units

VOI 1 MATHEMATICS FOR ENGINEERS

Covers the syllabus for 2nd Class Engineers in Mathematics and provides the basic mathematics for all subjects for 2nd and 1st Class Engineers.

Vol 2 APPLIED MECHANICS FOR ENGINEERS

Based upon the syllabuses of Applied Mechanics for 2nd and 1st Class Engineers and the Ordinary National Certificate in Engineering. Fully explained from first principles.

VOI 3 HEAT & HEAT ENGINES FOR ENGINEERS

Completes mathematical coverage of syllabuses for Part A of the examinations for Second and First Class Certificates of Competency. Immensely valuable for ONC students. Diagrammatic sketches and fully worked solutions to all examples and problems.

Vol 5 SHIP CONSTRUCTION FOR MARINE STUDENTS

This volume is based on the descriptive section of the Naval Architecture syllabuses for 2nd and 1st Class Engineers. It is profusely illustrated and is complementary to Volume 4.

Vol 6 BASIC ELECTROTECHNOLOGY FOR ENGINEERS

Based principally upon the syllabuses of Electrotechnology for 2nd & 1st Class Certificates of Competency, and also Principles of Electricity and Electrical Engineering for Engineer Cadets of the 'Alternative Training Scheme'.

Vol 7 ADVANCED ELECTROTECHNOLOGY FOR ENGINEERS

Follows the syllabus of Electrical Engineering for Marine Engineer Cadets (Phase 3) of the Alternative Training Scheme, and fully covers the requirements of the DoT syllabuses of Electrotechnology for First and Second Class Marine Engineers. Also of value to those studying for the Extra First Class Engineers Certificate.

Vol 8 GENERAL ENGINEERING KNOWLEDGE FOR ENGINEERS

A specific examination guide based on the syllabuses for the 1st and 2nd Class Certificates of Competency in General Engineering Knowledge. Many diagrams and specimen examination questions are given.

Vol 9 STEAM ENGINEERING KNOWLEDGE FOR MARINE ENGINEERS

A companion to Vol 8, based on the syllabuses of Engineering Knowledge for Second and First Class Engineers Steam Certificates and Steam Endorsements. Includes a selection of specimen examination questions.

Vol 10 INSTRUMENTATION AND CONTROL SYSTEMS

Deals with instrumentation, control theory fundamentals and control engineering practice in a simplified presentation. Ninety diagrams present fundamental principles logically and clearly and assist in understanding the mathematical processes.

VOI 11 ENGINEERING DRAWING FOR MARINE ENGINEERS

For students preparing for the 2nd Class Engineers drawing examination. Solutions are given to all drawing exercises and all dimensions are in millimetres.

VOL 12 MOTOR ENGINEERING KNOWLEDGE FOR MARINE ENGINEERS

A companion to Vol 8 based on syllabuses for 2nd and 1st Class Marine Engineers Motor Certificates and Motor Endorsements. Numerous diagrammatic line sketches.

Obtainable from all Nautical Opticians, Chartsellers and Booksellers, published by

THOMAS REED PUBLICATIONS LIMITED,

36/37 Cock Lane, London, EC1A 9BY PO Box 36, High Street West, Sunderland, SR1 1UQ.

CINEC MARITIME CAMPUS MILLENNIUM DRIVE; IT PARK; MALABE; SRI LANKA

Library Hours: Open all week days 8.30am- 5.00pm close week ends, poya days & mercantile Holidays

Renewals: Books may be renewed by post or by telephone. A fine of Rs 50/= per day will be levied on overdue books.

14 10/9	
14/10/19	
DE XII	

CINI

726

215/14