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PREFACE

Gear drives are critical components of mechanical systems used in such diverse
industries as turbo-machinery, process, refinery, steel, construction, mining, and
marine. In all these fields there is a continuing trend toward higher reliability
and improved technology in mechanical components. Higher reliability is desired
to reduce downtime. In many applications, the cost of one day’s lost production
due to a gearbox malfunction far exceeds the initial cost of the unit; therefore,
in critical installations there is a strong emphasis on conservative design and
quality manufacture. In addition to achieving high reliability, mechanical
systems must be increasingly efficient to conserve energy. Gear manufacturers
are constantly refining their analytical, design, and manufacturing techniques to
take advantage of new technologies and provide reliable, efficient gearboxes at
minimum cost.

The purpose of this book is to present practical gearbox design and appli-
cation information to individuals responsible for the specification and operation
of mechanical systems incorporating gear drives. Sufficient theoretical informa-
tion is included to enable the engineer interested in gear analysis and design to
understand how gear units are rated and detail gear tooth geometry is defined.
The major emphasis is on parallel shaft and planetary units using spur and helical
gearing.

In addition to basic data on gear design and manufacture, such subjects as
installation, operation, maintenance, troubleshooting, failure analysis, and
economics are covered. Material on lubrication systems, bearings, couplings,
and seals is presented in order to cover all aspects of gear system operation.

Several new trends in the gear industry, due in part to the emphasis on
energy conservation, are discussed.

il




iv Preface

1. As mechanical equipment such as pumps, motors, COmpressors, turbines,
etc. are designed for higher efficiencies, rotating speeds are increased and,
therefore, higher speed transmissions are required. High speed gearing
characteristics are featured throughout the book.

2. Also, as a result of energy consciousness, there is a tendency to package
smaller mechanical systems; therefore, there is a trend developing in the
United States toward the use of planetary gear units which are far more
compact than parallel shaft designs. Included in the book is a section on
planetary gear design and application.

3. In order to achieve the highest load carrying capability in a minimum
envelope, case hardened and ground gear tooth designs are finding wide
application. This technology is covered in the book.

4, The book attempts to take a systems approach to gearbox application. It
has become apparent that gear units, when incorporated into a system of
rotating machinery, are susceptible to a variety of problems. All charac-
teristics of the drive system from the driver to the driven equipment,
including the lubrication system and accessories, can influence gearbox
operation and must be considered in the specification, installation, opera-
tion, and maintenance of the unit.

Throughout the book, standards and practices developed by the American
Gear Manufacturers Association are referred to. Successful selection, rating, and
operation of gearboxes can be accomplished by the use of AGMA publications
and the gear designer and user should be familiar with the Standards system.

The AGMA is located at 1901 North Fort Myer Drive, Arlington, Virginia 22209,

I would like to thank Mr. Alvin Meyer and Mr. Alan Swirnow for their
assistance and comments. I am also indebted to American Lohmann Corpora-
tion, Hillside, New Jersey for its support.

Peter Lynwander
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TYPES OF GEAR DRIVES:
ARRANGEMENTS, TOOTH FORMS

The function of a gearbox is to transmit rotational motion from a driving prime
mover to a driven machine. The driving and driven equipment may operate at
different speeds, requiring a speed-increasing or speed-decreasing unit. The gear-
box therefore allows both machines to operate at their most efficient speeds.
Gearboxes are also used to change the sense of rotation or bridge an angle
between driving and driven machinery.

The gearbox configuration chosen for a given application is most strongly
influenced by three parameters:

Physical arrangement of the machinery
Ratio required between input and output speeds
Torque loading (combination of horsepower and speed)

Other factors that must be considered when specifying a gear drive are:

Efficiency
Space and weight limitations
Physical environment

PHYSICAL ARRANGEMENT

The location of the driving and driven equipment in the mechanical system
defines the input and output shaft geometrical relationship. Shaft arrangements
can be parallel offset, concentric, right angle, or skewed as shown in Figure 1.1.
The material presented in this book focuses on parallel offset and concentric
designs.
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Figure 1.1 Gearbox shaft arrangements.

In the majority of parallel offset units in use, the input and output shafts
are horizontally offset; however, vertical offsets are used and any orientation of
input to output shaft is possible. Figure 1.2 illustrates a typical horizontally
offset parallel shaft gearbox and Figure 1.3 presents a cutaway view of such a
unit. In this case there is one input shaft and one output shaft located on oppo-
site sides of the unit. There are many different options available as far as the
input and output shaft extensions are concerned. Figure 1.4 shows the various
possibilities and presents a system for defining the extensions desired on a gear-
box. There may be two inputs driving a single output, such as dual turbines
powering a large generator, or two outputs with a single input, such as an electric
motor driving a two-stage compressor. Often shaft extensions are used to drive
accessories such as pumps or starters.

The minimum amount of offset required is determined by gear tooth stress
considerations. The offset of a gearbox incorporating a single mesh, as shown in
‘Figure 1.3, is the sum of the pitch radii of the pinion and gear, otherwise known
as the center distance. The pitch radii must be sufficiently large to transmit the
system load. An offset greater than the minimum may be required to provide
enough space for the machinery incorporated in the system. Figure 1.5 illus-
trates an accessory drive where the input and output shafts are offset through
two meshes to separate the machinery located at these shafts.

Types of Gear Drives

Figure 1.2 Parallel offset gearbox. (Courtesy of American Lohmann Corpora-
tion, Hillside, N.J.)

Figure 1.6 illustrates a gearbox with concentric input and output shafts.
The driving and driven machinery will therefore be in line. Planetary gearing
(described in the next section) has concentric shafts and is used to achieve high
ratios in minimum space. It is also possible to package parallel shaft gearing
such that the input and output shafts are in line when such a configuration is
desired. Figure 1.7 presents external and internal views of a right-angle gear
drive.

The gearboxes in Figures 1.3, 1.6, and 1.7 are foot mounted; that is, they
are meant to be bolted to a horizontal base through a flange at the bottom of
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PLAN VIEWS
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Figure 1.4 Definition of shaft extensions. Parallel shaft-helical and herringbone
gear reducers; single, double, and triple reduction. Code; L = left; R = right;
arrows indicate line of sight to determine direction of shaft extensions; letters
preceding the hyphen refer to number and direction of highspeed shaft exten-
sions; letters following the hyphen refer to number and direction of low speed
shaft extensions. (From Ref. 1.) )

Figure 1.3 Parallel offset gearbox sectional view. (Courtesy of American
Lohmann Corporation, Hillside, N.J.)

the gear casing. Although this is the most common design, gearboxes can be

" mounted in many other configurations and operate in attitudes other than
horizontal. Figure 1.8 illustrates a flange-mounted unit. Such a gearbox can be
operated horizontally or be vertically mounted on a horizontal base. Vertically
operating gearbox designs must have special lubrication provisions to provide
lubricant to the upper components in the unit and seal the lower end from oil
leakage. Figure 1.9 shows yet another mounting configuration. This unit is shaft
mounted with a support arm that is fixed to ground to react the gearbox housing
torque.

Figure 1.5 Parallel offset accessory drive gearbox. (Courtesy of American
Lohmann Corporation, Hillside, N.J.)
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Figure 1.6 Gearbox with concentric input and output shafts. (Courtesy of
American Lohmann Corporation, Hillside, N.J.)

GEAR RATIO

There is no limit to the reduction or speed increasing ratio that can be achieved
using gearing; however, for high ratios the arrangement of the components can be
quite complex. In a simple gear mesh a maximum ratio in the order of 8:1 to
10:1 can be achieved. The amount of speed reduction or increase is simply the
ratio of the pitch diameter of the larger gear to the smaller gear. The number of
teeth in a gear pair is related to the pitch diameters, so the speed ratio can also
‘be calculated by dividing the larger number of teeth by the smaller. The smaller
gear is often called the pinion. To attain a ratio of 10:1, therefore, the gear must
be 10 times larger than the pinion and there usually are stress or geometrical
limitations on the pinion when this ratio is exceeded. To achieve higher ratios
with parallel shaft gearing, stages of meshes are combined as shown in Figure 1.10.
This unit has three stages of reduction and achieves ratios on the order of
100:1.

An efficient method of achieving high reduction ratios in minimum space
is the use of planetary gearing. This design, completely described in Chapter 9, is
illustrated in Figure 1.11. The high-speed sun gear meshes with a number of

Figure 1.7 Right-angle gear drive. (Courtesy of American Lohmann Corpora-
tion, Hillside, N.J.) '
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Figure 1.8 Flange-mounted gear unit. (Courtesy of American Lohmann Cor-
poration, Hillside, N.J.)

Figure 1.10 Multi-stage parallel shaft gearbox. (Courtesy of American Lohmann
Corporation, Hillside, N.J.)

planets, usually three, which in turn mesh with a ring gear. The ring gear has
internal teeth. Either the ring gear or the planet carrier rotate at the low speed
of the gear set. Occasionally, all three members are connected to rotating equip-
ment. When the low-speed shaft is either the ring gear or the planet carrier, the
ratios in a planetary gearset are:

Figure 1.9 Shaft-mounted gearbox. (Courtesy of American Lohmann Corpora-
tion, Hillside, N.J.)
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Figure 1.11 Basic planetary gear configurations.

ring gear pitch diameter

- - for rotating ring gear
sun gear pitch diameter grnge

Ratio =

ring gear pitch diameter
sun gear pitch diameter

1}

Ratio = 1 + for rotating planet carrier

Because of the multiple load path of planetary gearing the horsepower trans-
mitted is divided between several planet meshes and the gear size can be reduced
significantly compared to parallel shaft designs. Planetary stages can be linked
together to achieve high ratios, as shown in Figure 1.12. This is a three-stage
planetary gear with a ratio of 630:1. The first-stage planet carrier drives the

second-stage sun gear and the second-stage carrier drives the third-stage sun gear.

Types of Gear Drives 11
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Figure 1.12 Multistage planetary gearbox. High-speed shaft, 1; first planetary
stage, 2;second stage, 3; third stage, 4; low-speed shaft, 5; gear housing, 6.

In theory, any parallel shaft or planetary gearbox can be used either as a
speed reducer or increaser. There may be details within a gearbox, however, that
require modification if such a changeover is made. The same holds true if it is
desired to reverse the direction of rotation for which the gearbox was initially
designed. For instance, one side of the teeth may have been favored in the finish-
ing process when the initial design was manufactured. If the gearbox is used in
such a manner that the initially unloaded face is now loaded, poor tooth per-
formance may result. The direction of rotation of the input shaft with respect to
the output shaft depends on the gear design chosen. For a simple parallel shaft
gear mesh the sense of rotation will change through the mesh. A planetary
arrangement with a stationary ring gear will not change the sense of rotation
between input and output, while a rotating ring gear will turn in the opposite
sense compared to the sun gear’s rotation.

TORQUE LOADING
The size of gearbox required for a given application is dependent primarily on
how large the gear pitch diameters and face widths are. These dimensions are
determined on the basis of tooth stresses which are imposed by the transmitted
tooth load. The tooth load is simply the torque on a given gear divided by the
gear pitch radius:

torque (in.-1b)

Tooth load (Ib) = —————
pitch radius (in.)
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Torque is calculated from the horsepower transmitted and the speed of the
rotating component in question:

63,025 (hp)
Input torque (in-lb) = ———
input rpm
63,025 (hp)
Output torque (in.-lb) = ————
output rpm

When designing a gearset one cannot consider torque alone. The operating speed
of the gears has a significant effect on the design definition. As an illustration of
this point, consider a high-speed unit transmitting 2000 hp at 20,000 rpm input.
The input torque would be the same as a low-speed unit operating at 2000 rpm
input with a transmitted horsepower of 200. On a simple stress basis, if the ratio
of both gearboxes were the same, the same gearbox could be used for both appli-
cations; however, the high-speed design must differ from the low-speed design in
the following respects:

At high speeds, component geometry discrepancies such as tooth spacing error,
shafting unbalance, and so on, generate significant dynamic loading, and
these dynamic effects must be taken into account in the design process.
Also, the components experience high numbers of load cycles and are
more prone than low-speed units to fatigue failures. For all of these
reasons, high-speed components must be of high accuracy to minimize
dynamic problems.

Heat generation within the unit is proportional to speed; therefore, high-speed
units usually require pressure jet lubrication systems and external cooling
systems. Low-speed units often operate with integral splash lubrication,
the heat being dissipated through the gear casing.

The bearing design is strongly dependent on shaft speeds. Low-speed units
generally incorporate antifriction bearings, while high-speed industrial
gearboxes typically use journal bearing designs.

‘There is no clear demarcation between low-speed and high-speed gearing. Units
with several gear meshes may have some of each. An arbitrary definition some-
times used is that units with pinion speeds exceeding 3600 rpm or pitch line
velocities exceeding 5000 fpm are considered high speed [1].

Pitch line velocity is a measure of the peripheral speed of a gear:

7 (pitch diameter, in.) (rpm)
12

Pitch line velocity (fpm) =

The pitch line velocity of a gear is a better index of speed than is rotational
velocity, since a large gear operating at a relatively low rpm may experience the
same velocity effects as a small gear operating at high rpm. Standard high-speed
oear nnits anerate at pitch line velocities up to approximately 20,000 fpm.

T
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Applications exceeding this speed must be considered special and exceptional
care must be taken in their design and manufacture. Pitch line velocities of
40,000 fpm have been attained in practice.

Parallel offset or concentric shaft gearboxes incorporate gears with spur,
single helical, or double helical tooth forms. The face of a spur gear is parallel to
the axis of rotation, whereas a helical gear tooth face is at an angle, as shown in
Figure 1.13. The figure illustrates that helical gears have an overlap in the axial
direction, which results in the following advantages:

Helical gears have more face width in contact than do spur gears of the same
size; therefore, they have greater load-carrying capability.

With conventional spur gearing the load is transmitted by either one or two teeth
at any instant; thus the elastic flexibility is continuously changing as load
is transferred from single-tooth to double-tooth contact and back. With
helical gearing the load is shared between sufficient teeth to allow a
smoother transference and a more constant elastic flexibility; therefore,
helical gearing generates less noise and vibration than spur gearing.

The disadvantage of helical gearing in relation to spur gearing is that axial
thrust is generated in a helical gear, which necessitates the incorporation of a
thrust bearing on each helical gear shaft.

To take advantage of the helical gearing benefits described above, yet not
generate axial thrust loads, double helical gearing is used (Figure 1.14). The two
halves generate opposite thrust loads, which cancel out. When the two helices are
cut adjacent to one another with no gap between, the gearing is termed herring-
bone. Because helical gear thrust is proportional to the tangent of the helix
angle, single helical gears tend to have lower helix angles than do double helical
designs, where the thrust loads cancel. Typical single helical helix angles are 6 to
15°. Double helical gearsets have helix angles of up to 35°.

Another advantage of double helical gears is that the ratio of face width to
pitch diameter in each half can be held to reasonable limits. When the face
widths become longer than the pitch diameters in spur or single helical gearing it
is difficult to achieve complete tooth contact since thermal distortion, load
deflections, and manufacturing errors tend to load the gear teeth unevenly. A
double helical gear with a face width/pitch diameter ratio of 1 will have twice
the face width of a spur or single helical gear with the same L/D ratio and there-
fore greater load-carrying capability.

Double helical gearing has two disadvantages. Because the two halves of
each gear cannot be perfectly matched, one member of the gearset must be free
to float axially. This gear will be continually shifting to achieve axial force
equilibrium since the thrust loads of each half will rarely cancel exactly. This
shifting can lead to detrimental axial vibrations if tooth geometry errors are
excessive. Another potential problem with double helical gearing is that external
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SPUR GEAR HELICAL GEAR
ol
\_/d Overlap \/d

Double Tooth Contact

Oblique Line
of Contact

Advantages of Helical Gears

1. Greater load capacity
2. Smoother operation
3. Less sensitivity to tooth errors

Single Tooth Contact

Figure 1.13 Comparison of spur and helical gear teeth.

thrust loads will tend to overload one helix. For instance, if a double helical
gear is attached to a gear tooth type of coupling and the coupling locks up
“axially due to tooth friction, axial loads transmitted through the coupling will
be reacted by the teeth of one-half of the gearset. With single helical gears

an external axial load will either add to or subtract from the gear tooth load and
be reacted by the thrust bearing.

Gear metallurgy, although not mentioned heretofore, is one of the most
significant factors in determining gearbox size, since the strength of a gear tooth
is proportional to the hardness of the steel. Most gears are in the hardness ranges
of approximately Rc 30 to 38 or Rc 55 to 64. The region from Rc 30 to 38 is
usually termed “through-hardened,” while the range Rc 55 to 64 is almost
always “‘surface-hardened,” where the tooth has a hard surface case and a softer
inner core. Through-hardened gears are cut by such processes as hobbing,

Types of Gear Drives 15

Figure 1.14 Double helical gearing.

shaping, and shaving. Surface-hardened gears are cut and then hardened. They
may be used in this state, but the more accurate surface-hardened gears are
ground after heat treatment. Spur, single helical, and double helical gearing may
be produced by any of the methods noted above. Generally, double helical
gearing is through-hardened and cut. It is possible to harden and grind double
helical gearing; however, to grind a one-piece double helical gear a large central
gap is required between the two helices to allow runout of the grinding wheel.
Gears can be ground in halves and then assembled, but this presents serious
alignment and attachment problems.

To achieve minimum envelope and maximum reliability, the latest tech-
nology utilizes single helical, hardened, and precision ground gearing. With single
helical gears the thrust load axially locates the gear shaft against the thrust bear-
ing. Bearing design has progressed to the point where thrust loads are routinely
handled either by hydrodynamic tapered land or tilting pad configurations or
an antifriction thrust bearings. Because case-hardened gears have maximum
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a degree of confidence in the procedure. With good design and manufacturing
practice, efficiencies of 99% per mesh and better are possible. Often, lubrication
system development is required to attain the highest efficiency potential.

Power losses in a gearbox are divided between friction losses at the gear
and bearing contacts and windage losses as the rotating components churn the
oil and air. In high-speed units the churning losses may exceed the friction losses;
therefore, the type and amount of lubricant, and its introduction and evacua-
tion, are critical in terms of efficiency. Journal bearings require significantly
more oil flow than do antifriction bearings and generate higher power losses.

Figure 1.15 High-speed single helical hardened and ground gearset. (Courtesy of
American Lohmann Corporation, Hillside, N.J.)

load-carrying capacity, gear size can be minimized; therefore, the ratio of face
width to diameter of a single helical gear can be held to reasonable limits. Pitch
line velocities are minimized, reducing dynamic effects. Also, the bearing span
with single helical gears is short, resulting in lower elastic deflection. Figure 1.15
illustrates a generator drive gearbox with two stages of single helical gearing. This
unit transmits 4500 hp at an input speed of 14,500 rpm. The high-speed mesh
pitch line velocity is 18,000 fpm. Gearbox weight is 3500 Ib.

A single helical hardened and ground gearset can reduce by up to one-half
the envelope and weight of a through-hardened double helical gearbox with
equivalent capacity. The inherent precision of the grinding process results in
accurate tooth geometry, leading to minimum noise and vibration.

EFFICIENCY

Figure 1.16 Compound planetary gearset. (Courtesy of American Lohmann

Gearbox efficiency is a much discussed subject, but accurate values are very Co tion. Hillside, N.J.)
rporation, Hillside, N.J.

difficult to determine. Analytical estimates must be confirmed by testing to gain
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A reasonable estimate of efficiency for industrial gear boxes is 1 to 2%
power loss per mesh. A three-stage unit, therefore, might be expected to have
an efficiency in the range 94 to 97%. The efficiency is quoted at the design load
and speed conditions. At full speeds and lower loads the efficiency will drop off
because the churning losses will remain constant.

SPACE AND WEIGHT LIMITATIONS

There are industrial applications where gearbox space and weight is limited. For
instance, generator-drive gearboxes on offshore oil platforms or units used on
mobile equipment must have minimum envelope. To achieve small gear units,
several techniques can be used:

To minimize gear size, the highest-quality steel, case carburized and precision
ground, is incorporated in the unit.

Planetary configurations are used to achieve high ratios in small envelopes.
Figure 1.16 illustrates a compound planetary gearset which demonstrates
a very efficient use of space, in the approximate range 9:1 to 12:1.

Lightweight design techniques such as thin-wall casings and hollow shafts are
employed.

Lightweight materials such as aluminum housings are used.

Maximum application of these techniques can be found in the aerospace in-
dustry. An aircraft gearbox might handle the same design conditions as a con-
ventional unit but at one-fiftieth the weight [2].

PHYSICAL ENVIRONMENT

When specifying a gear drive, the physical environment must be addressed in the
design stage. Listed below are detrimental environments which can have an
adverse effect on lubricant, bearings, gears, or seals:

Dusty atmosphere

High ambient temperature
Wide temperature variation
High humidity
Chemical-laden atmosphere

Such environments require special consideration in the design of the gearbox
lubrication system and seals.

—
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2
GEAR TOOTH DESIGN

The purpose of gearing is to transmit power and/or motion from one shaft to
another at a constant angular velocity. The tooth form almost universally used
is the involute, which has properties that make it particularly desirable for these
functions. It will be shown that in order to attain constant angular velocity, the
meshing tooth forms must have specific geometrical characteristics which are
easily obtained with an involute system.

In order to understand gear tooth drives it is useful to observe the dy-
namics of simpler power transmission systems, such as friction disks or belt
drives (Figure 2.1), both of which are capable of transmitting power at a
constant velocity ratio. The velocity ratio is inversely proportional to the ratio
of the diameters:

Wa _ Dg
Wg Dy
where
W = angular velocity, rad/sec
D = diameter, in.

If D, = %Dy it can be seen that friction disk A has to make two revolutions
for each revolution of disk B if the circumferences of the disks are rolling on one
another without slipping. Another way of looking at it is that at the point of
contact both disks have the same tangential velocity V1 in inches per second,
and

21
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DISK DRIVE BELT DRIVE

Figure 2.1 Friction disk and belt drives.

_ WaDy _ WpDp

V1o 2
Therefore,

Wy _Dp

Wy Dy

Similarly, the ratio of angular velocity of sheaves A and B in the belt drive are
proportional to the ratio of diameter B to diameter A.

Disks and belt drives are power and speed limited and sometimes slip. A
more positive method of transmitting power is through gear teeth, which can be
illustrated as two cam profiles acting on one another (Figure 2.2). The force of
the driving cam on the driven at any instant of time acts normal to the point of
tangency of the curved surfaces. This normal line, shown as AA in Figure 2.2, is
known as the line of action. Line AA intersects a line drawn between the two
centers of rotation at point X. R, and Ry are then the instantaneous pitch radii
of the two cams. The angular velocity ratio of the cams at a given instant is
inversely proportional to the ratio of the instantaneous pitch radii. For the
angular velocity ratio to remain constant, the respective pitch radii must be the
same at all points of contact. If this condition is met, the two profiles are said to
be conjugate. Two cam profiles chosen at random will rarely be conjugate;
however, given one profile a conjugate mating profile can be developed mathe-
matically. The problem is that these two conjugate profiles may not be practical
from an operating or manufacturing point of view.

This leads to one major reason why the involute curve is widely used for
gear teeth. Two mating involutes will always be conjugate and the tooth forms
relatively easy to manufacture with standardized tooling.

| 3
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Figure 2.2 Cam drive.

THE INVOLUTE CURVE

Figure 2.3 illustrates the involute curve, which may be visualized as the locus of
points generated by the end of a string which is held in tension as it is unwound
from a drum. The drum is known as the base circle and once the base circle
diameter is known, the involute curve is completely defined. Mathematically, the
involute is expressed as a vectorial angle 8 in radians:

0 =tangp-¢ = Invo

where ¢ is the pressure angle at any diameter, in radians. In order to plot the
involute curve for a base circle of radius Rg, simply assume values for the
pressure angle ¢. All the terms shown in Figure 2.3 can then be calculated.

R is the radius to any point on the involute and is related to Ry by the
cosine of the pressure angle:
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INVOLUTE CURVE

BASE CIRCLE

Figure 2.3 The involute curve.

Ry
CoOSs = —
¢ R

R is the radius of curvature of any point on the involute at radius R. Inspec-
tion of Figure 2.3 reveals that R is also the length of string unrolled from the
base circle as the base circle rolls through an angle E; therefore,

E‘Rp= Rc

Rc = VR - R}
Rc 1 Re X

0 =E-¢= = - tan ! ~ : ' Figure 2.4 Gear teeth in mesh.
B B

25
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or
0 = tan ¢~ ¢

Thus, knowing the base circle radius R and assuming values for ¢, R, and 6, the
polar coordinates of the involute can be plotted. The involute in terms of the
pressure angle is useful in many gear tooth calculations, and a table of involutes
is presented in the Appendix.

Let us now mesh two involute curves together at a center distance C, as
shown in Figure 2.4. The angle ¢ is now the operating pressure angle of the gear
mesh and Rp and Rg are the operating pitch radii. The subscripts P and G
stand for pinion and gear, with the pinion always being the smaller of the two
meshing gears. AA, the common tangent between the two base circles, is the line
of action and the two involutes are shown meshing at the pitch point. It is
important to understand that if the center distance C is increased or decreased,
the involutes will contact at different points and have different operating
pressure angles and pitch diameters. The velocity ratio, however, will not change
since it is dependent only on the ratio of the two base diameters. The relation-
ship of the base radius, pitch radius, and pressure angle is

Rpp R
cos¢p = — = _BG
Rp Rg
The center distance C in terms of the other parameters is
Ryp + R
g= Ry + Ry & 20
cos ¢

The insensitivity of the involute to center distance variation is another reason for
using this curve for gear teeth. Also, it can be seen that a whole system of
involute gearing can be established where within certain limits any two gears will
mesh with one another and transmit uniform rotary motion.

GEAR TOOTH DEFINITIONS

Figure 2.5 depicts a practical gear tooth. As shown, a portion of the involute
curve bounded by the outside diameter and root diameter is used as the tooth
profile. In a properly designed gear mesh the involute curve merges with the root
fillet at a point below the final contact of the mating gear. This intersection of
involute and root fillet, called the form diameter, is discussed later in the
chapter. From Figure 2.5 we can define an important parameter, the diametral
pitch, which is a measure of tooth size. The diametral pitch is the number of
teeth per inch of pitch diameter:
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CIRCULAR PITCH

INVOLUTE CURV

ADDENV

DEDENDUM

%

OUTSIDE DIAMETER
PITCH DIAMETER

TOOTH THICKNESS

FORM DIAMETER

BASE PITCH
ROOT DIAMETER

BASE CIRCLE

Figure 2.5 Gear tooth nomenclature.

N
DP = —
PD
where
N = number of teeth
PD = pitch diameter, in.

The circumference of the pitch diameter divided by the number of teeth is called
the circular pitch:

PD
N

CP=mnm-
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The circumference of the base diameter divided by the number of teeth is called
the base pitch Py:

PB =W£D

The relationship between circular pitch and diametral pitch is
CP-DP =n

The area between the pitch diameter and the outside diameter is called the
addendum and on a standard gear tooth is 1.0/DP. The area between the outside
diameter and the root diameter is the whole depth, which is the addendum plus
dedendum. The whole depth of a standard gear tooth is generally 2.25 to 2.4
divided by the diametral pitch.

GEAR TOOTH GENERATION

Let us look at the generation of a gear tooth. Figure 2.6 shows a straight-sided
cutting tool, such as that used in the hobbing process, generating an involute
tooth. By “generating” it is meant that the tool is cutting a conjugate form.
Such a straight-sided tooth is sometimes referred to as a rack. As the tool
traverses and the work rotates, an involute is generated on the gear tooth flank
and a trochoid in the root fillet, as shown in Figure 2.7.

Figure 2.8 is a closer look at a hob tooth. This is a hob of pressure angle ¢
and diametral pitch n/(TH + TP). It is capable of cutting a whole family of gears
with the same pressure angle and diametral pitch. Such tools are standard, as,
for instance, a 20° pressure angle and 8 pitch (diametral pitch) hob, and are
easily obtainable. Gears cut by this hob will be capable of meshing with one
another. The distance (B + R) on the hob tooth is equal to the dedendum of the

CUTTING TOOL

GENERATED GEAR

Figure 2.6 Generating a gear tooth.
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Y AXIS

CENTER OF X AXIS

TOOTH SPACE

ROOT DIA.

Figure 2.7 Root fillet trochoid and involute.

HOB SPACE

Figure 2.8 Hob geometry.
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Figure 2.9 Plot of involute and trochoid.

generated gear tooth. R is the hob tip radius with its center at point Z. TP, the
hob tooth space, is equal to the tooth thickness of the generated gear at the gear
pitch diameter. TH is the hob tooth thickness. When the hob traverses a distance
(TP + TH), the gear rotates through an angle (TP + TH)/Rg, where R is the
gear pitch radius. (TP + TH) is the circular pitch of the gear.

The involute and trochoid can be plotted on a Cartesian coordinate system
emanating at the center of the gear with the Y axis going through the center of
the gear tooth, as shown in Figure 2.7. Figure 2.9 is a plot of the profile of a
hobbed 20° pressure angle tooth on a Cartesian coordinate system. In the
following paragraphs equations are developed to generate this plot. These equa-
tions are easily programmed and the coordinates can be plotted automatically.

First, the involute coordinates will be obtained. Previously, it was shown
that if the base circle radius is known, the involute angle § and the radius to the
curve can be found for any assumed pressure angle. To find the coordinates with
respect to the center of the tooth, the tooth thickness at any radius must be
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Figure 2.10 Tooth thickness calculation.

known. Let us start at the pitch diameter with a pressure angle ¢, , a pitch radius
R, and a circular tooth thickness CTT,. The involute angle is

0, = tan¢; - ¢,
Referring to Figure 2.10, it can be seen that the angle A is

KCTT,
+
R,

1

To find the circular tooth thickness at any other radius R, , we use

%CTT,
B:A-02=61+—————-02
R,
R
¢; = cost _B
R,
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and

%BCTT,

CTT, = 2R, ( +0, - 02)

1

To find the X and Y coordinates of the involute at any radius R, , we use
X
Y

I

R, sin B
R, cos B

I

Following are the steps that would be used in a computer routine to cal-
culate the involute profile:

R, = pitch radius
o} = pressure angle at pitch radius

CTT, = circular tooth thickness at pitch radius

Rg = base radius
0, = tan ¢, -¢,
o = 0.0
1 02 = tan ¢2 - ¢2
R
Ry = 2
cos ¢,
BCTT,
CIT, = 2R2( +0, - 02)
R,
»BCTT,
B =
R,
X = R, sin B
Y = R, cos B
Write (X, Y)

If (CTT, - LE - 0.005) go to 2
m
o5} = ¢t —

Gotol

2 Continue
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The routine starts at the base circle, where the pressure angle is 0.0, and calcu-
lates coordinates at pressure angle intervals of 7/180 rad until it reaches a point
near the tip of the tooth where the thickness is less than 0.005 in.

In the hobbing process depicted in Figure 2.6, the point on the corner of
the tool generates the shape of the root fillet. This shape, which is bounded by
the root diameter and the involute, is called a trochoid. In Figure 2.7 the com-
plete curve is shown as a loop on the X1 and Yy axes. Only that portion of the
curve that lies between the involute and root diameter is of interest. To calculate
the trochoid coordinates, the following procedure is used:

1. Calculate the trochoid generated by the center of the hob tip radius, point Z
on Figure 2.8.

2. Find the normal to this trochoid at any point in order to add the radius R.
This step would not be necessary if the hob had a sharp corner since the
corner point would cut a trochoid, but practical hobs have rounded tips.

3. The trochoid coordinates calculated will be with respect to the center of the
trochoid (Figure 2.7, X and Y axes). To find the coordinates on the
desired X-Y system through the center of the tooth they must be shifted
through the angle W (Figure 2.7).

When the hob traverses a distance (TH + TP) (Figure 2.8), the gear rotates
through an angle (TH + TP)/R; therefore, the angle (W + V) between the center
of the gear tooth and the center of the tooth space is
%(TH + TP)

Rg

where Rg; is the gear pitch radius in inches. Angle V in Figure 2.7 can be calcu-
lated as follows:

W+V =

v=1L
Rg
where
L = distance between the center of the hob tooth and point Z on
Figure 2.8, in.
L = T _ Btan¢ -
2 cos ¢
and
1 -
W = %(TH+ TP) - L

Rg
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Rg-E =i

Figure 2.11 Trochoid generated by point Z.

Figure 2.11 shows the trochoid generated by point Z at its starting point and
after the hob has moved a distance Rg *E and the gear has rotated through an
angle E. The coordinates are:

X, = Ry sin (T - E)
= Ry(sin T cos E - cos T sin E)
Y, = Ry cos(T-E)

Ry (cos T cos E + sin T sin E)
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where

Rg - B

cosT =

sinT =

Therefore,
Xz = (Rg * E)cos E-(Rg - B)sinE
Yz = (Rg~B)cosE+(Rg - E)sinE

1

2.1)

Figure 2.12 shows how to calculate the actual trochoid coordinates, adding the
hob tip radius R to the trochoid generated by point Z:

Xt = Xz + Rcos A
Yr = Yz -RsinA

2.2)

A is the angle formed by a line normal to the trochoid generated by point Z and
the Y axis and can be found as follows:

dX
tan A = oy
dYyz
To find dXz/dY:
dXz
3 = -(Rg < E)sinE+Rg cos E~-Rg cos E+ Bcos E
dy, )
== -Rg sinE+Bsin E+ (Rg * E) cos E+ Rg sin E

and dXZ/dYZ is
dX; -(Rg - E)sinE+BcosE

dY; BsinE+(Rg * E)cosE

Finally, to obtain the trochoid coordinates with respect to the system through
the gear tooth center, refer to Figure 2.7:

i X1+ Xcos W

sinW= —
Y

Y1 - XsinW

cooW= — —

Y
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9. Calculate the angle A at each point and define the actual trochoid coor-
dinates using Egs. (2.2).

3. Convert to the Cartesian coordinate system through the tooth center using
Egs. (2.3).

Following is a computer routine to carry out the process described above,
starting with angle E equal to O rad (where angle A is 90° or /2 rad) and ending
with E equal to 257/180 rad.

X
T Counter = 25+ ——
180
Xz ¥
i _ R
S L =%TH-Btan ¢ - ——
A R k cos ¢
W = (TH+TP)/2-L
Rg
S A v E =00
T
dX,
1 —— = -(Rg *E)sinE+BcosE
Yy dE
Y2 . BeinE (Re * E) cos E
—— = BsinkE+ * E) cos
dE G
X7 = (Rg *E)cosE-(Rg - B)sinE
YZ = (RG —B)COSE+(RG * E)SIHE
i ; If(E-LE-0.0)goto?2
Figure 2.12 Trochoid coordinates. o, WXz
A = tan™ ——
dY,
Xpt+XcosW  Yp - XsinW , Goto3
sin W cos W T
2 A= —
Xp cosW+Xcos? W = Yp sin W - Xsin> W (2.3) ! 2
X = Yp sin W-Xp cos W 3 Xp =Xz +RcosA
Y = Ypcos W+ XpsinW Yt =Yz -RsinA
Let us review the procedure for plotting the trochoid coordinates: X = YpsinW-XpcosW
1. Choose angles E at random and calculate the trochoid coordinates of point Z Y = YpcosW + XpsinW

using Egs. (2.1). If (E - GE * counter), go to 4
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Figure 2.13 Shaper cutter tooth.

Write X, Y

- E+0'25 m
180

E

Gotol
4 Continue

" The previous discussion was concerned with a straight-sided cutter such as a hob.
Another type of cutting tool is in the form of a gear tooth and is called a shaper
cutter. The shaper cutter meshes with the work and generates a mating gear.
Figure 2.13 shows a shaper cutter tooth with the profile in the form of an
involute and with a rounded tip edge of radius R.

Re = cutter pitch radius, in.
Rpe = cutter base circle radius, in.

R

1]

round edge radius, in.
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cutter outside radius, in.

Roc
Z

As the cutter rolls through angle C the gear it is cutting will roll through an angle
C * Re/Rg, where Rg is the gear pitch radius. Referring back to Figure 2.7, the
angle W between the center of the trochoid and the center of the gear tooth is

BCTT, 'C+R
W ()
Rg Rg

where CTTg is the circular tooth thickness of the gear at the pitch diameter, in
inches. From Figure 2.13 angle C is found as follows:

center of round edge

C =¢gp t M- ¢y
M =Invgg - Invg
¢z = cos™' %ROIZB?R
PZ = Rpc tan ¢y

~ . PZ+R
¢r = tan Rpc

where ¢ is the pressure angle at the pitch diameter.

Figure 2.14 shows how the coordinates of the trochoid of point Z, the
center of the shaper cutter round edge radius, are arrived at:

XZ = RZ sin (T - EG)
Y; = Rzcos(T - Eg)
) sin Eq
sinT = (ROC - R)
Z
RZ + (Rc + Rg)* - (Roc - R)?
cosT= :

2(Rz)(R¢ + Rg)
RZ = (Roc-R)+(Re + Rg)? - 2(Rgc - R)(Re + Rg)cos Eg
Therefore,
XZ = (ROC - R) sin (EC & EG) - (RC i RG) sin EG

Y; = (RgtRg)cosEg-(Rgc - R)cos (E¢ + Eg)
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Figure 2.14 Shaper cutter trochoid coordinates.

To find the trochoid coordinates with respect to the center of the gear tooth,
the same procedure is followed as was used for the hob-type cutter:

1. From Figure 2.12 find the Xt and Y coordinates differentiating the fore-
going equations to calculate tan A using Egs. (2.2).
2. From Figure 2.7, shift to the X, Y coordinate system by using Egs. (2.3).

GEAR TEETH IN ACTION

Figure 2.15 shows a gear mesh with the driving pinion tooth on the left just
coming into mesh at point T and the two teeth on the right meshing at point S.

Gear Tooth Design 4]

Notice that contact starts at point T where the outside diameter of the gear
crosses the line of action and ends where the outside diameter of the pinion
crosses the line of action, point R.

Z is the length of the line of action. In other words, a tooth will be in con-
tact from point T to point R. Py is the base pitch, the distance from one
involute to the next along a radius of curvature. It was shown earlier that

BD
P = 7 —
BN

where

BD = base diameter, in.
N number of teeth

Point T, where contact initiates, is called the lowest point of contact on the
pinion tooth and also the highest point of contact on the gear tooth. Similarly,
point R is the highest point of contact on the pinion tooth and the lowest point
of contact on the gear tooth. Point S is the highest point of single tooth contact
on the pinion and the lowest point of single tooth contact on the gear. In other
words, if one imagines the gears in Figure 2.15 to begin rotating, just prior to

PINION BASE CIRCLE

GEAR BASE CIRCLE

Figure 2.15 Gear tooth action.
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meshing at point T a single pair of teeth was carrying the load. As the gears
continue turning and the pinion tooth on the right moves from point S to R,
two pairs of teeth are carrying the load and after point R a single pair again
carries the load until the next two teeth mesh at point T.

Thus it can be seen that for some period of time one tooth mesh carries
the load and for another period of time two tooth meshes share the load. A
measure of the percentage of time two meshes share the load is the profile
contact ratio Mp. For instance, a profile contact ratio of 1.0 would mean that
one tooth is in contact 100% of the time. A contact ratio of 1.6 means that two
pairs of teeth are in contact 60% of the time and one pair carries the load 40%
of the time. Contact ratios for conventional gearing are generally in the range
1.4 to 1.6.

Let us now derive the profile contact ratio in terms of parameters easily
obtainable:

E
Mp = —o—
360°/N
where
Etg = degrees of roll to traverse the length of the line of action from
point T to R
N = number of teeth

This equation may not be obvious, but it can be understood if it is remembered
that from one tooth to another the base circle must roll 360°/N. Thus if the base
circle rolls 360°/N while going from point T to R, the profile contact ratio is
1.0. If the base circle rolls more than 360°/N going from T to R, the profile
contact ratio is greater than 1, indicating that for some percentage of time two
pairs of teeth are in contact.

EtR, the total degrees of roll, is equal to the degrees of roll to the pinion
tooth tip minus the degrees of roll to the pinion lowest point of contact:

Err = Eopp - Etirp
where

Egpp = degrees of roll to pinion outside diameter
Erpp = degrees of roll to true involute form diameter on the pinion
(lowest point of contact) (point T on Figure 2.15)

Figure 2.16 shows how the degrees of roll to the pinion outside diameter is cal-
culated:
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Figure 2.16 Degrees of roll to pinion outside diameter.

B = tan oo 180 = vV Rbpp - Rgp (180
ODP ODP T RBP T
Figure 2.17 shows how the degrees of roll to the pinion form diameter is cal-

culated:

/R2

. _ 180\ _ VRTEp - Rgp (180

TFP @0 b 17} ——— |
i BP

It is more convenient to express Eppp in terms of the gear outside radius and

base radius:

XX

C sin ¢PD

VRIpp - Rip = Csindpp - VRppe - Rig
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Ropa

Rpag

Figure 2.17 Degrees of roll to pinion true involute form diameter.

Therefore,
_ Csingpp - VRHpG - Rag (180
Eripp = R =
BP
and
e = VROpp - Rip - Csin¢pp + VREpG - Rpg 180N
P Rgp 360
where
N = number of pinion teeth
RBP = l/ZPDP cos ¢PD
N 1

PDpn  CP
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Therefore,

v Ropp - Rip - Csingpp + \/E(Z)DG - Rig

CP cos ¢PD

MP=

Another way of expressing the profile contact ratio is
CP cos ¢PD = PB

because

and

Therefore,

CPcos ¢pp = ﬂl;—D = Pg

and

v Rbpp - Rip -Csinopp + VRypg - Rjg = Z

Therefore,

MP = L
Pp
To calculate the degrees of roll to the highest point of single tooth contact on

the pinion, consider Figure 2.18. The distance XS is the sum of XT from Figure
2.18 and TS from Figure 2.15. The distance XT can be calculated using Figure 2.17:

°

XT = VRpp - Rip

From Figure 2.15 it is seen that the distance TS is a base pitch; therefore,

X8 = VR%pp - Rip + P
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Figure 2.18 Degrees of roll to pinion highest single tooth contact diameter.

180 XS 180
Eystcp = tan ¢HSTCP<T)= = (T)
BP

VRYpp - Rfp + Pp (180)

RBP m

or

2m
Egstcp = Etep * N

The involute curve changes very rapidly near the base diameter and more slowly
at sections farther away from the base circle. This is illustrated in Figure 2.19,
which shows the difference in length along the involute curve for equal incre-
ments taken on the base circle. The distance XY is far less than YZ. Since the

r

Gear Tooth Design 47

Y BASE CIRCLE

Figure 2.19 Involute curve properties.

involute is so sensitive near the base circle, the lowest point of contact on a gear
tooth should be located well away from the base circle. As a rule of thumb the
lowest point of contact on a gear tooth should be at least 9° of roll.

ROLLING AND SLIDING VELOCITIES

When involute gear teeth mesh, the action is not pure rolling as it would be when
two friction disks are in contact, but a combination of rolling and sliding. Figure
2.20 shows a gear mesh with two base circles of equal size and the teeth meshing
at the pitch point. Radii of curvature are drawn to the involutes from equal
angular intervals on the base circle. It can be seen that arc XY on gear 2 will
mesh with arc AB on gear 1 and that AB is longer than XY therefore, the two
profiles must slide past one another to make up the difference in length. The
sliding velocity, which is usually expressed in feet per minute, at any point is
calculated as follows:
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Figure 2.20 Relative sliding of gear teeth.

_ WiRc1 - WaRe,
12

L
73
[t}

sliding velocity, fpm

W; = angular velocity of gear 1, rad/min
angular velocity of gear 2, rad/min
Ry = radius of curvature of gear 1, in.

= radius of curvature of gear 2, in.

=
I

)
A
[\®)

I

From Figure 2.20 it can be seen that when point A on gear 1 and point Y on
gear 2 mesh, Rq; will be larger than R, and since Wy = W,, Vg will be a posi-
tive number. As the meshing point nears the pitch point the difference in the
radii of curvature lessens until at the pitch point the radii of curvature are equal
and Vg is 0. When point A on gear 2 meshes with point Y on gear 1, Rgq will
be smaller than R, and Vg will be negative. The significance of this is that as
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the mesh goes through the pitch point the direction of sliding changes. There is
always pure rolling at the pitch point. If the base circles were of unequal size at
the pitch point, W, R would still equal WyR¢5 since

Wl _ R2 _ RCl/sind)
W, R; Rgy/sing
where
R; = pitch radius of gear 1, in.

R, = pitch radius of gear 2, in.

¢ = pressure angle, deg
Sliding velocity is significant in that it affects the amount of heat generated in
the gear mesh. Also, the fact that gear teeth undergo sliding as well as rolling

must be appreciated.
Another significant velocity term is the sum or entraining velocity:

Vg = WiRcp + WaReo
where V is the sum velocity in ips. The sum or entraining velocity is a measure
of how quickly oil is being dragged into the conjunction between the two gear

members. '
The parameter generally used when expressing the speed of a gearset is the

pitch line velocity:
_ WpRp(60) _ WGRg(60)
T 12

TTDP np _ T(DG ng

12 12
where
V1 = pitch line velocity, fpm
Wp = pinion angular velocity, rad/sec

W¢ = gear angular velocity, rad/sec
Rp = pinion pitch radius, in.

= gear pitch radius, in.

pinion pitch diameter, in.
Dg = gear pitch diameter, in.

np = pinion rpm

ng =gear rpm

o =
< QA
o

The pitch line velocity is a measure of the tangential or peripheral velocity of a
gearset and a better indication of speed than the rpm. For instance, a 1-in. pitch
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diameter gear operating at 10,000 rpm has the same pitch line velocity as a
10-in. pitch diameter gear operating at 1000 rpm. Two meshing gears always
have the same pitch line velocity.

American Gear Manufacturers Association (AGMA) Standards for enclosed
drives consider units with pitch line velocities of 5000 fpm or more high speed.
Gear units have been operated at pitch line velocities up to 50,000 fpm minute
but applications over approximately 20,000 fpm require extremely careful
analysis concerning lubrication, cooling, and centrifugal effects.

HELICAL GEARS

Figure 1.13 illustrates the difference between spur and helical gears. The tooth
contact on spur gears is a straight line across the tooth and at any time either
one or two teeth are in contact. The helical gear contact, because the teeth are at
an angle to the axis of rotation, is a series of oblique lines with several teeth in
contact simultaneously and the total length of contact varies as the teeth go
through the mesh.

To understand the nature of the helical tooth, consider a base cylinder
with a series of strings wrapped around it as shown in Figure 2.21. The start of
each string is offset such that a line joining the string starts is at an angle Y to
the axis of rotation of the cylinder. The ends of each string when held taut and
unwrapped from the base cylinder will define involutes and the surface defined
by the string ends will be a helical involute gear tooth.

INVOLUTE
)/T AN

BASE RADIUS
Vg
T‘\
N
N
N
N
27 RB
Vg
L ]

Figure 2.21 Helical gear base cylinder.

r
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In one rotation of the base cylinder an axial length L of strings will be
unwrapped. L is defined as the lead
27TRB

tan Yp

where

L =lead,in.
Ry = base radius, in.
Yp = base helix angle, deg

The helix angle along the tooth profile varies with the radius but the lead is a
constant. Once the base radius and base helix angle are defined, the lead can be
calculated and the helix angle at any radius R is known:

mR

tan Yyg = y

where Y is the helix angle at radius R, in degrees.

Transverse and Normal Planes

Figure 2.22 shows the relationship between the transverse and normal planes of
a helical gear. The transverse plane ABCD is the plane of rotation, while the
normal plane ABE is at right angles to the tooth. The normal and transverse
planes are displaced from each other through the helix angle . Following are
the relationships between the normal and transverse pressure angles at any radius
on the tooth illustrated at point B on Figure 2.22.

tan ¢N = é_l}

AE
tan ¢ = i—g
cos Y = 2_1]3

°

AD tan ¢ = AE tan ¢y
Therefore,
cos Y tan ¢p = tan gy

Figure 2.23 shows a helical gear rotating about the axis XX. The teeth are
inclided with relation to the axis of rotation the helix angle ¥. Usually, the helix
angle at the operating pitch diameter is referred to. When the inclination of the
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teeth is off to the right as shown in Figure 2.23, the gear helix is designated as
right hand. When two external helical gears mesh, one must be right hand and
the other left hand. When an external gear meshes with an internal gear they will
poth have the same hand of helix.

The circular pitch in the transverse plane CPy has the following relation-

B
/N~ < ship with the circular pitch CPy in the normal plane:
—~ ~
- i v CPy
~ cosyY = —
E
N2 CPr
-
e " The circular tooth thicknesses have the same relationship:
CTTN
) A sV = ot
A ll/ ¢ T D
\ fl where
Figure 2.22 Normal and transverse planes. CTTN = normal circular tooth thickness, in.
CTTT = transverse circular tooth thickness, in.
X The normal and transverse diametral pitches have the relationship
DPy cos ¢ = DPp
/ The distance along the tooth axis from one tooth to another is called the axial
pitch P, , as shown in Figure 2.23. The ratio of face width F to axial pitch is
called the face contact ratio or the helical overlap and is a measure analogous to
the profile contact ratio for spur gears. The face contact ratio, designated as
l Mg, is
Pa
CPy cos Y T
PA = —.T— = T ; =
sin ¢ sin Y DPy tan ¢
Therefore,
Mg = F(DPy) B1Y¥
T
The total contact of a helical gear mesh is therefore some combination of the
profile and face contact ratios. Sometimes the sum of the two is called the total
contact ratio and used as a measure of how much contact is achieved in a tooth
mesh.,
X The actual total length of contact at any instant in a helical mesh is the

Figure 2.23 Normal and transverse pitches. sum of the length of the oblique lines of contact on each tooth in mesh and

S
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varies as the teeth go through mesh. A method of calculating the minimum and
maximum length of the lines of contact was derived by E. J. Wellauer and pre-
sented to the Industrial Mathematics Society. The paper was entitled “The
Nature of the Helical Gear Oblique Contact Line,” and a small portion based on
the original article is given below.

K, and n, are the whole number and fractional portion, respectively, of
the face contact ratio. For example, if Mg = F/P, =4.85, then K, = 4.0
and n, = 0.85. K, and n, are the whole number and fractional portion,
respectively, of the profile contact ratio. For example, if Mp = Z/Pg
=1.32,thenK,=1.0andn, =0.32.

If (1 -n.)/n, 21, then

_ (Z-F/Pg) - nn,Py

cos Yp

min

L,in = minimum total length of the oblique lines of contact, in.
length of the line of action, in. (Figure 2.15)
base pitch, in.
P, = axial pitch, in.
Up base helix angle, deg
If (1 -n.)/n, <1, then
_ (Z'F/PB) - (1 - na)(l - nI)PA
cos Yp

]

o
UJN
1]

1}

'min

An approximation used for calculating L, ;, in several AGMA Standards is
_ 095 (Z)F
min PB cos \I/B
To calculate the maximum total length of the lines of contact:
Ifn, Sn,, then
_ (Z-F[Pg) + n,(1 ~n,)Py
cos Yp

max

If n, >n,, then
_ (Z°F/Pg) +1n,(1-n)Py
cos Yp

max
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INTERNAL GEARS

The involute form of internal gears (sometimes called ring gears) is the same as
for external gears. The difference between the two lies in the fact that internal
gears contact on the concave side of the involute rather than the convex. Also,
the root diameter of an internal gear tooth is the largest diameter and the tips

of the teeth are at the inside diameter, which is the smallest. Figure 2.24 shows
internal gear tooth geometry. At any radius R, with pressure angle ¢ and base
radius Ry, all the involutometry calculations will be essentially the same as those
previously shown for external gear teeth.

INV ¢ —» P

Figure 2.24 Internal gear geometry.
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LINE OF ACTION

PINION BASE CIRCLE

GEAR BASE CIRCLE

CENTER DISTANCE

Figure 2.25 Internal gear mesh action.

To illustrate internal gear mesh calculations, let us derive the profile con-
tact ratio for the situation shown in Figure 2.25 for an external pinion driving
an internal gear. The start of contact is at point R, where the internal gear inside
diameter crosses the line of action. Contact ends at point T, where the pinion
outside diameter crosses the line of action. The total length of contact is the
distance from R to T or Z as shown on Figure 2.25. One pair of teeth is meshing
at point S on the figure and an adjacent pair at point T; therefore, the distance
ST is a base pitch Py. The profile contact ratio is

_Emr
360° /N

Mp =
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where

degrees of roll to traverse the length of the line of action from
point Rto T

number of pinion teeth

Etr

1

N
Ergr, the total degrees of roll, is equal to the degrees of roll to the pinion outside
d;meter minus the degrees of roll to the lowest point of contact on the pinion
(TIF, true involute form diameter).

Err = Eopp - EriFp

where

= degrees of roll to the pinion outside diameter

EODP . . . .
degrees of roll to the pinion true involute form diameter

E1rp

As shown previously (Figure 2.16),

180 \V/Rbpp - Rep (180
EODP = tan ¢ODP ={—— — e
m RBP m
where
Ropp = pinion outside radius, in.
Rpp = pinion base radius, in.

Figure 2.26 shows how the degrees of roll to the pinion form diameter is cal-
culated:

180) VRiEp - Rip (@)

E = tan ={——
TIFP dTIFP (n’ Ry -

It is more convenient to express Eqpp in terms of the gear inside radius and base
radius. From Figure 2.26,

XX = C sin ¢PD

where ¢pp) is the pressure angle at the pitch diameter, in degrees.

V Rip - Rip = m - Csin ¢pp

where

gear inside radius, in.
gear base radius, in.

Rpg
Rpg

1}
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where CP is the circular pitch in inches. Therefore,

VRpp - Rip + Csingpp - VRipg - Rig

CP cos ¢pp

MP:

MEASUREMENT OVER BALLS OR WIRES

This subject is presented at this point not only because it is an important mea-
surement in the manufacture of gear teeth but because it is a good illustration of
the application of involutometry in the analysis of gear tooth geometry.

When cutting or grinding a gear tooth the machine operator will check the
tooth thickness to determine when sufficient stock has been removed from the
flank to bring the tooth to the required size. The drawing requirement may call
for a tooth thickness at a given diameter. This is a difficult measurement to
make directly; therefore, quite often an indirect measurement is used. Balls or
c wires (sometimes called pins) of a known diameter are placed in 180° opposite
tooth spaces on the gear and an accurate micrometer measurement over the balls
or wires is made.

The equations for calculating measurement over balls or wires will be
derived first for an external spur gear with an even number of teeth. In this case
two opposite tooth spaces will be in line. The analysis will then be extended to
gears with odd numbers of teeth where the opposite tooth spaces are not in line
and then internal gears and helical gears will be addressed.

Referring to Figure 2.27, for a spur gear with an even number of teeth the
Figure 2.26 Internal gear mesh degrees of roll to pinion form diameter. measurement over wires (MOW) is

MOW = 2R, +2X

Therefore, where
\/—2——————2— ) R, = radius to the center of the wire, in.
Erpp = Ripg - Rpg - Csindpp (1_80_) ‘ X = wire radius, in.
|
Rgp m We are going to calculate the MOW for a gear with a known circular tooth thick-
and ness T at a known radius R; .
\
) R, cos ¢,
- _ VRopp - Rgp + Csingpp - VRipg - Rgg 180N | By = “atle
¥ Ris 7360 ’
where
Rgpp = ¥%PDp cos ¢pp

N ¢, = pressure angle at the radius R, deg
: (02 pressure angle at radius R, , deg

PDp cp
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Figure 2.27 Measurement over wires of external spur gear.

The problem now is to calculate the angle ¢, . To accomplish this, an imaginary
involute is drawn through the center of the wire as shown by the dashed profile
in Figure 2.27. From this construction we can see that angle D is the involute

Figure 2.28 Measurement over wires for gear with odd number of teeth.

of ¢2 ‘
_ T
m A= —
D=1Inveg, = B+C+A-— 2R,
N
where B = R—X,where Ry = gear base radius
B

N = number of gear teeth
inv ¢, , which can be calculated knowing ¢;;1Inv ¢y =tan ¢y - ¢

(@]
1]
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B = X/Ry because the circular distance between two involutes on the base circle
is equal to the distance between normals to the involutes. In other words, the
wire radius X is equal to the base pitch between the imaginary involute and the
adjacent tooth involute. Knowing the involute of ¢,, the angle ¢, can be calcu-
lated using the involute tables in the Appendix and then R, and the measure-
ment over wires can be calculated.

When the gear has an odd number of teeth the situation is as shown in
Figure 2.28 and the fact that the tooth spaces do not line up must be compen-
sated for mathematically. In Figure 2.28:

r'— TN

MBW

Figure 2.29 Measurement between wires of internal spur gear.
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90°

XA =%B=
and

MOW = 2[R2 003(9—0 + X]
N
Figure 2.29 illustrates the analysis for the measurement between wires for an

integral gear with an even number of teeth:

MBW = 2R, - 2X

R _ cos @y
2 1cos<f>2
Ivg, =D=2 -B-A+C
: N

Again an imaginary involute is drawn through the center of the wire and the
involute ¢, is calculated from which the angle ¢, and R, can be derived. For
odd numbers of teeth,

MBW = 2[R2 cos(9ON )— X]

Figure 2.30 illustrates a ball placed between two helical gear teeth. When mea-
suring helical gears balls should be used rather than wires since the wires will not
seat properly in the helices. The balls will contact the gear teeth in the normal
plane, but the measurement over balls calculation must be made in the transverse
plane. Figure 2.30 shows how the projection of the ball is mathematically
shifted into the transverse plane and the equation for the involute ¢, is

Inv ¢, S S + Inv ¢, ok s I
RB Cos \IIB 2R1 N
for external gears and
Inv ¢2 = s __L + Inv ¢1 = _I._ + E
RB cos lpB 2R1 N

for internal gears. It should be noted that the circular tooth thickness T is in the
transverse plane. If a normal tooth thickness is given, it should be shifted to the
transverse plane: T = Ty/cos V.

To sum up, the measurement over or between balls or wires for gears with
even numbers of teeth is
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x/cos Vg

/

Figure 2.30 Measurement over balls of external helical gear.
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MOW 2(R, + X) for external gears

MBW

I

2(R;, - X) for internal gears

For gears with odd numbers of teeth,

I

MOW 2 [Rz cos (9§0 + X)] for external gears

1}

MBW

2 [R2 cos (% - X)] for internal gears
For all gears,

cos ¢
R =
2 1cos o,
To find cos ¢,
Inv ¢, = B + Inv ¢, +—T~ -
Ry cos ¥p 2R, N

for external gears and

A + Inv ¢, - T #

g
Rp cos ¥p 2R, N

Inveg, = -

for internal gears. The cosine ¢, is found from Inv ¢, using involute tables. For
spur gears, cos Y = 0.0.
When choosing ball or wire size a good estimate for the diameter is

1.728
D = 2X =
BALL DPN
where
X = ball or wire radius, in.
DPy = normal diametral pitch

Let us work through an example to illustrate the calculation for measure-
ment over balls. Assume an external helical gear with the following dimensions:

Number of teeth 38

Normal diametral pitch 15.868103
Normal pressure angle 20.0°
Helix angle at pitch diameter 18.0°
Normal circular tooth thickness 0.0952

at pitch diameter, in.
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The transverse diametral pitch is -

DPp = 15.868103(cos 18.0) = 15.091463 _ (2.517980/2) cos 20.941896 _ 2.593914
R, = =
cos 249599 2

The transverse pressure angle is

_, tan 20.0 The measurement over balls for 0.125-in.-diameter balls is

¢ = tan = 20.941896
cos 18.0 MOB = 2 (2.593914 N 0.125) I —
The pitch diameter is '
D = B . 2.517980 Measurement of Tooth Thickness by Calipers
15.091463

Tooth thickness can be checked by measuring across several teeth with vernier

The base diameter is
calipers as shown on Figure 2.31. The calipers contact the teeth at points X and

BD = 2.517980(cos 20.941896) = 2.351651 the line XX is tangent to the base circle. The arc AB along the base circle is equal
The lead is to the length XX:

L = T@317980) _ 54 345915 M = Rp (% + % + 2Inv ¢)

tan 18
The base helix angle is where
= caliper measurement, in.
yp = tan™ (m)> = 16.880766° p = base circle radius, in.
24.345915 = given transverse tooth thickness at a radius R, in.

= given radius, in.

given transverse pressure angle at radius R, in.

number of tooth spaces between the contacting profiles
number of teeth in the gear

The involute of the transverse pressure angle is

Zue wHmEZ

Inv ¢ = tan 20.941896 - 20.941896(1830—)= 0.017196

The transverse circular tooth thickness is

0.0952
cos 18.0

For a ball diameter of 0.125,

Inve, = 0.125/2 + 0.017196 + 0.100099

(2.351651/2) cos 16.880766 2.517980

CTIT = = 0.100099

- = 0029824
38

Using the involute tables (Appendix) yields :

¢, = 24.9599°

Figure 2.31 Tooth thickness measurement by vernier calipers.
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For helical gears,

M = Rg cos ¥y (II(+ 2—:I§+ 2Inv¢>

where Y is the base helix angle in degrees.

Center Distance and Tooth Thickness

The center distance of a pair of meshing spur or helical gears is established by
the location of the centers of the bearing bores locating the gear shafts. For the
gears to mesh properly at a given center distance, the tooth thicknesses must be
chosen such that the teeth will not bind under all operating conditions. The
following variations in center distance must be taken into account when design-
ing a gear set:

1. The center distance will vary due to tolerances in the bearing housings.

2. Clearance in the supporting bearings will affect the operating center distance.

3. Temperature variations during operation will change the operating center
distance. At a minimum, expansion of the gear teeth must be taken into
account. If dissimilar materials with varying coefficients of expansion are
used in the gearbox, their thermal growths must be analyzed.

In order to accommodate all these variables, backlash is designed into the
gear mesh. Backlash can be defined as the circular pitch minus the sum of the
circular tooth thicknesses:

BL = CP - (Tp + Tg)

In most cases excessive backlash will not be harmful and is much more desirable
than too little backlash, which can result in tight meshing and binding of the
gears. In very high speed helical gearing it is important to have sufficient back-
lash to allow the air-oil mixture being pumped between the teeth to exit the
mesh without becoming excessively churned and heated. The amount of back-
lash designed into a gear mesh will vary with the diametral pitch of the teeth.
Following is a table of suggested backlash versus pitch.

Diametral pitch Nominal backlash, (in.)

6 0.015
8 and 10 0.010
12 and 14 0.009
16 0.008
18 0.007

20 0.006

Gear T ovoth Design 69

Excessive backlash may be detrimental if the transmitted load varies to the
extent that the tooth can become unloaded and contact on the normally
unloaded face. In this case the more backlash there is in the mesh, the greater
freedom the teeth will have to rattle around and the greater dynamic load

enerated. There are also cases where gears are used as positioning devices and
packlash is detrimental. In such designs special techniques such as adjustable
center distance are used to achieve low backlash.

Center distance can be expressed mathematically in various ways:

PDp, + PD
= __13_5__(; for external gears
PD; - PD
C = —-—G—z————P for internal gears
where
C = center distance, in.
PDp = pinion pitch diameter, in.
PDg = gear pitch diameter, in.

Since PDp/Np = PDg/Ng = DPr,
Np + Ng

" e

Ng - Np

C = ———  forinternal gears
2DPp

for external gears

Np = number of pinion teeth
= number of gear teeth
transverse diametral pitch

2&
-
1

If R is the gear ratio PDg/PDp,

PDp(1 =R

= _1(2_._) for external gears
PDp(R -1

C= ~F—(—2———) for internal gears

Let us look at a so-called standard spur gearset, where a standard diametral
pitch cutter is used:
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DP; = 10.0
¢rq = 20°
Np =20
Ng = 30

_ 20430 _
' 2(10)

If the backlash is 0.010,

2 2 Qop 2

Tp; = pinion transverse circular tooth thickness at the pitch radius Rp,
Ty = gear transverse circular tooth thickness at the pitch radius R

Let us calculate at what center distance C, the mesh will have zero back-
lash. At this point of tight mesh or binding,

27R. 27
CP = Tpy + Tgy = ——2 = Ra2

Np Ng
where
CP = transverse circular pitch, in.
Tp, = pinion transverse circular tooth thickness at the tight mesh pitch
radius Rp,, in.
T, = gear transverse circular tooth thickness at the tight mesh pitch

radius R 5, in.

As shown previously:

Tpy
T = 2R
P2 P2<2R

+ InV¢1 - InV¢2)
P1

T
Tgy = 2Rgy( 2L + Inv ¢, - Inv o,
IRy

Combining the four equations above, we have
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_ Np(Tpy + Tgy) - 2Rpy7
2Rp;(Np + Ng)

cos$2 _ Rpy _ Rgy
cos$y  Rpy  Rgy

and the tight mesh center distance C, = C, cos ¢, /cos ¢,. For the example

abOVe’

+ Inv ¢,

Inv ¢,

Inve, = 0.012904
6, = 19.0910°
C, = 24860

For internal gears the equation for T, is

T =2 Ter +1
G2 = 2Rga - Invg, + Inve,
2R
and
Np(Tp, + T - 2Rpym
v, = p(Tpy + Tgy) P e,

2Rp;(Np - Ng)

In this case Ty and T, are circular tooth thicknesses of the internal gear.

The situation is somewhat more complicated for helical gears since stan-
dard diametral pitch, pressure angle, and tooth thickness are defined in the
normal plane, yet the calculations are carried out in the transverse plane. To
work helical gear problems, all normal values must be transferred to the trans-
verse plane prior to calculating. Quite often a series of gears is designed to
achieve different ratios on the same center distance. Let us look at a helical gear
example to illustrate the mathematics involved.

An electric motor operating at 3550 rpm drives a compressor. It is de-
signed to operate the compressor at two different speeds, 33,897 and 31,842
rpm. With a 296-tooth gear driving, a 31-tooth pinion will achieve 33,897 rpm
and a 33-tooth pinion will achieve 31,842 rpm. The idea is to use the same gear,
housing, bearings, and so on, for both ratios, only changing the pinion to achieve
either ratio. Also, it is desired to use 20 diametral pitch, 20° pressure angle
cutters for all gears. The center distance is chosen by stress considerations as
8.4780 in. In order to encompass both the 31- and 33-tooth pinion designs, let
us first calculate the gear geometry for a 32-tooth pinion design. The same gear
will then mesh with the 31- and 33-tooth pinions.

The transverse diametral pitch of the 296 X 32 design is

_ 296 +32

= 227 7% = 1934418495
2(8.4780)

T
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The gear pitch diameter is

26 _ 153017561

PDg =
19.34418495
In order to use a standard 20 normal diametral pitch cutter the helix angle is

_, 1934418495
20

Y = cos = 14.71320405°

The gear lead is

tan 14.71320405
For a normal pressure angle of 20° the transverse pressure angle is

tan 20

MR e = 20.62180626°
cos 14.71320405

¢p = tan™
For a standard gearset the pinion and gear outside diameter would be set by
using a standard addendum of 1/DP; therefore, the gear outside diameter would
be

ODg = 153017561 + 525 = 15.402

When a large gear is meshing with a small pinion it is conventional to increase the
pinion addendum and decrease the gear addendum, resulting in what is com-
monly called a long and short addendum design. In the example the pinion
addendum is 0.0629 and the gear addendum is 0.0405. These values are arrived
at using two criteria:

1. The degrees of roll to the form diameter of the pinion in the 296 X 33 mesh
must be high enough to avoid undercutting of the pinion. Undercutting
occurs when the gear tooth tip describes an arc through space that would cut
through the active profile of the pinion. In other words, the trochoid gener-
ated by the gear tooth tip would interfere with the pinion involute above the
pinion form diameter.

2. The addendums are varied such that the temperature rise in the mesh due to
sliding is minimized. This subject is discussed in Chapter 3.

It should be noted that the pinion addendum is lengthened by the same
amount the gear addendum is shortened. Because of the long and short adden-
dum design standard tooth thicknesses cannot be used, since this would result in
an imbalance of bending strength between the pinion and gear, the pinion being
weakened. Assuming a backlash in the mesh of 0.006, the standard transverse
circular tooth thicknesses for pinion and gear would be
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CP BL _ 7r 0.006

22 2(19.34418495) T2
= 0.078203

The optimized transverse circular tooth thicknesses for the 296 X 32 mesh ar
are:

CTTTp = 0.09072

CTTTg = 0.06569
Now let us look at the 296 X 31 tooth mesh. The transverse diametral pitch is

DPp = 52(986.4—;;&) = 19.28520878
and the gear pitch diameter is

PDg = 26 . 15.34855046

19.28520878
The helix angle at this diameter is

y = tan™! (11(15.34855046)

= 14.75623793°
183.0672333
and the transverse pressure angle is

b = oot (cos 20.62180626(15.3017561)\ _
T 1534855046

21.08111697°

Knowing the gear transverse circular tooth thickness at the 15.3017561 diameter
(0.06569), we can calculate the gear transverse circular tooth thickness at the
15.34855046 diameter:

CTTTg = 0.0480391

and to achieve a backlash of 0.006 the pinion transverse circular tooth thickness
is

m

CTTTy = — "
P 1928520878

- 0.0480391 - 0.006 = 0.10886192

Since we cannot optimize the addendums for both the 296 X 31 and 296 X 33
tooth meshes we will use the pinion outside diameter calculated for the 296

X 32 mesh 1.780 for the 31- and 33-tooth pinions. Figures 2.32 and 2.33 are

computer printouts giving all the tooth geometry for the 296 X 31 and 296
X 33 meshes.
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276 X 31 MESH

DRIVEN DRIVER

PINION EXTERNAL GEAR
NUMBER OF TEETH 31.0660000  295.0000008
HELIX ANGLE (DEG) 14,7562389 14,7562380
PITCH DIAMETER 1.6674493 15.3485565
RELATIVE ROLLING SPEED (RPM)  33897.0000809 3556.6236486
MESH TORQUE (IN-LBS) 316.0825442  3018.0784863
BENDING GEOMETRY FACTOR 0. 5000000 6.5000000

BENDING STRESS (PSI) 19677.44648288 19677.4648288
BENBING LIFE (HOURS)
BENDING SAFETY FACTOR 2.2360604 2.2360604
COMPRESSIVE STRESS (PSI) 84528.9962052 84528.9862652
COMPRESSIVE LIFE (HOURS) 999999. 0000600 9999990000000
COMPRESSIVE SAFETY FACTOR 1.6089171 1.6889171
SLIDING VELOCITY AT TIP (FPM)  3728.8957784  -931.9806035

A.G.M.A. MATERIAL GRADE 1.0000000 1.0000600
ALTERNATING BENDING FACTOR 1.0060000 1.0000000
NUMBER OF MESHES PER REV 1.0000000 1.0000000
BASE MELIX ANGLE (DEG) 13.8076961 13.8076961
OYTSIDE DIAMETER 1.777- 1.788 15.380-15.383
PITCH DIAMETER 1.6074495 153485505
FORM DIAMETER 1.5757943 15.2158791
BASE DIAMETER 1.4998664 14,3213053
ROOT DIAMETER 1.521- 1.531 15.124-15.134
ROLL ANGLE-MAX OUTSIDE DIA 36.6168247 22.8672304
ROLL ANGLE-ROUND EDGE DIA 360681676 22.3643649
ROLL ANGLE-HIGH SINGLE TOOTH 38.0682762 21.7814626
ROLL ANGLE-PITCH DIA 220869009 220869009
ROLL ANGLE-LOW SINGLE TOOTH 25.8039227 21.2510143
ROLL ANGLE-FORM DIAMETER 18.4933682 265651859
TOP LAND THICKNESS 0.0264463 0.0347370
MAX CASE DEPTH 7.0241853 #.6261833

TRANSVERSE CIR TOOTH THICKNESS #.1088630 0.6430387
NORMAL CIR TOOTH THICKNESS #.1043- 6.1658 0.6460- 0.6470

NORMAL DIAMETRAL PITCH 19.9429632 19.9429632
NORMAL PRESSURE ANGLE 20.4441987 20.4441987
LEAD 19.1725861  183.8672733
ROUND-EDGE RADIUS MAX 6. 0050000 0.0050000
ROOT FILLET RADIUS MIN .0201191 6.0206911
WHOLE DEPTH CONSTANT 24000006 2. 4000000
CLEARANCE AT TIP OF TOOTH .6269483 0.0269483
BALL DIAMETER .1250000 0.1250000

TEASYREMENT OVER BALLS 1.9600- 1.991815.5315-15.5341
BALL CONTACT DIAMETER 1.7152- 1.716915.3622-15.3647
DIt OVER TOP LAND 65600097 8.6742515
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TRANSVERSE DIAMETRAL PITCH 19.2852048
TRANSVERSE PRESSURE ANGLE (DEG) 21.081113p
CENTER DISTANCE 8.478pmag
PITCH LINE VELOCITY (FPM) 14264.8838538
MESH RATIO 9.5483771
RELATIVE HORSEPOWER PER MESH 170.0000vop
EFFECTIVE FACE WIDTH 1.6250000
STATIC TANGENTIAL LOAD (LBS) 393.2721197
DYNAMIC FACTOR 1.5349a41
ALIGNMENT FACTOR 1.3733637
MODIFIED TANGENTIAL LOAD (LBS)  829.02607%4
SURFACE FINISH 20.0000vv
FLASH TEMPERATURE RISE (DEG F) 72.9813383
PROFILE CONTACT RATIO 1.5640¢43
FACE CONTACT RATIO 2.6274494
MIN CONTACT LENGTH 2.5137744
MAXIMUM CONTACT LENGTH 2.75100c5
BACKLASH 0.0960n0p
CIRCULAR PITCH 0.162%.7
LEAD ERROR (IN/IN) 0.0002000
BASE PITCH 0.1519%99
DEPTH TO POINT OF MAX SHEAR 6.0027:.4

Figure 2.32 A 296 X 31 tooth computer output sheet. (Courtesy of American

Lohmann Corporation, Hillside, N.J.)
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sq4 ¥ 22 MESH

AELATIVE ROLLING &
"ES“ TORUE (IN-
RY FACTOR

[W[’I”
“"NDINC A
73692, 73 7.‘5963”"
999999, 606000E 9997990000060
£.8118973 1.8118972
961.7124171  -3335,9694643

SAFETY FACTOR
3 'nwc "VELOCITY AT TIP (FRM)

p.C.M.A, MATERIAL GRADE 10000000  1.0000000
ALTERNATING BENDING FACTOR 1. 6000600 1,0000000
NOMEER OF MESHES PER REV 1,0060000

gASE HELIX ANGLE (DEG) 13.307690

QUTSIDE DIAMETER 1,777- 1,730 15.390

PITCH DIAMETER 1.7007538 ,

FORM DIAMETER HSME 15.171940
BASE DIAMETER 1.5964326  18,3213052
ADOT DIAMETER 1,523 1,533 15.126-15.136
ROLL ANGLE-MAX OUTSIDE DIA 20.2371869  22.467231%

R0LL ANGLE-RDUND EDGE DIA 27.520239  22.3643661
ROLL ANGLE-HIGH SINGLE TOOTH 19.0158108  21.4391728
ROLL ANGLE-PITCH DIA 216268157 21.0268157
ROLL ANCLE-LDW SINGLE TOOTH 17323097

ROLL ANGLE-FORM DIAMETER R.1G67218  70.2229567
TOP LAND THICKNESS 6.0415479  8.0347377

¥AY CASE DEPTH #.93213328 6.8261338
TRANSVERSE CIR TOOTH THICKNESS 8.8731618 0.0927504
NDRMAL CIR TODTH THICKNESS 6.6763- 0.6713 6.6735- 0.0366

NORMAL DIAMETRAL PITCH 20.6570477 ZE #570477
NORMAL PRESSIRE ANGLE 13.5440270 195466270
LEAD 20.4095271  183.08672734
ROUND EDGE RADIUS MAX .0050000 .0050000
ROOT FILLET RADIUS MIN #.8261296 #.6197955
WHOLE DEPTH CONSTANT 2.4000000 2.4000000
CLEARANCE AT TIP OF TOOTH 7.026191 70201918
BALL DIAMETER #,1250000 6,1290000
MEASUREMENT OVER PALLS 1.9326- 1.928613, 341
BALL CONTACT DIAMETER 1.7998- 1.737615.3622-15.3647
DIM QVER TOP LAND #.6762362 0. @74241”‘
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DEFTH T POINT OF MpY SHEAR

Figure 2.33 A 296 X 33 tooth computer output sheet. (Courtesy of American

Lohmann Corporation, Hillside, N.J.)
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ENGINEERING DRAWING FORMAT

The engineering drawing must contain sufficient information to define the com-
ponent completely so that the manufacturing department can fabricate it and
the quality control department can inspect it. There are several elements that
should appear on the field of a gear drawing:

1.

XX

Gear blank features are usually shown in an end view and cross section, as
illustrated in Figure 2.34. It is important to specify the reference surfaces
that will locate the gear in the application. For instance, the gear in Figure
2.34 will be pressed onto a shaft; therefore, the surface C locates the gear in
the assembly and the gear tooth geometry must be accurate with respect to
this surface. Sides A and B must be parallel to each other according to the
drawing, and surface C perpendicular to A and B. The surface finish is desig-
nated by the 7 symbol. The end view shows a gear tooth and calls out which
face of the gear tooth is loaded. The X’s indicate to how many decimal
places a dimension is given.

A close-up view of the gear teeth as shown in Figure 2.35 defines the out-
side, pitch, form, and root diameters. It also calls out the roughness in the
root area and in the area between the form diameter and the outside diam-
eter: the active profile. The maximum undercut allowed in the root fillet

LOADED FACE

BN

v

XX

xyl QN" \K

gmm AL xxx X]
' X XXX 282

Figure 2.34 Gear blank dimensioning.

xX/WITHIN THESE LIMITS
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BOTH FACES

UNDERCUT ROOT DIA.

PITCH DIA.

FORM DIA.

area is defined. If the teeth are surface-hardened by processes such as car-
burizing or nitriding, the areas to be hardened are designated as surfaces
followed by a triangle, which refers to a note that defines the case hardness
and depth. Note that in the illustration the top lands and tooth ends are not
hardened. Some designers prefer to harden these areas and therefore would
point to them in this view.

OUTSIDE DIA.

Figure 2.35 View of gear teeth.

. The tooth edges at the top land and the ends must be rounded, and Figure

2.36 illustrates how the radii of the tooth tips and edges are defined.

. The gear material and its heat treatment must be specified and this is usually

done in a block of data on the lower right-hand side of the drawing. As an
illustration the callout for a carburized gear follows:

Material: AMS 6265 forging

Carburize surfaces

Effective case depth of finished gear: 0.035 to 0.050
Case hardness: R 60 to 63

Core hardness: R 32 to 40

Per specification xxxx

Surface temper inspection per specification xxxx
Magnetic particle inspection per specification xxxx
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ROUND EDGES .XXX R
Figure 2.37 is one form of a gear data block which is applicable to both spur
and helical gears. In this format all data are given at the operating pitch
diameter. Note that the pitch diameter must be concentric to surface C

ROUND EDGES _ iy
XXX-. XXX R shown in Figure 2

BOTH SIDES
Tooth Tolerances

Note that the gear data form (Figure 2.37) has a line which calls out the AGMA
quality number. AGMA Standard 390.03 [1] specifies quality numbers identify-
ing specific tooth element tolerances. The higher the quality number, the more
precise the gearing will be and the closer the tolerances. Quality numbers range
from 3 to 15 and the standard contains a tabulation of many industrial and end
use applications and suggested quality number ranges for each. The following
table lists some sample applications:

Figure 2.36 Round edge definition.

Industry Quality number
GEAR DATA Aerospace engines 10-13
METHOD OF MANUFACTURE Agriculture 3-7
NO. OF TEETH Automotive 10-11
HELIX ANGLE XX.XXXX° Mining 2-2
HAND OF HELIX , Steel =
LEAD OF HELIX XXX XXXX
NORMAL DIAMETRAL PITCH XX.XXXX In the industries cited above and in other applications, when high-speed drives
NORMAL PRESSURE ANGLE XX XXXX° are required or there are special considerations such as noise abatement, higher

quality numbers may be called for. It should be noted that quality classes 13,

NORMAL CIRC. TOOTH THICK. | .XXXX/.XXXX ) ' \ -
14, and 15 are extremely difficult to achieve and prior to requiring these classes

PITCH DIAMETER XXXXXX © there should be agreement between the manufacturer and user as to the method
ROOT DIAMETER XX XXX/ XX XXX : :

of inspection.
FORM DIAMETER, MAX. XK RRER The majority of critical industrial applications in fields such as the process
WIRE OR BALL DIAMETER XXXX industries and turbomachinery will require gear units with elements that fall into
MEAS. OVER WIRE OR BALLS XXXXXX/XX.XXXX the quality number range 10 to 13. Table 2.1 presents the tolerances for these
AGMA QUALITY NUMBER classes. Following is a definition of each tooth tolerance element shown in
RUN OUT TOL. XXX Table 2.1: .
PITCH TOL. XXXX 1. Runout tolerance. The variation of the pitch diameter in a direction per-
PROFILE TOL. SEE DIAGRAM pendicular to the axis of rotation with respect to a reference surface of revo-
LEAD TOL. SEE DIAGRAM lution such as a bearing journal or a bore. The pitch diameter, being theo-
MATING GEAR PART NUMBER retical, must be indirectly measured and this can be done several ways. Two
BACKLASH WITH MATING GEAR widely used methods are:

a. Runout can be measured by indicating the position of a ball probe in
Figure 2.37 Gear data block. successive teeth (see Figure 2.38).
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Table 2.1 Pitch Gear Tolerances (in ten-thousandths of an inch)
RUNOUT TOLERANCE PITCH /(/R;;'E?—' PROFILE TOLERANCE LEAD TOLERANCE
AGMA NORMAL - TOLE ;
QUALITY | DIAMETRAL PITCH DIAMETER (INCHES) PITCH DIAMETER £s) PITCH DIAMETER (INCHES) FACE WIDTH (INCHES)
NUMBER PITCH (INCH
34 |1% | 3 [ 6 |12 |25 [50 [100 |200 [400 [3/4 [1% [3 |6 |12 /"50" 100 | 200 | 400 f3/4 1% [3 |6 [12 |25 |50 |100 |200 |40 | !and
12 146.5 [174.5 |205.8 |24 2.7286.3[337.6 19,0 ﬁ——y/s 27.7 313|354 426 |47.7 | 531 |59.1 | 657 730 f= 2 8 {4 2
1 88.8 [104.8 124.8147.2(173.6 [204.7 [241.4 144 (163 L”—L;I’O‘SET 26.8 | 30.3 28.3 315|353 |39.3 |43.7 | 4856 54.1
2 539 635 | 749 89.2]105.2[124.1 [146.3[172.6 109 [123 140 %':_ ‘B:o’m‘zg,o 26.0 18.8 [21.0[23.3]26.1 | 29.0 [32.3 | 36.0] 40.0
8 4 32.7 385|454 | 5636 | 63.8| 75.2| 88.7 [104.6 [123.4 83 | 93 (106119 ﬁfs——‘;;’,‘ﬁ“ﬁ7 22.2 125 [13.9 (155 [17.2 [ 19.3 [ 215 [23.9 [ 26.6 | 296 5 8 | 11|13 |16
8 19.8] 233 [27.5[ 325 | 383|456 53.8[ 63.4 [ 74.8[ 882[6.3 [ 7.1 | 80| 9.0[102 r”/'f—g;’ﬁ_gﬂ 16.8[19.0 [83 [ 93 [103 [11.5[12.8[14.3] 159 [17.7 [19.7] 219
12 16.3]19.2|226(26.7 | 31.5|37.5| 44.2| 52.1| 61.5]| 725[6.7 |65 | 7.3 | 83| 03 | 1720136 | 154 [174 |70 [ 78| 86 [ 96 [107[120[ 133148 [165] 184
20 127150 [17.7| 20.8 | 246 | 29.3| 345 40.7| 48.0| 56.6[5.1 |58 | 65| 74| 83 %?To’f—ﬁ-_’— 137|155]56 | 62| 69| 77| 86| 96107 |11.9 [13.2] 147
= s w il i S0 eaf Lo 2200 i B [ o f s
2 385[454 | 53.5(63.7| 75.2| 88,6 [104.5[123.3 77| 87 9:8 —E";——};“% :222 18:3 135 15:0 16:7 18:6 20:7 23j1 25:7 28:6
9 4 233 27.5(324 | 38.3|45.6|53.7| 634 74.7| 88.1 58 | 66| 74| 84 %{“ﬁ:{ 12.2 | 138 [ 157 8.9 [10.0 [11.1 [12.3] 138153 [17.1 [19.0] 211 4 7 9 | 1 |3
8 141167 [19.7 [ 23.2 | 27.4 | 32.6| 38.4| 456.3 [ 53.4| 63.0]44 [50 | 56| 6.4 | 72 ’i{,ﬁ_ 105 |11.9 13459 | 66| 74 [ 82| 9.1 102 11.4 [126[14.1] 1586
12 116 [13.7 [16.2] 191 | 225 [ 26.8] 31.6| 37.2|439| 51.8[40 (46 | 51| 58] 66 5] 85| 96 [108]12.2]50 | 55| 62| 69| 76| 86| 95 (106118 13.1
20 9.1[10.7 [126 [ 149 | 176 [20.9] 24.7| 29.1[34.3]| 40.4[36 [4.1 | 46| 52| 59 = o] 85| 9.7]109 |40 | 44| 49| 55| 6.1] 68| 76| 85| 94] 105 .
1/2 74.8 | 89.0 [105.0 |123.8 [146.1 [172.3 94 T{g——u‘.; 13.7 | 155 [ 17.6 21,7 [24.3|27.1 |30.1 |335)37.3
1 453 | 53.5163.7| 75.1 | 88.5 [104.4 |123.2 7.2 84 9.2 |10.4 |11.8 [13.3[15.0 14,5 [16.1 [ 18.0 | 20.0 [ 22.3 [ 24.8| 27.6
2 27.5 (324 | 38.2]455(53.7| 63.3 74.7| 88.1 54 | 6.1 69 78] 89101 |11.4 129 96 [10.7 [11.9[13.3[14.8 | 165 | 18.3] 204
10 4 16.7 |19.6 | 23.2 | 27.3 (32.5| 384 | 45.3 | 534 | 63.0 41 46 | 5.2 | 59 -—s—;‘?-,? 86| 98|11.0 64| 71| 79| 88| 99110 122|136/ 15.1 3 5 7 9 10
8 10.1 [11.9 [14.0(166 | 1956 [233] 27.4] 324 [ 38.2[ 45.0[3.1 [35 | 40| a5] 51 58] 65| 74| 83| 9442 | 47| 53| 59| 65 7.3| 81| 90[100] 1.2
12 83 [ 98 [115[136 [16.1]19.1[226]26.6[31.4] 37.0[28 [32 | 36] 41 46 (53] 60] 67] 7.6 8636 | 40 44|40 65] 61| 68] 76] 84| o4
20 65| 76| 9.0|106 | 125|14.9|17.6| 208 |24.5| 289|125 (29 | 3.2| 3.7 41 27| 63| 60| 68| 77|29 | 32| 35| 39| 44| 49| 54| 61| 67| 75
12 534 |163.6 | 75.0 88,5 104.3/123.0 o4 76| 86| 97 [109[124 155 [ 17.4 [ 19.3 [ 215 [ 24.0] 26.7
1 324 |382|455)536)63.2|74.6| 88.0 50 5.7 65| 73| 83| 94106 103 [11.5 [ 129 [14.3 [15.9 [17.7] 197
2 19.6 | 23.1 | 27.3 [ 32.5| 38.3| 45.2 | 563.3| 62.9 38| 43| 4.9 56| 63| 71| 80 9.1 69| 76| 85| 95106 |[11.8]13.1] 14.6
1 4 11.9 |14.0 | 16.6 | 19.5 | 23.2| 27.4 | 32.3 | 38.1 | 45.0 29 33)] 37| 4.2 48| 54| 61| 69| 78 46| 51| 56| 63| 70| 78| 8.7| 9.7| 10.8 3 4 6 7 8
8 72| 85 |100|11.8 | 140|166 19.6 | 23.1 | 27.3| 32.2{2.2 |25 28| 32| 36 41| 46| 52| 59| 66|30 34| 38| 42| 46| 52| 58| 64| 7.2| 8.0
12 59| 70| 82| 9.7 | 115 (13.7| 16.1| 19.0| 224 | 26.4|2.0 2.? 26| 29| 33 37| 42| 47| 54| 6.1]25 28| 31| 35| 39| 44| 49| 54| 60| 6.7
20 46 | 55| 64| 76 9.0|10.7| 126 148 ( 17.5]| 20.6{1.8 | 2.0 23| 26| 29 33| 37| 42| 48| 54|20 23| 25| 28] 31| 35| 39| 43| 48| 5.4
12 38.1454(5.36) 63.2| 74.5| 87.9 4.7 53| 60| 68| 77| 87 11.1 124 (138 [ 154 [ 17.1] 19.0
1 23.1 | 27.3|32.5)| 38.3| 45.2 | 53.3| 62.8 35| 4.0 46| 52| 58| 66| 75 74| 82| 921102 [11.4 [12.7] 141
2 14.0 | 16.5 | 19.5 | 23.2| 27.4 | 32.3 | 38.1| 44.9 27| 30| 34 39| 44| 50| 56| 6.4 49| 55| 61| 68| 76| 84| 94| 104
12 4 85 [100 118 [ 139 [166] 196 23.1 [ 27.2] 32.1 20 | 23| 26| 29 33| 38| 43| 48 55 33| 36| 40| 45| 50 56| 62| 69| 7.7 2 3 5| 6 7
8 62| 61| 72| 85 | 100][11.9]14.0[165[195] 23.0J1.56 [1.7 | 20| 22| 25 29| 32| 37| a1] 47022 | 24| 27 ] 30| 33| 37| 41| 46| 51| 57
12 42| 50| 59| 69 | 82| 98]11.5|136]|16.0[ 189]1.4 [16 | 18| 20 23 26| 30| 33| 38 43]18 | 20| 22| 25| 28| 31| 35| 39| 43| as
20 33| 39| 46| 54. 64 76| 9.0|106|125| 14.71.3 14 1.6 1._8 2.0 23| 26| 30| 34 3815 1.6 18| 20| 22| 25 28| 3.1 34| 38
L |

Source: AGMA Standard 390.03.
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Figure 2.38 Single probe runout check.

Z;

b. a rolling check can be conducted meshing the gear to be inspected with a
master gear of known accuracy on a fixture with a movable center dis-
tance. The variation of center distance is a measure of runout.

Pitch tolerance. The pitch is the theoretical distance between corresponding

points on adjacent teeth. The variation from tooth to tooth can be measured

using an instrument which employs a fixed finger and stop for consistent
positioning on successive pairs of teeth, and a movable finger which displays

pitch variations on a dial indicator or chart recorder (Figure 2.39).

3. Profile tolerance. The deviation from a true involute checked on an in-

4.

volute profile measuring instrument. In most cases, a modified involute is
used; the drawing specification for involute modifications is discussed later
in the chapter.

Lead tolerance. For a spur gear the lead inspection might be considered a
check of the parallelism of the tooth with respect to the axis of rotation.
The lead of a helical gear is the axial advance of a helix for one complete
turn. Lead is checked by an instrument that advances a probe along the
tooth surface, parallel to the axis, while the gear rotates in a specified, timed
relation based on the lead.

Gear T ooth Design

MOVABLE FINGER
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INDICATOR

X

CHECKING HEAD

STOP

Figure 2.39 Tooth-to-tooth spacing check.

PROFILE MODIFICATION

Figure 2.40

/A\Tip Relief

Tooth modifications.
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In the data block (Figure 2.37) there are lines available for both the
AGMA quality number and the specific tolerances mentioned above. It is pos-
sible that for a specific application the designer will not choose tolerances from a
single quality number class. For instance, the designer may want to have a closer
tolerance on tooth-to-tooth spacing that on profile. In such a case the individual
tolerances can be specified on the gear data block. Even when a single quality
number is used, the tolerances can be placed on the block for reference.

When a modified involute or lead is required, a note in the gear data block
will refer to a diagram on the drawing which defines the modification. Modified
involute profiles and leads are used to attempt to compensate for deflections
during operation and tooth errors. Figure 2.40 illustrates profile (involute)
modifications and lead modification, sometimes called crowning.

Profile Modification

Tooth profiles are modified to avoid interference which can occur as the teeth
enter into or leave the mesh. The interference is a result of deflection of the gear
teeth, shafts, or gear casing due to the transmitted load or tooth discrepancies
such as spacing or profile error. For instance, if a pinion tooth is misplaced from
its theoretical position due to spacing error or because the previous tooth has
deflected under load and enters into mesh too soon, the interference with the
mating tooth will create a dynamic load which will increase tooth stresses and
system noise and vibration levels. Such interference can be eliminated by reliev-
ing the pinion and gear tooth tips or flanks or both, as shown in Figure 2.40.
Figure 2.41 illustrates how the profile modification is specified on the engineering
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Figure 2.41 Modified involute diagram. The gear tooth profiles within the
tolerance bands shall not depart from a smooth and gradual convex curvature.
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drawing. The diagram provides tolerance bands for the chart that will be pro-
duced when the gear is inspected on an involute measuring instrument. Figure
241 presents a diagram for the 31-tooth pinion described in Figure 2.32. The
amount of relief specified at the round edge diameter is 0.0003 to 0.0007. It is
impractical to specify values at the outside diameter since the round edge radius
cannot be closely controlled. The relief at the form diameter in this case is also
0.0003 to 0.0007. The tip and flank reliefs commence at the highest and lowest
oints of single tooth contact.

It should be recognized that the benefits from profile modification can be
realized only if the teeth are accurately manufactured to tolerances less than the
modifications specified. It would be pointless to have a 0.0005 tip modification
if the tooth spacing were allowed to vary by 0.001. An estimate of the amount
of modification required for a given application may be found in Ref. 2.

The modification at the first point of contact is given as:

3.5X 1077

Modification = driving load (Ib) X —————
face width (in.)

To achieve this modification, material must be removed from the tip of the
driven gear or the flank of the driving gear or both. If material is removed from
both, the total modification is split between the two meshing teeth.

The modification at the last point of contact is given as:

20X 1077

Modification = driving load (Ib) X ——————
face width (in.)

To achieve this modification, material must be removed from the tip of the
driving gear or the flank of the driven gear or both.

The foregoing estimates for profile modification are offered as starting
points for a design. The final tooth modifications are arrived at through develop-
ment by observing operating results.

Lightly loaded gears may not require profile modification. If a simple
involute tolerance is called out on the gear data block, Figure 2.42 shows how
this tolerance is to be interpreted. Assume a profile tolerance of 0.0008 in. The
measured profile must fall within the checked area of the diagram in Figure
2.42. A true involute would be a straight line on the diagram. If the involute is
plus, the line on the diagram will slant up toward the left. A minus involute is
depicted by a dashed line on the diagram. In general, a plus involute tends
toward an interference condition;therefore, the minus involute is more desirable.

Lead (Axial) Modifications

In theory, when gear teeth mesh the faces will be parallel to each other and the
load will be distributed across the full face width. In practice, however, a
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Figure 2.42 Interpretation of involute tolerances.

7
7
7
L 3
1 -
s I
3 ol G
¥ _1 L
%l
— L
1
v |
—
(=)
o
[oX
N T
T
andll |
=

>
0
m

4
T
1

Gear Drive Systems

=

TRUE INVO

=3

NUS PROFILE

DD

S PROFILE

ra

FORM DIA.

Figure 2.43 Lead diagram.
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tolerance must be given. For spur gears it will be a tolerance on the parallelism
of the tooth with the axis of rotation. For helical gears it is called a lead
tolerance. Figure 2.43 shows how this tolerance is interpreted. The solid line is
the theoretical trace and the dashed line is the measurement as recorded by a
Jead checking instrument. The diagram shows a 0.001-in. variation. If this is a
right'haﬂd helical gear, because the variation is off to the right, the measured
helix angle is greater than the theoretical value.

Tooth faces tend not to be exactly parallel in operation not only because
of tooth errors but also due to deflections of shafts, bearings, and casings. The
Joad, therefore, may be concentrated on an end rather than distributed evenly
across the face. To alleviate end loading, a lead modification, sometimes called a
crown, is used. As shown in Figure 2.40, the crown relieves the tooth ends and
avoids a heavy concentration of load in these areas. Figure 2.44 illustrates how a
crowned tooth is specified on the engineering drawing. In this example the relief
at either end of the face width is 0.0004 to 0.0008, blending smoothly into the
flat at the center of the tooth. The amount of crowning generally is on the order
0£0.001 in., but like the profile modification must be finally developed by
observation of test results. In some cases deflections are such that only one end
of the tooth need be crowned. On occasion two mating gears are designed with
slightly different helix angles which become parallel as the system deflects
under load.
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Figure 2.44 Crowned lead diagram. The lead contour within the tolerance
bands shall not depart from a smooth and gradual convex curvature.
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SPACE WIDTH

SPLINE DESIGN oA CIRCULAR PITCH

FLAT ROOT FILLET

Splines are used in mechanical systems to transmit torque and motion from one INTERNAL SPLINE
shaft to another. A spline connection consists of a set of external gear teeth
arranged in a circle which fit into a corresponding set of internal gear teeth.
Splines provide a strong, compact method of connection which can accommo-
date some misalignment.

In general use today are involute splines of 30° pressure angle with stub
teeth. Stub teeth have short addendums of 1/2(diametral pitch) rather than the RIAE DR
conventional 1/diametral pitch. Because of this the spline pitch is conventionally I
given as a fraction (e.g., 12/24, the numerator being the diametral pitch, which is MINOR DIA. TOOTH THICKNESS
the number of spline teeth per inch of pitch diameter and which controls the / / (CHDULAR)

PITCH DIA. MAJOR DIA. EXTERNAL SPLINE

circular pitch and basic space width or tooth thickness. The denominator is

known as the stub pitch and is always twice the numerator. The tooth adden- DRAWING DATA

dum is 1/stub pitch. INTERNAL INVOLUTE SPLINE DATA EXTERNAL INVOLUTE SPLINE DATA
Spline teeth are of the involute form because of tooling advantages. A \LLET ROOT SIDE FIT FILLET ROOT SIDE FIT
single hob or shaper cuttfr can generate all numbers of teeth of a given diametral UMBER OF TEETH XX NUMBER OF TEETH %%
pitch. Stub teeth and 30° pressure angles are used for ease of machining. The PLINE PITCH XX /XX SPLINE PITCH XX/XX
. . . . o o
relatively high pressure angle increases tool life because the tool has more clear- RESS”:;E‘TNE?E S XXXXX REF :ig:’s;:; E‘T"E‘::E oy
. . ; s ; ASE DI . : .XXXXXX REF
ance behind the cutting edge. Also, higher cutting speeds are possible. The stub \TCH DIAMETER XXXXXXX REF. | PITCH DIAMETER L RAXANK HEE,
tooth is advantageous for broaching internal splines and for rolling of teeth. AJOR DIAMETER X. XXX MAX. MAJOR DIAMETER X XXX/X. XXX
Generally, splines are designed to ANSI Standard B92.1a [3] . In addition ORM DIAMETER X XXX FORM DIAMETER X. XXX
o : i ° INOR DIAMETER X XXX/X. XXX MINOR DIAMETER X.XXX MIN.
to 30° pressure angles the standard presents dimensioning systems for 37.5" and
° . . ; ; : IRCULAR SPACE WIDTH CIRCULAR TOOTH THICKNESS
45° pressure angle splines, which a.re sometimes known as serrations. F}gure 245 AL % 5 XK NAK EEFECTINE —
taken from the standard shows spline tooth nomenclature and how spline data \N EFFECTIVE X.XXXX MIN ACTUAL XX XXX
are presented on the engmeermgI drawing. ] o ) MAX MEAS.BETW. PINS X.XXXX REF. MIN MEAS. OVER PINS X.XXXX REF.
Two root fillet configurations are possible, as shown in Figure 2.45. One is PIN DIAMETER X.XXXX PIN DIAMETER X.XXXX

the flat root spline, in which fillets join the arcs of major or minor circles to the
tooth sides. The other is the full fillet root spline, in which a single fillet in the
general form of an arc joins the sides of adjacent teeth. The full fillet root form
is stronger and should be used if appreciable torque is transmitted through the
spline.

There are two types of fits possible with mating splines. One is a side fit
where the mating members contact on the sides of the teeth only and there is
clearance at the major diameters. When using a side fit spline if more accurate
centralization of the shafts is desired, this can be accomplished by the use of
shaft shoulders, as shown in Figure 2.46. It is also possible to have a major
diameter fit where the mating members contact at their major diameters and the
tooth sides act only as drivers. In this case the standard provides for increased
clearance at the sides to ensure that all centering will be at the major diameters.

To be sure that two mating splines will fit together with minimum clear-
ance, the concept of effective and actual tooth space and tooth thickness

Figure 2.45 Spline nomenclature and drawing data.

dimensions is used in spline tooth dimension systems. To understand this con-
cept, imagine an internal spline with each tooth space width exactly half a
circular pitch and the mating external spline with each tooth thickness exactly
half a circular pitch. It would seem that these splines would fit perfectly; how-
ever, because of such tooth errors as spacing, profile, out of round, and lead, the
pair probably cannot be assembled. Because of these errors the spline teeth will
not be in their theoretical locations on the pitch circle and at some point or
points there will be interference between the internal and external teeth. To
overcome this problem, all space widths of the internal spline must be widened
by the amount of interference caused by tooth errors and all tooth thicknesses
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Figure 2.46 Piloted side fit spline.

of the external spline must be thinned. This concept leads to four dimensions for
space width and tooth thickness:

Minimum effective space width = % circular pitch (¢ = 30°)
Maximum effective space width

Minimum actual space width

Maximum actual space width

Maximum effective tooth thickness = % circular pitch (¢ = 30°)
Minimum effective tooth thickness

Maximum actual tooth thickness

Minimum actual tooth thickness

The spline teeth are machined to the actual space width or tooth thickness
dimensions which can be checked by the use of gages or measurements over pins.
The effective dimensions are checked by gages. There are four machining toler-
ance classes set up for the effective and actual space widths and tooth thick-
nesses which result in varying degrees of clearance.

It must be remembered that the ability to assemble the spline is not the
only criterion in critical applications. When significant loads are transmitted, or at
high speed, the tooth geometry of the splined connection may have to be closely
controlled and elements such as profile, lead, and surface texture specified.
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Figure 2.47 Helical spline shaft system.

In some cases where tooth bearing surface is important it may be desirable to use
full-depth teeth. Full-depth splines would not use a 30° pressure angle since the
teeth would be too pointed but would have a conventional 20° pressure angle
or less.

There are applications where it is desirable to transmit thrust through a
splined connection. For instance, a turbine wheel may be connected to a
helical gear and the thrust of the wheel offset by the gear thrust. In such a case
a helical tooth spline is effective. Figure 2.47 illustrates such a system. The
spline helix angle is chosen such that the spline thrust exceeds the gear thrust
and the shaft system locks up with the turbine shaft, bottoming out in the gear
shaft shoulder. The net thrust in the system is then the turbine thrust minus
the gear thrust, which is reacted by the ball bearing. The bearing loading, there-
fore, is greatly reduced from the case where the thrusts are not offset.

®
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GEARBOX RATING

The rating of a gearbox is determined by the loads the gearbox components are
capable of transmitting. In some cases where a system is operating continuously
at a uniform load such as an electric motor driving a fan, the loading is simple to
predict and component analysis can be based on a continuous horsepower trans-
mitted at steady speed. Some applications, however, experience variable loading
such as high starting torque or shock loads and these conditions must be con-
sidered in the gearbox design.

Organizations such as the American Gear Manufacturers Association
(AGMA) and the American Petroleum Institute (API) issue Standards that define
gear rating procedures. AGMA Standard 420.04 [1] covers enclosed drives with
pitch line velocities not exceeding 5000 fpm or pinion speeds not exceeding
3600 rpm. Higher-speed enclosed drives are covered by AGMA Standard 421.06
[2]. The general AGMA Standard for gear rating is 218.01 [4] .

The rating methods used in these standards are discussed in this chapter.
Before going into detail, an overview of the procedure one would use in rating a
gearbox follows:

L. Gear tooth rating. The first step in determining a gearbox rating is to evalu-
ate the tooth meshes. The classical gear tooth limitations that are calculated
are the fatigue phenomena of breakage and pitting. Tooth breakage is anal-
yzed by calculating the bending stress in the root fillet area and comparing it
against a material strength rating. Pitting is analyzed by calculating the com-
pressive stress at the tooth contact and comparing it against a material dura-
bility rating. A third gear tooth limitation encountered in high-speed gearing
is instability of the lubricant film, allowing metal-to-metal contact leading to
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scoring. The failure modes of tooth breakage, pitting, and scoring are de-
scribed in Chapter 12. Their analysis is covered later in this chapter.

2. Bearing rating. Bearing ratings may be the limiting factor in determining the
load a gearbox can transmit. A decision must be made as to the minimum
acceptable L, life desired for antifriction bearings or the maximum loading
acceptable for journal bearings. The analysis and rating of bearings is pre-
sented in Chapter 4.

3. Thermal rating. Gear stresses or bearing lives usually determine the mechap.
ical rating of a gearbox. In addition to the mechanical rating, gearboxes
which do not use external cooling have a thermal capacity. This is defined ip
AGMA Standard 420.04 as the horsepower a unit will transmit continu-
ously for 3 hr or more without exceeding a sump temperature of 200°F or 3
sump temperature rise of 100°F over ambient. If these thermal limits are
exceeded, external cooling must be provided. Gearbox thermal ratings and
lubrication systems are discussed in Chapter 5.

4. Shaft rating. Consideration must be given to gearbox components other
than gears and bearings. Shafting, keyways, splines, and so on, must be
analyzed to assure satisfactory performance under load. These machine
elements are discussed later in the chapter.

The four points above are the obvious design details that must be addressed;
however, there are many other details, such as housing and shaft deflections,
critical speeds, and thermal expansion, of which the experienced gearbox de-
signer is aware. Generally, in the procurement of a gearbox, gear ratings, bearing
lives, and lubrication details are documented and the finer points of gearbox
design are left to the manufacturer.

TOOTH LOADS

To calculate gear and shaft stresses and bearing lives, the gear tooth loads must
be developed. Figure 3.1 illustrates the load diagram on a spur gear tooth. The
gear torque is

63,025 hp
T, = ——
rpm
where
Tq = torque,in.lb
hp = horsepower
rpm = gear rotational speed

The total transmitted tooth load R acts normal to the involute profile. The com-
ponent of R transmitting the torque is the tangential load:
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where

Wt = tangential load, Ib
PD = gear pitch diameter, in.

The total transmitted load is
Wt

COS ¢

R =

where

R = total transmitted (resultant) force, Ib
¢t = transverse pressure angle, deg

As shown in Figure 3.1, the force R is resolved into the tangential load and a
separating load:

S =Wptano

Where § is the separating load, in pounds. In the case of helical gears, the resul-
tant force R is in the normal plane. To resolve R into a tangential and separating
force, the geometry shown in Figure 3.2 is used. There is also a thrust force
generated since the resultant force is at an angle Y to the tangential force:
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Figure 3.2 Helical gear tooth loads.

W = Rcos ¢y cos ¢

Rsin ¢y = W tan br
= Rcosgysiny = Wy tan

~
I

¥ = helix angle, deg
¢n = normal pressure angle, deg
thrust load, Ib

—~
]

STRENGTH RATING

The strength rating of a gear tooth concerns itself with the bending stress (Figure
3.3) in the tooth fillet, where fatigue cracks initiate and propogate resulting in

TOTAL
TRANSMITTED
LOAD

BENDING STRESS

Figure 3.3 Bending stress criterion for strength rating.

GEOMETRY FACTOR J
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fracture of teeth or portions of teeth. The fundamental equation for bending
1a ;
stress in a gear tooth is [4]
WPy
S; = e
: FJ
where
S¢ = tensile or bending stress, psi
Wp = transmitted tangential load, Ib
p; = transverse diametral pitch, in.™?
J = geometry factor
The geometry factor J is an index of the following;
Tooth geometry in the root fillet area
Stress concentration in the root fillet
Load sharing between teeth
The position at which the most damaging load is applied
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Figure 3.4a Geometry factors, 20° spur gears, standard addendum (From Ref. 5.)
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" N GENERATING RACK
my = e 4= =& Geometry factors may be arrived at by graphical layout of the tooth form
N:5I5T Py

¢ computer analysis of the graphical procedure. Reference 5 presents a method
for calculating the geometry factor. Figures 3.4a, 3.4b, and 3.4c present geometry
factors for 20° pressure angle spur and helical gears. The geometry factor is
strongly dependent on the cutting tool geometry and these figures are for
hobbed gears. In general, spur gear geometry factors vary from approximately
0.35t0 0.45 and helical gear geometry factors have values from approximately

0.4 to 0.6.
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In the AGMA rating system the basic bending stress is modified by several
factors that deal with the characteristics of a specific application:

WTKa Pd KsKm
K, F I
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GEOMETRY FACTORUJ

e e — e =

(.1)

7]
-
1}

|
WA

RE
v—-l——‘—' =T -
IR .

30

HELIX ANGLE ¥
application factor. This factor takes into account the roughness or

smoothness of the driving and driven equipment. When no overloads
are anticipated K, may be taken as 1.0. For very rough operation K,
may be 2.25 or greater.

dynamic factor. The dynamic factor represents the ratio between the
maximum dynamic load on the gear teeth and the static calculated
load. Gear teeth generate dynamic loads due to component
geometry errors which result in gear accelerations and decelerations.
Although the dynamic factor is used as a multiplier in the stress
equation, the dynamic load is actually an incremental force which
adds to the tangential force.

~
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Figure 3.4b Geometry factors, 20° helical gears, standard addendum. (From
Ref. 5.)
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THE MODIFYING FACTOR CAN BE APPLIED TO THE
J-FACTOR WHEN OTHER THAN 75 TEETH ARE USED
IN THE MATING ELEMENT.
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The dynamic factor increases with increasing pitch line velocity and decreases
with increasing tooth accuracy and increased tooth loading. As the tooth loading
is increased, the tooth deflections tend to overshadow tooth geometry errors and
the dynamic load is a smaller percentage of the total load. Figure 3.5 illustrates
this trend. The data shown were developed from a test conducted on a helical
planetary gearset transmitting 1100 hp at 21,000 rpm-in. The sun gear was strain
gaged in the root to measure tooth loading. Gear quality was AGMA Quality
Class 12 [6] . For gears of lower quality classes operating at lower speeds, the
following estimates can be used for dynamic factors [4]:
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Figure 3.4c Modifying factor for helical gear geometry factors. (From Ref. 5.)
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Table 3.1 Allowable Bending Stress S,¢ for Gear Steels

>

S: 0.74 Material hardness Sat (psi)

o> 180 Bhn 25,000-33,000
x TOOTH LOADING [LBIIN. (WT/F) 300 Bhn 36.000-47.000
E 400 Bhn 42,000-56,000
2 ol Carburized R 55 55.000-65.000
2 Carburized R¢ 60 55,000-70,000
z Nitrided Re 60 38,000-48,000
:E(. 0.9 Source: Ref. 4.

4

>

(=]

By = load distribution factor. The load distribution factor accounts for
7500 10000 inaccuracies in the bearing bore locations leading to misalign-
ment of the axes of rotation, alignment errors due to gear tooth
inaccuracies, and deflections due to load or thermal distortion.
For face widths less than 2.0 in., accurate gears and mountings
Figure 3.5 Dynamic factors for accurate gearing. and stiff housings a K, as low as 1.1 may be used. In cases where
“ poor alignment is anticipated K, may equal 2.0 or more.

1.0

0 2500 5000

PITCH LINE VELOCITY (FPM)

The relation of calculated bending stress to the allowable stress of the

where PLV is the pitch line velocity in fpm, for AGMA Quality Class 1 1 gearing material is [4]

operating at pitch line velocities less than 8000 fpm with rigid accurate

mountings; < SatKl
g = 84 \0.4 P = KK,
Y (84 + PLV) where
for AGMA Quality Class 10 gearing operating at pitch line velocities of less than S, = allowable material stress, psi (see Table 3.1)
6000 fpm and K; = life factor
0.63
K, = 70.7
70.7 + PLV
for AGMA Quality Class 8 gearing operating at pitch line velocities of less than Table 3.2 Life Factor—K
5000 fpm. Number of cycles 160 Bhn 250 Bhn 400 Bhn Case carb.
There are analytical methods for calculating dynamic loads [7]. The tooth 2
stiffness and mass are determined, and assuming the magnitude of tooth errors, Up to 1000 1.6 24 3.4 2.7
an estimate of the dynamic load can be arrived at. 000 1.4 1.9 24 2l
100,000 1.25 1.5 1.7 1.6
K, = size factor. The size factor reflects nonuniformity of material prop- 1 million 1.1 1.1 A 1.2 1.2
erties which become more prevalent as the size of a gear increases; 10 million 1.0 1.0 1.0 1.0

however, standard size factors have not yet been established and K

Source: Ref. 4.
is usually taken as 1.0.




